Science.gov

Sample records for rapamycin regulates vascular

  1. Platelet-derived growth factor regulates vascular smooth muscle phenotype via mammalian target of rapamycin complex 1

    SciTech Connect

    Ha, Jung Min; Yun, Sung Ji; Kim, Young Whan; Jin, Seo Yeon; Lee, Hye Sun; Song, Sang Heon; Shin, Hwa Kyoung; Bae, Sun Sik

    2015-08-14

    Mammalian target of rapamycin complex (mTORC) regulates various cellular processes including proliferation, growth, migration and differentiation. In this study, we showed that mTORC1 regulates platelet-derived growth factor (PDGF)-induced phenotypic conversion of vascular smooth muscle cells (VSMCs). Stimulation of contractile VSMCs with PDGF significantly reduced the expression of contractile marker proteins in a time- and dose-dependent manner. In addition, angiotensin II (AngII)-induced contraction of VSMCs was completely blocked by the stimulation of VSMCs with PDGF. PDGF-dependent suppression of VSMC marker gene expression was significantly blocked by inhibition of phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK), and mTOR whereas inhibition of p38 MAPK had no effect. In particular, inhibition of mTORC1 by rapamycin or by silencing of Raptor significantly blocked the PDGF-dependent phenotypic change of VSMCs whereas silencing of Rictor had no effect. In addition, loss of AngII-dependent contraction by PDGF was significantly retained by silencing of Raptor. Inhibition of mTORC1 by rapamycin or by silencing of Raptor significantly blocked PDGF-induced proliferation of VSMCs. Taken together, we suggest that mTORC1 plays an essential role in PDGF-dependent phenotypic changes of VSMCs. - Graphical abstract: Regulation of VSMC phenotype by PDGF-dependent activation of mTORC1. - Highlights: • The expression of contractile marker proteins was reduced by PDGF stimulation. • PDGF-dependent phenotypic conversion of VSMCs was blocked by inhibition of mTOR. • PDGF-induced proliferation of VSMCs was attenuated by inhibition of mTORC1. • mTORC1 plays a critical role in PDGF-dependent phenotypic conversion of VSMCs.

  2. Rapamycin regulates biochemical metabolites

    PubMed Central

    Tucci, Paola; Porta, Giovanni; Agostini, Massimiliano; Antonov, Alexey; Garabadgiu, Alexander Vasilievich; Melino, Gerry; Willis, Anne E

    2013-01-01

    The mammalian target of rapamycin (mTOR) kinase is a master regulator of protein synthesis that couples nutrient sensing to cell growth, and deregulation of this pathway is associated with tumorigenesis. p53, and its less investigated family member p73, have been shown to interact closely with mTOR pathways through the transcriptional regulation of different target genes. To investigate the metabolic changes that occur upon inhibition of the mTOR pathway and the role of p73 in this response primary mouse embryonic fibroblast from control and TAp73−/− were treated with the macrocyclic lactone rapamycin. Extensive gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS/MS) analysis were used to obtain a rapamycin-dependent global metabolome profile from control or TAp73−/− cells. In total 289 metabolites involved in selective pathways were identified; 39 biochemical metabolites were found to be significantly altered, many of which are known to be associated with the cellular stress response. PMID:23839040

  3. Curcumin Attenuates Rapamycin-induced Cell Injury of Vascular Endothelial Cells.

    PubMed

    Guo, Ning; Chen, Fangyuan; Zhou, Juan; Fang, Yuan; Li, Hongbing; Luo, Yongbai; Zhang, Yong

    2015-10-01

    Although drug-eluting stents (DES) effectively improve the clinical efficacy of percutaneous coronary intervention, a high risk of late stent thrombosis and in-stent restenosis also exists after DES implantation. Anti-smooth muscle proliferation drugs, such as rapamycin, coating stents, not only inhibit the growth of vascular smooth muscle cells but also inhibit vascular endothelial cells and delay the reendothelialization. Therefore, the development of an ideal agent that protects vascular endothelial cells from rapamycin-eluting stents is of great importance for the next generation of DES. In this study, we demonstrated that rapamycin significantly inhibited the growth of rat aortic endothelial cells in both dose- and time-dependent manner in vitro. Cell apoptosis was increased and migration was decreased by rapamycin treatments in rat aortic endothelial cells in vitro. Surprisingly, treatment with curcumin, an active ingredient of turmeric, significantly reversed these detrimental effects of rapamycin. Moreover, curcumin increased the expression of vascular nitric oxide synthases (eNOS), which was decreased by rapamycin. Furthermore, caveolin-1, the inhibitor of eNOS, was decreased by curcumin. Knockdown of eNOS by small interfering RNA significantly abrogated the protective effects of curcumin. Taken together, our results suggest that curcumin antagonizes the detrimental effect of rapamycin on aortic endothelial cells in vitro through upregulating eNOS. Therefore, curcumin is a promising combined agent for the rescue of DES-induced reendothelialization delay.

  4. Rapamycin (Sirolimus) alters mechanistic target of rapamycin pathway regulation and microRNA expression in mouse meiotic spermatocytes.

