Science.gov

Sample records for rapamycin down-regulates ldl-receptor

  1. Rapamycin down-regulates LDL-receptor expression independently of SREBP-2

    SciTech Connect

    Sharpe, Laura J.; Brown, Andrew J.

    2008-09-05

    As a key regulator of cholesterol homeostasis, sterol-regulatory element binding protein-2 (SREBP-2) up-regulates expression of genes involved in cholesterol synthesis (e.g., 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) Reductase) and uptake (the low density lipoprotein (LDL)-receptor). Previously, we showed that Akt, a critical kinase in cell growth and proliferation, contributes to SREBP-2 activation. However, the specific Akt target involved is unknown. A potential candidate is the mammalian target of rapamycin, mTOR. Rapamycin can cause hyperlipidaemia clinically, and we hypothesised that this may be mediated via an effect of mTOR on SREBP-2. Herein, we found that SREBP-2 activation and HMG-CoA Reductase gene expression were unaffected by rapamycin treatment. However, LDL-receptor gene expression was decreased by rapamycin, suggesting that this may contribute to the hyperlipidaemia observed in rapamycin-treated patients. Rapamycin did not affect mRNA stability, so the decrease in LDL-receptor gene expression is likely to be occurring at the transcriptional level, although independently of SREBP-2.

  2. The LDL receptor.

    PubMed

    Goldstein, Joseph L; Brown, Michael S

    2009-04-01

    In this article, the history of the LDL receptor is recounted by its codiscoverers. Their early work on the LDL receptor explained a genetic cause of heart attacks and led to new ways of thinking about cholesterol metabolism. The LDL receptor discovery also introduced three general concepts to cell biology: receptor-mediated endocytosis, receptor recycling, and feedback regulation of receptors. The latter concept provides the mechanism by which statins selectively lower plasma LDL, reducing heart attacks and prolonging life.

  3. [The LDL receptor family].

    PubMed

    Meilinger, Melinda

    2002-12-29

    The members of the LDL receptor family are structurally related endocytic receptors. Our view on these receptors has considerably changed in recent years. Not only have new members of the family been identified, but also several interesting observations have been published concerning the biological function of these molecules. The LDL receptor family members are able to bind and internalize a plethora of ligands; as a consequence, they play important roles in diverse physiological processes. These receptors are key players in the lipoprotein metabolism, vitamin homeostasis, Ca2+ homeostasis, cell migration, and embryonic development. Until recently, LDL receptor family members were thought to be classic endocytic receptors that provide cells with metabolites on one hand, while regulating the concentration of their ligands in the extracellular fluids on the other hand. However, recent findings indicate that in addition to their cargo transport function, LDL receptor family members can act as signal transducers, playing important roles in the development of the central nervous system or the skeleton. Better understanding of physiological and pathophysiological functions of these molecules may open new avenues for the treatment or prevention of many disorders.

  4. The mTOR inhibitor rapamycin down-regulates the expression of the ubiquitin ligase subunit Skp2 in breast cancer cells

    PubMed Central

    Shapira, Ma'anit; Kakiashvili, Eli; Rosenberg, Tzur; Hershko, Dan D

    2006-01-01

    Introduction Loss of the cyclin-dependent kinase inhibitor p27 is associated with poor prognosis in breast cancer. The decrease in p27 levels is mainly the result of enhanced proteasome-dependent degradation mediated by its specific ubiquitin ligase subunit S phase kinase protein 2 (Skp2). The mammalian target of rapamycin (mTOR) is a downstream mediator in the phosphoinositol 3' kinase (PI3K)/Akt pathway that down-regulates p27 levels in breast cancer. Rapamycin was found to stabilize p27 levels in breast cancer, but whether this effect is mediated through changes in Skp2 expression is unknown. Methods The expression of Skp2 mRNA and protein levels were examined in rapamycin-treated breast cancer cell lines. The effect of rapamycin on the degradation rate of Skp2 expression was examined in cycloheximide-treated cells and in relationship to the anaphase promoting complex/Cdh1 (APC\\C) inhibitor Emi1. Results Rapamycin significantly decreased Skp2 mRNA and protein levels in a dose and time-dependent fashion, depending on the sensitivity of the cell line to rapamycin. The decrease in Skp2 levels in the different cell lines was followed by cell growth arrest at G1. In addition, rapamycin enhanced the degradation rate of Skp2 and down-regulated the expression of the APC\\C inhibitor Emi1. Conclusion These results suggest that Skp2, an important oncogene in the development and progression of breast cancer, may be a novel target for rapamycin treatment. PMID:16859513

  5. Down-regulation of mitogen-activated protein kinases and nuclear factor-κB signaling is involved in rapamycin suppression of TLR2-induced inflammatory response in monocytic THP-1 cells.

    PubMed

    Sun, Ruili; Zhang, Yi; Ma, Shijiang; Qi, Hengtian; Wang, Mingyong; Duan, Juhong; Ma, Shujun; Zhu, Xiaofei; Li, Guancheng; Wang, Hui

    2015-10-01

    Tripalmitoyl-S-glycero-Cys-(Lys) 4 (Pam3CSK4) interacted with TLR2 induces inflammatory responses through the mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) signal pathway. Rapamycin can suppress TLR-induced inflammatory responses; however, the detailed molecular mechanism is not fully understood. Here, the mechanism by which rapamycin suppresses TLR2-induced inflammatory responses was investigated. It was found that Pam3CSK4-induced pro-inflammatory cytokines were significantly down-regulated at both the mRNA and protein levels in THP-1 cells pre-treated with various concentrations of rapamycin. Inhibition of phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling did not suppress the expression of pro-inflammatory cytokines, indicating that the immunosuppression mediated by rapamycin in THP1 cells is independent of the PI3K/AKT pathway. RT-PCR showed that Erk and NF-κB signal pathways are related to the production of pro-inflammatory cytokines. Inhibition of Erk or NF-κB signaling significantly down-regulated production of pro-inflammatory cytokines. Additionally, western blot showed that pre-treatment of THP-1 cells with rapamycin down-regulates MAPKs and NF-κB signaling induced by Pam3CSK4 stimulation, suggesting that rapamycin suppresses Pam3CSK4-induced pro-inflammatory cytokines via inhibition of TLR2 signaling. It was concluded that rapamycin suppresses TLR2-induced inflammatory responses by down-regulation of Erk and NF-κB signaling.

  6. Antagonism of microRNA-99a promotes cell invasion and down-regulates E-cadherin expression in pancreatic cancer cells by regulating mammalian target of rapamycin.

    PubMed

    Li, Dan; Li, Xiaohan; Cao, Wei; Qi, Yafei; Yang, Xianghong

    2014-06-01

    MicroRNA-99a (miRNA-99a), a potential tumor suppressor, has been implicated in tumorigenesis of many human malignancies. However, the role of miRNA-99a in pancreatic cancer remains unclear. In the present study, we transfected miRNA-99a antagonism into human pancreatic cancer AsPC-1 cells to inhibit miRNA-99a expression and investigated its influence on cell migration and invasion as well as the underlying possible mechanisms. We found that miRNA-99a antagonism significantly increased proliferation, migration and invasion abilities of AsPC-1 cells, which was accompanied by increased expression of mesenchymal phenotype cell biomarkers (N-cadherin, Vimentin, and α-SMA), and decreased expression of epithelial phenotype cell biomarker (E-cadherin). Interestingly, small interfering RNA (siRNA)-mediated knockdown of mammalian target of rapamycin (mTOR) remarkably restored miRNA-99a antagonism-induced down-regulation of E-cadherin. In conclusion, our data suggest that miRNA-99a is involved in pancreatic cancer migration and invasion by regulating mTOR, and may provide a target for effective therapies against pancreatic cancer.

  7. History of Discovery: The LDL Receptor

    PubMed Central

    Goldstein, Joseph L.; Brown, Michael S.

    2009-01-01

    Summary In this article, the history of the LDL receptor is recounted by its co-discoverers. Their early work on the LDL receptor explained a genetic cause of heart attacks and led to new ways of thinking about cholesterol metabolism. The LDL receptor discovery also introduced three general concepts to cell biology: receptor-mediated endocytosis, receptor recycling, and feedback regulation of receptors. The latter concept provides the mechanism by which statins selectively lower plasma LDL, reducing heart attacks and prolonging life. PMID:19299327

  8. Rapamycin, a mTOR inhibitor, induced growth inhibition in retinoblastoma Y79 cell via down-regulation of Bmi-1.

    PubMed

    Wang, Yan-Dong; Su, Yong-Jing; Li, Jian-Ying; Yao, Xiang-Chao; Liang, Guang-Jiang

    2015-01-01

    Rapamycin is useful in the treatment of certain cancers by inhibiting mTOR(mammalian target of rapamycin) pathway. Here, anticancer activity and its acting mechanisms of rapamycin were investigated in human retinoblastoma Y79 cells. CCK-8 assay showed that the IC50 value of rapamycin against human retinoblastoma Y79 cells was 0.122±0.026 μmol/L. Flow cytometry analysis indicated that rapamycin induced G1 cell cycle arrest. Western blot assay demonstrated that the mTOR pathway in Y79 cells was blocked by rapamycin. Western blot and RT-PCR assay showed that Bmi-1 was downregulated in protein and mRNA level by rapamycin treatment. Further Western blot and RNA interference assays showed that rapamycin-mediated downregulation of Bmi-1 induced decreases of cyclin E1, which accounted for rapamycin-mediated G1 cell cycle arrest in human retinoblastoma cells. Together, all these results illustrated that rapamycin induced growth inhibition of human retinoblastoma cells, and inactive of mTOR pathway and downregulation of Bmi-1 was involved in its action mechanism.

  9. Inhibition of mTOR down-regulates scavenger receptor, class B, type I (SR-BI) expression, reduces endothelial cell migration and impairs nitric oxide production.

    PubMed

    Fruhwürth, Stefanie; Krieger, Sigurd; Winter, Katharina; Rosner, Margit; Mikula, Mario; Weichhart, Thomas; Bittman, Robert; Hengstschläger, Markus; Stangl, Herbert

    2014-07-01

    The mammalian target of rapamycin (mTOR) inhibiting drug rapamycin (Sirolimus) has severe side effects in patients including hyperlipidemia, an established risk factor for atherosclerosis. Recently, it was shown that rapamycin decreases hepatic LDL receptor (LDL-R) expression, which likely contributes to hypercholesterolemia. Scavenger receptor, class B, type I (SR-BI) is the major HDL receptor and consequently regulating HDL-cholesterol levels and the athero-protective effects of HDL. By using the mTOR inhibitor rapamycin, we show that SR-BI is down-regulated in human umbilical vein endothelial cells (HUVECs). This reduction of SR-BI protein as well as mRNA levels by about 50% did not alter HDL particle uptake or HDL-derived lipid transfer. However, rapamycin reduced HDL-induced activation of eNOS and stimulation of endothelial cell migration. The effects on cell migration could be counteracted by SR-BI overexpression, indicating that decreased SR-BI expression is in part responsible for the rapamycin-induced effects. We demonstrate that inhibition of mTOR leads to endothelial cell dysfunction and decreased SR-BI expression, which may contribute to atherogenesis during rapamycin treatment.

  10. Ptc6 Is Required for Proper Rapamycin-Induced Down-Regulation of the Genes Coding for Ribosomal and rRNA Processing Proteins in S. cerevisiae

    PubMed Central

    González, Asier; Casado, Carlos; Ariño, Joaquín; Casamayor, Antonio

    2013-01-01

    Ptc6 is one of the seven components (Ptc1-Ptc7) of the protein phosphatase 2C family in the yeast Saccharomyces cerevisiae. In contrast to other type 2C phosphatases, the cellular role of this isoform is poorly understood. We present here a comprehensive characterization of this gene product. Cells lacking Ptc6 are sensitive to zinc ions, and somewhat tolerant to cell-wall damaging agents and to Li+. Ptc6 mutants are sensitive to rapamycin, albeit to lesser extent than ptc1 cells. This phenotype is not rescued by overexpression of PTC1 and mutation of ptc6 does not reproduce the characteristic genetic interactions of the ptc1 mutation with components of the TOR pathway, thus suggesting different cellular roles for both isoforms. We show here that the rapamycin-sensitive phenotype of ptc6 cells is unrelated to the reported role of Pt6 in controlling pyruvate dehydrogenase activity. Lack of Ptc6 results in substantial attenuation of the transcriptional response to rapamycin, particularly in the subset of repressed genes encoding ribosomal proteins or involved in rRNA processing. In contrast, repressed genes involved in translation are Ptc6-independent. These effects cannot be attributed to the regulation of the Sch9 kinase, but they could involve modulation of the binding of the Ifh1 co-activator to specific gene promoters. PMID:23704987

  11. Clinically used selective oestrogen receptor modulators increase LDL receptor activity in primary human lymphocytes

    PubMed Central

    Cerrato, F; Fernández-Suárez, M E; Alonso, R; Alonso, M; Vázquez, C; Pastor, O; Mata, P; Lasunción, M A; Gómez-Coronado, D

    2015-01-01

    Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts. Experimental Approach Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry. Key Results Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182 780 nor was it reproduced by 17β-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes. Conclusions and Implications Clinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs. PMID:25395200

  12. Rapamycin causes down-regulation of CCR5 and accumulation of anti-HIV beta-chemokines: an approach to suppress R5 strains of HIV-1.

    PubMed

    Heredia, A; Amoroso, A; Davis, C; Le, N; Reardon, E; Dominique, J K; Klingebiel, E; Gallo, R C; Redfield, R R

    2003-09-02

    Propagation of R5 strains of HIV-1 on CD4 lymphocytes and macrophages requires expression of the CCR5 coreceptor on the cell surface. Individuals lacking CCR5 (CCR5 Delta 32 homozygous genotype) are phenotypically normal and resistant to infection with HIV-1. CCR5 expression on lymphocytes depends on signaling through the IL-2 receptor. By FACS analysis we demonstrate that rapamycin (RAPA), a drug that disrupts IL-2 receptor signaling, reduces CCR5 surface expression on T cells at concentrations as low as 1 nM. In addition, lower concentrations of RAPA (0.01 nM) were sufficient to reduce CCR5 surface expression on maturing monocytes. PCR analysis on peripheral blood mononuclear cells (PBMCs) showed that RAPA interfered with CCR5 expression at the transcriptional level. Reduced expression of CCR5 on PBMCs cultured in the presence of RAPA was associated with increased extracellular levels of macrophage inflammatory protein (MIP)-1 alpha and MIP-1 beta. In infectivity assays, RAPA suppressed the replication of R5 strains of HIV-1 both in PBMC and macrophage cultures. In total PBMC cultures, RAPA-mediated inhibition of CCR5-using strains of HIV-1 occurred at 0.01 nM, a concentration of drug that is approximately 103 times lower than therapeutic through levels of drug in renal transplant recipients. In addition, RAPA enhanced the antiviral activity of the CCR5 antagonist TAK-779. These results suggest that low concentrations of RAPA may have a role in both the treatment and prevention of HIV-1 infection.

  13. A combined LDL receptor/LDL receptor adaptor protein 1 mutation as the cause for severe familial hypercholesterolemia.

    PubMed

    Soufi, Muhidien; Rust, Stephan; Walter, Michael; Schaefer, Juergen R

    2013-05-25

    Familial hypercholesterolemia (FH) results from impaired catabolism of plasma low density lipoproteins (LDL), thus leading to high cholesterol, atherosclerosis, and a high risk of premature myocardial infarction. FH is commonly caused by defects of the LDL receptor or its main ligand apoB, together mediating cellular uptake and clearance of plasma LDL. In some cases FH is inherited by mutations in the genes of PCSK9 and LDLRAP1 (ARH) in a dominant or recessive trait. The encoded proteins are required for LDL receptor stability and internalization within the LDLR pathway. To detect the underlying genetic defect in a family of Turkish descent showing unregular inheritance of severe FH, we screened the four candidate genes by denaturing gradient gel electrophoresis (DGGE) mutation analysis. We identified different combinatory mixtures of LDLR- and LDLRAP1-gene defects as the cause for severe familial hypercholesterolemia in this family. We also show for the first time that a heterozygous LDLR mutation combined with a homozygous LDLRAP1 mutation produces a more severe hypercholesterolemia phenotype in the same family than a homozygous LDLR mutation alone.

  14. PCSK9-mediated degradation of the LDL receptor generates a 17 kDa C-terminal LDL receptor fragment.

    PubMed

    Tveten, Kristian; Strøm, Thea Bismo; Berge, Knut Erik; Leren, Trond P

    2013-06-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the LDL receptor (LDLR) at the cell surface and reroutes the internalized LDLR to intracellular degradation. In this study, we have shown that PCSK9-mediated degradation of the full-length 160 kDa LDLR generates a 17 kDa C-terminal LDLR fragment. This fragment was not generated from mutant LDLRs resistant to PCSK9-mediated degradation or when degradation was prevented by chemicals such as ammonium chloride or the cysteine cathepsin inhibitor E64d. The observation that the 17 kDa fragment was only detected when the cells were cultured in the presence of the γ-secretase inhibitor DAPT indicates that this 17 kDa fragment undergoes γ-secretase cleavage within the transmembrane domain. The failure to detect the complementary 143 kDa ectodomain fragment is likely to be due to its rapid degradation in the endosomal lumen. The 17 kDa C-terminal LDLR fragment was also generated from a Class 5 mutant LDLR undergoing intracellular degradation. Thus, one may speculate that an LDLR with bound PCSK9 and a Class 5 LDLR with bound LDL are degraded by a similar mechanism that could involve ectodomain cleavage in the endosome.

  15. A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect

    SciTech Connect

    Landsberger, D.; Meiner, V.; Reshef, A.; Leitersdorf, E. ); Levy, Yishai ); Westhytzen, D.R. van der; Coetzee, G.A. )

    1992-02-01

    Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here the authors characterize and LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found either in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identical LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.

  16. Effect of Genistein and L-Carnitine and Their Combination on Gene Expression of Hepatocyte HMG-COA Reductase and LDL Receptor in Experimental Nephrotic Syndrome

    PubMed Central

    YOUSEFINEJAD, Abbas; SIASSI, Fereydoon; MIRSHAFIEY, Abbas; ESHRAGHIAN, Mohammad-Reza; KOOHDANI, Fariba; JAVANBAKHT, Mohammad Hassan; SEDAGHAT, Reza; RAMEZANI, Atena; ZAREI, Mahnaz; DJALALI, Mahmoud

    2015-01-01

    Background: Nephrotic syndrome is a disorder that leads to hyperlipidemia. L-carnitine and genistein can effect on lipid metabolism and the syndrome. In the present study, we have delved into the separate and the twin-effects of L-carnitine and genistein on the gene expressions of HMG-COA reductase and LDL receptor in experimental nephrotic syndrome. Methods: In this controlled experimental study, 50 male Sprague–Dawley rats were randomly divided into five groups: NC (normal-control), PC (patient-control), LC (L-carnitine), G (genistein), LCG (L-carnitine-genistein). Adriamycin was used for inducing nephrotic syndrome and the spot urine samples and urine protein-to-creatinine ratio were measured. Hepatocytic RNA was extracted and real-time PCR was used for HMG-COA Reductase and LDL receptor gene Expression measurement. Results: The final weight of the patients groups were lower than the NC group (P=0.001), and weight gain of the NC group was higher than the other groups (P<0.001). The proteinuria and urine protein-to-creatinine ratio showed significant differences between PC group and LC, G and LCG groups at week 7 (P<0.001). The expression of HMGCOA Reductase mRNA down regulated in LC, G and LCG groups in comparison with PC group (P<0.001). ΔCT of LDLr mRNA showed significant differences between the PC group and the other patient groups (P<0.001). Conclusion: This study shows a significant decreasing (P<0.001) and non-significant increasing trend in HMG-COA Reductase and LDLr gene expression, respectively, and synergistic effect of L-carnitine and genistein on these genes in experimental nephrotic syndrome. PMID:26576346

  17. Cranberries inhibit LDL oxidation and induce LDL receptor expression in hepatocytes.

    PubMed

    Chu, Yi-Fang; Liu, Rui Hai

    2005-08-26

    Cardiovascular disease (CVD) is the leading cause of death in most industrialized countries. Cranberries were evaluated for their potential roles in dietary prevention of CVD. Cranberry extracts were found to have potent antioxidant capacity preventing in vitro LDL oxidation with increasing delay and suppression of LDL oxidation in a dose-dependent manner. The antioxidant activity of 100 g cranberries against LDL oxidation was equivalent to 1000 mg vitamin C or 3700 mg vitamin E. Cranberry extracts also significantly induced expression of hepatic LDL receptors and increased intracellular uptake of cholesterol in HepG2 cells in vitro in a dose-dependent manner. This suggests that cranberries could enhance clearance of excessive plasma cholesterol in circulation. We propose that additive or synergistic effects of phytochemicals in cranberries are responsible for the inhibition of LDL oxidation, the induced expression of LDL receptors, and the increased uptake of cholesterol in hepatocytes.

  18. Imaging LDL receptor oligomerization during endocytosis using a co-internalization assay

    PubMed Central

    Zou, Peng; Ting, Alice Y.

    2011-01-01

    Methods to probe receptor oligomerization are useful to understand the molecular mechanisms of receptor signaling. Here we report a fluorescence imaging method to determine receptor oligomerization state in living cells during endocytic internalization. The wild-type receptor is co-expressed with an internalization-defective mutant, and the internalization kinetics of each is independently monitored. If the receptor internalizes as an oligomer, then the wild-type and mutant isoforms will mutually influence each others' trafficking properties, causing co-internalization of the mutant, or co-retention of the wild-type at the cell surface. Using this approach, we found that the low density lipoprotein (LDL) receptor internalizes as an oligomer into cells, both in the presence and absence of LDL ligand. The internalization kinetics of the wild-type receptor is not changed by LDL binding. We also found that the oligomerization domain of the LDL receptor is located in its cytoplasmic tail. PMID:21194239

  19. Lipoprotein lipase, LDL receptors and apo-lipoproteins in human fetal membranes at term.

    PubMed

    Huter, O; Wolf, H J; Schnetzer, A; Pfaller, K

    1997-11-01

    Ultrastructurally, all cells of human fetal membranes strongly exhibit a large amount of lipid deposits throughout pregnancy. Their origin and function is still unknown. The aim of this study was to investigate the localization of key components of lipid metabolism in this tissue. Using immunohistochemical techniques, the distribution of lipoprotein lipase (LPL), low density lipoprotein receptors (LDL receptors), and apo-lipoprotein B and E was investigated in 20 human fetal membranes at term. In addition, electron microscopy was used to study the intracellular localization of lipoprotein-sized particles. Amnionic epithelium and trophoblast cells reacted strongly for LPL. LDL receptors and apo-lipoproteins were present in amnionic epithelium and fibroblasts of the amnion. In none of the investigated cells were lipoprotein-sized particles identified. Similar results were obtained in all 20 cases. The findings indicate that lipoprotein from the amniotic fluid or from the maternal circulation may serve as substrate for lipids in human fetal membranes.

  20. Having excess levels of PCSK9 is not sufficient to induce complex formation between PCSK9 and the LDL receptor.

    PubMed

    Wooten, Catherine J; Adcock, Audrey F; Agina-Obu, DaTonye I; Lopez, Dayami

    2014-03-01

    Proprotein convertase subtilisin/kexin-9 (PCSK9) acts mainly by forming complexes with the LDL receptor at the cell surface, which are then degraded in the lysosome. Studies were performed to determine whether excess levels of PCSK9 was sufficient to induce PCSK9/LDL receptor complex formation in human hepatocyte-like C3A cells. It was demonstrated using ELISA that instead of considering the overall levels of PCSK9 protein that is produced in response to certain treatment, what is critical is how much PCSK9 is actually capable of forming complexes. Despite the high levels, most of the PCSK9 produced as a result of incubating cells with a medium supplemented with BD™ MITO+ serum extender (MITO+ medium) appeared to be inhibited by a secreted factor. Having lower levels of PCSK9/LDL receptor complexes did not prevent an increase in the degradation rate of LDL receptors in MITO+ medium as compared to fetal bovine serum (FBS) containing medium (Regular medium), an effect that did not correlate with an increase in protein levels of the inducible degrader of LDL receptors (IDOL), as demonstrated using Western blotting analysis. Additional studies are required to determine the exact mechanism(s) for the degradation of the LDL receptor and/or to identify the secreted inhibitor of PCSK9.

  1. Restoration of LDL receptor function in cells from patients with autosomal recessive hypercholesterolemia by retroviral expression of ARH1.

    PubMed

    Eden, Emily R; Patel, Dilipkumar D; Sun, Xi-Ming; Burden, Jemima J; Themis, Michael; Edwards, Matthew; Lee, Philip; Neuwirth, Clare; Naoumova, Rossitza P; Soutar, Anne K

    2002-12-01

    Familial hypercholesterolemia is an autosomal dominant disorder with a gene-dosage effect that is usually caused by mutations in the LDL receptor gene that disrupt normal clearance of LDL. In the homozygous form, it results in a distinctive clinical phenotype, characterized by inherited hypercholesterolemia, cholesterol deposition in tendons, and severe premature coronary disease. We described previously two families with autosomal recessive hypercholesterolemia that is not due to mutations in the LDL receptor gene but is characterized by defective LDL receptor-dependent internalization and degradation of LDL by transformed lymphocytes from the patients. We mapped the defective gene to chromosome 1p36 and now show that the disorder in these and a third English family is due to novel mutations in ARH1, a newly identified gene encoding an adaptor-like protein. Cultured skin fibroblasts from affected individuals exhibit normal LDL receptor activity, but their monocyte-derived macrophages are similar to transformed lymphocytes, being unable to internalize and degrade LDL. Retroviral expression of normal human ARH1 restores LDL receptor internalization in transformed lymphocytes from an affected individual, as demonstrated by uptake and degradation of (125)I-labeled LDL and confocal microscopy of cells labeled with anti-LDL-receptor Ab.

  2. Reducing elevated plasma LDL cholesterol: the central role of the LDL receptor.

    PubMed

    Vincent, J

    2014-07-01

    Elevated low-density lipoprotein cholesterol (LDL-C) is an established risk factor for cardiovascular disease (CVD), and reduction of elevated LDL-C reduces mortality in patients at risk. This benefit has evolved from the use of statins and knowledge of the LDL receptor (LDLR). The most potent drugs used for dyslipidemias act by mechanisms that involve this receptor. Advances in molecular genetics and understanding of the regulation of this receptor have revealed several pharmacological targets that are being explored to develop more targeted therapies for dyslipidemias.

  3. Genetically determined hypercholesterolemia in a rhesus monkey family due to a deficiency of the LDL receptor.

    PubMed

    Scanu, A M; Khalil, A; Neven, L; Tidore, M; Dawson, G; Pfaffinger, D; Jackson, E; Carey, K D; McGill, H C; Fless, G M

    1988-12-01

    A family of rhesus monkeys comprising a sire, a dam, and four male offspring were fed a cholesterol-free Purina Chow diet for several months. The sire, 431-J, and two of the offspring, B-8204 and B-8806, had persistent plasma cholesterol levels in the range of 100-130 mg/dl, whereas the dam, 766-I, and the two other offspring, B-1000 and B-7643, exhibited a marked hypercholesterolemia in the 250-300 mg/dl range associated with an elevation of plasma LDL and apoB. When fed for 12 weeks a diet containing 12.5% lard and 0.25% cholesterol, sire, dam, B-1000 and B-7643 exhibited a marked hypercholesterolemia (500-800 mg/dl range), whereas B-8204 and B-8806 developed only a modest hypercholesterolemia (200-250 mg/dl). All animals were Lp[a]+. Skin fibroblasts from each animal and from control cells were grown in 10% fetal calf serum, transferred to 10% lipoprotein-deficient serum for 48 hr, and then incubated at 4 degrees C or 37 degrees C with 125I-labeled Lp[a]-free LDL. The fibroblasts from dam and offspring B-1000 and B-7643 bound and internalized 125I-labeled LDL less efficiently than control cells. Mathematical analyses of the 4 degrees C binding data indicated that there were no significant differences in LDL binding affinity between test and control cells suggesting that cells from the animals with a spontaneous hypercholesterolemia had a decreased number of LDL receptors. This conclusion was supported by the results of ligand and immunoblot analyses carried out on cell lysates separated by gradient gel electrophoresis. We conclude that a genetically determined LDL receptor deficiency was responsible, in part, for the spontaneous hypercholesterolemia observed in three out of the six family members and that this deficiency accounted for the hyperresponsiveness to a dietary fat and cholesterol challenge by the dam and the two offspring, B-1000 and B-7643. The hyperresponsiveness noted in the sire that had no evidence for LDL-receptor deficiency illustrates that

  4. Expression of lectin-like oxidized LDL receptor-1 in smooth muscle cells after vascular injury

    SciTech Connect

    Eto, Hideyuki; Miyata, Masaaki . E-mail: miyatam@m3.kufm.kagoshima-u.ac.jp; Kume, Noriaki; Minami, Manabu; Itabe, Hiroyuki; Orihara, Koji; Hamasaki, Shuichi; Biro, Sadatoshi; Otsuji, Yutaka; Kita, Toru; Tei, Chuwa

    2006-03-10

    Lectin-like oxidized LDL receptor-1 (LOX-1) is an oxidized LDL receptor, and its role in restenosis after angioplasty remains unknown. We used a balloon-injury model of rabbit aorta, and reverse transcription-polymerase chain reaction revealed that LOX-1 mRNA expression was modest in the non-injured aorta, reached a peak level 2 days after injury, and remained elevated until 24 weeks after injury. Immunohistochemistry and in situ hybridization showed that LOX-1 was not detected in the media of non-injured aorta but expressed in both medial and neointimal smooth muscle cells (SMC) at 2 and 24 weeks after injury. Low concentrations of ox-LDL (10 {mu}g/mL) stimulated the cultured SMC proliferation, which was inhibited by antisense oligonucleotides of LOX-1 mRNA. Double immunofluorescense staining showed the colocalization of LOX-1 and proliferating cell nuclear antigen in human restenotic lesion. These results suggest that LOX-1 mediates ox-LDL-induced SMC proliferation and plays a role in neointimal formation after vascular injury.

  5. LDL Receptor-Related Protein-1 (LRP1) Regulates Cholesterol Accumulation in Macrophages

    PubMed Central

    Lillis, Anna P.; Muratoglu, Selen Catania; Au, Dianaly T.; Migliorini, Mary; Lee, Mi-Jeong; Fried, Susan K.; Mikhailenko, Irina; Strickland, Dudley K.

    2015-01-01

    Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the contribution of the LDL receptor-related protein 1 (LRP1) to this process is not known. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR)-deficient background (macLRP1-/-). After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis. PMID:26061292

  6. S-nitrosylation of ARH is required for LDL uptake by the LDL receptor.

    PubMed

    Zhao, Zhenze; Pompey, Shanica; Dong, Hongyun; Weng, Jian; Garuti, Rita; Michaely, Peter

    2013-06-01

    The LDL receptor (LDLR) relies upon endocytic adaptor proteins for internalization of lipoproteins. The results of this study show that the LDLR adaptor autosomal recessive hypercholesterolemia protein (ARH) requires nitric oxide to support LDL uptake. Nitric oxide nitrosylates ARH at C199 and C286, and these posttranslational modifications are necessary for association of ARH with the adaptor protein 2 (AP-2) component of clathrin-coated pits. In the absence of nitrosylation, ARH is unable to target LDL-LDLR complexes to coated pits, resulting in poor LDL uptake. The role of nitric oxide on LDLR function is specific for ARH because inhibition of nitric oxide synthase activity impairs ARH-supported LDL uptake but has no effect on other LDLR-dependent lipoprotein uptake processes, including VLDL remnant uptake and dab2-supported LDL uptake. These findings suggest that cells that depend upon ARH for LDL uptake can control which lipoproteins are internalized by their LDLRs through changes in nitric oxide.

  7. Phenotypic characterization of a patient homozygous for the D558N LDL receptor gene mutation.

    PubMed

    Jensen, H K; Jensen, L G; Heath, F; Melsen, F; Hansen, P S; Meinertz, H; Bolund, L; Gregersen, N; Faergeman, O

    1996-11-01

    We describe the clinical, biochemical, and genetic features of a patient with true homozygous familial hypercholesterolemia due to the D558N low-density lipoprotein receptor gene mutation, previously designated FH Cincinnati-4. Functional flow-cytometric analysis of the LDL receptorR protein on upregulated EBV-transformed lymphocytes indicated reduction of the number of receptors on the cell surface by 87% and reduction of receptor activity by 89% compared to control cells. With drugs and a portacaval shunt operation, performed when the patient was 15 years old, serum cholesterol was reduced from about 28 to about 15 mmol/l. He died at the age of 32 of a myocardial infarction. The autopsy showed generalized atherosclerosis, especially in the coronary arteries, which were severely stenosed proximally. A rare finding was a large intracranial xanthoma that apparently had been asymptomatic.

  8. LRAD3, a Novel LDL Receptor Family Member that Modulates Amyloid Precursor Protein Trafficking

    PubMed Central

    Ranganathan, Sripriya; Noyes, Nathaniel C.; Migliorini, Mary; Winkles, Jeffrey A.; Battey, Frances D.; Hyman, Bradley T.; Smith, Elizabeth; Yepes, Manuel; Mikhailenko, Irina; Strickland, Dudley K.

    2011-01-01

    We have identified a novel LDL receptor family member, termed LDL receptor class A domain containing 3 (LRAD3), which is expressed in neurons. The LRAD3 gene encodes an approximately 50 kDa type I transmembrane receptor with an ectodomain containing three LDLa repeats, a transmembrane domain and a cytoplasmic domain containing a conserved dileucine internalization motif and two polyproline motifs with potential to interact with WW domain containing proteins. Immunohistochemical analysis of mouse brain reveals LRAD3 expression in the cortex and hippocampus. In the mouse hippocampal derived cell line, HT22, LRAD3 partially co-localizes with amyloid precursor protein (APP), and interacts with APP as revealed by co-immunoprecipitation experiments. To identify the portion of APP that interacts with LRAD3, we employed solid phase binding assays which demonstrated that LRAD3 failed to bind to a soluble APP fragment (sAPPα) released following α-secretase cleavage. In contrast, C99, the β-secretase product that remains cell associated, co-precipitated with LRAD3, confirming that regions within this portion of APP are important for associating with LRAD3. The association of LRAD3 with APP increases the amyloidogenic pathway of APP processing, resulting in a decrease in sAPPα production and increased Aβ peptide production. Pulse-chase experiments confirm that LRAD3 expression significantly decreases the cellular half-live of mature APP. These results reveal that LRAD3 influences APP processing and raises the possibility that LRAD3 alters APP function in neurons including its downstream signaling. PMID:21795536

  9. Magnesium fortification of drinking water suppresses atherogenesis in male LDL-receptor-deficient mice.

    PubMed

    Sherer, Y; Shaish, A; Levkovitz, H; Keren, P; Janackovic, Z; Shoenfeld, Y; Harats, D

    1999-01-01

    Magnesium, an important cofactor of more than 300 enzymes, has previously been found to modulate blood lipid levels, atherogenesis and atherosclerosis in rabbits, when added to their diet. The aim of this study was to examine whether magnesium fortification of drinking water, without a change in diet content, can affect atherogenesis. The study included six groups of LDL-receptor-deficient mice. The mice received either distilled water or water containing 50 g of magnesium sulfate per liter. In the first (12 weeks) and second (6 weeks) stages of the experiment, the mice received low- and high-cholesterol diets, respectively. At the end of each stage, blood was drawn for the determination of plasma magnesium, calcium and lipid levels. In addition, the extent of atherosclerosis was determined at the aortic sinus. In both males and females, magnesium fortification was associated with higher levels of plasma magnesium (50 and 37% increase, respectively), without any differences in plasma calcium content. The extent of atherosclerosis at the aortic sinus in the male mice that received high levels of magnesium was a third of that of the male mice that received distilled water. However, these differences were not found in the female groups. Surprisingly, the female mice that received water fortified with magnesium had higher levels of cholesterol after stage 2, whereas no differences regarding plasma lipid levels were found among the male mice. These results confirm that magnesium fortification of drinking water is capable of inhibiting atherogenesis in male LDL-receptor-deficient mice. The mechanisms of action are yet to be discovered, and are probably not related to diminished lipid excretion, but possibly to the prevention of calcium influx into vascular smooth muscle cells, elevated antioxidative capacity, or other yet undetermined mechanisms.

  10. Transgenic expression of CYP7A1 in LDL receptor-deficient mice blocks diet-induced hypercholesterolemia.

    PubMed

    Ratliff, Eric P; Gutierrez, Alejandra; Davis, Roger A

    2006-07-01

    Constitutive expression of a cholesterol-7alpha-hydroxylase (CYP7A1) transgene in LDL receptor-deficient mice blocked the ability of a cholesterol-enriched diet to increase plasma levels of apolipoprotein B-containing lipoproteins. LDL receptor-deficient mice expressing the CYP7A1 transgene exhibited complete resistance to diet-induced hypercholesterolemia and to the accumulation of cholesterol in the liver. Hepatic mRNA expression of liver X receptor-inducible ABCG5 and ABCG8 was decreased in CYP7A1 transgenic, LDL receptor-deficient mice fed a cholesterol-enriched diet. Thus, increased biliary cholesterol excretion could not account for the maintenance of cholesterol homeostasis. CYP7A1 transgenic, LDL receptor-deficient mice fed the cholesterol-enriched diet exhibited decreased jejunal Niemann-Pick C1-Like 1 protein (NPC1L1) mRNA expression, an important mediator of intestinal cholesterol absorption. A taurocholate-enriched diet also decreased NPC1L1 mRNA expression in a farnesoid X receptor-independent manner. Reduced expression of NPC1L1 mRNA was associated with decreased cholesterol absorption ( approximately 20%; P < 0.05) exhibited by CYP7A1 transgenic LDL receptor-deficient mice fed the cholesterol-enriched diet. The combined data show that enhanced expression of CYP7A1 is an effective means to prevent the accumulation of cholesterol in the liver and of atherogenic apolipoprotein B-containing lipoproteins in plasma.

  11. The IDOL–UBE2D complex mediates sterol-dependent degradation of the LDL receptor

    PubMed Central

    Zhang, Li; Fairall, Louise; Goult, Benjamin T.; Calkin, Anna C.; Hong, Cynthia; Millard, Christopher J.; Tontonoz, Peter; Schwabe, John W.R.

    2011-01-01

    We previously identified the E3 ubiquitin ligase IDOL as a sterol-dependent regulator of the LDL receptor (LDLR). The molecular pathway underlying IDOL action, however, remains to be determined. Here we report the identification and biochemical and structural characterization of an E2–E3 ubiquitin ligase complex for LDLR degradation. We identified the UBE2D family (UBE2D1–4) as E2 partners for IDOL that support both autoubiquitination and IDOL-dependent ubiquitination of the LDLR in a cell-free system. NMR chemical shift mapping and a 2.1 Å crystal structure of the IDOL RING domain–UBE2D1 complex revealed key interactions between the dimeric IDOL protein and the E2 enzyme. Analysis of the IDOL–UBE2D1 interface also defined the stereochemical basis for the selectivity of IDOL for UBE2Ds over other E2 ligases. Structure-based mutations that inhibit IDOL dimerization or IDOL–UBE2D interaction block IDOL-dependent LDLR ubiquitination and degradation. Furthermore, expression of a dominant-negative UBE2D enzyme inhibits the ability of IDOL to degrade the LDLR in cells. These results identify the IDOL–UBE2D complex as an important determinant of LDLR activity, and provide insight into molecular mechanisms underlying the regulation of cholesterol uptake. PMID:21685362

  12. NDRG1 functions in LDL receptor trafficking by regulating endosomal recycling and degradation.

    PubMed

    Pietiäinen, Vilja; Vassilev, Boris; Blom, Tomas; Wang, Wei; Nelson, Jessica; Bittman, Robert; Bäck, Nils; Zelcer, Noam; Ikonen, Elina

    2013-09-01

    N-myc downstream-regulated gene 1 (NDRG1) mutations cause Charcot-Marie-Tooth disease type 4D (CMT4D). However, the cellular function of NDRG1 and how it causes CMT4D are poorly understood. We report that NDRG1 silencing in epithelial cells results in decreased uptake of low-density lipoprotein (LDL) due to reduced LDL receptor (LDLR) abundance at the plasma membrane. This is accompanied by the accumulation of LDLR in enlarged EEA1-positive endosomes that contain numerous intraluminal vesicles and sequester ceramide. Concomitantly, LDLR ubiquitylation is increased but its degradation is reduced and ESCRT (endosomal sorting complex required for transport) proteins are downregulated. Co-depletion of IDOL (inducible degrader of the LDLR), which ubiquitylates the LDLR and promotes its degradation, rescues plasma membrane LDLR levels and LDL uptake. In murine oligodendrocytes, Ndrg1 silencing not only results in reduced LDL uptake but also in downregulation of the oligodendrocyte differentiation factor Olig2. Both phenotypes are rescued by co-silencing of Idol, suggesting that ligand uptake through LDLR family members controls oligodendrocyte differentiation. These findings identify NDRG1 as a novel regulator of multivesicular body formation and endosomal LDLR trafficking. The deficiency of functional NDRG1 in CMT4D might impair lipid processing and differentiation of myelinating cells.

  13. A novel posttranscriptional mechanism for dietary cholesterol-mediated suppression of liver LDL receptor expression.

    PubMed

    Singh, Amar Bahadur; Kan, Chin Fung Kelvin; Shende, Vikram; Dong, Bin; Liu, Jingwen

    2014-07-01

    It is well-established that over-accumulation of dietary cholesterol in the liver inhibits sterol-regulatory element binding protein (SREBP)-mediated LDL receptor (LDLR) gene transcription leading to a reduced hepatic LDLR mRNA level in hypercholesterolemic animals. However, it is unknown whether elevated cholesterol levels can elicit a cellular response to increase LDLR mRNA turnover to further repress LDLR expression in liver tissue. In the current study, we examined the effect of a high cholesterol diet on the hepatic expression of LDLR mRNA binding proteins in three different animal models and in cultured hepatic cells. Our results demonstrate that high cholesterol feeding specifically elevates the hepatic expression of LDLR mRNA decay promoting factor heterogeneous nuclear ribonucleoprotein (HNRNP)D without affecting expressions of other LDLR mRNA binding proteins in vivo and in vitro. Employing the approach of adenovirus-mediated gene knockdown, we further show that depletion of HNRNPD in the liver results in a marked reduction of serum LDL-cholesterol and a substantial increase in liver LDLR expression in hyperlipidemic mice. Additional studies of gene knockdown in albumin-luciferase-untranslated region (UTR) transgenic mice provide strong evidence supporting the essential role of 3'UTR in HNRNPD-mediated LDLR mRNA degradation in liver tissue. Altogether, this work identifies a novel posttranscriptional regulatory mechanism by which dietary cholesterol inhibits liver LDLR expression via inducing HNRNPD to accelerate LDLR mRNA degradation.

  14. Versatility in ligand recognition by LDL receptor family proteins: advances and frontiers.

    PubMed

    Blacklow, Stephen C

    2007-08-01

    Proteins of the low-density lipoprotein receptor family transport cholesterol-carrying particles into cells, clear protease-inhibitor complexes from the circulation, participate in biological signaling cascades, and even serve as viral receptors. These receptors utilize clusters of cysteine-rich LDL receptor type-A (LA) modules to bind many of their ligands. Recent structures show that these modules typically exhibit a characteristic binding mode to recognize their partners, relying primarily on electrostatic complementarity and avidity effects. The dominant contribution of electrostatic interactions with small interface areas in these complexes allows binding to be regulated by changes in pH via at least two distinct mechanisms. The structure of the subtilisin/kexin family protease PCSK9, a newly identified molecular partner of the LDLR also implicated in LDL-cholesterol homeostasis, also raises the possibility that the LDLR and its related family members may employ other strategies for pH-sensitive binding that have yet to be uncovered.

  15. Macrophage-specific overexpression of interleukin-5 attenuates atherosclerosis in LDL receptor-deficient mice.

    PubMed

    Zhao, W; Lei, T; Li, H; Sun, D; Mo, X; Wang, Z; Zhang, K; Ou, H

    2015-08-01

    Interleukin-5 (IL-5) increases the secretion of natural T15/EO6 IgM antibodies that inhibit the uptake of oxidized low-density lipoprotein (LDL) by macrophages. This study aimed to determine whether macrophage-specific expression of IL-5 in LDL receptor-deficient mice (Ldlr(-/-)) could improve cholesterol metabolism and reduce atherosclerosis. To induce macrophage-specific IL-5 expression, the pLVCD68-IL5 lentivirus was delivered into Ldlr(-/-) mice via bone marrow transplantation. The recipient mice were fed a Western-type diet for 12 weeks to induce lesion formation. We found that IL-5 was efficiently and specifically overexpressed in macrophages in recipients of pLVCD68-IL5-transduced bone marrow cells (BMC). Plasma titers of T15/EO6 IgM antibodies were significantly elevated by 58% compared with control mice transplanted with pLVCD68 lacking the IL-5 coding sequence. Plaque areas of aortas in IL-5-overexpressing mice were reduced by 43% and associated with a 2.4-fold decrease in lesion size at the aortic roots when compared with mice receiving pLVCD68-transduced BMCs. The study showed that macrophage-specific overexpression of IL-5 inhibited the progression of atherosclerotic lesions. These findings suggest that modulation of IL-5 cytokine expression represents a potential strategy for intervention of familial hypercholesterolemia and other cardiovascular diseases.

  16. LRP6 protein regulates low density lipoprotein (LDL) receptor-mediated LDL uptake.

    PubMed

    Ye, Zhi-jia; Go, Gwang-Woong; Singh, Rajvir; Liu, Wenzhong; Keramati, Ali Reza; Mani, Arya

    2012-01-06

    Genetic variations in LRP6 gene are associated with high serum LDL cholesterol levels. We have previously shown that LDL clearance in peripheral B-lymphocytes of the LRP6(R611C) mutation carriers is significantly impaired. In this study we have examined the role of wild type LRP6 (LRP6(WT)) and LRP6(R611C) in LDL receptor (LDLR)-mediated LDL uptake. LDL binding and uptake were increased when LRP6(WT) was overexpressed and modestly reduced when it was knocked down in LDLR-deficient CHO (ldlA7) cells. These findings implicated LRP6 in LDLR-independent cellular LDL binding and uptake. However, LRP6 knockdown in wild type CHO cells resulted in a much greater decline in LDL binding and uptake compared with CHO-ldlA7 cells, suggesting impaired function of the LDLR. LDLR internalization was severely diminished when LRP6 was knocked down and was restored after LRP6 was reintroduced. Further analysis revealed that LRP6(WT) forms a complex with LDLR, clathrin, and ARH and undergoes a clathrin-mediated internalization after stimulation with LDL. LDLR and LRP6 internalizations as well as LDL uptake were all impaired in CHO-k1 cells expressing LRP6(R611C). These studies identify LRP6 as a critical modulator of receptor-mediated LDL endocytosis and introduce a mechanism by which variation in LRP6 may contribute to high serum LDL levels.

  17. [Study of LDL receptors and response to lovastatin therapy in familial homozygotic hypercholesterolemia].

    PubMed

    Ausina Gómez, A; Gilsanz Peral, A; Montero Brens, C; Dalmau Serra, J

    1991-11-01

    This study shows the results obtained with lovastatin as a combined therapy with probucol and cholestyramine on the lipid profile of two patients with homozygous familial hypercholesterolemia. Both have been diagnosed according to the clinical and biochemical criteria (tipe IIa hypercholesterolemia) as well as by the cholesterol or low density lipoprotein (LDL-C) receptor analysis. After the initial probucol and cholestyramine treatment we observed a drop of total cholesterol (T-C) of 41.7% and 46% as well as LDL-C of 51.6% and 49.3% in both patients. Respectively when lovastatin were associated an additional drop of T-C of 23.7%, LDL-C of 23.2%, high-density lipoprotein cholesterol (HDL-C) of 22.4% and the apoprotein B (Apo B) of 37% were obtained in one patient (receptor-defective) but no change in the lipid profile were obtained in the other patient (receptor-negative). No adverse effects were observed with this drug. This drug could be of help as a combined therapy in the treatment of homozygous familial hypercholesterolemia, even though the treatment of choice is the LDL-plasma feresis and/or liver transplantation. We expound the difficulties relate to LDL receptor study in homocygous receptor-negative patients.

  18. Soy milk versus simvastatin for preventing atherosclerosis and left ventricle remodeling in LDL receptor knockout mice.

    PubMed

    Santos, L; Davel, A P; Almeida, T I R; Almeida, M R; Soares, E A; Fernandes, G J M; Magalhães, S F; Barauna, V G; Garcia, J A D

    2017-02-20

    Functional food intake has been highlighted as a strategy for the prevention of cardiovascular diseases by reducing risk factors. In this study, we compared the effects of oral treatment with soy milk and simvastatin on dyslipidemia, left ventricle remodeling and atherosclerotic lesion of LDL receptor knockout mice (LDLr-/-) fed a hyperlipidic diet. Forty 3-month old male LDLr-/- mice were distributed into four groups: control group (C), in which animals received standard diet; HL group, in which animals were fed a hyperlipidic diet; HL+SM or HL+S groups, in which animals were submitted to a hyperlipidic diet plus soy milk or simvastatin, respectively. After 60 days, both soy milk and simvastatin treatment prevented dyslipidemia, atherosclerotic lesion progression and left ventricle hypertrophy in LDLr-/- mice. These beneficial effects of soy milk and simvastatin were associated with reduced oxidative stress and inflammatory state in the heart and aorta caused by the hyperlipidic diet. Treatment with soy milk was more effective in preventing HDLc reduction and triacylglycerol and VLDLc increase. On the other hand, simvastatin was more effective in preventing an increase in total cholesterol, LDLc and superoxide production in aorta, as well as CD40L both in aorta and left ventricle of LDLr-/-. In conclusion, our results suggest a cardioprotective effect of soy milk in LDLr-/- mice comparable to the well-known effects of simvastatin.

  19. Soy milk versus simvastatin for preventing atherosclerosis and left ventricle remodeling in LDL receptor knockout mice

    PubMed Central

    Santos, L.; Davel, A.P.; Almeida, T.I.R.; Almeida, M.R.; Soares, E.A.; Fernandes, G.J.M.; Magalhães, S.F.; Barauna, V.G.; Garcia, J.A.D.

    2017-01-01

    Functional food intake has been highlighted as a strategy for the prevention of cardiovascular diseases by reducing risk factors. In this study, we compared the effects of oral treatment with soy milk and simvastatin on dyslipidemia, left ventricle remodeling and atherosclerotic lesion of LDL receptor knockout mice (LDLr-/-) fed a hyperlipidic diet. Forty 3-month old male LDLr-/- mice were distributed into four groups: control group (C), in which animals received standard diet; HL group, in which animals were fed a hyperlipidic diet; HL+SM or HL+S groups, in which animals were submitted to a hyperlipidic diet plus soy milk or simvastatin, respectively. After 60 days, both soy milk and simvastatin treatment prevented dyslipidemia, atherosclerotic lesion progression and left ventricle hypertrophy in LDLr-/- mice. These beneficial effects of soy milk and simvastatin were associated with reduced oxidative stress and inflammatory state in the heart and aorta caused by the hyperlipidic diet. Treatment with soy milk was more effective in preventing HDLc reduction and triacylglycerol and VLDLc increase. On the other hand, simvastatin was more effective in preventing an increase in total cholesterol, LDLc and superoxide production in aorta, as well as CD40L both in aorta and left ventricle of LDLr-/-. In conclusion, our results suggest a cardioprotective effect of soy milk in LDLr-/- mice comparable to the well-known effects of simvastatin. PMID:28225891

  20. The lectin-like oxidized LDL receptor-1: a new potential molecular target in colorectal cancer

    PubMed Central

    Murdocca, Michela; Mango, Ruggiero; Pucci, Sabina; Biocca, Silvia; Testa, Barbara; Capuano, Rosamaria; Paolesse, Roberto; Sanchez, Massimo; Orlandi, Augusto; di Natale, Corrado; Novelli, Giuseppe; Sangiuolo, Federica

    2016-01-01

    The identification of new biomarkers and targets for tailored therapy in human colorectal cancer (CRC) onset and progression is an interesting challenge. CRC tissue produces an excess of ox-LDL, suggesting a close correlation between lipid dysfunction and malignant transformation. Lectin-like oxidized LDL receptor-1 (LOX-1) is involved in several mechanisms closely linked to tumorigenesis. Here we report a tumor specific LOX-1 overexpression in human colon cancers: LOX-1 results strongly increased in the 72% of carcinomas (P<0.001), and strongly overexpressed in 90% of highly aggressive and metastatic tumours (P<0.001), as compared to normal mucosa. Moreover LOX-1 results modulated since the early stage of the disease (adenomas vs normal mucosa; P<0.001) suggesting an involvement in tumor insurgence and progression. The in vitro knockdown of LOX-1 in DLD-1 and HCT-8 colon cancer cells by siRNA and anti-LOX-1 antibody triggers to an impaired proliferation rate and affects the maintenance of cell growth and tumorigenicity. The wound-healing assay reveals an evident impairment in closing the scratch. Lastly knockdown of LOX-1 delineates a specific pattern of volatile compounds characterized by the presence of a butyrate derivative, suggesting a potential role of LOX-1 in tumor-specific epigenetic regulation in neoplastic cells. The role of LOX-1 as a novel biomarker and molecular target represents a concrete opportunity to improve current therapeutic strategies for CRC. In addition, the innovative application of a technology focused to the identification of LOX-1 driven volatiles specific to colorectal cancer provides a promising diagnostic tool for CRC screening and for monitoring the response to therapy. PMID:26895376

  1. Intradomain Confinement of Disulfides in the Folding of Two Consecutive Modules of the LDL Receptor

    PubMed Central

    Martínez-Oliván, Juan; Fraga, Hugo; Arias-Moreno, Xabier; Ventura, Salvador; Sancho, Javier

    2015-01-01

    The LDL receptor internalizes circulating LDL and VLDL particles for degradation. Its extracellular binding domain contains ten (seven LA and three EGF) cysteine-rich modules, each bearing three disulfide bonds. Despite the enormous number of disulfide combinations possible, LDLR oxidative folding leads to a single native species with 30 unique intradomain disulfides. Previous folding studies of the LDLR have shown that non native disulfides are initially formed that lead to compact species. Accordingly, the folding of the LDLR has been described as a "coordinated nonvectorial” reaction, and it has been proposed that early compaction funnels the reaction toward the native structure. Here we analyze the oxidative folding of LA4 and LA5, the modules critical for ApoE binding, isolated and in the LA45 tandem. Compared to LA5, LA4 folding is slow and inefficient, resembling that of LA5 disease-linked mutants. Without Ca++, it leads to a mixture of many two-disulfide scrambled species and, with Ca++, to the native form plus two three-disulfide intermediates. The folding of the LA45 tandem seems to recapitulate that of the individual repeats. Importantly, although the folding of the LA45 tandem takes place through formation of scrambled isomers, no interdomain disulfides are detected, i.e. the two adjacent modules fold independently without the assistance of interdomain covalent interactions. Reduction of incredibly large disulfide combinatorial spaces, such as that in the LDLR, by intradomain confinement of disulfide bond formation might be also essential for the efficient folding of other homologous disulfide-rich receptors. PMID:26168158

  2. The plasma concentration of HDL-associated apoM is influenced by LDL receptor-mediated clearance of apoB-containing particles.

    PubMed

    Christoffersen, Christina; Benn, Marianne; Christensen, Pernille M; Gordts, Philip L S M; Roebroek, Anton J M; Frikke-Schmidt, Ruth; Tybjaerg-Hansen, Anne; Dahlbäck, Björn; Nielsen, Lars B

    2012-10-01

    ApoM is mainly associated with HDL. Nevertheless, we have consistently observed positive correlations of apoM with plasma LDL cholesterol in humans. Moreover, LDL receptor deficiency is associated with increased plasma apoM in mice. Here, we tested the idea that plasma apoM concentrations are affected by the rate of LDL receptor-mediated clearance of apoB-containing particles. We measured apoM in humans each carrying one of three different LDL receptor mutations (n = 9) or the apoB3500 mutation (n = 12). These carriers had increased plasma apoM (1.34 ± 0.13 µM, P = 0.003, and 1.23 ± 0.10 µM, P = 0.02, respectively) as compared with noncarriers (0.93 ± 0.04 µM). When we injected human apoM-containing HDL into Wt (n = 6) or LDL receptor-deficient mice (n = 6), the removal of HDL-associated human apoM was delayed in the LDL receptor-deficient mice. After 2 h, 54 ± 5% versus 90 ± 8% (P < 0.005) of the initial amounts of human apoM remained in the plasma of Wt and LDL receptor-deficient mice, respectively. Finally, we compared the turnover of radio-iodinated LDL and plasma apoM concentrations in 45 normocholesterolemic humans. There was a negative correlation between plasma apoM and the fractional catabolic rate of LDL (r = -0.38, P = 0.009). These data suggest that the plasma clearance of apoM, despite apoM primarily being associated with HDL, is influenced by LDL receptor-mediated clearance of apoB-containing particles.

  3. Rapamycin inhibits poly(ADP-ribosyl)ation in intact cells

    SciTech Connect

    Fahrer, Joerg; Wagner, Silvia; Buerkle, Alexander; Koenigsrainer, Alfred

    2009-08-14

    Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin did not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.

  4. Familial ligand-defective apolipoprotein B. Identification of a new mutation that decreases LDL receptor binding affinity.

    PubMed Central

    Pullinger, C R; Hennessy, L K; Chatterton, J E; Liu, W; Love, J A; Mendel, C M; Frost, P H; Malloy, M J; Schumaker, V N; Kane, J P

    1995-01-01

    Detection of new ligand-defective mutations of apolipoprotein B (apoB) will enable identification of sequences involved in binding to the LDL receptor. Genomic DNA from patients attending a lipid clinic was screened by single-strand conformation polymorphism analysis for novel mutations in the putative LDL receptor-binding domain of apoB-100. A 46-yr-old woman of Celtic and Native American ancestry with primary hypercholesterolemia (total cholesterol [TC] 343 mg/dl; LDL cholesterol [LDL-C] 241 mg/dl) and pronounced peripheral vascular disease was found to be heterozygous for a novel Arg3531-->Cys mutation, caused by a C-->T transition at nucleotide 10800. One unrelated 59-yr-old man of Italian ancestry was found with the same mutation after screening 1,560 individuals. He had coronary heart disease, a TC of 310 mg/dl, and an LDL-C of 212 mg/dl. A total of eight individuals were found with the defect in the families of the two patients. They had an age- and sex-adjusted TC of 240 +/- 14 mg/dl and LDL-C of 169 +/- 10 mg/dl. This compares with eight unaffected family members with age- and sex-adjusted TC of 185 +/- 12 mg/dl and LDL-C of 124 +/- 12 mg/dl. In a dual-label fibroblast binding assay, LDL from the eight subjects with the mutation had an affinity for the LDL receptor that was 63% that of control LDL. LDL from eight unaffected family members had an affinity of 91%. By way of comparison, LDL from six patients heterozygous for the Arg3500-->Gln mutation had an affinity of 36%. The percentage mass ratio of the defective Cys3531 LDL to normal LDL was 59:41, as determined using the mAb MB19 and dynamic laser light scattering. Thus, the defective LDL had accumulated in the plasma of these patients. Using this mass ratio, it was calculated that the defective Cys3531 LDL particles bound with 27% of normal affinity. Deduced haplotypes using 10 apoB gene markers showed the Arg3531-->Cys alleles to be different in the two kindreds and indicates that the mutations arose

  5. A common W556S mutation in the LDL receptor gene of Danish patients with familial hypercholesterolemia encodes a transport-defective protein.

    PubMed

    Jensen, H K; Holst, H; Jensen, L G; Jørgensen, M M; Andreasen, P H; Jensen, T G; Andresen, B S; Heath, F; Hansen, P S; Neve, S; Kristiansen, K; Faergeman, O; Kølvraa, S; Bolund, L; Gregersen, N

    1997-05-01

    In a group of unrelated Danish patients with familial hypercholesterolemia (FH) we recently reported two common low-density lipoprotein (LDL) receptor mutations, W23X and W66G, accounting for 30% of the cases. In this study, we describe another common LDL receptor mutation, a G to C transition at cDNA position 1730 in exon 12, causing a tryptophan to serine substitution in amino acid position 556 (W556S). In the Danish patients, the W556S mutation was present in 12% of 65 possible mutant alleles. The pathogenicity of the W556S mutation, which is located in one of the five conserved motifs Tyr-Trp-Thr-Asp in the epidermal growth factor homology region, was studied in transfected COS-7 cells expressing normal and mutant LDL receptor cDNAs. Results obtained by immunofluorescence flow cytometry and confocal microscopy, as well as by immunoprecipitation, were compatible with complete retention of the mutant protein in the endoplasmic reticulum. The transport-defective W556S mutation and the W23X and W66G mutations seem to account for about 40% of the LDL receptor defects in Danish families with FH.

  6. The inhibitory effect of soy protein isolate on atherosclerosis in mice does not require the presence of LDL receptors or alteration of plasma lipoproteins.

    PubMed

    Adams, Michael R; Golden, Deborah L; Anthony, Mary S; Register, Thomas C; Williams, J Koudy

    2002-01-01

    The mechanisms by which dietary soy favorably influences lipoprotein metabolism and inhibits atherosclerosis are uncertain. Studies of blood mononuclear cells and cultured hepatocytes have indicated that certain soy peptides (i.e., 7S globulins) stimulate expression of LDL receptors. This pathway represents a hypothetical mechanism by which soy's hypocholesterolemic and antiatherosclerotic effects may be mediated. However, direct evidence supporting this hypothesis is lacking. To address this, we compared effects of dietary soy protein isolate in two genetically engineered mouse models of atherosclerosis. One mouse [LDL receptor -/- + apolipoprotein (apo) B transgenic] is devoid of LDL receptors and overproduces apolipoprotein B, whereas the other (apoE -/-) has a normal complement of LDL receptors but does not produce apolipoprotein E. Male (n = 10-12/group) and ovariectomized female (n = 10-12/group) mice were studied. There were three treatment groups, which differed principally by the source of the protein component of the diet: 1) casein/lactalbumin (no isoflavones), 2) alcohol-washed soy protein isolate (total isoflavones = 0.04 mg/g), and 3) intact soy protein isolate (total isoflavones = 1.72 mg/g). Atherosclerosis was assessed by quantifying the aortic content of esterified cholesterol. Atherosclerosis was inhibited (relative to the casein/lactalbumin group) by both alcohol-washed (45 and 31%) (P < 0.05) and intact (65 and 41%) (P < 0.05) soy protein isolate in LDL receptor -/- and apoE -/- mice, respectively. There was no sex difference. In a two-way analysis, there were significant effects of type of soy isolate and type of mouse. The antiatherosclerosis effect was enhanced in LDL receptor -/- mice (P < 0.001) and diminished in mice fed alcohol-washed soy protein isolate (P < 0.001). Furthermore, inhibitory effects of soy on atherosclerosis were unrelated to plasma LDL, VLDL or HDL cholesterol concentrations. The results represent direct evidence for the

  7. Down-regulation of PERK enhances resistance to ionizing radiation

    SciTech Connect

    Oommen, Deepu Prise, Kevin M.

    2013-11-08

    Highlights: •PERK enhances the sensitivity of cancer cells to ionizing radiation. •Down-regulation of PERK results in enhanced DNA repair. •Ionizing radiation-induced apoptosis is inhibited in PERK-down regulated cancer cells. -- Abstract: Although, ionizing radiation (IR) has been implicated to cause stress in endoplasmic reticulum (ER), how ER stress signaling and major ER stress sensors modulate cellular response to IR is unclear. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) is an ER transmembrane protein which initiates unfolded protein response (UPR) or ER stress signaling when ER homeostasis is disturbed. Here, we report that down-regulation of PERK resulted in increased clonogenic survival, enhanced DNA repair and reduced apoptosis in irradiated cancer cells. Our study demonstrated that PERK has a role in sensitizing cancer cells to IR.

  8. Optimal Down Regulation of mRNA Translation

    NASA Astrophysics Data System (ADS)

    Zarai, Yoram; Margaliot, Michael; Tuller, Tamir

    2017-01-01

    Down regulation of mRNA translation is an important problem in various bio-medical domains ranging from developing effective medicines for tumors and for viral diseases to developing attenuated virus strains that can be used for vaccination. Here, we study the problem of down regulation of mRNA translation using a mathematical model called the ribosome flow model (RFM). In the RFM, the mRNA molecule is modeled as a chain of n sites. The flow of ribosomes between consecutive sites is regulated by n + 1 transition rates. Given a set of feasible transition rates, that models the outcome of all possible mutations, we consider the problem of maximally down regulating protein production by altering the rates within this set of feasible rates. Under certain conditions on the feasible set, we show that an optimal solution can be determined efficiently. We also rigorously analyze two special cases of the down regulation optimization problem. Our results suggest that one must focus on the position along the mRNA molecule where the transition rate has the strongest effect on the protein production rate. However, this rate is not necessarily the slowest transition rate along the mRNA molecule. We discuss some of the biological implications of these results.

  9. Optimal Down Regulation of mRNA Translation

    PubMed Central

    Zarai, Yoram; Margaliot, Michael; Tuller, Tamir

    2017-01-01

    Down regulation of mRNA translation is an important problem in various bio-medical domains ranging from developing effective medicines for tumors and for viral diseases to developing attenuated virus strains that can be used for vaccination. Here, we study the problem of down regulation of mRNA translation using a mathematical model called the ribosome flow model (RFM). In the RFM, the mRNA molecule is modeled as a chain of n sites. The flow of ribosomes between consecutive sites is regulated by n + 1 transition rates. Given a set of feasible transition rates, that models the outcome of all possible mutations, we consider the problem of maximally down regulating protein production by altering the rates within this set of feasible rates. Under certain conditions on the feasible set, we show that an optimal solution can be determined efficiently. We also rigorously analyze two special cases of the down regulation optimization problem. Our results suggest that one must focus on the position along the mRNA molecule where the transition rate has the strongest effect on the protein production rate. However, this rate is not necessarily the slowest transition rate along the mRNA molecule. We discuss some of the biological implications of these results. PMID:28120903

  10. Biotic Stress Globally Down-Regulates Photosynthesis Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Upon herbivore and pathogen attacks, plants switch from processes supporting growth and reproduction to defense by inducing a set of defense genes and down-regulating most of the nuclear encoded photosynthetic genes. To determine if this transcriptional response is universal we used transcriptome da...

  11. The N342S MYLIP polymorphism is associated with high total cholesterol and increased LDL receptor degradation in humans

    PubMed Central

    Weissglas-Volkov, Daphna; Calkin, Anna C.; Tusie-Luna, Teresa; Sinsheimer, Janet S.; Zelcer, Noam; Riba, Laura; Tino, Ana Maria Vargas; Ordoñez-Sánchez, Maria Luisa; Cruz-Bautista, Ivette; Aguilar-Salinas, Carlos A.; Tontonoz, Peter; Pajukanta, Päivi

    2011-01-01

    Atherosclerotic cardiovascular disease (ASCVD) affects more than 1 in 3 American adults. Hypercholesterolemia is a major treatable risk factor for ASCVD, yet many individuals fail to reach target levels of LDL-cholesterol (LDL-C) through the use of statins and lifestyle changes. The E3 ubiquitin ligase myosin regulatory light chain–interacting protein (MYLIP; also known as IDOL) is a recently identified regulator of the LDL receptor (LDLR) pathway. Genome-wide association studies (GWASs) in populations of mixed European descent have identified noncoding variants in the MYLIP region as being associated with LDL-C levels, but no underlying functional variants were pinpointed. In order to fine-map actual susceptibility variants, we studied a population demographically distinct from the discovery population to ensure a different pattern of linkage disequilibrium. Our analysis revealed that in a Mexican population, the nonsynonymous SNP rs9370867, which encodes the N342S amino acid substitution, is an underlying functional variant that was associated with high total cholesterol and accounted for one of the previous significant GWAS signals. Functional characterization showed that the Asn-encoding allele was associated with more potent LDLR degradation and decreased LDL uptake. Mutagenesis of residue 342 failed to affect intrinsic MYLIP E3 ligase activity, but it was critical for LDLR targeting. Our findings suggest that modulation of MYLIP activity can affect LDL-C levels and that pharmacologic inhibition of MYLIP activity might be a useful strategy in the treatment of dyslipidemia and ASCVD. PMID:21765216

  12. A novel posttranscriptional mechanism for dietary cholesterol-mediated suppression of liver LDL receptor expression[S

    PubMed Central

    Singh, Amar Bahadur; Kan, Chin Fung Kelvin; Shende, Vikram; Dong, Bin; Liu, Jingwen

    2014-01-01

    It is well-established that over-accumulation of dietary cholesterol in the liver inhibits sterol-regulatory element binding protein (SREBP)-mediated LDL receptor (LDLR) gene transcription leading to a reduced hepatic LDLR mRNA level in hypercholesterolemic animals. However, it is unknown whether elevated cholesterol levels can elicit a cellular response to increase LDLR mRNA turnover to further repress LDLR expression in liver tissue. In the current study, we examined the effect of a high cholesterol diet on the hepatic expression of LDLR mRNA binding proteins in three different animal models and in cultured hepatic cells. Our results demonstrate that high cholesterol feeding specifically elevates the hepatic expression of LDLR mRNA decay promoting factor heterogeneous nuclear ribonucleoprotein (HNRNP)D without affecting expressions of other LDLR mRNA binding proteins in vivo and in vitro. Employing the approach of adenovirus-mediated gene knockdown, we further show that depletion of HNRNPD in the liver results in a marked reduction of serum LDL-cholesterol and a substantial increase in liver LDLR expression in hyperlipidemic mice. Additional studies of gene knockdown in albumin-luciferase-untranslated region (UTR) transgenic mice provide strong evidence supporting the essential role of 3′UTR in HNRNPD-mediated LDLR mRNA degradation in liver tissue. Altogether, this work identifies a novel posttranscriptional regulatory mechanism by which dietary cholesterol inhibits liver LDLR expression via inducing HNRNPD to accelerate LDLR mRNA degradation. PMID:24792925

  13. A lipidomics study reveals hepatic lipid signatures associating with deficiency of the LDL receptor in a rat model

    PubMed Central

    Quan, Chao; Hu, Chunxiu; Xie, Bingxian; Du, Yinan; Chen, Liang; Yang, Wei; Yang, Liu; Chen, Qiaoli; Shen, Bin; Hu, Bian; Zheng, Zhihong; Zhu, Haibo; Huang, Xingxu; Xu, Guowang; Chen, Shuai

    2016-01-01

    ABSTRACT The low-density lipoprotein receptor (LDLR) plays a critical role in the liver for the clearance of plasma low-density lipoprotein (LDL). Its deficiency causes hypercholesterolemia in many models. To facilitate the usage of rats as animal models for the discovery of cholesterol-lowering drugs, we took a genetic approach to delete the LDLR in rats aiming to increase plasma LDL cholesterol (LDL-C). An LDLR knockout rat was generated via zinc-finger nuclease technology, which harbors a 19-basepair deletion in the seventh exon of the ldlr gene. As expected, deletion of the LDLR elevated total cholesterol and total triglyceride in the plasma, and caused a tenfold increase of plasma LDL-C and a fourfold increase of plasma very low-density lipoprotein (VLDL-C). A lipidomics analysis revealed that deletion of the LDLR affected hepatic lipid metabolism, particularly lysophosphatidylcholines, free fatty acids and sphingolipids in the liver. Cholesterol ester (CE) 20:4 also displayed a significant increase in the LDLR knockout rats. Taken together, the LDLR knockout rat offers a new model of hypercholesterolemia, and the lipidomics analysis reveals hepatic lipid signatures associating with deficiency of the LDL receptor. PMID:27378433

  14. Immunization with cationized BSA inhibits progression of disease in ApoBec-1/LDL receptor deficient mice with manifest atherosclerosis.

    PubMed

    Kolbus, Daniel; Wigren, Maria; Ljungcrantz, Irena; Söderberg, Ingrid; Alm, Ragnar; Björkbacka, Harry; Nilsson, Jan; Fredrikson, Gunilla N

    2011-06-01

    Immune responses against modified self-antigens generated by hypercholesterolemia play an important role in atherosclerosis identifying the immune system as a possible novel target for prevention and treatment of cardiovascular disease. It has recently been shown that these immune responses can be modulated by subcutaneous injection of adjuvant. In the present study we immunized 25-week old ApoBec-1/LDL receptor deficient mice with manifest atherosclerosis with adjuvant and two different concentrations of the carrier molecule cationized BSA (cBSA). Plasma levels of Th2-induced apolipoprotein B (apoB)/IgG1 immune complexes were increased in the cBSA immunized groups verifying induction of immunity against a self-antigen. Mice were sacrificed at 36 weeks of age and atherosclerosis was monitored by en face Oil red O staining of the aorta. Immunization with 100 μg cBSA inhibited plaque progression, whereas the lower dose (50 μg) did not. In addition, the higher dose induced a more stable plaque phenotype, indicated by a higher content of collagen and less macrophages and T cells in the plaques. Moreover, there was an increased ratio of Foxp3+/Foxp3⁻ T cells in the circulation suggesting activation of a regulatory T cell response. In conclusion, we show that immunization with cBSA induces an immune response against apoB as well as an activation of Treg cells. This was associated with development of a more stable plaque phenotype and reduced atherosclerosis progression.

  15. Lectin-like ox-LDL receptor-1 (LOX-1)-Toll-like receptor 4 (TLR4) interaction and autophagy in CATH.a differentiated cells exposed to angiotensin II.

    PubMed

    Ding, Zufeng; Liu, Shijie; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Deng, Xiaoyan; Fan, Yubo; Xiang, David; Mehta, Jawahar L

    2015-04-01

    Toll-like receptors (TLRs) play an essential role in innate immune response. Expression of TLRs has also been linked to autophagy. As the main receptor for oxidized low-density lipoprotein (ox-LDL) on the cell surface, lectin-like ox-LDL receptor-1 (LOX-1) is upregulated by proinflammatory cytokines and has been linked to the development of autophagy. However, the relationship between LOX-1, autophagy, and TLR4 in neurons has not been defined. Here, we show that Angiotensin II (Ang II) treatment of CATH.a differentiated neuronal cells resulted in the expression of TLR4 (and associated signals MyD88 and Toll/interleukin-1 receptor domain-containing adapter-inducing interferon (TRIF)), LOX-1 autophagy. LOX-1 knockdown (transfection with specific small interfering RNA (siRNA)) resulted in reduced expression of TLR4 (and associated signals MyD88 and TRIF) and P-P38 mitogen-activated protein kinase (MAPK) and autophagy. TLR4 knockdown with siRNA resulted in reduced LOX-1 expression and autophagy, indicating a positive feedback between LOX-1 and TLR4. Knockdown of TRIF as well as MyD88 or inhibition of P38 MAPK also inhibited the expression of LOX-1 and TLR4 and autophagy. Importantly, pretreatment with 3-methyladenine (autophagy inhibitor) enhanced while rapamycin (autophagy inducer) decreased the expression of LOX-1, TLR4, and P-P38 MAPK. These studies suggest the presence of a bidirectional link between LOX-1and TLR4 in cultured CATH.a differentiated cells exposed to Ang II with an important role for autophagy in this link.

  16. Point mutations at the catalytic site of PCSK9 inhibit folding, autoprocessing, and interaction with the LDL receptor.

    PubMed

    Garvie, Colin W; Fraley, Cara V; Elowe, Nadine H; Culyba, Elizabeth K; Lemke, Christopher T; Hubbard, Brian K; Kaushik, Virendar K; Daniels, Douglas S

    2016-11-01

    Circulating low-density lipoprotein cholesterol (LDLc) is regulated by membrane-bound LDL receptor (LDLr). Upon LDLc and LDLr interaction the complex is internalized by the cell, leading to LDLc degradation and LDLr recycling back to the cell surface. The proprotein convertase subtilisin/kexin type 9 (PCSK9) protein regulates this cycling. PCSK9 is secreted from the cell and binds LDLr. When the complex is internalized, PCSK9 prevents LDLr from shuttling back to the surface and instead targets it for degradation. PCSK9 is a serine protease expressed as a zymogen that undergoes autoproteolysis, though the two resulting protein domains remain stably associated as a heterodimer. This PCSK9 autoprocessing is required for the protein to be secreted from the cell. To date, direct analysis of PCSK9 autoprocessing has proven challenging, as no catalytically active zymogen has been isolated. A PCSK9 loss-of-function point mutation (Q152H) that reduces LDLc levels two-fold was identified in a patient population. LDLc reduction was attributed to a lack of PCSK9(Q152H) autoprocessing preventing secretion of the protein. We have isolated a zymogen form of PCSK9, PCSK9(Q152H), and a related mutation (Q152N), that can undergo slow autoproteolysis. We show that the point mutation prevents the formation of the mature form of PCSK9 by hindering folding, reducing the rate of autoproteolysis, and destabilizing the heterodimeric form of the protein. In addition, we show that the zymogen form of PCSK9 adopts a structure that is distinct from the processed form and is unable to bind a mimetic peptide based on the EGF-A domain of the LDLr.

  17. Atomic structure of the autosomal recessive hypercholesterolemia phosphotyrosine-binding domain in complex with the LDL-receptor tail.

    PubMed

    Dvir, Hay; Shah, Mehul; Girardi, Enrico; Guo, Lixia; Farquhar, Marilyn G; Zajonc, Dirk M

    2012-05-01

    Hypercholesterolemia, high serum cholesterol in the form of LDL, is a major risk factor for atherosclerosis. LDL is mostly degraded in the liver after its cellular internalization with the LDL receptor (LDLR). This clathrin-mediated endocytosis depends on the protein autosomal recessive hypercholesterolemia (ARH), which binds the LDLR cytoplasmic tail. Mutations in either the LDLR tail or in ARH lead to hypercholesterolemia and premature atherosclerosis. Despite the significance of this interaction for cholesterol homeostasis, no structure of either ARH or the LDLR tail is available to determine its molecular basis. We report the crystal structure at 1.37-Å resolution of the phosphotyrosine-binding (PTB) domain of ARH in complex with an LDLR tail peptide containing the FxNPxY(0) internalization signal. Surprisingly, ARH interacts with a longer portion of the tail than previously recognized, which extends to I(-7)xF(-5)xNPxY(0)QK(+2). The LDLR tail assumes a unique "Hook"-like structure with a double β-turn conformation, which is accommodated in distinctive ARH structural determinants (i.e., an extended backbone hydrogen-bonding platform, three hydrophobic helical grooves, and a hydrophobic pocket for Y(0)). This unique complementarity differs significantly in related PTB proteins and may account for the unique physiological role of these partners in the hepatic uptake of cholesterol LDL. Moreover, the unusual hydrophobic pocket for Y(0) explains the distinctive ability of ARH to internalize proteins containing either FxNPxY(0) or FxNPxF(0) sequences. Biophysical measurements reveal how mutations associated with hypercholesterolemia destabilize ARH and its complex with LDLR and illuminate LDL internalization defects seen in patients.