    PubMed

    Mukherjee, A; Koli, S; Reddy, K V R

    2015-09-01

    Mechanistic target of rapamycin (mTOR) is a signal transduction pathway that modulates translation initiation in several animals including mammals. Rapamaycin, an allosteric inhibitor of mTOR pathway, is often used as an immunosuppressive drug following kidney transplantation and causes gonadal dysfunction and defects in spermatogenesis. The molecular mechanism behind rapamycin-mediated testicular dysfunction is not known. We have therefore explored the contribution of rapamycin in mTOR regulation and microRNA (miRNA) expression in mouse spermatocytes, the intermediate stage of spermatogenesis, where meiosis takes place. In the present study, we optimized the isolation of highly pure and viable spermatocytes by flow sorting, treated them with rapamycin, and investigated the expression of mTOR and downstream effector molecules. Western blot and immunocytochemical analysis confirm that rapamycin treatment suppresses mTOR and phopsphorylated P70S6 kinase activities in spermatocytes, but not that of phosphorylated 4E-binding protein 1. Also, rapamycin treatment modulates the expression of several spermatocyte-specific miRNAs. To complement these finding an in vivo study was also performed. In silico prediction of target genes of these miRNAs and their functional pathway analysis revealed that, several of them are involved in crucial biological process, cellular process and catalytic activities. miRNA-transcription factor (TF) network analysis enlisted different TFs propelling the transcription machineries of these miRNAs. In silico prediction followed by quatitative real-time PCR revealed two of these TFs namely, PU.1 and CCCTC binding factor (CTCF) are down and upregulated, respectively, which may be the reason of the altered expression of miRNAs following rapamycin treatment. In conclusion, for the first time, the present study provides insight into how rapamycin regulates mTOR pathway and spermatocyte-specific miRNA expression which in turn, regulate expression of

  5. Differential Regulation of Cardiac Function and Intracardiac Cytokines by Rapamycin in Healthy and Diabetic Rats

    PubMed Central

    Luck, Christian; DeMarco, Vincent G.; Mahmood, Abuzar; Gavini, Madhavi P.

    2017-01-01

    Diabetes is comorbid with cardiovascular disease and impaired immunity. Rapamycin improves cardiac functions and extends lifespan by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1). However, in diabetic murine models, Rapamycin elevates hyperglycemia and reduces longevity. Since Rapamycin is an immunosuppressant, we examined whether Rapamycin (750 μg/kg/day) modulates intracardiac cytokines, which affect the cardiac immune response, and cardiac function in male lean (ZL) and diabetic obese Zucker (ZO) rats. Rapamycin suppressed levels of fasting triglycerides, insulin, and uric acid in ZO but increased glucose. Although Rapamycin improved multiple diastolic parameters (E/E′, E′/A′, E/Vp) initially, these improvements were reversed or absent in ZO at the end of treatment, despite suppression of cardiac fibrosis and phosphoSer473Akt. Intracardiac cytokine protein profiling and Ingenuity® Pathway Analysis indicated suppression of intracardiac immune defense in ZO, in response to Rapamycin treatment in both ZO and ZL. Rapamycin increased fibrosis in ZL without increasing phosphoSer473Akt and differentially modulated anti-fibrotic IL-10, IFNγ, and GM-CSF in ZL and ZO. Therefore, fundamental difference in intracardiac host defense between diabetic ZO and healthy ZL, combined with differential regulation of intracardiac cytokines by Rapamycin in ZO and ZL hearts, underlies differential cardiac outcomes of Rapamycin treatment in health and diabetes.

  6. Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer's disease

    PubMed Central

    Lin, Ai-Ling; Zheng, Wei; Halloran, Jonathan J; Burbank, Raquel R; Hussong, Stacy A; Hart, Matthew J; Javors, Martin; Shih, Yen-Yu Ian; Muir, Eric; Solano Fonseca, Rene; Strong, Randy; Richardson, Arlan G; Lechleiter, James D; Fox, Peter T; Galvan, Veronica

    2013-01-01

    Vascular pathology is a major feature of Alzheimer's disease (AD) and other dementias. We recently showed that chronic administration of the target-of-rapamycin (TOR) inhibitor rapamycin, which extends lifespan and delays aging, halts the progression of AD-like disease in transgenic human (h)APP mice modeling AD when administered before disease onset. Here we demonstrate that chronic reduction of TOR activity by rapamycin treatment started after disease onset restored cerebral blood flow (CBF) and brain vascular density, reduced cerebral amyloid angiopathy and microhemorrhages, decreased amyloid burden, and improved cognitive function in symptomatic hAPP (AD) mice. Like acetylcholine (ACh), a potent vasodilator, acute rapamycin treatment induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO release in brain endothelium. Administration of the NOS inhibitor L-NG-Nitroarginine methyl ester reversed vasodilation as well as the protective effects of rapamycin on CBF and vasculature integrity, indicating that rapamycin preserves vascular density and CBF in AD mouse brains through NOS activation. Taken together, our data suggest that chronic reduction of TOR activity by rapamycin blocked the progression of AD-like cognitive and histopathological deficits by preserving brain vascular integrity and function. Drugs that inhibit the TOR pathway may have promise as a therapy for AD and possibly for vascular dementias. PMID:23801246

  7. Rapamycin down-regulates LDL-receptor expression independently of SREBP-2

    SciTech Connect

    Sharpe, Laura J.; Brown, Andrew J.

    2008-09-05

    As a key regulator of cholesterol homeostasis, sterol-regulatory element binding protein-2 (SREBP-2) up-regulates expression of genes involved in cholesterol synthesis (e.g., 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) Reductase) and uptake (the low density lipoprotein (LDL)-receptor). Previously, we showed that Akt, a critical kinase in cell growth and proliferation, contributes to SREBP-2 activation. However, the specific Akt target involved is unknown. A potential candidate is the mammalian target of rapamycin, mTOR. Rapamycin can cause hyperlipidaemia clinically, and we hypothesised that this may be mediated via an effect of mTOR on SREBP-2. Herein, we found that SREBP-2 activation and HMG-CoA Reductase gene expression were unaffected by rapamycin treatment. However, LDL-receptor gene expression was decreased by rapamycin, suggesting that this may contribute to the hyperlipidaemia observed in rapamycin-treated patients. Rapamycin did not affect mRNA stability, so the decrease in LDL-receptor gene expression is likely to be occurring at the transcriptional level, although independently of SREBP-2.

  8. Rapamycin regulates connective tissue growth factor expression of lung epithelial cells via phosphoinositide 3-kinase.

    PubMed

    Xu, Xuefeng; Wan, Xuan; Geng, Jing; Li, Fei; Yang, Ting; Dai, Huaping

    2013-09-01

    The pathogenesis of idiopathic pulmonary fibrosis (IPF) remains largely unknown. It is believed that IPF is mainly driven by activated alveolar epithelial cells that have a compromised migration capacity, and that also produce substances (such as connective tissue growth factor, CTGF) that contribute to fibroblast activation and matrix protein accumulation. Because the mechanisms regulating these processes are unclear, the aim of this study was to determine the role of rapamycin in regulating epithelial cell migration and CTGF expression. Transformed epithelial cell line A549 and normal human pulmonary alveolar or bronchial epithelial cells were cultured in regular medium or medium containing rapamycin. Real time reverse transcriptase polymerase chain reaction was employed to determine CTGF mRNA expression. Western blotting and an enzyme-linked immunosorbent assay were used for detecting CTGF protein. Wound healing and migration assays were used to determine the cell migration potential. Transforming growth factor (TGF)-β type I receptor (TβRI) inhibitor, SB431542 and phosphoinositide 3-kinase (PI3K) inhibitor, LY294002 were used to determine rapamycin's mechanism of action. It was found that treatment of A549 and normal human alveolar or bronchial epithelial cells with rapamycin significantly promoted basal or TGF-β1 induced CTGF expression. LY294002, not SB431542 attenuated the promotional effect of rapamycin on CTGF expression. Cell mobility was not affected by rapamycin in wound healing and migration assays. These data suggest rapamycin has a profibrotic effect in vitro and underscore the potential of combined therapeutic approach with PI3K and mammalian target of rapamycin inhibitors for the treatment of animal or human lung fibrosis.

  9. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae.

    PubMed

    Imamura, Sousuke; Kawase, Yasuko; Kobayashi, Ikki; Shimojima, Mie; Ohta, Hiroyuki; Tanaka, Kan

    2016-01-01

    Most microalgae abundantly accumulate lipid droplets (LDs) containing triacylglycerols (TAGs) under several stress conditions, but the underlying molecular mechanism of this accumulation remains unclear. In a recent study, we found that inhibition of TOR (target of rapamycin), a highly conserved protein kinase of eukaryotes, by rapamycin resulted in TAG accumulation in microalgae, indicating that TOR negatively regulates TAG accumulation. Here, we show that formation of intracellular LDs and TAG accumulation were also induced in the unicellular green alga Chlamydomonas reinhardtii after exposure to Torin1 or AZD8055, which are novel TOR inhibitors that inhibit TOR activity in a manner different from rapamycin. These results supported quite well our previous conclusion that TOR is a central regulator of TAG accumulation in microalgae.

  10. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae

    PubMed Central

    Imamura, Sousuke; Kawase, Yasuko; Kobayashi, Ikki; Shimojima, Mie; Ohta, Hiroyuki; Tanaka, Kan

    2016-01-01

    ABSTRACT Most microalgae abundantly accumulate lipid droplets (LDs) containing triacylglycerols (TAGs) under several stress conditions, but the underlying molecular mechanism of this accumulation remains unclear. In a recent study, we found that inhibition of TOR (target of rapamycin), a highly conserved protein kinase of eukaryotes, by rapamycin resulted in TAG accumulation in microalgae, indicating that TOR negatively regulates TAG accumulation. Here, we show that formation of intracellular LDs and TAG accumulation were also induced in the unicellular green alga Chlamydomonas reinhardtii after exposure to Torin1 or AZD8055, which are novel TOR inhibitors that inhibit TOR activity in a manner different from rapamycin. These results supported quite well our previous conclusion that TOR is a central regulator of TAG accumulation in microalgae. PMID:26855321

  11. Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis.

    PubMed

    Ren, Maozhi; Venglat, Prakash; Qiu, Shuqing; Feng, Li; Cao, Yongguo; Wang, Edwin; Xiang, Daoquan; Wang, Jinghe; Alexander, Danny; Chalivendra, Subbaiah; Logan, David; Mattoo, Autar; Selvaraj, Gopalan; Datla, Raju

    2012-12-01

    Target of Rapamycin (TOR) is a major nutrition and energy sensor that regulates growth and life span in yeast and animals. In plants, growth and life span are intertwined not only with nutrient acquisition from the soil and nutrition generation via photosynthesis but also with their unique modes of development and differentiation. How TOR functions in these processes has not yet been determined. To gain further insights, rapamycin-sensitive transgenic Arabidopsis thaliana lines (BP12) expressing yeast FK506 Binding Protein12 were developed. Inhibition of TOR in BP12 plants by rapamycin resulted in slower overall root, leaf, and shoot growth and development leading to poor nutrient uptake and light energy utilization. Experimental limitation of nutrient availability and light energy supply in wild-type Arabidopsis produced phenotypes observed with TOR knockdown plants, indicating a link between TOR signaling and nutrition/light energy status. Genetic and physiological studies together with RNA sequencing and metabolite analysis of TOR-suppressed lines revealed that TOR regulates development and life span in Arabidopsis by restructuring cell growth, carbon and nitrogen metabolism, gene expression, and rRNA and protein synthesis. Gain- and loss-of-function Ribosomal Protein S6 (RPS6) mutants additionally show that TOR function involves RPS6-mediated nutrition and light-dependent growth and life span in Arabidopsis.