  18. Surface aggregation patterns of LDL receptors near coated pits III: potential effects of combined retrograde membrane flow-diffusion and a polarized-insertion mechanism

    PubMed Central

    2014-01-01

    Although the process of endocytosis of the low density lipoprotein (LDL) macromolecule and its receptor have been the subject of intense experimental research and modeling, there are still conflicting hypotheses and even conflicting data regarding the way receptors are transported to coated pits, the manner by which receptors are inserted before they aggregate in coated pits, and the display of receptors on the cell surface. At first it was considered that LDL receptors in human fibroblasts are inserted at random locations and then transported by diffusion toward coated pits. But experiments have not ruled out the possibility that the true rate of accumulation of LDL receptors in coated pits might be faster than predicted on the basis of pure diffusion and uniform reinsertion over the entire cell surface. It has been claimed that recycled LDL receptors are inserted preferentially in regions where coated pits form, with display occurring predominantly as groups of loosely associated units. Another mechanism that has been proposed by experimental cell biologists which might affect the accumulation of receptors in coated pits is a retrograde membrane flow. This is essentially linked to a polarized receptor insertion mode and also to the capping phenomenon, characterized by the formation of large patches of proteins that passively flow away from the regions of membrane exocytosis. In this contribution we calculate the mean travel time of LDL receptors to coated pits as determined by the ratio of flow strength to diffusion-coefficient, as well as by polarized-receptor insertion. We also project the resulting display of unbound receptors on the cell membrane. We found forms of polarized insertion that could potentially reduce the mean capture time of LDL receptors by coated pits which is controlled by diffusion and uniform insertion. Our results show that, in spite of its efficiency as a possible device for enhancement of the rate of receptor trapping, polarized

  19. Surface aggregation patterns of LDL receptors near coated pits III: potential effects of combined retrograde membrane flow-diffusion and a polarized-insertion mechanism.

    PubMed

    Echavarria-Heras, Héctor; Leal-Ramirez, Cecilia; Castillo, Oscar

    2014-05-22

    Although the process of endocytosis of the low density lipoprotein (LDL) macromolecule and its receptor have been the subject of intense experimental research and modeling, there are still conflicting hypotheses and even conflicting data regarding the way receptors are transported to coated pits, the manner by which receptors are inserted before they aggregate in coated pits, and the display of receptors on the cell surface. At first it was considered that LDL receptors in human fibroblasts are inserted at random locations and then transported by diffusion toward coated pits. But experiments have not ruled out the possibility that the true rate of accumulation of LDL receptors in coated pits might be faster than predicted on the basis of pure diffusion and uniform reinsertion over the entire cell surface. It has been claimed that recycled LDL receptors are inserted preferentially in regions where coated pits form, with display occurring predominantly as groups of loosely associated units. Another mechanism that has been proposed by experimental cell biologists which might affect the accumulation of receptors in coated pits is a retrograde membrane flow. This is essentially linked to a polarized receptor insertion mode and also to the capping phenomenon, characterized by the formation of large patches of proteins that passively flow away from the regions of membrane exocytosis. In this contribution we calculate the mean travel time of LDL receptors to coated pits as determined by the ratio of flow strength to diffusion-coefficient, as well as by polarized-receptor insertion. We also project the resulting display of unbound receptors on the cell membrane. We found forms of polarized insertion that could potentially reduce the mean capture time of LDL receptors by coated pits which is controlled by diffusion and uniform insertion. Our results show that, in spite of its efficiency as a possible device for enhancement of the rate of receptor trapping, polarized

  20. Emotion down-regulation diminishes cognitive control: a neurophysiological investigation.

    PubMed

    Hobson, Nicholas M; Saunders, Blair; Al-Khindi, Timour; Inzlicht, Michael

    2014-12-01

    Traditional models of cognitive control have explained performance monitoring as a "cold" cognitive process, devoid of emotion. In contrast to this dominant view, a growing body of clinical and experimental research indicates that cognitive control and its neural substrates, in particular the error-related negativity (ERN), are moderated by affective and motivational factors, reflecting the aversive experience of response conflict and errors. To add to this growing line of research, here we use the classic emotion regulation paradigm-a manipulation that promotes the cognitive reappraisal of emotion during task performance-to test the extent to which affective variation in the ERN is subject to emotion reappraisal, and also to explore how emotional regulation of the ERN might influence behavioral performance. In a within-subjects design, 41 university students completed 3 identical rounds of a go/no-go task while electroencephalography was recorded. Reappraisal instructions were manipulated so that participants either down-regulated or up-regulated emotional involvement, or completed the task normally, without engaging any reappraisal strategy (control). Results showed attenuated ERN amplitudes when participants down-regulated their emotional experience. In addition, a mediation analysis revealed that the association between reappraisal style and attenuated ERN was mediated by changes in reported emotion ratings. An indirect effects model also revealed that down-regulation predicted sensitivity of error-monitoring processes (difference ERN), which, in turn, predicted poorer task performance. Taken together, these results suggest that the ERN appears to have a strong affective component that is associated with indices of cognitive control and behavioral monitoring.

  1. Association of 3'-UTR polymorphisms of the oxidised LDL receptor 1 (OLR1) gene with Alzheimer's disease.

    PubMed

    Lambert, J-C; Luedecking-Zimmer, E; Merrot, S; Hayes, A; Thaker, U; Desai, P; Houzet, A; Hermant, X; Cottel, D; Pritchard, A; Iwatsubo, T; Pasquier, F; Frigard, B; Conneally, P M; Chartier-Harlin, M-C; DeKosky, S T; Lendon, C; Mann, D; Kamboh, M I; Amouyel, P

    2003-06-01

    Although possession of the epsilon 4 allele of the apolipoprotein E gene appears to be an important biological marker for Alzheimer's disease (AD) susceptibility, strong evidence indicates that at least one additional risk gene exists on chromosome 12. Here, we describe an association of the 3'-UTR +1073 C/T polymorphism of the OLR1 (oxidised LDL receptor 1) on chromosome 12 with AD in French sporadic (589 cases and 663 controls) and American familial (230 affected sibs and 143 unaffected sibs) populations. The age and sex adjusted odds ratio between the CC+CT genotypes versus the TT genotypes was 1.56 (p=0.001) in the French sample and 1.92 (p=0.02) in the American sample. Furthermore, we have discovered a new T/A polymorphism two bases upstream of the +1073 C/T polymorphism. This +1071 T/A polymorphism was not associated with the disease, although it may weakly modulate the impact of the +1073 C/T polymorphism. Using 3'-UTR sequence probes, we have observed specific DNA protein binding with nuclear proteins from lymphocyte, astrocytoma, and neuroblastoma cell lines, but not from the microglia cell line. This binding was modified by both the +1071 T/A and +1073 C/T polymorphisms. In addition, a trend was observed between the presence or absence of the +1073 C allele and the level of astrocytic activation in the brain of AD cases. However, Abeta(40), Abeta(42), Abeta total, and Tau loads or the level of microglial cell activation were not modulated by the 3'-UTR OLR1 polymorphisms. Finally, we assessed the impact of these polymorphisms on the level of OLR1 expression in lymphocytes from AD cases compared with controls. The OLR1 expression was significantly lower in AD cases bearing the CC and CT genotypes compared with controls with the same genotypes. In conclusion, our data suggest that genetic variation in the OLR1 gene may modify the risk of AD.

  2. Down-regulation of CEACAM1 in breast cancer.

    PubMed

    Yang, Changcheng; He, Pingqing; Liu, Yiwen; He, Yiqing; Yang, Cuixia; Du, Yan; Zhou, Muqing; Wang, Wenjuan; Zhang, Guoliang; Wu, Man; Gao, Feng

    2015-10-01

    Carcinoembryonic antigen-related adhesion molecule 1 (CEACAM1) is a type 1 transmembrane glycoprotein belonging to the CEA family, which has been found to exist as either soluble forms in body fluids or membrane-bound forms on the cell surface. Aberrant CEACAM1 expression is associated with tumor progression and has been found in a variety of human malignancies. Increasing interest has been devoted to the expression of CEACAM1 in breast cancer, but most of these findings are contradictory. The aim of this study was to investigate CEACAM1 expression in breast cancer in greater detail. Using immunohistochemical staining, we found that CEACAM1 expression was reduced or lost in breast cancer tissues compared with noncancerous breast tissues. In addition, soluble CEACAM1 levels in the culture medium of breast cancer cell lines were significantly lower than those in a nontumorigenic breast epithelial cell line. Immunofluorescence analysis consistently showed that breast cancer cell lines have relatively low expression of membrane-bound CEACAM1. Furthermore, CEACAM1 mRNA and protein expression levels were down-regulated in breast cancer cell lines as measured using real-time reverse transcriptase-polymerase chain reaction and western blot analysis, respectively. Taken together, our results demonstrate a systematic down-regulation of CEACAM1 in breast cancer and suggest that a strategy to restore CEACAM1 expression may be helpful for the treatment of breast cancer.

  3. Hypnosis and top-down regulation of consciousness.

    PubMed

    Terhune, Devin B; Cleeremans, Axel; Raz, Amir; Lynn, Steven Jay

    2017-02-04

    Hypnosis is a unique form of top-down regulation in which verbal suggestions are capable of eliciting pronounced changes in a multitude of psychological phenomena. Hypnotic suggestion has been widely used both as a technique for studying basic science questions regarding human consciousness but also as a method for targeting a range of symptoms within a therapeutic context. Here we provide a synthesis of current knowledge regarding the characteristics and neurocognitive mechanisms of hypnosis. We review evidence from cognitive neuroscience, experimental psychopathology, and clinical psychology regarding the utility of hypnosis as an experimental method for modulating consciousness, as a model for studying healthy and pathological cognition, and as a therapeutic vehicle. We also highlight the relations between hypnosis and other psychological phenomena, including the broader domain of suggestion and suggestibility, and conclude by identifying the most salient challenges confronting the nascent cognitive neuroscience of hypnosis and outlining future directions for research on hypnosis and suggestion.

  4. DMBT1 expression is down-regulated in breast cancer

    PubMed Central

    Braidotti, P; Nuciforo, PG; Mollenhauer, J; Poustka, A; Pellegrini, C; Moro, A; Bulfamante, G; Coggi, G; Bosari, S; Pietra, GG

    2004-01-01

    Background We studied the expression of DMBT1 (deleted in malignant brain tumor 1), a putative tumor suppressor gene, in normal, proliferative, and malignant breast epithelium and its possible relation to cell cycle. Methods Sections from 17 benign lesions and 55 carcinomas were immunostained with anti DMBT1 antibody (DMBTh12) and sections from 36 samples, were double-stained also with anti MCM5, one of the 6 pre-replicative complex proteins with cell proliferation-licensing functions. DMBT1 gene expression at mRNA level was assessed by RT-PCR in frozen tissues samples from 39 patients. Results Normal glands and hyperplastic epithelium in benign lesions displayed a luminal polarized DMBTh12 immunoreactivity. Normal and hyperplastic epithelium adjacent to carcinomas showed a loss of polarization, with immunostaining present in basal and perinuclear cytoplasmic compartments. DMBT1 protein expression was down-regulated in the cancerous lesions compared to the normal and/or hyperplastic epithelium adjacent to carcinomas (3/55 positive carcinomas versus 33/42 positive normal/hyperplastic epithelia; p = 0.0001). In 72% of cases RT-PCR confirmed immunohistochemical results. Most of normal and hyperplastic mammary cells positive with DMBTh12 were also MCM5-positive. Conclusions The redistribution and up-regulation of DMBT1 in normal and hyperplastic tissues flanking malignant tumours and its down-regulation in carcinomas suggests a potential role in breast cancer. Moreover, the concomitant expression of DMTB1 and MCM5 suggests its possible association with the cell-cycle regulation. PMID:15301691

  5. Toll-like Receptor 4 Deficiency Decreases Atherosclerosis but Does Not Protect against Inflammation in Obese LDL Receptor-Deficient Mice

    PubMed Central

    Ding, Yilei; Subramanian, Savitha; Montes, Vince N.; Goodspeed, Leela; Wang, Shari; Han, Chang Yeop; Teresa, Antonio Sta.; Kim, Jinkyu; O’Brien, Kevin D.; Chait, Alan

    2013-01-01

    Objective Obesity is associated with insulin resistance, chronic low-grade inflammation and atherosclerosis. Toll-like receptor 4 (TLR4) participates in the cross-talk between inflammation and insulin resistance, being activated by both lipopolysaccharide and saturated fatty acids. This study was undertaken to determine whether TLR4 deficiency has a protective role in inflammation, insulin resistance and atherosclerosis induced by a diabetogenic diet. Methods and Results TLR4 and LDL receptor double knockout (Tlr4−/−Ldlr−/−) mice and Ldlr−/− mice were fed either a normal chow or a diabetogenic diet for 24 weeks. Tlr4−/−Ldlr−/− mice fed a diabetogenic diet showed improved plasma cholesterol and triglyceride levels but developed obesity, hyperinsulinemia and glucose intolerance equivalent to obese Ldlr−/− mice. Adipocyte hypertrophy, macrophage accumulation and local inflammation were not attenuated in intra-abdominal adipose tissue in Tlr4−/−Ldlr−/− mice. However, TLR4 deficiency led to markedly decreased atherosclerosis in obese Tlr4−/−Ldlr−/− mice. Compensatory up-regulation of TLR2 expression was observed both in obese TLR4 deficient mice and in palmitate-treated TLR4-silenced 3T3-L1 adipocytes. Conclusions TLR4 deficiency decreases atherosclerosis without affecting obesity-induced inflammation and insulin resistance in LDL receptor deficient mice. Alternative pathways may be responsible for adipose tissue macrophage infiltration and insulin resistance that occurs in obesity. PMID:22580897

  6. Proteomic Plasma Membrane Profiling Reveals an Essential Role for gp96 in the Cell Surface Expression of LDLR Family Members, Including the LDL Receptor and LRP6

    PubMed Central

    2012-01-01

    The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96. PMID:22292497

  7. Echium oil reduces plasma lipids and hepatic lipogenic gene expression in apoB100-only LDL receptor knockout mice.

    PubMed

    Zhang, Ping; Boudyguina, Elena; Wilson, Martha D; Gebre, Abraham K; Parks, John S

    2008-10-01

    We tested the hypothesis that dietary supplementation with echium oil (EO), which is enriched in stearidonic acid (SDA; 18:4 n-3), the product of Delta-6 desaturation of 18:3 n-3, will decrease plasma triglyceride (TG) concentrations and result in conversion of SDA to eicosapentaenoic acid (EPA) in the liver. Mildly hypertriglyceridemic mice (apoB100-only LDLrKO) were fed a basal diet containing 10% calories as palm oil (PO) and 0.2% cholesterol for 4 weeks, after which they were randomly assigned to experimental diets consisting of the basal diet plus supplementation of 10% of calories as PO, EO or fish oil (FO) for 8 weeks. The EO and FO experimental diets decreased plasma TG and VLDL lipid concentration, and hepatic TG content compared to PO, and there was a significant correlation between hepatic TG content and plasma TG concentration among diet groups. EO fed mice had plasma and liver lipid EPA enrichment that was greater than PO-fed mice but less than FO-fed mice. Down-regulation of several genes involved in hepatic TG biosynthesis was similar for mice fed EO and FO and significantly lower compared to those fed PO. In conclusion, EO may provide a botanical alternative to FO for reduction of plasma TG concentrations.

  8. Rapamycin disrupts cyclin/cyclin-dependent kinase/p21/proliferating cell nuclear antigen complexes and cyclin D1 reverses rapamycin action by stabilizing these complexes.

    PubMed

    Law, Mary; Forrester, Elizabeth; Chytil, Anna; Corsino, Patrick; Green, Gail; Davis, Bradley; Rowe, Thomas; Law, Brian

    2006-01-15

    Rapamycin and its derivatives are promising anticancer agents, but the exact mechanisms by which these drugs induce cell cycle arrest and inhibit tumor growth are unknown. A biochemical analysis of human mammary tumor cell lines indicated that rapamycin-induced antiproliferative effects correlated with down-regulation of cellular p21 levels and the levels of p21 in cyclin-dependent kinase (Cdk) 2 and 4 complexes. Cyclin D1 overexpression reversed rapamycin action and this reversal correlated with increased levels of cellular p21, higher levels of p21 associated with Cdk2, and stabilization of cyclin D1/Cdk2/p21/proliferating cell nuclear antigen (PCNA) complexes. Experiments using a novel cyclin D1-Cdk2 fusion protein or a kinase-dead mutant of the fusion protein indicated that reversal of rapamycin action required not only the formation of complexes with p21 and PCNA but also complex-associated kinase activity. Similar results were observed in vivo. The rapamycin derivative RAD001 (everolimus) inhibited the growth of mouse mammary tumors, which correlated with the disruption of cyclin D1/Cdk2 complexes. The potential implications of these results with respect to the use of rapamycin derivatives in breast cancer therapy are discussed.

  9. Fibroblast growth factor 2 induces E-cadherin down-regulation via PI3K/Akt/mTOR and MAPK/ERK signaling in ovarian cancer cells.

    PubMed

    Lau, Man-Tat; So, Wai-Kin; Leung, Peter C K

    2013-01-01

    Fibroblast growth factor 2 (FGF2) is produced by ovarian cancer cells and it has been suggested to play an important role in tumor progression. In this study, we report that FGF2 treatment down-regulated E-cadherin by up-regulating its transcriptional repressors, Slug and ZEB1, in human ovarian cancer cells. The pharmacological inhibition of phosphatidylinositol-3-kinase (PI3K), mammalian target of rapamycin (mTOR), and MEK suggests that both PI3K/Akt/mTOR and MAPK/ERK signaling are required for FGF2-induced E-cadherin down-regulation. Moreover, FGF2 up-regulated Slug and ZEB1 expression via the PI3K/Akt/mTOR and MAPK/ERK signaling pathways, respectively. Finally, FGF2-induced cell invasion was abolished by the inhibition of the PI3K/Akt/mTOR and MAPK/ERK pathways, and the forced expression of E-cadherin diminished the intrinsic invasiveness of ovarian cancer cells as well as the FGF2-induced cell invasion. This study demonstrates a novel mechanism in which FGF2 down-regulates E-cadherin expression through the activation of PI3K/Akt/mTOR and MAPK/ERK signaling, and the up-regulation of Slug and ZEB1 in human ovarian cancer cells.

  10. Rapamycin regulates biochemical metabolites

    PubMed Central

    Tucci, Paola; Porta, Giovanni; Agostini, Massimiliano; Antonov, Alexey; Garabadgiu, Alexander Vasilievich; Melino, Gerry; Willis, Anne E

    2013-01-01

    The mammalian target of rapamycin (mTOR) kinase is a master regulator of protein synthesis that couples nutrient sensing to cell growth, and deregulation of this pathway is associated with tumorigenesis. p53, and its less investigated family member p73, have been shown to interact closely with mTOR pathways through the transcriptional regulation of different target genes. To investigate the metabolic changes that occur upon inhibition of the mTOR pathway and the role of p73 in this response primary mouse embryonic fibroblast from control and TAp73−/− were treated with the macrocyclic lactone rapamycin. Extensive gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS/MS) analysis were used to obtain a rapamycin-dependent global metabolome profile from control or TAp73−/− cells. In total 289 metabolites involved in selective pathways were identified; 39 biochemical metabolites were found to be significantly altered, many of which are known to be associated with the cellular stress response. PMID:23839040

  11. RTP801 immunoreactivity in retinal ganglion cells and its down-regulation in cultured cells protect them from light and cobalt chloride.

    PubMed

    del Olmo-Aguado, Susana; Núñez-Álvarez, Claudia; Ji, Dan; Manso, Alberto García; Osborne, Neville N

    2013-09-01

    RTP801, a stress-related protein, is activated by adverse environmental conditions and inhibits the activity of mammalian target of rapamycin (mTOR) in promoting oxidative stress-dependent cell death. RTP801 exists both in the mammalian retina and the lens of the eye. Here, we observed RTP801 immunoreactivity in some retinal ganglion cells. Intravitreal injection of cobalt chloride (CoCl2) to mimick hypoxia influenced retinal GFAP (glial fibrillary acidic protein) and heme oxygenase-1 (HO-1) levels, but did not affect RTP801 immunoreactivity or mRNA content relative to GAPDH. However, RTP801 mRNA was elevated when compared with Brn3a mRNA, suggesting that RTP801 is activated in stressed Brn3a retinal ganglion cells. In cultures of RGC-5 cells, RTP801 immunoreactivity was located in the cytoplasm and partly present in the mitochondria. An insult of blue light or CoCl2 increased RTP801 expression, which was accompanied by cell death. However, in cultures where RTP801 mRNA was down-regulated, the negative influence of blue light and CoCl2 was blunted. Rapamycin nullified the CoCl2-induced up-regulation of RTP801 and attenuated cell death. Moreover, rapamycin was non-toxic to RGC-5 cells, even at a high concentration (10μM). The protective effect of rapamycin on RGC-5 cells caused by the inhibition of RTP801 suggests that rapamycin might attenuate retinal ganglion cell death in situ, as in glaucoma.

  12. Red wine polyphenolics increase LDL receptor expression and activity and suppress the secretion of ApoB100 from human HepG2 cells.

    PubMed

    Pal, Sebely; Ho, Nerissa; Santos, Carlos; Dubois, Paul; Mamo, John; Croft, Kevin; Allister, Emma

    2003-03-01

    Epidemiologic studies suggest that the consumption of red wine may lower the risk of cardiovascular disease. The cardioprotective effect of red wine has been attributed to the polyphenols present in red wine, particularly resveratrol (a stilbene, with estrogen-like activity), and the flavonoids, catechin, epicatechin, quercetin and phenolic acids such as gallic acid. At present, very little is known about the mechanisms by which red wine phenolic compounds benefit the cardiovascular system. Therefore, the aim of this study was to elucidate whether red wine polyphenolics reduce lipoprotein production and clearance by the liver. Cultured HepG2 cells were incubated in the presence of dealcoholized red wine, alcohol-containing red wine and atorvastatin for 24 h. The apolipoprotien B100 (apoB100) protein (marker of hepatic lipoproteins) was quantified on Western blots with an anti-apoB100 antibody and the enhanced chemiluminescence detection system. Apolipoprotein B100 levels in the cells and that secreted into the media were significantly reduced by 50% in liver cells incubated with alcohol-stripped red wine compared with control cells. This effect of dealcoholized red wine on apoB100 production in HepG2 cells was similar to the effect of atorvastatin. Apo B100 production was significantly attenuated by 30% in cells incubated with alcoholized red wine, suggesting that the alcohol was masking the effect of red wine polyphenolics. Apo B100 production was significantly attenuated by 45% with the polyphenolic compounds resveratrol and quercertin. In addition, dealcoholized and alcoholized red wine and atorvastatin significantly increased 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase mRNA and LDL receptor binding activity relative to controls. Dealcoholized red wine also increased LDL receptor gene expression. Collectively, this study suggests that red wine polyphenolics regulate major pathways involved in lipoprotein metabolism.

  13. Polymorphic haplotypes and recombination rates at the LDL receptor gene locus in subjects with and without familial hypercholesterolemia who are from different populations.

    PubMed

    Miserez, A R; Schuster, H; Chiodetti, N; Keller, U

    1993-04-01

    RFLPs at the low-density lipoprotein (LDL) receptor locus for TaqI, StuI, HincII, AvaII, ApaLI (5' and 3'), PvuII, and NcoI were studied in Swiss and German families with familial hypercholesterolemia (FH). A total of 1,104 LDL receptor alleles were analyzed using Southern blotting and new PCR-based techniques for detection of the TaqI, StuI, HincII, AvaII, NcoI RFLPs. Two hundred fifty-six independent haplotypes from 368 individuals of 61 unrelated Swiss families, as well as 114 independent haplotypes from 184 subjects of 25 unrelated German families, were constructed. In 76 families, clinical diagnosis of FH was confirmed by cosegregation analysis. Of the 43 unique haplotypes consisting of seven RFLPs detected in the Swiss and Germans, only 9 were common in both population samples. Analysis of linkage disequilibrium revealed nonrandom associations between several of the investigated RFLPs. ApaLI (5'), NcoI, PvuII, TaqI, and AvaII or HincII were particularly informative (cumulative informativeness .85). Relative frequencies, heterozygosity indexes, and PICs of the RFLPs from the Swiss and Germans were compared with values calculated from reported haplotype data for Italians, Icelanders, North American Caucasians, South African Caucasians, and Japanese. Pairwise comparisons of population samples by common RFLPs demonstrated unexpected differences even between geographically adjacent populations (e.g., the Swiss and Germans). Furthermore, genetic distances from the Germans to the other Caucasians were larger than to the Japanese. An unexpected lack of correlation between linkage disequilibria and physical distances was detected for the German and Japanese data, possibly because of nonuniform recombination with excessively high rates between exon 13 and intron 15. Hence, the present study revealed a striking variety of polymorphic haplotypes and heterogeneity of RFLP frequencies and recombination rates among the seven population samples.

  14. Polymorphic haplotypes and recombination rates at the LDL receptor gene locus in subjects with and without familial hypercholesterolemia who are from different populations.

    PubMed Central

    Miserez, A R; Schuster, H; Chiodetti, N; Keller, U

    1993-01-01

    RFLPs at the low-density lipoprotein (LDL) receptor locus for TaqI, StuI, HincII, AvaII, ApaLI (5' and 3'), PvuII, and NcoI were studied in Swiss and German families with familial hypercholesterolemia (FH). A total of 1,104 LDL receptor alleles were analyzed using Southern blotting and new PCR-based techniques for detection of the TaqI, StuI, HincII, AvaII, NcoI RFLPs. Two hundred fifty-six independent haplotypes from 368 individuals of 61 unrelated Swiss families, as well as 114 independent haplotypes from 184 subjects of 25 unrelated German families, were constructed. In 76 families, clinical diagnosis of FH was confirmed by cosegregation analysis. Of the 43 unique haplotypes consisting of seven RFLPs detected in the Swiss and Germans, only 9 were common in both population samples. Analysis of linkage disequilibrium revealed nonrandom associations between several of the investigated RFLPs. ApaLI (5'), NcoI, PvuII, TaqI, and AvaII or HincII were particularly informative (cumulative informativeness .85). Relative frequencies, heterozygosity indexes, and PICs of the RFLPs from the Swiss and Germans were compared with values calculated from reported haplotype data for Italians, Icelanders, North American Caucasians, South African Caucasians, and Japanese. Pairwise comparisons of population samples by common RFLPs demonstrated unexpected differences even between geographically adjacent populations (e.g., the Swiss and Germans). Furthermore, genetic distances from the Germans to the other Caucasians were larger than to the Japanese. An unexpected lack of correlation between linkage disequilibria and physical distances was detected for the German and Japanese data, possibly because of nonuniform recombination with excessively high rates between exon 13 and intron 15. Hence, the present study revealed a striking variety of polymorphic haplotypes and heterogeneity of RFLP frequencies and recombination rates among the seven population samples. PMID:8096361

  15. The association of statins plus LDL receptor-targeted liposome-encapsulated doxorubicin increases in vitro drug delivery across blood–brain barrier cells

    PubMed Central

    Pinzón-Daza, ML; Garzón, R; Couraud, PO; Romero, IA; Weksler, B; Ghigo, D; Bosia, A; Riganti, C

    2012-01-01

    BACKGROUND AND PURPOSE The passage of drugs across the blood–brain barrier (BBB) limits the efficacy of chemotherapy in brain tumours. For instance, the anticancer drug doxorubicin, which is effective against glioblastoma in vitro, has poor efficacy in vivo, because it is extruded by P-glycoprotein (Pgp/ABCB1), multidrug resistance-related proteins and breast cancer resistance protein (BCRP/ABCG2) in BBB cells. The aim of this study was to convert poorly permeant drugs like doxorubicin into drugs able to cross the BBB. EXPERIMENTAL APPROACH Experiments were performed on primary human cerebral microvascular endothelial hCMEC/D3 cells, alone and co-cultured with human brain and epithelial tumour cells. KEY RESULTS Statins reduced the efflux activity of Pgp/ABCB1 and BCRP/ABCG2 in hCMEC/D3 cells by increasing the synthesis of NO, which elicits the nitration of critical tyrosine residues on these transporters. Statins also increased the number of low-density lipoprotein (LDL) receptors exposed on the surface of BBB cells, as well as on tumour cells like human glioblastoma. We showed that the association of statins plus drug-loaded nanoparticles engineered as LDLs was effective as a vehicle for non-permeant drugs like doxorubicin to cross the BBB, allowing its delivery into primary and metastatic brain tumour cells and to achieve significant anti-tumour cytotoxicity. CONCLUSIONS AND IMPLICATIONS We suggest that our ‘Trojan horse’ approach, based on the administration of statins plus a LDL receptor-targeted liposomal drug, might have potential applications in the pharmacological therapy of different brain diseases for which the BBB represents an obstacle. PMID:22788770

  16. The Enigma of Rapamycin Dosage.

    PubMed

    Mukhopadhyay, Suman; Frias, Maria A; Chatterjee, Amrita; Yellen, Paige; Foster, David A

    2016-03-01

    The mTOR pathway is a critical regulator of cell growth, proliferation, metabolism, and survival. Dysregulation of mTOR signaling has been observed in most cancers and, thus, the mTOR pathway has been extensively studied for therapeutic intervention. Rapamycin is a natural product that inhibits mTOR with high specificity. However, its efficacy varies by dose in several contexts. First, different doses of rapamycin are needed to suppress mTOR in different cell lines; second, different doses of rapamycin are needed to suppress the phosphorylation of different mTOR substrates; and third, there is a differential sensitivity of the two mTOR complexes mTORC1 and mTORC2 to rapamycin. Intriguingly, the enigmatic properties of rapamycin dosage can be explained in large part by the competition between rapamycin and phosphatidic acid (PA) for mTOR. Rapamycin and PA have opposite effects on mTOR whereby rapamycin destabilizes and PA stabilizes both mTOR complexes. In this review, we discuss the properties of rapamycin dosage in the context of anticancer therapeutics.

  17. Chronic rapamycin treatment on the nutrient utilization and metabolism of juvenile turbot (Psetta maxima)

    PubMed Central

    Wang, Qingchao; He, Gen; Mai, Kangsen; Xu, Wei; Zhou, Huihui; Wang, Xuan; Mei, Lin

    2016-01-01

    High dietary protein inclusion is necessary in fish feeds and also represents a major cost in the aquaculture industry, which demands improved dietary conversion into body proteins in fish. In mammals, the target of rapamycin (TOR) is a key nutritionally responsive molecule governing postprandial anabolism. However, its physiological significance in teleosts has not been fully examined. In the present study, we examined the nutritional physiology of turbot after chronic rapamycin inhibition. Our results showed that a 6-week inhibition of TOR using dietary rapamycin inclusion (30 mg/kg diet) reduced growth performance and feed utilization. The rapamycin treatment inhibited TOR signaling and reduced expression of key enzymes in glycolysis, lipogenesis, cholesterol biosynthesis, while increasing the expression of enzymes involved in gluconeogenesis. Furthermore, rapamycin treatment increased intestinal goblet cell number in turbot, while the expressions of Notch and Hes1 were down regulated. It was possible that stimulated goblet cell differentiation by rapamycin was mediated through Notch-Hes1 pathway. Therefore, our results demonstrate the important role of TOR signaling in fish nutritional physiology. PMID:27305975

  18. Potential use of rapamycin in HIV infection

    PubMed Central

    Donia, Marco; McCubrey, James A; Bendtzen, Klaus; Nicoletti, Ferdinando

    2010-01-01

    The strong need for the development of alternative anti-HIV agents is primarily due to the emergence of strain-resistant viruses, the need for sustained adherence to complex treatment regimens and the toxicity of currently used antiviral drugs. This review analyzes proof of concept studies indicating that the immunomodulatory drug rapamycin (RAPA) possesses anti-HIV properties both in vitro and in vivo that qualifies it as a potential new anti-HIV drug. It represents a literature review of published studies that evaluated the in vitro and in vivo activity of RAPA in HIV. RAPA represses HIV-1 replication in vitro through different mechanisms including, but not limited, to down regulation of CCR5. In addition RAPA synergistically enhances the anti-HIV activity of entry inhibitors such as vicriviroc, aplaviroc and enfuvirtide in vitro. RAPA also inhibits HIV-1 infection in human peripheral blood leucocytes-SCID reconstituted mice. In addition, a prospective nonrandomized trial of HIV patient series receiving RAPA monotherapy after liver transplantation indicated significantly better control of HIV and hepatitis C virus (HCV) replication among patients taking RAPA monotherapy. Taken together, the evidence presented in this review suggests that RAPA may be a useful drug that should be evaluated for the prevention and treatment of HIV-1 infection. PMID:21175433

  19. A randomized trial and novel SPR technique identifies altered lipoprotein-LDL receptor binding as a mechanism underlying elevated LDL-cholesterol in APOE4s.

    PubMed

    Calabuig-Navarro, M V; Jackson, K G; Kemp, C F; Leake, D S; Walden, C M; Lovegrove, J A; Minihane, A M

    2017-03-09

    At a population level APOE4 carriers (~25% Caucasians) are at higher risk of cardiovascular diseases. The penetrance of genotype is however variable and influenced by dietary fat composition, with the APOE4 allele associated with greater LDL-cholesterol elevation in response to saturated fatty acids (SFA). The etiology of this greater responsiveness is unknown. Here a novel surface plasmon resonance technique (SPR) is developed and used, along with hepatocyte (with the liver being the main organ modulating lipoprotein metabolism and plasma lipid levels) uptake studies to establish the impact of dietary fatty acid composition on, lipoprotein-LDL receptor (LDLR) binding, and hepatocyte uptake, according to APOE genotype status. In men prospectively recruited according to APOE genotype (APOE3/3 common genotype, or APOE3/E4), triglyceride-rich lipoproteins (TRLs) were isolated at fasting and 4-6 h following test meals rich in SFA, unsaturated fat and SFA with fish oil. In APOE4s a greater LDLR binding affinity of postprandial TRL after SFA, and lower LDL binding and hepatocyte internalization, provide mechanisms for the greater LDL-cholesterol raising effect. The SPR technique developed may be used for the future study of the impact of genotype, and physiological and behavioral variables on lipoprotein metabolism. Trial registration number NCT01522482.

  20. A randomized trial and novel SPR technique identifies altered lipoprotein-LDL receptor binding as a mechanism underlying elevated LDL-cholesterol in APOE4s

    PubMed Central

    Calabuig-Navarro, M. V.; Jackson, K. G.; Kemp, C. F.; Leake, D. S.; Walden, C. M.; Lovegrove, J. A.; Minihane, A. M.

    2017-01-01

    At a population level APOE4 carriers (~25% Caucasians) are at higher risk of cardiovascular diseases. The penetrance of genotype is however variable and influenced by dietary fat composition, with the APOE4 allele associated with greater LDL-cholesterol elevation in response to saturated fatty acids (SFA). The etiology of this greater responsiveness is unknown. Here a novel surface plasmon resonance technique (SPR) is developed and used, along with hepatocyte (with the liver being the main organ modulating lipoprotein metabolism and plasma lipid levels) uptake studies to establish the impact of dietary fatty acid composition on, lipoprotein-LDL receptor (LDLR) binding, and hepatocyte uptake, according to APOE genotype status. In men prospectively recruited according to APOE genotype (APOE3/3 common genotype, or APOE3/E4), triglyceride-rich lipoproteins (TRLs) were isolated at fasting and 4–6 h following test meals rich in SFA, unsaturated fat and SFA with fish oil. In APOE4s a greater LDLR binding affinity of postprandial TRL after SFA, and lower LDL binding and hepatocyte internalization, provide mechanisms for the greater LDL-cholesterol raising effect. The SPR technique developed may be used for the future study of the impact of genotype, and physiological and behavioral variables on lipoprotein metabolism. Trial registration number NCT01522482. PMID:28276521

  1. The modular adaptor protein ARH is required for low density lipoprotein (LDL) binding and internalization but not for LDL receptor clustering in coated pits.

    PubMed

    Michaely, Peter; Li, Wei-Ping; Anderson, Richard G W; Cohen, Jonathan C; Hobbs, Helen H

    2004-08-06

    ARH is an adaptor protein required for efficient endocytosis of low density lipoprotein (LDL) receptors (LDLRs) in selected tissues. Individuals lacking ARH (ARH-/-) have severe hypercholesterolemia due to impaired hepatic clearance of LDL. Immortalized lymphocytes, but not fibroblasts, from ARH-deficient subjects fail to internalize LDL. To further define the role of ARH in LDLR function, we compared the subcellular distribution of the LDLR in lymphocytes from normal and ARH-/- subjects. In normal lymphocytes LDLRs were predominantly located in intracellular compartments, whereas in ARH-/- cells the receptors were almost exclusively on the plasma membrane. Biochemical assays and quantification of LDLR by electron microscopy indicated that ARH-/- lymphocytes had >20-fold more LDLR on the cell surface and a approximately 27-fold excess of LDLR outside of coated pits. The accumulation of LDLR on the cell surface was not due to failure of receptors to localize in coated pits since the number of LDLRs in coated pits was similar in ARH-/- and normal cells. Despite the dramatic increase in cell surface receptors, LDL binding was only 2-fold higher in the ARH-/- lymphocytes. These findings indicate that ARH is required not only for internalization of the LDL.LDLR complex but also for efficient binding of LDL to the receptor and suggest that ARH stabilizes the associations of the receptor with LDL and with the invaginating portion of the budding pit, thereby increasing the efficiency of LDL internalization.

  2. LDL receptor/lipoprotein recognition: endosomal weakening of ApoB and ApoE binding to the convex face of the LR5 repeat.

    PubMed

    Martínez-Oliván, Juan; Arias-Moreno, Xabier; Velazquez-Campoy, Adrián; Millet, Oscar; Sancho, Javier

    2014-03-01

    The molecular mechanism of lipoprotein binding by the low-density lipoprotein (LDL) receptor (LDLR) is poorly understood, one reason being that structures of lipoprotein-receptor complexes are not available. LDLR uses calcium-binding repeats (LRs) to interact with apolipoprotein B and apolipoprotein E (ApoB and ApoE). We have used NMR and SPR to characterize the complexes formed by LR5 and three peptides encompassing the putative binding regions of ApoB (site A and site B) and ApoE. The three peptides bind at the hydrophilic convex face of LR5, forming complexes that are weakened at low [Ca(2+) ] and low pH. Thus, endosomal conditions favour dissociation of LDLR/lipoprotein complexes regardless of whether active displacement of bound lipoproteins by the β-propeller in LDLR takes place. The multiple ApoE copies in β very low density lipoproteins (β-VLDLs), and the presence of two competent binding sites (A and B) in LDLs, suggest that LDLR chelates lipoproteins and enhances complex affinity by using more than one LR.

  3. Inducible Apoe Gene Repair in Hypomorphic ApoE Mice Deficient in the LDL Receptor Promotes Atheroma Stabilization with a Human-like Lipoprotein Profile

    PubMed Central

    Eberlé, Delphine; Luk, Fu Sang; Kim, Roy Y.; Olivas, Victor R.; Kumar, Nikit; Posada, Jessica M.; Li, Kang; Gaudreault, Nathalie; Rapp, Joseph H.; Raffai, Robert L.

    2013-01-01

    Objective To study atherosclerosis regression in mice following plasma lipid reduction to moderately elevated apolipoprotein B (apoB)-lipoprotein levels. Approach and Results Chow-fed hypomorphic Apoe mice deficient in LDL receptor expression (Apoeh/hLdlr−/−Mx1-cre mice) develop hyperlipidemia and atherosclerosis. These mice were studied before and after inducible cre-mediated Apoe gene repair. By 1 week, induced mice displayed a 2-fold reduction in plasma cholesterol and triglyceride levels and a decrease in the non-HDL:HDL-cholesterol ratio from 87%:13% to 60%:40%. This halted atherosclerotic lesion growth and promoted macrophage loss and accumulation of thick collagen fibers for up to 8 weeks. Concomitantly, blood Ly-6Chi monocytes were decreased by 2-fold but lesional macrophage apoptosis was unchanged. The expression of several genes involved in extra-cellular matrix remodeling and cell migration were changed in lesional macrophages 1 week after Apoe gene repair. However, mRNA levels of numerous genes involved in cholesterol efflux and inflammation were not significantly changed at this time point. Conclusions Restoring apoE expression in Apoeh/hLdlr−/−Mx1-cre mice resulted in lesion stabilization in the context of a human-like ratio of non-HDL:HDL-cholesterol. Our data suggest that macrophage loss derived in part from reduced blood Ly-6Chi monocytes levels and genetic reprogramming of lesional macrophages. PMID:23788760

  4. Effects of High Fat Feeding and Diabetes on Regression of Atherosclerosis Induced by Low-Density Lipoprotein Receptor Gene Therapy in LDL Receptor-Deficient Mice

    PubMed Central

    Willecke, Florian; Yuan, Chujun; Oka, Kazuhiro; Chan, Lawrence; Hu, Yunying; Barnhart, Shelley; Bornfeldt, Karin E.; Goldberg, Ira J.; Fisher, Edward A.

    2015-01-01

    We tested whether a high fat diet (HFD) containing the inflammatory dietary fatty acid palmitate or insulin deficient diabetes altered the remodeling of atherosclerotic plaques in LDL receptor knockout (Ldlr-/-) mice. Cholesterol reduction was achieved by using a helper-dependent adenovirus (HDAd) carrying the gene for the low-density lipoprotein receptor (Ldlr; HDAd-LDLR). After injection of the HDAd-LDLR, mice consuming either HFD, which led to insulin resistance but not hyperglycemia, or low fat diet (LFD), showed regression compared to baseline. However there was no difference between the two groups in terms of atherosclerotic lesion size, or CD68+ cell and lipid content. Because of the lack of effects of these two diets, we then tested whether viral-mediated cholesterol reduction would lead to defective regression in mice with greater hyperglycemia. In both normoglycemic and streptozotocin (STZ)-treated hyperglycemic mice, HDAd-LDLR significantly reduced plasma cholesterol levels, decreased atherosclerotic lesion size, reduced macrophage area and lipid content, and increased collagen content of plaque in the aortic sinus. However, reductions in anti-inflammatory and ER stress-related genes were less pronounced in STZ-diabetic mice compared to non-diabetic mice. In conclusion, HDAd-mediated Ldlr gene therapy is an effective and simple method to induce atherosclerosis regression in Ldlr-/- mice in different metabolic states. PMID:26046657

  5. The protective effect of bergamot oil extract on lecitine-like oxyLDL receptor-1 expression in balloon injury-related neointima formation.

    PubMed

    Mollace, Vincenzo; Ragusa, Salvatore; Sacco, Iolanda; Muscoli, Carolina; Sculco, Francesca; Visalli, Valeria; Palma, Ernesto; Muscoli, Saverio; Mondello, Luigi; Dugo, Paola; Rotiroti, Domenicantonio; Romeo, Francesco

    2008-06-01

    Lectin-like oxyLDL receptor-1 (LOX-1) has recently been suggested to be involved in smooth muscle cell (SMC) proliferation and neointima formation in injured blood vessels. This study evaluates the effect of the nonvolatile fraction (NVF), the antioxidant component of bergamot essential oil (BEO), on LOX-1 expression and free radical generation in a model of rat angioplasty. Common carotid arteries injured by balloon angioplasty were removed after 14 days for histopathological, biochemical, and immunohistochemical studies. Balloon injury led to a significant restenosis with SMC proliferation and neointima formation, accompanied by increased expression of LOX-1 receptor, malondialdehyde and superoxide formation, and nitrotyrosine staining. Pretreatment of rats with BEO-NVF reduced the neointima proliferation together with free radical formation and LOX-1 expression in a dose-dependent manner. These results suggest that natural antioxidants may be relevant in the treatment of vascular disorders in which proliferation of SMCs and oxyLDL-related endothelial cell dysfunction are involved.

  6. Amphiregulin induces human ovarian cancer cell invasion by down-regulating E-cadherin expression.

    PubMed

    So, Wai-Kin; Fan, Qianlan; Lau, Man-Tat; Qiu, Xin; Cheng, Jung-Chien; Leung, Peter C K

    2014-11-03

    Aberrant epidermal growth factor receptor (EGFR) activation is associated with ovarian cancer progression. In this study, we report that the EGFR ligand amphiregulin (AREG) stimulates cell invasion and down-regulates E-cadherin expression in two human ovarian cancer cell lines, SKOV3 and OVCAR5. In addition, AREG increases the expression of transcriptional repressors of E-cadherin including SNAIL, SLUG and ZEB1. siRNA targeting SNAIL or SLUG abolishes AREG-induced cell invasion. Moreover, ERK1/2 and AKT pathways are involved in AREG-induced E-cadherin down-regulation and cell invasion. Finally, we show that three EGFR ligands, AREG, epidermal growth factor (EGF) and transforming growth factor-α (TGF-α), exhibit comparable effects in down-regulating E-cadherin and promoting cell invasion. This study demonstrates that AREG induces ovarian cancer cell invasion by down-regulating E-cadherin expression.

  7. Pharmacologic down-regulation of EZH2 suppresses bladder cancer in vitro and in vivo

    PubMed Central

    Tang, Shou-Hung; Huang, Hsu-Shan; Wu, Hong-Ui; Tsai, Yi-Ta; Chuang, Mei-Jen; Yu, Cheng-Ping; Huang, Shih-Ming; Sun, Guang-Huan; Chang, Sun-Yran; Hsiao, Pei-Wen; Yu, Dah-Shyong; Cha, Tai-Lung

    2014-01-01

    The polycomb group gene, EZH2, is highly expressed in advanced bladder cancer. Here we demonstrated that down-regulation of EZH2 in tumor tissues after neo-adjuvant chemotherapy correlated with good therapeutic response in advanced bladder cancer. We next developed a small molecule, NSC745885, derived from natural anthraquinone emodin, which down-regulated EZH2 via proteasome-mediated degradation. NSC745885 showed potent selective toxicity against multiple cancer cell lines but not normal cells. NSC745885 treatment overcame multiple-drug resistance and inhibited growth of resistant cancer cells. Over-expression of EZH2 in cancer cells attenuated effects of NSC745885, suggesting that down-regulation of EZH2 was responsible for growth inhibition of NSC745885. NSC745885 also suppressed tumor growth and down-regulated EZH2 in vivo. These results indicate that NSC7455889 suppresses bladder cancer by targeting EZH2. PMID:25431950

  8. PCI-24781 down-regulates EZH2 expression and then promotes glioma apoptosis by suppressing the PIK3K/Akt/mTOR pathway

    PubMed Central

    Zhang, Wei; Lv, Shengqing; Liu, Jun; Zang, Zhenle; Yin, Junyi; An, Ning; Yang, Hui; Song, Yechun

    2014-01-01

    PCI-24781 is a novel histone deacetylase inhibitor that inhibits tumor proliferation and promotes cell apoptosis. However, it is unclear whether PCI-24781 inhibits Enhancer of Zeste 2 (EZH2) expression in malignant gliomas. In this work, three glioma cell lines were incubated with various concentrations of PCI-24781 (0, 0.25, 0.5, 1, 2.5 and 5 μM) and analyzed for cell proliferation by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay and colony formation, and cell cycle and apoptosis were assessed by flow cytometry. The expression of EZH2 and apoptosis-related proteins was assessed by western blotting. Malignant glioma cells were also transfected with EZH2 siRNA to examine how PCI-24781 suppresses tumor cells. EZH2 was highly expressed in the three glioma cell lines. Incubation with PCI-24781 reduced cell proliferation and increased cell apoptosis by down-regulating EZH2 in a concentration-dependent manner. These effects were simulated by EZH2 siRNA. In addition, PCI-24781 or EZH2 siRNA accelerated cell apoptosis by down-regulating the expression of AKT, mTOR, p70 ribosomal protein S6 kinase (p70s6k), glycogen synthase kinase 3A and B (GSK3a/b) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). These data suggest that PCI-24781 may be a promising therapeutic agent for treating gliomas by down-regulating EZH2 which promotes cell apoptosis by suppressing the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway. PMID:25505847

  9. Six Novel Missense Mutations in the LDL Receptor-Related Protein 5 (LRP5) Gene in Different Conditions with an Increased Bone Density

    PubMed Central

    Van Wesenbeeck, Liesbeth; Cleiren, Erna; Gram, Jeppe; Beals, Rodney K.; Bénichou, Olivier; Scopelliti, Domenico; Key, Lyndon; Renton, Tara; Bartels, Cindy; Gong, Yaoqin; Warman, Matthew L.; de Vernejoul, Marie-Christine; Bollerslev, Jens; Van Hul, Wim

    2003-01-01

    Bone is a dynamic tissue that is subject to the balanced processes of bone formation and bone resorption. Imbalance can give rise to skeletal pathologies with increased bone density. In recent years, several genes underlying such sclerosing bone disorders have been identified. The LDL receptor-related protein 5 (LRP5) gene has been shown to be involved in both osteoporosis-pseudoglioma syndrome and the high–bone-mass phenotype and turned out to be an important regulator of peak bone mass in vertebrates. We performed mutation analysis of the LRP5 gene in 10 families or isolated patients with different conditions with an increased bone density, including endosteal hyperostosis, Van Buchem disease, autosomal dominant osteosclerosis, and osteopetrosis type I. Direct sequencing of the LRP5 gene revealed 19 sequence variants. Thirteen of these were confirmed as polymorphisms, but six novel missense mutations (D111Y, G171R, A214T, A214V, A242T, and T253I) are most likely disease causing. Like the previously reported mutation (G171V) that causes the high–bone-mass phenotype, all mutations are located in the aminoterminal part of the gene, before the first epidermal growth factor–like domain. These results indicate that, despite the different diagnoses that can be made, conditions with an increased bone density affecting mainly the cortices of the long bones and the skull are often caused by mutations in the LRP5 gene. Functional analysis of the effects of the various mutations will be of interest, to evaluate whether all the mutations give rise to the same pathogenic mechanism. PMID:12579474

  10. A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo.

    PubMed

    Ni, Yan G; Di Marco, Stefania; Condra, Jon H; Peterson, Laurence B; Wang, Weirong; Wang, Fubao; Pandit, Shilpa; Hammond, Holly A; Rosa, Ray; Cummings, Richard T; Wood, Dana D; Liu, Xiaomei; Bottomley, Matthew J; Shen, Xun; Cubbon, Rose M; Wang, Sheng-ping; Johns, Douglas G; Volpari, Cinzia; Hamuro, Lora; Chin, Jayne; Huang, Lingyi; Zhao, Jing Zhang; Vitelli, Salvatore; Haytko, Peter; Wisniewski, Douglas; Mitnaul, Lyndon J; Sparrow, Carl P; Hubbard, Brian; Carfí, Andrea; Sitlani, Ayesha

    2011-01-01

    Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) regulates LDL cholesterol levels by inhibiting LDL receptor (LDLr)-mediated cellular LDL uptake. We have identified a fragment antigen-binding (Fab) 1D05 which binds PCSK9 with nanomolar affinity. The fully human antibody 1D05-IgG2 completely blocks the inhibitory effects of wild-type PCSK9 and two gain-of-function human PCSK9 mutants, S127R and D374Y. The crystal structure of 1D05-Fab bound to PCSK9 reveals that 1D05-Fab binds to an epitope on the PCSK9 catalytic domain which includes the entire LDLr EGF(A) binding site. Notably, the 1D05-Fab CDR-H3 and CDR-H2 loops structurally mimic the EGF(A) domain of LDLr. In a transgenic mouse model (CETP/LDLr-hemi), in which plasma lipid and PCSK9 profiles are comparable to those of humans, 1D05-IgG2 reduces plasma LDL cholesterol to 40% and raises hepatic LDLr protein levels approximately fivefold. Similarly, in healthy rhesus monkeys, 1D05-IgG2 effectively reduced LDL cholesterol 20%-50% for over 2 weeks, despite its relatively short terminal half-life (t(1/2) = 3.2 days). Importantly, the decrease in circulating LDL cholesterol corresponds closely to the reduction in free PCSK9 levels. Together these results clearly demonstrate that the LDL-lowering effect of the neutralizing anti-PCSK9 1D05-IgG2 antibody is mediated by reducing the amount of PCSK9 that can bind to the LDLr.

  11. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol.

    PubMed

    Benjannet, Suzanne; Rhainds, David; Essalmani, Rachid; Mayne, Janice; Wickham, Louise; Jin, Weijun; Asselin, Marie-Claude; Hamelin, Josée; Varret, Mathilde; Allard, Delphine; Trillard, Mélanie; Abifadel, Marianne; Tebon, Angie; Attie, Alan D; Rader, Daniel J; Boileau, Catherine; Brissette, Louise; Chrétien, Michel; Prat, Annik; Seidah, Nabil G

    2004-11-19

    The discovery of autosomal dominant hypercholesterolemic patients with mutations in the PCSK9 gene, encoding the proprotein convertase NARC-1, resulting in the missense mutations suggested a role in low density lipoprotein (LDL) metabolism. We show that the endoplasmic reticulum-localized proNARC-1 to NARC-1 zymogen conversion is Ca2+-independent and that within the zymogen autocatalytic processing site SSVFAQ [downward arrow]SIP Val at P4 and Pro at P3' are critical. The S127R and D374Y mutations result in approximately 50-60% and > or =98% decrease in zymogen processing, respectively. In contrast, the double [D374Y + N157K], F216L, and R218S natural mutants resulted in normal zymogen processing. The cell surface LDL receptor (LDLR) levels are reduced by 35% in lymphoblasts of S127R patients. The LDLR levels are also reduced in stable HepG2 cells overexpressing NARC-1 or its natural mutant S127R, and this reduction is abrogated in the presence of 5 mm ammonium chloride, suggesting that overexpression of NARC-1 increases the turnover rate of the LDLR. Adenoviral expression of wild type human NARC-1 in mice resulted in a maximal approximately 9-fold increase in circulating LDL cholesterol, while in LDLR-/- mice a delayed approximately 2-fold increase in LDL cholesterol was observed. In conclusion, NARC-1 seems to affect both the level of LDLR and that of circulating apoB-containing lipoproteins in an LDLR-dependent and -independent fashion.

  12. High Fat High Cholesterol Diet (Western Diet) Aggravates Atherosclerosis, Hyperglycemia and Renal Failure in Nephrectomized LDL Receptor Knockout Mice: Role of Intestine Derived Lipopolysaccharide

    PubMed Central

    Ghosh, Siddhartha S.; Righi, Samuel; Krieg, Richard; Kang, Le; Carl, Daniel; Wang, Jing; Massey, H. Davis; Sica, Domenic A.; Gehr, Todd W. B.; Ghosh, Shobha

    2015-01-01

    A high fat meal, frequently known as western diet (WD), exacerbates atherosclerosis and diabetes. Both these diseases are frequently associated with renal failure. Recent studies have shown that lipopolysaccharide (LPS) leaks into the circulation from the intestine in the setting of renal failure and after WD. However, it is not clear how renal function and associated disorders are affected by LPS. This study demonstrates that circulatory LPS exacerbates renal insufficiency, atherosclerosis and glucose intolerance. Renal insufficiency was induced by 2/3 nephrectomy in LDL receptor knockout mice. Nx animals were given normal diet (Nx) or WD (Nx+WD). The controls were sham operated animals on normal diet (control) and WD (WD). To verify if LPS plays a role in exaggerating renal insufficiency, polymyxin (PM), a known LPS antagonist, and curcumin (CU), a compound known to ameliorate chronic kidney disease (CKD), was given to Nx animals on western diet (Nx+WD+PM and Nx+WD+CU, respectively). Compared to control, all other groups displayed increased circulatory LPS. The Nx+WD cohort had the highest levels of LPS. Nx group had significant renal insufficiency and glucose intolerance but not atherosclerosis. WD had intense atherosclerosis and glucose intolerance but it did not show signs of renal insufficiency. Compared to other groups, Nx+WD had significantly higher cytokine expression, macrophage infiltration in the kidney, renal insufficiency, glucose intolerance and atherosclerosis. PM treatment blunted the expression of cytokines, deterioration of renal function and associated disorders, albeit not to the levels of Nx, and was significantly inferior to CU. PM is a non-absorbable antibiotic with LPS binding properties, hence its beneficial effect can only be due to its effect within the GI tract. We conclude that LPS may not cause renal insufficiency but can exaggerate kidney failure and associated disorders following renal insufficiency. PMID:26580567

  13. Effect of long-term ingestion of weakly oxidised flaxseed oil on biomarkers of oxidative stress in LDL-receptor knockout mice.

    PubMed

    Nogueira, M S; Kessuane, M C; Lobo Ladd, A A B; Lobo Ladd, F V; Cogliati, B; Castro, I A

    2016-07-01

    The effect of oxidised fatty acids on atherosclerosis progression is controversial. Thus, our objective was to evaluate the effect of long-term consumption of weakly oxidised PUFA from flaxseed oil on oxidative stress biomarkers of LDL-receptor(-/-) mice. To test our hypothesis, mice were separated into three groups. The first group received a high-fat diet containing fresh flaxseed oil (CONT-), the second was fed the same diet prepared using heated flaxseed oil (OXID), and the third group received the same diet containing fresh flaxseed oil and had diabetes induced by streptozotocin (CONT+). Oxidative stress, aortic parameters and non-alcoholic fatty liver disease were assessed. After 3 months, plasma lipid profile, glucose levels, body weight, energy intake and dietary intake did not differ among groups. Likewise, oxidative stress, plasma malondialdehyde (MDA), hepatic MDA expressed as nmol/mg portion (ptn) and antioxidant enzymes did not differ among the groups. Hepatic linoleic acid, α-linolenic acid, arachidonic acid and EPA acid declined in the OXID and CONT+ groups. Aortic wall thickness, lumen and diameter increased only in the OXID group. OXID and CONT+ groups exhibited higher concentrations of MDA, expressed as μmol/mg ptn per %PUFA, when compared with the CONT- group. Our results suggest that ingestion of oxidised flaxseed oil increases hepatic MDA concentration and is potentially pro-atherogenic. In addition, the mean MDA value observed in all groups was similar to those reported in other studies that used xenobiotics as oxidative stress inducers. Thus, the diet applied in this study represents an interesting model for further research involving antioxidants.

  14. Pregnancy-associated osteoporosis with a heterozygous deactivating LDL receptor-related protein 5 (LRP5) mutation and a homozygous methylenetetrahydrofolate reductase (MTHFR) polymorphism.

    PubMed

    Cook, Fiona J; Mumm, Steven; Whyte, Michael P; Wenkert, Deborah

    2014-04-01

    Pregnancy-associated osteoporosis (PAO) is a rare, idiopathic disorder that usually presents with vertebral compression fractures (VCFs) within 6 months of a first pregnancy and delivery. Spontaneous improvement is typical. There is no known genetic basis for PAO. A 26-year-old primagravida with a neonatal history of unilateral blindness attributable to hyperplastic primary vitreous sustained postpartum VCFs consistent with PAO. Her low bone mineral density (BMD) seemed to respond to vitamin D and calcium therapy, with no fractures after her next successful pregnancy. Investigation of subsequent fetal losses revealed homozygosity for the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism associated both with fetal loss and with osteoporosis (OP). Because her neonatal unilateral blindness and OP were suggestive of loss-of-function mutation(s) in the gene that encodes LDL receptor-related protein 5 (LRP5), LRP5 exon and splice site sequencing was also performed. This revealed a unique heterozygous 12-bp deletion in exon 21 (c.4454_4465del, p.1485_1488del SSSS) in the patient, her mother and sons, but not her father or brother. Her mother had a normal BMD, no history of fractures, PAO, ophthalmopathy, or fetal loss. Her two sons had no ophthalmopathy and no skeletal issues. Her osteoporotic father (with a family history of blindness) and brother had low BMDs first documented at ages ∼40 and 32 years, respectively. Serum biochemical and bone turnover studies were unremarkable in all subjects. We postulate that our patient's heterozygous LRP5 mutation together with her homozygous MTHFR polymorphism likely predisposed her to low peak BMD. However, OP did not cosegregate in her family with the LRP5 mutation, the homozygous MTHFR polymorphism, or even the combination of the two, implicating additional genetic or nongenetic factors in her PAO. Nevertheless, exploration for potential genetic contributions to PAO may explain part of the pathogenesis of this

  15. Developmental programming of lipid metabolism and aortic vascular function in C57BL/6 mice: a novel study suggesting an involvement of LDL-receptor.

    PubMed

    Chechi, Kanta; McGuire, John J; Cheema, Sukhinder K

    2009-04-01

    We have previously shown that a maternal high-fat diet, rich in saturated fatty acids (SFA), alters the lipid metabolism of their adult offspring. The present study was designed to investigate 1) whether alterations in hepatic LDL-receptor (LDL-r) expression may serve as a potential mechanism of developmental programming behind the altered lipid metabolism of the offspring, 2) whether altered lipid metabolism leads to aortic vascular dysfunction in the offspring, 3) whether deleterious effects of SFA exposure preweaning are influenced by postweaning diet, and 4) whether gender-specific programming effects are observed. Female C57Bl/6 mice were fed a high-SFA diet or regular chow during gestation and lactation while their pups, both male and female, received either SFA or a chow diet after weaning. Male offspring obtained from mothers fed an SFA diet and those who continued on chow postweaning had higher plasma triglycerides and total cholesterol, whereas female offspring had higher plasma total and LDL cholesterol levels, lower hepatic LDL-r mRNA expression, and reduced aortic contractile responses compared with the offspring that were fed chow throughout the study. A comparison of the postweaning diet revealed significantly lower hepatic LDL-r expression along with significantly higher plasma LDL-cholesterol concentration in the female offspring that were obtained from mothers fed an SFA diet and who continued on an SFA diet postweaning, compared with the female offspring that were obtained from mothers fed an SFA diet but who continued on chow postweaning. In conclusion, we report a novel observation of hepatic LDL-r-mediated programming of altered lipid metabolism, along with aortic vascular dysfunction, in the female offspring of mothers fed a high-SFA diet. Male offspring only exhibited dyslipidemia, suggesting gender-mediated programming. This study further highlighted the role of postweaning diets in overriding the effects of maternal programming.

  16. Depletion of Endothelial or Smooth Muscle Cell-Specific Angiotensin II Type 1a Receptors Does Not Influence Aortic Aneurysms or Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Rateri, Debra L.; Moorleghen, Jessica J.; Knight, Victoria; Balakrishnan, Anju; Howatt, Deborah A.; Cassis, Lisa A.; Daugherty, Alan

    2012-01-01

    Background Whole body genetic deletion of AT1a receptors in mice uniformly reduces hypercholesterolemia and angiotensin II-(AngII) induced atherosclerosis and abdominal aortic aneurysms (AAAs). However, the role of AT1a receptor stimulation of principal cell types resident in the arterial wall remains undefined. Therefore, the aim of this study was to determine whether deletion of AT1a receptors in either endothelial cells or smooth muscle cells influences the development of atherosclerosis and AAAs. Methodology/Principal Findings AT1a receptor floxed mice were developed in an LDL receptor −/− background. To generate endothelial or smooth muscle cell specific deficiency, AT1a receptor floxed mice were bred with mice expressing Cre under the control of either Tie2 or SM22, respectively. Groups of males and females were fed a saturated fat-enriched diet for 3 months to determine effects on atherosclerosis. Deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effect on the size of atherosclerotic lesions. We also determined the effect of cell-specific AT1a receptor deficiency on atherosclerosis and AAAs using male mice fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min). Again, deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effects on either AngII-induced atherosclerotic lesions or AAAs. Conclusions Although previous studies have demonstrated whole body AT1a receptor deficiency diminishes atherosclerosis and AAAs, depletion of AT1a receptors in either endothelial or smooth muscle cells did not affect either of these vascular pathologies. PMID:23236507

  17. Arsenic augments the uptake of oxidized LDL by upregulating the expression of lectin-like oxidized LDL receptor in mouse aortic endothelial cells

    SciTech Connect

    Hossain, Ekhtear; Ota, Akinobu; Karnan, Sivasundaram; Damdindorj, Lkhagvasuren; Takahashi, Miyuki; Konishi, Yuko; Konishi, Hiroyuki; Hosokawa, Yoshitaka

    2013-12-15

    Although chronic arsenic exposure is a well-known risk factor for cardiovascular diseases, including atherosclerosis, the molecular mechanism underlying arsenic-induced atherosclerosis remains obscure. Therefore, this study aimed to elucidate this molecular mechanism. We examined changes in the mRNA level of the lectin-like oxidized LDL (oxLDL) receptor (LOX-1) in a mouse aortic endothelial cell line, END-D, after sodium arsenite (SA) treatment. SA treatment significantly upregulated LOX-1 mRNA expression; this finding was also verified at the protein expression level. Flow cytometry and fluorescence microscopy analyses showed that the cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with SA treatment. In addition, an anti-LOX-1 antibody completely abrogated the augmented uptake of Dil-oxLDL. We observed that SA increased the levels of the phosphorylated forms of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB)/p65. SA-induced upregulation of LOX-1 protein expression was clearly prevented by treatment with an antioxidant, N-acetylcysteine (NAC), or an NF-κB inhibitor, caffeic acid phenethylester (CAPE). Furthermore, SA-augmented uptake of Dil-oxLDL was also prevented by treatment with NAC or CAPE. Taken together, our results indicate that arsenic upregulates LOX-1 expression through the reactive oxygen species-mediated NF-κB signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of the aberrant LOX-1 signaling pathway in the pathogenesis of arsenic-induced atherosclerosis. - Highlights: • Sodium arsenite (SA) increases LOX-1 expression in mouse aortic endothelial cells. • SA enhances cellular uptake of oxidized LDL in dose-dependent manner. • SA-induced ROS generation enhances phosphorylation of NF-κB. • SA upregulates LOX-1 expression through ROS-activated NF-κB signaling pathway.

  18. Sequence analysis of the non-recurring C-terminal domains shows that insect lipoprotein receptors constitute a distinct group of LDL receptor family members.

    PubMed

    Rodenburg, Kees W; Smolenaars, Marcel M W; Van Hoof, Dennis; Van der Horst, Dick J

    2006-04-01

    Lipoprotein-mediated delivery of lipids in mammals involves endocytic receptors of the low density lipoprotein (LDL) receptor (LDLR) family. In contrast, in insects, the lipoprotein, lipophorin (Lp), functions as a reusable lipid shuttle in lipid delivery, and these animals, therefore, were not supposed to use endocytic receptors. However, recent data indicate additional endocytic uptake of Lp, mediated by a Lp receptor (LpR) of the LDLR family. The two N-terminal domains of LDLR family members are involved in ligand binding and dissociation, respectively, and are composed of a mosaic of multiple repeats. The three C-terminal domains, viz., the optional O-linked glycosylation domain, the transmembrane domain, and the intracellular domain, are of a non-repetitive sequence. The present classification of newly discovered LDLR family members, including the LpRs, bears no relevance to physiological function. Therefore, as a novel approach, the C-terminal domains of LDLR family members across the entire animal kingdom were used to perform a sequence comparison analysis in combination with a phylogenetic tree analysis. The LpRs appeared to segregate into a specific group distinct from the groups encompassing the other family members, and each of the three C-terminal domains of the insect receptors is composed of unique set of sequence motifs. Based on conservation of sequence motifs and organization of these motifs in the domains, LpR resembles most the groups of the LDLRs, very low density lipoprotein (VLDL) receptors, and vitellogenin receptors. However, in sequence aspects in which LpR deviates from these three receptor groups, it most notably resembles LDLR-related protein-2, or megalin. These features might explain the functional differences disclosed between insect and mammalian lipoprotein receptors.

  19. Topical rapamycin (sirolimus) for facial angiofibromas.

    PubMed

    Madke, Bhushan

    2013-01-01

    Rapamycin (sirolimus) is a fungal fermentation product that inhibits the proper functioning of a serine/threonine protein kinase in mammalian cells eponymously named mammalian target of rapamycin, or mTOR. Rapamycin is a novel class of anticancer and immunosuppressant drugs targeting the proteins at molecular level. Rapamycin (sirolimus) is routinely incorporated in drug-eluting stents used for cardiac angioplasty. In recent years, rapamycin was found to be efficacious in managing the symptom complex of tuberous sclerosis, i.e. renal angiomyolipoma, giant cell astrocytoma and pulmonary lymphangiomyomatosis. Various investigators have also proved that topically applied rapamycin causes regression of facial angiofibromas, giving better cosmetic results.

  20. CDK14 expression is down-regulated by cigarette smoke in vivo and in vitro

    PubMed Central

    Pollack, Daniel; Xiao, Yuxuan; Shrivasatava, Vibha; Levy, Avi; Andrusier, Miriam; D’Armiento, Jeanine; Holz, Marina K.; Vigodner, Margarita

    2016-01-01

    In this study, DNA arrays have been employed to monitor gene expression patterns in testis of mice exposed to tobacco smoke for 24 weeks and compared to control animals. The results of the analysis revealed significant changes in expression of several genes that may have a role in spermatogenesis. Cdk14 was chosen for further characterization because of a suggested role in the testis and in regulation of Wnt signaling. RT-PCR analysis confirmed down regulation of Cdk14 in mice exposed to cigarette smoke (CS). Cdk14 is expressed in all testicular cells; spermatogonia- and Sertoli-derived cell lines treated with cigarette smoke extract (CSE) in vitro showed down-regulation of CDK14 mRNA and protein levels as well as down-regulation of β-catenin levels. CS-induced down-regulation of CDK14 mRNA and protein levels was also observed in several lung epithelium-derived cell lines including primary normal human bronchial epithelial cells (NHBE), suggesting that the effect is not restricted to the testis. Similar to testicular cells, CS-induced down-regulation of CDK14 in lung cells correlated with decreased levels of β-catenin, a finding suggesting impaired Wnt signaling. In the lungs, CDK14 was localized to the alveolar and bronchial epithelium. PMID:25680692

  1. The PI3K/Akt/mTOR signaling pathway mediates insulin-like growth factor 1-induced E-cadherin down-regulation and cell proliferation in ovarian cancer cells.

    PubMed

    Lau, Man-Tat; Leung, Peter C K

    2012-12-30

    Insulin-like growth factor 1 (IGF1) is produced by ovarian cancer cells and it has been suggested that it plays an important role in tumor progression. In this study, we report that IGF1 treatment down-regulated E-cadherin by up-regulating E-cadherin transcriptional repressors, Snail and Slug, in human ovarian cancer cells. The pharmacological inhibition of phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) suggests that PI3K/Akt/mTOR signaling is required for IGF1-induced E-cadherin down-regulation. Moreover, IGF1 up-regulated Snail and Slug expression via the PI3K/Akt/mTOR signaling pathway. Finally, IGF1-induced cell proliferation was abolished by inhibiting PI3K/Akt/mTOR signaling. This study demonstrates a novel mechanism in which IGF1 down-regulates E-cadherin expression through the activation of PI3K/Akt/mTOR signaling and the up-regulation of Snail and Slug in human ovarian cancer cells.

  2. The immunosuppressive agents rapamycin, cyclosporin A and tacrolimus increase lipolysis, inhibit lipid storage and alter expression of genes involved in lipid metabolism in human adipose tissue.

    PubMed

    Pereira, Maria J; Palming, Jenny; Rizell, Magnus; Aureliano, Manuel; Carvalho, Eugénia; Svensson, Maria K; Eriksson, Jan W

    2013-01-30

    Cyclosporin A (CsA), tacrolimus and rapamycin are immunosuppressive agents (IAs) associated with insulin resistance and dyslipidemia, although their molecular effects on lipid metabolism in adipose tissue are unknown. We explored IAs effects on lipolysis, lipid storage and expression of genes involved on lipid metabolism in isolated human adipocytes and/or adipose tissue obtained via subcutaneous and omental fat biopsies. CsA, tacrolimus and rapamycin increased isoproterenol-stimulated lipolysis and inhibited lipid storage by 20-35% and enhanced isoproterenol-stimulated hormone-sensitive lipase Ser552 phosphorylation. Rapamycin also increased basal lipolysis (~20%) and impaired insulin's antilipolytic effect. Rapamycin, down-regulated the gene expression of perilipin, sterol regulatory element-binding protein 1 (SREBP1) and lipin 1, while tacrolimus down-regulated CD36 and aP2 gene expression. All three IAs increased IL-6 gene expression and secretion, but not expression and secretion of TNF-α or adiponectin. These findings suggest that CsA, tacrolimus and rapamycin enhance lipolysis, inhibit lipid storage and expression of lipogenic genes in adipose tissue, which may contribute to the development of dyslipidemia and insulin resistance associated with immunosuppressive therapy.

  3. Serendipity in splendid isolation: rapamycin.

    PubMed

    Rao, V Koneti

    2016-01-07

    In this issue of Blood, Bride et al report results of the first prospective multi-institutional trial of a long-term single-agent therapy for refractory cytopenias using rapamycin in 30 patients and show remarkable efficacy in children with autoimmune lymphoproliferative syndrome (ALPS).

  4. Specific deletion of LDL receptor-related protein on macrophages has skewed in vivo effects on cytokine production by invariant natural killer T cells.

    PubMed

    Covarrubias, Roman; Wilhelm, Ashley J; Major, Amy S

    2014-01-01

    Expression of molecules involved in lipid homeostasis such as the low density lipoprotein receptor (LDLr) on antigen presenting cells (APCs) has been shown to enhance invariant natural killer T (iNKT) cell function. However, the contribution to iNKT cell activation by other lipoprotein receptors with shared structural and ligand binding properties to the LDLr has not been described. In this study, we investigated whether a structurally related receptor to the LDLr, known as LDL receptor-related protein (LRP), plays a role in iNKT cell activation. We found that, unlike the LDLr which is highly expressed on all immune cells, the LRP was preferentially expressed at high levels on F4/80+ macrophages (MΦ). We also show that CD169+ MΦs, known to present antigen to iNKT cells, exhibited increased expression of LRP compared to CD169- MΦs. To test the contribution of MΦ LRP to iNKT cell activation we used a mouse model of MΦ LRP conditional knockout (LRP-cKO). LRP-cKO MΦs pulsed with glycolipid alpha-galactosylceramide (αGC) elicited normal IL-2 secretion by iNKT hybridoma and in vivo challenge of LRP-cKO mice led to normal IFN-γ, but blunted IL-4 response in both serum and intracellular expression by iNKT cells. Flow cytometric analyses show similar levels of MHC class-I like molecule CD1d on LRP-cKO MΦs and normal glycolipid uptake. Survey of the iNKT cell compartment in LRP-cKO mice revealed intact numbers and percentages and no homeostatic disruption as evidenced by the absence of programmed death-1 and Ly-49 surface receptors. Mixed bone marrow chimeras showed that the inability iNKT cells to make IL-4 is cell extrinsic and can be rescued in the presence of wild type APCs. Collectively, these data demonstrate that, although MΦ LRP may not be necessary for IFN-γ responses, it can contribute to iNKT cell activation by enhancing early IL-4 secretion.

  5. Dietary vitamin D inadequacy accelerates calcification and osteoblast-like cell formation in the vascular system of LDL receptor knockout and wild-type mice.

    PubMed

    Schmidt, Nadine; Brandsch, Corinna; Schutkowski, Alexandra; Hirche, Frank; Stangl, Gabriele I

    2014-05-01

    Vitamin D insufficiency is highly associated with cardiovascular morbidity and mortality. We have demonstrated enhanced vascular calcification in LDL receptor knockout (LDLR(-/-)) mice fed a diet low in vitamin D. This study aimed to investigate the impact of a diet low in vitamin D on vascular calcification in wild-type (WT) mice lacking atherosclerotic plaques and the effects of a persistent and discontinuous vitamin D insufficiency on atherosclerotic plaque composition in LDLR(-/-) mice. The study was performed with 4-wk-old male WT and LDLR(-/-) mice that were fed a normal calcium/phosphate Western diet (210 g/kg fat, 1.5 g/kg cholesterol) containing either adequate (+D; 1000 IU/kg) or low (-D; 50 IU/kg) amounts of vitamin D-3 for 16 wk. Four groups of LDLR(-/-) mice received 1 of the 2 diets for additional 16 wk (total 32 wk) and were compared with mice fed the diets for only 16 wk. WT and LDLR(-/-) mice that were fed the -D diet for 16 wk tended to develop more calcified spots in the aortic valve than mice fed the +D diet (+50% and +56%, respectively; P < 0.10). In LDLR(-/-) mice, the extent of calcification increased from week 16 to week 32 and was higher in the -D than in the +D group (P < 0.05). The calcification, owing to the -D diet, was accompanied by highly expressed osteoblast differentiation factors, indicating a transdifferentiation of vascular cells to osteoblast-like cells. Feeding the +D diet subsequent to the -D diet reduced the vascular calcification (P < 0.05). LDLR(-/-) mice fed the -D diet for 32 wk had higher plaque lipid depositions (+48%, P < 0.05) and a higher expression of cluster of differentiation 68 (+31%, P < 0.05) and tumor necrosis factor α (+134%, P < 0.001) than the +D group. Collectively, the findings imply low vitamin D status as a causal factor for vascular calcification and atherosclerosis.

  6. Mitochondrial reactive oxygen species mediate hypoxic down-regulation of hERG channel protein.

    PubMed

    Nanduri, Jayasri; Wang, Ning; Bergson, Pamela; Yuan, Guoxiang; Ficker, Eckhard; Prabhakar, Nanduri R

    2008-08-22

    Previous studies suggest that reactive oxygen species (ROS) play an important role in physiological responses to hypoxia. In the present study, we examined the effects of hypoxia on human ether-a-go-go related gene (hERG) channel protein expression and assessed the role of ROS. Hypoxia, in a stimulus- and time-dependent manner, decreased hERG protein with marked reduction in hERG K+ conductance in human embryonic kidney cells stably expressing the hERG alpha subunit. Down-regulation of hERG by hypoxia was not due to increased proteasomal degradation or decreased transcription but due to decreased synthesis of the protein. Hypoxia increased ROS in a time-dependent manner. Antioxidants prevented hypoxia-evoked down-regulation of hERG protein and exogenous oxidants mimicked the effects of hypoxia. Hypoxia-evoked down-regulation of hERG protein and elevation in ROS were absent in p(O) cells, which are devoid of mitochondrial DNA. Inhibitors of NADPH oxidase failed to prevent the effects of hypoxia. These results demonstrate that hypoxia enhances the production of ROS in the mitochondria, resulting in down-regulation of hERG translation and decreased hERG-mediated K+ conductance.

  7. The prelimbic cortex contributes to the down-regulation of attention toward redundant cues.

    PubMed

    Sharpe, Melissa J; Killcross, Simon

    2014-04-01

    Previous research suggests disruption of activity in the prelimbic (PL) cortex produces deficits in tasks requiring preferential attention toward cues that are good predictors of an event. By manipulating cue predictive power, we clarify this role using Pavlovian conditioning. Experiment 1a showed pretraining excitotoxic lesions of the PL cortex disrupted the ability of animals to distribute attention across stimuli conditioned in compound. Experiment 1b demonstrated that these lesions did not affect the ability to block learning about a stimulus when it was presented simultaneously with another stimulus that was previously paired with the outcome. However, in a subsequent test, PL-lesioned animals learnt about this blocked cue faster than sham-lesioned animals when this stimulus alone was paired with reinforcement, suggesting these animals did not down-regulate attention toward the redundant cue during blocking. Experiment 2 tested this hypothesis using an unblocking procedure designed to explicitly reveal a down-regulation of attention during blocking. In this, sham-lesioned animals were shown to down-regulate attention during blocking. PL-lesioned animals did not exhibit this effect. We propose that observed deficits are the result of a specific deficit in down-regulating attention toward redundant cues, indicating the disruption of an attentional process described in Mackintosh's (Mackintosh NJ. 1975. Psychol Review. 82:276) attentional theory.

  8. Down Regulation of CLDND1 Induces Apoptosis in Breast Cancer Cells

    PubMed Central

    Achari, Chandrani; Winslow, Sofia; Larsson, Christer

    2015-01-01

    Identification of targets for apoptosis induction is important to provide novel therapeutic approaches in breast cancer. Our earlier studies showed that down regulation of protein kinase C δ (PKCδ) induces death in breast cancer cells. In this study we set out to identify previously unrecognized apoptosis regulators in breast cancer cells. To identify candidates, global expression analysis with microarray was performed after down regulation of PKCδ in the basal-like breast cancer cell lines MDA-MB-231, MDA-MB-468 and BT-549. Genes that were down regulated in all cell lines were further studied for survival-supporting effects. The claudin-like CLDND1 was singled out since several independent siRNAs targeting CLDND1 induced cell death in several cell lines. The cell death induced by CLDND1 knockdown was caspase-dependent, suggesting induction of apoptosis. Nuclear fragmentation, cleavage of caspase-3 and PARP and release of cytochrome C from the mitochondria upon CLDND1 depletion demonstrated involvement of the intrinsic apoptotic pathway. Inhibition of MEK1/2 and JNK further potentiated the cell death induction by CLDND1 knockdown. However, CLDND1 down regulation augmented ERK1/2 phosphorylation, which thereby may protect against the apoptosis inducing effects of CLDND1 down regulation. A concomitant inhibition of MEK1/2 suppresses the ERK1/2 phosphorylation and markedly potentiates the cell death following CLDND1 siRNA treatment. There is today little information on the function of CLDND1. These data provide novel information on CLDND1 and highlight it as a novel survival factor in basal-like breast cancer cell lines. PMID:26083392

  9. Genetic defects causing familial hypercholesterolaemia: identification of deletions and duplications in the LDL-receptor gene and summary of all mutations found in patients attending the Hammersmith Hospital Lipid Clinic.