  12. Regulation of the glutamate transporter EAAT3 by mammalian target of rapamycin mTOR.

    PubMed

    Almilaji, Ahmad; Pakladok, Tatsiana; Guo, Anne; Munoz, Carlos; Föller, Michael; Lang, Florian

    2012-05-04

    The serine/threonine kinase mammalian target of rapamycin (mTOR) is stimulated by insulin, growth factors and nutrients and confers survival of several cell types. The kinase has previously been shown to stimulate amino acid uptake. In neurons, the cellular uptake of glutamate by the excitatory amino-acid transporters (EAATs) decreases excitation and thus confers protection against excitotoxicity. In epithelia, EAAT3 accomplishes transepithelial glutamate and aspartate transport. The present study explored, whether mTOR regulates EAAT3 (SLC1A1). To this end, cRNA encoding EAAT3 was injected into Xenopus oocytes with or without cRNA encoding mTOR and the glutamate induced current (I(glu)), a measure of glutamate transport, determined by dual electrode voltage clamp. Moreover, EAAT3 protein abundance was determined utilizing chemiluminescence. As a result, I(glu) was observed in Xenopus oocytes expressing EAAT3 but not in water injected oocytes. Coexpression of mTOR significantly increased I(glu), an effect reversed by rapamycin (100 nM). mTOR coexpression increased EAAT3 protein abundance in the cell membrane. The decay of I(glu) following inhibition of carrier insertion with brefeldin A in oocytes coexpressing EAAT3 with mTOR was similar in the presence and absence of rapamycin (100 nM). In conclusion, mTOR is a novel powerful regulator of EAAT3 and may thus contribute to protection against neuroexcitotoxicity.

  13. Target of Rapamycin (TOR) Regulates Growth in Response to Nutritional Signals.

    PubMed

    Weisman, Ronit

    2016-10-01

    All organisms can respond to the availability of nutrients by regulating their metabolism, growth, and cell division. Central to the regulation of growth in response to nutrient availability is the target of rapamycin (TOR) signaling that is composed of two structurally distinct complexes: TOR complex 1 (TORC1) and TOR complex 2 (TORC2). The TOR genes were first identified in yeast as target of rapamycin, a natural product of a soil bacterium, which proved beneficial as an immunosuppressive and anticancer drug and is currently being tested for a handful of other pathological conditions including diabetes, neurodegeneration, and age-related diseases. Studies of the TOR pathway unraveled a complex growth-regulating network. TOR regulates nutrient uptake, transcription, protein synthesis and degradation, as well as metabolic pathways, in a coordinated manner that ensures that cells grow or cease growth in response to nutrient availability. The identification of specific signals and mechanisms that stimulate TOR signaling is an active and exciting field of research that has already identified nitrogen and amino acids as key regulators of TORC1 activity. The signals, as well as the cellular functions of TORC2, are far less well understood. Additional open questions in the field concern the relationships between TORC1 and TORC2, as well as the links with other nutrient-responsive pathways. Here I review the main features of TORC1 and TORC2, with a particular focus on yeasts as model organisms.

  14. Target of Rapamycin Complex 2 Regulates Actin Polarization and Endocytosis via Multiple Pathways*

    PubMed Central

    Rispal, Delphine; Eltschinger, Sandra; Stahl, Michael; Vaga, Stefania; Bodenmiller, Bernd; Abraham, Yann; Filipuzzi, Ireos; Movva, N. Rao; Aebersold, Ruedi; Helliwell, Stephen B.; Loewith, Robbie

    2015-01-01

    Target of rapamycin is a Ser/Thr kinase that operates in two conserved multiprotein complexes, TORC1 and TORC2. Unlike TORC1, TORC2 is insensitive to rapamycin, and its functional characterization is less advanced. Previous genetic studies demonstrated that TORC2 depletion leads to loss of actin polarization and loss of endocytosis. To determine how TORC2 regulates these readouts, we engineered a yeast strain in which TORC2 can be specifically and acutely inhibited by the imidazoquinoline NVP-BHS345. Kinetic analyses following inhibition of TORC2, supported with quantitative phosphoproteomics, revealed that TORC2 regulates these readouts via distinct pathways as follows: rapidly through direct protein phosphorylation cascades and slowly through indirect changes in the tensile properties of the plasma membrane. The rapid signaling events are mediated in large part through the phospholipid flippase kinases Fpk1 and Fpk2, whereas the slow signaling pathway involves increased plasma membrane tension resulting from a gradual depletion of sphingolipids. Additional hits in our phosphoproteomic screens highlight the intricate control TORC2 exerts over diverse aspects of eukaryote cell physiology. PMID:25882841

  15. SOX9-regulated cell plasticity in colorectal metastasis is attenuated by rapamycin

    PubMed Central

    Carrasco-Garcia, Estefania; Lopez, Lidia; Aldaz, Paula; Arevalo, Sara; Aldaregia, Juncal; Egaña, Larraitz; Bujanda, Luis; Cheung, Martin; Sampron, Nicolas; Garcia, Idoia; Matheu, Ander

    2016-01-01

    The cancer stem cell (CSC) hypothesis proposes a hierarchical organization of tumors, in which stem-like cells sustain tumors and drive metastasis. The molecular mechanisms underlying the acquisition of CSCs and metastatic traits are not well understood. SOX9 is a transcription factor linked to stem cell maintenance and commonly overexpressed in solid cancers including colorectal cancer. In this study, we show that SOX9 levels are higher in metastatic (SW620) than in primary colorectal cancer cells (SW480) derived from the same patient. This elevated expression correlated with enhanced self-renewal activity. By gain and loss-of-function studies in SW480 and SW620 cells respectively, we reveal that SOX9 levels modulate tumorsphere formation and self-renewal ability in vitro and tumor initiation in vivo. Moreover, SOX9 regulates migration and invasion and triggers the transition between epithelial and mesenchymal states. These activities are partially dependent on SOX9 post-transcriptional modifications. Importantly, treatment with rapamycin inhibits self-renewal and tumor growth in a SOX9-dependent manner. These results identify a functional role for SOX9 in regulating colorectal cancer cell plasticity and metastasis, and provide a strong rationale for a rapamycin-based therapeutic strategy. PMID:27571710

  16. Reciprocal Regulation of Target of Rapamycin Complex 1 and Potassium Accumulation.

    PubMed

    Primo, Cecilia; Ferri-Blázquez, Alba; Loewith, Robbie; Yenush, Lynne

    2017-01-13

    The proper maintenance of potassium homeostasis is crucial for cell viability. Among the major determinants of potassium uptake in the model organism Saccharomyces cerevisiae are the Trk1 high affinity potassium transporter and the functionally redundant Hal4 (Sat4) and Hal5 protein kinases. These kinases are required for the plasma membrane accumulation of not only Trk1 but also several nutrient permeases. Here, we show that overexpression of the target of rapamycin complex 1 (TORC1) effector NPR1 improves hal4 hal5 growth defects by stabilizing nutrient permeases at the plasma membrane. We subsequently found that internal potassium levels and TORC1 activity are linked. Specifically, growth under limiting potassium alters the activities of Npr1 and another TORC1 effector kinase, Sch9; hal4 hal5 and trk1 trk2 mutants display hypersensitivity to rapamycin, and reciprocally, TORC1 inhibition reduces potassium accumulation. Our results demonstrate that in addition to carbon and nitrogen, TORC1 also responds to and regulates potassium fluxes.

  17. The mTOR/AP-1/VEGF signaling pathway regulates vascular endothelial cell growth.

    PubMed

    Wang, Shuo; Lu, Jiawei; You, Qingsheng; Huang, Hua; Chen, Yingying; Liu, Kun

    2016-08-16

    Vascular restenosis is a common adverse event following percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG). The atypical Ser/Thr protein kinase mammalian target of rapamycin (mTOR) plays an important role in cell differentiation and apoptosis. Vascular restenosis caused by excessive endothelial cell proliferation can be inhibited by local application of the mTOR inhibitor rapamycin (RAPA); however, RAPA can also suppress normal vascular endothelial cell growth by blocking mTOR/VEGF signaling, although the underlying mechanism is still unclear. Here, endogenous mTOR, AP-1, and VEGF were inhibited or overexpressed to investigate the mechanism underlying the effects of RAPA. Inhibition of AP-1 or mTOR with AP-1-siRNA or RAPA treatment respectively, decreased vascular endothelial cell proliferation, upregulation of AP-1 or mTOR increased cell proliferation, and VEGF overexpression increased, while RAPA-induced mTOR inhibition decreased vascular endothelial cell proliferation, the results indicate that combining mTOR downregulation and VEGF upregulation might both inhibit restenosis and maintain normal vascular endothelial cell growth after PCI or CABG, suggest the mTOR/AP-1/VEGF pathway might play a crucial role in regulating vascular endothelial cell growth.

  18. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin.

    PubMed

    Ortells, M Carmen; Morancho, Beatriz; Drews-Elger, Katherine; Viollet, Benoit; Laderoute, Keith R; López-Rodríguez, Cristina; Aramburu, Jose

    2012-05-01

    Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses.

  19. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin

    PubMed Central

    Ortells, M. Carmen; Morancho, Beatriz; Drews-Elger, Katherine; Viollet, Benoit; Laderoute, Keith R.; López-Rodríguez, Cristina; Aramburu, Jose

    2012-01-01

    Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses. PMID:22287635

  20. The roles of juvenile hormone, insulin/target of rapamycin, and ecydsone signaling in regulating body size in Drosophila

    PubMed Central

    Mirth, Christen Kerry; Shingleton, Alexander William

    2014-01-01

    Understanding how organisms regulate their body size has interested biologists for decades. Recent work has shown that both insulin/target of rapamycin (TOR) signaling and the steroid hormone ecdysone act to regulate rates of growth and the duration of the growth period in the fruit fly, Drosophila melanogaster. Our recent work has uncovered a third level of interaction, whereby juvenile hormone (JH) regulates levels of both ecdysone and insulin/TOR signaling to control growth rates. These studies highlight a complex network of interactions involved in regulating body and organ size. PMID:26842847

  1. Third target of rapamycin complex negatively regulates development of quiescence in Trypanosoma brucei

    PubMed Central

    Barquilla, Antonio; Saldivia, Manuel; Diaz, Rosario; Bart, Jean-Mathieu; Vidal, Isabel; Calvo, Enrique; Hall, Michael N.; Navarro, Miguel

    2012-01-01

    African trypanosomes are protozoan parasites transmitted by a tsetse fly vector to a mammalian host. The life cycle includes highly proliferative forms and quiescent forms, the latter being adapted to host transmission. The signaling pathways controlling the developmental switch between the two forms remain unknown. Trypanosoma brucei contains two target of rapamycin (TOR) kinases, TbTOR1 and TbTOR2, and two TOR complexes, TbTORC1 and TbTORC2. Surprisingly, two additional TOR kinases are encoded in the T. brucei genome. We report that TbTOR4 associates with an Armadillo domain-containing protein (TbArmtor), a major vault protein, and LST8 to form a unique TOR complex, TbTORC4. Depletion of TbTOR4 caused irreversible differentiation of the parasite into the quiescent form. AMP and hydrolysable analogs of cAMP inhibited TbTOR4 expression and induced the stumpy quiescent form. Our results reveal unexpected complexity in TOR signaling and show that TbTORC4 negatively regulates differentiation of the proliferative form into the quiescent form. PMID:22908264

  2. The mTOR inhibitor rapamycin down-regulates the expression of the ubiquitin ligase subunit Skp2 in breast cancer cells

    PubMed Central

    Shapira, Ma'anit; Kakiashvili, Eli; Rosenberg, Tzur; Hershko, Dan D

    2006-01-01

    Introduction Loss of the cyclin-dependent kinase inhibitor p27 is associated with poor prognosis in breast cancer. The decrease in p27 levels is mainly the result of enhanced proteasome-dependent degradation mediated by its specific ubiquitin ligase subunit S phase kinase protein 2 (Skp2). The mammalian target of rapamycin (mTOR) is a downstream mediator in the phosphoinositol 3' kinase (PI3K)/Akt pathway that down-regulates p27 levels in breast cancer. Rapamycin was found to stabilize p27 levels in breast cancer, but whether this effect is mediated through changes in Skp2 expression is unknown. Methods The expression of Skp2 mRNA and protein levels were examined in rapamycin-treated breast cancer cell lines. The effect of rapamycin on the degradation rate of Skp2 expression was examined in cycloheximide-treated cells and in relationship to the anaphase promoting complex/Cdh1 (APC\\C) inhibitor Emi1. Results Rapamycin significantly decreased Skp2 mRNA and protein levels in a dose and time-dependent fashion, depending on the sensitivity of the cell line to rapamycin. The decrease in Skp2 levels in the different cell lines was followed by cell growth arrest at G1. In addition, rapamycin enhanced the degradation rate of Skp2 and down-regulated the expression of the APC\\C inhibitor Emi1. Conclusion These results suggest that Skp2, an important oncogene in the development and progression of breast cancer, may be a novel target for rapamycin treatment. PMID:16859513

  3. Astrocyte regulation of cerebral vascular tone

    PubMed Central

    Iddings, Jennifer A.