    PubMed

    Tosi, Isabella; Toledo-Leiva, Paola; Neuwirth, Clare; Naoumova, Rossi P; Soutar, Anne K

    2007-09-01

    Familial hypercholesterolaemia (FH) results from defective catabolism of low density lipoproteins (LDL), leading to premature atherosclerosis and early coronary heart disease. It is commonly caused by mutations in LDLR, encoding the LDL receptor that mediates hepatic uptake of LDL, or in APOB, encoding its major ligand. More rarely, dominant mutations in PCSK9 or recessive mutations in LDLRAP1 (ARH) cause FH, gene defects that also affect the LDL-receptor pathway. We have used multiplex ligation-dependent probe amplification (MLPA) to identify deletions and rearrangements in LDLR, some not detectable by Southern blotting, thus completing our screening for mutations causing FH in a group of FH patients referred to a Lipid Clinic in London. To summarise, mutations in LDLR were found in 153 unrelated heterozygous FH patients and 24 homozygotes/compound heterozygotes, and in over 200 relatives of 80 index patients. LDLR mutations included 85 different point mutations (7 not previously described) and 13 different large rearrangements. The APOB R3500Q mutation was present in 14 heterozygous patients and a mutation in PCSK9 in another 4; LDLRAP1 mutations were found in 4 "homozygous" FH patients. Our data confirm that DNA-based diagnosis provides information that is important for management of FH in a considerable number of families.

  10. Down regulation of lncSCIR1 after spinal cord contusion injury in rat.

    PubMed

    Wang, Jing; Hu, Bo; Cao, Fei; Sun, Shenggang; Zhang, Yunjian; Zhu, Qing

    2015-10-22

    Extensive changes occur at transcriptional level after traumatic spinal cord injury (SCI). In this study, we performed a large scale screening of expression changes of long (>200 nt) RNA transcripts including both coding and non-coding RNA species in a rat contusion SCI model. We validated significant down-regulation of one long non-coding RNA (lncSCIR1) at 1, 4, and 7 days postinjury. lncSCIR1 knockdown promoted astrocyte proliferation and migration in vitro. We further validated the strong association between lncSCIR1 knock down and the expression changes of four mRNAs after injury. Our data indicated that lncSCIR1 down-regulation might play a detrimental role in the pathophysiology of traumatic SCI and thereby provided new insights into the studies of potential therapeutic targets for traumatic central nervous system (CNS) injuries.

  11. TEL2 suppresses metastasis by down-regulating SERPINE1 in nasopharyngeal carcinoma.

    PubMed

    Sang, Yi; Chen, Ming-Yuan; Luo, Donghua; Zhang, Ru-Hua; Wang, Li; Li, Mei; Luo, Rongzhen; Qian, Chao-Nan; Shao, Jian-Yong; Zeng, Yi-Xin; Kang, Tiebang

    2015-10-06

    Metastasis is the major cause of treatment failure in patients with nasopharyngeal carcinoma (NPC). However, the molecular mechanisms of NPC metastasis are poorly understood. Here, using our customized gene microarray containing all of the known human transcription factors and the current markers for epithelial-mesenchymal transition, we report that TEL2 was down-regulated in highly metastatic NPC cells and the metastatic tissues in lymph node. Mechanistically, TEL2 inhibits the cell migration and invasion in vitro and metastasis in vivo by directly suppressing the SERPINE1 promoter in NPC. Consistently, an inverse correlation was observed between the protein levels of TEL2 and SERPINE1 using clinical NPC samples. Collectively, we have provided the first evidence that TEL2 plays a key role in NPC metastasis by directly down-regulating SERPINE1, and that this novel axis of TEL2 / SERPINE1 may be valuable to develop new strategies for treating NPC patients with metastasis.

  12. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    SciTech Connect

    Lopez, Veronica; Saraff, Kumuda; Medh, Jheem D.

    2009-11-06

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-{gamma}) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-{gamma} activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-{gamma} in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.

  13. Dipeptides Inhibit Melanin Synthesis in Mel-Ab Cells through Down-Regulation of Tyrosinase

    PubMed Central

    Lee, Hyun-e; Kim, Eun-Hyun; Choi, Hye-Ryung; Sohn, Uy Dong; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Park, Kyoung-Chan

    2012-01-01

    This study investigated the effects of proline-serine (PS) and valine-serine (VS) dipeptides on melanogenesis in Mel-Ab cells. Proline-serine and VS significantly inhibited melanin synthesis in a concentration-dependent manner, though neither dipeptide directly inhibited tyrosinase activity in a cell-free system. Both PS and VS down-regulated the expression of microphthalmia-associated transcription factor (MITF) and tyrosinase. In a follow-up study also described here, the effects of these dipeptides on melanogenesis-related signal transduction were quantified. Specifically, PS and VS induced ERK phosphorylation, though they had no effect on phosphorylation of the cAMP response element binding protein (CREB). These data suggest that PS and VS inhibit melanogenesis through ERK phosphorylation and subsequent down-regulation of MITF and tyrosinase. Properties of these dipeptides are compatible with application as skin-whitening agents. PMID:22915995

  14. Clobetasol down-regulates SLPI expression in U937 monocytoid cells.

    PubMed

    Okumura, Naoko; Yoshida, Hitomi; Kitagishi, Yasuko; Nishimura, Yuri; Matsuda, Satoru

    2012-02-01

    In order to investigate how glucocorticoids affect the expression of secretory leukocyte peptidase inhibitor (SLPI), which is overexpressed in a variety of cancers, clobetasol was added to cell culture medium of U937 cells and the SLPI mRNA levels were examined. The in vitro effect of the treatment on SLPI expression was detected by reverse transcriptase-polymerase chain reaction. Clobetasol treatment of U937 cells induced an up- and down-regulation of SLPI expression in a dose-dependent manner. Western blotting confirmed the down-regulation of SLPI protein expression. We hypothesized a loop formation in the SLPI genome domain, in which the glucocorticoid receptor regulates bi-directional transcriptional activity.

  15. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    SciTech Connect

    Wang, Jia-lei; Lu, Fan-zhen; Shen, Xiao-Yong; Wu, Yun; Zhao, Li-ting

    2014-12-12

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells.

  16. Selective Androgen Receptor Down-Regulators (SARDs): A New Prostate Cancer Therapy

    DTIC Science & Technology

    2007-10-01

    PCa (9). Thus far, the techniques that have been used to down-regulate the AR include antisense oligonucleotides (10, 11), ribozyme treatments (12...Our findings suggest that ICI may present a useful treatment option for patients with AR-dependent PCa. Unlike the ribozyme , antisense, siRNA, or...Catalytic cleavage of the androgen receptor messenger RNA and functional inhibition of androgen receptor activity by a hammerhead ribozyme . Mol Endocrinol

  17. Prodigiosin down-regulates survivin to facilitate paclitaxel sensitization in human breast carcinoma cell lines

    SciTech Connect

    Ho, T.-F.; Peng, Y.-T.; Chuang, S.-M.; Lin, S.-C.; Feng, B.-L.; Lu, C.-H.; Yu, W.-J.; Chang, J.-S. Chang, C.-C.

    2009-03-01

    Prodigiosin is a bacterial metabolite with potent anticancer activity, which is attributed to its proapoptotic effect selectively active in malignant cells. Still, the molecular mechanisms whereby prodigiosin induces apoptosis remain largely unknown. In particular, the role of survivin, a vital inhibitor of apoptosis, in prodigiosin-induced apoptosis has never been addressed before and hence was the primary goal of this study. Our results showed that prodigiosin dose-dependently induced down-regulation of survivin in multiple breast carcinoma cell lines, including MCF-7, T-47D and MDA-MB-231. This down-regulation is mainly regulated at the level of transcription, as prodigiosin reduced the levels of both survivin mRNA and survivin promoter activity but failed to rescue survivin expression when proteasome-mediated degradation is abolished. Importantly, overexpression of survivin rendered cells more resistant to prodigiosin, indicating an essential role of survivin down-regulation in prodigiosin-induced apoptosis. In addition, we found that prodigiosin synergistically enhanced cell death induced by paclitaxel, a chemotherapy drug known to up-regulate survivin that in turn confers its own resistance. This paclitaxel sensitization effect of prodigiosin is ascribed to the lowering of survivin expression, because prodigiosin was shown to counteract survivin induction by paclitaxel and, notably, the sensitization effect was severely abrogated in cells that overexpress survivin. Taken together, our results argue that down-regulation of survivin is an integral component mediating prodigiosin-induced apoptosis in human breast cancer cells, and further suggest the potential of prodigiosin to sensitize anticancer drugs, including paclitaxel, in the treatment of breast cancer.

  18. Down-regulation of microRNA-144 in air pollution-related lung cancer

    PubMed Central

    Pan, Hong-Li; Wen, Zhe-Sheng; Huang, Yun-Chao; Cheng, Xin; Wang, Gui-Zhen; Zhou, Yong-Chun; Wang, Zai-Yong; Guo, Yong-Qing; Cao, Yi; Zhou, Guang-Biao

    2015-01-01

    Air pollution has been classified as a group 1 carcinogen in humans, but the underlying tumourigenic mechanisms remain unclear. In Xuanwei city of Yunnan Province, the lung cancer incidence is among the highest in China, owing to severe air pollution generated by the combustion of smoky coal, providing a unique opportunity to dissect lung carcinogenesis. To identify abnormal miRNAs critical for air pollution-related tumourigenesis, we performed microRNA microarray analysis in 6 Xuanwei non-small cell lung cancers (NSCLCs) and 4 NSCLCs from control regions where smoky coal was not used. We found 13 down-regulated and 2 up-regulated miRNAs in Xuanwei NSCLCs. Among them, miR-144 was one of the most significantly down-regulated miRNAs. The expanded experiments showed that miR-144 was down-regulated in 45/51 (88.2%) Xuanwei NSCLCs and 34/54 (63%) control region NSCLCs (p = 0.016). MiR-144 interacted with the oncogene Zeb1 at 2 sites in its 3′ untranslated region, and a decrease in miR-144 resulted in increased Zeb1 expression and an epithelial mesenchymal transition phenotype. Ectopic expression of miR-144 suppressed NSCLCs in vitro and in vivo by targeting Zeb1. These results indicate that down-regulation of miR-144 is critical for air pollution-related lung cancer, and the miR-144-Zeb1 signalling pathway could represent a potential therapeutic target. PMID:26395400

  19. Down-regulation of caveolin-1 in glioma vasculature: modulation by radiotherapy.

    PubMed

    Régina, Anthony; Jodoin, Julie; Khoueir, Paul; Rolland, Yannève; Berthelet, France; Moumdjian, Robert; Fenart, Laurence; Cecchelli, Romeo; Demeule, Michel; Béliveau, Richard

    2004-01-15

    Primary brain tumors, particularly glioblastomas (GB), remain a challenge for oncology. An element of the malignant brain tumors' aggressive behavior is the fact that GB are among the most densely vascularized tumors. To determine some of the molecular regulations occuring at the brain tumor endothelium level during tumoral progression would be an asset in understanding brain tumor biology. Caveolin-1 is an essential structural constituent of caveolae that has been implicated in mitogenic signaling, oncogenesis, and angiogenesis. In this work we investigated regulation of caveolin-1 expression in brain endothelial cells (ECs) under angiogenic conditions. In vitro, brain EC caveolin-1 is down-regulated by angiogenic factors treament and by hypoxia. Coculture of brain ECs with tumoral cells induced a similar down-regulation. In addition, activation of the p42/44 MAP kinase is demonstrated. By using an in vivo brain tumor model, we purified ECs from gliomas as well as from normal brain to investigate possible regulation of caveolin-1 expression in tumoral brain vasculature. We show that caveolin-1 expression is strikingly down-regulated in glioma ECs, whereas an increase of phosphorylated caveolin-1 is observed. Whole-brain radiation treatment, a classical way in which GB is currently being treated, resulted in increased caveolin-1 expression in tumor isolated ECs. The level of tumor cells spreading around newly formed blood vessels was also elevated. The regulation of caveolin-1 expression in tumoral ECs may reflect the tumoral vasculature state and correlates with angiogenesis kinetics.

  20. Down-regulation of lignin biosynthesis in transgenic Leucaena leucocephala harboring O-methyltransferase gene.

    PubMed

    Rastogi, Smita; Dwivedi, Upendra Nath

    2006-01-01

    In the present study, a 0.47 kb OMT gene construct from aspen, encoding for an enzyme O-methyltransferase (OMT, EC 2.1.1.6), in antisense orientation was used to down-regulate lignin biosynthesis in Leucaena leucocephala. The plants were transformed with Agrobacterium tumefaciens strain harboring the antisense gene, and the transformation was confirmed by PCR amplification of the npt II gene. The integration of a heterologous antisense OMT gene construct in transformed plants led to a maximum of 60% reduction in OMT activity relative to control. The evaluation of total lignin content by the Klason method revealed a maximum of 28% reduction. Histochemical analyses of stem sections depicted a reduction in lignin content and normal xylem development. The results also suggested a probable increase in aldehyde levels and a decrease in syringyl units. Lignin down-regulation was accompanied by an increase in methanol soluble phenolics to an extent that had no impact on wood discoloration, and the plants displayed a normal phenotype. Concomitantly, an increase of up to 9% in cellulose content was also observed. Upon alkali extraction, modified lignin was more extractable as evident from reduced Klason lignin in saponified residue and increased alkali soluble phenolics. The results together suggested that the extent of down-regulation of OMT activity achieved may lead to quality amelioration of Leucaena with respect to its applicability in pulp and paper manufacture as well as nutritive and easily digestible forage production.

  1. PDGF-D expression is down-regulated by TGFβ in fibroblasts.

    PubMed

    Charni Chaabane, Saima; Coomans de Brachène, Alexandra; Essaghir, Ahmed; Velghe, Amélie; Lo Re, Sandra; Stockis, Julie; Lucas, Sophie; Khachigian, Levon M; Huaux, François; Demoulin, Jean-Baptiste

    2014-01-01

    Transforming growth factor-β (TGFβ) is a key mediator of fibrogenesis. TGFβ is overexpressed and activated in fibrotic diseases, regulates fibroblast differentiation into myofibroblasts and induces extracellular matrix deposition. Platelet-derived growth factor (PDGF) is also a regulator of fibrogenesis. Some studies showed a link between TGFβ and PDGF in certain fibrotic diseases. TGFβ induces PDGF receptor alpha expression in scleroderma fibroblasts. PDGF-C and -D are the most recently discovered ligands and also play a role in fibrosis. In this study, we report the first link between TGFβ and PDGF-D and -C ligands. In normal fibroblasts, TGFβ down-regulated PDGF-D expression and up-regulated PDGF-C expression at the mRNA and protein levels. This phenomenon is not limited to TGFβ since other growth factors implicated in fibrosis, such as FGF, EGF and PDGF-B, also regulated PDGF-D and PDGF-C expression. Among different kinase inhibitors, only TGFβ receptor inhibitors and the IκB kinase (IKK) inhibitor BMS-345541 blocked the effect of TGFβ. However, activation of the classical NF-κB pathway was not involved. Interestingly, in a model of lung fibrosis induced by either bleomycin or silica, PDGF-D was down-regulated, which correlates with the production of TGFβ and other fibrotic growth factors. In conclusion, the down-regulation of PDGF-D by TGFβ and other growth factors may serve as a negative feedback in the network of cytokines that control fibrosis.

  2. Executive functions and the down-regulation and up-regulation of emotion

    PubMed Central

    Gyurak, Anett; Goodkind, Madeleine S.; Kramer, Joel H.; Miller, Bruce L.; Levenson, Robert W.

    2011-01-01

    This study examined the relationship between individual differences in executive functions (EF; assessed by measures of working memory, Stroop, trail making, and verbal fluency) and ability to down-regulate and up-regulate responses to emotionally evocative film clips. To ensure a wide range of EF, 48 participants with diverse neurodegenerative disorders and 21 older neurologically normal aging participants were included. Participants were exposed to three different movie clips that were designed to elicit a mix of disgust and amusement. While watching the films they were either instructed to watch, down-regulate, and up-regulate their visible emotional responses. Heart-rate and facial behaviors were monitored throughout. Emotion regulatory ability was operationalized as changes in heart-rate and facial behavior in the down- and up-regulation conditions, controlling for responses in the watch condition. Results indicated that higher verbal fluency scores were related to greater ability to regulate emotion in both the down-regulation and up-regulation conditions. This finding remained significant even after controlling for age and general cognitive functioning. No relationships were found between emotion regulation and the other EF measures. We believe these results derive from differences among EF measures, with verbal fluency performance best capturing the complex sequence of controlled planning, activation, and monitoring required for successful emotion regulation. These findings contribute to our understanding of emotion-cognition interaction, suggesting a link between emotion-regulatory abilities and individual differences in complex executive functions. PMID:21432634

  3. Pathological implications of Cx43 down-regulation in human colon cancer.

    PubMed

    Ismail, Rehana; Rashid, Rabiya; Andrabi, Khurshid; Parray, Fazl Q; Besina, Syed; Shah, Mohd Amin; Ul Hussain, Mahboob

    2014-01-01

    Connexin 43 is an important gap junction protein in vertebrates and is known for its tumor suppressive properties. Cx43 is abundantly expressed in the human intestinal epithelial cells and muscularis mucosae. To explore the role of Cx43 in the genesis of human colon cancer, we performed the expression analysis of Cx43 in 80 cases of histopathologically confirmed and clinically diagnosed human colon cancer samples and adjacent control tissue and assessed correlations with clinicopathological variables. Western blotting using anti-Cx43 antibody indicated that the expression of Cx43 was significantly down regulated (75%) in the cancer samples as compared to the adjacent control samples. Moreover, immunohistochemical analysis of the tissue samples confirmed the down regulation of the Cx43 in the intestinal epithelial cells. Cx43 down regulation showed significant association (p<0.05) with the histological type and tumor invasion properties of the cancer. Our data demonstrated that loss of Cx43 may be an important event in colon carcinogenesis and tumor progression, providing significant insights about the tumor suppressive properties of the Cx43 and its potential as a diagnostic marker for colon cancer.

  4. Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes.

    PubMed

    Mizuno, Emi; Iura, Takanobu; Mukai, Akiko; Yoshimori, Tamotsu; Kitamura, Naomi; Komada, Masayuki

    2005-11-01

    Ligand-activated receptor tyrosine kinases undergo endocytosis and are transported via endosomes to lysosomes for degradation. This "receptor down-regulation" process is crucial to terminate the cell proliferation signals produced by activated receptors. During the process, ubiquitination of the receptors serves as a sorting signal for their trafficking from endosomes to lysosomes. Here, we describe the role of a deubiquitinating enzyme UBPY/USP8 in the down-regulation of epidermal growth factor (EGF) receptor (EGFR). Overexpression of UBPY reduced the ubiquitination level of EGFR and delayed its degradation in EGF-stimulated cells. Immunopurified UBPY deubiquitinated EGFR in vitro. In EGF-stimulated cells, UBPY underwent ubiquitination and bound to EGFR. Overexpression of Hrs or a dominant-negative mutant of SKD1, proteins that play roles in the endosomal sorting of ubiquitinated receptors, caused the accumulation of endogenous UBPY on exaggerated endosomes. A catalytically inactive UBPY mutant clearly localized on endosomes, where it overlapped with EGFR when cells were stimulated with EGF. Finally, depletion of endogenous UBPY by RNA interference resulted in elevated ubiquitination and accelerated degradation of EGF-activated EGFR. We conclude that UBPY negatively regulates the rate of EGFR down-regulation by deubiquitinating EGFR on endosomes.

  5. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    PubMed Central

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  6. Pu-erh tea inhibits tumor cell growth by down-regulating mutant p53.

    PubMed

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms' metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects.

  7. Down-regulation of rat kidney calcitonin receptors by salmon calcitonin infusion evidence by autoradiography

    SciTech Connect

    Bouizar, Z.; Rostene, W.H.; Milhaud, G.

    1987-08-01

    In treating age-related osteoporosis and Paget disease of bone, it is of major importance to avoid an escape phenomenon that would reduce effectiveness of the treatment. The factors involved in the loss of therapeutic efficacy with administration of large pharmacological doses of the hormone require special consideration. Down-regulation of the hormone receptors could account for the escape phenomenon. Specific binding sites for salmon calcitonin (sCT) were characterized and localized by autoradiography on rat kidney sections incubated with /sup 125/I-labeled sCT. Autoradiograms demonstrated a heterogeneous distribution of /sup 125/I-labeled sCT binding sites in the kidney, with high densities in both the superficial layer of the cortex and the outer medulla. Infusion of different doses of unlabeled sCT by means of Alzet minipumps for 7 days produced rapid changes in plasma calcium, phosphate, and magnesium levels, which were no longer observed after 2 or 6 days of treatment. Besides, infusion of high doses of sCT induced down-regulation of renal sCT binding sites located mainly in the medulla, where calcitonin (CT) has been shown to exert it physiological effects on water and ion reabsorption. These data suggest that the resistance to high doses of sCT often observed during long-term treatment of patients may be the consequence of not only bone-cell desensitization but also down-regulation of CT-sensitive kidney receptor sites.

  8. Progeria, rapamycin and normal aging: recent breakthrough.

    PubMed

    Blagosklonny, Mikhail V

    2011-07-01

    A recent discovery that rapamycin suppresses a pro-senescent phenotype in progeric cells not only suggests a non-toxic therapy for progeria but also implies its similarity with normal aging. For one, rapamycin is also known to suppress aging of regular human cells. Here I discuss four potential scenarios, comparing progeria with both normal and accelerated aging. This reveals further indications of rapamycin both for accelerated aging in obese and for progeria.

  9. Autophagy down regulates pro-inflammatory mediators in BV2 microglial cells and rescues both LPS and alpha-synuclein induced neuronal cell death.

    PubMed

    Bussi, Claudio; Ramos, Javier Maria Peralta; Arroyo, Daniela S; Gaviglio, Emilia A; Gallea, Jose Ignacio; Wang, Ji Ming; Celej, Maria Soledad; Iribarren, Pablo

    2017-03-03

    Autophagy is a fundamental cellular homeostatic mechanism, whereby cells autodigest parts of their cytoplasm for removal or turnover. Neurodegenerative disorders are associated with autophagy dysregulation, and drugs modulating autophagy have been successful in several animal models. Microglial cells are phagocytes in the central nervous system (CNS) that become activated in pathological conditions and determine the fate of other neural cells. Here, we studied the effects of autophagy on the production of pro-inflammatory molecules in microglial cells and their effects on neuronal cells. We observed that both trehalose and rapamycin activate autophagy in BV2 microglial cells and down-regulate the production of pro-inflammatory cytokines and nitric oxide (NO), in response to LPS and alpha-synuclein. Autophagy also modulated the phosphorylation of p38 and ERK1/2 MAPKs in BV2 cells, which was required for NO production. These actions of autophagy modified the impact of microglial activation on neuronal cells, leading to suppression of neurotoxicity. Our results demonstrate a novel role for autophagy in the regulation of microglial cell activation and pro-inflammatory molecule secretion, which may be important for the control of inflammatory responses in the CNS and neurotoxicity.

  10. Autophagy down regulates pro-inflammatory mediators in BV2 microglial cells and rescues both LPS and alpha-synuclein induced neuronal cell death

    PubMed Central

    Bussi, Claudio; Ramos, Javier Maria Peralta; Arroyo, Daniela S.; Gaviglio, Emilia A.; Gallea, Jose Ignacio; Wang, Ji Ming; Celej, Maria Soledad; Iribarren, Pablo

    2017-01-01

    Autophagy is a fundamental cellular homeostatic mechanism, whereby cells autodigest parts of their cytoplasm for removal or turnover. Neurodegenerative disorders are associated with autophagy dysregulation, and drugs modulating autophagy have been successful in several animal models. Microglial cells are phagocytes in the central nervous system (CNS) that become activated in pathological conditions and determine the fate of other neural cells. Here, we studied the effects of autophagy on the production of pro-inflammatory molecules in microglial cells and their effects on neuronal cells. We observed that both trehalose and rapamycin activate autophagy in BV2 microglial cells and down-regulate the production of pro-inflammatory cytokines and nitric oxide (NO), in response to LPS and alpha-synuclein. Autophagy also modulated the phosphorylation of p38 and ERK1/2 MAPKs in BV2 cells, which was required for NO production. These actions of autophagy modified the impact of microglial activation on neuronal cells, leading to suppression of neurotoxicity. Our results demonstrate a novel role for autophagy in the regulation of microglial cell activation and pro-inflammatory molecule secretion, which may be important for the control of inflammatory responses in the CNS and neurotoxicity. PMID:28256519

  11. Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system.

    PubMed

    Arriola Apelo, Sebastian I; Neuman, Joshua C; Baar, Emma L; Syed, Faizan A; Cummings, Nicole E; Brar, Harpreet K; Pumper, Cassidy P; Kimple, Michelle E; Lamming, Dudley W

    2016-02-01

    Inhibition of the mechanistic target of rapamycin (mTOR) signaling pathway by the FDA-approved drug rapamycin has been shown to promote lifespan and delay age-related diseases in model organisms including mice. Unfortunately, rapamycin has potentially serious side effects in humans, including glucose intolerance and immunosuppression, which may preclude the long-term prophylactic use of rapamycin as a therapy for age-related diseases. While the beneficial effects of rapamycin are largely mediated by the inhibition of mTOR complex 1 (mTORC1), which is acutely sensitive to rapamycin, many of the negative side effects are mediated by the inhibition of a second mTOR-containing complex, mTORC2, which is much less sensitive to rapamycin. We hypothesized that different rapamycin dosing schedules or the use of FDA-approved rapamycin analogs with different pharmacokinetics might expand the therapeutic window of rapamycin by more specifically targeting mTORC1. Here, we identified an intermittent rapamycin dosing schedule with minimal effects on glucose tolerance, and we find that this schedule has a reduced impact on pyruvate tolerance, fasting glucose and insulin levels, beta cell function, and the immune system compared to daily rapamycin treatment. Further, we find that the FDA-approved rapamycin analogs everolimus and temsirolimus efficiently inhibit mTORC1 while having a reduced impact on glucose and pyruvate tolerance. Our results suggest that many of the negative side effects of rapamycin treatment can be mitigated through intermittent dosing or the use of rapamycin analogs.

  12. Superiority of dietary safflower oil over olive oil in lowering serum cholesterol and increasing hepatic mRnas for the LDL receptor and cholesterol 7alpha-hydroxylase in exogenously hypercholesterolemic (exHC) rats.

    PubMed

    Sato, M; Yoshida, S; Nagao, K; Imaizumi, K

    2000-06-01

    The exogenously hypercholesterolemic (ExHC) rat is a strain segregated from SD rats with a high response to dietary cholesterol. To understand the underlying mechanism(s) for this hypercholesterolemia, the interactive effects of dietary fatty acid and the susceptibility of rats to dietary cholesterol on the serum cholesterol concentration and hepatic mRNA abundance of the low-density lipoprotein (LDL) receptor, cholesterol 7alpha-hydroxylase (7alpha-hydroxylase) and 3-hydroxyl-3methylglutaryl (HMG) CoA reductase were examined. Both strains were fed on a diet supplemented with 10% each of olive, safflower or coconut oil with or without the addition of 1% cholesterol for one week. The ExHC rats fed on olive, safflower and coconut oil in combination with cholesterol respectively resulted in a 3.5-, 2.0- and 2.1-fold higher serum cholesterol concentration than that in the animals fed on the corresponding dietary fats without any supplementation of cholesterol (p < 0.01 by dietary cholesterol or type of fat). The dietary cholesterol dependent-elevation of serum cholesterol in the SD rats was less than 1.5-fold (p<0.01) and there was no dietary fat effect. The ExHC rats fed on the safflower oil-containing diet supplemented with cholesterol resulted in a higher mRNA abundance of the LDL receptor and 7alpha-hydroxylase than in the corresponding fat-fed rats without cholesterol (p<0.05). There was no dietary cholesterol-dependent change of mRNA abundance in either strain fed on olive or coconut oil, except for a decreased abundance of HMG CoA reductase mRNA in the olive oil-fed ExHC rats and coconut oil-fed Sprague-Dawley (SD) rats (p<0.05). These results indicate that the hepatic mRNA abundance of the LDL receptor and of 7alpha-hydroxylase depended on the dietary combination of cholesterol and a fatty acid and suggest that a linoleic acid-rich diet may alleviate exogenous hypercholesterolemia by activating the process involved in the hepatic uptake and biliary excretion of

  13. Inhibition of the mechanistic target of rapamycin (mTOR) - Rapamycin and beyond

    PubMed Central

    Lamming, Dudley W.

    2016-01-01

    Rapamycin is an FDA-approved immunosuppressant and anti-cancer agent discovered in the soil of Easter Island in the early 1970s. Rapamycin is a potent and selective inhibitor of the mTOR (mechanistic Target Of Rapamycin) protein kinase, which acts as a central integrator of nutrient signaling pathways. During the last decade, genetic and pharmaceutical inhibition of mTOR pathway signaling has been found to promote longevity in yeast, worms, flies and mice. In this chapter, we will discuss the molecular biology underlying the effects of rapamycin and its physiological effects; evidence for rapamycin as an anti-aging compound; mechanisms by which rapamycin may extend lifespan; and the potential limitations of rapamycin as an anti-aging molecule. Finally, we will discuss possible strategies that may allow us to inhibit mTOR signaling safely while minimizing side effects, and reap the health, social and economic benefits from slowing the aging process. PMID:27048303

  14. Ultrafine carbon particles down-regulate CYP1B1 expression in human monocytes

    PubMed Central

    Eder, Christiane; Frankenberger, Marion; Stanzel, Franz; Seidel, Albrecht; Schramm, Karl-Werner; Ziegler-Heitbrock, Loems; Hofer, Thomas PJ

    2009-01-01

    Background Cytochrome P450 monoxygenases play an important role in the defence against inhaled toxic compounds and in metabolizing a wide range of xenobiotics and environmental contaminants. In ambient aerosol the ultrafine particle fraction which penetrates deeply into the lungs is considered to be a major factor for adverse health effects. The cells mainly affected by inhaled particles are lung epithelial cells and cells of the monocyte/macrophage lineage. Results In this study we have analyzed the effect of a mixture of fine TiO2 and ultrafine carbon black Printex 90 particles (P90) on the expression of cytochrome P450 1B1 (CYP1B1) in human monocytes, macrophages, bronchial epithelial cells and epithelial cell lines. CYP1B1 expression is strongly down-regulated by P90 in monocytes with a maximum after P90 treatment for 3 h while fine and ultrafine TiO2 had no effect. CYP1B1 was down-regulated up to 130-fold and in addition CYP1A1 mRNA was decreased 13-fold. In vitro generated monocyte-derived macrophages (MDM), epithelial cell lines, and primary bronchial epithelial cells also showed reduced CYP1B1 mRNA levels. Benzo[a]pyrene (BaP) is inducing CYB1B1 but ultrafine P90 can still down-regulate gene expression at 0.1 μM of BaP. The P90-induced reduction of CYP1B1 was also demonstrated at the protein level using Western blot analysis. Conclusion These data suggest that the P90-induced reduction of CYP gene expression may interfere with the activation and/or detoxification capabilities of inhaled toxic compounds. PMID:19835593

  15. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    SciTech Connect

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa; Shin, Incheol

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  16. Baicalin Down-Regulates IL-1β-Stimulated Extracellular Matrix Production in Nasal Fibroblasts

    PubMed Central

    Shin, Jae-Min; Kang, Ju-Hyung; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2016-01-01

    Purpose Baicalin, a Chinese herbal medicine, has anti-fibrotic and anti-inflammatory effects. The aims of present study were to investigate the effects of baicalin on the myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction of interleukin (IL)-1β-stimulated nasal fibroblasts and to determine the molecular mechanism of baicalin in nasal fibroblasts. Methods Nasal fibroblasts were isolated from the inferior turbinate of patients. Baicalin was used to treat IL-1β-stimulated nasal fibroblasts. To evaluate cytotoxicity, a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay was used. The expression levels of α-smooth muscle actin (SMA), fibronectin, phospho-mitogen-activated protein kinase (p-MAPK), p-Akt, p-p50, p-p65, and p-IκBα were measured by western blotting, reverse transcription-polymerase chain reaction (RT—PCR),or immunofluorescence staining. Fibroblast migration was analyzed with scratch assays and transwell migration assays. Total collagen was evaluated with the Sircol collagen assay. Contractile activity was measured with a collagen gel contraction assay. Results Baicalin (0–50 μM) had no significant cytotoxic effects in nasal fibroblasts. The expression of α–SMA and fibronectin were significantly down-regulated in baicalin-treated nasal fibroblasts. Migration, collagen production, and contraction of IL-1β-stimulated nasal fibroblasts were significantly inhibited by baicalin treatment. Baicalin also significantly down-regulated p-MAPK, p-Akt, p-p50, p-p65, and p-IκBα in IL-1β-stimulated nasal fibroblasts. Conclusions We showed that baicalin down-regulated myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction via the MAPK and Akt/ NF-κB pathways in IL-1β-stimulated nasal fibroblasts. PMID:28002421

  17. Down-regulation of Wnt10a affects odontogenesis and proliferation in mesenchymal cells

    SciTech Connect

    Liu, Yang Han, Dong Wang, Lei Feng, Hailan

    2013-05-17

    Highlights: •Down-regulation of Wnt10a in dental mesenchymal cells impairs odontogenesis of reassociated tooth germs. •Dspp is down- and up-regulated after Wnt10a-knockdown and overexpression in dental mesenchymal cells. •Down-regulation of Wnt10a inhibits proliferation of dental mesenchymal cells. -- Abstract: The WNT10a mutation has been found in patients with abnormal odontogenesis. In mice, Wnt10a expression is found in the tooth germ, but its role has not yet been elucidated. We aimed to investigate the role of Wnt10a in odontogenesis. Mesenchymal cells of the first mandibular molar germ at the bell stage were isolated, transfected with Wnt10a SiRNA or plasmid, and reassociated with epithelial part of the molar germ. Scrambled SiRNA or empty vector was used in the control group. The reassociated tooth germs were transplanted into mice subrenal capsules. After gene modification, dental mesenchymal cells cultured in vitro were checked for cell proliferation and the expression of Dspp was examined. All 12 reassociated tooth germs in the control group resumed odontogenesis, while only 5 of 12 in the Wnt10a knockdown group developed into teeth. After Wnt10a knockdown, the mesenchymal cells cultured in vitro presented repressed proliferation. Wnt10a knockdown and overexpression led to both down- and up-regulation of Dspp. We conclude that the down-regulation of Wnt10a impairs odontogensis and cell proliferation, and that Wnt10a regulates Dspp expression in mesenchymal cells. These findings help to elucidate the mechanism of abnormal tooth development in patients with the WNT10A mutation.

  18. Pigment epithelium-derived factor (PEDF) inhibits breast cancer metastasis by down-regulating fibronectin.

    PubMed

    Hong, Honghai; Zhou, Ti; Fang, Shuhuan; Jia, Minghan; Xu, Zumin; Dai, Zhiyu; Li, Cen; Li, Shuai; Li, Lei; Zhang, Ting; Qi, Weiwei; Bardeesi, Adham Sameer A; Yang, Zhonghan; Cai, Weibin; Yang, Xia; Gao, Guoquan

    2014-11-01

    Pigment epithelium-derived factor (PEDF) plays an important role in the tumor growth and metastasis inhibition. It has been reported that PEDF expression is significantly reduced in breast cancer, and associated with disease progression and poor patient outcome. However, the exact mechanism of PEDF on breast cancer metastasis including liver and lung metastasis remains unclear. The present study aims to reveal the impact of PEDF on breast cancer. The orthotopic tumor mice model inoculated by MDA-MB-231 cells stably expressing PEDF or control cells was used to assess liver and lung metastasis of breast cancer. In vitro, migration and invasion experiments were used to detect the metastatic abilities of MDA-MB-231 and SKBR3 breast cancer cells with or without overexpression of PEDF. The metastatic-related molecules including EMT makers, fibronectin, and p-AKT and p-ERK were detected by qRT-PCR, Western blot, and Fluorescent immunocytochemistry. PEDF significantly inhibited breast cancer growth and metastasis in vivo and in vitro. Mechanically, PEDF inhibited breast cancer cell migration and invasion by down-regulating fibronectin and subsequent MMP2/MMP9 reduction via p-ERK and p-AKT signaling pathways. However, PEDF had no effect on EMT conversion in the breast cancer cells which was usually involved in cancer metastasis. Furthermore, the study showed that laminin receptor mediated the down-regulation of fibronectin by PEDF. These results reported for the first time that PEDF inhibited breast cancer metastasis by down-regulating fibronectin via laminin receptor/AKT/ERK pathway. Our findings demonstrated PEDF as a dual effector in limiting breast cancer growth and metastasis and highlighted a new avenue to block breast cancer progression.

  19. Requirements for cell rounding and surface protein down-regulation by Ebola virus glycoprotein.

    PubMed

    Francica, Joseph R; Matukonis, Meghan K; Bates, Paul

    2009-01-20

    Ebola virus causes an acute hemorrhagic fever that is associated with high morbidity and mortality. The viral glycoprotein is thought to contribute to pathogenesis, though precise mechanisms are unknown. Cellular pathogenesis can be modeled in vitro by expression of the Ebola viral glycoprotein (GP) in cells, which causes dramatic morphological changes, including cell rounding and surface protein down-regulation. These effects are known to be dependent on the presence of a highly glycosylated region of the glycoprotein, the mucin domain. Here we show that the mucin domain from the highly pathogenic Zaire subtype of Ebola virus is sufficient to cause characteristic cytopathology when expressed in the context of a foreign glycoprotein. Similarly to full length Ebola GP, expression of the mucin domain causes rounding, detachment from the extracellular matrix, and the down-regulation of cell surface levels of beta1 integrin and major histocompatibility complex class 1. These effects were not seen when the mucin domain was expressed in the context of a glycophosphatidylinositol-anchored isoform of the foreign glycoprotein. In contrast to earlier analysis of full length Ebola glycoproteins, chimeras carrying the mucin domains from the Zaire and Reston strains appear to cause similar levels of down-modulation and cell detachment. Cytopathology associated with Ebola glycoprotein expression does not occur when GP expression is restricted to the endoplasmic reticulum. In contrast to a previously published report, our results demonstrate that GP-induced surface protein down-regulation is not mediated through a dynamin-dependent pathway. Overall, these results support a model in which the mucin domain of Ebola GP acts at the cell surface to induce protein down modulation and cytopathic effects.

  20. Mechanisms of allele-selective down-regulation of HLA class I in Burkitt's lymphoma.

    PubMed

    Imreh, M P; Zhang, Q J; de Campos-Lima, P O; Imreh, S; Krausa, P; Browning, M; Klein, G; Masucci, M G

    1995-07-04

    Burkitt lymphomas (BL) that arise in HLA-AII-positive individuals are characterized by selective loss/down-regulation of the HLA AII polypeptide. We have investigated the molecular basis of such down-regulation by comparing 5 pairs of BL lines and Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCL) derived from the normal B cells of the same individuals. The presence of apparently intact HLA AII genes was confirmed in all 5 BL/LCL pairs by polymerase chain reaction (PCR) typing and by Southern-blot hybridization with HLA A locus-specific probes. Northern-blot analysis with locus- and allele-specific probes revealed a significantly lower expression or absence of AII-specific mRNA in all 5 BL lines compared to the corresponding LCLs. Up-regulation of AII-specific mRNA was achieved by IFN alpha treatment of 2 BL lines with low HLA AII expression (BL-28 and BL-72) while the treatment had no effect in 3 BL lines (WWI-BL, WW2-BL and BL41) that did not express the endogenous gene. HLA AII expression was restored by transfection of the gene in WWI-BL whereas transfectants of BL-41 remained AII-negative. An HLA-AII-promoter-driven chloramphenicol acetyl transferase reporter gene (pAIICAT) was active in WWI-BL but not in BL-41. HLA-AII was expressed in hybrids of BL-41 with an AII-positive LCL, while expression of the endogenous HLA AII gene could not be restored by fusion of BL-41 with an AII-negative LCL, although an adequate set of transcription factors was present in the hybrid. Our results suggest that genetic defects and lack of transcription factors may contribute to the selective down-regulation of HLA AII in BL cells.

  1. Intestinal multidrug resistance-associated protein 2 is down-regulated in fructose-fed rats.

    PubMed

    Londero, Ana Sofía; Arana, Maite Rocío; Perdomo, Virginia Gabriela; Tocchetti, Guillermo Nicolás; Zecchinati, Felipe; Ghanem, Carolina Inés; Ruiz, María Laura; Rigalli, Juan Pablo; Mottino, Aldo Domingo; García, Fabiana; Villanueva, Silvina Stella Maris

    2017-02-01

    Expression and activity of jejunal multidrug resistance-associated protein 2 (Mrp2) and glutathione-S-transferase (GST) were examined in fructose fed Wistar rats, an experimental model of metabolic syndrome. Animals were fed on (a) control diet or (b) control diet plus 10% w/vol fructose in the drinking water. Mrp2 and the α class of GST proteins as well as their corresponding mRNAs were decreased, suggesting a transcriptional regulation by fructose. Confocal microscopy studies reaffirmed down-regulation of Mrp2. Everted intestinal sacs were incubated with 1-chloro-2,4-dinitrobenzene in the mucosal compartment, and the glutathione-conjugated derivative, dinitrophenyl- S-glutathione (DNP-SG; model Mrp2 substrate), was measured in the same compartment to estimate Mrp2 activity. Excretion of DNP-SG was substantially decreased by fructose treatment, consistent with simultaneous down-regulation of Mrp2 and GST. In addition, the effect of fructose on intestinal barrier function exerted by Mrp2 was evaluated in vivo using valsartan, a recognized Mrp2 substrate of therapeutic use. After intraduodenal administration as a bolus, intestinal absorption of valsartan was increased in fructose-drinking animals. Fructose administration also induced oxidative stress in intestinal tissue as demonstrated by significant increases of intestinal lipid peroxidation end products and activity of the antioxidant enzyme superoxide dismutase, by a decreased GSH/GSSG ratio. Moreover, fructose treatment conduced to increased intestinal levels of the proinflammatory cytokines IL-β1 and IL-6. Collectively, our results demonstrate that metabolic syndrome-like conditions, induced by a fructose-rich diet, result in down-regulation of intestinal Mrp2 expression and activity and consequently in an impairment of its barrier function.

  2. Down-regulation of BK channel expression in the pilocarpine model of temporal lobe epilepsy.

    PubMed

    Pacheco Otalora, Luis F; Hernandez, Eder F; Arshadmansab, Massoud F; Francisco, Sebastian; Willis, Michael; Ermolinsky, Boris; Zarei, Masoud; Knaus, Hans-Guenther; Garrido-Sanabria, Emilio R

    2008-03-20

    In the hippocampus, BK channels are preferentially localized in presynaptic glutamatergic terminals including mossy fibers where they are thought to play an important role regulating excessive glutamate release during hyperactive states. Large conductance calcium-activated potassium channels (BK, MaxiK, Slo) have recently been implicated in the pathogenesis of genetic epilepsy. However, the role of BK channels in acquired mesial temporal lobe epilepsy (MTLE) remains unknown. Here we used immunohistochemistry, laser scanning confocal microscopy (LSCM), Western immunoblotting and RT-PCR to investigate the expression pattern of the alpha-pore-forming subunit of BK channels in the hippocampus and cortex of chronically epileptic rats obtained by the pilocarpine model of MTLE. All epileptic rats experiencing recurrent spontaneous seizures exhibited a significant down-regulation of BK channel immunostaining in the mossy fibers at the hilus and stratum lucidum of the CA3 area. Quantitative analysis of immunofluorescence signals by LSCM revealed a significant 47% reduction in BK channel immunofluorescent signals in epileptic rats when compared to age-matched non-epileptic control rats. These data correlate with a similar reduction in BK channel protein levels and transcripts in the cortex and hippocampus. Our data indicate a seizure-related down-regulation of BK channels in chronically epileptic rats. Further functional assays are necessary to determine whether altered BK channel expression is an acquired channelopathy or a compensatory mechanism affecting the network excitability in MTLE. Moreover, seizure-mediated BK down-regulation may disturb neuronal excitability and presynaptic control at glutamatergic terminals triggering exaggerated glutamate release and seizures.

  3. Down-regulation of protein kinase Ceta by antisense oligonucleotides sensitises A549 lung cancer cells to vincristine and paclitaxel.

    PubMed

    Sonnemann, Jürgen; Gekeler, Volker; Ahlbrecht, Katrin; Brischwein, Klaus; Liu, Chao; Bader, Peter; Müller, Cornelia; Niethammer, Dietrich; Beck, James F

    2004-06-25

    Previous studies point to protein kinase C (PKC) isozyme eta as a resistance factor in cancer cells. Therefore, we investigated whether down-regulation of PKCeta with second generation antisense oligonucleotides (ODNs) would sensitise A549 human lung carcinoma cells to cytostatics. The effects were compared to the outcome of Bcl-xL down-regulation. Upon treatment with antisense ODNs, PKCeta and Bcl-xL were both significantly reduced on mRNA and protein level. Down-regulation of either PKCeta or Bcl-xL in combination with vincristine or paclitaxel resulted in a significant increase in caspase-3 activity compared to that in the control oligonucleotide treated cells. In addition, PKCeta down-regulation augmented vincristine-induced dissipation of mitochondrial transmembrane potential. In conclusion, these results confirm that PKCeta might represent a considerable resistance factor and an interesting target to improve anticancer chemotherapy.

  4. Accumulation of "small dense" low density lipoproteins (LDL) in a homozygous patients with familial defective apolipoprotein B-100 results from heterogenous interaction of LDL subfractions with the LDL receptor.

    PubMed Central

    März, W; Baumstark, M W; Scharnagl, H; Ruzicka, V; Buxbaum, S; Herwig, J; Pohl, T; Russ, A; Schaaf, L; Berg, A

    1993-01-01

    The interaction of LDL and LDL subfractions from a patient homozygous for familial defective apoB-100 (FDB) has been studied. His LDL cholesterol ranged from 2.65 to 3.34 g/liter. In cultured fibroblasts, binding, internalization, and degradation of the patient's LDL was diminished, but not completely abolished. The patient's apolipoprotein E concentration was low, and the amount of apolipoprotein E associated with LDL was not elevated over normal. LDL were separated into six subfractions: LDL-1 (1.019-1.031 kg/liter), LDL-2 (1.031-1.034 kg/liter), LDL-3 (1.034-1.037 kg/liter), LDL-4 (1.037-1.040 kg/liter), LDL-5 (1.040-1.044 kg/liter), and LDL-6 (> 1.044 kg/liter). LDL-5 and LDL-6 selectively accumulated in the patient's plasma. Concentrations of LDL-1 to 3 were normal. The LDL receptor-mediated uptake of LDL-1 and LDL-2 could not be distinguished from normal LDL. LDL-3 and LDL-4 displayed reduced uptake; LDL-5 and LDL-6 were completely defective in binding. When apolipoprotein E-containing particles were removed by immunoabsorption before preparing subfractions, LDL-3 and LDL-4, but not LDL-1 and LDL-2, retained some receptor binding activity. We conclude that in FDB, LDL-1 and LDL-2 contain sufficient apolipoprotein E to warrant normal cellular uptake. In LDL-3 and LDL-4, the defective apoB-100 itself displays some receptor binding; LDL-5 and LDL-6 are inable to interact with LDL receptors and accumulate in plasma. Images PMID:8254047

  5. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease

    DTIC Science & Technology

    2014-10-01

    Award Number: W81XWH-12-1-0582 TITLE: Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s...Annual 3. DATES COVERED 25 Sep 2013 - 24 Sep 2014 4. TITLE AND SUBTITLE Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury...SUPPLEMENTARY NOTES 14. ABSTRACT Traumatic Brain Injury (TBI) is a risk factor for subsequent development of Alzheimer’s disease (AD). Abnormal tau

  6. Cyclin D1 down-regulation is essential for DBC2's tumor suppressor function

    SciTech Connect

    Yoshihara, Takashi; Collado, Denise; Hamaguchi, Masaaki . E-mail: hamaguchi@fordham.edu

    2007-07-13

    The expression of tumor suppressor gene DBC2 causes certain breast cancer cells to stop growing [M. Hamaguchi, J.L. Meth, C. Von Klitzing, W. Wei, D. Esposito, L. Rodgers, T. Walsh, P. Welcsh, M.C. King, M.H. Wigler, DBC2, a candidate for a tumor suppressor gene involved in breast cancer, Proc. Natl. Acad. Sci. USA 99 (2002) 13647-13652]. Recently, DBC2 was found to participate in diverse cellular functions such as protein transport, cytoskeleton regulation, apoptosis, and cell cycle control [V. Siripurapu, J.L. Meth, N. Kobayashi, M. Hamaguchi, DBC2 significantly influences cell cycle, apoptosis, cytoskeleton, and membrane trafficking pathways. J. Mol. Biol. 346 (2005) 83-89]. Its tumor suppression mechanism, however, remains unclear. In this paper, we demonstrate that DBC2 suppresses breast cancer proliferation through down-regulation of Cyclin D1 (CCND1). Additionally, the constitutional overexpression of CCND1 prevented the negative impact of DBC2 expression on their growth. Under a CCND1 promoter, the expression of CCNE1 exhibited the same protective effect. Our results indicate that the down-regulation of CCND1 is an essential step for DBC2's growth suppression of cancer cells. We believe that this discovery contributes to a better understanding of DBC2's tumor suppressor function.

  7. Rottlerin inhibits cell growth and invasion via down-regulation of Cdc20 in glioma cells

    PubMed Central

    Wang, Lixia; Hou, Yingying; Yin, Xuyuan; Su, Jingna; Zhao, Zhe; Ye, Xiantao; Zhou, Xiuxia; Zhou, Li; Wang, Zhiwei

    2016-01-01

    Rottlerin, isolated from a medicinal plant Mallotus phillippinensis, has been demonstrated to inhibit cellular growth and induce cytoxicity in glioblastoma cell lines through inhibition of calmodulin-dependent protein kinase III. Emerging evidence suggests that rottlerin exerts its antitumor activity as a protein kinase C inhibitor. Although further studies revealed that rottlerin regulated multiple signaling pathways to suppress tumor cell growth, the exact molecular insight on rottlerin-mediated tumor inhibition is not fully elucidated. In the current study, we determine the function of rottlerin on glioma cell growth, apoptosis, cell cycle, migration and invasion. We found that rottlerin inhibited cell growth, migration, invasion, but induced apoptosis and cell cycle arrest. Mechanistically, the expression of Cdc20 oncoprotein was measured by the RT-PCR and Western blot analysis in glioma cells treated with rottlerin. We observed that rottlerin significantly inhibited the expression of Cdc20 in glioma cells, implying that Cdc20 could be a novel target of rottlerin. In line with this, over-expression of Cdc20 decreased rottlerin-induced cell growth inhibition and apoptosis, whereas down-regulation of Cdc20 by its shRNA promotes rottlerin-induced anti-tumor activity. Our findings indicted that rottlerin could exert its tumor suppressive function by inhibiting Cdc20 pathway which is constitutively active in glioma cells. Therefore, down-regulation of Cdc20 by rottlerin could be a promising therapeutic strategy for the treatment of glioma. PMID:27626499

  8. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    SciTech Connect

    Wang Zuguang; Chen Hong

    2009-01-23

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear {beta}-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  9. Suppressor of cytokine signaling (SOCS) 1 is down-regulated in renal transplant recipients with rejection.

    PubMed

    Wu, Tsai-Hung; Lee, Hui-Ting; Lai, Chien-Chih; Yang, An-Hang; Loong, Che-Chuan; Wang, Hsin-Kai; Yu, Chia-Li; Tsai, Chang-Youh

    2016-09-01

    The role of suppressor of cytokine signaling (SOCS) in maintaining the immunotolerance of renal allograft is unknown. To clarify this, peripheral blood mononuclear cells (PBMCs) from renal transplant patients with or without rejection were analyzed for the expression of SOCS family proteins by cell culture, immunoblot, flowcytometry and quantitative reverse transcription-polymerase chain reaction (qPCR). Patients with renal graft rejection expressed lower levels of SOCS1 while those without rejection showed a higher SOCS1 expression in the PBMC either on stimulation or not. In addition, SOCS1 was constitutively expressed in normal individuals as well as renal transplant patients with graft tolerance while patients with rejection exhibited down-regulation of the SOCS1 but not SOCS3. The qPCR tests and flowcytometric measurements have also showed that the reduction of SOCS1 expression in rejection could be quantitatively evaluated. These results have suggested that down-regulation of SOCS1 may be regarded as a biomarker for early detection of renal allograft rejection.

  10. Effects of p21 Gene Down-Regulation through RNAi on Antler Stem Cells In Vitro

    PubMed Central

    Guo, Qianqian; Wang, Datao; Liu, Zhen; Li, Chunyi

    2015-01-01

    Cell cycle is an integral part of cell proliferation, and consists mainly of four phases, G1, S, G2 and M. The p21 protein, a cyclin dependent kinase inhibitor, plays a key role in regulating cell cyclevia G1 phase control. Cells capable of epimorphic regeneration have G2/M accumulation as their distinctive feature, whilst the majority of somatic cells rest at G1 phase. To investigate the role played byp21 in antler regeneration, we studied the cell cycle distribution of antler stem cells (ASCs), via down-regulation of p21 in vitro using RNAi. The results showed that ASCs had high levels of p21 mRNA expression and rested at G1 phase, which was comparable to the control somatic cells. Down-regulation of p21 did not result in ASC cell cycle re-distribution toward G2/M accumulation, but DNA damage and apoptosis of the ASCs significantly increased and the process of cell aging was slowed. These findings suggest that the ASCs may have evolved to use an alternative, p21-independent cell cycle regulation mechanism. Also a unique p21-dependent inhibitory effect may control DNA damage as a protective mechanism to ensure the fast proliferating ASCs do not become dysplastic/cancerous. Understanding of the mechanism underlying the role played by p21 in the ASCs could give insight into a mammalian system where epimorphic regeneration is initiated whilst the genome stability is effectively maintained. PMID:26308075

  11. Surfactant prevents quartz induced down-regulation of complement receptor 1 in human granulocytes.

    PubMed

    Zetterberg, G; Lundahl, J; Curstedt, T; Eklund, A

    1997-02-01

    Quartz is known to induce an inflammatory response in the alveolar space by recruitment of different effector cells. We investigated the interaction between granulocytes and quartz with respect to expression of complement receptor type 1 (CR1) and CR3, with and without the presence of surfactant. Granulocytes from hemolyzed blood were stimulated by N-formyl-methionyl-leucyl-phenylalanine (fMLP), which mobilize the intracellular pool of CR1 to the surface, and the mean fluorescence intensity (MFI) measured by cytofluorometry was 47.4 (46-63.6) (median; interquartile range). Quartz exposure reduced the CR1 expression to 23.2 (22.8-30.6) MFI units (P < 0.01), a porcine surfactant preparation added during quartz exposure abolished the down-regulation completely, 47.7 (43.2-62.3) MFI units (P < 0.001). Similar results were obtained after preincubation of the cells with surfactant followed by quartz exposure. No significant influence on CR1 expression was found by a synthetic lipid mixture, nor was the CR3 expression affected. In conclusion, this study demonstrates that the presence of surfactant inhibits quartz induced down-regulation of CR1 on activated granulocytes.

  12. Cryptotanshinone targets tumor-initiating cells through down-regulation of stemness genes expression

    PubMed Central

    ZHANG, YING; CABARCAS, STEPHANIE M.; ZHENG, JI; SUN, LEI; MATHEWS, LESLEY A.; ZHANG, XIAOHU; LIN, HONGSHENG; FARRAR, WILLIAM L.

    2016-01-01

    Recent evidence indicates that tumor-initiating cells (TICs), also called cancer stem cells (CSCs), are responsible for tumor initiation and progression, therefore representing an important cell population that may be used as a target for the development of future anticancer therapies. In the present study, Cryptotanshinone (CT), a traditional Chinese herbal medicine, was demonstrated to regulate the behaviors of LNCaP prostate cells and prostate LNCaP TICs. The results demonstrate that treatment with CT alters cellular proliferation, cell cycle status, migration, viability, colony formation and notably, sphere formation and down-regulation of stemness genes (Nanog, OCT4, SOX2, β-catenin, CXCR4) in TICs. The present study demonstrates that CT targets the LNCaP CD44+CD24- population that is representative of prostate TICs and also affects total LNCaP cells as well via down-regulation of stemness genes. The strong effect with which CT has on prostate TICs suggests that CT may potentially function as a novel natural anticancer agent that specifically targets TICs. PMID:27313698

  13. Down-regulation of endogenous KLHL1 decreases voltage-gated calcium current density.

    PubMed

    Perissinotti, Paula P; Ethington, Elizabeth G; Cribbs, Leanne; Koob, Michael D; Martin, Jody; Piedras-Rentería, Erika S

    2014-05-01

    The actin-binding protein Kelch-like 1 (KLHL1) can modulate voltage-gated calcium channels in vitro. KLHL1 interacts with actin and with the pore-forming subunits of Cav2.1 and CaV3.2 calcium channels, resulting in up-regulation of P/Q and T-type current density. Here we tested whether endogenous KLHL1 modulates voltage gated calcium currents in cultured hippocampal neurons by down-regulating the expression of KLHL1 via adenoviral delivery of shRNA targeted against KLHL1 (shKLHL1). Control adenoviruses did not affect any of the neuronal properties measured, yet down-regulation of KLHL1 resulted in HVA current densities ~68% smaller and LVA current densities 44% smaller than uninfected controls, with a concomitant reduction in α(1A) and α(1H) protein levels. Biophysical analysis and western blot experiments suggest Ca(V)3.1 and 3.3 currents are also present in shKLHL1-infected neurons. Synapsin I levels, miniature postsynaptic current frequency, and excitatory and inhibitory synapse number were reduced in KLHL1 knockdown. This study corroborates the physiological role of KLHL1 as a calcium channel modulator and demonstrates a novel, presynaptic role.

  14. Dysregulation of Ack1 inhibits down-regulation of the EGF receptor

    SciTech Connect

    Grovdal, Lene Melsaether; Johannessen, Lene E.; Rodland, Marianne Skeie; Madshus, Inger Helene; Stang, Espen

    2008-04-01

    The protein tyrosine kinase Ack1 has been linked to cancer when over-expressed. Ack1 has also been suggested to function in clathrin-mediated endocytosis and in down-regulation of the epidermal growth factor (EGF) receptor (EGFR). We have studied the intracellular localization of over-expressed Ack1 and found that Ack1 co-localizes with the EGFR upon EGF-induced endocytosis in cells with moderate over-expression of Ack. This co-localization is mainly observed in early endosomes. Furthermore, we found that over-expression of Ack1 retained the EGFR at the limiting membrane of early endosomes, inhibiting sorting to inner vesicles of multivesicular bodies. Down-regulation of Ack1 in HeLa cells resulted in reduced rate of {sup 125}I-EGF internalization, whereas internalization of {sup 125}I-transferrin was not affected. In cells where Ack1 had been knocked down by siRNA, recycling of internalized {sup 125}I-EGF was increased, while degradation of {sup 125}I-EGF was inhibited. Together, these data suggest that Ack1 is involved in an early step of EGFR desensitization.

  15. Down-regulation of Cdc6, a cell cycle regulatory gene, in prostate cancer.

    PubMed

    Robles, Liza D; Frost, Andra R; Davila, Monica; Hutson, Alan D; Grizzle, William E; Chakrabarti, Ratna

    2002-07-12

    CDC6 plays a critical role in regulation of the onset of DNA replication in eukaryotic cells. We have found that Cdc6 expression is down-regulated in prostate cancer as detected by semiquantitative reverse transcriptase-PCR of prostate cell lines and laser-captured microdissected prostate tissues. This result was substantiated by immunohistochemical analysis of paraffin-embedded tissue sections and immunoblot analysis of benign (BPH-1) and adenocarcinomatous prostatic cells. Furthermore, a 100-fold reduction in the transcription efficiency of the Cdc6 promoter-luciferase construct was noted in the metastatic PC3 cells compared with that in BPH-1 cells. Concentration of the E2F and Oct1 transcription factors that have putative binding sites in the Cdc6 promoter was substantially low in PC3 cells compared with BPH cells. Mutagenesis of the two E2F binding sites on the Cdc6 promoter resulted in increased promoter activity in PC3 cells owing to elimination of the negative regulation by pRb.E2F complex but not to the level of that obtained in BPH cells. We conclude that an altered interaction of transcription factors may be responsible for the down-regulation of Cdc6 transcription in PC3 cells. Our study suggests a potential use of the lack of CDC6 expression as an index of prostate cancer development.

  16. Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2

    NASA Astrophysics Data System (ADS)

    Deng, Q.; Hui, D.; Luo, Y.; Elser, J. J.; Wang, Y.; Loladze, I.; Zhang, Q.; Dennis, S.

    2015-12-01

    Increasing atmospheric CO2 concentrations generally alter element stoichiometry in plants. However, a comprehensive evaluation of the elevated CO2 impact on plant nitrogen:phosphorus (N:P) ratios and the underlying mechanism has not been conducted. We synthesized the results from 112 previously published studies using meta-analysis to evaluate the effects of elevated CO2 on the N:P ratio of terrestrial plants and to explore the underlying mechanism based on plant growth and soil P dynamics. Our results show that terrestrial plants grown under elevated CO2 had lower N:P ratios in both above- and below-ground biomass across different ecosystem types. The response ratio for plant N:P was negatively correlated with the response ratio for plant growth in croplands and grasslands, and showed a stronger relationship for P than for N. In addition, the CO2-induced down-regulation of plant N:P was accompanied by 19.3% and 4.2% increases in soil phosphatase activity and labile P, respectively, and a 10.1% decrease in total soil P. Our results show that down-regulation of plant N:P under elevated CO2 corresponds with accelerated soil P cycling. These findings should be useful for better understanding of terrestrial plant stoichiometry in response to elevated CO2 and of the underlying mechanisms affecting nutrient dynamics under climate change.

  17. Bacterial lipopolysaccharide down-regulates expression of GTP cyclohydrolase I feedback regulatory protein.

    PubMed

    Werner, Ernst R; Bahrami, Soheyl; Heller, Regine; Werner-Felmayer, Gabriele

    2002-03-22

    GTP cyclohydrolase I feedback regulatory protein (GFRP) is a 9.7-kDa protein regulating GTP cyclohydrolase I activity in dependence of tetrahydrobiopterin and phenylalanine concentrations, thus enabling stimulation of tetrahydrobiopterin biosynthesis by phenylalanine to ensure its efficient metabolism by phenylalanine hydroxylase. Here, we were interested in regulation of GFRP expression by proinflammatory cytokines and stimuli, which are known to induce GTP cyclohydrolase I expression. Recombinant human GFRP stimulated recombinant human GTP cyclohydrolase I in the presence of phenylalanine and mediated feedback inhibition by tetrahydrobiopterin. Levels of GFRP mRNA in human myelomonocytoma (THP-1) cells remained unaltered by treatment of cells with interferon-gamma or interleukin-1beta, but were significantly down-regulated by bacterial lipopolysaccharide (LPS, 1 microg/ml), without or with cotreatment by interferon-gamma, which strongly up-regulated GTP cyclohydrolase I expression and activity. GFRP expression was also suppressed in human umbilical vein endothelial cells treated with 1 microg/ml LPS, as well as in rat tissues 7 h post intraperitoneal injection of 10 mg/kg LPS. THP-1 cells stimulated with interferon-gamma alone showed increased pteridine synthesis by addition of phenylalanine to the culture medium. Cells stimulated with interferon-gamma plus LPS, in contrast, showed phenylalanine-independent pteridine synthesis. These results demonstrate that LPS down-regulates expression of GFRP, thus rendering pteridine synthesis independent of metabolic control by phenylalanine.

  18. Cell wall modifications triggered by the down-regulation of Coumarate 3-hydroxylase-1 in maize.

    PubMed

    Fornalé, Silvia; Rencoret, Jorge; Garcia-Calvo, Laura; Capellades, Montserrat; Encina, Antonio; Santiago, Rogelio; Rigau, Joan; Gutiérrez, Ana; Del Río, José-Carlos; Caparros-Ruiz, David

    2015-07-01

    Coumarate 3-hydroxylase (C3H) catalyzes a key step of the synthesis of the two main lignin subunits, guaiacyl (G) and syringyl (S) in dicotyledonous species. As no functional data are available in regards to this enzyme in monocotyledonous species, we generated C3H1 knock-down maize plants. The results obtained indicate that C3H1 participates in lignin biosynthesis as its down-regulation redirects the phenylpropanoid flux: as a result, increased amounts of p-hydroxyphenyl (H) units, lignin-associated ferulates and the flavone tricin were detected in transgenic stems cell walls. Altogether, these changes make stem cell walls more degradable in the most C3H1-repressed plants, despite their unaltered polysaccharide content. The increase in H monomers is moderate compared to C3H deficient Arabidopsis and alfalfa plants. This could be due to the existence of a second maize C3H protein (C3H2) that can compensate the reduced levels of C3H1 in these C3H1-RNAi maize plants. The reduced expression of C3H1 alters the macroscopic phenotype of the plants, whose growth is inhibited proportionally to the extent of C3H1 repression. Finally, the down-regulation of C3H1 also increases the synthesis of flavonoids, leading to the accumulation of anthocyanins in transgenic leaves.

  19. Phosphorylation-dependent down-regulation of apolipoprotein A5 by insulin

    SciTech Connect

    Nowak, Maxine; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Rommens, Corinne; Martin, Genevieve; Duran-Sandoval, Daniel; Staels, Bart; Rubin, Edward M.; Pennacchio, Len A.; Taskinen, Marja-Riitta; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2004-02-15

    The apolipoprotein A5 (APOA5) gene has been shown to be important in lowering plasma triglyceride levels. Since several studies have shown that hyperinsulinemia is associated with hypertriglyceridemia, we sought to determine whether APOA5 gene is regulated by insulin. We show here that cell and mouse treatments with insulin down-regulated APOA5 expression in a dose-dependent manner. Furthermore, we determined that insulin decreases APOA5 promoter activity and subsequent deletion analyses revealed an E-box-containing fragment. We showed that Upstream Stimulatory Factors, USF1/USF2, bind to the identified E-box in the APOA5 promoter. Moreover, in cotransfection studies, USF1 stimulates APOA5 promoter activity. The treatment with insulin reduces the binding of USF1/USF2 to APOA5 promoter. The inhibition of PI3K pathway with wortmannin abolished the insulin s effect on APOA5 gene transcription. Using oligoprecipitation method of USF from nuclear extracts, we demonstrated that phosphorylated USF1 failed to bind to APOA5 promoter. This indicates that the APOA5 gene transrepression by insulin involves a phosphorylation of USF through PI3K, that modulate their binding to APOA5 promoter and results in APOA5 down-regulation. The effect of exogenous hyperinsulinemia in healthy men shows a decrease of the plasma ApoAV level. These data suggest a potential mechanism involving APOA5 gene in hypertriglyceridemia associated with hyperinsulinemia.

  20. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    SciTech Connect

    Silva, Patricio; Soto, Nicolás; Díaz, Jorge; Mendoza, Pablo; Díaz, Natalia; Quest, Andrew F.G.; Torres, Vicente A.

    2015-08-21

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo.

  1. Down-regulation of β3-integrin inhibits bone metastasis of small cell lung cancer.

    PubMed

    Li, Na; Zhang, Jian-ping; Guo, Shan; Min, Jie; Liu, Li-li; Su, Hai-chuan; Feng, Ying-ming; Zhang, He-long

    2012-03-01

    Bone is one of the most frequent targets of small cell lung cancer (SCLC) metastasis, but the molecular mechanism remains unclear. β3-integrin plays an important role in invasion of various kinds of tumors. Yet, its role in bone-metastasis of SCLC is still unknown. In this study, we first examined the expression of β3-integrin in SBC-5 and SBC-3 cells by real-time PCR, western blot and immunofluorescence. We found that, compared to none bone-metastatic SBC-3 cells, β3-integrin was highly expressed in SBC-5 cells, a specific bone-metastatic SCLC cells line characterized in our previous study. We next constructed β3-integrin siRNA and transfected SBC-5 cell line, and found that β3-integrin siRNA significantly down-regulated the β3-integrin mRNA level and protein expression in SBC-5 cell line. We further found that inhibition of β3-integrin significantly reduced tumor cell proliferation and induced apoptosis. In addition, the β3-integrin down-regulated cells presented significant decrease in cell adhesion, migration and invasion activity. Our results suggest the β3-integrin has an essential effect on tumor cell proliferation and progression, and may be a potential therapeutic target for the prevention of skeletal metastases of lung cancer.

  2. Down-regulation of pancreatic transcription factors and incretin receptors in type 2 diabetes

    PubMed Central

    Kaneto, Hideaki; Matsuoka, Taka-aki

    2013-01-01

    Type 2 diabetes is one of the most prevalent and serious metabolic diseases. Under diabetic conditions, chronic hyperglycemia and subsequent induction of oxidative stress deteriorate pancreatic β-cell function, which leads to the aggravation of type 2 diabetes. Although such phenomena are well known as glucose toxicity, its molecular mechanism remains unclear. In this review article, we describe the possible molecular mechanism for β-cell dysfunction found in type 2 diabetes, focusing on (1) oxidative stress, (2) pancreatic transcription factors (PDX-1 and MafA) and (3) incretin receptors (GLP-1 and GIP receptors). Under such conditions, nuclear expression levels of PDX-1 and MafA are decreased, which leads to suppression of insulin biosynthesis and secretion. In addition, expression levels of GLP-1 and GIP receptors are decreased, which likely contributes to the impaired incretin effects found in diabetes. Taken together, it is likely that down-regulation of pancreatic transcription factors (PDX-1 and MafA) and down-regulation of incretin receptors (GLP-1 and GIP receptors) explain, at least in part, the molecular mechanism for β-cell dysfunction found in type 2 diabetes. PMID:24379916

  3. Hypoxic Stress Facilitates Acute Activation and Chronic Down-Regulation of Fanconi Anemia Proteins

    PubMed Central

    Scanlon, Susan E.; Glazer, Peter M.

    2014-01-01

    Hypoxia induces genomic instability through replication stress and dysregulation of vital DNA repair pathways. The Fanconi anemia (FA) proteins, FANCD2 and FANCI, are key members of a DNA repair pathway that responds to replicative stress, suggesting that they undergo regulation by hypoxic conditions. Here acute hypoxic stress activates the FA pathway via ubiquitination of FANCD2 and FANCI in an ATR-dependent manner. In addition, the presence of an intact FA pathway is required for preventing hypoxia-induced DNA damage measurable by the comet assay, limiting the accumulation of γH2AX (a marker of DNA damage or stalled replication), and protecting cells from hypoxia-induced apoptosis. Furthermore, prolonged hypoxia induces transcriptional repression of FANCD2 in a manner analogous to the hypoxic down-regulation of BRCA1 and RAD51. Thus, hypoxia-induced FA pathway activation plays a key role in maintaining genome integrity and cell survival, while FA protein down-regulation with prolonged hypoxia contributes to genomic instability. PMID:24688021

  4. Down-regulation of tumor necrosis factor receptors by blockade of mitochondrial respiration.

    PubMed

    Sánchez-Alcázar, J A; Hernández, I; De la Torre, M P; García, I; Santiago, E; Muñoz-Yagüe, M T; Solís-Herruzo, J A

    1995-10-13

    We have studied the effect of blockade of mitochondrial respiration on the binding of human 125I-TNF alpha to L929 cell receptors. Specific TNF alpha binding was decreased to about 20-40% of controls by blocking mitochondrial respiration. This effect was dose- and time-related and was observed independently of the level at which the respiration was blocked (respiratory chain, proton backflow, ATPase, anaerobiosis). This blockade had no effect on the half-life of the specific TNF alpha binding, the internalization or degradation of TNF alpha-receptor complexes, or the number of TNF alpha-binding sites. Scatchard analysis of TNF alpha binding data indicated a 2-4-fold decrease in the affinity of these binding sites. These effects did not appear to be related to the protein kinase C activity or to reactive oxygen radicals, since they were not antagonized by pretreatment of cells with oxygen radical scavengers, deferoxamine, or inhibitors of protein kinase C. Decrease in TNF alpha binding capacity correlated significantly with cellular ATP content (r = 0.94; p < 0.01) and with the cytocidal activity of TNF alpha against L929 cells. These findings suggest that blockade of mitochondrial respiration down-regulates the binding of TNF alpha to cells, most likely by changing the affinity of receptors for this cytokine. This down-regulation may increase the resistance of cells to TNF alpha cytotoxicity.

  5. Down-Regulation of the Met Receptor Tyrosine Kinase by Presenilin-dependent Regulated Intramembrane Proteolysis

    PubMed Central

    Foveau, Bénédicte; Ancot, Frédéric; Leroy, Catherine; Petrelli, Annalisa; Reiss, Karina; Vingtdeux, Valérie; Giordano, Silvia; Fafeur, Véronique

    2009-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) acts through the membrane-anchored Met receptor tyrosine kinase to induce invasive growth. Deregulation of this signaling is associated with tumorigenesis and involves, in most cases, overexpression of the receptor. We demonstrate that Met is processed in epithelial cells by presenilin-dependent regulated intramembrane proteolysis (PS-RIP) independently of ligand stimulation. The proteolytic process involves sequential cleavage by metalloproteases and the γ-secretase complex, leading to generation of labile fragments. In normal epithelial cells, although expression of cleavable Met by PS-RIP is down-regulated, uncleavable Met displayed membrane accumulation and induced ligand-independent motility and morphogenesis. Inversely, in transformed cells, the Met inhibitory antibody DN30 is able to promote Met PS-RIP, resulting in down-regulation of the receptor and inhibition of the Met-dependent invasive growth. This demonstrates the original involvement of a proteolytic process in degradation of the Met receptor implicated in negative regulation of invasive growth. PMID:19297528

  6. Terpene down-regulation triggers defense responses in transgenic orange leading to resistance against fungal pathogens.

    PubMed

    Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Alquézar, Berta; Gadea, José; Gómez-Cadenas, Aurelio; De Ollas, Carlos José; Rodrigo, María Jesús; Zacarías, Lorenzo; Peña, Leandro

    2014-01-01

    Terpenoid volatiles are isoprene compounds that are emitted by plants to communicate with the environment. In addition to their function in repelling herbivores and attracting carnivorous predators in green tissues, the presumed primary function of terpenoid volatiles released from mature fruits is the attraction of seed-dispersing animals. Mature oranges (Citrus sinensis) primarily accumulate terpenes in peel oil glands, with d-limonene accounting for approximately 97% of the total volatile terpenes. In a previous report, we showed that down-regulation of a d-limonene synthase gene alters monoterpene levels in orange antisense (AS) fruits, leading to resistance against Penicillium digitatum infection. A global gene expression analysis of AS versus empty vector (EV) transgenic fruits revealed that the down-regulation of d-limonene up-regulated genes involved in the innate immune response. Basal levels of jasmonic acid were substantially higher in the EV compared with AS oranges. Upon fungal challenge, salicylic acid levels were triggered in EV samples, while jasmonic acid metabolism and signaling were drastically increased in AS orange peels. In nature, d-limonene levels increase in orange fruit once the seeds are fully viable. The inverse correlation between the increase in d-limonene content and the decrease in the defense response suggests that d-limonene promotes infection by microorganisms that are likely involved in facilitating access to the pulp for seed-dispersing frugivores.

  7. High glucose induces dysfunction of airway epithelial barrier through down-regulation of connexin 43.

    PubMed

    Yu, Hongmei; Yang, Juan; Zhou, Xiangdong; Xiao, Qian; Lü, Yang; Xia, Li

    2016-03-01

    The airway epithelium is a barrier to the inhaled antigens and pathogens. Connexin 43 (Cx43) has been found to play critical role in maintaining the function of airway epithelial barrier and be involved in the pathogenesis of the diabetic retinal vasculature, diabetes nephropathy and diabetes skin. Hyperglycemia has been shown to be an independent risk factor for respiratory infections. We hypothesize that the down-regulation of Cx43 induced by HG alters the expression of tight junctions (zonula occludens-1 (ZO-1) and occludin) and contributes to dysfunction of airway epithelial barrier, and Cx43 plays a critical role in the process in human airway epithelial cells (16 HBE). We show that high glucose (HG) decreased the expression of ZO-1 and occludin, disassociated interaction between Cx43 and tight junctions, and then increased airway epithelial transepithelial electrical resistance (TER) and permeability by down-regulation of Cx43 in human airway epithelial cells. These observations demonstrate an important role for Cx43 in regulating HG-induced dysfunction of airway epithelial barrier. These findings may bring new insights into the molecular pathogenesis of pulmonary infection related to diabetes mellitus and lead to novel therapeutic intervention for the dysfunction of airway epithelial barrier in chronic inflammatory airway diseases.

  8. Computational evaluation of new homologous down regulators of Translationally Controlled Tumor Protein (TCTP) targeted for tumor reversion.

    PubMed

    Nayarisseri, Anuraj; Yadav, Mukesh; Wishard, Rohan

    2013-12-01

    The Translationally Controlled Tumor Protein (TCTP) has been investigated for tumor reversion and is a target of cancer therapy. Down regulators which suppress the expression of TCTP can trigger the process of tumor reversion leading to the transformation of tumor cells into revertant cells. The present investigation is a novel protein-protein docking approach to target TCTP by a set of proteins similar to the protein: sorting nexin 6 (SNX6) which is an established down regulator of TCTP. The established down regulator along with its set of most similar proteins were modeled using the PYTHON based software - MODELLER v9.9, followed by structure validation using the Procheck Package. Further TCTP was docked with its established and prospective down regulators using the flexible docking protocol suite HADDOCK. The results were evaluated and ranked according to the RMSD values of the complex and the HADDOCK score, which is a weighted sum of van der Waal's energy, electrostatic energy, restraints violation energy and desolvation energy. Results concluded the protein sorting nexin 6 of Mus musculus to be a better down regulator of TCTP, as compared to the suggested down regulator (Homo sapiens snx6).

  9. Rapamycin inhibits BAFF-stimulated cell proliferation and survival by suppressing mTOR-mediated PP2A-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells.

    PubMed

    Zeng, Qingyu; Zhang, Hai; Qin, Jiamin; Xu, Zhigang; Gui, Lin; Liu, Beibei; Liu, Chunxiao; Xu, Chong; Liu, Wen; Zhang, Shuangquan; Huang, Shile; Chen, Long

    2015-12-01

    B-cell activating factor (BAFF) is involved in not only physiology of normal B cells, but also pathophysiology of aggressive B cells related to malignant and autoimmune diseases. Rapamycin, a lipophilic macrolide antibiotic, has recently shown to be effective in the treatment of human lupus erythematosus. However, how rapamycin inhibits BAFF-stimulated B-cell proliferation and survival has not been fully elucidated. Here, we show that rapamycin inhibited human soluble BAFF (hsBAFF)-induced cell proliferation and survival in normal and B-lymphoid (Raji and Daudi) cells by activation of PP2A and inactivation of Erk1/2. Pretreatment with PD98059, down-regulation of Erk1/2, expression of dominant negative MKK1, or overexpression of wild-type PP2A potentiated rapamycin's suppression of hsBAFF-activated Erk1/2 and B-cell proliferation/viability, whereas expression of constitutively active MKK1, inhibition of PP2A by okadaic acid, or expression of dominant negative PP2A attenuated the inhibitory effects of rapamycin. Furthermore, expression of a rapamycin-resistant and kinase-active mTOR (mTOR-T), but not a rapamycin-resistant and kinase-dead mTOR-T (mTOR-TE), conferred resistance to rapamycin's effects on PP2A, Erk1/2 and B-cell proliferation/viability, implying mTOR-dependent mechanism involved. The findings indicate that rapamycin inhibits BAFF-stimulated cell proliferation/survival by targeting mTOR-mediated PP2A-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells. Our data highlight that rapamycin may be exploited for preventing excessive BAFF-induced aggressive B-cell malignancies and autoimmune diseases.

  10. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Crespo, José L; Díaz-Troya, Sandra; Florencio, Francisco J

    2005-12-01

    The macrolide rapamycin specifically binds the 12-kD FK506-binding protein (FKBP12), and this complex potently inhibits the target of rapamycin (TOR) kinase. The identification of TOR in Arabidopsis (Arabidopsis thaliana) revealed that TOR is conserved in photosynthetic eukaryotes. However, research on TOR signaling in plants has been hampered by the natural resistance of plants to rapamycin. Here, we report TOR inactivation by rapamycin treatment in a photosynthetic organism. We identified and characterized TOR and FKBP12 homologs in the unicellular green alga Chlamydomonas reinhardtii. Whereas growth of wild-type Chlamydomonas cells is sensitive to rapamycin, cells lacking FKBP12 are fully resistant to the drug, indicating that this protein mediates rapamycin action to inhibit cell growth. Unlike its plant homolog, Chlamydomonas FKBP12 exhibits high affinity to rapamycin in vivo, which was increased by mutation of conserved residues in the drug-binding pocket. Furthermore, pull-down assays demonstrated that TOR binds FKBP12 in the presence of rapamycin. Finally, rapamycin treatment resulted in a pronounced increase of vacuole size that resembled autophagic-like processes. Thus, our findings suggest that Chlamydomonas cell growth is positively controlled by a conserved TOR kinase and establish this unicellular alga as a useful model system for studying TOR signaling in photosynthetic eukaryotes.

  11. Royal jelly reduces melanin synthesis through down-regulation of tyrosinase expression.

    PubMed

    Han, Sang Mi; Yeo, Joo Hong; Cho, Yoon Hee; Pak, Sok Cheon

    2011-01-01

    For cosmetic reasons, the demand for effective and safe skin-whitening agents is high. Since the key enzyme in the melanin synthetic pathway is tyrosinase, many depigmenting agents in the treatment of hyperpigmentation act as tyrosinase inhibitors. In this study, we have investigated the hypo-pigmentary mechanism of royal jelly in a mouse melanocyte cell line, B16F1. Treatment of B16F1 cells with royal jelly markedly inhibited melanin biosynthesis in a dose-dependent manner. Decreased melanin content occurred through the decrease of tyrosinase activity. The mRNA levels of tyrosinase were also reduced by royal jelly. These results suggest that royal jelly reduces melanin synthesis by down-regulation of tyrosinase mRNA transcription and serves as a new candidate in the design of new skin-whitening or therapeutic agents.

  12. Matrix rigidity activates Wnt signaling through down-regulation of Dickkopf-1 protein.

    PubMed

    Barbolina, Maria V; Liu, Yiuying; Gurler, Hilal; Kim, Mijung; Kajdacsy-Balla, Andre A; Rooper, Lisa; Shepard, Jaclyn; Weiss, Michael; Shea, Lonnie D; Penzes, Peter; Ravosa, Matthew J; Stack, M Sharon

    2013-01-04

    Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear β-catenin and enhanced β-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling.

  13. Matrix Rigidity Activates Wnt Signaling through Down-regulation of Dickkopf-1 Protein*

    PubMed Central

    Barbolina, Maria V.; Liu, Yiuying; Gurler, Hilal; Kim, Mijung; Kajdacsy-Balla, Andre A.; Rooper, Lisa; Shepard, Jaclyn; Weiss, Michael; Shea, Lonnie D.; Penzes, Peter; Ravosa, Matthew J.; Stack, M. Sharon

    2013-01-01

    Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear β-catenin and enhanced β-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling. PMID:23152495

  14. Natural polyphenols down-regulate universal stress protein in Mycobacterium tuberculosis: An in-silico approach

    PubMed Central

    Aanandhi, M. Vijey; Bhattacherjee, Debojit; George, P. Samuel Gideon; Ray, Anirban

    2014-01-01

    Universal stress protein (USP) is a novel target to overcome the tuberculosis resistance. Our present study enlightens the possibilities of some natural polyphenols as an antioxidant for USP. The study has shown some molecular simulations of some selected natural antioxidants with USP. We have considered USP (Rv1636) strain for homology modeling and the selected template was taken for the docking study. Curcumin, catechin, reservetrol has shown ARG 136 (1.8Å) hydrogen bonding and two ionic bonding with carboxyl group of curcumin with LEU 130 (3.3Å) and ASN 144 (3.4Å) respectively. INH was taken for the standard molecule to perform molecular simulation. It showed poor binding interaction with the target, that is, −5.18 kcal, and two hydrogen bonding with SER 140 (1.887Å), ARG 147 (2.064Å) respectively. The study indicates possible new generation curcumin analogue for future therapy to down-regulate USP. PMID:25364695

  15. Down-regulation of the rat serotonin transporter upon exposure to a selective serotonin reuptake inhibitor.

    PubMed

    Horschitz, S; Hummerich, R; Schloss, P

    2001-07-20

    The serotonin transporter (SERT) terminates serotonergic neurotransmission by rapid reuptake of 5-hydroxytryptamine (5-HT) into the nerve terminal or axonal varicosities. SERT represents the target of various antidepressants which inhibit 5-HT transport and are widely used for the pharmacotherapy of depression. Here, we have analyzed the function of SERT stably expressed in HEK 293 cells upon exposure to citalopram, a selective serotonin reuptake inhibitor (SSRI), with respect to 5-HT transport activity and protein expression as estimated by ligand binding experiments. Our results show that long-term exposure to an SSRI causes a down-regulation of transport activity as revealed by a reduction of the maximal transport rate, without affecting substrate affinity, accompanied by a decrease in ligand binding sites.

  16. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    SciTech Connect

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo . E-mail: miyazawa@biochem.tohoku.ac.jp

    2006-09-15

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with {delta}-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol.

  17. Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass

    DOE PAGES

    Li, Mi; Pu, Yunqiao; Yoo, Chang Geun; ...

    2017-01-03

    The native recalcitrance of plants hinders the biomass conversion process using current biorefinery techniques. Down-regulation of the caffeic acid O-methyltransferase (COMT) gene in the lignin biosynthesis pathway of switchgrass reduced the thermochemical and biochemical conversion recalcitrance of biomass. Due to potential environmental influences on lignin biosynthesis and deposition, studying the consequences of physicochemical changes in field-grown plants without pretreatment is essential to evaluate the performance of lignin-altered plants. In this study, we determined the chemical composition, cellulose crystallinity and the degree of its polymerization, molecular weight of hemicellulose, and cellulose accessibility of cell walls in order to better understand themore » fundamental features of why biomass is recalcitrant to conversion without pretreatment. The most important is to investigate whether traits and features are stable in the dynamics of field environmental effects over multiple years.« less

  18. p53 and rapamycin are additive

    PubMed Central

    Campisi, Judith; Huang, Jing; Jones, Diane; Dodds, Sherry G.; Williams, Charnae; Hubbard, Gene; Livi, Carolina B.; Gao, Xiaoli; Weintraub, Susan; Curiel, Tyler; Sharp, Z. Dave; Hasty, Paul

    2015-01-01

    Mechanistic target of rapamycin (mTOR) is a kinase found in a complex (mTORC1) that enables macromolecular synthesis and cell growth and is implicated in cancer etiology. The rapamycin-FK506 binding protein 12 (FKBP12) complex allosterically inhibits mTORC1. In response to stress, p53 inhibits mTORC1 through a separate pathway involving cell signaling and amino acid sensing. Thus, these different mechanisms could be additive. Here we show that p53 improved the ability of rapamycin to: 1) extend mouse life span, 2) suppress ionizing radiation (IR)-induced senescence-associated secretory phenotype (SASP) and 3) increase the levels of amino acids and citric acid in mouse embryonic stem (ES) cells. This additive effect could have implications for cancer treatment since rapamycin and p53 are anti-oncogenic. PMID:26158292

  19. Down-regulation of NDRG1 promotes migration of cancer cells during reoxygenation.

    PubMed

    Lai, Liang-Chuan; Su, Yi-Yu; Chen, Kuo-Chih; Tsai, Mong-Hsun; Sher, Yuh-Pyng; Lu, Tzu-Pin; Lee, Chien-Yueh; Chuang, Eric Y

    2011-01-01

    One characteristic of tumor microenvironment is oxygen fluctuation, which results from hyper-proliferation and abnormal metabolism of tumor cells as well as disorganized neo-vasculature. Reoxygenation of tumors can induce oxidative stress, which leads to DNA damage and genomic instability. Although the cellular responses to hypoxia are well known, little is known about the dynamic response upon reoxygenation. In order to investigate the transcriptional responses of tumor adaptation to reoxygenation, breast cancer MCF-7 cells were cultured under 0.5% oxygen for 24 h followed by 24 h of reoxygenation in normoxia. Cells were harvested at 0, 1, 4, 8, 12, and 24 h during reoxygenation. The transcriptional profile of MCF-7 cells upon reoxygenation was examined using Illumina Human-6 v3 BeadChips. We identified 127 differentially expressed genes, of which 53.1% were up-regulated and 46.9% were down-regulated upon reoxygenation. Pathway analysis revealed that the HIF-1-alpha transcription factor network and validated targets of C-MYC transcriptional activation were significantly enriched in these differentially expressed genes. Among these genes, a subset of interest genes was further validated by quantitative reverse-transcription PCR. In particular, human N-MYC down-regulated gene 1 (NDRG1) was highly suppressed upon reoxygenation. NDRG1 is associated with a variety of stress and cell growth-regulatory conditions. To determine whether NDRG1 plays a role in reoxygenation, NDRG1 protein was overexpressed in MCF-7 cells. Upon reoxygenation, overexpression of NDRG1 significantly inhibited cell migration. Our results revealed the dynamic nature of gene expression in MCF-7 cells upon reoxygenation and demonstrated that NDRG1 is involved in tumor adaptation to reoxygenation.

  20. Dorsal Raphe Nucleus Down-Regulates Medial Prefrontal Cortex during Experience of Flow.

    PubMed

    Ulrich, Martin; Keller, Johannes; Grön, Georg

    2016-01-01

    Previous neuroimaging studies have suggested that the experience of flow aligns with a relative increase in activation of the dorsal raphe nucleus (DRN), and relative activation decreases of the medial prefrontal cortex (MPFC) and of the amygdala (AMY). In the present study, Dynamic Causal Modeling (DCM) was used to explore effective connectivity between those brain regions. To test our hypothesis that the DRN causally down-regulates activity of the MPFC and/or of the AMY, 23 healthy male students solved mental arithmetic tasks of varying difficulty during functional magnetic resonance imaging. A "flow" condition, with task demands automatically balanced with participants' skill level, was compared with conditions of "boredom" and "overload". DCM models were constructed modeling full reciprocal endogenous connections between the DRN, the MPFC, the AMY, and the calcarine. The calcarine was included to allow sensory input to enter the system. Experimental conditions were modeled as exerting modulatory effects on various possible connections between the DRN, the MPFC, and the AMY, but not on self-inhibitory connections, yielding a total of 64 alternative DCM models. Model space was partitioned into eight families based on commonalities in the arrangement of the modulatory effects. Random effects Bayesian Model Selection (BMS) was applied to identify a possible winning family (and model). Although BMS revealed a clear winning family, an outstanding winning model could not be identified. Therefore, Bayesian Model Averaging was performed over models within the winning family to obtain representative DCM parameters for subsequent analyses to test our hypothesis. In line with our expectations, Bayesian averaged parameters revealed stronger down-regulatory influence of the DRN on the MPFC when participants experienced flow relative to control conditions. In addition, these condition-dependent modulatory effects significantly predicted participants' experienced degree of

  1. Lignin Down-regulation of Zea mays via dsRNAi and Klason Lignin Analysis

    PubMed Central

    Park, Sang-Hyuck; Ong, Rebecca Garlock; Mei, Chuansheng; Sticklen, Mariam

    2014-01-01

    To facilitate the use of lignocellulosic biomass as an alternative bioenergy resource, during biological conversion processes, a pretreatment step is needed to open up the structure of the plant cell wall, increasing the accessibility of the cell wall carbohydrates. Lignin, a polyphenolic material present in many cell wall types, is known to be a significant hindrance to enzyme access. Reduction in lignin content to a level that does not interfere with the structural integrity and defense system of the plant might be a valuable step to reduce the costs of bioethanol production. In this study, we have genetically down-regulated one of the lignin biosynthesis-related genes, cinnamoyl-CoA reductase (ZmCCR1) via a double stranded RNA interference technique. The ZmCCR1_RNAi construct was integrated into the maize genome using the particle bombardment method. Transgenic maize plants grew normally as compared to the wild-type control plants without interfering with biomass growth or defense mechanisms, with the exception of displaying of brown-coloration in transgenic plants leaf mid-ribs, husks, and stems. The microscopic analyses, in conjunction with the histological assay, revealed that the leaf sclerenchyma fibers were thinned but the structure and size of other major vascular system components was not altered. The lignin content in the transgenic maize was reduced by 7-8.7%, the crystalline cellulose content was increased in response to lignin reduction, and hemicelluloses remained unchanged. The analyses may indicate that carbon flow might have been shifted from lignin biosynthesis to cellulose biosynthesis. This article delineates the procedures used to down-regulate the lignin content in maize via RNAi technology, and the cell wall compositional analyses used to verify the effect of the modifications on the cell wall structure. PMID:25080235

  2. Lignin down-regulation of Zea mays via dsRNAi and klason lignin analysis.

    PubMed

    Park, Sang-Hyuck; Ong, Rebecca Garlock; Mei, Chuansheng; Sticklen, Mariam

    2014-07-23

    To facilitate the use of lignocellulosic biomass as an alternative bioenergy resource, during biological conversion processes, a pretreatment step is needed to open up the structure of the plant cell wall, increasing the accessibility of the cell wall carbohydrates. Lignin, a polyphenolic material present in many cell wall types, is known to be a significant hindrance to enzyme access. Reduction in lignin content to a level that does not interfere with the structural integrity and defense system of the plant might be a valuable step to reduce the costs of bioethanol production. In this study, we have genetically down-regulated one of the lignin biosynthesis-related genes, cinnamoyl-CoA reductase (ZmCCR1) via a double stranded RNA interference technique. The ZmCCR1_RNAi construct was integrated into the maize genome using the particle bombardment method. Transgenic maize plants grew normally as compared to the wild-type control plants without interfering with biomass growth or defense mechanisms, with the exception of displaying of brown-coloration in transgenic plants leaf mid-ribs, husks, and stems. The microscopic analyses, in conjunction with the histological assay, revealed that the leaf sclerenchyma fibers were thinned but the structure and size of other major vascular system components was not altered. The lignin content in the transgenic maize was reduced by 7-8.7%, the crystalline cellulose content was increased in response to lignin reduction, and hemicelluloses remained unchanged. The analyses may indicate that carbon flow might have been shifted from lignin biosynthesis to cellulose biosynthesis. This article delineates the procedures used to down-regulate the lignin content in maize via RNAi technology, and the cell wall compositional analyses used to verify the effect of the modifications on the cell wall structure.

  3. Down-regulation of MIF by NFκB under hypoxia accelerated neuronal loss during stroke.

    PubMed

    Zhang, Si; Zis, Odysseus; Ly, Philip T T; Wu, Yili; Zhang, Shuting; Zhang, Mingming; Cai, Fang; Bucala, Richard; Shyu, Woei-Cherng; Song, Weihong

    2014-10-01

    Neuronal apoptosis is one of the major causes of poststroke neurological deficits. Inflammation during the acute phase of stroke results in nuclear translocation of NFκB in affected cells in the infarct area. Macrophage migration inhibitory factor (MIF) promotes cardiomyocyte survival in mice following heart ischemia. However, the role of MIF during stroke remains limited. In this study, we showed that MIF expression is down-regulated by 0.75 ± 0.10-fold of the control in the infarct area in the mouse brains. Two functional cis-acing NFκB response elements were identified in the human MIF promoter. Dual activation of hypoxia and NFκB signaling resulted in significant reduction of MIF promoter activity to 0.86 ± 0.01-fold of the control. Furthermore, MIF reduced caspase-3 activation and protected neurons from oxidative stress- and in vitro ischemia/reperfusion-induced apoptosis. H2O2 significantly induced cell death with 12.81 ± 0.58-fold increase of TUNEL-positive cells, and overexpression of MIF blocked the H2O2-induced cell death. Disruption of the MIF gene in MIF-knockout mice resulted in caspase-3 activation, neuronal loss, and increased infarct development during stroke in vivo. The infarct volume was increased from 6.51 ± 0.74% in the wild-type mice to 9.07 ± 0.66% in the MIF-knockout mice. Our study demonstrates that MIF exerts a neuronal protective effect and that down-regulation of MIF by NFκB-mediated signaling under hypoxia accelerates neuronal loss during stroke. Our results suggest that MIF is an important molecule for preserving a longer time window for stroke treatment, and strategies to maintain MIF expression at physiological level could have beneficial effects for stroke patients.

  4. Dorsal Raphe Nucleus Down-Regulates Medial Prefrontal Cortex during Experience of Flow

    PubMed Central

    Ulrich, Martin; Keller, Johannes; Grön, Georg

    2016-01-01

    Previous neuroimaging studies have suggested that the experience of flow aligns with a relative increase in activation of the dorsal raphe nucleus (DRN), and relative activation decreases of the medial prefrontal cortex (MPFC) and of the amygdala (AMY). In the present study, Dynamic Causal Modeling (DCM) was used to explore effective connectivity between those brain regions. To test our hypothesis that the DRN causally down-regulates activity of the MPFC and/or of the AMY, 23 healthy male students solved mental arithmetic tasks of varying difficulty during functional magnetic resonance imaging. A “flow” condition, with task demands automatically balanced with participants’ skill level, was compared with conditions of “boredom” and “overload”. DCM models were constructed modeling full reciprocal endogenous connections between the DRN, the MPFC, the AMY, and the calcarine. The calcarine was included to allow sensory input to enter the system. Experimental conditions were modeled as exerting modulatory effects on various possible connections between the DRN, the MPFC, and the AMY, but not on self-inhibitory connections, yielding a total of 64 alternative DCM models. Model space was partitioned into eight families based on commonalities in the arrangement of the modulatory effects. Random effects Bayesian Model Selection (BMS) was applied to identify a possible winning family (and model). Although BMS revealed a clear winning family, an outstanding winning model could not be identified. Therefore, Bayesian Model Averaging was performed over models within the winning family to obtain representative DCM parameters for subsequent analyses to test our hypothesis. In line with our expectations, Bayesian averaged parameters revealed stronger down-regulatory influence of the DRN on the MPFC when participants experienced flow relative to control conditions. In addition, these condition-dependent modulatory effects significantly predicted participants

  5. In Vitro Ischemia Triggers a Transcriptional Response to Down-Regulate Synaptic Proteins in Hippocampal Neurons

    PubMed Central

    Fernandes, Joana; Vieira, Marta; Carreto, Laura; Santos, Manuel A. S.; Duarte, Carlos B.; Carvalho, Ana Luísa; Santos, Armanda E.

    2014-01-01

    Transient global cerebral ischemia induces profound changes in the transcriptome of brain cells, which is partially associated with the induction or repression of genes that influence the ischemic response. However, the mechanisms responsible for the selective vulnerability of hippocampal neurons to global ischemia remain to be clarified. To identify molecular changes elicited by ischemic insults, we subjected hippocampal primary cultures to oxygen-glucose deprivation (OGD), an in vitro model for global ischemia that resulted in delayed neuronal death with an excitotoxic component. To investigate changes in the transcriptome of hippocampal neurons submitted to OGD, total RNA was extracted at early (7 h) and delayed (24 h) time points after OGD and used in a whole-genome RNA microarray. We observed that at 7 h after OGD there was a general repression of genes, whereas at 24 h there was a general induction of gene expression. Genes related with functions such as transcription and RNA biosynthesis were highly regulated at both periods of incubation after OGD, confirming that the response to ischemia is a dynamic and coordinated process. Our analysis showed that genes for synaptic proteins, such as those encoding for PICK1, GRIP1, TARPγ3, calsyntenin-2/3, SAPAP2 and SNAP-25, were down-regulated after OGD. Additionally, OGD decreased the mRNA and protein expression levels of the GluA1 AMPA receptor subunit as well as the GluN2A and GluN2B subunits of NMDA receptors, but increased the mRNA expression of the GluN3A subunit, thus altering the composition of ionotropic glutamate receptors in hippocampal neurons. Together, our results present the expression profile elicited by in vitro ischemia in hippocampal neurons, and indicate that OGD activates a transcriptional program leading to down-regulation in the expression of genes coding for synaptic proteins, suggesting that the synaptic proteome may change after ischemia. PMID:24960035

  6. Expression of thyroid hormone receptor isoforms down-regulated by thyroid hormone in human medulloblastoma cells.

    PubMed

    Monden, Tsuyoshi; Nakajima, Yasuyo; Hashida, Tetsu; Ishii, Sumiyasu; Tomaru, Takuya; Shibusawa, Nobuyuki; Hashimoto, Koshi; Satoh, Teturou; Yamada, Masanobu; Mori, Masatomo; Kasai, Kikuo

    2006-04-01

    The role of thyroid hormone (T3) in the regulation of growth and development of the central nervous system including the cerebellum has been well established. However, the effects of thyroid hormone on malignant tumors derived from the cerebellum remain poorly understood. Our analysis mainly focused on expression levels of TR isoforms and the effects of thyroid hormone in human medulloblastoma HTB-185 cells. Northern blot analysis revealed TRalpha2 mRNA but not TRalpha1, beta1 or beta2 mRNA in the cell. The TRalpha1 and TRbeta1 mRNAs were detected only by RT-PCR method and TRbeta2 was not expressed. Incubation of T3 for 24 h decreased TRalpha1, TRalpha2 and TRbeta1 mRNA. Addition of actinomycin D caused an acute increase in the basal TR mRNA levels and the rate of decrease of all kinds of TR isoform mRNA was accelerated in the T3-treated groups compared to controls, indicating that the stability of TR mRNA was affected by T3. Incubation with cycloheximide also blocked a decrease in TR mRNA levels in the T3-treated HTB-185 cells suggesting that down-regulation of TR mRNA required the synthesis of new protein. Our data provide novel evidence for the expression of TRs down-regulated by T3 in HTB-185 cells, suggesting that TR expression is post-transcriptionally regulated by T3 at the level of RNA stability.

  7. Additional nitrogen fertilization at heading time of rice down-regulates cellulose synthesis in seed endosperm.

    PubMed

    Midorikawa, Keiko; Kuroda, Masaharu; Terauchi, Kaede; Hoshi, Masako; Ikenaga, Sachiko; Ishimaru, Yoshiro; Abe, Keiko; Asakura, Tomiko

    2014-01-01

    The balance between carbon and nitrogen is a key determinant of seed storage components, and thus, is of great importance to rice and other seed-based food crops. To clarify the influence of the rhizosphere carbon/nitrogen balance during the maturation stage of several seed components, transcriptome analysis was performed on the seeds from rice plants that were provided additional nitrogen fertilization at heading time. As a result, it was assessed that genes associated with molecular processes such as photosynthesis, trehalose metabolism, carbon fixation, amino acid metabolism, and cell wall metabolism were differentially expressed. Moreover, cellulose and sucrose synthases, which are involved in cellulose synthesis, were down-regulated. Therefore, we compared cellulose content of mature seeds that were treated with additional nitrogen fertilization with those from control plants using calcofluor staining. In these experiments, cellulose content in endosperm from plants receiving additional nitrogen fertilization was less than that in control endosperm. Other starch synthesis-related genes such as starch synthase 1, starch phosphorylase 2, and branching enzyme 3 were also down-regulated, whereas some α-amylase and β-amylase genes were up-regulated. On the other hand, mRNA expression of amino acid biosynthesis-related molecules was up-regulated. Moreover, additional nitrogen fertilization caused accumulation of storage proteins and up-regulated Cys-poor prolamin mRNA expression. These data suggest that additional nitrogen fertilization at heading time changes the expression of some storage substance-related genes and reduces cellulose levels in endosperm.

  8. Estrogen-mediated down-regulation of CD24 in breast cancer cells

    PubMed Central

    Kaipparettu, Benny Abraham; Malik, Simeen; Konduri, Santhi D.; Liu, Wensheng; Rokavec, Matjaž; van der Kuip, Heiko; Hoppe, Reiner; Hammerich-Hille, Stephanie; Fritz, Peter; Schroth, Werner; Abele, Ina; Das, Gokul M.; Oesterreich, Steffi; Brauch, Hiltrud

    2008-01-01

    We have previously reported on the relevance of the prevalence of CD44+/CD24−/low cells in primary breast tumors. To study regulation of CD24, we queried a number of publicly available expression array studies in breast cancer cells, and found that CD24 was down-regulated upon estrogen treatment. We confirmed this estrogen-mediated repression of CD24 mRNA by qPCR in MCF7, T47D, and ZR75-1 cells. Repression was also seen at the protein level as measured by flow cytometry. CD24 was not down-regulated in the ERα negative MDA-MB-231 cells suggesting that ERα was necessary. This was further confirmed by ERα silencing in MCF7 cells resulting in increased CD24 levels, and by reintroduction of ERα into C4-12 cells resulting in decreased CD24 levels. Estrogen treatment did not alter half-life of CD24 mRNA, and new protein synthesis was not essential for repression, suggesting a primary transcriptional effect. HDAC inhibition by Trichostatin A completely abolished the repression, but decrease of the ERα corepressors NCoR, LCoR, RIP140, SMRT, SAFB1, and SAFB2 by siRNA or overexpression of SAFB2, NCoR, and SMRT had no effect. In silico promoter analyses led to the identification of two EREs in the CD24 promoter, one of which was able to bind ERα as shown by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Together, our results show that CD24 is repressed by estrogen, and that this repression is a direct transcriptional effect depending on ERα and HDACs. PMID:18404683

  9. Hydrogen peroxide down-regulates inositol 1,4,5-trisphosphate receptor content through proteasome activation.

    PubMed

    Martín-Garrido, A; Boyano-Adánez, M C; Alique, M; Calleros, L; Serrano, I; Griera, M; Rodríguez-Puyol, D; Griendling, K K; Rodríguez-Puyol, M

    2009-11-15

    Hydrogen peroxide (H(2)O(2)) is implicated in the regulation of signaling pathways leading to changes in vascular smooth muscle function. Contractile effects produced by H(2)O(2) are due to the phosphorylation of myosin light chain kinase triggered by increases in intracellular calcium (Ca(2+)) from intracellular stores or influx of extracellular Ca(2+). One mechanism for mobilizing such stores involves the phosphoinositide pathway. Inositol 1,4,5-trisphosphate (IP(3)) mobilizes intracellular Ca(2+) by binding to a family of receptors (IP(3)Rs) on the endoplasmic-sarcoplasmic reticulum that act as ligand-gated Ca(2+) channels. IP(3)Rs can be rapidly ubiquitinated and degraded by the proteasome, causing a decrease in cellular IP(3)R content. In this study we show that IP(3)R(1) and IP(3)R(3) are down-regulated when vascular smooth muscle cells (VSMC) are stimulated by H(2)O(2), through an increase in proteasome activity. Moreover, we demonstrate that the decrease in IP(3)R by H(2)O(2) is accompanied by a reduction in calcium efflux induced by IP(3) in VSMC. Also, we observed that angiotensin II (ANGII) induces a decrease in IP(3)R by activation of NADPH oxidase and that preincubation with H(2)O(2) decreases ANGII-mediated calcium efflux and planar cell surface area in VSMC. The decreased IP(3) receptor content observed in cells was also found in aortic rings, which exhibited a decreased ANGII-dependent contraction after treatment with H(2)O(2). Altogether, these results suggest that H(2)O(2) mediates IP(3)R down-regulation via proteasome activity.

  10. miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1.

    PubMed

    Zhang, Lingbo; Flygare, Johan; Wong, Piu; Lim, Bing; Lodish, Harvey F

    2011-01-15

    Using RNA-seq technology, we found that the majority of microRNAs (miRNAs) present in CFU-E erythroid progenitors are down-regulated during terminal erythroid differentiation. Of the developmentally down-regulated miRNAs, ectopic overexpression of miR-191 blocks erythroid enucleation but has minor effects on proliferation and differentiation. We identified two erythroid-enriched and developmentally up-regulated genes, Riok3 and Mxi1, as direct targets of miR-191. Knockdown of either Riok3 or Mxi1 blocks enucleation, and either physiological overexpression of miR-191 or knockdown of Riok3 or Mxi1 blocks chromatin condensation. Thus, down-regulation of miR-191 is essential for erythroid chromatin condensation and enucleation by allowing up-regulation of Riok3 and Mxi1.

  11. Protein Kinase C-{delta} mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    SciTech Connect

    Gao, Feng-Hou; Wu, Ying-Li; Zhao, Meng; Chen, Guo-Qiang

    2009-11-15

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta ({Delta}PKC-{delta}). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the {Delta}PKC-{delta}, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that {Delta}PKC-{delta} mediated the down-regulation of hnRNP K protein during apoptosis: PKC-{delta} inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-{delta}-deficient apoptotic KG1a cells; conditional induction of {Delta}PKC-{delta} in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of {Delta}PKC-{delta}. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-{delta} down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  12. Down-regulation of gibberellic acid in poplar has negligible effects on host-plant suitability and insect pest response

    DOE PAGES

    Buhl, Christine; Strauss, Steven H.; Lindroth, Richard L.

    2015-01-06

    Abstract Endogenous levels and signaling of gibberellin plant hormones such as gibberellic acid (GA) have been genetically down-regulated to create semi-dwarf varieties of poplar. The potential benefits of semi-dwarf stature include reduced risk of wind damage, improved stress tolerance, and improved wood quality. Despite these benefits, modification of growth traits may have consequences for non-target traits that confer defense against insect herbivores. According to the growth-differentiation balance hypothesis, reductions in growth may shift allocation of carbon from growth to chemical resistance traits, thereby altering plant defense. To date, host-plant suitability and pest response have not been comprehensively evaluated in GAmore » down-regulated plants. We quantified chemical resistance and nitrogen (an index of protein) in GA down-regulated and wild-type poplar (Populus alba × P. tremula) genotypes. We also evaluated performance of both generalist (Lymantria dispar) and specialist (Chrysomela scripta) insect pests reared on these genotypes. Our evaluation of resistance traits in four GA down-regulated genotypes revealed increased phenolic glycosides in one modified genotype and reduced lignin in two modified genotypes relative to the non-transgenic wild type. Nitrogen levels did not vary significantly among the experimental genotypes. Generalists reared on the four GA down-regulated genotypes exhibited reduced performance on only one modified genotype relative to the wild type. Specialists, however, performed similarly across all genotypes. Results from this study indicate that although some non-target traits varied among GA down-regulated genotypes, the differences in poplar pest susceptibility were modest and highly genotype-specific.« less

  13. Down-regulation of gibberellic acid in poplar has negligible effects on host-plant suitability and insect pest response

    SciTech Connect

    Buhl, Christine; Strauss, Steven H.; Lindroth, Richard L.

    2015-01-06

    Abstract Endogenous levels and signaling of gibberellin plant hormones such as gibberellic acid (GA) have been genetically down-regulated to create semi-dwarf varieties of poplar. The potential benefits of semi-dwarf stature include reduced risk of wind damage, improved stress tolerance, and improved wood quality. Despite these benefits, modification of growth traits may have consequences for non-target traits that confer defense against insect herbivores. According to the growth-differentiation balance hypothesis, reductions in growth may shift allocation of carbon from growth to chemical resistance traits, thereby altering plant defense. To date, host-plant suitability and pest response have not been comprehensively evaluated in GA down-regulated plants. We quantified chemical resistance and nitrogen (an index of protein) in GA down-regulated and wild-type poplar (Populus alba × P. tremula) genotypes. We also evaluated performance of both generalist (Lymantria dispar) and specialist (Chrysomela scripta) insect pests reared on these genotypes. Our evaluation of resistance traits in four GA down-regulated genotypes revealed increased phenolic glycosides in one modified genotype and reduced lignin in two modified genotypes relative to the non-transgenic wild type. Nitrogen levels did not vary significantly among the experimental genotypes. Generalists reared on the four GA down-regulated genotypes exhibited reduced performance on only one modified genotype relative to the wild type. Specialists, however, performed similarly across all genotypes. Results from this study indicate that although some non-target traits varied among GA down-regulated genotypes, the differences in poplar pest susceptibility were modest and highly genotype-specific.

  14. Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants.

    PubMed

    Xiong, Yan; Sheen, Jen

    2012-01-20

    Target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrients, growth factors, and stress signals to promote survival and growth in all eukaryotes. The reported land plant resistance to rapamycin and the embryo lethality of the Arabidopsis tor mutants have hindered functional dissection of TOR signaling in plants. We developed sensitive cellular and seedling assays to monitor endogenous Arabidopsis TOR activity based on its conserved S6 kinase (S6K) phosphorylation. Surprisingly, rapamycin effectively inhibits Arabidopsis TOR-S6K1 signaling and retards glucose-mediated root and leaf growth, mimicking estradiol-inducible tor mutants. Rapamycin inhibition is relieved in transgenic plants deficient in Arabidopsis FK506-binding protein 12 (FKP12), whereas FKP12 overexpression dramatically enhances rapamycin sensitivity. The role of Arabidopsis FKP12 is highly specific as overexpression of seven closely related FKP proteins fails to increase rapamycin sensitivity. Rapamycin exerts TOR inhibition by inducing direct interaction between the TOR-FRB (FKP-rapamycin binding) domain and FKP12 in plant cells. We suggest that variable endogenous FKP12 protein levels may underlie the molecular explanation for longstanding enigmatic observations on inconsistent rapamycin resistance in plants and in various mammalian cell lines or diverse animal cell types. Integrative analyses with rapamycin and conditional tor and fkp12 mutants also reveal a central role of glucose-TOR signaling in root hair formation. Our studies demonstrate the power of chemical genetic approaches in the discovery of previously unknown and pivotal functions of glucose-TOR signaling in governing the growth of cotyledons, true leaves, petioles, and primary and secondary roots and root hairs.

  15. Dihydrotanshinone I Attenuates Atherosclerosis in ApoE-Deficient Mice: Role of NOX4/NF-κB Mediated Lectin-Like Oxidized LDL Receptor-1 (LOX-1) of the Endothelium.

    PubMed

    Zhao, Wenwen; Li, Chunxia; Gao, Hongwei; Wu, Qin; Shi, Jingshan; Chen, Xiuping

    2016-01-01

    Dihydrotanshinone I (DHT) is a natural compound extracted from Salvia miltiorrhiza Bunge which has been widely used for treating cardiovascular diseases. However, its role in atherosclerosis remains unclear. In this study, the effect of DHT on atherosclerosis were investigated using apolipoprotein E-deficient (ApoE(-/-)) mice and endothelial cells. In lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), DHT (10 nM) decreased lectin-like ox-LDL receptor-1 (LOX-1) and NADPH oxidase 4 (NOX4) expression, reactive oxygen species (ROS) production, NF-κB nuclear translocation, ox-LDL endocytosis and monocytes adhesion. Silence NOX4 inhibited LPS-induced LOX-1 expression, NF-κB nuclear translocation, ox-LDL endocytosis and monocytes adhesion. In ApoE(-/-) mice fed with an atherogenic diet, DHT (10 and 25 mg kg(-1)) significantly attenuated atherosclerotic plaque formation, altered serum lipid profile, decreased oxidative stress and shrunk necrotic core areas. The enhanced expression of LOX-1, NOX4, and NF-κB in aorta was also dramatically inhibited by DHT. In conclusion, these results suggested that DHT showed anti-atherosclerotic activity through inhibition of LOX-1 mediated by NOX4/NF-κB signaling pathways both in vitro and in vivo. This finding suggested that DHT might be used as a potential vascular protective candidate for the treatment of atherosclerosis.

  16. Dihydrotanshinone I Attenuates Atherosclerosis in ApoE-Deficient Mice: Role of NOX4/NF-κB Mediated Lectin-Like Oxidized LDL Receptor-1 (LOX-1) of the Endothelium

    PubMed Central

    Zhao, Wenwen; Li, Chunxia; Gao, Hongwei; Wu, Qin; Shi, Jingshan; Chen, Xiuping

    2016-01-01

    Dihydrotanshinone I (DHT) is a natural compound extracted from Salvia miltiorrhiza Bunge which has been widely used for treating cardiovascular diseases. However, its role in atherosclerosis remains unclear. In this study, the effect of DHT on atherosclerosis were investigated using apolipoprotein E-deficient (ApoE-/-) mice and endothelial cells. In lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), DHT (10 nM) decreased lectin-like ox-LDL receptor-1 (LOX-1) and NADPH oxidase 4 (NOX4) expression, reactive oxygen species (ROS) production, NF-κB nuclear translocation, ox-LDL endocytosis and monocytes adhesion. Silence NOX4 inhibited LPS-induced LOX-1 expression, NF-κB nuclear translocation, ox-LDL endocytosis and monocytes adhesion. In ApoE-/- mice fed with an atherogenic diet, DHT (10 and 25 mg kg-1) significantly attenuated atherosclerotic plaque formation, altered serum lipid profile, decreased oxidative stress and shrunk necrotic core areas. The enhanced expression of LOX-1, NOX4, and NF-κB in aorta was also dramatically inhibited by DHT. In conclusion, these results suggested that DHT showed anti-atherosclerotic activity through inhibition of LOX-1 mediated by NOX4/NF-κB signaling pathways both in vitro and in vivo. This finding suggested that DHT might be used as a potential vascular protective candidate for the treatment of atherosclerosis. PMID:27891092

  17. Amitriptyline down-regulates coenzyme Q10 biosynthesis in lung cancer cells.

    PubMed

    Ortiz, Tamara; Villanueva-Paz, Marina; Díaz-Parrado, Eduardo; Illanes, Matilde; Fernández-Rodríguez, Ana; Sánchez-Alcázar, José A; de Miguel, Manuel

    2017-02-15

    Amitriptyline, a tricyclic antidepressant, has been proposed as an antitumoral drug in oxidative therapy. Its pro-apoptotic effects, mediated by high reactive oxygen species generation, have been already described. In this study we analysed the effect of amitriptyline on the biosynthesis of coenzyme Q10 (CoQ), an essential component for electron transport and a potent membrane antioxidant involved in redox signaling. We treated H460 cells, a non-small-cell lung cancer cell line, with amitriptyline and we analysed CoQ levels by HPLC and CoQ biosynthesis rate, as well as the enzymes involved in CoQ biosynthesis by real-time PCR and Western blot. Amitriptyline treatment induced a dose-dependent decrease in CoQ levels in tumor cells. CoQ decreased levels were associated with down-regulation of the expression of COQ4 gene, as well as decreased Coq4 and Coq6 protein levels. Our findings suggest that the effect of amitriptyline on CoQ biosynthesis highlights the potential of this drug for antitumoral oxidative therapy.

  18. The down-regulated ING5 expression in lung cancer: A potential target of gene therapy

    PubMed Central

    Zhao, Shuang; Yang, Xue-feng; Shen, Dao-fu; Gao, Yang; Shi, Shuai; Wu, Ji-cheng; Liu, Hong-xu; Sun, Hong-zhi; Su, Rong-jian; Zheng, Hua-chuan

    2016-01-01

    ING5 can interact with p53, thereby inhibiting cell growth and inducing apoptosis. We found that ING5 overexpression not only inhibited proliferation, migration, and invasion, but also induced G2 arrest, differentiation, autophagy, apoptosis, glycolysis and mitochondrial respiration in lung cancer cells. ING5 transfection up-regulated the expression of Cdc2, ATG13, ATG14, Beclin-1, LC-3B, AIF, cytochrome c, Akt1/2/3, ADFP, PFK-1 and PDPc, while down-regulated the expression of Bcl-2, XIAP, survivin,β-catenin and HXK1. ING5 transfection desensitized cells to the chemotherapy of MG132, paclitaxel, and SAHA, which paralleled with apoptotic alteration. ING5 overexpression suppressed the xenograft tumor growth by inhibiting proliferation and inducing apoptosis. ING5 expression level was significantly higher in normal tissue than that in lung cancer at both protein and mRNA levels. Nuclear ING5 expression was positively correlated with ki-67 expression and cytoplasmic ING5 expression. Cytoplasmic ING5 expression was positively associated with lymph node metastasis, and negatively with age, lymphatic invasion or CPP32 expression. ING5 expression was different in histological classification: squamous cell carcinoma > adenocarcinoma > large cell carcinoma > small cell carcinoma. Taken together, our data suggested that ING5 downregulation might involved in carcinogenesis, growth, and invasion of lung cancer and could be considered as a promising marker to gauge the aggressiveness of lung cancer. It might be employed as a potential target for gene therapy of lung cancer. PMID:27409347

  19. Treatment of CIA Mice with FGF21 Down-regulates TH17-IL-17 Axis.

    PubMed

    Li, Si-ming; Yu, Yin-hang; Li, Lu; Wang, Wen-fei; Li, De-shan

    2016-02-01

    Recently, FGF21 was reported to play an important role in anti-inflammation. The aim of the study is to explore the mechanism for FGF21 alleviating inflammation of CIA. CIA mice were injected with FGF21 once a day for 28 days after first booster immunization. The results showed that FGF21 alleviates arthritis severity and decreases serum anti-CII antibodies levels in CIA mice. Compared with CIA model, the number of the splenic TH17 cells was significantly decreased in FGF21-treated mice. FGF21 treatment reduced the mRNA expression of IL-17, TNF-α, IL-1β, IL-6, IL-8, and MMP3 and increased level of IL-10 in the spleen tissue. The expression of STAT3 and phosphorylated STAT3 was suppressed in FGF21-treated group. The mRNA expression of RORγt and IL-23 also decreased. In conclusion, these findings suggest that the beneficial effects of FGF21 on CIA mice were achieved by down-regulating Th17-IL-17 axis through STAT3/RORγt pathway. Modulating of Th17-mediated inflammatory response may be one of the mechanisms for FGF21 attenuating inflammation in CIA.

  20. Down-regulation of Stathmin Is Required for the Phenotypic Changes and Classical Activation of Macrophages.

    PubMed

    Xu, Kewei; Harrison, Rene E

    2015-07-31

    Macrophages are important cells of innate immunity with specialized capacity for recognition and elimination of pathogens and presentation of antigens to lymphocytes for adaptive immunity. Macrophages become activated upon exposure to pro-inflammatory cytokines and pathogenic stimuli. Classical activation of macrophages with interferon-γ (IFNγ) and lipopolysaccharide (LPS) triggers a wide range of signaling events and morphological changes to induce the immune response. Our previous microtubule (MT) proteomic work revealed that the stathmin association with MTs is considerably reduced in activated macrophages, which contain significantly more stabilized MTs. Here, we show that there is a global decrease in stathmin levels, an MT catastrophe protein, in activated macrophages using both immunoblotting and immunofluorescent microscopy. This is an LPS-specific response that induces proteasome-mediated degradation of stathmin. We explored the functions of stathmin down-regulation in activated macrophages by generating a stable cell line overexpressing stathmin-GFP. We show that stathmin-GFP overexpression impacts MT stability, impairs cell spreading, and reduces activation-associated phenotypes. Furthermore, overexpressing stathmin reduces complement receptor 3-mediated phagocytosis and cellular activation, implicating a pivotal inhibitory role for stathmin in classically activated macrophages.

  1. Znhit1 causes cell cycle arrest and down-regulates CDK6 expression

    SciTech Connect

    Yang, Zhengmin; Cao, Yonghao; Zhu, Xiaoyan; Huang, Ying; Ding, Yuqiang; Liu, Xiaolong

    2009-08-14

    Cyclin-dependent kinase 6 (CDK6) is the key element of the D-type cyclin holoenzymes which has been found to function in the regulation of G1-phase of the cell cycle and is presumed to play important roles in T cell function. In this study, Znhit1, a member of a new zinc finger protein family defined by a conserved Zf-HIT domain, induced arrest in the G1-phase of the cell cycle in NIH/3T3 cells. Of the G1 cell cycle factors examined, the expression of CDK6 was found to be strongly down-regulated by Znhit1 via transcriptional repression. This effect may have correlations with the decreased acetylation level of histone H4 in the CDK6 promoter region. In addition, considering that CDK6 expression predominates in T cells, the negative regulatory role of Znhit1 in TCR-induced T cell proliferation was validated using transgenic mice. These findings identified Znhit1 as a CDK6 regulator that plays an important role in cell proliferation.

  2. miR-203, a Tumor Suppressor Frequently Down-regulated by Promoter Hypermethylation in Rhabdomyosarcoma*

    PubMed Central

    Diao, Yarui; Guo, Xing; Jiang, Lei; Wang, Gang; Zhang, Chao; Wan, Jun; Jin, Yan; Wu, Zhenguo

    2014-01-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma found in children and young adults. It is characterized by the expression of a number of skeletal muscle-specific proteins, including MyoD and muscle α-actin. However, unlike normal myoblasts, RMS cells differentiate poorly both in vivo and in culture. As microRNAs are known to regulate tumorigenesis, intensive efforts have been made to identify microRNAs that are involved in RMS development. In this work, we found that miR-203 was frequently down-regulated by promoter hypermethylation in both RMS cell lines and RMS biopsies and could be reactivated by DNA-demethylating agents. Re-expression of miR-203 in RMS cells inhibited their migration and proliferation and promoted terminal myogenic differentiation. Mechanistically, miR-203 exerts its tumor-suppressive effect by directly targeting p63 and leukemia inhibitory factor receptor in RMS cells, which promotes myogenic differentiation by inhibiting the Notch and the JAK1/STAT1/STAT3 pathways, respectively. Our work reveals that miR-203 functions as a tumor suppressor in RMS development. PMID:24247238

  3. Ribozyme minigene-mediated RAD51 down-regulation increases radiosensitivity of human prostate cancer cells

    PubMed Central

    Collis, S. J.; Tighe, A.; Scott, S. D.; Roberts, S. A.; Hendry, J. H.; Margison, G. P.

    2001-01-01

    The strand transferase RAD51 is a component of the homologous recombination repair pathway. To examine the contribution of RAD51 to the genotoxic effects of ionising radiation, we have used a novel ribozyme strategy. A reporter gene vector was constructed so that expression of an inserted synthetic double-stranded ribozyme-encoding oligonucleotide would be under the control of the cytomegalovirus immediate-early gene enhancer/promoter system. The prostate tumour cell line LNCaP was transfected with this vector or a control vector, and a neomycin resistance gene on the vector was used to create geneticin-resistant stable cell lines. Three stable cell lines were shown by western blot analysis to have significant down-regulation of RAD51 to 20–50% of the levels expressed in control cell lines. All three cell lines had a similar increased sensitivity to γ-irradiation by 70 and 40%, respectively, compared to normal and empty vector-transfected cells, corresponding to dose-modifying factors of ∼2.0 and 1.5 in the mid-range of the dose-response curves. The amount of RAD51 protein in transfected cell lines was shown to strongly correlate with the α parameter obtained from fitted survival curves. These results highlight the importance of RAD51 in cellular responses to radiation and are the first to indicate the potential use of RAD51-targeted ribozyme minigenes in tumour radiosensitisation. PMID:11266555

  4. [Inhibition of NHE1 down-regulates IL-8 expression and enhances p38 phosphorylation].

    PubMed

    Gao, Wei; Zhang, Yu-Juan; Zhang, Hai-Rui; Jin, Wei-Na; Chang, Guo-Qiang; Zhang, Hong-Ju; Ma, Li; Lin, Ya-Ni; Li, Qing-Hua; Ru, Rong-Xin; Pang, Tian-Xiang

    2013-02-01

    This study was purposed to explore the changes of possible angiogenetic factors other than VEGF after inhibition of NHE1 and their related mechanisms. The K562 cells were treated by NHE1 specific inhibitor cariporide, the angiogenesis factors after inhibition of NHE1 were screened by using protein chip, the IL-8 expression level after cariporide treatment was detected by real-time quantitative PCR; the K562 cells with stable interference of NHE1 were constructed, the IL-8 expression level after interference of NHE1 was detected by real-time quantitative PCR; the p38 phosphorylation level in K562 cells treated with cariporide was detected by Western blot. After treatment of K562 cells with p38 inhibitor SB203580, the IL-8 expression level was decreased by real-time quantitative PCR. The results of protein chip showed that IL-8 expression decreased after cariporide treatment. Real-time quantitative PCR confirmed this inhibitory effect. The p38 phosphorylation level increased after cariporide treatment. The down-regulation of IL-8 expression induced by cariporide treatment was partially restored after K562 cells were treated with p38 inhibitor SB203580. It is concluded that the inhibition of NHE1 can inhibit IL-8 expression through up-regulation of p38 phosphorylation.

  5. Overexpression of hsa-miR-939 follows by NGFR down-regulation and apoptosis reduction.

    PubMed

    Aghdaei, Fahimeh Hosseini; Soltani, Bahram M; Dokanehiifard, Sadat; Mowla, Seyed Javad; Soleimani, Masoud

    2017-03-01

    Neurotrophin receptors play a crucial role in neuronal survival, differentiation and regeneration. Nerve growth factor receptor (NGFR) or P75(NTR) is a neurotrophin receptor that is involved in many pathological conditions including cancers. Genetic factors that are involved in regulation of neurotrophin receptors are under intense investigation. MiRNAs are novel regulators of signalling pathways that are candidates for regulation of neurotrophin receptors. Computational programs predicted that NGFR gene is a bona fide target for hsa-miR- 939. RT-qPCR, Western analysis and dual luciferase assay evidences indicated that NGFR transcript is targeted by hsa-miR-939. Also, hsa-miR-939 overexpression brought about down-regulation of NGFR expression in U87 cell line, followed by cell death rate reduction, detected by flow cytometry. Taken together, here for the first time, hsa-miR-939 is introduced as a novel key regulator of NGFR expression and its involvement in cell death/survival processes is suggested.

  6. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    NASA Astrophysics Data System (ADS)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  7. Protein Phosphatase 1 Down Regulates ZYG-1 Levels to Limit Centriole Duplication

    PubMed Central

    Naik, Anar; Decker, Markus; O’Connell, Kevin F.

    2017-01-01

    In humans perturbations of centriole number are associated with tumorigenesis and microcephaly, therefore appropriate regulation of centriole duplication is critical. The C. elegans homolog of Plk4, ZYG-1, is required for centriole duplication, but our understanding of how ZYG-1 levels are regulated remains incomplete. We have identified the two PP1 orthologs, GSP-1 and GSP-2, and their regulators I-2SZY-2 and SDS-22 as key regulators of ZYG-1 protein levels. We find that down-regulation of PP1 activity either directly, or by mutation of szy-2 or sds-22 can rescue the loss of centriole duplication associated with a zyg-1 hypomorphic allele. Suppression is achieved through an increase in ZYG-1 levels, and our data indicate that PP1 normally regulates ZYG-1 through a post-translational mechanism. While moderate inhibition of PP1 activity can restore centriole duplication to a zyg-1 mutant, strong inhibition of PP1 in a wild-type background leads to centriole amplification via the production of more than one daughter centriole. Our results thus define a new pathway that limits the number of daughter centrioles produced each cycle. PMID:28103229

  8. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    SciTech Connect

    Walsh, Erica M.; Niu, MengMeng; Bergholz, Johann; Jim Xiao, Zhi-Xiong

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  9. Down-regulation of GhADF1 gene expression affects cotton fibre properties.

    PubMed

    Wang, Hai-Yun; Wang, Juan; Gao, Peng; Jiao, Gai-Li; Zhao, Pi-Ming; Li, Yan; Wang, Gui-Ling; Xia, Gui-Xian

    2009-01-01

    Cotton fibre is the most important natural fibres for textile industry. To date, the mechanism that governs the development of fibre traits is largely unknown. In this study, we have characterized the function of a member of the actin depolymerizing factor (ADF) family in Gossypium hirsutum by down-regulation of the gene (designated as GhADF1) expression in the transgenic cotton plants. We observed that both the fibre length and strength of the GhADF1-underexpressing plants increased as compared to the wild-type fibre, and transgenic fibres contained more abundant F-actin filaments in the cortical region of the cells. Moreover, the secondary cell wall of the transgenic fibre appeared thicker and the cellulose content was higher than that of the control fibre. Our results suggest that organization of actin cytoskeleton regulated by actin-associated proteins such as GhADF1 plays a critical role in the processes of elongation and secondary cell wall formation during fibre development. Additionally, our study provided a candidate intrinsic gene for the improvement of fibre traits via genetic engineering.

  10. Down-Regulation of FXYD3 Expression in Human Lung Cancers

    PubMed Central

    Okudela, Koji; Yazawa, Takuya; Ishii, Jun; Woo, Tetsukan; Mitsui, Hideaki; Bunai, Tomoyasu; Sakaeda, Masashi; Shimoyamada, Hiroaki; Sato, Hanako; Tajiri, Michihiko; Ogawa, Nobuo; Masuda, Munetaka; Sugimura, Haruhiko; Kitamura, Hitoshi

    2009-01-01

    FXYD3 is a FXYD-containing Na,K-ATPase ion channel regulator first identified as a protein overexpressed in murine breast tumors initiated by oncogenic ras or neu. However, our preliminary study revealed that FXYD3 expression was down-regulated in oncogenic KRAS-transduced airway epithelial cells. This contradiction led us to investigate the role of FXYD3 in carcinogenesis of the lung. FXYD3 mRNA and protein levels were lower in most of the lung cancer cell lines than in either the noncancerous lung tissue or airway epithelial cells. Protein levels were also lower in a considerable proportion of primary lung cancers than in nontumoral airway epithelia; FXYD3 expression levels decreased in parallel with the dedifferentiation process. Also, a somatic point mutation, g55c (D19H), was found in one cell line. Forced expression of the wild-type FXYD3, but not the mutant, restored the well-demarcated distribution of cortical actin in cancer cells that had lost FXYD3 expression, suggesting FXYD3 plays a role in the maintenance of cytoskeletal integrity. However, no association between FXYD3 expression and its promoter’s methylation status was observed. Therefore, inactivation of FXYD3 through a gene mutation or unknown mechanism could be one cause of the atypical shapes of cancer cells and play a potential role in the progression of lung cancer. PMID:19893046

  11. Dioscin enhances methotrexate absorption by down-regulating MDR1 in vitro and in vivo

    SciTech Connect

    Wang, Lijuan; Wang, Changyuan; Peng, Jinyong; Liu, Qi; Meng, Qiang; Sun, Huijun; Huo, Xiaokui; and others

    2014-06-01

    The purpose of this study was to investigate the enhancing effect of dioscin on the absorption of methotrexate (MTX) and clarify the molecular mechanism involved in vivo and in vitro. Dioscin increased MTX chemosensitivity and transepithelial flux in the absorptive direction, significantly inhibiting multidrug resistance 1 (MDR1) mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activities in Caco-2 cells. Moreover, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Dioscin enhanced the intracellular concentration of MTX by down-regulating MDR1 expression through a mechanism that involves NF-κB signaling pathway inhibition in Caco-2 cells. Dioscin strengthened MTX absorption by inhibiting MDR1 expression in rat intestine. In addition, even though MTX is absorbed into the enterocytes, there was no increase in toxicity observed, and that, in fact, decreased toxicity was seen. - Highlights: • Dioscin raised MTX concentration by inhibiting MDR1 in Caco-2 cells. • Dioscin suppresses MDR1 by inhibiting NF-κB signaling pathway in Caco-2 cells. • Dioscin can enhance MTX absorption via inhibiting MDR1 in vivo and in vitro. • Dioscin did not increase MTX-induced gastrointestinal mucosal toxicity.

  12. Down-regulation of osteoprotegerin expression as a novel biomarker for colorectal carcinoma

    PubMed Central

    Kim, Hyun-Soo; Yoon, Gun; Do, Sung-Im; Kim, Sung-Joo; Kim, Youn-Wha

    2016-01-01

    A better understanding of tumor biology is important in the identification of molecules that are down-regulated in malignancy and in determining their role in tumor suppression. The aim of this study was to analyze osteoprotegerin (OPG) expression in colorectal carcinoma (CRC) and to investigate the underlying mechanism for changes in the expression of OPG. OPG expression was assessed in CRC tissue samples and cell lines. The methylation status of the OPG promoter region was determined, and the effects of demethylation on OPG expression were analyzed. The effects of recombinant OPG (rOPG) administration on cellular functions were also investigated. Clinical and prognostic implications of OPG protein expression in CRC patients were analyzed. The CRC tissues and cells showed significantly lower OPG expression. Pyrosequencing of OPG-silenced CRC cells revealed that the OPG gene promoter was highly methylated. Treatment with demethylating agent significantly elevated OPG mRNA and protein expression. rOPG significantly decreased cell viability and MMP-2 and VEGF-A production in CRC cells. Reduced OPG immunoreactivity was associated with aggressive oncogenic behavior in CRC. Also, OPG expression was found to be an independent predictor of recurrent hepatic metastasis and independent prognostic factor for worse survival rates. We demonstrated that OPG silencing in CRC occurs through epigenetic repression, and is involved in the development and progression of CRC. Our data suggest that OPG is a novel prognostic biomarker and a new therapeutic target for the treatment of patients with CRC. PMID:26942563

  13. Down-regulated Lotus japonicus GCR1 plants exhibit nodulation signalling pathways alteration.

    PubMed

    Rogato, Alessandra; Valkov, Vladimir Totev; Alves, Ludovico Martins; Apone, Fabio; Colucci, Gabriella; Chiurazzi, Maurizio

    2016-06-01

    G Protein Coupled Receptor (GPCRs) are integral membrane proteins involved in various signalling pathways by perceiving many extracellular signals and transducing them to heterotrimeric G proteins, which further transduce these signals to intracellular downstream effectors. GCR1 is the only reliable plant candidate as a member of the GPCRs superfamily. In the legume/rhizobia symbiotic interaction, G proteins are involved in signalling pathways controlling different steps of the nodulation program. In order to investigate the putative hierarchic role played by GCR1 in these symbiotic pathways we identified and characterized the Lotus japonicus gene encoding the seven transmembrane GCR1 protein. The detailed molecular and topological analyses of LjGCR1 expression patterns that are presented suggest a possible involvement in the early steps of nodule organogenesis. Furthermore, phenotypic analyses of independent transgenic RNAi lines, showing a significant LjGCR1 expression down regulation, suggest an epistatic action in the control of molecular markers of nodulation pathways, although no macroscopic symbiotic phenotypes could be revealed.

  14. Social isolation stress down-regulates cortical early growth response 1 (Egr-1) expression in mice.

    PubMed

    Matsumoto, Kinzo; Ono, Kazuya; Ouchi, Hirofumi; Tsushima, Ryohei; Murakami, Yukihisa

    2012-07-01

    Social isolation stress induces behavioral disturbances such as aggression, cognitive impairments, and deficits in prepulse inhibition in mice. Social isolation mice have, therefore, been studied as an animal model of neuropsychiatric disorders such as schizophrenia. Recently, the decrease in early growth response (Egr) gene expression levels were reported in the post-mortem brains of schizophrenia patients. In this study, we investigate the effects of social isolation stress on the expression levels of Egr mRNA and protein in the frontal cortex. Social isolation stress exposure significantly down-regulated the expression of Egr-1 protein and Egr-1 gene transcript in nucleus of cortical neurons in a manner dependent on a social isolation period. This stress had no effect on the expression level of Egr-1 in the striatum or the expression levels of other Egr family members (Egr-2, -3, and -4) in the frontal cortex. These results suggest that the decrease in Egr-1 expression in the frontal cortex may be involved in social isolation stress-induced behavioral abnormalities.

  15. The ubiquitin isopeptidase UBPY regulates endosomal ubiquitin dynamics and is essential for receptor down-regulation.

    PubMed

    Row, Paula E; Prior, Ian A; McCullough, John; Clague, Michael J; Urbé, Sylvie

    2006-05-05

    UBPY is a ubiquitin-specific protease that can deubiquitinate monoubiquitinated receptor tyrosine kinases, as well as process Lys-48- and Lys-63-linked polyubiquitin to lower denomination forms in vitro. Catalytically inactive UBPY localizes to endosomes, which accumulate ubiquitinated proteins. We have explored the sequelae of short interfering RNA-mediated knockdown of UBPY. Global levels of ubiquitinated protein increase and ubiquitin accumulates on endosomes, although free ubiquitin levels are unchanged. UBPY-depleted cells have more and larger multivesicular endosomal structures that are frequently associated through extended contact areas, characterized by regularly spaced, electron-dense, bridging profiles. Degradation of acutely stimulated receptor tyrosine kinases, epidermal growth factor receptor and Met, is strongly inhibited in UBPY knockdown cells suggesting that UBPY function is essential for growth factor receptor down-regulation. In contrast, stability of the UBPY binding partner STAM is dramatically compromised in UBPY knockdown cells. The cellular functions of UBPY are complex but clearly distinct from those of the Lys-63-ubiquitin-specific protease, AMSH, with which it shares a binding site on the SH3 domain of STAM.

  16. Endosomal deubiquitinating enzymes control ubiquitination and down-regulation of protease-activated receptor 2.

    PubMed

    Hasdemir, Burcu; Murphy, Jane E; Cottrell, Graeme S; Bunnett, Nigel W

    2009-10-09

    The E3 ubiquitin ligase c-Cbl ubiquitinates the G protein-coupled receptor protease-activated receptor 2 (PAR(2)), which is required for postendocytic sorting of activated receptors to lysosomes, where degradation terminates signaling. The mechanisms of PAR(2) deubiquitination and its importance in trafficking and signaling of endocytosed PAR(2) are unknown. We report that receptor deubiquitination occurs between early endosomes and lysosomes and involves the endosomal deubiquitinating proteases AMSH and UBPY. Expression of the catalytically inactive mutants, AMSH(D348A) and UBPY(C786S), caused an increase in PAR(2) ubiquitination and trapped the receptor in early endosomes, thereby preventing lysosomal trafficking and degradation. Small interfering RNA knockdown of AMSH or UBPY also impaired deubiquitination, lysosomal trafficking, and degradation of PAR(2). Trapping PAR(2) in endosomes through expression of AMSH(D348A) or UBPY(C786S) did not prolong the association of PAR(2) with beta-arrestin2 or the duration of PAR(2)-induced ERK2 activation. Thus, AMSH and UBPY are essential for trafficking and down-regulation of PAR(2) but not for regulating PAR(2) dissociation from beta-arrestin2 or PAR(2)-mediated ERK2 activation.

  17. Leucine zipper, down regulated in cancer-1 gene expression in prostate cancer

    PubMed Central

    Salemi, Michele; Barone, Nunziata; La Vignera, Sandro; Condorelli, Rosita A.; Recupero, Domenico; Galia, Antonio; Fraggetta, Filippo; Aiello, Anna Maria; Pepe, Pietro; Castiglione, Roberto; Vicari, Enzo; Calogero, Aldo E.

    2016-01-01

    Numerous genetic alterations have been implicated in the development of prostate cancer (PCa). DNA and protein microarrays have enabled the identification of genes associated with apoptosis, which is important in PCa development. Despite the molecular mechanisms are not entirely understood, inhibition of apoptosis is a critical pathophysiological factor that contributes to the onset and progression of PCa. Leucine zipper, down-regulated in cancer 1 (LDOC-1) is a known regulator of the nuclear factor (NF)-mediated pathway of apoptosis through the inhibition of NF-κB. The present study investigated the expression of the LDOC-1 gene in LNCaP, PC-3, PNT1A and PNT2 prostate cell lines by reverse transcription-quantitative polymerase chain reaction. In addition LDOC-1 protein expression in normal prostate tissues and PCa was studied by immunohistochemistry. LDOC-1 messenger RNA resulted overexpressed in LNCaP and PC-3 PCa cell lines compared with the two normal prostate cell lines PNT1A and PNT2. The results of immunohistochemistry demonstrated a positive cytoplasmic LDOC-1 staining in all PCa and normal prostate samples, whereas no nuclear staining was observed in any sample. Furthermore, a more intense signal was evidenced in PCa samples. LDOC-1 gene overexpression in PCa suggests an activity of LDOC-1 in PCa cell lines. PMID:27698860

  18. Down-regulation of GPR137 expression inhibits proliferation of colon cancer cells.

    PubMed

    Zhang, Kai; Shen, Zhen; Liang, Xianjun; Liu, Tongjun; Wang, Tiejun; Jiang, Yang

    2014-11-01

    G protein-coupled receptors (GPRs) are highly related to oncogenesis and cancer metastasis. G protein-coupled receptor 137 (GPR137) was initially reported as a novel orphan GPR about 10 years ago. Some orphan GPRs have been implicated in human cancers. The aim of this study is to investigate the role of GPR137 in human colon cancer. Expression levels of GRP137 were analyzed in different colon cancer cell lines by quantitative polymerase chain reaction and western blot analysis. Lentivirus-mediated short hairpin RNA was specifically designed to knock down GPR137 expression in colon cancer cells. Cell viability was measured by methylthiazoletetrazolium and colony formation assays. In addition, cell cycle characteristic was investigated by flow cytometry. GRP137 expression was observed in all seven colon cancer cell lines at different levels. The mRNA and protein levels of GPR137 were down-regulated in both HCT116 and RKO cells after lentivirus infection. Lentivirus-mediated silencing of GPR137 reduced the proliferation rate and colonies numbers. Knockdown of GPR137 in both cell lines led to cell cycle arrest in the G0/G1 phase. These results indicated that GPR137 plays an important role in colon cancer cell proliferation. A better understanding of GPR137's effects on signal transduction pathways in colon cancer cells may provide insights into the novel gene therapy of colon cancer.

  19. MARCH1 down-regulation in IL-10-activated B cells increases MHC class II expression.

    PubMed

    Galbas, Tristan; Steimle, Viktor; Lapointe, Réjean; Ishido, Satoshi; Thibodeau, Jacques

    2012-07-01

    IL-10 is vastly studied for its anti-inflammatory properties on most immune cells. However, it has been reported that IL-10 activates B cells, up-regulates their MHC class II molecules and prevents apoptosis. As MARCH1 was shown to be responsible for the intracellular sequestration of MHC class II molecules in dendritic cells and monocytes in response to IL-10, we set out to clarify the role of this ubiquitin ligase in B cells. Here, we demonstrate in mice that splenic follicular B cells represent the major cell population that up-regulate MHC II molecules in the presence of IL-10. Activation of these cells through TLR4, CD40 or the IL-10 receptor caused the down-regulation of MARCH1 mRNA. Accordingly, B cells from MARCH1-deficient mice do not up-regulate I-A(b) in response to IL-10. In all, our results demonstrate that IL-10 can have opposite effects on MARCH1 regulation in different cell types.

  20. Down-Regulation of Negative Emotional Processing by Transcranial Direct Current Stimulation: Effects of Personality Characteristics

    PubMed Central

    Peña-Gómez, Cleofé; Vidal-Piñeiro, Dídac; Clemente, Immaculada C.; Pascual-Leone, Álvaro; Bartrés-Faz, David

    2011-01-01

    Evidence from neuroimaging and electrophysiological studies indicates that the left dorsolateral prefrontal cortex (DLPFC) is a core region in emotional processing, particularly during down-regulation of negative emotional conditions. However, emotional regulation is a process subject to major inter-individual differences, some of which may be explained by personality traits. In the present study we used transcranial direct current stimulation (tDCS) over the left DLPFC to investigate whether transiently increasing the activity of this region resulted in changes in the ratings of positive, neutral and negative emotional pictures. Results revealed that anodal, but not cathodal, tDCS reduced the perceived degree of emotional valence for negative stimuli, possibly due to an enhancement of cognitive control of emotional expression. We also aimed to determine whether personality traits (extraversion and neuroticism) might condition the impact of tDCS. We found that individuals with higher scores on the introversion personality dimension were more permeable than extraverts to the modulatory effects of the stimulation. The present study underlines the role of the left DLPFC in emotional regulation, and stresses the importance of considering individual personality characteristics as a relevant variable, although replication is needed given the limited sample size of our study. PMID:21829522

  1. Down-regulation of a calmodulin-related gene during transformation of human mammary epithelial cells

    SciTech Connect

    Yaswen, P.; Smoll, A.; Stampfer, M.R. ); Peehl, D.M. ); Trask, D.K.; Sager, R. )

    1990-10-01

    A human cDNA library obtained from cultured normal mammary epithelial cells (HMECs) was searched by subtractive hybridization for genes whose decrease in expression might be relevant to epithelial transformation. One clone identified by this procedure corresponded to a 1.4 kilobase mRNA, designated NB-1, whose expression was decreased >50-fold in HMECs tumorigenically transformed in vitro after exposure to benzo({alpha})pyrene and Kirsten sarcoma virus. Sequence analysis of NB-1 cDNA revealed an open reading frame with a high degree of homology to calmodulin. NB-1 expression could be demonstrated by polymerase chain reaction amplification in normal breast, prostate, cervix, and epidermal tissues. The presence of NB-1 transcripts was variable in primary breast carcinoma tissues and undetectable in tumor-derived cell lines of breast, prostate, or other origins. NB-1 mRNA expression could be down-regulated in cultured HMECs by exposure to reconstituted extracellular matrix material, while exposure to transforming growth factor type {beta} increased its relative abundance. The protein encoded by NB-1 may have Ca{sup 2{sup plus}} binding properties and perform functions similar to those of authentic calmodulin. Its possible roles in differentiation and/or suppression of tumorigenicity in epithelial tissues remain to be examined.

  2. A Human Bone Morphogenetic Protein Antagonist Is Down-Regulated in Renal Cancer

    PubMed Central

    Blish, Kimberly Rose; Wang, Wei; Willingham, Mark C.; Du, Wei; Birse, Charles E.; Krishnan, Surekha R.; Brown, Julie C.; Hawkins, Gregory A.; Garvin, A. Julian; D'Agostino, Ralph B.; Torti, Frank M.

    2008-01-01

    We analyzed expression of candidate genes encoding cell surface or secreted proteins in normal kidney and kidney cancer. This screen identified a bone morphogenetic protein (BMP) antagonist, SOSTDC1 (sclerostin domain–containing-1) as down-regulated in kidney tumors. To confirm screening results, we probed cDNA dot blots with SOSTDC1. The SOSTDC1 message was decreased in 20/20 kidney tumors compared with normal kidney tissue. Immunohistochemistry confirmed significant decrease of SOSTDC1 protein in clear cell renal carcinomas relative to normal proximal renal tubule cells (p < 0.001). Expression of SOSTDC1 was not decreased in papillary and chromophobe kidney tumors. SOSTDC1 was abundantly expressed in podocytes, distal tubules, and transitional epithelia of the normal kidney. Transfection experiments demonstrated that SOSTDC1 is secreted and binds to neighboring cells and/or the extracellular matrix. SOSTDC1 suppresses both BMP-7–induced phosphorylation of R-Smads-1, -5, and -8 and Wnt-3a signaling. Restoration of SOSTDC1 in renal clear carcinoma cells profoundly suppresses proliferation. Collectively, these results demonstrate that SOSTDC1 is expressed in the human kidney and decreased in renal clear cell carcinoma. Because SOSTDC1 suppresses proliferation of renal carcinoma cells, restoration of SOSTDC1 signaling may represent a novel target in treatment of renal clear cell carcinoma. PMID:18032587

  3. Dehydroepiandrosterone down-regulates the expression of peroxisome proliferator-activated receptor gamma in adipocytes.

    PubMed

    Kajita, Kazuo; Ishizuka, Tatsuo; Mune, Tomoatsu; Miura, Atsushi; Ishizawa, Masayoshi; Kanoh, Yoshinori; Kawai, Yasunori; Natsume, Yoshiyuki; Yasuda, Keigo

    2003-01-01

    Dehydroepiandrosterone (DHEA) is expected to have a weight-reducing effect. In this study, we evaluated the effect of DHEA on genetically obese Otsuka Long Evans Fatty rats (OLETF) compared with Long-Evans Tokushima rats (LETO) as control. Feeding with 0.4% DHEA-containing food for 2 wk reduced the weight of sc, epididymal, and perirenal adipose tissue in association with decreased plasma leptin levels in OLETF. Adipose tissue from OLETF showed increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma) protein, which was prevented by DHEA treatment. Further, we examined the effect of DHEA on PPARgamma in primary cultured adipocytes and monolayer adipocytes differentiated from rat preadipocytes. PPARgamma protein level was decreased in a time- and concentration-dependent manner, and DHEA significantly reduced mRNA levels of PPARgamma, adipocyte lipid-binding protein, and sterol regulatory element-binding protein, but not CCAAT/enhancer binding protein alpha. DHEA-sulfate also reduced the PPARgamma protein, but dexamethasone, testosterone, or androstenedione did not alter its expression. In addition, treatment with DHEA for 5 d reduced the triglyceride content in monolayer adipocytes. These results suggest that DHEA down-regulates adiposity through the reduction of PPARgamma in adipocytes.

  4. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize

    PubMed Central

    Lauter, Nick; Kampani, Archana; Carlson, Shawn; Goebel, Mark; Moose, Stephen P.

    2005-01-01

    Shoot development in many higher plant species is characterized by phase change, where meristems and organs transition from one set of identities to another. The transition from a juvenile to adult leaf identity in maize is regulated by the APETALA2-like gene glossy15 (gl15). We demonstrate here that increasing gl15 activity in transgenic maize not only increases the number of leaves expressing juvenile traits, but also delays the onset of reproductive development, indicating that gl15 plays a primary role in the maintenance of the juvenile phase. We also show that the accumulation of a maize microRNA homologous to miR172 increases during shoot development and mediates gl15 mRNA degradation. These data indicate that vegetative phase change in maize is regulated by the opposing actions of gl15 and miR172, with gl15 maintaining the juvenile phase and miR172 promoting the transition to the adult phase by down-regulation of gl15. Our results also suggest that the balance of activities between APETALA2-like genes and miR172 may be a general mechanism for regulating vegetative phase change in higher plants. PMID:15958531

  5. Ribozyme minigene-mediated RAD51 down-regulation increases radiosensitivity of human prostate cancer cells.

    PubMed

    Collis, S J; Tighe, A; Scott, S D; Roberts, S A; Hendry, J H; Margison, G P

    2001-04-01

    The strand transferase RAD51 is a component of the homologous recombination repair pathway. To examine the contribution of RAD51 to the genotoxic effects of ionising radiation, we have used a novel ribozyme strategy. A reporter gene vector was constructed so that expression of an inserted synthetic double-stranded ribozyme-encoding oligonucleotide would be under the control of the cytomegalovirus immediate-early gene enhancer/promoter system. The prostate tumour cell line LNCaP was transfected with this vector or a control vector, and a neomycin resistance gene on the vector was used to create geneticin-resistant stable cell lines. Three stable cell lines were shown by western blot analysis to have significant down-regulation of RAD51 to 20-50% of the levels expressed in control cell lines. All three cell lines had a similar increased sensitivity to gamma-irradiation by 70 and 40%, respectively, compared to normal and empty vector-transfected cells, corresponding to dose-modifying factors of approximately 2.0 and 1.5 in the mid-range of the dose-response curves. The amount of RAD51 protein in transfected cell lines was shown to strongly correlate with the alpha parameter obtained from fitted survival curves. These results highlight the importance of RAD51 in cellular responses to radiation and are the first to indicate the potential use of RAD51-targeted ribozyme minigenes in tumour radiosensitisation.

  6. Fucoidan induces apoptosis of HepG2 cells by down-regulating p-Stat3.

    PubMed

    Roshan, Sadia; Liu, Yun-yi; Banafa, Amal; Chen, Hui-jie; Li, Ke-xiu; Yang, Guang-xiao; He, Guang-yuan; Chen, Ming-jie

    2014-06-01

    Fucoidan is one of the main bioactive components of polysaccharides. The current study was focused on the anti-tumor effects of fucoidan on human heptoma cell line HepG2 and the possible mechanisms. Fucoidan treatment resulted in cell cycle arrest and apoptosis of HepG2 cells in a dose-dependent manner detected by MTT assay, flow cytometry and fluorescent microscopy. The results of flow cytometric analysis revealed that fucoidan induced G2/M arrest in the cell cycle progression. Hoechst 33258 and Annexin V/PI staining results showed that the apoptotic cell number was increased, which was associated with a dose-dependent up-regulation of Bax and down-regulation of Bcl-2 and p-Stat3. In parallel, the up-regulation of p53 and the increase in reactive oxygen species were also observed, which may play important roles in the inhibition of HepG2 growth by fucoidan. In the meantime, Cyclin B1 and CDK1 were down-regulated by fucoidan treatment. Down-regulation of p-Stat3 by fucoidan resulted in apoptosis and an increase in ROS in response to fucoidan exposure. We therefore concluded that fucoidan induces apoptosis through the down-regulation of p-Stat3. These results suggest that fucoidan may be used as a novel anti-cancer agent for hepatocarcinoma.

  7. Down-regulation of ABCG2, a urate exporter, by parathyroid hormone enhances urate accumulation in secondary hyperparathyroidism.

    PubMed

    Sugimoto, Ryusei; Watanabe, Hiroshi; Ikegami, Komei; Enoki, Yuki; Imafuku, Tadashi; Sakaguchi, Yoshiaki; Murata, Michiya; Nishida, Kento; Miyamura, Shigeyuki; Ishima, Yu; Tanaka, Motoko; Matsushita, Kazutaka; Komaba, Hirotaka; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2017-03-01

    Hyperuricemia occurs with increasing frequency among patients with hyperparathyroidism. However, the molecular mechanism by which the serum parathyroid hormone (PTH) affects serum urate levels remains unknown. This was studied in uremic rats with secondary hyperparathyroidism where serum urate levels were found to be increased and urate excretion in the intestine and kidney decreased, presumably due to down-regulation of the expression of the urate exporter ABCG2 in intestinal and renal epithelial membranes. These effects were prevented by administration of the calcimimetic cinacalcet, a PTH suppressor, suggesting that PTH may down-regulate ABCG2 expression. This was directly tested in intestinal Caco-2 cells where the expression of ABCG2 on the plasma membrane was down-regulated by PTH (1-34) while its mRNA level remained unchanged. Interestingly, an inactive PTH derivative (13-34) had no effect, suggesting that a posttranscriptional regulatory system acts through the PTH receptor to regulate ABCG2 plasma membrane expression. As found in an animal study, additional clinical investigations showed that treatment with cinacalcet resulted in significant reductions in serum urate levels together with decreases in PTH levels in patients with secondary hyperparathyroidism undergoing dialysis. Thus, PTH down-regulates ABCG2 expression on the plasma membrane to suppress intestinal and renal urate excretion, and the effects of PTH can be prevented by cinacalcet treatment.

  8. HER2 mediates epidermal growth factor-induced down-regulation of E-cadherin in human ovarian cancer cells.

    PubMed

    Cheng, Jung-Chien; Qiu, Xin; Chang, Hsun-Ming; Leung, Peter C K

    2013-04-26

    Overexpression of HER2 is correlated with a poor prognosis in many types of human cancers. Due to the interaction between HER2 and other ErbB receptors, HER2 is implicated in the EGF family of ligands-regulated tumor progression. In ovarian cancer, although the relationships between HER2 amplification and patient prognosis remain controversial, the underlying molecular mechanisms of HER2-mediated tumor progression are not fully understood. Our previous studies demonstrated that EGF induces ovarian cancer cell invasion by down-regulating E-cadherin expression through the up-regulation of its transcriptional repressors, Snail and Slug. It has been shown that overexpression of HER2 down-regulates E-cadherin expression in human mammary epithelial cells. However, whether HER2 mediates EGF-induced down-regulation of E-cadherin remains unknown. In this study, we examined the potential role of HER2 in EGF-induced down-regulation of E-cadherin and increased cell invasion. We show that EGF treatment induces the interaction of EGFR with HER2 and increases the activation of HER2 in human ovarian cancer cells; we also show that these effects are diminished by knockdown of EGFR. Importantly, treatment with HER2-specific tyrosine kinase inhibitor, AG825, and HER2 siRNA diminished the up-regulation of Snail and Slug as well as the down-regulation of E-cadherin by EGF. Finally, we also show that EGF-induced cell invasion was attenuated by treatment with HER2 siRNA. This study demonstrates an important role for HER2 in mediating the effects of EGF on Snail, Slug and E-cadherin expression as well as invasiveness in human ovarian cancer cells.