    2013-01-01

    Cerebral blood flow is controlled by two crucial processes, cerebral autoregulation (CA) and neurovascular coupling (NVC) or functional hyperemia. Whereas CA ensures constant blood flow over a wide range of systemic pressures, NVC ensures rapid spatial and temporal increases in cerebral blood flow in response to neuronal activation. The focus of this review is to discuss the cellular mechanisms by which astrocytes contribute to the regulation of vascular tone in terms of their participation in NVC and, to a lesser extent, CA. We discuss evidence for the various signaling modalities by which astrocytic activation leads to vasodilation and vasoconstriction of parenchymal arterioles. Moreover, we provide a rationale for the contribution of astrocytes to pressure-induced increases in vascular tone via the vasoconstrictor 20-HETE (a downstream metabolite of arachidonic acid). Along these lines, we highlight the importance of the transient receptor potential channel of the vanilloid family (TRPV4) as a key molecular determinant in the regulation of vascular tone in cerebral arterioles. Finally, we discuss current advances in the technical tools available to study NVC mechanisms in the brain as it relates to the participation of astrocytes. PMID:23792684

  4. Rapid regulation of nuclear proteins by rapamycin-induced translocation in fission yeast.

    PubMed

    Ding, Lin; Laor, Dana; Weisman, Ronit; Forsburg, Susan L

    2014-07-01

    Genetic analysis of protein function requires a rapid means of inactivating the gene under study. Typically, this exploits temperature-sensitive mutations or promoter shut-off techniques. We report the adaptation to Schizosaccharomyces pombe of the anchor-away technique, originally designed in budding yeast by Laemmli lab. This method relies on a rapamycin-mediated interaction between the FRB- and FKBP12-binding domains to relocalize nuclear proteins of interest to the cytoplasm. We demonstrate a rapid nuclear depletion of abundant proteins as proof of principle.

  5. The Enigma of Rapamycin Dosage.

    PubMed

    Mukhopadhyay, Suman; Frias, Maria A; Chatterjee, Amrita; Yellen, Paige; Foster, David A

    2016-03-01

    The mTOR pathway is a critical regulator of cell growth, proliferation, metabolism, and survival. Dysregulation of mTOR signaling has been observed in most cancers and, thus, the mTOR pathway has been extensively studied for therapeutic intervention. Rapamycin is a natural product that inhibits mTOR with high specificity. However, its efficacy varies by dose in several contexts. First, different doses of rapamycin are needed to suppress mTOR in different cell lines; second, different doses of rapamycin are needed to suppress the phosphorylation of different mTOR substrates; and third, there is a differential sensitivity of the two mTOR complexes mTORC1 and mTORC2 to rapamycin. Intriguingly, the enigmatic properties of rapamycin dosage can be explained in large part by the competition between rapamycin and phosphatidic acid (PA) for mTOR. Rapamycin and PA have opposite effects on mTOR whereby rapamycin destabilizes and PA stabilizes both mTOR complexes. In this review, we discuss the properties of rapamycin dosage in the context of anticancer therapeutics.

  6. VESGEN Software for Mapping and Quantification of Vascular Regulators

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Vickerman, Mary B.; Keith, Patricia A.

    2012-01-01

    VESsel GENeration (VESGEN) Analysis is an automated software that maps and quantifies effects of vascular regulators on vascular morphology by analyzing important vessel parameters. Quantification parameters include vessel diameter, length, branch points, density, and fractal dimension. For vascular trees, measurements are reported as dependent functions of vessel branching generation. VESGEN maps and quantifies vascular morphological events according to fractal-based vascular branching generation. It also relies on careful imaging of branching and networked vascular form. It was developed as a plug-in for ImageJ (National Institutes of Health, USA). VESGEN uses image-processing concepts of 8-neighbor pixel connectivity, skeleton, and distance map to analyze 2D, black-and-white (binary) images of vascular trees, networks, and tree-network composites. VESGEN maps typically 5 to 12 (or more) generations of vascular branching, starting from a single parent vessel. These generations are tracked and measured for critical vascular parameters that include vessel diameter, length, density and number, and tortuosity per branching generation. The effects of vascular therapeutics and regulators on vascular morphology and branching tested in human clinical or laboratory animal experimental studies are quantified by comparing vascular parameters with control groups. VESGEN provides a user interface to both guide and allow control over the users vascular analysis process. An option is provided to select a morphological tissue type of vascular trees, network or tree-network composites, which determines the general collections of algorithms, intermediate images, and output images and measurements that will be produced.

  7. The anti-diabetic drug metformin inhibits vascular endothelial growth factor expression via the mammalian target of rapamycin complex 1/hypoxia-inducible factor-1α signaling pathway in ELT-3 cells.