  9. Down-regulated expression of Tim-3 promotes invasion and metastasis of colorectal cancer cells.

    PubMed

    Sun, Q Y; Qu, C H; Liu, J Q; Zhang, P; Yao, J

    2017-01-01

    To explore how Tim-3 is expressed and how its expression influences invasion and metastasis of colorectal cancer (CRC) cells. A total of 188 CRC patients were prospectively collected for this study. Meanwhile, 135 normal controls were incorporated during the same period. Intestinal samples of the CRC radical cancerous tissues, paracancerous tissues ( 5.0 cm beyond the cancer tissue) were collected for the following experiment. Furthermore, peripheral venous blood samples (10 ml) were collected from each subject. Immunohistochemical analysis, quantitative real-time polymerase chain reaction (RT-qPCR) and western blot were performed for the detection of Tim-3 in different tissues. The immunohistochemical staining results showed that a positive Tim-3 signal was localized in the cytoplasm and nucleus, observed as yellow or brown granules. Tim-3 was largely expressed in colon carcinoma tissues and normal colon mucosa tissues but was rarely expressed in the cell membrane. RT-qPCR results indicated that Tim-3 mRNA levels were significantly lower in CRC tissues than in paracancerous tissues and normal colon mucosa tissues. A trend of decreased Tim-3 mRNA levels was also found in the paracancerous tissues compared with the normal colon mucosa tissues (all P < 0.05). Western blot results revealed reduced Tim-3 protein expression in CRC tissues compared with normal colon mucosa tissues and paracancerous tissues, and Tim-3 protein expression was much lower in the paracancerous tissues than in the normal colon mucosa tissues (all P < 0.05). Furthermore, obviously lower Tim-3 mRNA levels were found in the poorly differentiated CRC patients and in those with lymph node metastasis and distant metastasis (all P < 0.05). Collectively, Tim-3 expression was mainly located in the cytoplasm and nucleus, showing down-regulated expression in colon carcinoma tissues compared with normal and paracancerous tissues. Reduced Tim-3 expression may promote CRC invasion and metastasis providing a

  10. sgs1: a neomorphic nac52 allele impairing PTGS through SGS3 down-regulation.

    PubMed

    Butel, Nicolas; Le Masson, Ivan; Bouteiller, Nathalie; Vaucheret, Hervé; Elmayan, Taline

    2017-02-16

    Post-transcriptional gene silencing (PTGS) is a defense mechanism that targets invading nucleic acids from endogenous (transposons) or exogenous (pathogens, transgenes) origins. Genetic screens based on the reactivation of silenced transgenes have long been used to identify cellular PTGS components and regulators. Here we show that the first isolated PTGS-deficient mutant, sgs1, is impaired in the transcription factor NAC52. This mutant exhibits striking similarities with a mutant impaired in the H3K4me3 demethylase JMJ14 isolated from the same genetic screen. These similarities including increased transgene promoter DNA methylation, reduced H3K4me3 and H3K36me3 levels, reduced PolII occupancy and reduced transgene mRNA accumulation. Likely, increased DNA methylation is the cause of reduced transcription because the effect of jmj14 and sgs1 on transgene transcription is suppressed by drm2, a mutation that compromises de novo DNA methylation, suggesting that the JMJ14-NAC52 module promotes transgene transcription by preventing DNA methylation. Remarkably, sgs1 has a stronger effect than jmj14 and nac52 null alleles on PTGS systems requiring siRNA amplification, and this is due to reduced SGS3 mRNA levels in sgs1. Given that the sgs1 mutation changes a conserved aminoacid of the NAC proteins involved in homodimerization, we propose that sgs1 corresponds to a neomorphic nac52 allele encoding a mutant protein that lacks wild-type NAC52 activity but promotes SGS3 down-regulation. Together, these results indicate that PTGS impairment in sgs1 is due to its dual effect on transgene transcription and SGS3 transcription, thus compromising siRNA amplification. This article is protected by copyright. All rights reserved.

  11. Impacts on the metabolome of down-regulating polyphenol oxidase in potato tubers.

    PubMed

    Shepherd, Louise Vida Traill; Alexander, Colin James; Hackett, Christine Anne; McRae, Diane; Sungurtas, Julia Anne; Verrall, Susan Ramsay; Morris, Jennifer Anne; Hedley, Peter Edward; Rockhold, David; Belknap, William; Davies, Howard Vivian

    2015-06-01

    Tubers of potato (Solanum tuberosum L. cv. Estima) genetically modified to reduce polyphenol oxidase (PPO) activity and enzymatic discolouration were assessed for changes in the metabolome using Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas Chromatography (GC)-MS. Metabolome changes induced over a 48 hour (h) period by tuber wounding (sliced transverse sections) were also assessed using two PPO antisense lines (asPPO) and a wild-type (WT) control. Data were analysed using Principal Components Analysis and Analysis of Variance to assess differences between genotypes and temporal changes post-tuber wounding (by slicing). The levels of 15 metabolites (out of a total of 134 that were detected) differed between the WT and asPPO lines in mature tubers at harvest. A considerably higher number (63) of these metabolites changed significantly over a 48 h period following tuber wounding. For individual metabolites the magnitude of the differences between the WT and asPPO lines at harvest were small compared with the impacts of tuber wounding on metabolite levels. Some of the observed metabolite changes are explicable in terms of pathways known to be affected by wound responses. Whilst some statistically significant interactions (11 metabolites) were observed between line and time after wounding, very few profiles were consistent when comparing the WT with both asPPO lines, and the underlying metabolites appeared to be random in terms of the pathways they occupy. Overall, mechanical damage to tubers has a considerably greater impact on the metabolite profile than any potential unintended effects resulting from the down-regulation of PPO gene expression.

  12. Irradiation of protoporphyric mice induces down-regulation of epidermal eicosanoid metabolism

    SciTech Connect

    He, D.; Lim, H.W. )

    1991-09-01

    This study investigated the effect of radiation on clinical and histologic changes, and on cutaneous eicosanoid metabolism, in Skh:HR-1 hairless albino mice rendered protoporphyric by the administration of collidine. At 0.1-18 h after exposure to 12 kJ/m2 of 396-406 nm irradiation, thicknesses of back skin and ears were measured, and histologic changes were evaluated by using hematoxylin and eosin (H-E) and Giemsa's stains. Activities of eicosanoid-metabolizing enzymes in epidermal and dermal homogenates were assessed by incubating the tissue homogenates with 3H-AA, followed by quantitation of the eicosanoids generated by radio-TLC. In irradiated protoporphyric mice, an increase of back-skin thickness was noted at 0.1 h, reaching a peak at 18 h, whereas maximal increase in ear thickness was observed at 12 h. Histologic changes included dermal edema, increased mast cell degranulation, and mononuclear cells in the dermis. In these irradiated protoporphyric animals, generations of 6 keto-PGF1a, PGF2a, PGE2, PGD2, and HETE by epidermal eicosanoid-metabolizing enzymes were markedly suppressed at all the timepoints studied. Dermal eicosanoid-metabolizing enzymes of irradiated protoporphyric mice generated increased amounts of PGE2 and HETE at 18 h, probably reflecting the presence of dermal cellular infiltrates. The suppression of the activities of epidermal eicosanoid-metabolizing enzymes was prevented by intraperitoneal injection of WR-2721, a sulfhydryl group generator, prior to irradiation, suggesting that the suppression was secondary to photo-oxidative damage of the enzymes during the in vivo phototoxic response. These results suggest that the effect of protoporphyrin and radiation on cutaneous eicosanoid metabolism in this animal model in vivo is that of a down regulation of the activities of epidermal eicosanoid-metabolizing enzymes.

  13. FOXL2 down-regulates vitellogenin expression at mature stage in Eriocheir sinensis

    PubMed Central

    Li, Qing; Xie, Jing; He, Lin; Wang, Yuanli; Yang, Hongdan; Duan, Zelin; Wang, Qun

    2015-01-01

    Ovarian development in crustaceans is characterized by rapid production of egg yolk protein in a process called vitellogenesis. In the present study, we investigated the involvement of a DEAD (Asp-Glu-Ala-Asp) box RNA helicase 20 (DDX20), forkhead transcription factor (FOXL)2 and fushi tarazu factor (FTZ-F)1 in the regulation of vitellogenesis. Based on ESTs from the testis and accessory gland of Eriocheir sinensis, we cloned the full-length cDNAs of foxl2 and fushitarazu factor 1 (ftz-f1), which include the conserved structural features of the forkhead family and nuclear receptor 5A (NR5A) family respectively. The expression of foxl2 mRNA surged at the mature stage of the ovary, when vtg mRNA swooped, suggesting that foxl2 negatively affects the vitellogenin (VTG) synthesis at this developmental stage. Etoposide (inducing germ cell apoptosis) treatment up-regulated FOXL2 and DDX20 at both the mRNA and the protein levels, primarily in the follicular cells as shown by immunofluorescence analysis. Furthermore, foxl2, ddx20 and ftz-f1 mRNA levels increased significantly with right-eyestalk ablation. Interactions between FOXL2 and DDX20 or FTZ-F1 were confirmed by co-immunoprecipitation and the forkhead domain of FOXL2 was identified as the specific structure interacting with FTZ-F1. In conclusion, FOXL2 down-regulates VTG expression by binding with DDX20 in regulation of follicular cell apoptosis and with FTZ-F1 to repress the synthesis of VTG at the mature stage. This report is the first to describe the molecular mechanism of VTG synthesis in E. sinensis and may shed new light on the regulation of cytochrome P450 enzyme by FOXL2 and FTZ-F1 in vitellogenesis. PMID:26430246

  14. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia1

    PubMed Central

    Shaipulah, Nur Fariza M.; Muhlemann, Joëlle K.; Woodworth, Benjamin D.; Van Moerkercke, Alex; Ramirez, Aldana A.; Haring, Michel A.; Schuurink, Robert C.

    2016-01-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia ‘Mitchell’. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production. PMID:26620524

  15. Down-regulation of voltage-dependent sodium channels initiated by sodium influx in developing neurons

    SciTech Connect

    Dargent, B.; Couraud, F. )

    1990-08-01

    To address the issue of whether regulatory feedback exists between the electrical activity of a neuron and ion-channel density, the authors investigated the effect of Na{sup +}-channel activators (scorpion {alpha} toxin, batrachotoxin, and veratridine) on the density of Na{sup +} channels in fetal rat brain neurons in vitro. A partial but rapid (t{sub 1/2}, 15 min) disappearance of surface Na{sup +} channels was observed as measured by a decrease in the specific binding of ({sup 3}H)saxitoxin and {sup 125}I-labeled scorpion {beta} toxin and a decrease in specific {sup 22}Na{sup +} uptake. Moreover, the increase in the number of Na{sup +} channels that normally occurs during neuronal maturation in vitro was inhibited by chronic channel activator treatment. The induced disappearance of Na{sup +} channels was abolished by tetrodotoxin, was found to be dependent on the external Na{sup +} concentration, and was prevented when either choline (a nonpermeant ion) or Li{sup +} (a permeant ion) was substituted for Na{sup +}. Amphotericin B, a Na{sup +} ionophore, and monensin were able to mimick the effect of Na{sup +}-channel activators, while a KCl depolarization failed to do this. This feedback regulation seems to be a neuronal property since Na{sup +}-channel density in cultured astrocytes was not affected by channel activator treatment or by amphotericin B. The present evidence suggests that an increase in intracellular Na{sup +} concentration, whether elicited by Na{sup +}-channel activators or mediated by a Na{sup +} ionophore, can induce a decrease in surface Na{sup +} channels and therefore is involved in down-regulation of Na{sup +}-channel density in fetal rat brain neurons in vitro.

  16. Down-regulated resistin level in consequence of decreased neutrophil counts in untreated Grave's disease

    PubMed Central

    Huang, Fengjiao; Chen, Xinxin; Zhou, Yulin; Ye, Lei; Wang, Weiqing; Ning, Guang; Wang, Shu

    2016-01-01

    Resistin, belongs to cysteine-rich secretory protein, is mainly produced by circulating leukocytes, such as neutrophils monocytes and macrophages in humans. To date, few but controversial studies have reported about resistin concentrations in hyperthyroid patients, especially in Graves' disease (GD). We undertaked a controlled, prospective study to explore the serum resistin concentration in GD patients before and after -MMI treatment. In addition, we also investigated the main influencing factor on serum resistin level and discuessed the potential role of serum resistin plays in GD patients. 39 untreated GD (uGD) patients, including 8 males and 31 females, were enrolled in our investigation. All of these patients were prescribed with MMI treatment, in addition to 25 healthy controls. Anthropometric parameters and hormone assessment were measured. Enzyme-linked immunosorbent assay was used to detect serum resistin concentration in different stages of GD patients. Furthermore, neutrophil cell line NB4 with or without T3 treatment to detect the effect of thyroid hormones on resistin expression. The serum resistin level and neutrophil counts in untreated GD patients were significantly declined. And all of these parameters were recovered to normal after MMI treatment in ethyroid GD (eGD) and TRAb-negative conversion (nGD) patients. Resistin concentration exhibited a negative correlation with FT3 and FT4, but a positive correlation with absolute number of neutrophiles in uGD patients, whereas did not correlate with thyroid autoimmune antibodies and BMI. Neutrophile cell line, NB4, produced decreased expression of resistin when stimulated with T3. Our study showed a decrease of serum resistin level in GD patients and we suggested that the serum resistin might primarily secreted from circulating neutrophils and down-regulated by excessive thyroid hormones in GD patients. PMID:27637079

  17. Mutant IDH1 expression is associated with down-regulation of monocarboxylate transporters

    PubMed Central

    Viswanath, Pavithra; Najac, Chloe; Izquierdo, Jose L.; Pankov, Aleksandr; Hong, Chibo; Eriksson, Pia; Costello, Joseph F.; Pieper, Russell O.; Ronen, Sabrina M.

    2016-01-01

    Mutations in isocitrate dehydrogenase 1 (IDH1) are characteristic of low-grade gliomas. We recently showed that mutant IDH1 cells reprogram cellular metabolism by down-regulating pyruvate dehydrogenase (PDH) activity. Reduced pyruvate metabolism via PDH could lead to increased pyruvate conversion to lactate. The goal of this study was therefore to investigate the impact of the IDH1 mutation on the pyruvate-to-lactate flux. We used 13C magnetic resonance spectroscopy and compared the conversion of hyperpolarized [1-13C]-pyruvate to [1-13C]-lactate in immortalized normal human astrocytes expressing mutant or wild-type IDH1 (NHAIDHmut and NHAIDHwt). Our results indicate that hyperpolarized lactate production is reduced in NHAIDHmut cells compared to NHAIDHwt. This reduction was associated with lower expression of the monocarboxylate transporters MCT1 and MCT4 in NHAIDHmut cells. Furthermore, hyperpolarized lactate production was comparable in lysates of NHAIDHmut and NHAIDHwt cells, wherein MCTs do not impact hyperpolarized pyruvate delivery and lactate production. Collectively, our findings indicated that lower MCT expression was a key contributor to lower hyperpolarized lactate production in NHAIDHmut cells. The SLC16A3 (MCT4) promoter but not SLC16A1 (MCT1) promoter was hypermethylated in NHAIDHmut cells, pointing to possibly different mechanisms mediating reduced MCT expression. Finally analysis of low-grade glioma patient biopsy data from The Cancer Genome Atlas revealed that MCT1 and MCT4 expression was significantly reduced in mutant IDH1 tumors compared to wild-type. Taken together, our study shows that reduced MCT expression is part of the metabolic reprogramming of mutant IDH1 gliomas. This finding could impact treatment and has important implications for metabolic imaging of mutant IDH1 gliomas. PMID:27144334

  18. Simvastatin down-regulates differential genetic profiles produced by organochlorine mixtures in primary breast cell (HMEC).

    PubMed

    Rivero, Javier; Henríquez-Hernández, Luis Alberto; D Boada, Luis; Pestano, Jose; P Luzardo, Octavio; Camacho, María; Zumbado, Manuel; F Valerón, Pilar

    2017-04-25

    Women all over the world are exposed to an unavoidable contamination by organochlorine pesticides and other chemical pollutants. Many of them are considered as xenoestrogens and have been associated with the development and progression of breast cancer. We have demonstrated that the most prevalent pesticide mixtures found in healthy women and in women diagnosed with breast cancer modulates the gene expression in human epithelial mammary cells. Statins are well-known cholesterol-depleting agents acting as inhibitors of cholesterol synthesis. Since the early 1990s, it has been known that statins could be successfully used in cancer therapy, including breast cancer, but the exact mechanism behind anti-tumor activity of the statins remains unclear. In the present study we evaluated the effect of simvastatin in the gene expression pattern induced by realistic organochlorine mixtures found in breast cancer patients. The gene expression of 94 genes related with the cell signaling pathways were assessed. Our results indicate that simvastatin exerts a global down regulating effect on successfully determined genes (78.7%), thus attenuating the effects induced by organochlorine mixtures on the gene profile of human mammary epithelial cells. This effect was more evident on genes whose function is the ATP-binding process (that also were particularly up-regulated by pesticide mixtures). We also found that MERTK (a proto-oncogene which is overexpressed in several malignancies) and PDGFRB (a member of the platelet-derived growth factor family whose expression is high in breast-cancer cells that have become resistant to endocrine therapy) were among the genes with a higher differential regulation by simvastatin. Since resistance to treatment with tyrosine kinase inhibitors is closely related to MERKT, our findings would enhance the possible utility of statins in breast cancer treatment, i.e. improving therapeutic results combining statins with tyrosine Kinase inhibitors.

  19. Down-regulation of Na(+)/K(+)-ATPase alpha(2) isoform in denervated rat vas deferens.

    PubMed

    Quintas, L E; Caricati-Neto, A; Lafayette, S S; Jurkiewicz, A; Noël, F

    2000-09-15

    In the rat vas deferens, an organ richly innervated by peripheral sympathetic neurons, we have demonstrated recently the expression of alpha(1) and alpha(2), but not alpha(3) isoforms of the alpha subunit of Na(+)/K(+)-ATPase (EC 3.6.1.37), a membrane-bound enzyme of vital function for living cells (Noël et al., Biochem Pharmacol 55: 1531-1535, 1998). In the present work, we characterized, qualitatively and quantitatively, Na(+)/K(+)-ATPase alpha isoforms in denervated rat vasa deferentia. [(3)H]Ouabain binding at concentrations defined for high-affinity isoforms (alpha(2) and/or alpha(3)) detected only one class of specific binding sites in control (C) and denervated (D) vas deferens. Although the dissociation constant was similar for both groups [K(d) = 138 +/- 14 nM (C) and 125 +/- 8 nM (D)], a marked decrease in density was observed after denervation [716 +/- 81 fmol.mg protein(-1) (C) and 445 +/- 34 fmol.mg protein(-1) (D), P < 0.05]. In addition, western blotting revealed that denervated vasa deferentia produce the alpha(1) and alpha(2) isoforms but not alpha(3), just as we reported for the controls previously (Noël et al., Biochem Pharmacol 55: 1531-1535, 1998). Densitometric analysis showed a decrease of the alpha(2) isoform by about 40% in denervated organs, in very good agreement with what was shown with the [(3)H]ouabain binding technique, but no significant change in alpha(1) isoform density. Truncated alpha(1) (alpha(1)T), an isoform suggested to exist in the guinea pig vas deferens, was not detected. Altogether, our results demonstrated that Na(+)/K(+)-ATPase alpha(2) is down-regulated after sympathetic denervation of the rat vas deferens.

  20. Down-regulation of voltage-dependent sodium channels initiated by sodium influx in developing neurons.

    PubMed Central

    Dargent, B; Couraud, F

    1990-01-01

    To address the issue of whether regulatory feedback exists between the electrical activity of a neuron and ion-channel density, we investigated the effect of Na(+)-channel activators (scorpion alpha toxin, batrachotoxin, and veratridine) on the density of Na+ channels in fetal rat brain neurons in vitro. A partial but rapid (t1/2, 15 min) disappearance of surface Na+ channels was observed as measured by a decrease in the specific binding of [3H]saxitoxin and 125I-labeled scorpion beta toxin and a decrease in specific 22Na+ uptake. Moreover, the increase in the number of Na+ channels that normally occurs during neuronal maturation in vitro was inhibited by chronic channel activator treatment. The induced disappearance of Na+ channels was abolished by tetrodotoxin, was found to be dependent on the external Na+ concentration, and was prevented when either choline (a nonpermeant ion) or Li+ (a permeant ion) was substituted for Na+. Amphotericin B, a Na+ ionophore, and monensin were able to mimick the effect of Na(+)-channel activators, while a KCl depolarization failed to do this. This feedback regulation seems to be a neuronal property since Na(+)-channel density in cultured astrocytes was not affected by channel activator treatment or by amphotericin B. The present evidence suggests that an increase in intracellular Na+ concentration, whether elicited by Na(+)-channel activators or mediated by a Na+ ionophore, can induce a decrease in surface Na+ channels and therefore is involved in down-regulation of Na(+)-channel density in fetal rat brain neurons in vitro. PMID:2165609

  1. Ectodermal-neural cortex 1 down-regulates Nrf2 at the translational level.

    PubMed

    Wang, Xiao-Jun; Zhang, Donna D

    2009-01-01

    The transcription factor Nrf2 is the master regulator of a cellular defense mechanism against environmental insults. The Nrf2-mediated antioxidant response is accomplished by the transcription of a battery of genes that encode phase II detoxifying enzymes, xenobiotic transporters, and antioxidants. Coordinated expression of these genes is critical in protecting cells from toxic and carcinogenic insults and in maintaining cellular redox homeostasis. Activation of the Nrf2 pathway is primarily controlled by Kelch-like ECH-associated protein 1 (Keap1), which is a molecular switch that turns on or off the Nrf2 signaling pathway according to intracellular redox conditions. Here we report our finding of a novel Nrf2 suppressor ectodermal-neural cortex 1 (ENC1), which is a BTB-Kelch protein and belongs to the same family as Keap1. Transient expression of ENC1 reduced steady-state levels of Nrf2 and its downstream gene expression. Although ENC1 interacted with Keap1 indirectly, the ENC1-mediated down-regulation of Nrf2 was independent of Keap1. The negative effect of ENC1 on Nrf2 was not due to a change in the stability of Nrf2 because neither proteasomal nor lysosomal inhibitors had any effects. Overexpression of ENC1 did not result in a change in the level of Nrf2 mRNA, rather, it caused a decrease in the rate of Nrf2 protein synthesis. These results demonstrate that ENC1 functions as a negative regulator of Nrf2 through suppressing Nrf2 protein translation, which adds another level of complexity in controlling the Nrf2 signaling pathway.

  2. Delta-Like Ligand 4 Modulates Liver Damage by Down-Regulating Chemokine Expression.

    PubMed

    Shen, Zhe; Liu, Yan; Dewidar, Bedair; Hu, Junhao; Park, Ogyi; Feng, Teng; Xu, Chengfu; Yu, Chaohui; Li, Qi; Meyer, Christoph; Ilkavets, Iryna; Müller, Alexandra; Stump-Guthier, Carolin; Munker, Stefan; Liebe, Roman; Zimmer, Vincent; Lammert, Frank; Mertens, Peter R; Li, Hai; Ten Dijke, Peter; Augustin, Hellmut G; Li, Jun; Gao, Bin; Ebert, Matthias P; Dooley, Steven; Li, Youming; Weng, Hong-Lei

    2016-07-01

    Disrupting Notch signaling ameliorates experimental liver fibrosis. However, the role of individual Notch ligands in liver damage is unknown. We investigated the effects of Delta-like ligand 4 (Dll4) in liver disease. DLL4 expression was measured in 31 human liver tissues by immunohistochemistry. Dll4 function was examined in carbon tetrachloride- and bile duct ligation-challenged mouse models in vivo and evaluated in hepatic stellate cells, hepatocytes, and Kupffer cells in vitro. DLL4 was expressed in patients' Kupffer and liver sinusoidal endothelial cells. Recombinant Dll4 protein (rDll4) ameliorated hepatocyte apoptosis, inflammation, and fibrosis in mice after carbon tetrachloride challenge. In vitro, rDll4 significantly decreased lipopolysaccharide-dependent chemokine expression in both Kupffer and hepatic stellate cells. In bile duct ligation mice, rDll4 induced massive hepatic necrosis, resulting in the death of all animals within 1 week. Inflammatory cell infiltration and chemokine ligand 2 (Ccl2) expression were significantly reduced in rDll4-receiving bile duct ligation mice. Recombinant Ccl2 rescued bile duct ligation mice from rDll4-mediated death. In patients with acute-on-chronic liver failure, DLL4 expression was inversely associated with CCL2 abundance. Mechanistically, Dll4 regulated Ccl2 expression via NF-κB. Taken together, Dll4 modulates liver inflammatory response by down-regulating chemokine expression. rDll4 application results in opposing outcomes in two models of liver damage. Loss of DLL4 may be associated with CCL2-mediated cytokine storm in patients with acute-on-chronic liver failure.

  3. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia.

    PubMed

    Shaipulah, Nur Fariza M; Muhlemann, Joëlle K; Woodworth, Benjamin D; Van Moerkercke, Alex; Verdonk, Julian C; Ramirez, Aldana A; Haring, Michel A; Dudareva, Natalia; Schuurink, Robert C

    2016-02-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia 'Mitchell'. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production.

  4. Read-through transcripts in normal human lung parenchyma are down-regulated in lung adenocarcinoma

    PubMed Central

    Cotroneo, Chiara E.; Galvan, Antonella; Noci, Sara; Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Incarbone, Matteo; Palleschi, Alessandro; Rosso, Lorenzo; Santambrogio, Luigi; Dragani, Tommaso A.; Colombo, Francesca

    2016-01-01

    Read-through transcripts result from the continuous transcription of adjacent, similarly oriented genes, with the splicing out of the intergenic region. They have been found in several neoplastic and normal tissues, but their pathophysiological significance is unclear. We used high-throughput sequencing of cDNA fragments (RNA-Seq) to identify read-through transcripts in the non-involved lung tissue of 64 surgically treated lung adenocarcinoma patients. A total of 52 distinct read-through species was identified, with 24 patients having at least one read-through event, up to a maximum of 17 such transcripts in one patient. Sanger sequencing validated 28 of these transcripts and identified an additional 15, for a total of 43 distinct read-through events involving 35 gene pairs. Expression levels of 10 validated read-through transcripts were measured by quantitative PCR in pairs of matched non-involved lung tissue and lung adenocarcinoma tissue from 45 patients. Higher expression levels were observed in normal lung tissue than in the tumor counterpart, with median relative quantification ratios between normal and tumor varying from 1.90 to 7.78; the difference was statistically significant (P < 0.001, Wilcoxon's signed-rank test for paired samples) for eight transcripts: ELAVL1–TIMM44, FAM162B–ZUFSP, IFNAR2–IL10RB, INMT–FAM188B, KIAA1841–C2orf74, NFATC3–PLA2G15, SIRPB1–SIRPD, and SHANK3–ACR. This report documents the presence of read-through transcripts in apparently normal lung tissue, with inter-individual differences in patterns and abundance. It also shows their down-regulation in tumors, suggesting that these chimeric transcripts may function as tumor suppressors in lung tissue. PMID:27058892

  5. Exposure to Fluorescent Light Triggers Down Regulation of Genes Involved with Mitotic Progression in Xiphophorus Skin

    PubMed Central

    Walter, Ronald B.; Walter, Dylan J.; Boswell, William T.; Caballero, Kaela L.; Boswell, Mikki; Lu, Yuan; Chang, Jordan; Savage, Markita G.

    2015-01-01

    We report RNA-Seq results from skin of X. maculatus Jp 163 B after exposure to various doses of “cool white” fluorescent light (FL). We show that FL exposure incites a genetic transcriptional response in skin nearly as great as observed for UVB exposure; however, the gene sets modulated due to exposure to the two light sources are quite different. Known light responsive genes involved in maintaining circadian cycling (e.g., clock, cry2a, cry1b, per1b, per2, per3, arntl1a, etc.) exhibited expected shifts in transcriptional expression upon FL exposure. Exposure to FL also resulted in down-regulated transcription of many genes involved with cell cycle progression (e.g., cdc20, cdc45, cdca7b, plk1, cdk1, ccnb-3, cdca7a, etc.) and chromosome segregation (e.g., cenpe, cenpf, cenpi, cenpk, cenpo, cenpp, and cenpu; cep70; knstrm, kntc, mcm2, mcm5; smc2, etc.). In addition, several DNA replication and recombination repair genes (e.g., pola1, pole, rec52, rad54l, rpa1, parpbp, etc.) exhibit reduced expression in FL exposed X. maculatus skin. Some genes down modulated by FL are known to be associated with DNA repair and human diseases (e.g., atm2, brip1, fanc1, fancl, xrcc4, etc.). The overall suppression of genes involved with mitotic progression in the skin of adult fish is consistent with entry into the light phase of the circadian cycle. Current efforts are aimed at determining specific wavelengths that may lead to differential expression among the many genes affected by fluorescent light exposure. PMID:26334372

  6. Down-regulating alpha-galactosidase enhances freezing tolerance in transgenic petunia.

    PubMed

    Pennycooke, Joyce C; Jones, Michelle L; Stushnoff, Cecil

    2003-10-01

    Alpha-galactosidase (alpha-Gal; EC 3.2.1.22) is involved in many aspects of plant metabolism, including hydrolysis of the alpha-1,6 linkage of raffinose oligosaccharides during deacclimation. To examine the relationship between endogenous sugars and freezing stress, the expression of alpha-Gal was modified in transgenic petunia (Petunia x hybrida cv Mitchell). The tomato (Lycopersicon esculentum) Lea-Gal gene under the control of the Figwort Mosaic Virus promoter was introduced into petunia in the sense and antisense orientations using Agrobacterium tumefaciens-mediated transformation. RNA gel blots confirmed that alpha-Gal transcripts were reduced in antisense lines compared with wild type, whereas sense plants had increased accumulation of alpha-Gal mRNAs. alpha-Gal activity followed a similar trend, with reduced activity in antisense lines and increased activity in all sense lines evaluated. Raffinose content of nonacclimated antisense plants increased 12- to 22-fold compared with wild type, and 22- to 53-fold after cold acclimation. Based upon electrolyte leakage tests, freezing tolerance of the antisense lines increased from -4 degrees C for cold-acclimated wild-type plants to -8 degrees C for the most tolerant antisense line. Down-regulating alpha-Gal in petunia results in an increase in freezing tolerance at the whole-plant level in nonacclimated and cold-acclimated plants, whereas overexpression of the alpha-Gal gene caused a decrease in endogenous raffinose and impaired freezing tolerance. These results suggest that engineering raffinose metabolism by transformation with alpha-Gal provides an additional method for improving the freezing tolerance of plants.

  7. Down-Regulating α-Galactosidase Enhances Freezing Tolerance in Transgenic Petunia1

    PubMed Central

    Pennycooke, Joyce C.; Jones, Michelle L.; Stushnoff, Cecil

    2003-01-01

    α-Galactosidase (α-Gal; EC 3.2.1.22) is involved in many aspects of plant metabolism, including hydrolysis of the α-1,6 linkage of raffinose oligosaccharides during deacclimation. To examine the relationship between endogenous sugars and freezing stress, the expression of α-Gal was modified in transgenic petunia (Petunia × hybrida cv Mitchell). The tomato (Lycopersicon esculentum) Lea-Gal gene under the control of the Figwort Mosaic Virus promoter was introduced into petunia in the sense and antisense orientations using Agrobacterium tumefaciens-mediated transformation. RNA gel blots confirmed that α-Gal transcripts were reduced in antisense lines compared with wild type, whereas sense plants had increased accumulation of α-Gal mRNAs. α-Gal activity followed a similar trend, with reduced activity in antisense lines and increased activity in all sense lines evaluated. Raffinose content of nonacclimated antisense plants increased 12- to 22-fold compared with wild type, and 22- to 53-fold after cold acclimation. Based upon electrolyte leakage tests, freezing tolerance of the antisense lines increased from –4°C for cold-acclimated wild-type plants to –8°C for the most tolerant antisense line. Down-regulating α-Gal in petunia results in an increase in freezing tolerance at the whole-plant level in nonacclimated and cold-acclimated plants, whereas overexpression of the α-Gal gene caused a decrease in endogenous raffinose and impaired freezing tolerance. These results suggest that engineering raffinose metabolism by transformation with α-Gal provides an additional method for improving the freezing tolerance of plants. PMID:14500789

  8. Chronic rapamycin treatment causes diabetes in male mice.

    PubMed

    Schindler, Christine E; Partap, Uttara; Patchen, Bonnie K; Swoap, Steven J

    2014-08-15

    Current evidence indicates that the mammalian target of rapamycin inhibitor rapamycin both increases longevity and, seemingly contradictorily, impairs glucose homeostasis. Most studies exploring the dimensions of this paradox have been based on rapamycin treatment in mice for up to 20 wk. We sought to better understand the metabolic effects of oral rapamycin over a substantially longer period of time in HET3 mice. We observed that treatment with rapamycin for 52 wk induced diabetes in male mice, characterized by hyperglycemia, significant urine glucose levels, and severe glucose and pyruvate intolerance. Glucose intolerance occurred in male mice by 4 wk on rapamycin and could be only partially reversed with cessation of rapamycin treatment. Female mice developed moderate glucose intolerance over 1 yr of rapamycin treatment, but not diabetes. The role of sex hormones in the differential development of diabetic symptoms in male and female mice was further explored. HET3 mice treated with rapamycin for 52 wk were gonadectomized and monitored over 10 wk. Castrated male mice remained glucose intolerant, while ovariectomized females developed significant glucose intolerance over the same time period. Subsequent replacement of 17β-estradiol (E2) in ovariectomized females promoted a recovery of glucose tolerance over a 4-wk period, suggesting the protective role of E2 against rapamycin-induced diabetes. These results indicate that 1) oral rapamycin treatment causes diabetes in male mice, 2) the diabetes is partially reversible with cessation of treatment, and 3) E2 plays a protective role against the development of rapamycin-induced diabetes.

  9. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice.

    PubMed

    Merkel, M; Velez-Carrasco, W; Hudgins, L C; Breslow, J L

    2001-11-06

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway.

  10. YM155 sensitizes TRAIL-induced apoptosis through cathepsin S-dependent down-regulation of Mcl-1 and NF-κB-mediated down-regulation of c-FLIP expression in human renal carcinoma Caki cells

    PubMed Central

    Seo, Bo Ram; Kwon, Taeg Kyu

    2016-01-01

    YM155, a small-molecule survivin inhibitor, has been reported for its anti-cancer activity in various cancer cells. In this study, we investigated the effect of YM155 to enhance TRAIL-mediated apoptosis in human renal carcinoma cells. We found that YM155 alone had no effect on apoptosis, however, combined treatment with YM155 and TRAIL markedly induced apoptosis in human renal carcinoma cells (Caki, ACHN, and A498), breast cancer cells (MDA-MB231), and glioma cells (U251MG), but not normal cells [mesangial cell (MC) and human skin fibroblast (HSF)]. YM155 induced down-regulation of Mcl-1 expression at the post-translational levels, and the overexpression of Mcl-1 markedly inhibited YM155 plus TRAIL-induced apoptosis. Furthermore, YM155 induced down-regulation of c-FLIP mRNA expression through inhibition of NF-κB transcriptional activity. Ectopic expression of c-FLIP markedly blocked YM155-induced TRAIL sensitization. Taken together, our results suggested that YM155 sensitizes TRAIL-mediated apoptosis via down-regulation of Mcl-1 and c-FLIP expression in renal carcinoma Caki cells. PMID:27528031

  11. Inhibition of N-Myc down regulated gene 1 in in vitro cultured human glioblastoma cells

    PubMed Central

    Said, Harun M; Polat, Buelent; Stein, Susanne; Guckenberger, Mathias; Hagemann, Carsten; Staab, Adrian; Katzer, Astrid; Anacker, Jelena; Flentje, Michael; Vordermark, Dirk

    2012-01-01

    AIM: To study short dsRNA oligonucleotides (siRNA) as a potent tool for artificially modulating gene expression of N-Myc down regulated gene 1 (NDRG1) gene induced under different physiological conditions (Normoxia and hypoxia) modulating NDRG1 transcription, mRNA stability and translation. METHODS: A cell line established from a patient with glioblastoma multiforme. Plasmid DNA for transfections was prepared with the Endofree Plasmid Maxi kit. From plates containing 5 × 107 cells, nuclear extracts were prepared according to previous protocols. The pSUPER-NDRG1 vectors were designed, two sequences were selected from the human NDRG1 cDNA (5’-GCATTATTGGCATGGGAAC-3’ and 5’-ATGCAGAGTAACGTGGAAG-3’. reverse transcription polymerase chain reaction was performed using primers designed using published information on β-actin and hypoxia-inducible factor (HIF)-1α mRNA sequences in GenBank. NDRG1 mRNA and protein level expression results under different conditions of hypoxia or reoxygenation were compared to aerobic control conditions using the Mann-Whitney U test. Reoxygenation values were also compared to the NDRG1 levels after 24 h of hypoxia (P < 0.05 was considered significant). RESULTS: siRNA- and iodoacetate (IAA)-mediated downregulation of NDRG1 mRNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements bound by nuclear HIF-1 in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results. CONCLUSION: NDRG1 represents an additional diagnostic marker for brain tumor detection, due to the role of hypoxia in regulating this gene, and it can represent a potential target for tumor treatment in human

  12. N-Cadherin Mediates Neuronal Cell Survival through Bim Down-Regulation

    PubMed Central

    Boscher, Cécile; Wolff, Emeline; Mège, René-Marc; Birbes, Hélène

    2012-01-01

    results show that N-cadherin engagement mediates neuronal cell survival by enhancing the MAP kinase pathway and down-regulating the pro-apoptotic protein Bim-EL. PMID:22427990

  13. SLX4-SLX1 Protein-independent Down-regulation of MUS81-EME1 Protein by HIV-1 Viral Protein R (Vpr).

    PubMed

    Zhou, Xiaohong; DeLucia, Maria; Ahn, Jinwoo

    2016-08-12

    Evolutionarily conserved structure-selective endonuclease MUS81 forms a complex with EME1 and further associates with another endonuclease SLX4-SLX1 to form a four-subunit complex of MUS81-EME1-SLX4-SLX1, coordinating distinctive biochemical activities of both endonucleases in DNA repair. Viral protein R (Vpr), a highly conserved accessory protein in primate lentiviruses, was previously reported to bind SLX4 to mediate down-regulation of MUS81. However, the detailed mechanism underlying MUS81 down-regulation is unclear. Here, we report that HIV-1 Vpr down-regulates both MUS81 and its cofactor EME1 by hijacking the host CRL4-DCAF1 E3 ubiquitin ligase. Multiple Vpr variants, from HIV-1 and SIV, down-regulate both MUS81 and EME1. Furthermore, a C-terminally truncated Vpr mutant and point mutants R80A and Q65R, all of which lack G2 arrest activity, are able to down-regulate MUS81-EME1, suggesting that Vpr-induced G2 arrest is not correlated with MUS81-EME1 down-regulation. We also show that neither the interaction of MUS81-EME1 with Vpr nor their down-regulation is dependent on SLX4-SLX1. Together, these data provide new insight on a conserved function of Vpr in a host endonuclease down-regulation.

  14. Neuropeptidase activity is down-regulated by estradiol in steroid-sensitive regions of the hypothalamus in female mice

    PubMed Central

    Bruce, Lisa A.; Cyr, Nicole E.; Qiao, Jana W.; DeFries, Christa C.; Tetel, Marc J.; Wolfson, Adele J.

    2012-01-01

    Thimet oligopeptidase (TOP) and prolyl endopeptidase (PEP) are neuropeptidases involved in the hydrolysis of gonadotropin-releasing hormone, a key component of the hypothalamic-pituitary-gonadal axis. GnRH is regulated in part by feedback from steroid hormones such as estradiol. Previously, we demonstrated that TOP levels are down-regulated by estradiol in reproductively-relevant regions of the female rodent brain. The present study supports these findings by showing that TOP enzyme activity, as well as protein levels, in the ventromedial hypothalamic nucleus of female mice are controlled estradiol. We further demonstrate that PEP levels in this same brain region are down-regulated by estradiol in parallel with those of TOP. These findings provide evidence that these neuropeptidases are part of the fine control of hormone levels in the HPG axis. PMID:22672888

  15. Down-regulation of adipogenesis of mesenchymal stem cells by oscillating high-gradient magnetic fields and mechanical vibration

    NASA Astrophysics Data System (ADS)

    Zablotskii, V.; Lunov, O.; Novotná, B.; Churpita, O.; Trošan, P.; HoláÅ, V.; Syková, E.; Dejneka, A.; Kubinová, Š.

    2014-09-01

    Nowadays, the focus in medicine on molecular genetics has resulted in a disregard for the physical basis of treatment even though many diseases originate from changes in cellular mechanics. Perturbations of the cellular nanomechanics promote pathologies, including cardiovascular disease and cancer. Furthermore, whilst the biological and therapeutic effects of magnetic fields are a well-established fact, to date the underlying mechanisms remain obscure. Here, we show that oscillating high-gradient magnetic field (HGMF) and mechanical vibration affect adipogenic differentiation of mesenchymal stem cells by the transmission of mechanical stress to the cell cytoskeleton, resulting in F-actin remodelling and subsequent down-regulation of adipogenic genes adiponectin, PPARγ, and AP2. Our findings propose an insight into the regulation of cellular nanomechanics, and provide a basis for better controlled down-regulation of stem cell adipogenesis by HGMF, which may facilitate the development of challenging therapeutic strategies suitable for the remote control of biological systems.

  16. Novel MHC Class II Breast Cancer Vaccine Using RNA Interference (RNAi) to Down Regulate Invariant Chain (li)

    DTIC Science & Technology

    2006-05-01

    patients, and may provide a powerful tool for activation of the immune system against primary tumor and metastatic disease . Body: Statement of...cells with IL-12 reduces established metastatic disease and stimulates immune effectors and monokine-induced by interferon-gamma. Canc. Immunol...concomitant down-regulation of Ii via RNAi may further improve vaccine efficacy and protect and/or treat tumor recurrence and/ or metastatic disease

  17. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease

    DTIC Science & Technology

    2013-10-01

    Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease PRINCIPAL INVESTIGATOR: Giulio Maria Pasinetti MD., PhD...TITLE AND SUBTITLE Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury 5a. CONTRACT NUMBER Promotes Risk for Alzheimer’s...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Traumatic Brain Injury (TBI) is a risk factor for subsequent development of Alzheimer’s

  18. Oncogenic MicroRNA-155 Down-regulates Tumor Suppressor CDC73 and Promotes Oral Squamous Cell Carcinoma Cell Proliferation

    PubMed Central

    Rather, Mohammad Iqbal; Nagashri, Mathighatta N.; Swamy, Shivananda S.; Gopinath, Kodaganur S.; Kumar, Arun

    2013-01-01

    The CDC73 gene is mutationally inactivated in hereditary and sporadic parathyroid tumors. It negatively regulates β-catenin, cyclin D1, and c-MYC. Down-regulation of CDC73 has been reported in breast, renal, and gastric carcinomas. However, the reports regarding the role of CDC73 in oral squamous cell carcinoma (OSCC) are lacking. In this study we show that CDC73 is down-regulated in a majority of OSCC samples. We further show that oncogenic microRNA-155 (miR-155) negatively regulates CDC73 expression. Our experiments show that the dramatic up-regulation of miR-155 is an exclusive mechanism for down-regulation of CDC73 in a panel of human cell lines and a subset of OSCC patient samples in the absence of loss of heterozygosity, mutations, and promoter methylation. Ectopic expression of miR-155 in HEK293 cells dramatically reduced CDC73 levels, enhanced cell viability, and decreased apoptosis. Conversely, the delivery of a miR-155 antagonist (antagomir-155) to KB cells overexpressing miR-155 resulted in increased CDC73 levels, decreased cell viability, increased apoptosis, and marked regression of xenografts in nude mice. Cotransfection of miR-155 with CDC73 in HEK293 cells abrogated its pro-oncogenic effect. Reduced cell proliferation and increased apoptosis of KB cells were dependent on the presence or absence of the 3′-UTR in CDC73. In summary, knockdown of CDC73 expression due to overexpression of miR-155 not only adds a novelty to the list of mechanisms responsible for its down-regulation in different tumors, but the restoration of CDC73 levels by the use of antagomir-155 may also have an important role in therapeutic intervention of cancers, including OSCC. PMID:23166327

  19. Rapamycin promotes Schwann cell migration and nerve growth factor secretion

    PubMed Central

    Liu, Fang; Zhang, Haiwei; Zhang, Kaiming; Wang, Xinyu; Li, Shipu; Yin, Yixia

    2014-01-01

    Rapamycin, similar to FK506, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of rapamycin and FK506 on Schwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more significantly promoted Schwann cell migration than the highest FK506 concentration (100μmol/L). Rapamycin promoted the secretion of nerve growth factors and upregulated growth-associated protein 43 expression in Schwann cells, but did not significantly affect Schwann cell proliferation. Therefore, rapamycin has potential application in peripheral nerve regeneration therapy. PMID:25206862

  20. Silencing Id-1 inhibits lymphangiogenesis through down-regulation of VEGF-C in oral squamous cell carcinoma.

    PubMed

    Dong, Zuoqing; Wei, Fengcai; Zhou, Chengjun; Sumida, Tomoki; Hamakawa, Hiroyuki; Hu, Yingwei; Liu, Shaohua

    2011-01-01

    Our previous study demonstrated that overexpression of Id-1 (inhibitor of differentiation/DNA binding) was associated with lymphatic metastasis in human oral squamous cell carcinoma (OSCC). In this study, we further unveiled the association of Id-1 with vascular endothelial growth factor-C (VEGF-C) and peritumoral lymphatic vessel density (PLVD), and the effect of silencing Id-1 on inhibiting lymphangiogenesis in OSCC. We found that Id-1 was associated with VEGF-C (r=0.569, p<0.001) and PLVD (r=0.240, p<0.001) in OSCC. Lentivirus-mediated RNA interference targeting Id-1 in an OSCC cell line Tca8113 resulted in down-regulation of VEGF-C (p=0.003, 0.007). Moreover, when Id-1 was suppressed by injecting Id-1-siRNA-lentivirus into the transplanted tumors in nude mice, VEGF-C was down-regulated (p=0.018) and the PLVD decreased (p=0.001). Our results suggest that Id-1 was correlated with lymphangiogenesis in OSCC. Silencing Id-1 could inhibit lymphangiogenesis through down-regulation of VEGF-C and it might be a promising treatment modality for the lymphatic metastasis of OSCC.

  1. An ethanol extract of Piper betle Linn. mediates its anti-inflammatory activity via down-regulation of nitric oxide.

    PubMed

    Ganguly, Sudipto; Mula, Soumyaditya; Chattopadhyay, Subrata; Chatterjee, Mitali

    2007-05-01

    The leaves of Piper betle (locally known as Paan) have long been in use in the Indian indigenous system of medicine for the relief of pain; however, the underlying molecular mechanisms of this effect have not been elucidated. The anti-inflammatory and immunomodulatory effects of an ethanolic extract of the leaves of P. betle (100 mg kg(-1); PB) were demonstrated in a complete Freund's adjuvant-induced model of arthritis in rats with dexamethasone (0.1 mg kg(-1)) as the positive control. At non-toxic concentrations of PB (5-25 microg mL(-1)), a dose-dependent decrease in extracellular production of nitric oxide in murine peritoneal macrophages was measured by the Griess assay and corroborated by flow cytometry using the nitric oxide specific probe, 4,5-diaminofluorescein-2 diacetate. This decreased generation of reactive nitrogen species was mediated by PB progressively down-regulating transcription of inducible nitric oxide synthase in macrophages, and concomitantly causing a dose-dependent decrease in the expression of interleukin-12 p40, indicating the ability of PB to down-regulate T-helper 1 pro-inflammatory responses. Taken together, the anti-inflammatory and anti-arthrotic activity of PB is attributable to its ability to down-regulate the generation of reactive nitrogen species, thus meriting further pharmacological investigation.

  2. Ginsenoside Rg3 inhibits epithelial-mesenchymal transition (EMT) and invasion of lung cancer by down-regulating FUT4

    PubMed Central

    Li, Xiaodong; Shan, Xiu; Wang, Xiaoqi; Yan, Qiu; Liu, Jiwei

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is an important factor in lung cancer metastasis, and targeting EMT is a potential therapeutic strategy. Fucosyltransferase IV (FUT4) and its synthetic cancer sugar antigen Lewis Y (LeY) was abnormally elevated in many cancers. In this study, a traditional Chinese medicine ginsenoside Rg3 was used to investigate whether its inhibition to EMT and invasion of lung cancer is by the glycobiology mechanism. We found that Rg3 treatment (25, 50, 100 μg/ml) inhibited cell migration and invasion by wound-healing and transwell assays. Rg3 could significantly alter EMT marker proteins with increased E-cadherin, but decreased Snail, N-cadherin and Vimentin expression. Rg3 also down-regulated FUT4 gene and protein expression in lung cancer cells by qPCR, Western blot and immunofluorescence. After FUT4 down-regulated with shFUT4, EMT was obviously inhibited. Furthermore, the activation of EGFR through decreased LeY biosynthesis was inhibited, which blocked the downstream MAPK and NF-κB signal pathways. In addition, Rg3 reduced tumor volume and weight in xenograft mouse model, and significantly decreased tumor metastasis nodules in lung tissues by tail vein injection. In conclusion, Rg3 inhibits EMT and invasion of lung cancer by down-regulating FUT4 mediated EGFR inactivation and blocking MAPK and NF-κB signal pathways. Rg3 may be a potentially effective agent for the treatment of lung cancer. PMID:26636541

  3. Down-Regulation of Desmosomes in Cultured Cells: The Roles of PKC, Microtubules and Lysosomal/Proteasomal Degradation

    PubMed Central

    McHarg, Selina; Hopkins, Gemma; Lim, Lusiana; Garrod, David

    2014-01-01

    Desmosomes are intercellular adhesive junctions of major importance for tissue integrity. To allow cell motility and migration they are down-regulated in epidermal wound healing. Electron microscopy indicates that whole desmosomes are internalised by cells in tissues, but the mechanism of down-regulation is unclear. In this paper we provide an overview of the internalisation of half-desmosomes by cultured cells induced by calcium chelation. Our results show that: (i) half desmosome internalisation is dependent on conventional PKC isoforms; (ii) microtubules transport internalised half desmosomes to the region of the centrosome by a kinesin-dependent mechanism; (iii) desmosomal proteins remain colocalised after internalisation and are not recycled to the cell surface; (iv) internalised desmosomes are degraded by the combined action of lysosomes and proteasomes. We also confirm that half desmosome internalisation is dependent upon the actin cytoskeleton. These results suggest that half desmosomes are not disassembled and recycled during or after internalisation but instead are transported to the centrosomal region where they are degraded. These findings may have significance for the down-regulation of desmosomes in wounds. PMID:25291180

  4. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat

    SciTech Connect

    Piteau, Shalea; Olver, Amy; Kim, Su-Jin; Winter, Kyle; Pospisilik, John Andrew; Lynn, Francis; Manhart, Susanne; Demuth, Hans-Ulrich; Speck, Madeleine; Pederson, Raymond A.; McIntosh, Christopher H.S.

    2007-11-03

    In type 2 diabetes (T2DM) {beta}-cell responsiveness to glucose-dependent insulinotropic polypeptide (GIP) is reduced. In a model of T2DM, the VDF Zucker rat, GIP receptor mRNA and protein levels were shown to be down-regulated. Possible restoration of responsiveness to GIP in Zucker rats by reducing hyperglycemia has been examined. ZDF rats with extreme hyperglycemia demonstrated greater islet GIP receptor mRNA down-regulation (94.3 {+-} 3.8%) than ZF rats (48.8 {+-} 22.8%). GIP receptor mRNA levels in ZDF rats returned to 83.0 {+-} 17.9% of lean following normalization of hyperglycemia by phlorizin treatment and pancreas perfusions demonstrated markedly improved GIP responsiveness. Treatment of VDF rats with a DP IV inhibitor (P32/98) resulted in improved glucose tolerance and restored sensitivity to GIP in isolated pancreata. These findings support the proposal that GIP receptor down-regulation in rodent T2DM is secondary to chronic hyperglycemia and that normalization of glycemia can restore GIP sensitivity.

  5. Ginsenoside Rg3 inhibits epithelial-mesenchymal transition (EMT) and invasion of lung cancer by down-regulating FUT4.

    PubMed

    Tian, Lili; Shen, Dachuan; Li, Xiaodong; Shan, Xiu; Wang, Xiaoqi; Yan, Qiu; Liu, Jiwei

    2016-01-12

    The epithelial-mesenchymal transition (EMT) is an important factor in lung cancer metastasis, and targeting EMT is a potential therapeutic strategy. Fucosyltransferase IV (FUT4) and its synthetic cancer sugar antigen Lewis Y (LeY) was abnormally elevated in many cancers. In this study, a traditional Chinese medicine ginsenoside Rg3 was used to investigate whether its inhibition to EMT and invasion of lung cancer is by the glycobiology mechanism. We found that Rg3 treatment (25, 50, 100 μg/ml) inhibited cell migration and invasion by wound-healing and transwell assays. Rg3 could significantly alter EMT marker proteins with increased E-cadherin, but decreased Snail, N-cadherin and Vimentin expression. Rg3 also down-regulated FUT4 gene and protein expression in lung cancer cells by qPCR, Western blot and immunofluorescence. After FUT4 down-regulated with shFUT4, EMT was obviously inhibited. Furthermore, the activation of EGFR through decreased LeY biosynthesis was inhibited, which blocked the downstream MAPK and NF-κB signal pathways. In addition, Rg3 reduced tumor volume and weight in xenograft mouse model, and significantly decreased tumor metastasis nodules in lung tissues by tail vein injection. In conclusion, Rg3 inhibits EMT and invasion of lung cancer by down-regulating FUT4 mediated EGFR inactivation and blocking MAPK and NF-κB signal pathways. Rg3 may be a potentially effective agent for the treatment of lung cancer.

  6. Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas.

    PubMed Central

    Singh, R K; Gutman, M; Bucana, C D; Sanchez, R; Llansa, N; Fidler, I J

    1995-01-01

    We investigated the influence of interferons alpha, beta, and gamma (IFN-alpha, -beta, and -gamma) on the production of basic fibroblast growth factor (bFGF) by human renal carcinoma cells. The human renal carcinoma cell metastatic line SN12PM6 was established in culture from a lung metastasis and SN12PM6-resistant cells were selected in vitro for resistance to the antiproliferative effects of IFN-alpha or IFN-beta. IFN-alpha and IFN-beta, but not IFN-gamma, down-regulated the expression of bFGF at the mRNA and protein levels by a mechanism independent of their antiproliferative effects. Down-regulation of bFGF required a long exposure (> 4 days) of cells to low concentrations (> 10 units/ml) of IFN-alpha or IFN-beta. The withdrawal of IFN-alpha or IFN-beta from the medium permitted SN12PM6-resistant cells to resume production of bFGF. The incubation of human bladder, prostate, colon, and breast carcinoma cells with noncytostatic concentrations of IFN-alpha or IFN-beta also produced down-regulation of bFGF production. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7753843

  7. The herpes simplex virus receptor nectin-1 is down-regulated after trans-interaction with glycoprotein D

    SciTech Connect

    Stiles, Katie M.; Milne, Richard S.B.; Cohen, Gary H.; Eisenberg, Roselyn J.; Krummenacher, Claude

    2008-03-30

    During herpes simplex virus (HSV) entry, membrane fusion occurs either on the cell surface or after virus endocytosis. In both cases, binding of glycoprotein D (gD) to a receptor such as nectin-1 or HVEM is required. In this study, we co-cultured cells expressing gD with nectin-1 expressing cells to investigate the effects of gD on nectin-1 at cell contacts. After overnight co-cultures with gD expressing cells, there was a down-regulation of nectin-1 in B78H1-C10, SY5Y, A431 and HeLa cells, which HSV enters by endocytosis. In contrast, on Vero cells, which HSV enters at the plasma membrane, nectin-1 was not down-regulated. Further analysis of B78H1-derived cells showed that nectin-1 down-regulation corresponds to the ability of gD to bind nectin-1 and is achieved by internalization and low-pH-dependent degradation of nectin-1. Moreover, gD is necessary for virion internalization in B78H1 cells expressing nectin-1. These data suggest that the determinants of gD-mediated internalization of nectin-1 may direct HSV to an endocytic pathway during entry.

  8. Down-regulation of mTOR leads to up-regulation of osteoprotegerin in bone marrow cells

    SciTech Connect

    Mogi, Makio; Kondo, Ayami

    2009-06-19

    Osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor regulates bone mass by inhibiting osteoclastic bone resorption. mTOR, which is the mammalian target of rapamycin, is a kinase and central regulator of cell growth, proliferation, and survival. By using Rapamycin, we studied whether mTOR pathway is associated with OPG protein production in the mouse bone marrow-derived stromal cell line ST2. Rapamycin markedly increased the level of soluble OPG in ST2 cells. This antibiotic treatment resulted in the suppression of phosphorylation of mTOR. Rapamycin had no effects on the proliferation, differentiation, or apoptosis of the cells. Treatment with bone morphogenetic protein-4, which can induce OPG protein in ST2 cells, also resulted in a decrease in the density of the phospho-mTOR-band, suggesting that the suppression of the phospho-mTOR pathway is necessary for OPG production in ST2 cells. Thus, suitable suppression of mTOR phosphorylation is a necessary requirement for OPG production in bone marrow stromal cells.

  9. Homologous down-regulation of growth hormone-releasing hormone receptor messenger ribonucleic acid levels.

    PubMed

    Aleppo, G; Moskal, S F; De Grandis, P A; Kineman, R D; Frohman, L A

    1997-03-01

    Repeated stimulation of pituitary cell cultures with GH-releasing hormone (GHRH) results in diminished responsiveness, a phenomenon referred to as homologous desensitization. One component of GHRH-induced desensitization is a reduction in GHRH-binding sites, which is reflected by the decreased ability of GHRH to stimulate a rise in intracellular cAMP. In the present study, we sought to determine if homologous down-regulation of GHRH receptor number is due to a decrease in GHRH receptor synthesis. To this end, we developed and validated a quantitative RT-PCR assay system that was capable of assessing differences in GHRH-R messenger RNA (mRNA) levels in total RNA samples obtained from rat pituitary cell cultures. Treatment of pituitary cells with GHRH, for as little as 4 h, resulted in a dose-dependent decrease in GHRH-R mRNA levels. The maximum effect was observed with 0.1 and 1 nM GHRH, which reduced GHRH-R mRNA levels to 49 +/- 4% (mean +/- SEM) and 54 +/- 11% of control values, respectively (n = three separate experiments; P < 0.05). Accompanying the decline in GHRH-R mRNA levels was a rise in GH release; reaching 320 +/- 31% of control values (P < 0.01). Because of the possibility that the rise in medium GH level is the primary regulator of GHRH-R mRNA, we pretreated pituitary cultures for 4 h with GH to achieve a concentration comparable with that induced by a maximal stimulation with GHRH (8 micrograms GH/ml medium). Following pretreatment, cultures were stimulated for 15 min with GHRH and intracellular cAMP accumulation was measured by RIA. GH pretreatment did not impair the ability of GHRH to induce a rise in cAMP concentrations. However, as anticipated, GHRH pretreatment (10 nM) significantly reduced subsequent GHRH-stimulated cAMP to 46% of untreated controls. These data suggest that GHRH, but not GH, directly reduces GHRH-R mRNA levels. To determine whether this effect was mediated through cAMP, cultures were treated with forskolin, a direct stimulator of

  10. Multifactorial resistance to aminopeptidase inhibitor prodrug CHR2863 in myeloid leukemia cells: down-regulation of carboxylesterase 1, drug sequestration in lipid droplets and pro-survival activation ERK/Akt/mTOR

    PubMed Central

    Verbrugge, Sue Ellen; Al, Marjon; Assaraf, Yehuda G.; Kammerer, Sarah; Chandrupatla, Durga M.S.H.; Honeywell, Richard; Musters, Rene P.J.; Giovannetti, Elisa; O'Toole, Tom; Scheffer, George L.; Krige, David; de Gruijl, Tanja D.; Niessen, Hans W.M.; Lems, Willem F.; Kramer, Pieternella A.; Scheper, Rik J.; Cloos, Jacqueline; Ossenkoppele, Gert J.; Peters, Godefridus J.; Jansen, Gerrit

    2016-01-01

    Aminopeptidase inhibitors are receiving attention as combination chemotherapeutic agents for the treatment of refractory acute myeloid leukemia. However, the factors determining therapeutic efficacy remain elusive. Here we identified the molecular basis of acquired resistance to CHR2863, an orally available hydrophobic aminopeptidase inhibitor prodrug with an esterase-sensitive motif, in myeloid leukemia cells. CHR2863 enters cells by diffusion and is retained therein upon esterase activity-mediated conversion to its hydrophilic active metabolite drug CHR6768, thereby exerting amino acid depletion. Carboxylesterases (CES) serve as candidate prodrug activating enzymes given CES1 expression in acute myeloid leukemia specimens. We established two novel myeloid leukemia sublines U937/CHR2863(200) and U937/CHR2863(5uM), with low (14-fold) and high level (270-fold) CHR2863 resistance. The latter drug resistant cells displayed: (i) complete loss of CES1-mediated drug activation associated with down-regulation of CES1 mRNA and protein, (ii) marked retention/sequestration of the prodrug, (iii) a substantial increase in intracellular lipid droplets, and (iv) a dominant activation of the pro-survival Akt/mTOR pathway. Remarkably, the latter feature coincided with a gain of sensitivity to the mTOR inhibitor rapamycin. These finding delineate the molecular basis of CHR2863 resistance and offer a novel modality to overcome this drug resistance in myeloid leukemia cells. PMID:26496029

  11. Virtual Experiments Enable Exploring and Challenging Explanatory Mechanisms of Immune-Mediated P450 Down-Regulation

    PubMed Central

    Petersen, Brenden K.; Ropella, Glen E. P.; Hunt, C. Anthony

    2016-01-01

    Hepatic cytochrome P450 levels are down-regulated during inflammatory disease states, which can cause changes in downstream drug metabolism and hepatotoxicity. Long-term, we seek sufficient new insight into P450-regulating mechanisms to correctly anticipate how an individual’s P450 expressions will respond when health and/or therapeutic interventions change. To date, improving explanatory mechanistic insight relies on knowledge gleaned from in vitro, in vivo, and clinical experiments augmented by case reports. We are working to improve that reality by developing means to undertake scientifically useful virtual experiments. So doing requires translating an accepted theory of immune system influence on P450 regulation into a computational model, and then challenging the model via in silico experiments. We build upon two existing agent-based models—an in silico hepatocyte culture and an in silico liver—capable of exploring and challenging concrete mechanistic hypotheses. We instantiate an in silico version of this hypothesis: in response to lipopolysaccharide, Kupffer cells down-regulate hepatic P450 levels via inflammatory cytokines, thus leading to a reduction in metabolic capacity. We achieve multiple in vitro and in vivo validation targets gathered from five wet-lab experiments, including a lipopolysaccharide-cytokine dose-response curve, time-course P450 down-regulation, and changes in several different measures of drug clearance spanning three drugs: acetaminophen, antipyrine, and chlorzoxazone. Along the way to achieving validation targets, various aspects of each model are falsified and subsequently refined. This iterative process of falsification-refinement-validation leads to biomimetic yet parsimonious mechanisms, which can provide explanatory insight into how, where, and when various features are generated. We argue that as models such as these are incrementally improved through multiple rounds of mechanistic falsification and validation, we will

  12. High Silicon Accumulation in the Shoot is Required for Down-Regulating the Expression of Si Transporter Genes in Rice.

    PubMed

    Mitani-Ueno, Namiki; Yamaji, Naoki; Ma, Jian Feng

    2016-12-01

    Rice requires high silicon (Si) for its high and sustainable yield. The efficient uptake of Si in rice is mediated by two transporters OsLsi1 and OsLsi2, which function as influx and efflux transporters, respectively. Our previous studies showed that the mRNA expression levels of these transporter genes were down-regulated by Si. Herein we investigated the mechanism underlying regulation of OsLsi1 and OsLsi2 expression. There was a negative correlation between the expression level of OsLsi1 and OsLsi2 and shoot Si accumulation when the rice seedlings were exposed to different Si supply conditions. A split root experiment showed that the expression of both OsLsi1 and OsLsi2 was also down-regulated in half the roots without direct Si exposure when the other half of the roots were exposed to Si. Analysis with transgenic rice carrying different lengths of OsLsi1 promoter regions fused with green fluorescent protein (GFP) as a reporter gene revealed that the region responsible for the Si response of OsLsi1 expression is present between -327 to -292 in the promoter. However, this region was not associated with the tissue and cellular localization of OsLsi1. In conclusion, the Si-induced down-regulation of Si transporter genes is controlled by shoot Si, not root Si, and the region between -327 and -292 in the OsLsi1 promoter is involved in this regulation of OsLsi1 expression in rice.

  13. Water deficit down-regulates miR398 and miR408 in pea (Pisum sativum L.).

    PubMed

    Jovanović, Živko; Stanisavljević, Nemanja; Mikić, Aleksandar; Radović, Svetlana; Maksimović, Vesna

    2014-10-01

    MicroRNAs (miRNAs), recently recognized as important regulator of gene expression at posttranscriptional level, have been found to be involved in plant stress responses. The observation that some miRNAs are up- or down regulated by stress implies that they could play vital roles in plant resistance to abiotic and biotic stress. We investigated the effect of water stress treatment during 10 days on expression of conserved miRNAs-miR398a/b and miR408 in pea plants. This time frame reflects the changes as close as possible to the changes where water stress causes visible effects under field condition. It was observed that dehydration strongly down regulates the expression of both miR398a/b and miR408 in pea roots and shoots. The down-regulation of miR398a/b and the up-regulation of potential target genes - copper superoxide dismutase, CSD1, highlight the involvement of this miRNA in pea stress response. To the contrary, the mRNA level of cytochrome c oxidase subunit 5 (COX5b) did not change in roots and shoots of water-stressed plants, compared to control (well) hydrated plants. This suggests that COX5b is not the target of miR398, or that its expression is regulated by some other mechanism. P1B-ATPase expression increased during water deficit only in the shoots of pea; in the roots there were no changes in expression. Our results help to understand the possible role of investigated miRNAs and their contribution to pea capacity to cope with water deficit.

  14. Activin A, B and AB decrease progesterone production by down-regulating StAR in human granulosa cells.

    PubMed

    Chang, Hsun-Ming; Cheng, Jung-Chien; Huang, He-Feng; Shi, Feng-Tao; Leung, Peter C K

    2015-09-05

    Activins are homo- or heterodimers of inhibin β subunits that play important roles in the reproductive system. Our previous work has shown that activins A (βAβA), B (βBβB) and AB (βAβB) induce aromatase/estradiol, but suppress StAR/progesterone production in human granulosa-lutein cells. However, the underlying molecular determinants of these effects have not been examined. In this continuing study, we used immortalized human granulosa cells (SVOG) to investigate the effects of activins in regulating StAR/progesterone and the potential mechanisms of action. In SVOG cells, activins A, B and AB produced comparable down-regulation of StAR expression and progesterone production. In addition, all three activin isoforms induced equivalent phosphorylation of both SMAD2 and SMAD3. Importantly, the activin-induced down-regulation of StAR, increase in SMAD2/3 phosphorylation, and decrease in progesterone were abolished by the TGF-β type I receptor inhibitor SB431542. Interestingly, the small interfering RNA-mediated knockdown of ALK4 but not ALK5 reversed the activin-induced suppression of StAR. Furthermore, the knockdown of SMAD4 or SMAD2 but not SMAD3 abolished the inhibitory effects of all three activin isoforms on StAR expression. These results provide evidence that activins A, B and AB down-regulate StAR expression and decrease progesterone production in human granulosa cells, likely via an ALK4-mediated SMAD2/SMAD4-dependent pathway. Our findings provide important insights into the molecular mechanisms underlying the regulatory effects of activins on human granulosa cell steroidogenesis.

  15. Necdin, a negative growth regulator, is a novel STAT3 target gene down-regulated in human cancer.

    PubMed

    Haviland, Rachel; Eschrich, Steven; Bloom, Gregory; Ma, Yihong; Minton, Susan; Jove, Richard; Cress, W Douglas

    2011-01-01

    Cytokine and growth factor signaling pathways involving STAT3 are frequently constitutively activated in many human primary tumors, and are known for the transcriptional role they play in controlling cell growth and cell cycle progression. However, the extent of STAT3's reach on transcriptional control of the genome as a whole remains an important question. We predicted that this persistent STAT3 signaling affects a wide variety of cellular functions, many of which still remain to be characterized. We took a broad approach to identify novel STAT3 regulated genes by examining changes in the genome-wide gene expression profile by microarray, using cells expressing constitutively-activated STAT3. Using computational analysis, we were able to define the gene expression profiles of cells containing activated STAT3 and identify candidate target genes with a wide range of biological functions. Among these genes we identified Necdin, a negative growth regulator, as a novel STAT3 target gene, whose expression is down-regulated at the mRNA and protein levels when STAT3 is constitutively active. This repression is STAT3 dependent, since inhibition of STAT3 using siRNA restores Necdin expression. A STAT3 DNA-binding site was identified in the Necdin promoter and both EMSA and chromatin immunoprecipitation confirm binding of STAT3 to this region. Necdin expression has previously been shown to be down-regulated in a melanoma and a drug-resistant ovarian cancer cell line. Further analysis of Necdin expression demonstrated repression in a STAT3-dependent manner in human melanoma, prostate and breast cancer cell lines. These results suggest that STAT3 coordinates expression of genes involved in multiple metabolic and biosynthetic pathways, integrating signals that lead to global transcriptional changes and oncogenesis. STAT3 may exert its oncogenic effect by up-regulating transcription of genes involved in promoting growth and proliferation, but also by down-regulating expression

  16. Complotype affects the extent of down-regulation by Factor I of the C3b feedback cycle in vitro

    PubMed Central

    Lay, E; Nutland, S; Smith, J E; Hiles, I; Smith, R A G; Seilly, D J; Buchberger, A; Schwaeble, W; Lachmann, P J

    2015-01-01

    Sera from a large panel of normal subjects were typed for three common polymorphisms, one in C3 (R102G) and two in Factor H (V62I and Y402H), that influence predisposition to age-related macular degeneration and to some forms of kidney disease. Three groups of sera were tested; those that were homozygous for the three risk alleles; those that were heterozygous for all three; and those homozygous for the low-risk alleles. These groups vary in their response to the addition of exogenous Factor I when the alternative complement pathway is activated by zymosan. Both the reduction in the maximum amount of iC3b formed and the rate at which the iC3b is converted to C3dg are affected. For both reactions the at-risk complotype requires higher doses of Factor I to produce similar down-regulation. Because iC3b reacting with the complement receptor CR3 is a major mechanism by which complement activation gives rise to inflammation, the breakdown of iC3b to C3dg can be seen to have major significance for reducing complement-induced inflammation. These findings demonstrate for the first time that sera from subjects with different complement alleles behave as predicted in an in-vitro assay of the down-regulation of the alternative complement pathway by increasing the concentration of Factor I. These results support the hypothesis that exogenous Factor I may be a valuable therapeutic aid for down-regulating hyperactivity of the C3b feedback cycle, thereby providing a treatment for age-related macular degeneration and other inflammatory diseases of later life. PMID:25124117

  17. p38 MAPK down-regulates fibulin 3 expression through methylation of gene regulatory sequences: role in migration and invasion.

    PubMed

    Arechederra, María; Priego, Neibla; Vázquez-Carballo, Ana; Sequera, Celia; Gutiérrez-Uzquiza, Álvaro; Cerezo-Guisado, María Isabel; Ortiz-Rivero, Sara; Roncero, Cesáreo; Cuenda, Ana; Guerrero, Carmen; Porras, Almudena

    2015-02-13

    p38 MAPKs regulate migration and invasion. However, the mechanisms involved are only partially known. We had previously identified fibulin 3, which plays a role in migration, invasion, and tumorigenesis, as a gene regulated by p38α. We have characterized in detail how p38 MAPK regulates fibulin 3 expression and its role. We describe here for the first time that p38α, p38γ, and p38δ down-regulate fibulin 3 expression. p38α has a stronger effect, and it does so through hypermethylation of CpG sites in the regulatory sequences of the gene. This would be mediated by the DNA methylase, DNMT3A, which is down-regulated in cells lacking p38α, but once re-introduced represses Fibulin 3 expression. p38α through HuR stabilizes dnmt3a mRNA leading to an increase in DNMT3A protein levels. Moreover, by knocking-down fibulin 3, we have found that Fibulin 3 inhibits migration and invasion in MEFs by mechanisms involving p38α/β inhibition. Hence, p38α pro-migratory/invasive effect might be, at least in part, mediated by fibulin 3 down-regulation in MEFs. In contrast, in HCT116 cells, Fibulin 3 promotes migration and invasion through a mechanism dependent on p38α and/or p38β activation. Furthermore, Fibulin 3 promotes in vitro and in vivo tumor growth of HCT116 cells through a mechanism dependent on p38α, which surprisingly acts as a potent inducer of tumor growth. At the same time, p38α limits fibulin 3 expression, which might represent a negative feed-back loop.

  18. Growth retardation induced by avian leukosis virus subgroup J associated with down-regulated Wnt/β-catenin pathway.

    PubMed

    Feng, Weiguo; Zhou, Defang; Meng, Wei; Li, Gen; Zhuang, Pingping; Pan, Zhifang; Wang, Guihua; Cheng, Ziqiang

    2017-03-01

    Avian leukosis virus subgroup J (ALV-J), an oncogenic retrovirus, induces growth retardation and neoplasia in chickens, leading to enormous economic losses in poultry industry. Increasing evidences showed several signal pathways involved in ALV-J infection. However, what signaling pathway involved in growth retardation is largely unknown. To explore the possible signaling pathway, we tested the cell proliferation and associated miRNAs in ALV-J infected CEF cells by CCK-8 and Hiseq, respectively. The results showed that cell proliferation was significantly inhibited by ALV-J and three associated miRNAs were identified to target Wnt/β-catenin pathway. To verify the Wnt/β-catenin pathway involved in cell growth retardation, we analyzed the key molecules of Wnt pathway in ALV-J infected CEF cells. Our data demonstrated that protein expression of β-catenin was decreased significantly post ALV-J infection compared with the normal (P < 0.05). The impact of this down-regulation caused low expression of known target genes (Axin2, CyclinD1, Tcf4 and Lef1). Further, to obtain in vivo evidence, we set up an ALV-J infection model. Post 7 weeks infection, ALV-J infected chickens showed significant growth retardation. Subsequent tests showed that the expression of β-catenin, Tcf1, Tcf4, Lef1, Axin2 and CyclinD1 were down-regulated in muscles of growth retardation chickens. Taken together, all data demonstrated that chicken growth retardation caused by ALV-J associated with down-regulated Wnt/β-catenin signaling pathway.

  19. [Role of calcineurin in down-regulation of left ventricular transmural voltage- dependent K(+) currents in mice with heart failure].

    PubMed

    Shi, Chen-Xia; Dong, Fang; Chang, Yan-Chao; Wang, Xiao-Feng; Xu, Yan-Fang

    2015-08-25

    The aim of the present study was to investigate the role of calcineurin in the down-regulation of left ventricular transmural voltage-dependent K(+) currents in heart failure. Transverse aorta was banded by using microsurgical techniques to create mouse heart failure model. Sham-operated (Sham) or aorta banded (Band) mice were randomized to receive calcineurin inhibitor cyclosporine A (CsA) or vehicle. The densities and kinetic properties of voltage-dependent K(+) currents, as well as action potential (AP), of left ventricular subendocardial (Endo) and subepicardial (Epi) myocytes were determined by using whole-cell patch-clamp technique. The results showed that calcineurin activity was significant higher in Endo myocytes than that in Epi ones in all the groups. Compared with Sham group, Band mice showed significantly increased calcineurin activity both in Endo and Epi myocytes. CsA significantly reduced calcineurin activity in Band mice. CsA treatment in Band mice partially reversed the down-regulation of Ito density, completely reversed the down-regulation of IK,slow density both in Endo and Epi myocytes, and Iss density in Endo myocytes. In addition, CsA treatment in Band mice partially antagonized the prolongation of action potential duration (APD), and APD at 50% (APD50) and 90% repolarization (APD90) were significantly reduced. Because of non-parallel shortening of APD in Endo and Epi myocytes, the ratio of Endo/Epi APD90 was reduced from 4.8:1 in Band mice to 2.6:1 in CsA-treated mice, which was close to that in Sham mice. The results suggest that non-parallel activation of calcineurin in Endo and Epi myocytes contributes to the down-regulation of transmural voltage-dependent K(+) currents and the amplification of transmural dispersion of repolarization (TDR) in left ventricular failure hearts. Inhibition of calcineurin may be a potential new therapeutic strategy to prevent and cure arrhythmias and sudden death in heart failure.

  20. Bile acids down-regulate caveolin-1 in esophageal epithelial cells through sterol responsive element-binding protein.

    PubMed

    Prade, Elke; Tobiasch, Moritz; Hitkova, Ivana; Schäffer, Isabell; Lian, Fan; Xing, Xiangbin; Tänzer, Marc; Rauser, Sandra; Walch, Axel; Feith, Marcus; Post, Stefan; Röcken, Christoph; Schmid, Roland M; Ebert, Matthias P A; Burgermeister, Elke

    2012-05-01

    Bile acids are synthesized from cholesterol and are major risk factors for Barrett adenocarcinoma (BAC) of the esophagus. Caveolin-1 (Cav1), a scaffold protein of membrane caveolae, is transcriptionally regulated by cholesterol via sterol-responsive element-binding protein-1 (SREBP1). Cav1 protects squamous epithelia by controlling cell growth and stabilizing cell junctions and matrix adhesion. Cav1 is frequently down-regulated in human cancers; however, the molecular mechanisms that lead to this event are unknown. We show that the basal layer of the nonneoplastic human esophageal squamous epithelium expressed Cav1 mainly at intercellular junctions. In contrast, Cav1 was lost in 95% of tissue specimens from BAC patients (n = 100). A strong cytoplasmic expression of Cav1 correlated with poor survival in a small subgroup (n = 5) of BAC patients, and stable expression of an oncogenic Cav1 variant (Cav1-P132L) in the human BAC cell line OE19 promoted proliferation. Cav1 was also detectable in immortalized human squamous epithelial, Barrett esophagus (CPC), and squamous cell carcinoma cells (OE21), but was low in BAC cell lines (OE19, OE33). Mechanistically, bile acids down-regulated Cav1 expression by inhibition of the proteolytic cleavage of 125-kDa pre-SREBP1 from the endoplasmic reticulum/Golgi apparatus and nuclear translocation of active 68-kDa SREBP1. This block in SREBP1's posttranslational processing impaired transcriptional activation of SREBP1 response elements in the proximal human Cav1 promoter. Cav1 was also down-regulated in esophagi from C57BL/6 mice on a diet enriched with 1% (wt/wt) chenodeoxycholic acid. Mice deficient for Cav1 or the nuclear bile acid receptor farnesoid X receptor showed hyperplasia and hyperkeratosis of the basal cell layer of esophageal epithelia, respectively. These data indicate that bile acid-mediated down-regulation of Cav1 marks early changes in the squamous epithelium, which may contribute to onset of Barrett esophagus

  1. NUDT2 Disruption Elevates Diadenosine Tetraphosphate (Ap4A) and Down-Regulates Immune Response and Cancer Promotion Genes.

    PubMed

    Marriott, Andrew S; Vasieva, Olga; Fang, Yongxiang; Copeland, Nikki A; McLennan, Alexander G; Jones, Nigel J

    2016-01-01

    Regulation of gene expression is one of several roles proposed for the stress-induced nucleotide diadenosine tetraphosphate (Ap4A). We have examined this directly by a comparative RNA-Seq analysis of KBM-7 chronic myelogenous leukemia cells and KBM-7 cells in which the NUDT2 Ap4A hydrolase gene had been disrupted (NuKO cells), causing a 175-fold increase in intracellular Ap4A. 6,288 differentially expressed genes were identified with P < 0.05. Of these, 980 were up-regulated and 705 down-regulated in NuKO cells with a fold-change ≥ 2. Ingenuity® Pathway Analysis (IPA®) was used to assign these genes to known canonical pathways and functional networks. Pathways associated with interferon responses, pattern recognition receptors and inflammation scored highly in the down-regulated set of genes while functions associated with MHC class II antigens were prominent among the up-regulated genes, which otherwise showed little organization into major functional gene sets. Tryptophan catabolism was also strongly down-regulated as were numerous genes known to be involved in tumor promotion in other systems, with roles in the epithelial-mesenchymal transition, proliferation, invasion and metastasis. Conversely, some pro-apoptotic genes were up-regulated. Major upstream factors predicted by IPA® for gene down-regulation included NFκB, STAT1/2, IRF3/4 and SP1 but no major factors controlling gene up-regulation were identified. Potential mechanisms for gene regulation mediated by Ap4A and/or NUDT2 disruption include binding of Ap4A to the HINT1 co-repressor, autocrine activation of purinoceptors by Ap4A, chromatin remodeling, effects of NUDT2 loss on transcript stability, and inhibition of ATP-dependent regulatory factors such as protein kinases by Ap4A. Existing evidence favors the last of these as the most probable mechanism. Regardless, our results suggest that the NUDT2 protein could be a novel cancer chemotherapeutic target, with its inhibition potentially exerting

  2. NUDT2 Disruption Elevates Diadenosine Tetraphosphate (Ap4A) and Down-Regulates Immune Response and Cancer Promotion Genes

    PubMed Central

    Marriott, Andrew S.; Vasieva, Olga; Fang, Yongxiang; Copeland, Nikki A.; McLennan, Alexander G.; Jones, Nigel J.

    2016-01-01

    Regulation of gene expression is one of several roles proposed for the stress-induced nucleotide diadenosine tetraphosphate (Ap4A). We have examined this directly by a comparative RNA-Seq analysis of KBM-7 chronic myelogenous leukemia cells and KBM-7 cells in which the NUDT2 Ap4A hydrolase gene had been disrupted (NuKO cells), causing a 175-fold increase in intracellular Ap4A. 6,288 differentially expressed genes were identified with P < 0.05. Of these, 980 were up-regulated and 705 down-regulated in NuKO cells with a fold-change ≥ 2. Ingenuity® Pathway Analysis (IPA®) was used to assign these genes to known canonical pathways and functional networks. Pathways associated with interferon responses, pattern recognition receptors and inflammation scored highly in the down-regulated set of genes while functions associated with MHC class II antigens were prominent among the up-regulated genes, which otherwise showed little organization into major functional gene sets. Tryptophan catabolism was also strongly down-regulated as were numerous genes known to be involved in tumor promotion in other systems, with roles in the epithelial-mesenchymal transition, proliferation, invasion and metastasis. Conversely, some pro-apoptotic genes were up-regulated. Major upstream factors predicted by IPA® for gene down-regulation included NFκB, STAT1/2, IRF3/4 and SP1 but no major factors controlling gene up-regulation were identified. Potential mechanisms for gene regulation mediated by Ap4A and/or NUDT2 disruption include binding of Ap4A to the HINT1 co-repressor, autocrine activation of purinoceptors by Ap4A, chromatin remodeling, effects of NUDT2 loss on transcript stability, and inhibition of ATP-dependent regulatory factors such as protein kinases by Ap4A. Existing evidence favors the last of these as the most probable mechanism. Regardless, our results suggest that the NUDT2 protein could be a novel cancer chemotherapeutic target, with its inhibition potentially exerting

  3. Down-regulation of SFRP1 as a putative tumor suppressor gene can contribute to human hepatocellular carcinoma

    PubMed Central

    Huang, Jian; Zhang, Yun-Li; Teng, Xiao-Mei; Lin, Yun; Zheng, Da-Li; Yang, Peng-Yuan; Han, Ze-Guang

    2007-01-01

    Background Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. SFRP1 (the secreted frizzled-related protein 1), a putative tumor suppressor gene mapped onto chromosome 8p12-p11.1, the frequent loss of heterozygosity (LOH) region in human HCC, encodes a Wingless-type (Wnt) signaling antagonist and is frequently inactivated by promoter methylation in many human cancers. However, whether the down-regulation of SFRP1 can contribute to hepatocarcinogenesis still remains unclear. Methods We investigated the expression of SFRP1 through real time RT-PCR and immunohistochemistry staining. The cell growth and colony formation were observed as the overexpression and knockdown of SFRP1. The DNA methylation status within SFRP1 promoter was analyzed through methylation-specific PCR or bisulphate-treated DNA sequencing assays. Loss of heterozygosity was here detected with microsatellite markers. Results SFRP1 was significantly down-regulated in 76.1% (35/46) HCC specimens at mRNA level and in 30% (30/100) HCCs indicated by immunohistochemistry staining, as compared to adjacent non-cancerous livers. The overexpression of SFRP1 can significantly inhibit the cell growth and colony formation of YY-8103, SMMC7721, and Hep3B cells. The RNA interference against the constitutional SFRP1 in the offspring SMMC7721 cells, which were stably transfected by ectopic SFRP1, can markedly promote cell growth of these cells. LOH of both microsatellite markers D8S532 and D8SAC016868 flanking the gene locus was found in 13% (6 of 46 HCCs) and 6.5% (3 of 46 HCCs) of the informative cases, respectively, where 5 of 8 HCC specimens with LOH showed the down-regulation of SFRP1. DNA hypermethylation within SFRP1 promoter was identified in two of three HCC specimens without SFRP1 expression. Moreover, the DNA methylation of SFRP1 promoter was significantly reduced, along with the re-expression of the gene, in those HCC cell lines, Bel7404, QGY7701, and MHCC-H, as treated by DAC

  4. [Rapamycin: a new immunosuppressive agent capable of inhibiting chronic rejection?].

    PubMed

    Viklický, O; Matl, I

    2001-01-19

    Chronic rejection represents the most common cause of transplanted graft loss in the long term. Rapamycin (sirolimus), and it's derivate RAD, are new and potent, immunosuppressive drugs. They inhibit cell proliferation driven by various growth factors. These drugs were successfully tested in some experimental models of the chronic rejection. Results of the first clinical trials have defined rapamycin pharmacokinetics and proved immunosuppressive efficacy. Rapamycin acts synergistically with cyclosporin A. The side effects are a dose-dependent thrombocytopenia and leukopenia but the most frequent is hyperlipidemia. The question, if rapamycin and RAD inhibit development of chronic rejection in man, will be solved by the prospective clinical trials over years.

  5. Rapamycin Prolongs the Survival of Corneal Epithelial Cells in Culture

    PubMed Central

    Gidfar, Sanaz; Milani, Farnoud Y.; Milani, Behrad Y.; Shen, Xiang; Eslani, Medi; Putra, Ilham; Huvard, Michael J.; Sagha, Hossein; Djalilian, Ali R.

    2017-01-01

    Rapamycin has previously been shown to have anti-aging effects in cells and organisms. These studies were undertaken to investigate the effects of rapamycin on primary human corneal epithelial cells in vitro. Cell growth and viability were evaluated by bright field microscopy. Cell proliferation and cycle were evaluated by flow cytometry. The expression of differentiation markers was evaluated by quantitative PCR and Western blot. Senescence was evaluated by senescence-associated β-Galactosidase staining and by Western blot analysis of p16. Apoptosis was evaluated by a TUNEL assay. The results demonstrated that primary HCEC treated with rapamycin had lower proliferation but considerably longer survival in vitro. Rapamycin-treated cells maintained a higher capacity to proliferate after removal of rapamycin and expressed more keratin 14, N-Cadherin, DeltaNp63 and ABCG2, and less keratin 12, consistent with their less differentiated state. Rapamycin treated cells demonstrated less senescence by X-β-Gal SA staining and by lower expression of p16. Apoptosis was also lower in the rapamycin treated cells. These results indicate that rapamycin treatment of HCEC prevents the loss of corneal epithelial stem/progenitor cells to replicative senescence and apoptosis. Rapamycin may be a useful additive for ex vivo expansion of corneal epithelial cells. PMID:28054657

  6. Functionally conserved effects of rapamycin exposure on zebrafish.

    PubMed

    Sucularli, Ceren; Shehwana, Huma; Kuscu, Cem; Dungul, Dilay Ciglidag; Ozdag, Hilal; Konu, Ozlen

    2016-05-01

    Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase important in cell proliferation, growth and protein translation. Rapamycin, a well‑known anti‑cancer agent and immunosuppressant drug, inhibits mTOR activity in different taxa including zebrafish. In the present study, the effect of rapamycin exposure on the transcriptome of a zebrafish fibroblast cell line, ZF4, was investigated. Microarray analysis demonstrated that rapamycin treatment modulated a large set of genes with varying functions including protein synthesis, assembly of mitochondrial and proteasomal machinery, cell cycle, metabolism and oxidative phosphorylation in ZF4 cells. A mild however, coordinated reduction in the expression of proteasomal and mitochondrial ribosomal subunits was detected, while the expression of numerous ribosomal subunits increased. Meta‑analysis of heterogeneous mouse rapamycin microarray datasets enabled the comparison of zebrafish and mouse pathways modulated by rapamycin, using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway analysis. The analyses demonstrated a high degree of functional conservation between zebrafish and mice in response to rapamycin. In addition, rapamycin treatment resulted in a marked dose‑dependent reduction in body size and pigmentation in zebrafish embryos. The present study is the first, to the best of our knowledge, to evaluate the conservation of rapamycin‑modulated functional pathways between zebrafish and mice, in addition to the dose‑dependent growth curves of zebrafish embryos upon rapamycin exposure.

  7. Concordant down-regulation of proto-oncogene PML and major histocompatibility antigen HLA class I expression in high-grade prostate cancer.

    PubMed

    Zhang, Huiming; Melamed, Jonathan; Wei, Ping; Cox, Karen; Frankel, Wendy; Bahnson, Robert R; Robinson, Nikki; Pyka, Ron; Liu, Yang; Zheng, Pan

    2003-02-14

    Recognition of tumor cells by cytolytic T lymphocytes depends on cell surface MHC class I expression. As a mechanism to evade T cell recognition, many malignant cancer cells, including those of prostate cancer, down-regulate MHC class I. For the majority of human cancers, the molecular mechanism of MHC class I down regulation is unclear, although it is well established that MHC class I down-regulation is often associated with the down-regulation of multiple genes devoted to antigen presentation. Since the promyelocytic leukemia (PML) proto-oncogene controls multiple antigen-presentation genes in some murine cancer cells, we analyzed the expression of proto-oncogene PML and MHC class I in high-grade prostate cancer. We found that 30 of 37 (81%) prostate adenocarcinoma cases with a Gleason grade of 7-8 had more than 50% down-regulation of HLA class I expression. Among these, 22 cases (73.3%) had no detectable PML protein, while 4 cases (13.3%) showed partial PML down-regulation. In contrast, all 7 cases of prostate cancer with high expression of cell surface HLA class I had high levels of PML expression. Concordant down-regulation of HLA and PML was observed in different histological patterns of prostate adenocarcinoma. These results suggest that in high-grade prostate cancer, malfunction of proto-oncogene PML is a major factor in the down-regulation of cell surface HLA class I molecules, the target molecules essential for the direct recognition of cancer cells by cytolytic T lymphocytes.

  8. Adaptations to chronic rapamycin in mice

    PubMed Central

    Dodds, Sherry G.; Livi, Carolina B.; Parihar, Manish; Hsu, Hang-Kai; Benavides, Adriana D.; Morris, Jay; Javors, Martin; Strong, Randy; Christy, Barbara; Hasty, Paul; Sharp, Zelton Dave

    2016-01-01

    Rapamycin inhibits mechanistic (or mammalian) target of rapamycin (mTOR) that promotes protein production in cells by facilitating ribosome biogenesis (RiBi) and eIF4E-mediated 5'cap mRNA translation. Chronic treatment with encapsulated rapamycin (eRapa) extended health and life span for wild-type and cancer-prone mice. Yet, the long-term consequences of chronic eRapa treatment are not known at the organ level. Here, we report our observations of chronic eRapa treatment on mTORC1 signaling and RiBi in mouse colon and visceral adipose. As expected, chronic eRapa treatment decreased detection of phosphorylated mTORC1/S6K substrate, ribosomal protein (rpS6) in colon and fat. However, in colon, contrary to expectations, there was an upregulation of 18S rRNA and some ribosomal protein genes (RPGs) suggesting increased RiBi. Among RPGs, eRapa increases rpl22l1 mRNA but not its paralog rpl22. Furthermore, there was an increase in the cap-binding protein, eIF4E relative to its repressor 4E-BP1 suggesting increased translation. By comparison, in fat, there was a decrease in the level of 18S rRNA (opposite to colon), while overall mRNAs encoding ribosomal protein genes appeared to increase, including rpl22, but not rpl22l1 (opposite to colon). In fat, there was a decrease in eIF4E relative to actin (opposite to colon) but also an increase in the eIF4E/4E-BP1 ratio likely due to reductions in 4E-BP1 at our lower eRapa dose (similar to colon). Thus, in contrast to predictions of decreased protein production seen in cell-based studies, we provide evidence that colon from chronically treated mice exhibited an adaptive ‘pseudo-anabolic’ state, which is only partially present in fat, which might relate to differing tissue levels of rapamycin, cell-type-specific responses, and/or strain differences. PMID:27237224

  9. Senescence-related functional nuclear barrier by down-regulation of nucleo-cytoplasmic trafficking gene expression

    SciTech Connect

    Kim, Sung Young; Ryu, Sung Jin; Ahn, Hong Ju; Choi, Hae Ri; Kang, Hyun Tae; Park, Sang Chul

    2010-01-01

    One of the characteristic natures of senescent cells is the hypo- or irresponsiveness not only to growth factors but also to apoptotic stress. In the present study, we confirmed the inhibition of nuclear translocation of activated p-ERK1/2 and NF-kB p50 in response to growth stimuli or LPS in the senescent human diploid fibroblasts. In order to elucidate the underlying mechanism for the senescence-associated hypo-responsiveness, we carried out the comparison study for gene expression profiles through microarray analysis. In consequence, we observed the vast reduction in expression of nucleo-cytoplasmic trafficking genes in senescent cells, when compared with those in young cells. Expression levels of several nucleoporins, karyopherin {alpha}, karyopherin {beta}, Ran, and Ran-regulating factors were confirmed to be down-regulated in senescent HDFs by using RT-PCR and Western blot methods. Taken together, these data suggest the operation of certain senescence-associated functional nuclear barriers by down-regulation of the nucleo-cytoplasmic trafficking genes in the senescent cells.

  10. Chelerythrine down regulates expression of VEGFA, BCL2 and KRAS by arresting G-Quadruplex structures at their promoter regions

    PubMed Central

    Jana, Jagannath; Mondal, Soma; Bhattacharjee, Payel; Sengupta, Pallabi; Roychowdhury, Tanaya; Saha, Pranay; Kundu, Pallob; Chatterjee, Subhrangsu

    2017-01-01

    A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer. PMID:28102286

  11. Establishment of an ovarian metastasis model and possible involvement of E-cadherin down-regulation in the metastasis.

    PubMed

    Kuwabara, Yoshiko; Yamada, Taketo; Yamazaki, Ken; Du, Wen-Lin; Banno, Kouji; Aoki, Daisuke; Sakamoto, Michiie

    2008-10-01

    Clinical observations of cases of ovarian metastasis suggest that there may be a unique mechanism underlying ovarian-specific metastasis. This study was undertaken to establish an in vivo model of metastasis to the ovary, and to investigate the mechanism of ovarian-specific metastasis. We examined the capacity for ovarian metastasis in eight different human carcinoma cell lines by implantation in female NOD/SCID mice transvenously and intraperitoneally. By transvenous inoculation, only RERF-LC-AI, a poorly differentiated carcinoma cell line, frequently demonstrated ovarian metastasis. By intraperitoneal inoculation, four of the eight cell lines (HGC27, MKN-45, KATO-III, and RERF-LC-AI) metastasized to the ovary. We compared E-cadherin expression among ovarian metastatic cell lines and others. All of these four ovarian metastatic cell lines and HSKTC, a Krukenberg tumor cell line, showed E-cadherin down-regulation and others did not. E-cadherin was then forcibly expressed in RERF-LC-AI, and inhibited ovarian metastasis completely. The capacity for metastasizing to the other organs was not affected by E-cadherin expression. We also performed histological investigation of clinical ovarian-metastatic tumor cases. About half of all ovarian-metastatic tumor cases showed loss or reduction of E-cadherin expression. These data suggest that E-cadherin down-regulation may be involved in ovarian-specific metastasis.

  12. Thymoquinone inhibits the migration of mouse neuroblastoma (Neuro-2a) cells by down-regulating MMP-2 and MMP-9.

    PubMed

    Arumugam, Paramasivam; Subramanian, Raghunandhakumar; Priyadharsini, Jayaseelan Vijayashree; Gopalswamy, Jayaraman

    2016-12-01

    Thymoquinone (TQ), an active component derived from the medial plant Nigella sativa, has been used for medical purposes for more than 2 000 years. Recent studies have reported that TQ blocked angiogenesis in animal model and reduced migration, adhesion, and invasion of glioblastoma cells. We have recently shown that TQ could exhibit a potent cytotoxic effect and induce apoptosis in mouse neuroblastoma (Neuro-2a) cells. In the present study, TQ treatment markedly decreased the adhesion and migration of Neuro-2a cells. TQ down-regulated MMP-2 and MMP-9 protein expression and mRNA levels and their activities. Furthermore, TQ significantly down-regulated the protein expression of transcription factor NF-κB (p65) but not significantly altered the expression of N-Myc. Taken together, our data indicated that TQ's inhibitory effect on the migration of Neuro-2a cells was mediated through the suppression of MMP-2 and MMP-9 expression, suggesting that TQ treatment can be a promising therapeutic strategy for human malignant neuroblastoma.

  13. Down-regulation of survivin expression by small interfering RNA induces pancreatic cancer cell apoptosis and enhances its radiosensitivity

    PubMed Central

    Guan, Hai-Tao; Xue, Xing-Huan; Dai, Zhi-Jun; Wang, Xi-Jing; Li, Ang; Qin, Zhao-Yin

    2006-01-01

    AIM: To investigate the inhibitory effect of small interfering RNA (siRNA) on the expression of survivin in pancreatic cancer cell line PC-2 and the role of siRNA in inducing PC-2 cell apoptosis and enhancing its radiosensitivity. METHODS: A siRNA plasmid expression vector against survivin was constructed and transfected into PC-2 cells with LipofectamineTM 2000. The down regulation of survivin expression was detected by semi-quantitive RT-PCR and immunohistochemical SP method and the role of siRNA in inducing PC-2 cell apoptosis and enhancing its radiosensitivity was detected by flow cytometry. RESULTS: The sequence-specific siRNA efficiently and specifically down-regulated the expression of survivin at both mRNA and protein levels. The expression inhibition ratio was 81.25% at mRNA level detected by semi-quantitive RT-PCR and 74.24% at protein level detected by immunohistochemical method. Forty-eight hours after transfection,apoptosis was induced in 7.03% cells by siRNA and in 14.58% cells by siRNA combined with radiation. CONCLUSION: The siRNA plasmid expression vector against survivin can inhibit the expression of survivin in PC-2 cells efficiently and specifically. Inhibiting the expression of survivin can induce apoptosis of PC-2 cells and enhance its radiosensitivity significantly. RNAi against survivin is of potential value in gene therapy of pancreatic cancer. PMID:16718816

  14. Majority of differentially expressed genes are down-regulated during malignant transformation in a four-stage model

    PubMed Central

    Danielsson, Frida; Skogs, Marie; Huss, Mikael; Rexhepaj, Elton; O’Hurley, Gillian; Klevebring, Daniel; Pontén, Fredrik; Gad, Annica K. B.; Uhlén, Mathias; Lundberg, Emma

    2013-01-01

    The transformation of normal cells to malignant, metastatic tumor cells is a multistep process caused by the sequential acquirement of genetic changes. To identify these changes, we compared the transcriptomes and levels and distribution of proteins in a four-stage cell model of isogenically matched normal, immortalized, transformed, and metastatic human cells, using deep transcriptome sequencing and immunofluorescence microscopy. The data show that ∼6% (n = 1,357) of the human protein-coding genes are differentially expressed across the stages in the model. Interestingly, the majority of these genes are down-regulated, linking malignant transformation to dedifferentiation. The up-regulated genes are mainly components that control cellular proliferation, whereas the down-regulated genes consist of proteins exposed on or secreted from the cell surface. As many of the identified gene products control basic cellular functions that are defective in cancers, the data provide candidates for follow-up studies to investigate their functional roles in tumor formation. When we further compared the expression levels of four of the identified proteins in clinical cancer cohorts, similar differences were observed between benign and cancer cells, as in the cell model. This shows that this comprehensive demonstration of the molecular changes underlying malignant transformation is a relevant model to study the process of tumor formation. PMID:23569271

  15. Transcriptional down-regulation of the retinoblastoma protein is associated with differentiation and apoptosis in human colorectal epithelial cells

    PubMed Central

    Guy, M; Moorghen, M; Bond, J A; Collard, T J; Paraskeva, C; Williams, A C

    2001-01-01

    The aim of this study was to investigate the regulation of Rb protein expression in relation to increased differentiation and induction of apoptosis in colonic epithelial cells. In vivo, Rb protein expression was found to be down-regulated towards the top of the normal colonic crypt, coincident with the region of differentiation and apoptosis, but highly expressed in colonic carcinoma tissue. Using in vitro models to study the regulation of Rb expression in pre-malignant colonic epithelial cells, we have been able to show for the first time that Rb protein expression is transcriptionally down-regulated in differentiated pre-malignant cells (in post-confluent cultures) but not in malignant colorectal epithelial cells. Furthermore, suppression of rb protein function by the HPV-E7 viral oncoprotein increased both spontaneous and DNA damage-induced apoptosis. These results suggest that Rb is able to act as a survival factor in colonic epithelial cells by suppressing apoptosis, and that over-expression of pRb in colorectal tumour cells can cause a loss of sensitivity to apoptotic signalling, resulting in aberrant cell survival and resistance to therapy. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11207048

  16. Terpene Down-Regulation Triggers Defense Responses in Transgenic Orange Leading to Resistance against Fungal Pathogens1[W

    PubMed Central

    Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Alquézar, Berta; Gadea, José; Gómez-Cadenas, Aurelio; De Ollas, Carlos José; Rodrigo, María Jesús; Zacarías, Lorenzo; Peña, Leandro

    2014-01-01

    Terpenoid volatiles are isoprene compounds that are emitted by plants to communicate with the environment. In addition to their function in repelling herbivores and attracting carnivorous predators in green tissues, the presumed primary function of terpenoid volatiles released from mature fruits is the attraction of seed-dispersing animals. Mature oranges (Citrus sinensis) primarily accumulate terpenes in peel oil glands, with d-limonene accounting for approximately 97% of the total volatile terpenes. In a previous report, we showed that down-regulation of a d-limonene synthase gene alters monoterpene levels in orange antisense (AS) fruits, leading to resistance against Penicillium digitatum infection. A global gene expression analysis of AS versus empty vector (EV) transgenic fruits revealed that the down-regulation of d-limonene up-regulated genes involved in the innate immune response. Basal levels of jasmonic acid were substantially higher in the EV compared with AS oranges. Upon fungal challenge, salicylic acid levels were triggered in EV samples, while jasmonic acid metabolism and signaling were drastically increased in AS orange peels. In nature, d-limonene levels increase in orange fruit once the seeds are fully viable. The inverse correlation between the increase in d-limonene content and the decrease in the defense response suggests that d-limonene promotes infection by microorganisms that are likely involved in facilitating access to the pulp for seed-dispersing frugivores. PMID:24192451

  17. Multinuclear giant cell formation is enhanced by down-regulation of Wnt signaling in gastric cancer cell line, AGS

    SciTech Connect

    Kim, Shi-Mun; Kim, Rockki; Ryu, Jae-Hyun; Jho, Eek-Hoon; Song, Ki-Joon; Jang, Shyh-Ing; Kee, Sun-Ho . E-mail: keesh@korea.ac.kr

    2005-08-01

    AGS cells, which were derived from malignant gastric adenocarcinoma tissue, lack E-cadherin-mediated cell adhesion but have a high level of nuclear {beta}-catenin, which suggests altered Wnt signal. In addition, approximately 5% of AGS cells form multinuclear giant cells in the routine culture conditions, while taxol treatment causes most AGS cells to become giant cells. The observation of reduced nuclear {beta}-catenin levels in giant cells induced by taxol treatment prompted us to investigate the relationship between Wnt signaling and giant cell formation. After overnight serum starvation, the shape of AGS cells became flattened, and this morphological change was accompanied by decrease in Myc expression and an increase in the giant cell population. Lithium chloride treatment, which inhibits GSK3{beta} activity, reversed these serum starvation effects, which suggests an inverse relationship between Wnt signaling and giant cell formation. Furthermore, the down-regulation of Wnt signaling caused by the over-expression of ICAT, E-cadherin, and Axin enhanced giant cell formation. Therefore, down-regulation of Wnt signaling may be related to giant cell formation, which is considered to be a survival mechanism against induced cell death.

  18. Synthesis and evaluation of tamoxifen derivatives with a long alkyl side chain as selective estrogen receptor down-regulators.

    PubMed

    Shoda, Takuji; Kato, Masashi; Harada, Rintaro; Fujisato, Takuma; Okuhira, Keiichiro; Demizu, Yosuke; Inoue, Hideshi; Naito, Mikihiko; Kurihara, Masaaki

    2015-07-01

    Estrogen receptors (ERs) play a major role in the growth of human breast cancer cells. An antagonist that acts as not only an inhibitor of ligand binding but also an inducer of the down-regulation of ER would be useful for the treatment for ER-positive breast cancer. We previously reported the design and synthesis of a selective estrogen receptor down-regulator (SERD), (E/Z)-4-(1-{4-[2-(dodecylamino)ethoxy]phenyl}-2-phenylbut-1-en-1-yl)phenol (C12), which is a tamoxifen derivative having a long alkyl chain on the amine moiety. This compound induced degradation of ERα via a proteasome-dependent pathway and showed an antagonistic effect in MCF-7 cells. With the aim of increasing the potency of SERDs, we designed and synthesized various tamoxifen derivatives that have various lengths and terminal groups of the long alkyl side chain. During the course of our investigation, C10F having a 10-fluorodecyl group on the amine moiety of 4-OHT was shown to be the most potent compound among the tamoxifen derivatives. Moreover, computational docking analysis suggested that the long alkyl chain interacted with the hydrophobic region on the surface of the ER, which is a binding site of helix 12 and coactivator. These results provide useful information to develop promising candidates as SERDs.

  19. Expression of neurexin and neuroligin in the enteric nervous system and their down-regulated expression levels in Hirschsprung disease.

    PubMed

    Zhang, Qiangye; Wang, Jian; Li, Aiwu; Liu, Hongzhen; Zhang, Wentong; Cui, Xinhai; Wang, Kelai

    2013-04-01

    To investigate the expression levels of neurexins and neuroligins in the enteric nervous system (ENS) in Hirschsprung Disease (HSCR). Longitudinal muscles with adherent mesenteric plexus were obtained by dissection of the fresh gut wall of mice, guinea pigs, and humans. Double labeling of neurexin I and Hu (a neuron marker), neuroligin 1 and Hu, neurexin I and synaptophysin (a presynaptic marker), and neuroligin 1 and PSD95 (a postsynaptic marker) was performed by immunofluorescence staining. Images were merged to determine the relative localizations of the proteins. Expression levels of neurexin and neuroligin in different segments of the ENS in HSCR were investigated by immunohistochemistry. Neurexin and neuroligin were detected in the mesenteric plexus of mice, guinea pigs, and humans with HSCR. Neurexin was located in the presynapse, whereas neuroligin was located in the postsynapse. Expression levels of neurexin and neuroligin were significant in the ganglionic colonic segment of HSCR, moderate in the transitional segment, and negative in the aganglionic colonic segment. The expressions of neurexin and neuroligin in the transitional segments were significantly down-regulated compared with the levels in the normal segments (P < 0.05). Expression levels of neurexin and neuroligin in ENS are significantly down-regulated in HSCR, which may be involved in the pathogenesis of HSCR.

  20. Down-regulation of ABCG2 and ABCB4 transporters in the placenta of rats exposed to cadmium

    PubMed Central

    Liu, Lili; Zhou, Liang; Hu, Shuiwang; Zhou, Shanyu; Deng, Yingyu; Dong, Ming; Huang, Jianxun; Zeng, Yuli; Chen, Xiaoyan; Zhao, Na; Li, Hongling; Ding, Zhenhua

    2016-01-01

    As a maternal and developmental toxicant, cadmium (Cd) possesses weak penetrability through the placental barrier. However, the underlying mechanism remains unclear. To gain insight into the protein molecules associated with Cd toxicity in placenta and explore their roles in Cd transportation, a reproductive animal experiment was carried out using Sprague-Dawley rats. We performed proteomic analysis of the placenta by Difference Gel Electrophoresis (DIGE) combined with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Tandem Mass Spectroscopy (MALDI-TOF/TOF MS). The DIGE assay identified 15 protein spots that were differentially expressed with a greater than 1.5-fold change in placenta of Cd-treated rats compared to the control rats. Based on the expression patterns and biological functions of the proteins, we selected the ABCG2 and ABCB4 transporter proteins for further analysis. Western blot analysis showed that Cd exposure could down-regulate the expression of ABCG2 and ABCB4 in the placenta. There was a negative dose-response relationship between Cd exposure and the expression of ABCG2 or ABCB4 protein. These results indicated that down-regulation of ABCG2 and ABCB4 transporters may regulate Cd across through placenta and thus affect the in vivo toxic effect of Cd to fetus. PMID:27203216

  1. Transcriptional down-regulation of Brca1 and E-cadherin by CtBP1 in breast cancer.

    PubMed

    Deng, Yu; Deng, Hui; Liu, Jing; Han, Gangwen; Malkoski, Stephen; Liu, Bolin; Zhao, Rui; Wang, Xiao-Jing; Zhang, Qinghong

    2012-06-01

    Carboxyl-terminal binding protein 1 (CtBP1) is a transcriptional co-repressor with oncogenic potential. Immunohistochemistry staining using human breast cancer tissue arrays revealed that 92% of invasive ductal breast cancer cases have CtBP1-positive staining compared to 4% CtBP1-positive in normal breast tissue. To explore the functional impact of CtBP1 in breast cancer, we examined CtBP1's transcriptional regulation of known tumor suppressors, breast cancer susceptibility gene 1 (Brca1), and E-cadherin. We found CtBP1 was recruited to the promoter regions of Brca1 and E-cadherin genes in breast cancer cells. Concomitantly, Brca1 loss was detected in 57% and E-cadherin loss was detected in 76% of human invasive ductal breast cancers, and correlated with CtBP1 nuclear staining in these lesions. Importantly, siRNA knock down of CtBP1 restored Brca1 and E-cadherin expression in breast cancer cell lines, implying CtBP1 down-regulates Brca1 and E-cadherin genes in human breast cancer. This study provides evidence that although genetic loss of Brca1 and E-cadherin are infrequent in breast cancer, they are down-regulated at the transcriptional level by CtBP1 expression. Thus, CtBP1 activation could be a potential biomarker for breast cancer development.

  2. Majority of differentially expressed genes are down-regulated during malignant transformation in a four-stage model.

    PubMed

    Danielsson, Frida; Skogs, Marie; Huss, Mikael; Rexhepaj, Elton; O'Hurley, Gillian; Klevebring, Daniel; Pontén, Fredrik; Gad, Annica K B; Uhlén, Mathias; Lundberg, Emma

    2013-04-23

    The transformation of normal cells to malignant, metastatic tumor cells is a multistep process caused by the sequential acquirement of genetic changes. To identify these changes, we compared the transcriptomes and levels and distribution of proteins in a four-stage cell model of isogenically matched normal, immortalized, transformed, and metastatic human cells, using deep transcriptome sequencing and immunofluorescence microscopy. The data show that ∼6% (n = 1,357) of the human protein-coding genes are differentially expressed across the stages in the model. Interestingly, the majority of these genes are down-regulated, linking malignant transformation to dedifferentiation. The up-regulated genes are mainly components that control cellular proliferation, whereas the down-regulated genes consist of proteins exposed on or secreted from the cell surface. As many of the identified gene products control basic cellular functions that are defective in cancers, the data provide candidates for follow-up studies to investigate their functional roles in tumor formation. When we further compared the expression levels of four of the identified proteins in clinical cancer cohorts, similar differences were observed between benign and cancer cells, as in the cell model. This shows that this comprehensive demonstration of the molecular changes underlying malignant transformation is a relevant model to study the process of tumor formation.

  3. N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation

    SciTech Connect

    Guo, Guoli; Yao, Guangmin; Zhan, Guanqun; Hu, Yufeng; Yue, Ming; Cheng, Ling; Liu, Yaping; Ye, Qi; Qing, Guoliang; Zhang, Yonghui; Liu, Hudan

    2014-11-01

    We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis. NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes. - Highlights: • N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid. • NMHC exhibits potent anti-neoplastic activity. • NMHC leads to cell cycle arrest, apoptotic death and decreased metabolism. • NMHC down-regulates the AKT signaling pathway.

  4. Chelerythrine down regulates expression of VEGFA, BCL2 and KRAS by arresting G-Quadruplex structures at their promoter regions

    NASA Astrophysics Data System (ADS)

    Jana, Jagannath; Mondal, Soma; Bhattacharjee, Payel; Sengupta, Pallabi; Roychowdhury, Tanaya; Saha, Pranay; Kundu, Pallob; Chatterjee, Subhrangsu

    2017-01-01

    A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer.

  5. Down-regulation of β-arrestin2 promotes tumour invasion and indicates poor prognosis of hepatocellular carcinoma

    PubMed Central

    Sun, Wu-Yi; Hu, Shan-Shan; Wu, Jing-Jing; Huang, Qiong; Ma, Yang; Wang, Qing-Tong; Chen, Jing-Yu; Wei, Wei

    2016-01-01

    β-arrestins, including β-arrestin1 and β-arrestin2, are multifunctional adaptor proteins. β-arrestins have recently been found to play new roles in regulating intracellular signalling networks associated with malignant cell functions. Altered β-arrestin expression has been reported in many cancers, but its role in hepatocellular carcinoma (HCC) is not clear. We therefore examined the roles of β-arrestins in HCC using an animal model of progressive HCC, HCC patient samples and HCC cell lines with stepwise metastatic potential. We demonstrated that β-arrestin2 level, but not β-arrestin1 level, decreased in conjunction with liver tumourigenesis in a mouse diethylnitrosamine-induced liver tumour model. Furthermore, β-arrestin2 expression was reduced in HCC tissues compared with noncancerous tissues in HCC patients. β-arrestin2 down-regulation in HCC was significantly associated with poor patient prognoses and aggressive pathologic features. In addition, our in vitro study showed that β-arrestin2 overexpression significantly reduced cell migration and invasion in cultured HCC cells. Furthermore, β-arrestin2 overexpression up-regulated E-cadherin expression and inhibited vimentin expression and Akt activation. These results suggest that β-arrestin2 down-regulation increases HCC cell migration and invasion ability. Low β-arrestin2 expression may be indicative of a poor prognosis or early cancer recurrence in patients who have undergone surgery for HCC. PMID:27759077

  6. Galangin sensitizes TRAIL-induced apoptosis through down-regulation of anti-apoptotic proteins in renal carcinoma Caki cells

    PubMed Central

    Han, Min Ae; Lee, Dong Hee; Woo, Seon Min; Seo, Bo Ram; Min, Kyoung-jin; Kim, Shin; Park, Jong-Wook; Kim, Sang Hyun; Choi, Yung Hyun; Kwon, Taeg Kyu

    2016-01-01

    Galangin, bioflavonoids, has been shown anti-cancer properties in various cancer cells. In this study, we investigated whether galangin could enhance TRAIL-mediated apoptosis in TRAIL resistant renal carcinoma Caki cells. Galangin alone and TRAIL alone had no effect on apoptosis, while combined treatment with galangin and TRAIL significantly induced apoptosis in renal carcinoma (Caki, ACHN and A498) but not normal cells (normal mouse kidney cells and human normal mesangial cells). Galangin induced down-regulation of Bcl-2 protein at the transcriptional level via inhibition of NF-κB activation but not p53 pathway. Furthermore, galangin induced down-regulation of cFLIP, Mcl-1 and survivin expression at the post-translational levels, and the over-expression of Bcl-2, cFLIP, Mcl-1 and survivin markedly reduced galangin-induced TRAIL sensitization. In addition, galangin increased proteasome activity, but galangin had no effect on expression of proteasome subunits (PSMA5 and PSMD4). In conclusion, our investigation suggests that galangin is a potent candidate for sensitizer of TRAIL resistant cancer cell therapy. PMID:26725939

  7. Galangin sensitizes TRAIL-induced apoptosis through down-regulation of anti-apoptotic proteins in renal carcinoma Caki cells.

    PubMed

    Han, Min Ae; Lee, Dong Hee; Woo, Seon Min; Seo, Bo Ram; Min, Kyoung-Jin; Kim, Shin; Park, Jong-Wook; Kim, Sang Hyun; Choi, Yung Hyun; Kwon, Taeg Kyu

    2016-01-04

    Galangin, bioflavonoids, has been shown anti-cancer properties in various cancer cells. In this study, we investigated whether galangin could enhance TRAIL-mediated apoptosis in TRAIL resistant renal carcinoma Caki cells. Galangin alone and TRAIL alone had no effect on apoptosis, while combined treatment with galangin and TRAIL significantly induced apoptosis in renal carcinoma (Caki, ACHN and A498) but not normal cells (normal mouse kidney cells and human normal mesangial cells). Galangin induced down-regulation of Bcl-2 protein at the transcriptional level via inhibition of NF-κB activation but not p53 pathway. Furthermore, galangin induced down-regulation of cFLIP, Mcl-1 and survivin expression at the post-translational levels, and the over-expression of Bcl-2, cFLIP, Mcl-1 and survivin markedly reduced galangin-induced TRAIL sensitization. In addition, galangin increased proteasome activity, but galangin had no effect on expression of proteasome subunits (PSMA5 and PSMD4). In conclusion, our investigation suggests that galangin is a potent candidate for sensitizer of TRAIL resistant cancer cell therapy.

  8. Antiproliferative effects of crocin in HepG2 cells by telomerase inhibition and hTERT down-regulation.

    PubMed

    Noureini, Sakineh Kazemi; Wink, Michael

    2012-01-01

    Crocin, the main pigment of Crocus sativus L., has been shown to have antiproliferative effects on cancer cells, but the involved mechanisms are only poor understood. This study focused on probable effect of crocin on the immortality of hepatic cancer cells. Cytotoxicity of crocin (IC50 3 mg/ml) in hepatocarcinoma HepG2 cells was determined after 48 h by neutral red uptake assay and MTT test. Immortality was investigated through quantification of relative telomerase activity with a quantitative real-time PCR-based telomerase repeat amplification protocol (qTRAP). Telomerase activity in 0.5 μg protein extract of HepG2 cells treated with 3 mg/ml crocin was reduced to about 51% as compared to untreated control cells. Two mechanisms of inhibition, i.e. interaction of crocin with telomeric quadruplex sequences and down regulation of hTERT expression, were examined using FRET analysis to measure melting temperature of a synthetic telomeric oligonucleotide in the presence of crocin and quantitative real-time RT-PCR, respectively. No significant changes were observed in the Tm telomeric oligonucleotides, while the relative expression level of the catalytic subunit of telomerase (hTERT) gene showed a 60% decrease as compared to untreated control cells. In conclusion, telomerase activity of HepG2 cells decreases after treatment with crocin, which is probably caused by down-regulation of the expression of the catalytic subunit of the enzyme.

  9. CD44v6 down-regulation is an independent prognostic factor for poor outcome of colorectal carcinoma.

    PubMed

    Wang, Lili; Liu, Qin; Lin, Dongliang; Lai, Maode

    2015-01-01

    We aim to investigate the variation of CD44v6 expression in the normal-adenoma-primary carcinoma-liver metastasis sequence and its prognostic impact on colorectal carcinomas. The difference in CD44v6 expression between the tumor center and invasive front was also assessed. Immunohistochemistry was performed for CD44v6 on two cohorts. The first was tissue microarrays including 402 primary CRCs sampled from the tumor center and the invasive margin. The second was whole-tissue sections, consisting of 217 adenomas, 72 primary carcinomas, and the corresponding metastatic carcinomas. In the first cohort, we found that CD44v6 down-regulation was inclined to lymph node metastasis and perineural invasion, and had an unfavorable prognosis compared with CD44v6 up-regulation. In the second cohort, CD44v6 expression was predominant in adenoma over primary carcinoma and liver metastasis in multiple steps (normal < adenoma > primary carcinoma and liver metastasis). In addition, our analysis showed that CD44v6 expression was decreased at the invasion front of the CRC compared with the center of the tumor. In conclusion, the maximal expression of CD44v6 in adenoma plays a crucial role in colorectal carcinogenesis, while loss of CD44v6 expression on the cell surface of the tumor edge enhances the progression of metastasis. CD44v6 down-regulation is an independent prognostic factor for strikingly worse disease-specific survival.

  10. Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens.

    PubMed

    Rodríguez, Ana; San Andrés, Victoria; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Shimada, Takehiko; Gadea, José; Rodrigo, María Jesús; Zacarías, Lorenzo; Palou, Lluís; López, María M; Castañera, Pedro; Peña, Leandro

    2011-06-01

    Plants use volatile terpene compounds as odor cues for communicating with the environment. Fleshy fruits are particularly rich in volatiles that deter herbivores and attract seed dispersal agents. We have investigated how terpenes in citrus fruit peels affect the interaction between the plant, insects, and microorganisms. Because limonene represents up to 97% of the total volatiles in orange (Citrus sinensis) fruit peel, we chose to down-regulate the expression of a limonene synthase gene in orange plants by introducing an antisense construct of this gene. Transgenic fruits showed reduced accumulation of limonene in the peel. When these fruits were challenged with either the fungus Penicillium digitatum or with the bacterium Xanthomonas citri subsp. citri, they showed marked resistance against these pathogens that were unable to infect the peel tissues. Moreover, males of the citrus pest medfly (Ceratitis capitata) were less attracted to low limonene-expressing fruits than to control fruits. These results indicate that limonene accumulation in the peel of citrus fruit appears to be involved in the successful trophic interaction between fruits, insects, and microorganisms. Terpene down-regulation might be a strategy to generate broad-spectrum resistance against pests and pathogens in fleshy fruits from economically important crops. In addition, terpene engineering may be important for studying the basic ecological interactions between fruits, herbivores, and pathogens.

  11. IgG1 cytoplasmic tail is essential for cell surface expression in Igβ down-regulated cells.

    PubMed

    Todo, Kagefumi; Koga, Orie; Nishikawa, Miwako; Hikida, Masaki

    2014-03-14

    It has been shown that cytoplasmic tail of the IgG1 B cell receptors (BCRs) are essential for the induction of T-dependent immune responses. Also it has been revealed that unique tyrosine residue in the cytoplasmic tail of IgG2a has the potential of being phosphorylated at tyrosine and that this phosphorylation modulates BCR signaling. However, it still remains unclear whether such phosphorylation of IgG cytoplasmic tail is involved in the regulation of BCR surface expression. In order to approach the issue, we established and analyzed the cell lines which express wild-type or mutated forms of IgG1 BCR. As the result, we found that IgG1 BCR expressed normally on the surface of A20 B cell line independent of the cytoplasmic tail. In contrast, IgG1 BCR whose cytoplasmic tyrosine was replaced with glutamic acid which mimics phosphorylated tyrosine, was expressed most efficiently on the surface of non-B lineage cells and Igβ-down-regulated B cell lines. These results suggest that tyrosine residue in IgG cytoplasmic tail is playing a essential role for the efficient expression of IgG BCR on the cell surface when BCR associated signaling molecules, including Igβ, are down-regulated.

  12. Down-regulation apoptosis signal-regulating kinase 1 gene reduced the Litopenaeus vannamei hemocyte apoptosis in WSSV infection.

    PubMed

    Yuan, Feng-Hua; Chen, Yong-Gui; Zhang, Ze-Zhi; Yue, Hai-Tao; Bi, Hai-Tao; Yuan, Kai; Weng, Shao-Ping; He, Jian-Guo; Chen, Yi-Hong

    2016-03-01

    Apoptosis signal-regulating kinase 1 (ASK1), a mitogen-activated protein kinase kinase kinase, is crucial in various cellular responses. In the present study, we identified and characterized an ASK1 homolog from Litopenaeus vannamei (LvASK1). The full-length cDNA of LvASK1 was 5400 bp long, with an open reading frame encoding a putative 1420 amino acid protein. LvASK1 was highly expressed in muscle, hemocyte, eyestalk and heart. Real-time RT-PCR analysis showed that the expression of the LvASK1 was upregulated during the white spot syndrome virus (WSSV) challenge. The knocked-down expression of LvASK1 by RNA interference significantly reduced the apoptotic ratio of the hemocytes collected from WSSV-infected L. vannamei. Furthermore, the down-regulation of LvASK1 also decreased the cumulative mortality of WSSV-infected L. vannamei. These results suggested that down-regulation of LvASK1 decreased the apoptotic rate of hemocytes in WSSV-infected shrimp, and that it could contribute to the reduction of cumulative mortality in WSSV-infected L. vannamei.

  13. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    SciTech Connect

    Quoilin, C.; Mouithys-Mickalad, A.; Duranteau, J.; Gallez, B.; Hoebeke, M.

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  14. Annexin A1 Down-Regulation in Head and Neck Cancer Is Associated with Epithelial Differentiation Status

    PubMed Central

    Pedrero, Juana Maria Garcia; Fernandez, M. Pilar; Morgan, Reginald O.; Zapatero, Agustin Herrero; Gonzalez, Maria Victoria; Nieto, Carlos Suarez; Rodrigo, Juan Pablo

    2004-01-01

    Annexin A1 (ANXA1) protein expression was evaluated by Western blot in a series of 32 head and neck squamous cell carcinomas (HNSCCs) in a search for molecular alterations that could serve as useful diagnostic/prognostic markers. ANXA1 down-regulation was observed in 24 cases (75%) compared with patient-matched normal epithelium. In relation to clinicopathological variables, ANXA1 down-regulation was significantly associated with advanced T stages (P = 0.029), locoregional lymph node metastases (P = 0.038), advanced disease stage (P = 0.006), hypopharyngeal localization (P = 0.038), and poor histological differentiation (P = 0.005). ANXA1 expression was also analyzed by immunohistochemistry in paraffin-embedded sections from 22 of 32 HNSCCs and 8 premalignant lesions. All dysplastic tissues showed significantly reduced ANXA1 expression compared to a strong positive signal observed in adjacent normal epithelia (except basal and suprabasal cells). A close association was observed between ANXA1 expression and the histological grade in HNSCC. Well-differentiated tumors presented a positive ANXA1 signal in highly keratinized areas whereas moderately and poorly differentiated tumors exhibited very weak or negative staining. Our findings clearly identify ANXA1 as an effective differentiation marker for the histopathological grading of HNSCCs and for the detection of epithelial dysplasia. PMID:14695321

  15. Down-regulation of sup 3 H-imipramine binding sites in rat cerebral cortex prenatal exposure to antidepressants

    SciTech Connect

    Montero, D.; de Ceballos, M.L. ); Del Rio, J. )

    1990-01-01

    Several antidepressant drugs were given to pregnant rats in the last 15 days of gestation and {sup 3}H-imipramine binding ({sup 3}H-IMI) was subsequently measured in the cerebral cortex of the offspring. The selective serotonin (5-HT) uptake blockers chlorimipramine and fluoxetine as well as the selective monoamine oxidase (MAO) inhibitors clorgyline and deprenyl induced, after prenatal exposure, a down-regulation of {sup 3}H-IMI binding sites at postnatal day 25. The density of these binding sites was still reduced at postnatal day 90 in rats exposed in utero to the MAO inhibitors. The antidepressants desipramine and nomifensine were ineffective in this respect. After chronic treatment of adult animals, only chlorimipramine was able to down-regulate the {sup 3}H-IMI binding sites. Consequently, prenatal exposure of rats to different antidepressant drugs affecting predominantly the 5-HT systems induces more marked and long-lasting effects on cortical {sup 3}H-IMI binding sites. The results suggest that the developing brain is more susceptible to the actions of antidepressants.

  16. Chronic Treatment with Anti-bipolar Drugs Down-Regulates Gene Expression of TRPC1 in Neurones

    PubMed Central

    Du, Ting; Rong, Yan; Feng, Rui; Verkhratsky, Alexei; Peng, Liang

    2017-01-01

    In the brain, TRPC1 channels are abundantly expressed in neurones virtually in all regions; these proteins function as receptor-activated ion channels and are implicated in numerous processes, being specifically important for neurogenesis. Primary cultures of mouse cerebellar granule cell, cerebral cortical neurones, and freshly isolated neurones from in vivo brains were used to study effects of chronic treatment with anti-bipolar drugs [carbamazepine (CBZ), lithium salts and valproic acid] on gene expression of TRPC1. Expression of TRPC1 mRNA was identified with reverse transcription-polymerase chain reaction, whereas protein content was determined by Western blotting. Store-operated plasmalemmal Ca2+ entry (SOCE) was measured with fura-2 based microfluorimetry. Chronic treatment with each of the three drugs down-regulated mRNA and protein expression in cultured cerebellar granule cells in a time- and concentration-dependent manner. Similar effect was also observed in cultured cerebral cortical neurones treated with CBZ, lithium salts and valproic acid and in freshly isolated neurones from the brains of CBZ-treated animals. The amplitude of SOCE was substantially decreased in cerebellar granule cells chronically treated with each of the three drugs. Our findings indicate that down-regulation of TRPC1 gene expression and function in neurones may be one of the mechanisms of anti-bipolar drugs action. PMID:28119572

  17. Down-Regulation of Caffeic Acid O-Methyltransferase in Maize Revisited Using a Transgenic Approach1

    PubMed Central

    Piquemal, Joel; Chamayou, Simon; Nadaud, Isabelle; Beckert, Michel; Barrière, Yves; Mila, Isabelle; Lapierre, Catherine; Rigau, Joan; Puigdomenech, Pere; Jauneau, Alain; Digonnet, Catherine; Boudet, Alain-Michel; Goffner, Deborah; Pichon, Magalie

    2002-01-01

    Transgenic maize (Zea mays) plants were generated with a construct harboring a maize caffeic acid O-methyltransferase (COMT) cDNA in the antisense (AS) orientation under the control of the maize Adh1 (alcohol dehydrogenase) promoter. Adh1-driven β-glucuronidase expression was localized in vascular tissues and lignifying sclerenchyma, indicating its suitability in transgenic experiments aimed at modifying lignin content and composition. One line of AS plants, COMT-AS, displayed a significant reduction in COMT activity (15%–30% residual activity) and barely detectable amounts of COMT protein as determined by western-blot analysis. In this line, transgenes were shown to be stably integrated in the genome and transmitted to the progeny. Biochemical analysis of COMT-AS showed: (a) a strong decrease in Klason lignin content at the flowering stage, (b) a decrease in syringyl units, (c) a lower p-coumaric acid content, and (d) the occurrence of unusual 5-OH guaiacyl units. These results are reminiscent of some characteristics already observed for the maize bm3 (brown-midrib3) mutant, as well as for COMT down-regulated dicots. However, as compared with bm3, COMT down-regulation in the COMT-AS line is less severe in that it is restricted to sclerenchyma cells. To our knowledge, this is the first time that an AS strategy has been applied to modify lignin biosynthesis in a grass species. PMID:12481050

  18. Effect of 7,8-dihydroneopterin mediated CD36 down regulation and oxidant scavenging on oxidised low-density lipoprotein induced cell death in human macrophages.

    PubMed

    Shchepetkina, Anastasia A; Hock, Barry D; Miller, Allison; Kennedy, Martin A; Gieseg, Steven P

    2017-03-26

    The role of CD36 in oxidised low-density lipoprotein (oxLDL) mediated cell death was examined by down regulating the receptor level with the macrophage generated antioxidant 7,8-dihydroneopterin. Down regulation of CD36 protein levels in human monocyte derived macrophages by 7,8-dihydroneopterin corresponded to a decrease in CD36-mRNA. The oxidation products of 7,8-dihydroneopterin, dihydroxanthopterin and neopterin did not significantly down regulate CD36. The CD36 down regulation resulted in a decrease in oxLDL uptake measured as 7-ketocholesterol accumulation. Though less oxLDL was taken up by the macrophages as a result of the 7,8-dihydroneopterin induced down regulation in CD36 levels, the cytotoxicity of the oxLDL was not decreased. Addition of 7,8-dihydroneopterin to oxLDL treated macrophages decreased the concentration of intracellular oxidants. In the presence of oxLDL, 7,8-dihydroneopterin was oxidised to neopterin showing that the 7,8-dihydroneopterin was scavenging intracellular oxidants generated in response to the oxLDL. The results show CD36 down regulation does not protect human macrophages form oxLDL cytotoxicity but 7,8-dihydroneopterin intracellular oxidant scavenging is protective.

  19. Cobalt chloride-induced estrogen receptor alpha down-regulation involves hypoxia-inducible factor-1alpha in MCF-7 human breast cancer cells.

    PubMed

    Cho, Jungyoon; Kim, Dukkyung; Lee, SeungKi; Lee, YoungJoo

    2005-05-01

    The estrogen receptor (ER) is down-regulated under hypoxia via a proteasome-dependent pathway. We studied the mechanism of ERalpha degradation under hypoxic mimetic conditions. Cobalt chloride-induced ERalpha down-regulation was dependent on the expression of newly synthesized protein(s), one possibility of which was hypoxia-inducible factor-1alpha (HIF-1alpha). To examine the role of HIF-1alpha expression in ERalpha down-regulation under hypoxic-mimetic conditions, we used a constitutively active form of HIF-1alpha, HIF-1alpha/herpes simplex viral protein 16 (VP16), constructed by replacing the transactivation domain of HIF-1alpha with that of VP16. Western blot analysis revealed that HIF-1alpha/VP16 down-regulated ERalpha in a dose-dependent manner via a proteasome-dependent pathway. The kinase pathway inhibitors PD98059, U0126, wortmannin, and SB203580 did not affect the down-regulation. A mammalian two-hybrid screen and immunoprecipitation assays indicated that ERalpha interacted with HIF-1alpha physically. These results suggest that ERalpha down-regulation under hypoxia involves protein-protein interactions between the ERalpha and HIF-1alpha.

  20. Recovery from rapamycin: drug-insensitive activity of yeast target of rapamycin complex 1 (TORC1) supports residual proliferation that dilutes rapamycin among progeny cells.

    PubMed

    Evans, Stephanie K; Burgess, Karl E V; Gray, Joseph V

    2014-09-19

    The target of rapamycin complex 1 (TORC1) is a key conserved regulator of eukaryotic cell growth. The xenobiotic rapamycin is a potent inhibitor of the yeast complex. Surprisingly, the EGO complex, a nonessential in vivo activator of TORC1, is somehow required for yeast cells to recover efficiently from a period of treatment with rapamycin. Why? Here, we found that rapamycin is only a partial inhibitor of TORC1. We confirmed that saturating amounts of rapamycin do not fully inhibit proliferation of wild-type cells, and we found that the residual proliferation in the presence of the drug is dependent on the EGO complex and on the activity of TORC1. We found that this residual TORC1-dependent proliferation is key to recovery from rapamycin treatment. First, the residual proliferation rate correlates with the ability of cells to recover from treatment. Second, the residual proliferation rate persists long after washout of the drug and until cells recover. Third, the total observable pool of cell-associated rapamycin is extremely stable and decreases only with increasing cell number after washout of the drug. Finally, consideration of the residual proliferation rate alone accurately and quantitatively accounts for the kinetics of recovery of wild-type cells and for the nature and severity of the ego- mutant defect. Overall, our results revealed that rapamycin is a partial inhibitor of yeast TORC1, that persistence of the drug limits recovery, and that rapamycin is not detoxified by yeast but is passively diluted among progeny cells because of residual proliferation.

  1. Effects of Rapamycin on Reduction of Peridural Fibrosis: An Experimental Study

    PubMed Central

    Luo, Like; Zhang, Chifei; Zhao, Jinmin; Wei, Qingjun; Li, Xiaofeng

    2015-01-01

    Background Peridural fibrosis (PF) is a normal complication after lumbar surgery. It is a challenge for both surgeons and patients. Rapamycin (RPM), a novel antibiotic with anti-proliferative and immunosuppressive properties, has been shown to be effective in preventing uncontrolled scar proliferation diseases. The object of the present research was to investigate the effects of RPM on inhibiting PF in vitro and in vivo. Material/Methods In vitro, the fibroblasts collected and isolated from the rat tail skin were cultured with/without RPM and cell counting was performed. In vivo, the double-blinded study was conducted in 60 healthy Wistar rats divided randomly into 3 groups: 1) RPM treatment group; 2) Vehicle treatment group; 3) Control group. Rats underwent a L1-L2 level laminectomy with a satisfactory anesthetization. Four weeks post-operatively, the Rydell score, histological analysis, hydroxyproline content, vimentin expressional level, and inflammatory cytokines expressional levels were assessed. Results In vitro, RPM showed ability to prevent fibroblast proliferation. In vivo, the laminectomy was well tolerated by all rats, which were killed 4 weeks post-operatively. The Rydell score, histological evaluation, hydroxyproline content, vimentin expression level, and inflammatory activity showed the positive effect of RPM in preventing peridural adhesion, inhibiting fibrotic formation and collagen synthesis, and down-regulating inflammation. Conclusions In the present primary study, RPM showed good efficacy in preventing the proliferation of fibroblasts. RPM can prevent rat peridural adhesion through inhibiting collagen synthesis, fibroblasts proliferation, and inflammatory activity. PMID:25677111

  2. Mammalian Target of Rapamycin (mTOR) Activation Increases Axonal Growth Capacity of Injured Peripheral Nerves*

    PubMed Central

    Abe, Namiko; Borson, Steven H.; Gambello, Michael J.; Wang, Fan; Cavalli, Valeria

    2010-01-01

    Unlike neurons in the central nervous system (CNS), injured neurons in the peripheral nervous system (PNS) can regenerate their axons and reinnervate their targets. However, functional recovery in the PNS often remains suboptimal, especially in cases of severe damage. The lack of regenerative ability of CNS neurons has been linked to down-regulation of the mTOR (mammalian target of rapamycin) pathway. We report here that PNS dorsal root ganglial neurons (DRGs) activate mTOR following damage and that this activity enhances axonal growth capacity. Furthermore, genetic up-regulation of mTOR activity by deletion of tuberous sclerosis complex 2 (TSC2) in DRGs is sufficient to enhance axonal growth capacity in vitro and in vivo. We further show that mTOR activity is linked to the expression of GAP-43, a crucial component of axonal outgrowth. However, although TSC2 deletion in DRGs facilitates axonal regrowth, it leads to defects in target innervation. Thus, whereas manipulation of mTOR activity could provide new strategies to stimulate nerve regeneration in the PNS, fine control of mTOR activity is required for proper target innervation. PMID:20615870

  3. Rapamycin improves lymphoproliferative disease in murine autoimmune lymphoproliferative syndrome (ALPS).

    PubMed

    Teachey, David T; Obzut, Dana A; Axsom, Kelly; Choi, John K; Goldsmith, Kelly C; Hall, Junior; Hulitt, Jessica; Manno, Catherine S; Maris, John M; Rhodin, Nicholas; Sullivan, Kathleen E; Brown, Valerie I; Grupp, Stephan A

    2006-09-15

    Autoimmune lymphoproliferative syndrome (ALPS) is a disorder of abnormal lymphocyte survival caused by defective Fas-mediated apoptosis, leading to lymphadenopathy, hepatosplenomegaly, and an increased number of double-negative T cells (DNTs). Treatment options for patients with ALPS are limited. Rapamycin has been shown to induce apoptosis in normal and malignant lymphocytes. Since ALPS is caused by defective lymphocyte apoptosis, we hypothesized that rapamycin would be effective in treating ALPS. We tested this hypothesis using rapamycin in murine models of ALPS. We followed treatment response with serial assessment of DNTs by flow cytometry in blood and lymphoid tissue, by serial monitoring of lymph node and spleen size with ultrasonography, and by enzyme-linked immunosorbent assay (ELISA) for anti-double-stranded DNA (dsDNA) antibodies. Three-dimensional ultrasound measurements in the mice correlated to actual tissue measurements at death (r = .9648). We found a dramatic and statistically significant decrease in DNTs, lymphadenopathy, splenomegaly, and autoantibodies after only 4 weeks when comparing rapamycin-treated mice with controls. Rapamycin induced apoptosis through the intrinsic mitochondrial pathway. We compared rapamycin to mycophenolate mofetil, a second-line agent used to treat ALPS, and found rapamycin's control of lymphoproliferation was superior. We conclude that rapamycin is an effective treatment for murine ALPS and should be explored as treatment for affected humans.

  4. No genetic linkage or molecular evidence for involvement of the PCSK9, ARH or CYP7A1 genes in the Familial Hypercholesterolemia phenotype in a sample of Danish families without pathogenic mutations in the LDL receptor and apoB genes.

    PubMed

    Damgaard, Dorte; Jensen, Jesper Moeller; Larsen, Mogens Lytken; Soerensen, Vibeke Reiche; Jensen, Henrik Kjaerulf; Gregersen, Niels; Jensen, Lillian Gryesten; Faergeman, Ole

    2004-12-01

    A locus on chromosome 1p34.1-p32 has been linked to autosomal dominant Familial Hypercholesterolemia (FH) and is termed the third FH locus. We tested whether this third FH locus is linked to the FH phenotype in 20 Danish families, with 158 members, without pathogenic mutations in the genes, encoding the low-density lipoprotein (LDL) receptor or apolipoprotein B (apoB). We could exclude the third FH locus as a cause of FH by genetic linkage analysis in the families taken together. Since haplotype analysis of each family nevertheless suggested that the FH phenotype co-segregated in a manner consistent with linkage to the third FH locus in three small pedigrees, we performed sequencing analysis without being able to demonstrate mutations in the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene, the main candidate gene in the third FH locus. By the same combination of genetic linkage and molecular analysis we could also exclude mutations in the gene for the LDL receptor adaptor protein and in the gene for cholesterol-7-alpha-hydroxylase as causes of FH in our sample. Although not indicating linkage to any known loci, our data still indicate that another dominant gene may be involved in causing a FH phenotype.

  5. Signaling Mechanisms that Suppress the Cytostatic Actions of Rapamycin

    PubMed Central

    Jahn, Stephan C.; Law, Mary E.; Corsino, Patrick E.; Davis, Bradley J.; Harrison, Jeffrey K.; Law, Brian K.

    2014-01-01

    While rapamycin and the “rapalogs” Everolimus and Temsirolimus have been approved for clinical use in the treatment of a number of forms of cancer, they have not met overarching success. Some tumors are largely refractory to rapamycin treatment, with some even undergoing an increase in growth rates. However the mechanisms by which this occurs are largely unknown. The results presented here reveal novel cell-signaling mechanisms that may lead to this resistance. The absence of TGFβ signaling results in resistance to rapamycin. Additionally, we observed that treatment of some cancer cell lines with rapamycin and its analogs not only potentiates mitogenic signaling and proliferation induced by HGF, but also stimulates the pro-survival kinase Akt. Together, the data show that the effectiveness of rapamycin treatment can be influenced by a number of factors and bring to light potential biomarkers for the prediction of responsiveness to treatment, and suggest combination therapies to optimize rapalog anticancer efficacy. PMID:24927123

  6. High glucose concentrations induce TNF-α production through the down-regulation of CD33 in primary human monocytes

    PubMed Central

    2012-01-01

    Background CD33 is a membrane receptor containing a lectin domain and a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM) that is able to inhibit cytokine production. CD33 is expressed by monocytes, and reduced expression of CD33 correlates with augmented production of inflammatory cytokines, such as IL-1β, TNF-α, and IL-8. However, the role of CD33 in the inflammation associated with hyperglycemia and diabetes is unknown. Therefore, we studied CD33 expression and inflammatory cytokine secretion in freshly isolated monocytes from patients with type 2 diabetes. To evaluate the effects of hyperglycemia, monocytes from healthy donors were cultured with different glucose concentrations (15-50 mmol/l D-glucose), and CD33 expression and inflammatory cytokine production were assessed. The expression of suppressor of cytokine signaling protein-3 (SOCS-3) and the generation of reactive oxygen species (ROS) were also evaluated to address the cellular mechanisms involved in the down-regulation of CD33. Results CD33 expression was significantly decreased in monocytes from patients with type 2 diabetes, and higher levels of TNF-α, IL-8 and IL-12p70 were detected in the plasma of patients compared to healthy donors. Under high glucose conditions, CD33 protein and mRNA expression was significantly decreased, whereas spontaneous TNF-α secretion and SOCS-3 mRNA expression were increased in monocytes from healthy donors. Furthermore, the down-regulation of CD33 and increase in TNF-α production were prevented when monocytes were treated with the antioxidant α-tocopherol and cultured under high glucose conditions. Conclusion Our results suggest that hyperglycemia down-regulates CD33 expression and triggers the spontaneous secretion of TNF-α by peripheral monocytes. This phenomenon involves the generation of ROS and the up-regulation of SOCS-3. These observations support the importance of blood glucose control for maintaining innate immune function and suggest

  7. STAT5 proteins are involved in down-regulation of iron regulatory protein 1 gene expression by nitric oxide.

    PubMed

    Starzynski, Rafal Radoslaw; Gonçalves, Ana Sofia; Muzeau, Françoise; Tyrolczyk, Zofia; Smuda, Ewa; Drapier, Jean-Claude; Beaumont, Carole; Lipinski, Pawel

    2006-12-01

    RNA-binding activity of IRP1 (iron regulatory protein 1) is regulated by the insertion/extrusion of a [4Fe-4S] cluster into/from the IRP1 molecule. NO (nitic oxide), whose ability to activate IRP1 by removing its [4Fe-4S] cluster is well known, has also been shown to down-regulate expression of the IRP1 gene. In the present study, we examine whether this regulation occurs at the transcriptional level. Analysis of the mouse IRP1 promoter sequence revealed two conserved putative binding sites for transcription factor(s) regulated by NO and/or changes in intracellular iron level: Sp1 (promoter-selective transcription factor 1) and MTF1 (metal transcription factor 1), plus GAS (interferon-gamma-activated sequence), a binding site for STAT (signal transducer and activator of transcription) proteins. In order to define the functional activity of these sequences, reporter constructs were generated through the insertion of overlapping fragments of the mouse IRP1 promoter upstream of the luciferase gene. Transient expression assays following transfection of HuH7 cells with these plasmids revealed that while both the Sp1 and GAS sequences are involved in basal transcriptional activity of the IRP1 promoter, the role of the latter is predominant. Analysis of protein binding to these sequences in EMSAs (electrophoretic mobility-shift assays) using nuclear extracts from mouse RAW 264.7 macrophages stimulated to synthesize NO showed a significant decrease in the formation of Sp1-DNA and STAT-DNA complexes, compared with controls. We have also demonstrated that the GAS sequence is involved in NO-dependent down-regulation of IRP1 transcription. Further analysis revealed that levels of STAT5a and STAT5b in the nucleus and cytosol of NO-producing macrophages are substantially lower than in control cells. These findings provide evidence that STAT5 proteins play a role in NO-mediated down-regulation of IRP1 gene expression.

  8. Herbal medicine Gamgungtang down-regulates autoimmunity through induction of TH2 cytokine production by lymphocytes in experimental thyroiditis model.

    PubMed

    Sa, Eun-Ho; Jin, Un-Ho; Kim, Dong-Soo; Kang, Bong-Seok; Ha, Ki-Tae; Kim, June-Ki; Park, Won-Hwan; Kim, Cheorl-Ho

    2007-02-12

    The crude herbal formulation, Gamgungtang (GGT), has been shown to protect animals against a wide range of spontaneously developing or induced autoimmune diseases. We have previously reported that GGT shows marked down-regulation of several experimental autoimmune diseases. Although very effective at preventing thyroid infiltrates in mice immunized with mouse deglycosylated thyroglobulin and complete Freund's adjuvant and in spontaneous models of thyroiditis, it completely failed to modify experimental autoimmune thyroiditis (EAT) induced in mice immunized with mouse thyroglobulin and lipopolysaccharide. In this study, in an effort to elucidate the mechanisms by which GGT suppresses EAT, and autoimmunity in general, we investigated the in vivo effects of this drug on the Th1/Th2 lymphocyte balance, which is important for the induction or inhibition of autoreactivity. Naive SJL/J mice were treated orally for 5 days with GGT (80 mg/(kg day)). Spleen cells were obtained at various time points during the treatment period and were stimulated in vitro with concanavalin A. Interleukins IL-4, IL-10 and IL-12, transforming growth factor-beta (TGF-beta) and interferon-gamma (IFN-gamma) cytokine production was evaluated at the protein levels of the cytokines in the medium and mRNA expressions. A significant upregulation of IL-4, IL-10 and TGF-beta was observed following treatment with GGT, which peaked at day 5 (IL-10) or day 10 (IL-4). On the other hand, IL-12 and IFN-gamma production were either unchanged or decreased. It seems therefore that GGT induces in vivo a shift towards Th2 lymphocytes which may be one of the mechanisms of down-regulation of the autoimmune reactivity in EAT. Our observations indicate that down-regulation of TH1 cytokines (especially IL-12) and enhancement of Th2 cytokine production may play an important role in the control of T-cell-mediated autoimmunity. These data may contribute to the design of new immunomodulating treatments for a group of

  9. ZNF503/Zpo2 drives aggressive breast cancer progression by down-regulation of GATA3 expression.

    PubMed

    Shahi, Payam; Wang, Chih-Yang; Lawson, Devon A; Slorach, Euan M; Lu, Angela; Yu, Ying; Lai, Ming-Derg; Gonzalez Velozo, Hugo; Werb, Zena

    2017-03-21

    The transcription factor GATA3 is the master regulator that drives mammary luminal epithelial cell differentiation and maintains mammary gland homeostasis. Loss of GATA3 is associated with aggressive breast cancer development. We have identified ZNF503/ZEPPO2 zinc-finger elbow-related proline domain protein 2 (ZPO2) as a transcriptional repressor of GATA3 expression and transcriptional activity that induces mammary epithelial cell proliferation and breast cancer development. We show that ZPO2 is recruited to GATA3 promoter in association with ZBTB32 (Repressor of GATA, ROG) and that ZBTB32 is essential for down-regulation of GATA3 via ZPO2. Through this modulation of GATA3 activity, ZPO2 promotes aggressive breast cancer development. Our data provide insight into a mechanism of GATA3 regulation, and identify ZPO2 as a possible candidate gene for future diagnostic and therapeutic strategies.

  10. Amphiphilic Nanoparticles Repress Macrophage Atherogenesis: Novel Core/Shell Designs for Scavenger Receptor Targeting and Down-Regulation

    PubMed Central

    2015-01-01

    Atherosclerosis, an inflammatory lipid-rich plaque disease is perpetuated by the unregulated scavenger-receptor-mediated uptake of oxidized lipoproteins (oxLDL) in macrophages. Current treatments lack the ability to directly inhibit oxLDL accumulation and foam cell conversion within diseased arteries. In this work, we harness nanotechnology to design and fabricate a new class of nanoparticles (NPs) based on hydrophobic mucic acid cores and amphiphilic shells with the ability to inhibit the uncontrolled uptake of modified lipids in human macrophages. Our results indicate that tailored NP core and shell formulations repress oxLDL internalization via dual complementary mechanisms. Specifically, the most atheroprotective molecules in the NP cores competitively reduced NP-mediated uptake to scavenger receptor A (SRA) and also down-regulated the surface expression of SRA and CD36. Thus, nanoparticles can be designed to switch activated, lipid-scavenging macrophages to antiatherogenic phenotypes, which could be the basis for future antiatherosclerotic therapeutics. PMID:24972372

  11. Hypoxia-induced 15-HETE enhances the constriction of internal carotid arteries by down-regulating potassium channels.

    PubMed

    Zhu, Yanmei; Chen, Li; Liu, Wenjuan; Wang, Weizhi; Zhu, Daling; Zhu, Yulan

    2010-08-15

    Severe hypoxia induces the constriction of internal carotid arteries (ICA), which worsens ischemic stroke in the brain. A few metabolites are presumably involved in hypoxic vasoconstriction, however, less is known about how such molecules provoke this vasoconstriction. We have investigated the influence of 15-hydroxyeicosatetrienoic acid (15-HETE) produced by 15-lipoxygenase (15-LOX) on vasoconstriction during hypoxia. As showed in our results, 15-LOX level increases in ICA endothelia and smooth muscles. 15-HETE enhances the tension of ICA ring in a dose-dependent manner, as well as attenuates the activities and expression of voltage-gated potassium channels (Kv 1.5 and Kv 2.1). Therefore, the down-regulation of Kv channels by 15-HETE during hypoxia may weaken the repolarization of action potentials and causes a dominant influx of calcium ions to enhance smooth muscle tension and ICA constriction.

  12. Down-regulation of the A3 adenosine receptor in human mast cells upregulates mediators of angiogenesis and remodeling.

    PubMed

    Rudich, Noam; Dekel, Ornit; Sagi-Eisenberg, Ronit

    2015-05-01

    Adenosine activated mast cells have been long implicated in allergic asthma and studies in rodent mast cells have assigned the A3 adenosine receptor (A3R) a primary role in mediating adenosine responses. Here we analyzed the functional impact of A3R activation on genes that are implicated in tissue remodeling in severe asthma in the human mast cell line HMC-1 that shares similarities with lung derived human mast cells. Quantitative real time PCR demonstrated upregulation of IL6, IL8, VEGF, amphiregulin and osteopontin. Moreover, further upregulation of these genes was noted upon the addition of dexamethasone. Unexpectedly, activated A3R down regulated its own expression and knockdown of the receptor replicated the pattern of agonist induced gene upregulation. This study therefore identifies the human mast cell A3R as regulator of tissue remodeling gene expression in human mast cells and demonstrates a heretofore-unrecognized mode of feedback regulation that is exerted by this receptor.

  13. Down-Regulation of Human Enteric Antimicrobial Peptides by NOD2 during Differentiation of the Paneth Cell Lineage

    PubMed Central

    Tan, Gao; Li, Run-hua; Li, Chen; Wu, Fang; Zhao, Xin-mei; Ma, Jia-yi; Lei, Shan; Zhang, Wen-di; Zhi, Fa-chao

    2015-01-01

    Ileal Crohn's disease (CD) arising from the alteration of intestinal homeostasis is characterized by two features, namely a decrease in Paneth cell-produced antimicrobial peptides that play a key role in maintaining this balance and an increase in NOD2, an intracellular sensor. Although mutations in NOD2 are highly correlated with the incidence of CD, the physiological role of NOD2 in intestinal immunity remains elusive. Here, we show that NOD2 can down-regulate the expression of human enteric antimicrobial peptides during differentiation of the Paneth cell lineage. This finding, which links the decrease of human enteric antimicrobial peptides to increased NOD2 in ileal CD patients, provides a new view into the pathogenesis of ileal CD. PMID:25670499

  14. First Pharmacophore-Based Identification of Androgen Receptor Down-regulating Agents: Discovery of Potent Anti-Prostate Cancer Agents

    PubMed Central

    Purushottamachar, Puranik; Khandelwal, Aakanksha; Chopra, Pankaj; Maheshwari, Neha; Gediya, Lalji K; Vasaitis, Tadas S.; Bruno, Robert; Clement, Omoshile O.; Njar, Vincent C. O.

    2007-01-01

    A qualitative 3D pharmacophore model (a common feature based model or Catalyst HipHop algorithm) was developed for well known natural product androgen receptor down-regulating agents (ARDAs). The four common chemical features identified included: one hydrophobic group, one ring aromatic group and two hydrogen bond acceptors. This model served as a template in virtual screening of the Maybridge and NCI databases that resulted in identification of 6 new ARDAs (EC50 values 17.5 – 212 μM). Five of these molecules strongly inhibited the growth of human prostate LNCaP cells. These novel compounds may be used as leads to develop other novel anti-prostate cancer agents. PMID:17383188

  15. Tristetraprolin suppresses the EMT through the down-regulation of Twist1 and Snail1 in cancer cells.

    PubMed

    Yoon, Nal Ae; Jo, Hyun Gun; Lee, Unn Hwa; Park, Ji Hye; Yoon, Ji Eun; Ryu, Jinhyun; Kang, Sang Soo; Min, Young Joo; Ju, Seong-A; Seo, Eun Hui; Huh, In Young; Lee, Byung Ju; Park, Jeong Woo; Cho, Wha Ja

    2016-02-23

    Inhibition of epithelial-mesenchymal transition (EMT)-inducing transcription factors Twist and Snail prevents tumor metastasis but enhances metastatic growth. Here, we report an unexpected role of a tumor suppressor tristetraprolin (TTP) in inhibiting Twist and Snail without enhancing cellular proliferation. TTP bound to the AU-rich element (ARE) within the mRNA 3'UTRs of Twist1 and Snail1, enhanced the decay of their mRNAs and inhibited the EMT of cancer cells. The ectopic expression of Twist1 or Snail1 without their 3'UTRs blocked the inhibitory effects of TTP on the EMT. We also observed that TTP overexpression suppressed the growth of cancer cells. Our data propose a new model whereby TTP down-regulates Twist1 and Snail1 and inhibits both the EMT and the proliferation of cancer cells.

  16. miR-625 down-regulation promotes proliferation and invasion in esophageal cancer by targeting Sox2.

    PubMed

    Wang, Zhiqiang; Qiao, Qiao; Chen, Min; Li, Xianhua; Wang, Zhenjun; Liu, Chuanxin; Xie, Zongtao

    2014-03-18

    miR-625 has been reported to exhibit abnormal expression in esophageal cancer (EC), but the mechanism and functions of miR-625 in esophageal cancer remain unclear. miR-625 down-regulation and Sox2 up-regulation were validated by qRT-PCR in 158 EC samples. Low expression of miR-625 promotes cell proliferation and invasion, while high expression of miR-625 has the opposite effect. Sox2, a target gene of miR-625, was examined by luciferase assay and western blot. Our data suggest that miR-625 may regulate the biological processes of EC via controlling Sox2 expression.

  17. Protein Kinase Cα (PKCα) Is Resistant to Long Term Desensitization/Down-regulation by Prolonged Diacylglycerol Stimulation.