    PubMed

    Tadakawa, Mari; Takeda, Takashi; Li, Bin; Tsuiji, Kenji; Yaegashi, Nobuo

    2015-01-05

    The aim of this study was to elucidate whether metformin can regulate the expression of vascular endothelial growth factor (VEGF) in rat-derived uterine leiomyoma cells (ELT-3 cells). In vitro studies were conducted using ELT-3 cells. Under normoxic conditions, metformin suppressed VEGF protein levels in the supernatant and cells in a dose-dependent manner. In hypoxia-mimicking conditions, VEGF and hypoxia-inducible factor-1α (HIF-1α) proteins were both highly expressed and were suppressed by the metformin treatment. Metformin did not affect HIF-1α mRNA levels, which indicated that its effects occurred at the post-translational level. Metformin inhibited mammalian target of rapamycin complex 1 (mTORC1) activity by phosphorylating the mTORC1 component raptor. This study revealed the anti-angiogenic activity of metformin in ELT-3 cells by suppressing the expression of VEGF via the mTORC1/HIF-1α pathway. These results indicate that metformin may represent an effective alternative in the future treatment of uterine leiomyomas.

  8. Regulation of elongation phase of mRNA translation in diabetic nephropathy: amelioration by rapamycin.

    PubMed

    Sataranatarajan, Kavithalakshmi; Mariappan, Meenalakshmi M; Lee, Myung Ja; Feliers, Denis; Choudhury, Goutam Ghosh; Barnes, Jeffrey L; Kasinath, Balakuntalam S

    2007-12-01

    High glucose and high insulin, pathogenic factors in type 2 diabetes, induce rapid synthesis of the matrix protein laminin-beta1 in renal proximal tubular epithelial cells by stimulation of initiation phase of mRNA translation. We investigated if elongation phase of translation also contributes to high glucose and high insulin induction of laminin-beta1 synthesis in proximal tubular epithelial cells. High glucose or high insulin rapidly increased activating Thr56 dephosphorylation of eEF2 and inactivating Ser366 phosphorylation of eEF2 kinase, events that facilitate elongation. Studies with inhibitors showed that PI3 kinase-Akt-mTOR-p70S6 kinase pathway controlled changes in phosphorylation of eEF2 and eEF2 kinase induced by high glucose or high insulin. Renal cortical homogenates from db/db mice in early stage of type 2 diabetes showed decrease in eEF2 phosphorylation and increment in eEF2 kinase phosphorylation in association with renal hypertrophy and glomerular and tubular increase in laminin-beta1 content. Rapamycin, an inhibitor of mTOR, abolished diabetes-induced changes in phosphorylation of eEF2, eEF2 kinase, and p70S6 kinase and ameliorated renal hypertrophy and laminin-beta1 protein content, without affecting hyperglycemia. These data show that mTOR is an attractive target for amelioration of diabetes-induced renal injury.

  9. Thrombospondin-4 regulates vascular inflammation and atherogenesis

    PubMed Central

    Frolova, Ella; Pluskota, Elzbieta; Krukovets, Irene; Burke, Tim; Drumm, Carla; Smith, Jonathan D.; Blech, Lauren; Febbraio, Maria; Bornstein, Paul; Plow, Edward F.; Stenina, Olga I.

    2010-01-01

    Rationale Thrombospondin-4 (TSP-4) is an extracellular protein that has been linked to several cardiovascular pathologies. However, a role for TSP-4 in vascular wall biology remains unknown. Objective We have examined the effects of TSP-4 gene (Thbs4) knockout on the development of atherosclerotic lesions in ApoE−/− mice. Methods and Results Deficiency in TSP-4 reduced atherosclerotic lesions: at 20 weeks of age, the size of the aortic root lesions in Thbs4−/−/ApoE−/− mice was decreased by 48% in females and by 39% in males on chow diets; in mice on Western diets, lesions in the descending aorta were reduced by 30% in females and 33% in males. In ApoE−/− mice, TSP-4 was abundant in vessel areas prone to lesion development and in the matrix of the lesions themselves. TSP-4 deficiency reduced the number of macrophages in lesions in all groups by ≥ 2 fold. In addition, TSP-4 deficiency reduced endothelial cell activation (expression of surface adhesion molecules) and other markers of inflammation in the vascular wall (decreased production of MCP-1 and activation of p38). In vitro, both the adhesion and migration of wild-type macrophages increased in the presence of purified recombinant TSP-4 in a dose-dependent manner (up to 7 and 4.7 fold, respectively). These responses led to p38-MAPkinase activation and were dependent on β2 and β3 integrins, which recognize TSP-4 as a ligand. Conclusions TSP-4 is abundant in atherosclerotic lesions and in areas prone to development of lesions and may influence the recruitment of macrophages by activating endothelial cells and directly interacting with macrophages to increase their adhesion and migration. Our observations suggest an important role for this matricellular protein in the local regulation of inflammation associated with atherogenesis. PMID:20884877

  10. Brassinosteriod Insensitive 2 (BIN2) acts as a downstream effector of the Target of Rapamycin (TOR) signaling pathway to regulate photoautotrophic growth in Arabidopsis.

    PubMed

    Xiong, Fangjie; Zhang, Rui; Meng, Zhigang; Deng, Kexuan; Que, Yumei; Zhuo, Fengping; Feng, Li; Guo, Sundui; Datla, Raju; Ren, Maozhi

    2017-01-01

    The components of the target of rapamycin (TOR) signaling pathway have been well characterized in heterotrophic organisms from yeast to humans. However, because of rapamycin insensitivity, embryonic lethality in tor null mutants and a lack of reliable ways of detecting TOR protein kinase in higher plants, the key players upstream and downstream of TOR remain largely unknown in plants. Using engineered rapamycin-sensitive Binding Protein 12-2 (BP12-2) plants, the present study showed that combined treatment with rapamycin and active-site TOR inhibitors (asTORis) results in synergistic inhibition of TOR activity and plant growth in Arabidopsis. Based on this system, we revealed that TOR signaling plays a crucial role in modulating the transition from heterotrophic to photoautotrophic growth in Arabidopsis. Ribosomal protein S6 kinase 2 (S6K2) was identified as a direct downstream target of TOR, and the growth of TOR-suppressed plants could be rescued by up-regulating S6K2. Systems, genetic, and biochemical analyses revealed that Brassinosteriod Insensitive 2 (BIN2) acts as a novel downstream effector of S6K2, and the phosphorylation of BIN2 depends on TOR-S6K2 signaling in Arabidopsis. By combining pharmacological with genetic and biochemical approaches, we determined that the TOR-S6K2-BIN2 signaling pathway plays important roles in regulating the photoautotrophic growth of Arabidopsis.