    PubMed

    Lum, Michelle A; Barger, Carter J; Hsu, Alice H; Leontieva, Olga V; Black, Adrian R; Black, Jennifer D

    2016-03-18

    Sustained activation of PKCα is required for long term physiological responses, such as growth arrest and differentiation. However, studies with pharmacological agonists (e.g. phorbol 12-myristate 13-acetate (PMA)) indicate that prolonged stimulation leads to PKCα desensitization via dephosphorylation and/or degradation. The current study analyzed effects of chronic stimulation with the physiological agonist diacylglycerol. Repeated addition of 1,2-dioctanoyl-sn-glycerol (DiC8) resulted in sustained plasma membrane association of PKCα in a pattern comparable with that induced by PMA. However, although PMA potently down-regulated PKCα, prolonged activation by DiC8 failed to engage known desensitization mechanisms, with the enzyme remaining membrane-associated and able to support sustained downstream signaling. DiC8-activated PKCα did not undergo dephosphorylation, ubiquitination, or internalization, early events in PKCα desensitization. Although DiC8 efficiently down-regulated novel PKCs PKCδ and PKCϵ, differences in Ca(2+) sensitivity and diacylglycerol affinity were excluded as mediators of the selective resistance of PKCα. Roles for Hsp/Hsc70 and Hsp90 were also excluded. PMA, but not DiC8, targeted PKCα to detergent-resistant membranes, and disruption of these domains with cholesterol-binding agents demonstrated a role for differential membrane compartmentalization in selective agonist-induced degradation. Chronic DiC8 treatment failed to desensitize PKCα in several cell types and did not affect PKCβI; thus, conventional PKCs appear generally insensitive to desensitization by sustained diacylglycerol stimulation. Consistent with this conclusion, prolonged (several-day) membrane association/activation of PKCα is seen in self-renewing epithelium of the intestine, cervix, and skin. PKCα deficiency affects gene expression, differentiation, and tumorigenesis in these tissues, highlighting the importance of mechanisms that protect PKCα from

  18. Distribution of beta-adrenergic receptors in failing human myocardium. Implications for mechanisms of down-regulation

    SciTech Connect

    Murphree, S.S.; Saffitz, J.E.

    1989-06-01

    The density of beta-adrenergic receptors is reduced in crude membranes prepared from failing human myocardium. We used quantitative autoradiography of radioligand binding sites in intact tissue slices to determine whether the total tissue content of receptors is reduced and to characterize the transmural distribution of receptors in cardiac myocytes and the coronary vasculature in hearts obtained from nine cardiac transplant patients with severe congestive failure. Binding of (125Iodo)cyanopindolol to transmural slices of human myocardium was rapid, saturable, stereoselective, and displaceable by agonists and antagonists with an appropriate rank order of potency. Binding isotherms in four normal and nine failing ventricles showed a significant reduction in the total tissue content of beta-receptors in failing myocardium (38.3 +/- 2.0 fmol/mg protein) compared with normal tissue (52.4 +/- 1.7 fmol/mg protein, p = 0.038). In the normal ventricles, the greatest receptor density was observed autoradiographically in myocytic regions of the subendocardium. Receptor density of the coronary arterioles was approximately 70% of that in adjacent myocytic regions. The density of binding sites in both myocytic regions and arterioles was diminished in all regions of the failing ventricles, but down-regulation was due primarily to a selective reduction of beta-receptors of subendocardial myocytes (63 +/- 5% of subepicardial receptor density vs. 115 +/- 6% in controls, p less than 0.0001). These observations indicate that down-regulation occurs nonuniformly in the transmural distribution and thus is likely not related simply to elevated circulating catecholamine levels.

  19. Down-regulation of let-7 microRNA increased K-ras expression in lung damage induced by radon.

    PubMed

    Chen, Zhihai; Wang, Dapeng; Gu, Chao; Liu, Xing; Pei, Weiwei; Li, Jianxiang; Cao, Yi; Jiao, Yang; Tong, Jian; Nie, Jihua

    2015-09-01

    Radon has long been recognized as a human carcinogen leading to lung cancer, but the underlying mechanisms remain obscure. Recent studies have shown that the let-7 microRNA and K-ras play an important role in the development of various cancers. However, the exact role between let-7 and K-ras in radon induced lung damage has not been explored so far. In the present study, wistar rats and human bronchial epithelial (HBE) cells were long-term exposed to radon, and then alterations in histological pathology of rat lung tissue, ROS, antioxidant enzymes activities and clonogenic formation in HBE cells, as well as changes in let-7 and K-ras expression were determined to observe the adverse effects induced by radon. The results showed that long-term exposure to radon produced severe lung damage in rats, significantly increased ROS production and clonogenic formation ratios and decreased SOD activities in HBE cells. In addition, an obvious down-regulation of let-7 and up-regulation of K-ras were also revealed both in mRNA and in protein level in lung tissue of rats and HBE cells exposed to radon. Furthermore, a significant down-regulation of K-ras was then confirmed in both let-7b-3p and let-7a-2-3p transfected HBE cells. Taken together, the present results propose an involvement of let-7 microRNA and K-ras in radon induced lung damage both in vivo and in vitro, which may thus be of potential value in early diagnosis and therapy of radon-induced lung tumorgenesis.

  20. Sex-lethal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis.

    PubMed

    Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K

    2012-06-12

    Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3' untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior.

  1. N-MYC DOWN-REGULATED-LIKE Proteins Regulate Meristem Initiation by Modulating Auxin Transport and MAX2 Expression

    PubMed Central

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M.

    2013-01-01

    Background N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Methodology/Principal Findings Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. Conclusion/Significance NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients. PMID:24223735

  2. Down-regulation of malignant potential by alpha linolenic acid in human and mouse colon cancer cells.

    PubMed

    Chamberland, John P; Moon, Hyun-Seuk

    2015-03-01

    Omega-3 fatty acids (also called ω-3 fatty acis or n-3 fatty acid) are polyunsaturated fatty acids (PUFAs) with a double bond (C=C) at the third carbon atom from the end of the carbon chain. Numerous test tube and animal studies have shown that omega-3 fatty acids may prevent or inhibit the growth of cancers, suggesting that omega-3 fatty acids are important in cancer physiology. Alpha-linolenic acid (ALA) is one of an essential omega-3 fatty acid and organic compound found in seeds (chia and flaxseed), nuts (notably walnuts), and many common vegetable oils. ALA has also been shown to down-regulate cell proliferation of prostate, breast, and bladder cancer cells. However, direct evidence that ALA suppresses to the development of colon cancer has not been studied. Also, no previous studies have evaluated whether ALA may regulate malignant potential (adhesion, invasion and colony formation) in colon cancer cells. In order to address the questions above, we conducted in vitro studies and evaluated whether ALA may down-regulate malignant potential in human (HT29 and HCT116) and mouse (MCA38) colon cancer cell lines. We observed that treatment with 1-5 mM of ALA inhibits cell proliferation, adhesion and invasion in both human and mouse colon cancer cell lines. Interestingly, we observed that ALA did not decrease total colony numbers when compared to control. By contrast, we found that size of colony was significantly changed by ALA treatment when compared to control in all colon cancer cell lines. We suggest that our data enhance our current knowledge of ALA's mechanism and provide crucial information to further the development of new therapies for the management or chemoprevention of colon cancer.

  3. Role of activator protein-1 in the down-regulation of the human CYP2J2 gene in hypoxia.

    PubMed Central

    Marden, Nicole Y; Fiala-Beer, Eva; Xiang, Shi-Hua; Murray, Michael

    2003-01-01

    The cytochrome P450 (CYP) 2J2 arachidonic acid epoxygenase gene was down-regulated at a pre-translational level in human hepatoma-derived HepG2 cells incubated in a hypoxic environment; under these conditions, the expression of c-Jun and c-Fos mRNA and protein was increased. The 5'-upstream region of the CYP2J2 gene was isolated by amplification of a 2341 bp fragment and putative regulatory elements that resembled activator protein-1 (AP-1)-like sequences were identified. From transient transfection analysis, c-Jun was found to strongly activate a CYP2J2 -luciferase reporter construct, but co-transfection with plasmids encoding c-Fos or c-Fos-related antigens, Fra-1 and -2, abrogated reporter activity. Using a series of deletion-reporter constructs, a c-Jun-responsive module was identified between bp -152 and -50 in CYP2J2 : this region contained an AP-1-like element between bp -56 and -63. The capacity of this element to interact directly with c-Jun, but not c-Fos, was confirmed by electromobility-shift assay analysis. Mutagenesis of the -56/-63 element abolished most, but not all, of the activation of CYP2J2 by c-Jun, thus implicating an additional site within the c-Jun-responsive region. The present results establish an important role for c-Jun in the control of CYP2J2 expression in liver cells. Activation of c-Fos expression by hypoxia promotes the formation of c-Jun/c-Fos heterodimers, which decrease the binding of c-Jun to the CYP2J2 upstream region, leading to gene down-regulation. PMID:12737630

  4. miR-125b suppresses the proliferation and migration of osteosarcoma cells through down-regulation of STAT3

    SciTech Connect

    Liu, Li-hong; Li, Hui; Li, Jin-ping; Zhong, Hui; Zhang, Han-chon; Chen, Jia; Xiao, Tao

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer miR-125b is frequently down-regulated in osteosarcoma samples and human osteosarcoma cell lines. Black-Right-Pointing-Pointer Ectopic restoration of miR-125b suppresses cell proliferation and migration in vitro. Black-Right-Pointing-Pointer STAT3 is the direct and functional downstream target of miR-125b. Black-Right-Pointing-Pointer STAT3 can bind to the promoter region of miR-125b and serves as a transactivator. -- Abstract: There is accumulating evidence that microRNAs are involved in multiple processes in development and tumor progression. Abnormally expressed miR-125b was found to play a fundamental role in several types of cancer; however, whether miR-125b participates in regulating the initiation and progress of osteosarcoma still remains unclear. Here we demonstrate that miR-125b is frequently down-regulated in osteosarcoma samples and human osteosarcoma cell lines. The ectopic restoration of miR-125b expression in human osteosarcoma cells suppresses proliferation and migration in vitro and inhibits tumor formation in vivo. We further identified signal transducer and activator of transcription 3 (STAT3) as the direct and functional downstream target of miR-125b. Interestingly, we discovered that the expression of miR-125b is regulated by STAT3 at the level of transcription. STAT3 binds to the promoter region of miR-125b in vitro and serves as a transactivator. Taken together, our findings point to an important role in the molecular etiology of osteosarcoma and suggest that miR-125b is a potential target in the treatment of osteosarcoma.

  5. Protein Kinase Cα (PKCα) Is Resistant to Long Term Desensitization/Down-regulation by Prolonged Diacylglycerol Stimulation*

    PubMed Central

    Lum, Michelle A.; Barger, Carter J.; Hsu, Alice H.; Leontieva, Olga V.; Black, Adrian R.; Black, Jennifer D.

    2016-01-01

    Sustained activation of PKCα is required for long term physiological responses, such as growth arrest and differentiation. However, studies with pharmacological agonists (e.g. phorbol 12-myristate 13-acetate (PMA)) indicate that prolonged stimulation leads to PKCα desensitization via dephosphorylation and/or degradation. The current study analyzed effects of chronic stimulation with the physiological agonist diacylglycerol. Repeated addition of 1,2-dioctanoyl-sn-glycerol (DiC8) resulted in sustained plasma membrane association of PKCα in a pattern comparable with that induced by PMA. However, although PMA potently down-regulated PKCα, prolonged activation by DiC8 failed to engage known desensitization mechanisms, with the enzyme remaining membrane-associated and able to support sustained downstream signaling. DiC8-activated PKCα did not undergo dephosphorylation, ubiquitination, or internalization, early events in PKCα desensitization. Although DiC8 efficiently down-regulated novel PKCs PKCδ and PKCϵ, differences in Ca2+ sensitivity and diacylglycerol affinity were excluded as mediators of the selective resistance of PKCα. Roles for Hsp/Hsc70 and Hsp90 were also excluded. PMA, but not DiC8, targeted PKCα to detergent-resistant membranes, and disruption of these domains with cholesterol-binding agents demonstrated a role for differential membrane compartmentalization in selective agonist-induced degradation. Chronic DiC8 treatment failed to desensitize PKCα in several cell types and did not affect PKCβI; thus, conventional PKCs appear generally insensitive to desensitization by sustained diacylglycerol stimulation. Consistent with this conclusion, prolonged (several-day) membrane association/activation of PKCα is seen in self-renewing epithelium of the intestine, cervix, and skin. PKCα deficiency affects gene expression, differentiation, and tumorigenesis in these tissues, highlighting the importance of mechanisms that protect PKCα from

  6. Flavones induce neutrophil apoptosis by down-regulation of Mcl-1 via a proteasomal-dependent pathway.

    PubMed

    Lucas, Christopher D; Allen, Keith C; Dorward, David A; Hoodless, Laura J; Melrose, Lauren A; Marwick, John A; Tucker, Carl S; Haslett, Christopher; Duffin, Rodger; Rossi, Adriano G

    2013-03-01

    Neutrophil apoptosis and subsequent nonphlogistic clearance by surrounding phagocytes are key to the successful resolution of neutrophilic inflammation, with dysregulated apoptosis reported in multiple human inflammatory diseases. Enhancing neutrophil apoptosis has proresolution and anti-inflammatory effects in preclinical models of inflammation. Here we investigate the ability of the flavones apigenin, luteolin, and wogonin to induce neutrophil apoptosis in vitro and resolve neutrophilic inflammation in vivo. Human neutrophil apoptosis was assessed morphologically and by flow cytometry following incubation with apigenin, luteolin, and wogonin. All three flavones induced time- and concentration-dependent neutrophil apoptosis (apigenin, EC=12.2 μM; luteolin, EC=14.6 μM; and wogonin, EC=28.9 μM). Induction of apoptosis was caspase dependent, as it was blocked by the broad-spectrum caspase inhibitor Q-VD-OPh and was associated with both caspase-3 and caspase-9 activation. Flavone-induced apoptosis was preceded by down-regulation of the prosurvival protein Mcl-1, with proteasomal inhibition preventing flavone-induced Mcl-1 down-regulation and apoptosis. The flavones abrogated the survival effects of mediators that prolong neutrophil life span, including lipoteichoic acid, peptidoglycan, dexamethasone, and granulocyte-macrophage colony stimulating factor, by driving apoptosis. Furthermore, wogonin enhanced resolution of established neutrophilic inflammation in a zebrafish model of sterile tissue injury. Wogonin-induced resolution was dependent on apoptosis in vivo as it was blocked by caspase inhibition. Our data show that the flavones induce neutrophil apoptosis and have potential as neutrophil apoptosis-inducing anti-inflammatory, proresolution agents.

  7. Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation.

    PubMed

    Dorado, Beatriz; Area, Estela; Akman, Hasan O; Hirano, Michio

    2011-01-01

    Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2-/-). Although normal until postnatal day 8, Tk2-/- mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2-/- mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2-/- heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2-/- heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency.

  8. Systemic responses to inhaled ozone in mice: cachexia and down-regulation of liver xenobiotic metabolizing genes

    SciTech Connect

    Last, Jerold A. . E-mail: jalast@ucdavis.edu; Gohil, Kishorchandra; Mathrani, Vivek C.; Kenyon, Nicholas J.

    2005-10-15

    Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely exposed to ozone. Mice lost up to 14% of their original body weight, with a 42% decrease in total food consumption. We previously had found significant up-regulation of genes encoding proliferative enzymes, proteins related to acute phase reactions and cytoskeletal functions, and other biomarkers of a cachexia-like inflammatory state in lungs of mice exposed to ozone. These results are consistent with a general up-regulation of different gene families responsive to NF-{kappa}B in the lungs of the exposed mice. In the present study, we observed significant down-regulation of different families of mRNAs in the livers of the exposed mice, including genes related to lipid and fatty acid metabolism, and to carbohydrate metabolism in this tissue, consistent with a systemic cachexic response. Several interferon-dependent genes were down-regulated in the liver, suggesting a possible role for interferon as a signaling molecule between lung and liver. In addition, transcription of several mRNAs encoding enzymes of xenobiotic metabolism in the livers of mice exposed to ozone was decreased, suggesting cytokine-mediated suppression of cytochrome P450 expression. This finding may explain a previously controversial report from other investigators more than 20 years ago of prolongation of pentobarbital sleeping time in mice exposed to ozone.

  9. Induction of K562 Cell Apoptosis by As4S4 via Down-Regulating miR181

    PubMed Central

    Gong, Jiangjiang; Zheng, Shunli; Zhang, Lei; Wang, Yi; Meng, Jiali

    2017-01-01

    Background Chronic myelogenous leukemia (CML) has unsatisfactory treatment efficacy at present. As the major component of red orpiment, tetra-arsenic tetra-sulfide (As4S4) has been recently used in treating leukemia, but with unclear mechanism targeting CML. MicroRNA (miR) is a group of endogenous non-coding RNAs regulating pathogenesis. MiR181 has been shown to exert important roles in tumor progression. The relationship between miR181 and As4S4 in inducing K562 cell apoptosis, however, is still unclear. Material/Methods CML cell line K562 was cultured in vitro in a control group and in groups receiving various dosages (20 μM and 40 μM) of As4S4. MTT assay was employed to detect the effect on K562 cell survival. MiR181 expression was quantified by real-time PCR. MTT assay and assay kit were used to determine K562 cell survival and caspase 3 expression. Cell apoptosis was assessed by flow cytometry. Bcl-2 expression was determined by real-time PCR and Western blotting. Results As4S4 significantly suppressed proliferation of K562 cells (p<0.05) and decreased miR181 expression, and increased caspase3 activity compared to the control group. It can induce K562 cell apoptosis via remarkably down-regulating mRNA and protein expressions of Bcl-2 (p<0.05). Conclusions As4S4 can facilitate K562 cell apoptosis via down-regulating miR181, inhibiting Bcl02 expression, and enhancing apoptotic protein caspase3 activity. PMID:28072759

  10. Pamidronate Down-regulates Tumor Necrosis Factor-alpha Induced Matrix Metalloproteinases Expression in Human Intervertebral Disc Cells

    PubMed Central

    Kang, Young-Mi; Hong, Seong-Hwan; Yang, Jae-Ho; Oh, Jin-Cheol; Park, Jin-Oh; Lee, Byung Ho; Lee, Sang-Yoon; Kim, Hak-Sun; Lee, Hwan-Mo

    2016-01-01

    Background N-containing bisphosphonates (BPs), such as pamidronate and risedronate, can inhibit osteoclastic function and reduce osteoclast number by inducing apoptotic cell death in osteoclasts. The aim of this study is to demonstrate the effect of pamidronate, second generation nitrogen-containing BPs and to elucidate matrix metallo-proteinases (MMPs) mRNA expression under serum starvation and/or tumor necrosis factor alpha (TNF-α) stimulation on metabolism of intervertebral disc (IVD) cells in vitro. Methods Firstly, to test the effect of pamidronate on IVD cells in vitro, various concentrations (10-12, 10-10, 10-8, and 10-6 M) of pamidronate were administered to IVD cells. Then DNA and proteoglycan synthesis were measured and messenger RNA (mRNA) expressions of type I collagen, type II collagen, and aggrecan were analyzed. Secondly, to elucidate the expression of MMPs mRNA in human IVD cells under the lower serum status, IVD cells were cultivated in full serum or 1% serum. Thirdly, to elucidate the expression of MMPs mRNA in IVD cells under the stimulation of 1% serum and TNF-α (10 ng/mL) In this study, IVD cells were cultivated in three dimensional alginate bead. Results Under the lower serum culture, IVD cells in alginate beads showed upregulation of MMP 2, 3, 9, 13 mRNA. The cells in lower serum and TNF-α also demonstrated upregulation of MMP-2, 3, 9, and 13 mRNA. The cells with various doses of pamidronate and lower serum and TNF-α were reveled partial down-regulation of MMPs. Conclusions Pamidronate, N-containing second generation BPs, was safe in metabolism of IVD in vitro maintaining chondrogenic phenotype and matrix synthesis, and down-regulated TNF-α induced MMPs expression. PMID:27622181

  11. Micheliolide provides protection of mice against Staphylococcus aureus and MRSA infection by down-regulating inflammatory response

    PubMed Central

    Jiang, Xinru; Wang, Yuli; Qin, Yifei; He, Weigang; Benlahrech, Adel; Zhang, Qingwen; Jiang, Xin; Lu, Zhenhui; Ji, Guang; Zheng, Yuejuan

    2017-01-01

    A major obstacle to therapy in intensive care units is sepsis caused by severe infection. In recent years gram-positive (G+) bacteria, most commonly staphylococci, are thought to be the main pathogens. Micheliolide (MCL) was demonstrated to provide a therapeutic role in rheumatoid arthritis, inflammatory intestinal disease, colitis-associated cancer, and lipopolysaccharide (LPS, the main component of G− bacterial cell wall) induced septic shock. We proved here that MCL played an anti-inflammatory role in Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) induced peritonitis. It inhibited the expression of inflammatory cytokines and chemokines in macrophages and dendritic cells upon stimulation with peptidoglycan (PGN, the main cell wall composition of G+ bacteria). PI3K/Akt and NF-κB pathways account for the anti-inflammatory role of MCL after PGN stimulation. MCL reduced IL-6 secretion through down-regulating NF-κB activation and improved the survival status in mice challenged with a lethal dose of S. aureus. In MRSA infection mouse model, MCL down-regulated the expression of IL-6, TNF-α, MCP-1/CCL2 and IFN-γ in sera, and ameliorated the organ damage of liver and kidney. In conclusion, MCL can help maintain immune equilibrium and decrease PGN, S. aureus and MRSA-triggered inflammatory response. These provide the rationality for the potential usage of MCL in sepsis caused by G+ bacteria (e.g., S. aureus) and antibiotic-resistant bacteria (e.g., MRSA). PMID:28165033

  12. High throughput microscopy identifies bisphenol AP, a bisphenol A analog, as a novel AR down-regulator.

    PubMed

    Stossi, Fabio; Dandekar, Radhika D; Bolt, Michael J; Newberg, Justin Y; Mancini, Maureen G; Kaushik, Akash K; Putluri, Vasanta; Sreekumar, Arun; Mancini, Michael A

    2016-03-29

    Prostate cancer remains a deadly disease especially when patients become resistant to drugs that target the Androgen Receptor (AR) ligand binding domain. At this stage, patients develop recurring castrate-resistant prostate cancers (CRPCs). Interestingly, CRPC tumors maintain dependency on AR for growth; moreover, in CRPCs, constitutively active AR splice variants (e.g., AR-V7) begin to be expressed at higher levels. These splice variants lack the ligand binding domain and are rendered insensitive to current endocrine therapies. Thus, it is of paramount importance to understand what regulates the expression of AR and its splice variants to identify new therapeutic strategies in CRPCs. Here, we used high throughput microscopy and quantitative image analysis to evaluate effects of selected endocrine disruptors on AR levels in multiple breast and prostate cancer cell lines. Bisphenol AP (BPAP), which is used in chemical and medical industries, was identified as a down-regulator of both full length AR and the AR-V7 splice variant. We validated its activity by performing time-course, dose-response, Western blot and qPCR analyses. BPAP also reduced the percent of cells in S phase, which was accompanied by a ~60% loss in cell numbers and colony formation in anchorage-independent growth assays. Moreover, it affected mitochondria size and cell metabolism. In conclusion, our high content analysis-based screening platform was used to classify the effect of compounds on endogenous ARs, and identified BPAP as being capable of causing AR (both full-length and variants) down-regulation, cell cycle arrest and metabolic alterations in CRPC cell lines.

  13. Intracellular Acidosis Promotes Mitochondrial Apoptosis Pathway: Role of EMMPRIN Down-regulation via Specific Single-chain Fv Intrabody

    PubMed Central

    Thammasit, Patcharin; Sangboonruang, Sirikwan; Suwanpairoj, Supattara; Khamaikawin, Wannisa; Intasai, Nutjeera; Kasinrerk, Watchara; Tayapiwatana, Chatchai; Tragoolpua, Khajornsak

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is a human leukocyte surface molecule that is enriched on the surface of many cancer cells, and it plays an important role in proliferation and metastasis. In this study, we utilized the chimeric adenoviral vector Ad5/F35 carrying gene encoding scFv against EMMPRIN (scFv-M6-1B9) to down-regulate EMMPRIN cell surface expression and investigated programmed cell death response in colorectal cancer (CRC) cell, Caco-2. The scFv-M6-1B9 intrabody exhibits robust activity in reducing EMMPRIN cell surface expression. This approach led to the inducing of apoptosis, which was relative to the increasing of apoptotic bodies in sub-G1 peak, phosphatidylserine externalization, as well as TUNEL-positive cells. In addition, real-time RT-PCR and western blotting analysis indicated that apoptosis was enhanced through the mitochondrial pathway, a marked reduction of Bcl-2, leading to the translocation of cytochrome c and also the dramatic activation of caspase-3. Moreover, carcinoembryonic antigen (CEA), a tumor marker for CRC, was found to have significantly diminished in both secreted protein and mRNA levels. In conclusion, these findings suggest that EMMPRIN down-regulation by scFv-M6-1B9 intrabody has great potential in enhancing the efficacy of apoptosis induction through the mitochondrial pathway and in effecting a decline in the CEA level. Thus, its benefits could be applied to project the future prospects for targeted gene therapy and therapeutic application in monitoring colorectal cancer. PMID:25663946

  14. Bortezomib-mediated down-regulation of telomerase and disruption of telomere homeostasis contributes to apoptosis of malignant cells

    PubMed Central

    Ci, Xinyu; Li, Bingnan; Ma, Xueping; Kong, Feng; Zheng, Chengyun; Björkholm, Magnus; Jia, Jihui; Xu, Dawei

    2015-01-01

    Bortezomib inhibits the ubiquitin/proteasome pathway to achieve its anti-cancer effect and its well characterized activity is the NF-κB inhibition through which the anti-apoptotic bcl-2 expression is down-regulated and apoptosis is subsequently induced. However, the downstream molecular targets of bortezomib are still incompletely defined. Because telomere stabilization via activation of telomerase, induction of telomerase reverse transcriptase (hTERT) and appropriate expression of shelterin proteins is essential to cancer development and progression, we investigated the effect of bortezomib on telomere homeostasis/function in malignant cells. The bortezomib treatment of leukemic (HEL) and gastric cancer cells (BGC-823) led to significant inhibition of hTERT and telomerase expression, widespread dysregulation of shelterin protein expression, and telomere shortening, thereby triggering telomere dysfunction and DNA damage. hTERT over-expression attenuated bortezomib-induced telomere shortening, abnormal shelterin expression and telomere dysfunction. Importantly, bortezomib-mediated apoptosis of malignant cells was partially prevented by hTERT over-expression. Mechanistically, hTERT first robustly enhances bcl2 expression and maintains significantly high residual levels of bcl2 even in bortezomib-treated HEL cells. Second, hTERT protects against bortezomib-induced DNA damage. Our findings collectively reveal a profound impact of bortezomib on telomere homeostasis/function. Down-regulation of hTERT expression and telomere dysfunction induced by bortezomib both contribute to its cancer cell killing actions. It is evident from the present study that hTERT can confer resistance of malignant cells to bortezomib-based target cancer therapy, which may have important clinical implications. PMID:26472030

  15. Down-regulation of glutaminase C in human hepatocarcinoma cell by diphenylarsinic acid, a degradation product of chemical warfare agents

    SciTech Connect

    Kita, Kayoko . E-mail: kkayoko@pharm.teikyo-u.ac.jp; Suzuki, Toshihide; Ochi, Takafumi

    2007-05-01

    In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments.

  16. Evidence for cell proliferation in the sheep brain and its down-regulation by parturition and interactions with the young.

    PubMed

    Brus, M; Meurisse, M; Franceschini, I; Keller, M; Lévy, F

    2010-11-01

    Production of new neurons continues throughout life in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus and is influenced by both endocrine and social factors. In sheep parturition is associated with the establishment of a selective bond with the young based on an olfactory learning. The possibility exists that endocrine changes at parturition together with interactions with the young modulate cell proliferation in the neurogenic zones. In the present study, we first investigated the existence of cell proliferation in sheep. Newly born cells labeled by the cell proliferation marker 5-bromo-2'-deoxyuridine (BrdU) were found in the SVZ, the main olfactory bulb (MOB) and the DG and completely co-localized with Ki-67, another mitotic marker. Forty to 50% of the BrdU-labeled cells contained GFAP suggestive of the presence of neural stem cells. Secondly, parturition with or without interactions with the lamb for 2 days, down-regulated the number of BrdU-labeled cells in the 3 proliferation sites in comparison to no pregnancy. An additional control provided evidence that this effect is specific to early postpartum period: estrus with interactions with males did not affect cell proliferation. Our results provide the first characterization of neural cell proliferation in the SVZ, the DG and unexpectedly in the MOB of adult sheep. We hypothesize that the down-regulation of cell proliferation observed in the early postpartum period could facilitate the olfactory perceptual and memory demands associated with maternal behavior by favouring the survival and integration of neurons born earlier.

  17. Down-regulation of MicroRNA-126 in Glioblastoma and its Correlation with Patient Prognosis: A Pilot Study.

    PubMed

    Han, In Bo; Kim, Minsoo; Lee, Soo Hong; Kim, Jin Kwon; Kim, Se Hoon; Chang, Jong Hee; Teng, Yang D

    2016-12-01

    Glioblastoma is the most common primary malignant tumor of the adult human brain. Although microRNA-126 (miR-126) has been reported to exhibit expression abnormalities in various types of cancer, to date very few studies have examined changes in miR-126 level in glioblastoma. In this pilot study, we investigated the changes in miR-126 expression in newly-dissected primary glioblastoma to explore possible roles of miR-126 in patient prognosis. Total RNA was extracted from tumoral and adjacent non-cancerous tissues from 14 patients' paired frozen specimens. Using an established quantitative reverse transcriptase-PCR protocol, the levels of miR-126 in glioblastoma and adjacent non-tumor brain tissues were compared against small nucleolar RNA U48 (RNU48) as a reference gene. The expression of miR-126 in glioblastoma samples was significantly lower than in paired non-tumoral controls (p<0.05). Importantly, age-adjusted analyses suggest that glioblastoma patients with higher relative intratumoral miR-126 expression (i.e. 53-79% relative to that of the control tissue; n=7) had significantly improved survival duration than patients whose miR-126 levels were lower (i.e. 12-48%, n=7; stratified log-rank analysis p=0.011 when the dividing threshold was set at ≥51%; total: n=14, male: 8; female: 6). Thus, intraglioblastoma miR-126 may be down-regulated relative to normal tissue and patients with less down-regulation of intratumoral miR-126 expression could have improved postsurgical prognosis. Future clinical studies with larger sample sizes should be performed to validate this observation.

  18. CRM 1-mediated degradation and agonist-induced down-regulation of beta-adrenergic receptor mRNAs.

    PubMed

    Bai, Ying; Lu, Huafei; Machida, Curtis A

    2006-10-01

    The beta1-adrenergic receptor (beta1-AR) mRNAs are post-transcriptionally regulated at the level of mRNA stability and undergo accelerated agonist-mediated degradation via interaction of its 3' untranslated region (UTR) with RNA binding proteins, including the HuR nuclear protein. In a previous report [Kirigiti et al. (2001). Mol. Pharmacol. 60:1308-1324], we examined the agonist-mediated down-regulation of the rat beta1-AR mRNAs, endogenously expressed in the rat C6 cell line and ectopically expressed in transfectant hamster DDT1MF2 and rat L6 cells. In this report, we determined that isoproterenol treatment of neonatal rat cortical neurons, an important cell type expressing beta1-ARs in the brain, results in significant decreases in beta1-AR mRNA stability, while treatment with leptomycin B, an inhibitor of the nuclear export receptor CRM 1, results in significant increases in beta1-AR mRNA stability and nuclear retention. UV-crosslinking/immunoprecipitation and glycerol gradient fractionation analyses indicate that the beta1-AR 3' UTR recognize complexes composed of HuR and multiple proteins, including CRM 1. Cell-permeable peptides containing the leucine-rich nuclear export signal (NES) were used as inhibitors of CRM 1-mediated nuclear export. When DDT1MF2 transfectants were treated with isoproterenol and peptide inhibitors, only the co-addition of the NES inhibitor reversed the isoproterenol-induced reduction of beta1-AR mRNA levels. Our results suggest that CRM 1-dependent NES-mediated mechanisms influence the degradation and agonist-mediated down-regulation of the beta1-AR mRNAs.

  19. 21-Aminosteroids prevent the down-regulation of hepatic cytochrome P450 induced by hypoxia and inflammation in conscious rabbits

    PubMed Central

    Galal, Ahmed; du Souich, Patrick

    1999-01-01

    This study was conducted to assess whether a 21-aminosteroid, U74389G, could prevent the down-regulation of hepatic cytochrome P450 (P450) induced by acute moderate hypoxia or an inflammatory reaction.The rabbits of two groups (n=6 per group) were subjected to acute moderate hypoxia (PaO2≈35 mmHg), one pre-treated with U74389G (3 mg kg−1 i.v. every 6 h, for 48 h). The rabbits of two other groups received 5 ml of turpentine s.c., one of them being pre-treated with U74389G (3 mg kg−1 i.v. every 6 h, for 72 h). The kinetics of theophylline (2.5 mg kg−1) were assessed to evaluate the activity of the P450. Once the rabbits were sacrificed, the P450 content and the amount of thiobarbituric acid reactive substances (TBARS), a marker of lipid peroxidation, were estimated in the liver.Compared with control rabbits, hypoxia and inflammation increased theophylline plasma concentrations, as a result of a decrease in theophylline systemic clearance (P<0.05). Both experimental conditions reduced hepatic content of P450 by 40–50% (P<0.05) and increased the amount of hepatic TBARS by around 50% (P<0.05). Pre-treatment with U74389G prevented the hypoxia- and inflammation-induced decrease in theophylline systemic clearance, the down-regulation of hepatic P450, and the increase in liver TBARS.It is concluded that in the rabbit, U74389G prevents hepatic P450 depression produced by acute moderate hypoxia and a turpentine-induced inflammatory reaction, possibly by eliciting a radical quenching antioxidant activity. PMID:10510447

  20. Phospholipase C-epsilon augments epidermal growth factor-dependent cell growth by inhibiting epidermal growth factor receptor down-regulation.

    PubMed

    Yun, Sanguk; Hong, Won-Pyo; Choi, Jang Hyun; Yi, Kye Sook; Chae, Suhn-Kee; Ryu, Sung Ho; Suh, Pann-Ghill

    2008-01-04

    The down-regulation of the epidermal growth factor (EGF) receptor is critical for the termination of EGF-dependent signaling, and the dysregulation of this process can lead to oncogenesis. In the present study, we suggest a novel mechanism for the regulation of EGF receptor down-regulation by phospholipase C-epsilon. The overexpression of PLC-epsilon led to an increase in receptor recycling and decreased the down-regulation of the EGF receptor in COS-7 cells. Adaptor protein complex 2 (AP2) was identified as a novel binding protein that associates with the PLC-epsilon RA2 domain independently of Ras. The interaction of PLC-epsilon with AP2 was responsible for the suppression of EGF receptor down-regulation, since a perturbation in this interaction abolished this effect. Enhanced EGF receptor stability by PLC-epsilon led to the potentiation of EGF-dependent growth in COS-7 cells. Finally, the knockdown of PLC-epsilon in mouse embryo fibroblast cells elicited a severe defect in EGF-dependent growth. Our results indicated that PLC-epsilon could promote EGF-dependent cell growth by suppressing receptor down-regulation.

  1. Disruption of mechanical stress in extracellular matrix is related to Stanford type A aortic dissection through down-regulation of Yes-associated protein.

    PubMed

    Jiang, Wen-Jian; Ren, Wei-Hong; Liu, Xu-Jie; Liu, Yan; Wu, Fu-Jian; Sun, Li-Zhong; Lan, Feng; Du, Jie; Zhang, Hong-Jia

    2016-09-05

    In this study, we assessed whether the down-regulation of Yes-associated protein (YAP) is involved in the pathogenesis of extracellular matrix (ECM) mechanical stress-induced Stanford type A aortic dissection (STAAD). Human aortic samples were obtained from heart transplantation donors as normal controls and from STAAD patients undergoing surgical replacement of the ascending aorta. Decreased maximum aortic wall velocity, ECM disorders, increased VSMC apoptosis, and YAP down-regulation were identified in STAAD samples. In a mouse model of STAAD, YAP was down-regulated over time during the development of ECM damage, and increased VSMC apoptosis was also observed. YAP knockdown induced VSMC apoptosis under static conditions in vitro, and the change in mechanical stress induced YAP down-regulation and VSMC apoptosis. This study provides evidence that YAP down-regulation caused by the disruption of mechanical stress is associated with the development of STAAD via the induction of apoptosis in aortic VSMCs. As STAAD is among the most elusive and life-threatening vascular diseases, better understanding of the molecular pathogenesis of STAAD is critical to improve clinical outcome.

  2. Disruption of mechanical stress in extracellular matrix is related to Stanford type A aortic dissection through down-regulation of Yes-associated protein

    PubMed Central

    Jiang, Wen-Jian; Ren, Wei-Hong; Liu, Xu-Jie; Liu, Yan; Wu, Fu-Jian; Sun, Li-Zhong; Lan, Feng; Du, Jie; Zhang, Hong-Jia

    2016-01-01

    In this study, we assessed whether the down-regulation of Yes-associated protein (YAP) is involved in the pathogenesis of extracellular matrix (ECM) mechanical stress-induced Stanford type A aortic dissection (STAAD). Human aortic samples were obtained from heart transplantation donors as normal controls and from STAAD patients undergoing surgical replacement of the ascending aorta. Decreased maximum aortic wall velocity, ECM disorders, increased VSMC apoptosis, and YAP down-regulation were identified in STAAD samples. In a mouse model of STAAD, YAP was down-regulated over time during the development of ECM damage, and increased VSMC apoptosis was also observed. YAP knockdown induced VSMC apoptosis under static conditions in vitro, and the change in mechanical stress induced YAP down-regulation and VSMC apoptosis. This study provides evidence that YAP down-regulation caused by the disruption of mechanical stress is associated with the development of STAAD via the induction of apoptosis in aortic VSMCs. As STAAD is among the most elusive and life-threatening vascular diseases, better understanding of the molecular pathogenesis of STAAD is critical to improve clinical outcome. PMID:27608489

  3. A common polymorphism in the LDL receptor gene has multiple effects on LDL receptor function.

    PubMed

    Gao, Feng; Ihn, Hansel E; Medina, Marisa W; Krauss, Ronald M

    2013-04-01

    A common synonymous single nucleotide polymorphism in exon 12 of the low-density lipoprotein receptor (LDLR) gene, rs688, has been associated with increased plasma total and LDL cholesterol in several populations. Using immortalized lymphoblastoid cell lines from a healthy study population, we confirmed an earlier report that the minor allele of rs688 is associated with increased exon 12 alternative splicing (P < 0.05) and showed that this triggered nonsense-mediated decay (NMD) of the alternatively spliced LDLR mRNA. However, since synonymous single nucleotide polymorphisms may influence structure and function of the encoded proteins by co-translational effects, we sought to test whether rs688 was also functional in the full-length mRNA. In HepG2 cells expressing LDLR cDNA constructs engineered to contain the major or minor allele of rs688, the latter was associated with a smaller amount of LDLR protein at the cell surface (-21.8 ± 0.6%, P = 0.012), a higher amount in the lysosome fraction (+25.7 ± 0.3%, P = 0.037) and reduced uptake of fluorescently labeled LDL (-24.3 ± 0.7%, P < 0.01). Moreover, in the presence of exogenous proprotein convertase subtilisin/kexin type 9 (PCSK9), a protein that reduces cellular LDL uptake by promoting lysosomal degradation of LDLR, the minor allele resulted in reduced capacity of a PCSK9 monoclonal antibody to increase LDL uptake. These findings are consistent with the hypothesis that rs688, which is located in the β-propeller region of LDLR, has effects on LDLR activity beyond its role in alternative splicing due to impairment of LDLR endosomal recycling and/or PCSK9 binding, processes in which the β-propeller is critically involved.

  4. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    PubMed

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  5. Rapamycin extends life- and health span because it slows aging

    PubMed Central

    Blagosklonny, Mikhail V.

    2013-01-01

    Making headlines, a thought-provocative paper by Neff, Ehninger and coworkers claims that rapamycin extends life span but has limited effects on aging. How is that possibly possible? And what is aging if not an increase of the probability of death with age. I discuss that the JCI paper actually shows that rapamycin slows aging and also extends lifespan regardless of its direct anti-cancer activities. Aging is, in part, MTOR-driven: a purposeless continuation of developmental growth. Rapamycin affects the same processes in young and old animals: young animals' traits and phenotypes, which continuations become hyperfunctional, harmful and lethal later in life. PMID:23934728

  6. Rapamycin extends life- and health span because it slows aging.

    PubMed

    Blagosklonny, Mikhail V

    2013-08-01

    Making headlines, a thought-provocative paper by Neff, Ehninger and coworkers claims that rapamycin extends life span but has limited effects on aging. How is that possibly possible? And what is aging if not an increase of the probability of death with age. I discuss that the JCI paper actually shows that rapamycin slows aging and also extends lifespan regardless of its direct anti-cancer activities. Aging is, in part, MTOR-driven: a purposeless continuation of developmental growth. Rapamycin affects the same processes in young and old animals: young animals' traits and phenotypes, which continuations become hyperfunctional, harmful and lethal later in life.

  7. MiR-203 suppresses tumor growth and invasion and down-regulates MiR-21 expression through repressing Ran in esophageal cancer.

    PubMed

    Zhang, Fang; Yang, Zhiping; Cao, Minjun; Xu, Yinsheng; Li, Jintao; Chen, Xuebin; Gao, Zhi; Xin, Jing; Zhou, Shaomei; Zhou, Zhixiang; Yang, Yishu; Sheng, Wang; Zeng, Yi

    2014-01-01

    The expression of miR-203 has been reported to be significantly down-regulated in esophageal cancer. We showed here that overexpression of miR-203 in esophageal cancer cells dramatically increased cell apoptosis and inhibited cell proliferation, migration and invasion as well as tumor growth and down-regulated miR-21 expression. We subsequently identified that small GTPase Ran was a target gene of miR-203. Furthermore, Ran restoration partially counteracted the tumor suppressive effects of miR-203 and increased miR-21 expression. Taken together, our findings suggest that miR-203 may act as novel tumor suppressor in esophageal cancer through down-regulating the expression of Ran and miR-21.

  8. Transforming growth factor-α induces human ovarian cancer cell invasion by down-regulating E-cadherin in a Snail-independent manner.

    PubMed

    Qiu, Xin; Cheng, Jung-Chien; Klausen, Christian; Fan, Qianlan; Chang, Hsun-Ming; So, Wai-Kin; Leung, Peter C K

    2015-05-22

    Transforming growth factor-α (TGF-α), like epidermal growth factor (EGF) and amphiregulin (AREG) binds exclusively to EGF receptor (EGFR). We have previously demonstrated that EGF, AREG and TGF-α down-regulate E-cadherin and induce ovarian cancer cell invasion, though whether these ligands use the same molecular mediators remains unknown. We now show that, like EGF, TGF-α- and AREG-induced E-cadherin down-regulation involves both EGFR and HER2. However, in contrast to EGF and AREG, the transcription factor Snail is not required for TGF-α-induced E-cadherin down-regulation. This study shows that TGF-α uses common and divergent molecular mediators to regulate E-cadherin expression and cell invasion.

  9. Down-regulation of tumor suppressor gene PTEN, overexpression of p53, plus high proliferating cell nuclear antigen index predict poor patient outcome of hepatocellular carcinoma after resection.

    PubMed

    Hu, Tsung-Hui; Wang, Chih-Chi; Huang, Chao-Cheng; Chen, Chao-Long; Hung, Chao-Hung; Chen, Chien-Hung; Wang, Jing-Houng; Lu, Sheng-Nan; Lee, Chuan-Mo; Changchien, Chi-Sin; Tai, Ming-Hong

    2007-12-01

    We aimed to evaluate the interaction of two tumor suppressor genes PTEN and p53 and their relationship with cell cycle protein proliferating cell nuclear antigen (PCNA) in hepatocellular carcinoma (HCC). A total of 124 resected HCC paraffin specimens were collected from 1987 to 1999 for immunohistochemistry. Expression of PTEN, p53 and PCNA in HCC were analyzed for clinicopathologic correlation. The study revealed decreased or absent PTEN immunostaining (PTEN down-regulation) in 42.7% and positive p53 (p53+) immunostaining in 41.9% of HCC. There was a positive correlation between PTEN down-regulation and p53 (+) (P=0.001). PTEN down-regulation or p53 (+) correlated with increased HCC dedifferentiation, advanced pathologic stages and high PCNA labeling index (LI) of tumors (P<0.05). Patients with either PTEN down-regulation, p53 (+), or high PCNA LI had shorter survival and higher recurrence rates than patients with intact PTEN expression, p53 (-), or low PCNA LI respectively (P<0.05). By combining the three genes, patients with all PTEN down-regulation (+)/p53 (+)/high PCNA LI had the shortest overall survival (P<0.001) and the highest recurrence rates (P<0.001), followed by patients with two, one and none of three events accordingly. Combination of PTEN/p53/PCNA represented an independent prognostic factor for tumor recurrence and disease-specific survival (P<0.05). In conclusion, the down-regulated PTEN expression and p53 over-expression are involved in the pathogenesis of HCC. They correlate with high PCNA expression, HCC de-differentiation and advanced HCC stages. A combination of the three genes predicts patient outcome more powerfully than any of the individual genes.

  10. Species-independent down-regulation of leaf photosynthesis and respiration in response to shading: evidence from six temperate tree species.

    PubMed

    Chen, Anping; Lichstein, Jeremy W; Osnas, Jeanne L D; Pacala, Stephen W

    2014-01-01

    The ability to down-regulate leaf maximum net photosynthetic capacity (Amax) and dark respiration rate (Rdark) in response to shading is thought to be an important adaptation of trees to the wide range of light environments that they are exposed to across space and time. A simple, general rule that accurately described this down-regulation would improve carbon cycle models and enhance our understanding of how forest successional diversity is maintained. In this paper, we investigated the light response of Amax and Rdark for saplings of six temperate forest tree species in New Jersey, USA, and formulated a simple model of down-regulation that could be incorporated into carbon cycle models. We found that full-sun values of Amax and Rdark differed significantly among species, but the rate of down-regulation (proportional decrease in Amax or Rdark relative to the full-sun value) in response to shade was not significantly species- or taxon-specific. Shade leaves of sun-grown plants appear to follow the same pattern of down-regulation in response to shade as leaves of shade-grown plants. Given the light level above a leaf and one species-specific number (either the full-sun Amax or full-sun Rdark), we provide a formula that can accurately predict the leaf's Amax and Rdark. We further show that most of the down regulation of per unit area Rdark and Amax is caused by reductions in leaf mass per unit area (LMA): as light decreases, leaves get thinner, while per unit mass Amax and Rdark remain approximately constant.

  11. Green tea polyphenols down-regulate caveolin-1 expression via ERK1/2 and p38MAPK in endothelial cells.

    PubMed

    Li, Yanrong; Ying, Chenjiang; Zuo, Xuezhi; Yi, Haiwei; Yi, Weijie; Meng, Yi; Ikeda, Katsumi; Ye, Xiaolei; Yamori, Yukio; Sun, Xiufa

    2009-12-01

    Caveolin-1 (Cav-1), a negative regulator of endothelial nitric oxide synthase (eNOS), influences various aspects of the cardiovascular functions. We had reported that a high-fat diet up-regulated aortic Cav-1 expressions in rats. In this study, we investigated the effects of green tea polyphenols (GTPs) on endothelial Cav-1 expression and phosphorylation in vitro. Bovine aortic endothelial cells (BAECs) were treated with 4 microg/ml GTPs for 0, 4, 8, 12, 16 and 24 h, and with 0, 0.04, 0.4, 4 and 40 microg/ml GTPs for 16 h, respectively. Cav-1 protein and mRNA were detected using Western blot and reverse transcriptase polymerase chain reaction. Cav-1 protein expression was down-regulated after treatment of BAECs with 4 microg/ml GTPs for 12, 16 and 24 h. And decrease in the level of Cav-1 mRNA was observed after GTP treatment for 4 and 8 h. GTPs (0.04-4 microg/ml) down-regulate Cav-1 protein expressions and mRNA levels dose dependently. PD98059, an inhibitor of extracellular signal-regulated kinase 1/2 (ERK1/2), up-regulated Cav-1 expression in BAECs alone and abolished the down-regulation effects of GTPs in BAECs while pretreatment with it. Inhibition of p38 mitogen-activated protein kinase (p38MAPK) with SB203580, which down-regulates Cav-1 expression in BAECs alone, deteriorated the Cav-1 down-regulating effects by GTPs. In addition to the effects on expression of Cav-1, GTP treatment inhibited phosphorylation of Cav-1 [tyrosine 14 (Tyr14)]. These data indicate that GTPs down-regulate gene expression of Cav-1 time- and dose- dependently via activating ERK1/2 and inhibiting p38MAPK signaling.

  12. Species-Independent Down-Regulation of Leaf Photosynthesis and Respiration in Response to Shading: Evidence from Six Temperate Tree Species

    PubMed Central

    Chen, Anping; Lichstein, Jeremy W.; Osnas, Jeanne L. D.; Pacala, Stephen W.

    2014-01-01

    The ability to down-regulate leaf maximum net photosynthetic capacity (Amax) and dark respiration rate (Rdark) in response to shading is thought to be an important adaptation of trees to the wide range of light environments that they are exposed to across space and time. A simple, general rule that accurately described this down-regulation would improve carbon cycle models and enhance our understanding of how forest successional diversity is maintained. In this paper, we investigated the light response of Amax and Rdark for saplings of six temperate forest tree species in New Jersey, USA, and formulated a simple model of down-regulation that could be incorporated into carbon cycle models. We found that full-sun values of Amax and Rdark differed significantly among species, but the rate of down-regulation (proportional decrease in Amax or Rdark relative to the full-sun value) in response to shade was not significantly species- or taxon-specific. Shade leaves of sun-grown plants appear to follow the same pattern of down-regulation in response to shade as leaves of shade-grown plants. Given the light level above a leaf and one species-specific number (either the full-sun Amax or full-sun Rdark), we provide a formula that can accurately predict the leaf's Amax and Rdark. We further show that most of the down regulation of per unit area Rdark and Amax is caused by reductions in leaf mass per unit area (LMA): as light decreases, leaves get thinner, while per unit mass Amax and Rdark remain approximately constant. PMID:24727745

  13. Policosanol safely down-regulates HMG-CoA reductase - potential as a component of the Esselstyn regimen.

    PubMed

    McCarty, M F

    2002-09-01

    Many of the wide-ranging health benefits conferred by statin therapy are mediated, not by reductions in LDL cholesterol, but rather by inhibition of isoprenylation reactions essential to the activation of Rho family GTPases; this may be the mechanism primarily responsible for the favorable impact of statins on risk for ischemic stroke, senile dementia, and fractures, as well as the anti-hypertensive and platelet-stabilizing actions of these drugs. Indeed, the extent of these benefits is such as to suggest that most adults would be wise to take statins; however, owing to the significant expense of statin therapy, as well as to the potential for dangerous side effects that mandates regular physician follow-up, this strategy appears impractical. However, policosanol, a mixture of long-chain aliphatic alcohols extractable from sugar cane wax, has shown cholesterol-lowering potency comparable to that of statins, and yet appears to be devoid of toxic risk. Recent evidence indicates that policosanol down-regulates cellular expression of HMG-CoA reductase, and thus has the potential to suppress isoprenylation reactions much like statins do. Consistent with this possibility, the results of certain clinical and animal studies demonstrate that policosanol has many effects analogous to those of statins that are not likely explained by reductions of LDL cholesterol. However, unlike statins, policosanol does not directly inhibit HMG-CoA reductase, and even in high concentrations it fails to down-regulate this enzyme by more than 50% - thus likely accounting for the safety of this nutraceutical. In light of the fact that policosanol is quite inexpensive and is becoming available as a non-prescription dietary supplement, it may represent a practical resource that could enable the general public to enjoy health benefits comparable to those conferred by statins. In a long-term clinical study enrolling patients with significant symptomatic coronary disease, Esselstyn has demonstrated

  14. Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog

    PubMed Central

    2012-01-01

    Background Down-regulation of the caffeic acid 3-O-methyltransferase EC 2.1.1.68 (COMT) gene in the lignin biosynthetic pathway of switchgrass (Panicum virgatum) resulted in cell walls of transgenic plants releasing more constituent sugars after pretreatment by dilute acid and treatment with glycosyl hydrolases from an added enzyme preparation and from Clostridium thermocellum. Fermentation of both wild-type and transgenic switchgrass after milder hot water pretreatment with no water washing showed that only the transgenic switchgrass inhibited C. thermocellum. Gas chromatography–mass spectrometry (GCMS)-based metabolomics were undertaken on cell wall aqueous extracts to determine the nature of the microbial inhibitors. Results GCMS confirmed the increased concentration of a number of phenolic acids and aldehydes that are known inhibitors of microbial fermentation. Metabolomic analyses of the transgenic biomass additionally revealed the presence of a novel monolignol-like metabolite, identified as trans-3, 4-dimethoxy-5-hydroxycinnamyl alcohol (iso-sinapyl alcohol) in both non-pretreated, as well as hot water pretreated samples. iso-Sinapyl alcohol and its glucoside were subsequently generated by organic synthesis and the identity of natural and synthetic materials were confirmed by mass spectrometric and NMR analyses. The additional novel presence of iso-sinapic acid, iso-sinapyl aldehyde, and iso-syringin suggest the increased activity of a para-methyltransferase, concomitant with the reduced COMT activity, a strict meta-methyltransferase. Quantum chemical calculations were used to predict the most likely homodimeric lignans generated from dehydration reactions, but these products were not evident in plant samples. Conclusions Down-regulation of COMT activity in switchgrass resulted in the accumulation of previously undetected metabolites resembling sinapyl alcohol and its related metabolites, but that are derived from para-methylation of 5-hydroxyconiferyl

  15. Rapamycin induces the anti-apoptotic protein survivin in neuroblastoma.

    PubMed

    Samkari, Ayman; Cooper, Zachary A; Holloway, Michael P; Liu, Jiebin; Altura, Rachel A

    2012-01-01

    Neuroblastoma is the most common solid tumor of infancy, accounting for 15% of all cancer cell deaths in children. Expression of the anti-apoptotic protein survivin in these tumors correlates with poor prognostic features and resistance to therapy. The mammalian target of rapamycin (mTOR) protein is being explored as a potential therapeutic target in patients with this disease. The objective of this study was to test the hypothesis that rapamycin regulates survivin expression and function in neuroblastoma cells. To explore this hypothesis, we treated two different neuroblastoma lines (NB7, NB8) and a well-characterized control lung cancer cell line, A549, with varying doses of rapamycin (0.1-10μM) for serial time points (2-48 hours). RNA and protein expression levels were then evaluated by quantitative RT-PCR and western blotting, respectively. Cell proliferation and apoptosis were assayed by WST-1 and Annexin V. The results showed a rapamycin-dependent increase in survivin mRNA and protein levels in the neuroblastoma cell lines in a dose- and time-dependent fashion, while a decrease in these levels was observed in control cells. Rapamycin inhibited cell proliferation in both A549 and neuroblastoma cells however neuroblastoma cells had less apoptosis than A549 cells (9% vs. 20%). In summary, our results indicate that rapamycin induces expression of the anti-apoptotic protein survivin in neuroblastoma cells which may protect these cells from programmed cell death. Induction of survivin by rapamycin could therefore be a potential mechanism of neuroblastoma tumor cell resistance and rapamycin may not be an effective therapeutic agent for these tumors.

  16. Combination of Rapamycin and Resveratrol for Treatment of Bladder Cancer.

    PubMed

    Alayev, Anya; Salamon, Rachel S; Schwartz, Naomi S; Berman, Adi Y; Wiener, Sara L; Holz, Marina K

    2017-02-01

    Loss of TSC1 function, a crucial negative regulator of mTOR signaling, is a common alteration in bladder cancer. Mutations in other members of the PI3K pathway, leading to mTOR activation, are also found in bladder cancer. This provides rationale for targeting mTOR for treatment of bladder cancer characterized by TSC1 mutations and/or mTOR activation. In this study, we asked whether combination treatment with rapamycin and resveratrol could be effective in concurrently inhibiting mTOR and PI3K signaling and inducing cell death in bladder cancer cells. In combination with rapamycin, resveratrol was able to block rapamycin-induced Akt activation, while maintaining mTOR pathway inhibition. In addition, combination treatment with rapamycin and resveratrol induced cell death specifically in TSC1(-/-) MEF cells, and not in wild-type MEFs. Similarly, resveratrol alone or in combination with rapamycin induced cell death in human bladder cancer cell lines. These data indicate that administration of resveratrol together with rapamycin may be a promising therapeutic option for treatment of bladder cancer. J. Cell. Physiol. 232: 436-446, 2017. © 2016 Wiley Periodicals, Inc.

  17. Rapamycin extends murine lifespan but has limited effects on aging

    PubMed Central

    Neff, Frauke; Flores-Dominguez, Diana; Ryan, Devon P.; Horsch, Marion; Schröder, Susanne; Adler, Thure; Afonso, Luciana Caminha; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Garrett, Lillian; Hans, Wolfgang; Hettich, Moritz M.; Holtmeier, Richard; Hölter, Sabine M.; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Rathkolb, Birgit; Rozman, Jan; Naton, Beatrix; Ordemann, Rainer; Adamski, Jerzy; Beckers, Johannes; Bekeredjian, Raffi; Busch, Dirk H.; Ehninger, Gerhard; Graw, Jochen; Höfler, Heinz; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Stypmann, Jörg; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabe de Angelis, Martin; Ehninger, Dan

    2013-01-01

    Aging is a major risk factor for a large number of disorders and functional impairments. Therapeutic targeting of the aging process may therefore represent an innovative strategy in the quest for novel and broadly effective treatments against age-related diseases. The recent report of lifespan extension in mice treated with the FDA-approved mTOR inhibitor rapamycin represented the first demonstration of pharmacological extension of maximal lifespan in mammals. Longevity effects of rapamycin may, however, be due to rapamycin’s effects on specific life-limiting pathologies, such as cancers, and it remains unclear if this compound actually slows the rate of aging in mammals. Here, we present results from a comprehensive, large-scale assessment of a wide range of structural and functional aging phenotypes, which we performed to determine whether rapamycin slows the rate of aging in male C57BL/6J mice. While rapamycin did extend lifespan, it ameliorated few studied aging phenotypes. A subset of aging traits appeared to be rescued by rapamycin. Rapamycin, however, had similar effects on many of these traits in young animals, indicating that these effects were not due to a modulation of aging, but rather related to aging-independent drug effects. Therefore, our data largely dissociate rapamycin’s longevity effects from effects on aging itself. PMID:23863708

  18. Hyaluronan–CD44 interaction hampers migration of osteoclast-like cells by down-regulating MMP-9

    PubMed Central

    Spessotto, Paola; Rossi, Francesca Maria; Degan, Massimo; Di Francia, Raffaele; Perris, Roberto; Colombatti, Alfonso; Gattei, Valter

    2002-01-01

    Osteoclast (OC) precursors migrate to putative sites of bone resorption to form functionally active, multinucleated cells. The preOC FLG 29.1 cells, known to be capable of irreversibly differentiating into multinucleated OC-like cells, displayed several features of primary OCs, including expression of specific integrins and the hyaluronan (HA) receptor CD44. OC-like FLG 29.1 cells adhered to and extensively migrated through membranes coated with fibronectin, vitronectin, and laminins, but, although strongly binding to HA, totally failed to move on this substrate. Moreover, soluble HA strongly inhibited OC-like FLG 29.1 cell migration on the permissive matrix substrates, and this behavior was dependent on its engagement with CD44, as it was fully restored by function-blocking anti-CD44 antibodies. HA did not modulate the cell–substrate binding affinity/avidity nor the expression levels of the corresponding integrins. MMP-9 was the major secreted metalloproteinase used by OC-like FLG 29.1 cells for migration, because this process was strongly inhibited by both TIMP-1 and GM6001, as well as by MMP-9–specific antisense oligonucleotides. After HA binding to CD44, a strong down-regulation of MMP-9 mRNA and protein was detected. These findings highlight a novel role of the HA–CD44 interaction in the context of OC-like cell motility, suggesting that it may act as a stop signal for bone-resorbing cells. PMID:12235127

  19. Mutational analysis of the human immunodeficiency virus: the orf-B region down-regulates virus replication.

    PubMed Central

    Luciw, P A; Cheng-Mayer, C; Levy, J A

    1987-01-01

    Mutations were made by recombinant DNA techniques in an infectious molecular clone of the human immunodeficiency virus San Francisco isolate 2 (HIVSF2) [formerly the prototype isolate of the acquired immunodeficiency syndrome-associated retrovirus (ARV-2)]. The effect of these changes on the replicative and cytopathologic properties of the virus was studied by transfecting modified virus clones into cultured human cells. Mutations in the gag, pol, env, and tat regions precluded virus replication and cytopathology in lymphoid cells. A mutation in orf-A dramatically reduced but did not abolish virus replication. Mutant viruses with deletions in the orf-B region were highly cytopathic and replicated to approximately 5-fold higher levels than wild-type virus. They also produced approximately 5-fold more viral DNA in infected lymphoid cells than did wild-type virus. Thus, the orf-B region may function to down-regulate virus replication. This mutational analysis of the HIVSF2 genome is a means of assessing genes regulating viral replication and cytopathology. Images PMID:2434956

  20. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    SciTech Connect

    Guo, Hongsheng; Wu, Fenping; Wang, Yan; Yan, Chong; Su, Wenmei

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  1. Down-regulation of transcription elogation factor A (SII) like 4 (TCEAL4) in anaplastic thyroid cancer

    PubMed Central

    Akaishi, Junko; Onda, Masamitsu; Okamoto, Junichi; Miyamoto, Shizuyo; Nagahama, Mitsuji; Ito, Kouichi; Yoshida, Akira; Shimizu, Kazuo

    2006-01-01

    Background Anaplastic thyroid cancer (ATC) is one of the most aggressive human malignancies and appears to arise mainly from transformation of pre-existing differentiated thyroid cancer (DTC). However, the carcinogenic mechanism of anaplastic transformation remains unclear. Previously, we investigated specific genes related to ATC based on gene expression profiling using cDNA microarray analysis. One of these genes, transcription elongation factor A (SII)-like 4 (TCEAL4), encodes a member of the transcription elongation factor A (SII)-like gene family. The detailed function of TCEAL4 has not been described nor has any association between this gene and human cancers been reported previously. Methods To investigate the role of TCEAL4 in ATC carcinogenesis, we examined expression levels of TCEAL4 in ACLs as well as in other types of thyroid cancers and normal human tissue. Results Expression of TCEAL4 was down-regulated in all 11 ACLs as compared to either normal thyroid tissues or papillary and follicular thyroid cancerous tissues. TCEAL4 was expressed ubiquitously in all normal human tissues tested. Conclusion To our knowledge, this is the first report of altered TCEAL4 expression in human cancers. We suggest that loss of TCEAL4 expression might be associated with development of ATC from DTC. Further functional studies are required. PMID:17076909

  2. Down-regulation of miR-181a can reduce heat stress damage in PBMCs of Holstein cows.

    PubMed

    Chen, Kun-Lin; Fu, Yuan-Yuan; Shi, Min-Yan; Li, Hui-Xia

    2016-09-01

    Heat stress can weaken the immune system and even increase livestock's susceptibility to disease. MicroRNA (miR) is short non-coding RNA that functions in post-transcriptional regulation of gene expression and some phenotypes. Our recent study found that miR-181a is highly expressed in the serum of heat-stressed Holstein cows, but the potential function of miR-181a is still not clarified. In this study, peripheral blood mononuclear cells (PBMCs), isolated from Holstein cows' peripheral blood, were used to investigate the effects of miR-181a inhibitor on heat stress damage. Our results showed that significant apoptosis and oxidative damage were induced by heat stress in PBMCs. However, with apoptosis, the levels of reactive oxygen species (ROS) and content of malondialdehyde (MDA) were reduced, while the content of glutathione (GSH) and the activity of superoxide dismutase (SOD) were increased even under heat stress conditions after transfecting miR-181a inhibitors to PBMCs. Meanwhile, mRNA expression of bax and caspase-3 was significantly decreased, but mRNA expression of bcl-2 was increased in transfected PBMCs. In conclusion, our results demonstrated that down-regulation of miR-181a can reduce heat stress damage in PBMCs of Holstein cows.

  3. Interleukin-6 increases matrix metalloproteinase-14 (MMP-14) levels via down-regulation of p53 to drive cancer progression

    PubMed Central

    Cathcart, Jillian M.; Banach, Anna; Liu, Alice; Chen, Jun; Goligorsky, Michael; Cao, Jian

    2016-01-01

    Matrix metalloproteinases (MMPs) play critical roles in cancer invasion and metastasis by digesting basement membrane and extracellular matrix (ECM). Much attention has focused on the enzymatic activities of MMPs; however, the regulatory mechanism of MMP expression remains elusive. By employing bioinformatics analysis, we identified a potential p53 response element within the MMP-14 promoter. Experimentally, we found that p53 can repress MMP-14 promoter activity, whereas deletion of this p53 response element abrogated this effect. Furthermore, we found that p53 expression decreases MMP-14 mRNA and protein levels and attenuates MMP-14-mediated cellular functions. Additional promoter analysis and chromatin immunoprecipitation studies identified a mechanism of regulation of MMP-14 expression by which p53 and transcription factor Sp1 competitively bind to the promoter. As the correlation between inflammation and cancer aggressiveness is well described, we next sought to evaluate if inflammatory cytokines could differentially affect p53 and MMP-14 levels. We demonstrate that interleukin-6 (IL-6) down-regulates p53 protein levels and thus results in a concomitant increase in MMP-14 expression, leading to enhanced cancer cell invasion and metastasis. Our data collectively indicate a novel mechanism of regulation of MMP-14 by a cascade of IL-6 and p53, demonstrating that the tumor microenvironment directly stimulates molecular changes in cancer cells to drive an invasive phenotype. PMID:27531896

  4. Manganese induces oligomerization to promote down-regulation of the intracellular trafficking receptor used by Shiga toxin

    PubMed Central

    Tewari, Ritika; Jarvela, Timothy; Linstedt, Adam D.

    2014-01-01

    Manganese (Mn) protects cells against lethal doses of purified Shiga toxin by causing the degradation of the cycling transmembrane protein GPP130, which the toxin uses as a trafficking receptor. Mn-induced GPP130 down-regulation, in addition to being a potential therapeutic approach against Shiga toxicosis, is a model for the study of metal-regulated protein sorting. Significantly, however, the mechanism by which Mn regulates GPP130 trafficking is unknown. Here we show that a transferable trafficking determinant within GPP130 bound Mn and that Mn binding induced GPP130 oligomerization in the Golgi. Alanine substitutions blocking Mn binding abrogated both oligomerization of GPP130 and GPP130 sorting from the Golgi to lysosomes. Further, oligomerization was sufficient because forced aggregation, using a drug-controlled polymerization domain, redirected GPP130 to lysosomes in the absence of Mn. These experiments reveal metal-induced oligomerization as a Golgi sorting mechanism for a medically relevant receptor for Shiga toxin. PMID:25079690

  5. A gene encoding a protein elicitor of Phytophthora infestans is down-regulated during infection of potato.

    PubMed

    Kamoun, S; van West, P; de Jong, A J; de Groot, K E; Vleeshouwers, V G; Govers, F

    1997-01-01

    Most species of the genus Phytophthora produce 10-kDa extracellular protein elicitors, collectively termed elicitins. Elicitins induce hypersensitive response in a restricted number of plants, particularly in the genus Nicotiana within the Solanaceae family. A cDNA encoding INF1, the major secreted elicitin of Phytophthora infestans, a pathogen of solanaceous plants, was isolated and characterized. The expression of the corresponding inf1 gene during the disease cycle of P. infestans was analyzed. inf1 was shown to be expressed in mycelium grown in various culture media, whereas it was not expressed in sporangiospores, zoospores, cysts, and germinating cysts. In planta, during infection of potato, particularly during the biotrophic stage, expression of inf1 was down-regulated compared to in vitro. The highest levels of expression of inf1 were observed in in vitro grown mycelium and in late stages of infection when profuse sporulation and leaf necrosis occur. The potential role of INF1 as an elicitor in interactions between P. infestans and Solanum species was investigated. Nineteen lines, representing nine solanaceous species with various levels of resistance to P. infestans, were tested for response to an Escherichia coli expressed INF1. Within the genus Solanum, resistance to P. infestans did not appear to be mediated by a defense response elicited by INF1. However, INF1 recognition could be a component of nonhost resistance of tobacco to P. infestans.

  6. miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis

    PubMed Central

    Smits, Michiel; Nilsson, Jonas; Mir, Shahryar E.; van der Stoop, Petra M.; Hulleman, Esther; Niers, Johanna M.; de Witt Hamer, Phillip C.; Marquez, Victor E.; Cloos, Jacqueline; Krichevsky, Anna M.; Noske, David P.; Tannous, Bakhos A.; Würdinger, Thomas

    2010-01-01

    Background: Glioblastoma (GBM) is a malignant brain tumor with dismal prognosis. GBM patients have a median survival of less than 2 years. GBM is characterized by fast cell proliferation, infiltrative migration, and by the induction of angiogenesis. MicroRNAs and polycomb group (PcG) proteins have emerged as important regulators of gene expression. Methods: Here we determined that miR-101 is down-regulated in GBM, resulting in overexpression of the miR-101 target PcG protein EZH2, a histone methyltransferase affecting gene expression profiles in an epigenetic manner. Results: Inhibition of EZH2 in vitro by pre-miR-101, EZH2 siRNA, or small molecule DZNep, attenuated GBM cell growth, migration/invasion, and GBM-induced endothelial tubule formation. In addition, for each biological process we identified ontology-associated transcripts that significantly correlate with EZH2 expression. Inhibition of EZH2 in vivo by systemic DZNep administration in a U87-Fluc-mCherry GBM xenograft mouse imaging model resulted in reduced tumor growth. Conclusion: Our results indicate that EZH2 has a versatile function in GBM progression and that its overexpression is at least partly due to decreased miR-101 expression. Inhibition of EZH2 may be a potential therapeutic strategy to target GBM proliferation, migration, and angiogenesis. PMID:21321380

  7. Resistin impairs glucose permeability in EA.hy926 cells by down-regulating GLUT1 expression.

    PubMed

    Li, Qiang; Cai, Yuxi; Huang, Jing; Yu, Xiaolan; Sun, Jun; Yang, Zaiqing; Zhou, Lei

    2016-10-15

    Type 2 diabetes mellitus (T2DM) is a chronic disease which is now affecting the health of more and more people in the world. Resistin, discovered in 2001, is considered to be closely related to metabolic dysfunction and obesity. Previous study showed that hyperglycemia is always accompanied by a high serum resistin concentration. We therefore investigated whether resistin can mediate glucose transfer across the blood-tissue barrier. Here, we employed a transwell system to analyze glucose permeability in EA.hy926 human endothelial cells treated without or with human resistin. In EA.hy926 cells treated with resistin, the permeability to glucose was heavily impaired. This was due to the down-regulation of GLUT1 expression as a result of the treatment, rather than regulation of tight junctions. In addition, overexpression of GLUT1 in EA.hy926 cells was able to recover the blocking effect of resistin on glucose permeability. We further found that resistin could inhibit the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and consequently impede the transcription of GLUT1. The results of the present study suggested that resistin could cause glucose retention in serum and thus result in hyperglycemia. This provides a novel explanation for hyperglycemia and a potential new way of treating type 2 diabetes mellitus.

  8. Down-Regulation of lncRNA-AK001085 and its Influences on the Diagnosis of Ankylosing Spondylitis.

    PubMed

    Li, Xiang; Chai, Wei; Zhang, Guoqiang; Ni, Ming; Chen, Jiying; Dong, Jiyuan; Zhou, Yonggang; Hao, Libo; Bai, Yang; Wang, Yan

    2017-01-02

    BACKGROUND Long non-coding RNAs (lncRNAs) have been confirmed to play an important role in the development and progression of diseases. Ankylosing spondylitis (AS) is a chronic inflammatory systemic disease and it is hard to be found in early time. The purpose of this study was to investigate the role of lncRNA-AK001085 in the diagnosis of AS. MATERIAL AND METHODS The expression of lncRNA-AK001085 was detected by quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The relationship between its expression and clinicopathologic characteristics was also analyzed. Meanwhile the correlation between lncRNA-AK001085 expression and diseases activity indexes was estimated. In addition, the value of it in the diagnosis of AS was explored through establishing receiver operating characteristic (ROC) curve. RESULTS Serum lncRNA-AK001085 expression was decreased in patients with AS compared with healthy individuals. And its expression was proved to be influenced by ever cigarette smoker, exercise level and occupational activity level. Besides, the correlation of the expression of lncRNA-AK001085 and disease activity indexes (BASDI, ASDAS, ESR, CRP) were all negative, which suggested that the lncRNA-AK001085 was significantly lower in patients with a high disease activity score. It might showed that the expression of lncRNA-AK001085 affected the activity of AS. CONCLUSIONS LncRNA-AK001085 was down-regulated in AS patients and it could be an independent diagnostic indicator.

  9. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    NASA Astrophysics Data System (ADS)

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jimmy

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1 and OPR) in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.

  10. The reported clinical utility of taurine in ischemic disorders may reflect a down-regulation of neutrophil activation and adhesion.

    PubMed

    McCarty, M F

    1999-10-01

    The first publications regarding clinical use of taurine were Italian reports claiming therapeutic efficacy in angina, intermittent claudication and symptomatic cerebral arteriosclerosis. A down-regulation of neutrophil activation and endothelial adhesion might plausibly account for these observations. Endothelial platelet-activating factor (PAF) is a crucial stimulus to neutrophil adhesion and activation, whereas endothelial nitric oxide (NO) suppresses PAF production and acts in various other ways to antagonize binding and activation of neutrophils. Hypochlorous acid (HOCl), a neutrophil product which avidly oxidizes many sulfhydryl-dependent proteins, can be expected to inhibit NO synthase while up-regulating PAF generation; thus, a vicious circle can be postulated whereby HOCl released by marginating neutrophils acts on capillary or venular endothelium to promote further neutrophil adhesion and activation. Taurine is the natural detoxicant of HOCl, and thus has the potential to intervene in this vicious circle, promoting a less adhesive endothelium and restraining excessive neutrophil activation. Agents which inhibit the action of PAF on neutrophils, such as ginkgolides and pentoxifylline, have documented utility in ischemic disorders and presumably would complement the efficacy of taurine in this regard. Fish oil, which inhibits endothelial expression of various adhesion factors and probably PAF as well, and which suppresses neutrophil leukotriene production, may likewise be useful in ischemia. These agents may additionally constitute a non-toxic strategy for treating inflammatory disorders in which activated neutrophils play a prominent pathogenic role. Double-blind studies to confirm the efficacy of taurine in symptomatic chronic ischemia are needed.

  11. Down-regulation of GIGANTEA-like genes increases plant growth and salt stress tolerance in poplar.

    PubMed

    Ke, Qingbo; Kim, Ho Soo; Wang, Zhi; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Choi, Young-Im; Xu, Bingcheng; Deng, Xiping; Yun, Dae-Jin; Kwak, Sang-Soo

    2017-03-01

    The flowering time regulator GIGANTEA (GI) connects networks involved in developmental stage transitions and environmental stress responses in Arabidopsis. However, little is known about the role of GI in growth, development and responses to environmental challenges in the perennial plant poplar. Here, we identified and functionally characterized three GI-like genes (PagGIa, PagGIb and PagGIc) from poplar (Populus alba × Populus glandulosa). PagGIs are predominantly nuclear localized and their transcripts are rhythmically expressed, with a peak around zeitgeber time 12 under long-day conditions. Overexpressing PagGIs in wild-type (WT) Arabidopsis induced early flowering and salt sensitivity, while overexpressing PagGIs in the gi-2 mutant completely or partially rescued its delayed flowering and enhanced salt tolerance phenotypes. Furthermore, the PagGIs-PagSOS2 complexes inhibited PagSOS2-regulated phosphorylation of PagSOS1 in the absence of stress, whereas these inhibitions were eliminated due to the degradation of PagGIs under salt stress. Down-regulation of PagGIs by RNA interference led to vigorous growth, higher biomass and enhanced salt stress tolerance in transgenic poplar plants. Taken together, these results indicate that several functions of Arabidopsis GI are conserved in its poplar orthologues, and they lay the foundation for developing new approaches to producing salt-tolerant trees for sustainable development on marginal lands worldwide.

  12. Antitumor activity of curcumin is involved in down-regulation of YAP/TAZ expression in pancreatic cancer cells

    PubMed Central

    Wang, Lixia; Yin, Xuyuan; Yan, Jingzhe; Wang, Zhiwei

    2016-01-01

    Pancreatic cancer (PC) is one of the most aggressive human malignancies worldwide and is the fourth leading cause of cancer-related deaths. Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Certain studies have demonstrated that curcumin exerts its anti-tumor function in a variety of human cancers including PC, via targeting multiple therapeutically important cancer signaling pathways. However, the detailed molecular mechanisms are not fully understood. Two transcriptional co-activators, YAP (Yes-associated protein) and its close paralog TAZ (transcriptional coactivator with PDZ-binding motif) exert oncogenic activities in various cancers. Therefore, in this study we aimed to determine the molecular basis of curcumin-induced cell proliferation inhibition in PC cells. First, we detected the anti-tumor effects of curcumin on PC cell lines using CTG assay, Flow cytometry, clonogenic assay, wound healing assay and Transwell invasion assay. We found that curcumin significantly suppressed cell growth, weakened clonogenic potential, inhibited migration and invasion, and induced apoptosis and cell cycle arrest in PC cells. We further measured that overexpression of YAP enhanced cell proliferation and abrogated the cytotoxic effects of curcumin on PC cells. Moreover, we found that curcumin markedly down-regulated YAP and TAZ expression and subsequently suppressed Notch-1 expression. Collectively, these findings suggest that pharmacological inhibition of YAP and TAZ activity may be a promising anticancer strategy for the treatment of PC patients. PMID:27738325

  13. Systemic Delivery of siRNA Down Regulates Brain Prion Protein and Ameliorates Neuropathology in Prion Disorder

    PubMed Central

    Resina, Sarah; Brillaud, Elsa; Casanova, Danielle; Vincent, Charles; Hamela, Claire; Poupeau, Sophie; Laffont, Mathieu; Gabelle, Audrey; Delaby, Constance; Belondrade, Maxime; Arnaud, Jacques-Damien; Alvarez, Maria-Teresa; Maurel, Jean-Claude; Maurel, Patrick; Crozet, Carole

    2014-01-01

    One of the main challenges for neurodegenerative disorders that are principally incurable is the development of new therapeutic strategies, which raises important medical, scientific and societal issues. Creutzfeldt-Jakob diseases are rare neurodegenerative fatal disorders which today remain incurable. The objective of this study was to evaluate the efficacy of the down-regulation of the prion protein (PrP) expression using siRNA delivered by, a water-in-oil microemulsion, as a therapeutic candidate in a preclinical study. After 12 days rectal mucosa administration of Aonys/PrP-siRNA in mice, we observed a decrease of about 28% of the brain PrPC level. The effect of Aonys/PrP-siRNA was then evaluated on prion infected mice. Several mice presented a delay in the incubation and survival time compared to the control groups and a significant impact was observed on astrocyte reaction and neuronal survival in the PrP-siRNA treated groups. These results suggest that a new therapeutic scheme based an innovative delivery system of PrP-siRNA can be envisioned in prion disorders. PMID:24551164

  14. Down-regulation of plasma intrinsic protein1 aquaporin in poplar trees is detrimental to recovery from embolism.

    PubMed

    Secchi, Francesca; Zwieniecki, Maciej A

    2014-04-01

    During their lifecycles, trees encounter multiple events of water stress that often result in embolism formation and temporal decreases in xylem transport capacity. The restoration of xylem transport capacity requires changes in cell metabolic activity and gene expression. Specifically, in poplar (Populus spp.), the formation of xylem embolisms leads to a clear up-regulation of plasma membrane protein1 (PIP1) aquaporin genes. To determine their role in poplar response to water stress, transgenic Populus tremula × Populus alba plants characterized by the strong down-regulation of multiple isoforms belonging to the PIP1 subfamily were used. Transgenic lines showed that they are more vulnerable to embolism, with 50% percent loss of conductance occurring 0.3 MPa earlier than in wild-type plants, and that they also have a reduced capacity to restore xylem conductance during recovery. Transgenic plants also show symptoms of a reduced capacity to control percent loss of conductance through stomatal conductance in response to drought, because they have a much narrower vulnerability safety margin. Finally, a delay in stomatal conductance recovery during the period of stress relief was observed. The presented results suggest that PIP1 genes are involved in the maintenance of xylem transport system capacity, in the promotion of recovery from stress, and in contribution to a plant's control of stomatal conductance under water stress.

  15. Rapid transcriptional down-regulation of c-myc expression during cyclic adenosine monophosphate-promoted differentiation of leukemic cells.

    PubMed

    Slungaard, A; Confer, D L; Schubach, W H

    1987-05-01

    Pharmacologic elevation of cyclic AMP (cAMP) promotes growth arrest and differentiation in a variety of transformed mammalian cells, including the HL-60 human promyelocytic leukemia cell line. However, mechanisms underlying this phenomenon are poorly understood. Because cellular oncogenes play a pivotal role in regulating proliferation and differentiation, we examined whether cAMP-promoted differentiation of HL-60 was preceded by a decrease in the expression of c-myc, a cellular oncogene both amplified and constitutively expressed in HL-60. We find that cyclic AMP elevation in HL-60 caused by three different pharmacologic regimens is followed by an abrupt, greater than 90% decrease in steady state c-myc mRNA levels within 3 h, well before detectable changes in proliferation and differentiation. This decrease, which occurs despite protein synthetic blockade, is attributable to transcriptional down-regulation of c-myc and is accompanied by changes in chromatin structure near c-myc promoter sites. Our findings establish that cAMP, a ubiquitous intracellular regulatory messenger previously known only to enhance gene transcriptional activity in higher eukaryotic cells, can also suppress transcription of a cellular oncogene, thereby suggesting a potential mechanism for cAMP-promoted differentiation.

  16. Rapid transcriptional down-regulation of c-myc expression during cyclic adenosine monophosphate-promoted differentiation of leukemic cells.

    PubMed Central

    Slungaard, A; Confer, D L; Schubach, W H

    1987-01-01

    Pharmacologic elevation of cyclic AMP (cAMP) promotes growth arrest and differentiation in a variety of transformed mammalian cells, including the HL-60 human promyelocytic leukemia cell line. However, mechanisms underlying this phenomenon are poorly understood. Because cellular oncogenes play a pivotal role in regulating proliferation and differentiation, we examined whether cAMP-promoted differentiation of HL-60 was preceded by a decrease in the expression of c-myc, a cellular oncogene both amplified and constitutively expressed in HL-60. We find that cyclic AMP elevation in HL-60 caused by three different pharmacologic regimens is followed by an abrupt, greater than 90% decrease in steady state c-myc mRNA levels within 3 h, well before detectable changes in proliferation and differentiation. This decrease, which occurs despite protein synthetic blockade, is attributable to transcriptional down-regulation of c-myc and is accompanied by changes in chromatin structure near c-myc promoter sites. Our findings establish that cAMP, a ubiquitous intracellular regulatory messenger previously known only to enhance gene transcriptional activity in higher eukaryotic cells, can also suppress transcription of a cellular oncogene, thereby suggesting a potential mechanism for cAMP-promoted differentiation. Images PMID:2437157

  17. Chronic fetal exposure to caffeine altered resistance vessel functions via RyRs-BKCa down-regulation in rat offspring

    PubMed Central

    Li, Na; Li, Yongmei; Gao, Qinqin; Li, Dawei; Tang, Jiaqi; Sun, Miao; Zhang, Pengjie; Liu, Bailin; Mao, Caiping; Xu, Zhice

    2015-01-01

    Caffeine modifies vascular/cardiac contractility. Embryonic exposure to caffeine altered cardiac functions in offspring. This study determined chronic influence of prenatal caffeine on vessel functions in offspring. Pregnant Sprague-Dawley rats (5-month-old) were exposed to high dose of caffeine, their offspring (5-month-old) were tested for vascular functions in mesenteric arteries (MA) and ion channel activities in smooth muscle cells. Prenatal exposure to caffeine increased pressor responses and vasoconstrictions to phenylephrine, accompanied by enhanced membrane depolarization. Large conductance Ca2+-activated K+ (BKCa) channels in buffering phenylephrine-induced vasoconstrictions was decreased, whole cell BKCa currents and spontaneous transient outward currents (STOCs) were decreased. Single channel recordings revealed reduced voltage/Ca2+ sensitivity of BKCa channels. BKCa α-subunit expression was unchanged, BKCa β1-subunit and sensitivity of BKCa to tamoxifen were reduced in the caffeine offspring as altered biophysical properties of BKCa in the MA. Simultaneous [Ca2+]i fluorescence and vasoconstriction testing showed reduced Ca2+, leading to diminished BKCa activation via ryanodine receptor Ca2+ release channels (RyRs), causing enhanced vascular tone. Reduced RyR1 was greater than that of RyR3. The results suggest that the altered STOCs activity in the caffeine offspring could attribute to down-regulation of RyRs-BKCa, providing new information for further understanding increased risks of hypertension in developmental origins. PMID:26277840

  18. A Molecular Toolbox for Rapid Generation of Viral Vectors to Up- or Down-Regulate Neuronal Gene Expression in vivo

    PubMed Central

    White, Melanie D.; Milne, Ruth V. J.; Nolan, Matthew F.

    2011-01-01

    We introduce a molecular toolbox for manipulation of neuronal gene expression in vivo. The toolbox includes promoters, ion channels, optogenetic tools, fluorescent proteins, and intronic artificial microRNAs. The components are easily assembled into adeno-associated virus (AAV) or lentivirus vectors using recombination cloning. We demonstrate assembly of toolbox components into lentivirus and AAV vectors and use these vectors for in vivo expression of inwardly rectifying potassium channels (Kir2.1, Kir3.1, and Kir3.2) and an artificial microRNA targeted against the ion channel HCN1 (HCN1 miRNA). We show that AAV assembled to express HCN1 miRNA produces efficacious and specific in vivo knockdown of HCN1 channels. Comparison of in vivo viral transduction using HCN1 miRNA with mice containing a germ line deletion of HCN1 reveals similar physiological phenotypes in cerebellar Purkinje cells. The easy assembly and re-usability of the toolbox components, together with the ability to up- or down-regulate neuronal gene expression in vivo, may be useful for applications in many areas of neuroscience. PMID:21772812

  19. miR-214 down-regulates ARL2 and suppresses growth and invasion of cervical cancer cells.

    PubMed

    Peng, Ruiqing; Men, Jianlong; Ma, Rui; Wang, Qian; Wang, Yang; Sun, Ying; Ren, Jing

    2017-03-11

    Increasing evidence has shown that miRNAs are implicated in carcinogenesis and can function as oncogenes or tumor suppressor genes in human cancers. In this study, we confirmed that miR-214 is frequently down-regulated in cervical cancer compared with normal cervical tissues. Ectopic expression of miR-214 suppressed proliferation, migration and invasion of HeLa and C33A cervical cancer cells. Bioinformatics analysis revealed that ADP ribosylation factor like 2 (ARL2) was a potential target of miR-214 and was remarkably up-regulated in cervical cancer. Knockdown of ARL2 markedly inhibited cervical cancer cell proliferation, migration and invasion, similarly to over-expression of miR-214, indicating that ARL2 may function as an oncogene in cervical cancer. In conclusion, our study revealed that miR-214 acts as a tumor suppressor via inhibiting proliferation, migration and invasion of cervical cancer cells through targeting ARL2, and that both miR-214 and ARL2 may serve as prognostic or therapeutic targets for cervical cancer.

  20. Heme oxygenase-1 expression is down-regulated by angiotensin II and under hypertension in human neutrophils.

    PubMed

    Alba, Gonzalo; El Bekay, Rajaa; Chacón, Pedro; Reyes, M Edith; Ramos, Eladio; Oliván, Josefina; Jiménez, Juan; López, José M; Martín-Nieto, José; Pintado, Elízabeth; Sobrino, Francisco

    2008-08-01

    Angiotensin II (Ang II) is a peptide hormone able to elicit a strong production of reactive oxygen species by human neutrophils. In this work, we have addressed whether expression of heme oxygenase-1 (HO-1), an antioxidant enzyme, becomes altered in these cells upon Ang II treatment or under hypertension conditions. In neutrophils from healthy and hypertensive subjects, induction of HO-1 mRNA and protein expression with a parallel increase in enzyme activity took place upon treatment with 15-deoxy-Delta12,14-PGJ2 (15dPGJ2). However, Ang II prevented HO-1 synthesis by normal neutrophils in vitro, and HO-1 expression was depressed in neutrophils from hypertensive patients in comparison with cells from healthy subjects. In addition, Ang II treatment led to a reduced HO-1 enzyme activity to levels similar to those found in neutrophils from hypertensive patients. NO donors reversed the inhibition of 15dPGJ2-dependent HO-1 expression in neutrophils from hypertensive patients, and conversely, inhibition of inducible NO synthase (NOS2) activity counteracted the stimulatory effect of 15dPGJ2 on HO-1 expression in normal human neutrophils. Moreover, Ang II canceled 15dPGJ2-dependent induction of NOS2 mRNA synthesis. Present findings indicate that down-regulation of HO-1 expression in neutrophils from hypertensive subjects is likely exerted through the inhibition of NOS2 expression. Additionally, they underscore the potential usefulness of NO donors as new, therapeutic agents against hypertension.

  1. Top-Down Regulation, Climate and Multi-Decadal Changes in Coastal Zoobenthos Communities in Two Baltic Sea Areas

    PubMed Central

    Olsson, Jens; Bergström, Lena; Gårdmark, Anna

    2013-01-01

    The structure of many marine ecosystems has changed substantially during recent decades, as a result of overexploitation, climate change and eutrophication. Despite of the apparent ecological and economical importance of coastal areas and communities, this aspect has received relatively little attention in coastal systems. Here we assess the temporal development of zoobenthos communities in two areas on the Swedish Baltic Sea coast during 30 years, and relate their development to changes in climate, eutrophication and top-down regulation from fish. Both communities show substantial structural changes, with a decrease in marine polychaetes and species sensitive to increased water temperatures. Concurrently, opportunistic species tolerant to environmental perturbation have increased in abundance. Species composition show a similar temporal development in both communities and significant changes in species composition occurred in both data sets in the late 1980s and early 1990s. The change in species composition was associated with large scale changes in climate (salinity and water temperature) and to the structure of the local fish community, whereas we found no effects of nutrient loading or ambient nutrient concentrations. Our results suggest that these coastal zoobenthos communities have gone through substantial structural changes over the last 30 years, resulting in communities of different species composition with potentially different ecological functions. We hence suggest that the temporal development of coastal zoobenthos communities should be assessed in light of prevailing climatic conditions considering the potential for top-down effects exerted by local fish communities. PMID:23737998

  2. Andrographolide could inhibit human colorectal carcinoma Lovo cells migration and invasion via down-regulation of MMP-7 expression.

    PubMed

    Shi, Ming-Der; Lin, Hui-Hsuan; Chiang, Tai-An; Tsai, Li-Yu; Tsai, Shu-Mei; Lee, Yi-Chieh; Chen, Jing-Hsien

    2009-08-14

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to have potent anti-cancer activity against human colorectal carcinoma Lovo cells by inhibiting cell-cycle progression. To further investigate the mechanism for the anti-cancer properties of Andro, it was used to examine the effect on migration and invasion of Lovo cells. The results of wound-healing assay and in vitro transwell assay revealed that Andro inhibited dose-dependently the migration and invasion of Lovo cells under non-cytotoxic concentrations. Using zymographic assay and RT-PCR, the results revealed that Andro diminished the activity and the mRNA and protein levels of MMP-7, but not MMP-2 or MMP-9. The down-regulation of MMP-7 appeared to be via the inactivation of activator protein-1 (AP-1) since the treatment with Andro suppressed the nuclear protein level of AP-1, which was accompanied by a decrease in DNA-binding level of the factor. Taken together, these results indicated that Andro reduces the MMP-7-mediated cellular events in Lovo cells, and provided a new mechanism for its anti-cancer activity.

  3. Andrographolide inhibits osteopontin expression and breast tumor growth through down regulation of PI3 kinase/Akt signaling pathway.

    PubMed

    Kumar, S; Patil, H S; Sharma, P; Kumar, D; Dasari, S; Puranik, V G; Thulasiram, H V; Kundu, G C

    2012-09-01

    Breast cancer is one of the most common cancers among women in India and around the world. Despite recent advancement in the treatment of breast cancer, the results of chemotherapy to date remain unsatisfactory, prompting a need to identify natural agents that could target cancer efficiently with least side effects. Andrographolide (Andro) is one such molecule which has been shown to possess inhibitory effect on cancer cell growth. In this study, Andro, a natural diterpenoid lactone isolated from Andrographis paniculata has been shown to inhibit breast cancer cell proliferation, migration and arrest cell cycle at G2/M phase and induces apoptosis through caspase independent pathway. Our experimental evidences suggest that Andro attenuates endothelial cell motility and tumor-endothelial cell interaction. Moreover, Andro suppresses breast tumor growth in orthotopic NOD/SCID mice model. The anti-tumor activity of Andro in both in vitro and in vivo model was correlated with down regulation of PI3 kinase/Akt activation and inhibition of pro-angiogenic molecules such as OPN and VEGF expressions. Collectively, these results demonstrate that Andro may act as an effective anti-tumor and anti-angiogenic agent for the treatment of breast cancer.

  4. Down-regulation of uncoupling protein-3 and -2 by thiazolidinediones in C2C12 myotubes.

    PubMed

    Cabrero, A; Alegret, M; Sánchez, R M; Adzet, T; Laguna, J C; Vázquez, M

    2000-10-27

    Uncoupling proteins (UCPs) are mitochondrial membrane proton transporters that uncouple respiration from oxidative phosphorylation by dissipating the proton gradient across the membrane. We studied the direct effect of several peroxisome proliferator-activated receptor (PPAR) ligands on UCP-3 and UCP-2 mRNA expression in C2C12 myotubes for 24 h. In the absence of exogenous fatty acids, treatment of C2C12 cells with a selective PPARalpha activator (Wy-14,643) or a non-selective PPAR activator (bezafibrate) did not affect the expression of UCP-3 mRNA levels, whereas UCP-2 expression was slightly increased. In contrast, troglitazone, a thiazolidinedione which selectively activates PPARgamma, strongly decreased UCP-3 and UCP-2 mRNA levels. Another thiazolidinedione, ciglitazone, had the same effect, but to a lower extent, suggesting that PPARgamma activation is involved. Further, the presence of 0.5 mM oleic acid strongly increased UCP-3 mRNA levels and troglitazone addition failed to block the effect of this fatty acid. The drop in UCP expression after thiazolidinedione treatment correlated well with a reduction in PPARalpha mRNA levels produced by this drug, linking the reduction in PPARalpha mRNA levels with the down-regulation of UCP mRNA in C2C12 myotubes after thiazolidinedione treatment.

  5. Hippocampal microglial activation and glucocorticoid receptor down-regulation precipitate visceral hypersensitivity induced by colorectal distension in rats.

    PubMed

    Zhang, Gongliang; Zhao, Bing-Xue; Hua, Rong; Kang, Jie; Shao, Bo-Ming; Carbonaro, Theresa M; Zhang, Yong-Mei

    2016-03-01

    Visceral hypersensitivity is a common characteristic in patients suffering from irritable bowel syndrome (IBS) and other disorders with visceral pain. Although the pathogenesis of visceral hypersensitivity remains speculative due to the absence of pathological changes, the long-lasting sensitization in neuronal circuitry induced by early life stress may play a critical role beyond the digestive system even after complete resolution of the initiating event. The hippocampus integrates multiple sources of afferent inputs and sculpts integrated autonomic outputs for pain and analgesia regulation. Here, we examined the hippocampal mechanism in the pathogenesis of visceral hypersensitivity with a rat model induced by neonatal and adult colorectal distensions (CRDs). Neither neonatal nor adult CRD evoked behavioral abnormalities in adulthood; however, adult re-exposure to CRD induced persistent visceral hypersensitivity, depression-like behaviors, and spatial learning impairment in rats that experienced neonatal CRD. Rats that experienced neonatal and adult CRDs presented a decrease in hippocampal glucocorticoid receptor (GR) immunofluorescence staining and protein expression, and increases in hippocampal microglial activation and cytokine (IL-1β and TNF-α) accumulation. The decrease in hippocampal GR expression and increase in hippocampal IL-1β and TNF-α accumulation could be prevented by hippocampal local infusion of minocycline, a microglial inhibitor. These results suggest that neonatal CRD can increase the vulnerability of hippocampal microglia, and adult CRD challenge facilitates the hippocampal cytokine release from the sensitized microglia, which down-regulates hippocampal GR protein expression and, subsequently, precipitates visceral hypersensitivity.

  6. Down-regulation of photosynthesis following girdling, but contrasting effects on fruit set and retention, in two sweet cherry cultivars.

    PubMed

    Quentin, A G; Close, D C; Hennen, L M H P; Pinkard, E A

    2013-12-01

    Sweet cherry (Prunus avium) trees were manipulated to analyse the contribution of soluble sugars to sink feedback down-regulation of leaf net CO2 assimilation rate (Anet) and fruit set and quality attributes. Total soluble sugar concentration and Anet were measured in the morning on fully expanded leaves of girdled branches in two sweet cherry cultivars, 'Kordia' and 'Sylvia' characterised typically by low and high crop load, respectively. Leaves on girdled trees had higher soluble sugar concentrations and reduced Anet than leaves on non-girdled trees. Moreover, RuBP carboxylation capacity of Rubisco (Vcmax) and triose-phosphate utilisation (TPU) were repressed in the girdled treatments, despite Jmax remaining unchanged; suggesting an impairment of photosynthetic capacity in response to the girdling treatment. Leaf Anet was negatively correlated to soluble sugars, suggesting a sink feedback regulatory control of photosynthesis. Although there were significantly less fruit set and retained in 'Kordia' than 'Sylvia'; girdling had contrasting effects in each cultivar. Girdling significantly increased fruit set and fruitlet retention in 'Sylvia' cultivar, but had no effect in 'Kordia' cultivar. We propose that low inherent sink demand for photoassimilates of 'Kordia' fruit could have contributed to the low fruit retention rate, since both non-girdled and girdled trees exhibited similar retention rate and that increases in foliar carbohydrates was observed above the girdle. In 'Sylvia' cultivar, the carbohydrate status may be a limiting factor for 'Sylvia' fruit, since girdling improved both fruit set and retention, and leaf soluble solids accumulation.

  7. The effects of aging on pulmonary oxidative damage, protein nitration, and extracellular superoxide dismutase down-regulation during systemic inflammation.

    PubMed

    Starr, Marlene E; Ueda, Junji; Yamamoto, Shoji; Evers, B Mark; Saito, Hiroshi

    2011-01-15

    Systemic inflammatory response syndrome (SIRS), a serious clinical condition characterized by whole-body inflammation, is particularly threatening for elderly patients, who suffer much higher mortality rates than the young. A major pathological consequence of SIRS is acute lung injury caused by neutrophil-mediated oxidative damage. Previously, we reported an increase in protein tyrosine nitration (a marker of oxidative/nitrosative damage) and a decrease in the antioxidant enzyme extracellular superoxide dismutase (EC-SOD) in the lungs of young mice during endotoxemia-induced SIRS. Here we demonstrate that during endotoxemia, down-regulation of EC-SOD is significantly more profound and prolonged, whereas up-regulation of iNOS is augmented, in aged compared to young mice. Aged mice also showed 2.5-fold higher protein nitration levels, compared to young mice, with particularly strong nitration in the pulmonary vascular endothelium during SIRS. Additionally, by two-dimensional gel electrophoresis, Western blotting, and mass spectrometry, we identified proteins that show increased tyrosine nitration in age- and SIRS-dependent manners; these proteins (profilin-1, transgelin-2, LASP 1, tropomyosin, and myosin) include components of the actin cytoskeleton responsible for maintaining pulmonary vascular permeability. Reduced EC-SOD in combination with increased oxidative/nitrosative damage and altered cytoskeletal protein function due to tyrosine nitration may contribute to augmented lung injury in the aged with SIRS.

  8. miR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2.

    PubMed

    Xu, Ke; Liang, Xin; Shen, Ke; Cui, Daling; Zheng, Yuanhong; Xu, Jianhua; Fan, Zhongze; Qiu, Yanyan; Li, Qi; Ni, Lei; Liu, Jianwen

    2012-09-01

    Colorectal carcinoma is a frequent cause of cancer-related death in men and women. miRNAs (microRNAs) are endogenous small non-coding RNAs that regulate gene expression negatively at the post-transcriptional level. In the present study we investigated the possible role of microRNAs in the development of MDR (multidrug resistance) in colorectal carcinoma cells. We analysed miRNA expression levels between MDR colorectal carcinoma cell line HCT116/L-OHP cells and their parent cell line HCT116 using a miRNA microarray. miR-297 showed lower expression in HCT116/L-OHP cells compared with its parental cells. MRP-2 (MDR-associated protein 2) is an important MDR protein in platinum-drug-resistance cells and is a predicted target of miR-297. Additionally miR-297 was down-regulated in a panel of human colorectal carcinoma tissues and negatively correlated with expression levels of MRP-2. Furthermore, we found that ectopic expression of miR-297 in MDR colorectal carcinoma cells reduced MRP-2 protein level and sensitized these cells to anti-cancer drugs in vitro and in vivo. Taken together, our findings suggest that miR-297 could play a role in the development of MDR in colorectal carcinoma cells, at least in part by modulation of MRP-2.

  9. Down-Regulation of lncRNA-AK001085 and its Influences on the Diagnosis of Ankylosing Spondylitis

    PubMed Central

    Li, Xiang; Chai, Wei; Zhang, Guoqiang; Ni, Ming; Chen, Jiying; Dong, Jiyuan; Zhou, Yonggang; Hao, Libo; Bai, Yang; Wang, Yan

    2017-01-01

    Background Long non-coding RNAs (lncRNAs) have been confirmed to play an important role in the development and progression of diseases. Ankylosing spondylitis (AS) is a chronic inflammatory systemic disease and it is hard to be found in early time. The purpose of this study was to investigate the role of lncRNA-AK001085 in the diagnosis of AS. Material/Methods The expression of lncRNA-AK001085 was detected by quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The relationship between its expression and clinicopathologic characteristics was also analyzed. Meanwhile the correlation between lncRNA-AK001085 expression and diseases activity indexes was estimated. In addition, the value of it in the diagnosis of AS was explored through establishing receiver operating characteristic (ROC) curve. Results Serum lncRNA-AK001085 expression was decreased in patients with AS compared with healthy individuals. And its expression was proved to be influenced by ever cigarette smoker, exercise level and occupational activity level. Besides, the correlation of the expression of lncRNA-AK001085 and disease activity indexes (BASDI, ASDAS, ESR, CRP) were all negative, which suggested that the lncRNA-AK001085 was significantly lower in patients with a high disease activity score. It might showed that the expression of lncRNA-AK001085 affected the activity of AS. Conclusions LncRNA-AK001085 was down-regulated in AS patients and it could be an independent diagnostic indicator. PMID:28042142

  10. The vitamin C transporter SVCT2 is down-regulated during postnatal development of slow skeletal muscles.

    PubMed

    Sandoval, Daniel; Ojeda, Jorge; Low, Marcela; Nualart, Francisco; Marcellini, Sylvain; Osses, Nelson; Henríquez, Juan Pablo

    2013-06-01

    Vitamin C plays key roles in cell homeostasis, acting as a potent antioxidant as well as a positive modulator of cell differentiation. In skeletal muscle, the vitamin C/sodium co-transporter SVCT2 is preferentially expressed in oxidative slow fibers. Besides, SVCT2 is up-regulated upon the early fusion of primary myoblasts. However, our knowledge of the postnatal expression profile of SVCT2 remains scarce. Here we have analyzed the expression of SVCT2 during postnatal development of the chicken slow anterior and fast posterior latissimus dorsi muscles, ranging from day 7 to adulthood. SVCT2 expression is consistently higher in the slow than in the fast muscle at all stages. After hatching, SVCT2 expression is significantly down-regulated in the anterior latissimus dorsi, which nevertheless maintains a robust slow phenotype. Taking advantage of the C2C12 cell line to recapitulate myogenesis, we confirmed that SVCT2 is expressed in a biphasic fashion, reaching maximal levels upon early myoblasts fusion and decreasing during myotube growth. Together, these findings suggest that the dynamic expression levels of SVCT2 could be relevant for different features of skeletal muscle physiology, such as muscle cell formation, growth and activity.

  11. Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer's disease mouse model

    SciTech Connect

    Escribano, Luis; Simon, Ana-Maria; Perez-Mediavilla, Alberto; Salazar-Colocho, Pablo; Rio, Joaquin Del; Frechilla, Diana

    2009-02-06

    Clinical trials with rosiglitazone, a potent agonist at peroxisome proliferator-activated receptor gamma (PPAR{gamma}) suggest an improvement of cognitive function in Alzheimer's disease (AD) patients. The mechanisms mediating this potential beneficial effect remain to be fully elucidated. In mice overexpressing mutant human amyloid precursor protein (hAPP), a model of AD, we found that memory impairment in the object recognition test was prevented and also reversed by chronic rosiglitazone treatment. Given the possible involvement of glucocorticoid receptors (GR) in the actions of PPAR{gamma}-ligands, we studied the effect of chronic rosiglitazone treatment on GR levels in the hippocampus of hAPP mice. An early down-regulation of GR, not related to elevated plasma corticosterone levels, was found in different hippocampal subfields of the transgenic mice and this decrease was prevented by rosiglitazone. In parallel with behavioural studies, rosiglitazone also normalized GR levels in older animals. This effect may contribute to explain the attenuation of memory decline by PPAR{gamma} activation in an AD mouse model.

  12. Atorvastatin protected from paraquat-induced cytotoxicity in alveolar macrophages via down-regulation of TLR-4.

    PubMed

    Alizadeh-Tabrizi, Nazli; Malekinejad, Hassan; Varasteh, Soheil; Cheraghi, Hadi

    2017-01-01

    The current study designed to clarify the mechanism of paraquat-induced cytotoxicity and protective effects of Atorvastatin on freshly isolated alveolar macrophages (AMs). AMs were collected via bronchoalveolar lavage and exposed to various concentrations of paraquat in the presence and absence of atorvastatin for 24h. Cell viability, myeloperoxidase activity; nitric oxide generation and total antioxidant capacity were assessed. Expression of TLR-4 at mRNA and protein levels were studied by using PCR and western blot methods Atorvastatin enhanced the paraquat-reduced cell viability and reduced the paraquat-induced myeloperoxidase activity and nitric oxide production. Moreover, atorvastatin down-regulated by 60% the paraquat up-regulated expression of TLR-4 at protein and mRNA level. Our results suggest that, AMs in vitro model could be a novel cytological tool for studies on paraquat poisoning and therapy regimens. Additionally, atorvastatin cytoprotective effects on paraquat-induced cytotoxicity partly attribute to its anti-myeloperoxidase, antioxidant properties, which might be regulated via TLR-4 expression.

  13. Keratinocytes exposed to ultraviolet radiation reveal three down-regulated genes with potential function in differentiation and cell cycle control.

    PubMed

    Pötter, T; Göhde, W; Wedemeyer, N; Köhnlein, W

    2000-08-01

    The incidence of skin cancer is increasing in epidemic proportion. Although solar UV radiation is known to be the major risk factor, much information is lacking about the molecular mechanisms leading to skin cancer. To gain a deeper insight into these mechanisms, we have examined cells of a human keratinocyte cell line (HaCat) after exposure to 0.16 minimal erythema doses of UVB radiation. This dose led to an S-phase delay that was reversible 22 h postirradiation. To examine gene expression 10 h after UV irradiation, a nonradioactive differential display was employed. Three genes were identified as being down-regulated significantly. The first encodes for topoisomerase-IIbeta-binding protein 1 (expression level 5% 6 h after irradiation). This protein is associated with human topoisomerase IIbeta and appears to be necessary for DNA replication during the onset of S phase. The second gene product has previously been reported to be involved in differentiation and is therefore known as differentiation-dependent A4 protein (28% 8 h after irradiation). The third gene is XPO1 (also known as CRM1) (5% 8 h after irradiation), whose protein is involved in nuclear export of mRNA molecules. Differential expression of these genes after UV irradiation has not been reported. Because of their potential involvement in cell cycle control and differentiation, these proteins could be important for understanding the reaction of keratinocytes after exposure to UV radiation.

  14. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes

    PubMed Central

    Dou, Yongchao; Cha, Diana J.; Franklin, Jeffrey L.; Higginbotham, James N.; Jeppesen, Dennis K.; Weaver, Alissa M.; Prasad, Nripesh; Levy, Shawn; Coffey, Robert J.; Patton, James G.; Zhang, Bing

    2016-01-01

    Recent studies have shown that circular RNAs (circRNAs) are abundant, widely expressed in mammals, and can display cell-type specific expression. However, how production of circRNAs is regulated and their precise biological function remains largely unknown. To study how circRNAs might be regulated during colorectal cancer progression, we used three isogenic colon cancer cell lines that differ only in KRAS mutation status. Cellular RNAs from the parental DLD-1 cells that contain both wild-type and G13D mutant KRAS alleles and isogenically-matched derivative cell lines, DKO-1 (mutant KRAS allele only) and DKs-8 (wild-type KRAS allele only) were analyzed using RNA-Seq. We developed a bioinformatics pipeline to identify and evaluate circRNA candidates from RNA-Seq data. Hundreds of high-quality circRNA candidates were identified in each cell line. Remarkably, circRNAs were significantly down-regulated at a global level in DLD-1 and DKO-1 cells compared to DKs-8 cells, indicating a widespread effect of mutant KRAS on circRNA abundance. This finding was confirmed in two independent colon cancer cell lines HCT116 (KRAS mutant) and HKe3 (KRAS WT). In all three cell lines, circRNAs were also found in secreted extracellular-vesicles, and circRNAs were more abundant in exosomes than cells. Our results suggest that circRNAs may serve as promising cancer biomarkers. PMID:27892494

  15. Down-regulation of the Caffeic acid O-methyltransferase Gene in Switchgrass Reveals a Novel Monolignol Analog

    SciTech Connect

    Tschaplinski, Timothy J; Standaert, Robert F; Engle, Nancy L; Martin, Madhavi Z; Sangha, Amandeep K; Parks, Jerry M; Smith, Jeremy C; Samuel, Reichel; Pu, Yunqiao; Ragauskas, A J; Hamilton, Choo Yieng; Fu, Chunxiang; Wang, Zeng-Yu; Davison, Brian H; Dixon, Richard A; Mielenz, Jonathan R

    2012-01-01

    Down-regulation of the caffeic acid 3-O-methyltransferase (COMT) gene in the lignin biosynthetic pathway of switchgrass (Panicum virgatum) resulted in cell walls of transgenic plants releasing more constituent sugars after pretreatment by dilute acid and treatment with glycosyl hydrolases from an added enzyme preparation and from Clostridium thermocellum. Fermentation of both wild-type and transgenic switchgrass after milder hot water pretreatment with no water washing showed that only the transgenic switchgrass inhibited C. thermocellum. Gas chromatography-mass spectrometry-based metabolomics were undertaken on cell wall aqueous extracts to determine the nature of the microbial inhibitors, confirming the increased concentration of a number of phenolic acids and aldehydes that are known inhibitors of fermentation. Metabolomic analyses of the transgenic biomass additionally revealed the presence of a novel monolignol-like metabolite, identified as trans-3, 4-dimethoxy-5-hydroxycinnamyl alcohol (iso-sinapyl alcohol) in both non-pretreated, as well as hot water pretreated samples. Although there was no indication that iso-sinapyl alcohol was integrated into the cell wall, diversion of substrates from sinapyl alcohol to free iso-sinapyl alcohol, its glucoside, and associated upstream lignin pathway changes, including increased phenolic aldehydes and acids, are associated with more facile cell wall deconstruction, and to the observed inhibitory effect on microbial growth.

  16. Morphine-induced desensitization and down-regulation at mu-receptors in 7315C pituitary tumor cells

    SciTech Connect

    Puttfarcken, P.S.; Cox, B.M. )

    1989-01-01

    Pituitary 7315c tumor cells maintained in culture were treated with varying concentrations of morphine from 10 nM to 300 {mu}M, for periods of five or forty-eight hours. The ability of the mu-opioid receptor agonist, DAMGO, to inhibit forskolin-stimulated adenylyl cyclase in washed membrane preparations from the treated cells was compared with its activity in membranes from cells incubated in the absence of added morphine. In the same membrane preparations, the number and affinity of mu-opioid receptors was estimated by measurements of ({sup 3}H)diprenorphine binding. After 5 hr of treatment with morphine concentrations of 100 nM or higher, a significant reduction in inhibition of adenylyl cyclase by DAMGO was observed. Little further loss of agonist activity was observed when the incubations were extended to 48 hr. After 5 hr of morphine treatment, there was no change in either the number of receptors, or their affinity for ({sup 3}H)diprenorphine. However after 48 hr of morphine treatment, greater than 25% reductions in receptor number were apparent with morphine pretreatment concentrations of 10 {mu}M or higher. These results suggest that opioid tolerance in this system is primarily associated with a reduced ability of agonist-occupied receptor to activate the effector system. Receptor down-regulation was not necessary for loss of agonist response, although a reduction in receptor number occurred after exposure to high concentrations of morphine for periods longer than 5hr.

  17. Down-regulated Th17 Responses Are Associated with Reduced Gastritis in Helicobacter pylori-infected Children

    PubMed Central

    Bimczok, Diane; Shaffer, Carrie L.; Cover, Timothy L.; Venegas, Alejandro; Salazar, Maria G.; Smythies, Lesley E.; Harris, Paul R.; Smith, Phillip D.

    2013-01-01

    Helicobacter pylori induces less gastric inflammation in children than adults. Here we investigated whether this reduced inflammation involves dysregulated Th17 responses. H. pylori-infected children and adults in Santiago, Chile had similar levels of H. pylori colonization, proportions of bacteria containing cagA and s1/s2 vacA markers of virulence and strain genotypes (predominantly hpEurope), but the children had significantly reduced levels of gastric inflammation and neutrophil infiltration. The reduced neutrophil accumulation in infected children was accompanied by significantly fewer gastric Th17 cells and significantly lower levels of IL-17-specific mRNA and protein compared to infected adults. The gastric mucosa of H. pylori-infected children also contained higher numbers of IL-10+ cells and increased levels of both IL-10 and Foxp3 mRNA compared to that of infected adults. Thus, reduced gastric inflammation, including diminished neutrophil accumulation, in H. pylori-infected children compared with infected adults is likely due to down-regulated gastric Th17/IL-17 responses as a consequence of enhanced mucosal regulatory T cell activity in the children. PMID:23299619

  18. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins.

    PubMed

    Nakano, Ayako; Koinuma, Daizo; Miyazawa, Keiji; Uchida, Takafumi; Saitoh, Masao; Kawabata, Masahiro; Hanai, Jun-ichi; Akiyama, Hirotada; Abe, Masahiro; Miyazono, Kohei; Matsumoto, Toshio; Imamura, Takeshi

    2009-03-06

    Transforming growth factor-beta (TGF-beta) is crucial in numerous cellular processes, such as proliferation, differentiation, migration, and apoptosis. TGF-beta signaling is transduced by intracellular Smad proteins that are regulated by the ubiquitin-proteasome system. Smad ubiquitin regulatory factor 2 (Smurf2) prevents TGF-beta and bone morphogenetic protein signaling by interacting with Smads and inducing their ubiquitin-mediated degradation. Here we identified Pin1, a peptidylprolyl cis-trans isomerase, as a novel protein binding Smads. Pin1 interacted with Smad2 and Smad3 but not Smad4; this interaction was enhanced by the phosphorylation of (S/T)P motifs in the Smad linker region. (S/T)P motif phosphorylation also enhanced the interaction of Smad2/3 with Smurf2. Pin1 reduced Smad2/3 protein levels in a manner dependent on its peptidyl-prolyl cis-trans isomerase activity. Knockdown of Pin1 increased the protein levels of endogenous Smad2/3. In addition, Pin1 both enhanced the interaction of Smurf2 with Smads and enhanced Smad ubiquitination. Pin1 inhibited TGF-beta-induced transcription and gene expression, suggesting that Pin1 negatively regulates TGF-beta signaling by down-regulating Smad2/3 protein levels via induction of Smurf2-mediated ubiquitin-proteasomal degradation.

  19. RNA Interference based Approach to Down Regulate Osmoregulators of Whitefly (Bemisia tabaci): Potential Technology for the Control of Whitefly.

    PubMed

    Raza, Amir; Malik, Hassan Jamil; Shafiq, Muhammad; Amin, Imran; Scheffler, Jodi A; Scheffler, Brian E; Mansoor, Shahid

    2016-01-01

    Over the past decade RNA interference (RNAi) technology has emerged as a successful tool not only for functional genomics, but in planta expression of short interfering RNAs (siRNAs) that could offer great potential for insect pest management. The diet of insects feeding exclusively on phloem sieves contains water and sugars as main components, and the uptake of the liquid food greatly depends on the osmotic pressure within the insect body. Based on this physiological mechanism, transgenic plants of Nicotiana tabacum were generated expressing double stranded RNA (dsRNA) against both aquaporin (AQP) and a sucrase gene, alpha glucosidase (AGLU). These two genes are involved in osmotic pressure maintenance particularly in sap sucking insects, and the aim was to disrupt osmoregulation within the insect ultimately leading to mortality. Real time quantitative PCR (RT-qPCR) was performed to assess the suppression of gene expression in Bemisia tabaci (B. tabaci) and mortality was recorded during transgenic tobacco feeding bioassays. Feeding of insects on plants expressing dsRNA significantly reduced the transcript level of the target genes in B. tabaci after six days of feeding and more than 70% mortality was observed in B. tabaci fed on transgenic plants compared to the control plants. Our data shows that down-regulation of genes related to osmoregulation may find practical applications for the control of this important pest in cotton and other crops.

  20. NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction

    PubMed Central

    Braun, Burkhard R.; Kadosh, David; Johnson, Alexander D.

    2001-01-01

    In response to a variety of external signals, the fungal pathogen Candida albicans undergoes a transition between ellipsoidal single cells (blastospores) and filaments composed of elongated cells attached end-to-end. Here we identify a DNA-binding protein, Nrg1, that represses filamentous growth in Candida probably by acting through the co-repressor Tup1. nrg1 mutant cells are predominantly filamentous under non-filament-inducing conditions and their colony morphology resembles that of tup1 mutants. We also identify two filament-specific genes, ECE1 and HWP1, whose transcription is repressed by Nrg1 under non-inducing conditions. These genes constitute a subset of those under Tup1 control, providing further evidence that Nrg1 acts by recruiting Tup1 to target genes. We show that growth in serum at 37°C, a potent inducer of filamentous growth, causes a reduction of NRG1 mRNA, suggesting that filamentous growth is induced by the down-regulation of NRG1. Consistent with this idea, expression of NRG1 from a non-regulated promoter partially blocks the induction of filamentous growth. PMID:11532939

  1. Acute physiological stress down-regulates mRNA expressions of growth-related genes in coho salmon.

    PubMed

    Nakano, Toshiki; Afonso, Luis O B; Beckman, Brian R; Iwama, George K; Devlin, Robert H

    2013-01-01

    Growth and development in fish are regulated to a major extent by growth-related factors, such as liver-derived insulin-like growth factor (IGF) -1 in response to pituitary-secreted growth hormone (GH) binding to the GH receptor (GHR). Here, we report on the changes in the expressions of gh, ghr, and igf1 genes and the circulating levels of GH and IGF-1 proteins in juvenile coho salmon (Oncorhynchus kisutch) in response to handling as an acute physiological stressor. Plasma GH levels were not significantly different between stressed fish and prestressed control. Plasma IGF-1 concentrations in stressed fish 1.5 h post-stress were the same as in control fish, but levels in stressed fish decreased significantly 16 h post-stress. Real-time quantitative PCR (qPCR) analysis showed that ghr mRNA levels in pituitary, liver, and muscle decreased gradually in response to the stressor. After exposure to stress, hepatic igf1 expression transiently increased, whereas levels decreased 16 h post-stress. On the other hand, the pituitary gh mRNA level did not change in response to the stressor. These observations indicate that expression of gh, ghr, and igf1 responded differently to stress. Our results show that acute physiological stress can mainly down-regulate the expressions of growth-related genes in coho salmon in vivo. This study also suggests that a relationship between the neuroendocrine stress response and growth-related factors exists in fish.

  2. Acute Physiological Stress Down-Regulates mRNA Expressions of Growth-Related Genes in Coho Salmon

    PubMed Central

    Nakano, Toshiki; Afonso, Luis O. B.; Beckman, Brian R.; Iwama, George K.; Devlin, Robert H.

    2013-01-01

    Growth and development in fish are regulated to a major extent by growth-related factors, such as liver-derived insulin-like growth factor (IGF) -1 in response to pituitary-secreted growth hormone (GH) binding to the GH receptor (GHR). Here, we report on the changes in the expressions of gh, ghr, and igf1 genes and the circulating levels of GH and IGF-1 proteins in juvenile coho salmon (Oncorhynchus kisutch) in response to handling as an acute physiological stressor. Plasma GH levels were not significantly different between stressed fish and prestressed control. Plasma IGF-1 concentrations in stressed fish 1.5 h post-stress were the same as in control fish, but levels in stressed fish decreased significantly 16 h post-stress. Real-time quantitative PCR (qPCR) analysis showed that ghr mRNA levels in pituitary, liver, and muscle decreased gradually in response to the stressor. After exposure to stress, hepatic igf1 expression transiently increased, whereas levels decreased 16 h post-stress. On the other hand, the pituitary gh mRNA level did not change in response to the stressor. These observations indicate that expression of gh, ghr, and igf1 responded differently to stress. Our results show that acute physiological stress can mainly down-regulate the expressions of growth-related genes in coho salmon in vivo. This study also suggests that a relationship between the neuroendocrine stress response and growth-related factors exists in fish. PMID:23990952

  3. EVI1-mediated down regulation of MIR449A is essential for the survival of EVI1 positive leukaemic cells.

    PubMed

    De Weer, An; Van der Meulen, Joni; Rondou, Pieter; Taghon, Tom; Konrad, Torsten A; De Preter, Katleen; Mestdagh, Pieter; Van Maerken, Tom; Van Roy, Nadine; Jeison, Marta; Yaniv, Isaac; Cauwelier, Barbara; Noens, Lucien; Poirel, Hélène-Antoine; Vandenberghe, Peter; Lambert, Frédéric; De Paepe, Anne; Sánchez, Maria García; Odero, Maria; Verhasselt, Bruno; Philippé, Jan; Vandesompele, Joke; Wieser, Rotraud; Dastugue, Nicole; Van Vlierberghe, Pieter; Poppe, Bruce; Speleman, Frank

    2011-08-01

    Chromosomal rearrangements involving the MECOM (MDS1 and EVI1 complex) locus are recurrent genetic events in myeloid leukaemia and are associated with poor prognosis. In this study, we assessed the role of MECOM locus protein EVI1 in the transcriptional regulation of microRNAs (miRNAs) involved in the leukaemic phenotype. For this, we profiled expression of 366 miRNAs in 38 MECOM-rearranged patient samples, normal bone marrow controls and MECOM (EVI1) knock down/re-expression models. Cross-comparison of these miRNA expression profiling data showed that MECOM rearranged leukaemias are characterized by down regulation of MIR449A. Reconstitution of MIR449A expression in MECOM-rearranged cell line models induced apoptosis resulting in a strong decrease in cell viability. These effects might be mediated in part by MIR449A regulation of NOTCH1 and BCL2, which are shown here to be bona fide MIR449A targets. Finally, we confirmed that MIR449A repression is mediated through direct promoter occupation of the EVI1 transcriptional repressor. In conclusion, this study reveals MIR449A as a crucial direct target of the MECOM locus protein EVI1 involved in the pathogenesis of MECOM-rearranged leukaemias and unravels NOTCH1 and BCL2 as important novel targets of MIR449A. This EVI1-MIR449A-NOTCH1/BCL2 regulatory axis might open new possibilities for the development of therapeutic strategies in this poor prognostic leukaemia subgroup.

  4. Down-regulation of mechanisms involved in cell transport and maintenance of mucosal integrity in pigs infected with Lawsonia intracellularis

    PubMed Central

    2014-01-01

    Lawsonia intracellularis is an obligate intracellular bacterium, responsible for the disease complex known as proliferative enteropathy (PE). L. intracellularis is associated with intestinal crypt epithelial cell proliferation but the mechanisms responsible are yet to be defined. Microarray analysis was used to investigate the host-pathogen interaction in experimentally infected pigs to identify pathways that may be involved. Ileal samples originating from twenty-eight weaner pigs experimentally challenged with a pure culture of L. intracellularis (strain LR189/5/83) were subjected to microarray analysis. Microarray transcriptional signatures were validated using immunohistochemistry and quantitative real time PCR of selected genes at various time points post challenge. At peak of infection (14 days post challenge) 86% of altered transcripts were down regulated, particularly those involved in maintenance of mucosal integrity and regulation of cell transport. Among the up-regulated transcripts, CD163 and CDK1 were novel findings and considered to be important, due to their respective roles in innate immunity and cellular proliferation. Overall, targeted cellular mechanisms included those that are important in epithelial restitution, migration and protection; maintenance of stable inter-epithelial cell relationships; cell transport of nutrients and electrolytes; innate immunity; and cell cycle. PMID:24885874

  5. Down-regulation of ARNT promotes cancer metastasis by activating the fibronectin/integrin β1/FAK axis

    PubMed Central

    Huang, Chi-Ruei; Lee, Chung-Ta; Chang, Kwang-Yu; Chang, Wen-Chang; Liu, Yao-Wen; Lee, Jenq-Chang; Chen, Ben-Kuen

    2015-01-01

    The aryl hydrocarbon receptor nuclear translocator (ARNT) is broadly involved in regulating tumorigenesis by inducing genes that are involved in tumor growth and angiogenesis. Tumorigenesis usually involves normoxic conditions. However, the role of ARNT in tumor metastasis during normoxia remains unclear. Here, we demonstrate that ARNT protein levels were decreased in late-stage human colorectal cancer using immunohistochemical analysis. Down-regulation of ARNT protein promoted cancer cell migration and invasion, which was mediated by activation of the fibronectin/integrin β1/FAK signaling axis. In addition, the enhancement of migration and invasion in ANRT knockdown cells was blocked when ARNT was restored in the cells. In xenografts in severe combined immunodeficiency mice, tumor growth was significantly inhibited in the ARNT-knockdown condition. However, the tail-vein injection animal model revealed that the depletion of ARNT-induced metastatic lung colonies was further enhanced when ARNT expression was recovered post-injection. Interestingly, chemotherapeutic drugs inhibited ARNT expression and promoted the invasion of residual tumor cells. These results suggest that ARNT may play a positive role during tumor growth (either in early-stage tumor growth or in organ metastases), but plays a negative role in tumor migration and invasion. Therefore, the efficiency of ARNT-targeted therapy during different cancer stages should be carefully evaluated. PMID:25839165

  6. RNA Interference based Approach to Down Regulate Osmoregulators of Whitefly (Bemisia tabaci): Potential Technology for the Control of Whitefly

    PubMed Central

    Raza, Amir; Malik, Hassan Jamil; Shafiq, Muhammad; Amin, Imran; Scheffler, Jodi A.; Scheffler, Brian E.; Mansoor, Shahid

    2016-01-01

    Over the past decade RNA interference (RNAi) technology has emerged as a successful tool not only for functional genomics, but in planta expression of short interfering RNAs (siRNAs) that could offer great potential for insect pest management. The diet of insects feeding exclusively on phloem sieves contains water and sugars as main components, and the uptake of the liquid food greatly depends on the osmotic pressure within the insect body. Based on this physiological mechanism, transgenic plants of Nicotiana tabacum were generated expressing double stranded RNA (dsRNA) against both aquaporin (AQP) and a sucrase gene, alpha glucosidase (AGLU). These two genes are involved in osmotic pressure maintenance particularly in sap sucking insects, and the aim was to disrupt osmoregulation within the insect ultimately leading to mortality. Real time quantitative PCR (RT-qPCR) was performed to assess the suppression of gene expression in Bemisia tabaci (B. tabaci) and mortality was recorded during transgenic tobacco feeding bioassays. Feeding of insects on plants expressing dsRNA significantly reduced the transcript level of the target genes in B. tabaci after six days of feeding and more than 70% mortality was observed in B. tabaci fed on transgenic plants compared to the control plants. Our data shows that down-regulation of genes related to osmoregulation may find practical applications for the control of this important pest in cotton and other crops. PMID:27105353

  7. Down-regulation of tumor endothelial marker 8 suppresses cell proliferation mediated by ERK1/2 activity

    PubMed Central

    Cao, Chuangjie; Wang, Zhuo; Huang, Leilei; Bai, Lihong; Wang, Yuefeng; Liang, Yingjie; Dou, Chengyun; Wang, Liantang

    2016-01-01

    Tumor endothelial marker 8 (TEM8) was recently suggested as a putative anti-tumor target in several types of human cancer based on its selective overexpression in tumor versus normal endothelial cells. The objective of this study was to detect the potential functions of TEM8 in osteosarcoma. Overall, TEM8 was mainly located in cytoplasm and was up-regulated in osteosarcoma compared to benign bone lesions and adjacent non tumor tissue (ANT). High TEM8 expression group had a significant lower overall survival rate than that in the low TEM8 expression group. TEM8 knock-down by siRNA or shRNA results in significant reduction of osteosarcoma cell growth and proliferation both in vitro and in vivo. Ablation of TEM8 led to increasing of p21 and p27 and suppression of cyclin D1 mediated by Erk1/2 activity. These findings suggest that down-regulation of TEM8 play an important role in the inhibition of tumorigenesis and development of osteosarcoma. PMID:26996335

  8. Natural product ginsenoside 25-OCH3-PPD inhibits breast cancer growth and metastasis through down-regulating MDM2.

    PubMed

    Wang, Wei; Zhang, Xu; Qin, Jiang-Jiang; Voruganti, Sukesh; Nag, Subhasree Ashok; Wang, Ming-Hai; Wang, Hui; Zhang, Ruiwen

    2012-01-01

    Although ginseng and related herbs have a long history of utility for various health benefits, their application in cancer therapy and underlying mechanisms of action are not fully understood. Our recent work has shown that 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol (25-OCH(3)-PPD), a newly identified ginsenoside from Panax notoginseng, exerts activities against a variety of cancer cells in vitro and in vivo. This study was designed to investigate its anti-breast cancer activity and the underlying mechanisms of action. We observed that 25-OCH(3)-PPD decreased the survival of breast cancer cells by induction of apoptosis and G1 phase arrest and inhibited the growth of breast cancer xenografts in vivo. We further demonstrated that, in a dose- and time-dependent manner, 25-OCH(3)-PPD inhibited MDM2 expression at both transcriptional and post-translational levels in human breast cancer cells with various p53 statuses (wild type and mutant). Moreover, 25-OCH(3)-PPD inhibited in vitro cell migration, reduced the expression of epithelial-to-mesenchymal transition (EMT) markers, and prevented in vivo metastasis of breast cancer. In summary, 25-OCH(3)-PPD is a potential therapeutic and anti-metastatic agent for human breast cancer through down-regulating MDM2. Further preclinical and clinical development of this agent is warranted.

  9. N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation.

    PubMed

    Guo, Guoli; Yao, Guangmin; Zhan, Guanqun; Hu, Yufeng; Yue, Ming; Cheng, Ling; Liu, Yaping; Ye, Qi; Qing, Guoliang; Zhang, Yonghui; Liu, Hudan

    2014-11-01

    We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis. NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes.

  10. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    PubMed Central

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jose R.

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Delivered RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1, and OPR) in the hemi-biotrophic fungus F. oxysporum f. sp. conglutinans. Expression of double stranded RNA (dsRNA) molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75, 83, and 72% reduction for FOW2, FRP1, and OPR, respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30–50% survival and OPR between 45 and 70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants. PMID:25654075

  11. Engagement of the T-cell receptor during positive selection in the thymus down-regulates RAG-1 expression.

    PubMed Central

    Brändle, D; Müller, C; Rülicke, T; Hengartner, H; Pircher, H

    1992-01-01

    We have examined the expression of the recombination activating gene RAG-1 by in situ hybridization to thymi from mice bearing transgenes for the T-cell receptor (TCR) alpha chain, TCR beta chain, or both TCR alpha and beta chains. RAG-1 transcription was found in the thymic cortex of transgenic mice carrying a single TCR alpha- or TCR beta-chain transgene, comparable to normal mice. However, RAG-1 transcription was strikingly reduced in the thymic cortex from transgenic mice carrying both TCR alpha- and beta-chain genes and expressing major histocompatibility complex (MHC) class I (H-2b) molecules necessary for positive selection of the transgenic TCR. In contrast, thymi of transgenic mice also carrying both TCR alpha- and beta-chain genes but expressing MHC molecules (H-2d) that did not positively select the transgenic TCR displayed high levels of RAG-1 transcription. The low thymic RAG-1 expression coincided with high transgenic TCR alpha-chain surface expression and with inhibition of endogenous TCR alpha-chain rearrangement. Our findings suggest that binding of the TCR to self MHC molecules during positive selection down-regulates RAG-1 transcription in cortical thymocytes and thereby prevents further TCR alpha-chain rearrangements. Images PMID:1329099

  12. Whole genome methylation array reveals the down-regulation of IGFBP6 and SATB2 by HIV-1.

    PubMed

    Zhang, Yinfeng; Li, Sai-Kam; Yi Yang, Kevin; Liu, Minghua; Lee, Nelson; Tang, Xian; Wang, Hui; Liu, Li; Chen, Zhiwei; Zhang, Chiyu; Wang, Jianhua; Kwok-Wing Tsui, Stephen

    2015-06-03

    Nowadays, the knowledge in DNA methylation-mediated gene regulation has shed light on the understanding of virus-host interplay in the context of genome alteration. It has also been shown that HIV is able to change the DNA methylation pattern by DNA methyltransferases and such changes can be correlated with the progression of AIDS. In this study, we have investigated the relationship between genome-wide DNA methylation pattern and HIV infection using the methylated DNA immunoprecipitation--microarray method. A pair of monozygotic twins was recruited: one of the twins was infected with HIV while the other was not. Based on data from the microarray experiment, 4679 differentially methylated regions in the HIV positive subject with the significant peak values were identified. Selected genes were then validated in human T lymphocyte CEM*174 cell line and HIV/AIDS patients by comparing with normal subjects. We found that IGFBP6 and SATB2 were significantly down-regulated in HIV-infected CEM*174 cells and 3 different cohorts of HIV/AIDS patients while their promoters were predominantly hyper-methylated compared with normal controls. This study also provides a resource for the identification of HIV-induced methylation and contributes to better understanding of the development of HIV/AIDS.

  13. Interleukin-8 Regulates Endothelial Permeability by Down-regulation of Tight Junction but not Dependent on Integrins Induced Focal Adhesions

    PubMed Central

    Yu, Hongchi; Huang, Xianliang; Ma, Yunlong; Gao, Min; Wang, Ou; Gao, Ting; Shen, Yang; Liu, Xiaoheng

    2013-01-01

    Interleukin-8 (IL-8) is a common inflammatory factor, which involves in various non-specific pathological processes of inflammation. It has been found that increased endothelial permeability accompanied with high expression of IL-8 at site of injured endothelium and atherosclerotic plaque at early stages, suggesting that IL-8 participated in regulating endothelial permeability in the developing processes of vascular disease. The purpose of this study is to investigate the regulation effects of IL-8 on the vascular endothelial permeability, and the mRNA and protein expression of tight junction components (i.e., ZO-1, Claudin-5 and Occludin). Endothelial cells were stimulated by IL-8 with the dose of 50, 100 and 200 ng/mL, and duration of 2, 4, 6, 8h, respectively. The mRNA and protein expression level of tight junction components with IL-8 under different concentration and duration was examined by RT-PCR and Western blot, respectively. Meanwhile, the integrins induced focal adhesions event with IL-8 stimulation was also investigated. The results showed that IL-8 regulated the permeability of endothelium by down-regulation of tight junction in a dose- and time-dependence manner, but was not by integrins induced focal adhesions. This finding reveals the molecular mechanism in the increase of endothelial cell permeability induced by IL-8, which is expected to provide a new idea as a therapeutic target in vascular diseases. PMID:24155670

  14. SOHLH1 and SOHLH2 directly down-regulate STIMULATED BY RETINOIC ACID 8 (STRA8) expression.

    PubMed

    Desimio, M G; Campolo, F; Dolci, S; De Felici, M; Farini, D

    2015-01-01

    As the name implies, Stimulated by Retinoic Acid 8 is an early retinoic acid (RA) responsive gene pivotal for the beginning of meiosis in female and male germ cells. Its expression is strictly time-dependent and cell-specific (pre-meiotic germ cells) and likely requires a complex mechanism of regulation. In this study, we demonstrate a direct negative control of SOHLH1 and SOHLH2, 2 germ cell specific bHLH transcription factors, on Stra8 expression. We observed a negative correlation between STRA8 and SOHLH1 expression in prepuberal differentiating mouse KIT(+) spermatogonia and found that SOHLH1 and SOHLH2 were able to directly and cooperatively repress STRA8 expression in cell lines in vitro through binding to its promoter. We also identified 2 canonical E-Box motives in the Stra8 promoter that mediated the negative regulation of SOHLH1 and SOHLH2 on these gene both in the cell lines and KIT(+) spermatogonia. We hypothesize that this novel negative activity of SOHLH1 and SOHLH2 in male cooperates with that of other transcription factors to coordinate spermatogonia differentiation and the RA-induced meiosis and in female ensures STRA8 down-regulation at mid-end stages of meiotic prophase I.

  15. [Phenylhexyl isothiocyanate induces gene p15 demethylation by down-regulating DNA methyltransferases in Molt-4 cells].

    PubMed

    Jiang, Shao-hong; Ma, Xu-dong; Huang, Yi-qun; Xu, Yun-lu; Zheng, Rui-ji

    2009-04-01

    This study is to investigate the effect of phenylhexyl isothiocyanate (PHI), which has been proved to be a novel histone deacetylase inhibitor (HDACi) recently, on gene p15 de novo expression in acute leukemia cell line Molt-4, and to further study its potential mechanism. Modified methylation specific PCR (MSP) was used to screen p15-M and p15-U mRNA. DNA methyltransferasel (DNMT1), 3A (DNMT3A), 3B (DNMT3B) and p15 mRNA were measured by RT-PCR. P15 protein was detected by Western blotting. Hypermethylation of gene p15 was reversed and activation transcription of gene p15 in Molt-4 was de novo after 5 days exposure to PHI in a concentration dependent manner. DNMT1 and DNMT3B were inhibited by exposure to PHI for 5 days (P < 0.05). Alteration of DNMT3A was not significant. It is showed that PHI could reverse hypermethylation of gene p15 and transcriptional activation of gene p15 is de novo by PHI. It may result from down-regulating DNA methyltransferases, DNMT1 and DNMT3B, or up-regulating the histone acetylation that allows chromatin unfolding and the accessibility of regulators for transcriptional activation in the p15 promoter.

  16. Acute stress induces down-regulation of large-conductance Ca2+-activated potassium channels in the lateral amygdala

    PubMed Central

    Guo, Yan-yan; Liu, Shui-bing; Cui, Guang-Bin; Ma, Lan; Feng, Bin; Xing, Jiang-hao; Yang, Qi; Li, Xiao-qiang; Wu, Yu-mei; Xiong, Li-ze; Zhang, Weiqi; Zhao, Ming-gao

    2012-01-01

    Large-conductance Ca2+-activated potassium channels (BKCa) are highly expressed in the lateral amygdala (LA), which is closely involved in assigning stress disorders, but data on their role in the neuronal circuits of stress disorders are limited. In the present study, a significant reduction in BKCa channel expression in the amygdala of mice accompanied anxiety-like behaviour induced by acute stress. Whole-cell patch-clamp recordings from LA neurons of the anxious animals revealed a pronounced reduction in the fast after-hyperpolarization (fAHP) of action potentials mediated by BKCa channels that led to hyperexcitability of the LA neurons. Activation of BKCa channels in the LA reversed stress-induced anxiety-like behaviour after stress. Furthermore, down-regulated BKCa channels notably increased the evoked NMDA receptor-mediated excitatory postsynaptic potentials at the thalamo-LA synapses. These data demonstrate, for the first time, that restraint stress-induced anxiety-like behaviour could at least partly be explained by alterations in the functional BKCa channels in the LA. PMID:22199169

  17. Target of rapamycin signaling mediates vacuolar fragmentation.

    PubMed

    Stauffer, Bobbiejane; Powers, Ted

    2017-02-01

    In eukaryotic cells, cellular homeostasis requires that different organelles respond to intracellular as well as environmental signals and modulate their behavior as conditions demand. Understanding the molecular mechanisms required for these changes remains an outstanding goal. One such organelle is the lysosome/vacuole, which undergoes alterations in size and number in response to environmental and physiological stimuli. Changes in the morphology of this organelle are mediated in part by the equilibrium between fusion and fission processes. While the fusion of the yeast vacuole has been studied intensively, the regulation of vacuolar fission remains poorly characterized by comparison. In recent years, a number of studies have incorporated genome-wide visual screens and high-throughput microscopy to identify factors required for vacuolar fission in response to diverse cellular insults, including hyperosmotic and endoplasmic reticulum stress. Available evidence now demonstrates that the rapamycin-sensitive TOR network, a master regulator of cell growth, is required for vacuolar fragmentation in response to stress. Importantly, many of the genes identified in these studies provide new insights into potential links between the vacuolar fission machinery and TOR signaling. Together these advances both extend our understanding of the regulation of vacuolar fragmentation in yeast as well as underscore the role of analogous events in mammalian cells.

  18. Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function.

    PubMed

    Romanino, Klaas; Mazelin, Laetitia; Albert, Verena; Conjard-Duplany, Agnès; Lin, Shuo; Bentzinger, C Florian; Handschin, Christoph; Puigserver, Pere; Zorzato, Francesco; Schaeffer, Laurent; Gangloff, Yann-Gaël; Rüegg, Markus A

    2011-12-20

    Mammalian target of rapamycin complex 1 (mTORC1) is central to the control of cell, organ, and body size. Skeletal muscle-specific inactivation of mTORC1 in mice results in smaller muscle fibers, fewer mitochondria, increased glycogen stores, and a progressive myopathy that causes premature death. In mTORC1-deficient muscles, peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), which regulates mitochondrial biogenesis and glucose homeostasis, is strongly down-regulated. Here we tested whether induction of mitochondrial biogenesis pharmacologically or by the overexpression of PGC-1α is sufficient to reverse the phenotype of mice deficient for mTORC1. We show that both approaches normalize mitochondrial function, such as oxidative capacity and expression of mitochondrial genes. However, they do not prevent or delay the progressive myopathy. In addition, we find that mTORC1 has a much stronger effect than PGC-1α on the glycogen content in muscle. This effect is based on the strong activation of PKB/Akt in mTORC1-deficient mice. We also show that activation of PKB/Akt not only affects glycogen synthesis but also diminishes glycogen degradation. Thus, our work provides strong functional evidence that mitochondrial dysfunction in mice with inactivated mTORC1 signaling is caused by the down-regulation of PGC-1α. However, our data also show that the impairment of mitochondria does not lead directly to the lethal myopathy.

  19. Rapamycin (Sirolimus) alters mechanistic target of rapamycin pathway regulation and microRNA expression in mouse meiotic spermatocytes.

    PubMed

    Mukherjee, A; Koli, S; Reddy, K V R

    2015-09-01

    Mechanistic target of rapamycin (mTOR) is a signal transduction pathway that modulates translation initiation in several animals including mammals. Rapamaycin, an allosteric inhibitor of mTOR pathway, is often used as an immunosuppressive drug following kidney transplantation and causes gonadal dysfunction and defects in spermatogenesis. The molecular mechanism behind rapamycin-mediated testicular dysfunction is not known. We have therefore explored the contribution of rapamycin in mTOR regulation and microRNA (miRNA) expression in mouse spermatocytes, the intermediate stage of spermatogenesis, where meiosis takes place. In the present study, we optimized the isolation of highly pure and viable spermatocytes by flow sorting, treated them with rapamycin, and investigated the expression of mTOR and downstream effector molecules. Western blot and immunocytochemical analysis confirm that rapamycin treatment suppresses mTOR and phopsphorylated P70S6 kinase activities in spermatocytes, but not that of phosphorylated 4E-binding protein 1. Also, rapamycin treatment modulates the expression of several spermatocyte-specific miRNAs. To complement these finding an in vivo study was also performed. In silico prediction of target genes of these miRNAs and their functional pathway analysis revealed that, several of them are involved in crucial biological process, cellular process and catalytic activities. miRNA-transcription factor (TF) network analysis enlisted different TFs propelling the transcription machineries of these miRNAs. In silico prediction followed by quatitative real-time PCR revealed two of these TFs namely, PU.1 and CCCTC binding factor (CTCF) are down and upregulated, respectively, which may be the reason of the altered expression of miRNAs following rapamycin treatment. In conclusion, for the first time, the present study provides insight into how rapamycin regulates mTOR pathway and spermatocyte-specific miRNA expression which in turn, regulate expression of

  20. CD4+ NKG2D+ T cells induce NKG2D down-regulation in natural killer cells in CD86-RAE-1ε transgenic mice

    PubMed Central

    Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan

    2014-01-01

    The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4+ NKG2D+ T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset. PMID:24708417

  1. Expression of Fragaria vesca PIP Aquaporins in Response to Drought Stress: PIP Down-Regulation Correlates with the Decline in Substrate Moisture Content

    PubMed Central

    Šurbanovski, Nada; Sargent, Daniel J.; Else, Mark A.; Simpson, David W.; Zhang, Hanma; Grant, Olga M.

    2013-01-01

    PIP aquaporin responses to drought stress can vary considerably depending on the isoform, tissue, species or level of stress; however, a general down-regulation of these genes is thought to help reduce water loss and prevent backflow of water to the drying soil. It has been suggested therefore, that it may be necessary for the plant to limit aquaporin production during drought stress, but it is unknown whether aquaporin down-regulation is gradual or triggered by a particular intensity of the stress. In this study, ten Fragaria PIP genes were identified from the woodland strawberry (Fragaria vesca L.) genome sequence and characterised at the sequence level. The water relations of F. vesca were investigated and the effect of different intensities of drought stress on the expression of four PIP genes, as well as how drought stress influences their diurnal transcription was determined. PIP down-regulation in the root corresponded to the level of drought stress. Moreover, transcript abundance of two genes highly expressed in the root (FvPIP1;1 and FvPIP2;1) was strongly correlated to the decline in substrate moisture content. The amplitude of diurnal aquaporin expression in the leaves was down-regulated by drought without altering the pattern, but showing an intensity-dependent effect. The results show that transcription of PIP aquaporins can be fine-tuned with the environment in response to declining water availability. PMID:24086403

  2. Expression of Fragaria vesca PIP aquaporins in response to drought stress: PIP down-regulation correlates with the decline in substrate moisture content.

    PubMed

    Šurbanovski, Nada; Sargent, Daniel J; Else, Mark A; Simpson, David W; Zhang, Hanma; Grant, Olga M

    2013-01-01

    PIP aquaporin responses to drought stress can vary considerably depending on the isoform, tissue, species or level of stress; however, a general down-regulation of these genes is thought to help reduce water loss and prevent backflow of water to the drying soil. It has been suggested therefore, that it may be necessary for the plant to limit aquaporin production during drought stress, but it is unknown whether aquaporin down-regulation is gradual or triggered by a particular intensity of the stress. In this study, ten Fragaria PIP genes were identified from the woodland strawberry (Fragaria vesca L.) genome sequence and characterised at the sequence level. The water relations of F. vesca were investigated and the effect of different intensities of drought stress on the expression of four PIP genes, as well as how drought stress influences their diurnal transcription was determined. PIP down-regulation in the root corresponded to the level of drought stress. Moreover, transcript abundance of two genes highly expressed in the root (FvPIP1;1 and FvPIP2;1) was strongly correlated to the decline in substrate moisture content. The amplitude of diurnal aquaporin expression in the leaves was down-regulated by drought without altering the pattern, but showing an intensity-dependent effect. The results show that transcription of PIP aquaporins can be fine-tuned with the environment in response to declining water availability.

  3. AKAP150 participates in calcineurin/NFAT activation during the down-regulation of voltage-gated K(+) currents in ventricular myocytes following myocardial infarction.

    PubMed

    Nieves-Cintrón, Madeline; Hirenallur-Shanthappa, Dinesh; Nygren, Patrick J; Hinke, Simon A; Dell'Acqua, Mark L; Langeberg, Lorene K; Navedo, Manuel; Santana, Luis F; Scott, John D

    2016-07-01

    The Ca(2+)-responsive phosphatase calcineurin/protein phosphatase 2B dephosphorylates the transcription factor NFATc3. In the myocardium activation of NFATc3 down-regulates the expression of voltage-gated K(+) (Kv) channels after myocardial infarction (MI). This prolongs action potential duration and increases the probability of arrhythmias. Although recent studies infer that calcineurin is activated by local and transient Ca(2+) signals the molecular mechanism that underlies the process is unclear in ventricular myocytes. Here we test the hypothesis that sequestering of calcineurin to the sarcolemma of ventricular myocytes by the anchoring protein AKAP150 is required for acute activation of NFATc3 and the concomitant down-regulation of Kv channels following MI. Biochemical and cell based measurements resolve that approximately 0.2% of the total calcineurin activity in cardiomyocytes is associated with AKAP150. Electrophysiological analyses establish that formation of this AKAP150-calcineurin signaling dyad is essential for the activation of the phosphatase and the subsequent down-regulation of Kv channel currents following MI. Thus AKAP150-mediated targeting of calcineurin to sarcolemmal micro-domains in ventricular myocytes contributes to the local and acute gene remodeling events that lead to the down-regulation of Kv currents.

  4. CD4(+) NKG2D(+) T cells induce NKG2D down-regulation in natural killer cells in CD86-RAE-1ε transgenic mice.

    PubMed

    Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan

    2014-03-01

    The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4(+) NKG2D(+) T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset.

  5. Ketogenic HMGCS2 Is a c-Myc target gene expressed in differentiated cells of human colonic epithelium and down-regulated in colon cancer.

    PubMed

    Camarero, Nuria; Mascaró, Cristina; Mayordomo, Cristina; Vilardell, Felip; Haro, Diego; Marrero, Pedro F

    2006-09-01

    HMGCS2, the gene that regulates ketone body production, is expressed in liver and several extrahepatic tissues, such as the colon. In CaCo-2 colonic epithelial cells, the expression of this gene increases with cell differentiation. Accordingly, immunohistochemistry with specific antibodies shows that HMGCS2 is expressed mainly in differentiated cells of human colonic epithelium. Here, we used a chromatin immunoprecipitation assay to study the molecular mechanism responsible for this expression pattern. The assay revealed that HMGCS2 is a direct target of c-Myc, which represses HMGCS2 transcriptional activity. c-Myc transrepression is mediated by blockade of the transactivating activity of Miz-1, which occurs mainly through a Sp1-binding site in the proximal promoter of the gene. Accordingly, the expression of human HMGCS2 is down-regulated in 90% of Myc-dependent colon and rectum tumors. HMGCS2 protein expression is down-regulated preferentially in moderately and poorly differentiated carcinomas. In addition, it is also down-regulated in 80% of small intestine Myc-independent tumors. Based on these findings, we propose that ketogenesis is an undesirable metabolic characteristic of the proliferating cell, which is down-regulated through c-Myc-mediated repression of the key metabolic gene HMGCS2.

  6. p120-Catenin Down-Regulation and Epidermal Growth Factor Receptor Overexpression Results in a Transformed Epithelium That Mimics Esophageal Squamous Cell Carcinoma

    PubMed Central

    Lehman, Heather L.; Yang, Xuebin; Welsh, Patricia A.; Stairs, Douglas B.

    2016-01-01

    Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy with a poor prognosis due to its highly invasive and metastatic potential. The molecular pathogenesis underlying the invasive mechanism of ESCC is not well known because of the lack of existing models to study this disease. p120-Catenin (p120ctn) and the epidermal growth factor receptor (EGFR) have each been implicated in several cancers, including ESCC. p120ctn is down-regulated in 60% of ESCC tumors, whereas EGFR is the most commonly overexpressed oncogene in ESCC. For these reasons, we investigated the cooperation between p120ctn and EGFR and its effect on ESCC invasion. We show that p120ctn down-regulation is commonly associated with EGFR overexpression. By using a three-dimensional culture system, we demonstrate that the inverse relationship between p120ctn and EGFR has biological implications. Specifically, p120ctn down-regulation coupled with EGFR overexpression in human esophageal keratinocytes (EPC1-PE) was required to promote invasion. Morphological comparison of EPC1-PE cells grown in three-dimensional culture and human ESCC revealed identical features, including significantly increased cellularity, nuclear grade, and proliferation. Molecular characteristics were measured by keratin expression patterns, which were nearly identical between EPC1-PE cells in three-dimensional culture and ESCC samples. Altogether, our analyses have demonstrated that p120ctn down-regulation and EGFR overexpression are able to mimic human ESCC in a relevant three-dimensional culture model. PMID:25529795

  7. Involvement of tyrosine residues located in the carboxyl tail of the human beta 2-adrenergic receptor in agonist-induced down-regulation of the receptor.

    PubMed Central

    Valiquette, M; Bonin, H; Hnatowich, M; Caron, M G; Lefkowitz, R J; Bouvier, M

    1990-01-01

    Chronic exposure of various cell types to adrenergic agonists leads to a decrease in cell surface beta 2-adrenergic receptor (beta 2AR) number. Sequestration of the receptor away from the cell surface as well as a down-regulation of the total number of cellular receptors are believed to contribute to this agonist-mediated regulation of receptor number. However, the molecular mechanisms underlying these phenomena are not well characterized. Recently, tyrosine residues located in the cytoplasmic tails of several membrane receptors, such as the low density lipoprotein and mannose-6-phosphate receptors, have been suggested as playing an important role in the agonist-induced internalization of these receptors. Accordingly, we assessed the potential role of two tyrosine residues in the carboxyl tail of the human beta 2AR in agonist-induced sequestration and down-regulation of the receptor. Tyr-350 and Tyr-354 of the human beta 2AR were replaced with alanine residues by site-directed mutagenesis and both wild-type and mutant beta 2AR were stably expressed in transformed Chinese hamster fibroblasts. The mutation dramatically decreased the ability of the beta 2AR to undergo isoproterenol-induced down-regulation. However, the substitution of Tyr-350 and Tyr-354 did not affect agonist-induced sequestration of the receptor. These results suggest that tyrosine residues in the cytoplasmic tail of human beta 2AR are crucial determinants involved in its down-regulation. PMID:2164220

  8. The non-structural protein Nsp2TF of porcine reproductive and respiratory syndrome virus down-regulates the expression of Swine Leukocyte Antigen class I.

    PubMed

    Cao, Qian M; Subramaniam, Sakthivel; Ni, Yan-Yan; Cao, Dianjun; Meng, Xiang-Jin

    2016-04-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is arguably the most economically-important global swine pathogen. Here we demonstrated that PRRSV down-regulates Swine Leukocyte Antigen class I (SLA-I) expression in porcine alveolar macrophages, PK15-CD163 cells and monocyte-derived dendritic cells. To identify the viral protein(s) involved in SLA-I down-regulation, we tested all 22 PRRSV structural and non-structural proteins and identified that Nsp1α and Nsp2TF, and GP3 significantly down-regulated SLA-I expression with Nsp2TF showing the greatest effect. We further generated a panel of mutant viruses in which the Nsp2TF protein synthesis was abolished, and found that the two mutants with disrupted -2 ribosomal frameshifting elements and additional stop codons in the TF domain were unable to down-regulate SLA-I expression. Additionally we demonstrated that the last 68 amino acids of TF domain in Nsp2TF are critical for this function. Collectively, the results indicate a novel function of Nsp2TF in negative modulation of SLA-I expression.

  9. SAHA down-regulates the expression of indoleamine 2,3-dioxygenase via inhibition of the JAK/STAT1 signaling pathway in gallbladder carcinoma cells.

    PubMed

    Zhang, Peng; Jiang, Guanmin; Gao, Jiao; Li, Lingling; Du, Jun; Jiao, Xingyuan

    2013-01-01

    The aim of the present study was to investigate the role of the JAK/STAT1 signaling pathway in suberoylanilide hydroxamic acid (SAHA)-mediated down-regulation of indoleamine 2,3-dioxygenase (IDO) in gallbladder carcinoma cells. We treated SGC-996 gallbladder carcinoma cells with IFN-γ and SAHA. Western blotting was used to detect the expression of IDO, signal transducer and activator of transcription 1 (STAT1) phosphorylation and interferon regulatory factor genes-1 (IRF-1). Confocal microscopy analysis was used to detect STAT1 translocation. Transient transfection and reporter gene assay was used for detecting the activation of γ-activated sites (GAS) and interferon-stimulated response elements (ISRE). The results revealed that IDO was expressed in SGC-996 cells in a dose- and time-dependent manner when stimulated with IFN-γ and SAHA down-regulated the expression of IDO induced by IFN-γ in a dose-dependent manner. SAHA blocked the expression of IRF-1 induced by IFN-γ and SAHA inhibited IFN-γ-induced STAT1 phosphorylation and nuclear translocation. In addition, SAHA down-regulated IFN-γ-induced activation of GAS and ISRE. In conclusion, SAHA down-regulated IDO expression via inhibition of the activation of members of the JAK/STAT1 signaling pathway. Therefore, regulation of the JAK/STAT1 signaling pathway may provide a new gallbladder carcinoma immunotherapeutic strategy to break tumor immune tolerance.

  10. Recombinant R-spondin2 and Wnt3a Up- and Down-Regulate Novel Target Genes in C57MG Mouse Mammary Epithelial Cells

    PubMed Central

    Baljinnyam, Bolormaa; Klauzinska, Malgorzata; Saffo, Saad; Callahan, Robert; Rubin, Jeffrey S.

    2012-01-01

    R-spondins (Rspos) comprise a family of four secreted proteins that have important roles in cell proliferation, cell fate determination and organogenesis. Rspos typically exert their effects by potentiating the Wnt/β-catenin signaling pathway. To systematically investigate the impact of Rspo/Wnt on gene expression, we performed a microarray analysis using C57MG mouse mammary epithelial cells treated with recombinant Rspo2 and/or Wnt3a. We observed the up- and down-regulation of several previously unidentified target genes, including ones that encode proteins involved in immune responses, effectors of other growth factor signaling pathways and transcription factors. Dozens of these changes were validated by quantitative real time RT-PCR. Time course experiments showed that Rspo2 typically had little or no effect on Wnt-dependent gene expression at 3 or 6 h, but enhanced expression at 24 h, consistent with biochemical data indicating that Rspo2 acts primarily to sustain rather than acutely increase Wnt pathway activation. Up-regulation of gene expression was inhibited by pre-treatment with Dickkopf1, a Wnt/β-catenin pathway antagonist, and by siRNA knockdown of β-catenin expression. While Dickkopf1 blocked Rspo2/Wnt3a-dependent down-regulation, a number of down-regulated genes were not affected by β-catenin knockdown, suggesting that in these instances down-regulation was mediated by a β-catenin-independent mechanism. PMID:22238613

  11. Down-regulation of MHC Class I by the Marek's Disease Virus (MDV) UL49.5 Gene Product Mildly Affects Virulence in a Haplotype-specific Fashion