  11. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension.

    PubMed

    Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E; Arons, Elena; Zaman, Paula; Polach, Kevin J; Matar, Majed; Yung, Lai-Ming; Yu, Paul B; Bowman, Frederick P; Opotowsky, Alexander R; Waxman, Aaron B; Loscalzo, Joseph; Leopold, Jane A; Maron, Bradley A

    2016-07-01

    Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10(-9) to 10(-7) M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor-small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.-Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth

  12. Circadian regulation of mammalian target of rapamycin signaling in the mouse suprachiasmatic nucleus.

    PubMed

    Cao, R; Anderson, F E; Jung, Y-J; Dziema, H; Obrietan, K

    2011-05-05

    Circadian (24-h) rhythms influence virtually every aspect of mammalian physiology. The main rhythm generation center is located in the suprachiasmatic nucleus (SCN) of the hypothalamus, and work over the past several years has revealed that rhythmic gene transcription and post-translational processes are central to clock timing. In addition, rhythmic translation control has also been implicated in clock timing; however the precise cell signaling pathways that drive this process are not well known. Here we report that a key translation activation cascade, the mammalian target of rapamycin (mTOR) pathway, is under control of the circadian clock in the SCN. Using phosphorylated S6 ribosomal protein (pS6) as a marker of mTOR activity, we show that the mTOR cascade exhibits maximal activity during the subjective day, and minimal activity during the late subjective night. Importantly, expression of S6 was not altered as a function of circadian time. Rhythmic S6 phosphorylation was detected throughout the dorsoventral axis of the SCN, thus suggesting that rhythmic mTOR activity was not restricted to a subset of SCN neurons. Rather, rhythmic pS6 expression appeared to parallel the expression pattern of the clock gene period1 (per1). Using a transgenic per1 reporter gene mouse strain, we found a statistically significant cellular level correlation between pS6 and per1 gene expression over the circadian cycle. Further, photic stimulation triggered a coordinate upregulation of per1 and mTOR activation in a subset of SCN cells. Interestingly, this cellular level correlation between mTOR activity and per1 expression appears to be specific, since a similar expression profile for pS6 and per2 or c-FOS was not detected. Finally, we show that mTOR activity is downstream of the ERK/MAPK signal transduction pathway. Together these data reveal that mTOR pathway activity is under the control of the SCN clock, and suggests that mTOR signaling may contribute to distinct aspects of the

  13. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO.

    PubMed

    Robida-Stubbs, Stacey; Glover-Cutter, Kira; Lamming, Dudley W; Mizunuma, Masaki; Narasimhan, Sri Devi; Neumann-Haefelin, Elke; Sabatini, David M; Blackwell, T Keith

    2012-05-02

    The TOR kinase, which is present in the functionally distinct complexes TORC1 and TORC2, is essential for growth but associated with disease and aging. Elucidation of how TOR influences life span will identify mechanisms of fundamental importance in aging and TOR functions. Here we show that when TORC1 is inhibited genetically in C. elegans, SKN-1/Nrf, and DAF-16/FoxO activate protective genes, and increase stress resistance and longevity. SKN-1 also upregulates TORC1 pathway gene expression in a feedback loop. Rapamycin triggers a similar protective response in C. elegans and mice, but increases worm life span dependent upon SKN-1 and not DAF-16, apparently by interfering with TORC2 along with TORC1. TORC1, TORC2, and insulin/IGF-1-like signaling regulate SKN-1 activity through different mechanisms. We conclude that modulation of SKN-1/Nrf and DAF-16/FoxO may be generally important in the effects of TOR signaling in vivo and that these transcription factors mediate an opposing relationship between growth signals and longevity.

  14. Complex regulation of mammalian target of rapamycin complex 1 in the basomedial hypothalamus by leptin and nutritional status.

    PubMed

    Villanueva, Eneida C; Münzberg, Heike; Cota, Daniela; Leshan, Rebecca L; Kopp, Keely; Ishida-Takahashi, Ryoko; Jones, Justin C; Fingar, Diane C; Seeley, Randy J; Myers, Martin G

    2009-10-01

    The medial basal hypothalamus, including the arcuate nucleus (ARC) and the ventromedial hypothalamic nucleus (VMH), integrates signals of energy status to modulate metabolism and energy balance. Leptin and feeding regulate the mammalian target of rapamycin complex 1 (mTORC1) in the hypothalamus, and hypothalamic mTORC1 contributes to the control of feeding and energy balance. To determine the mechanisms by which leptin modulates mTORC1 in specific hypothalamic neurons, we immunohistochemically assessed the mTORC1-dependent phosphorylation of ribosomal protein S6 (pS6). In addition to confirming the modulation of ARC mTORC1 activity by acute leptin treatment, this analysis revealed the robust activation of mTORC1-dependent ARC pS6 in response to fasting and leptin deficiency in leptin receptor-expressing Agouti-related protein neurons. In contrast, fasting and leptin deficiency suppress VMH mTORC1 signaling. The appropriate regulation of ARC mTORC1 by mutant leptin receptor isoforms correlated with their ability to suppress the activity of Agouti-related protein neurons, suggesting the potential stimulation of mTORC1 by the neuronal activity. Indeed, fasting- and leptin deficiency-induced pS6-immunoreactivity (IR) extensively colocalized with c-Fos-IR in ARC and VMH neurons. Furthermore, ghrelin, which activates orexigenic ARC neurons, increased ARC mTORC1 activity and induced colocalized pS6- and c-Fos-IR. Thus, neuronal activity promotes mTORC1/pS6 in response to signals of energy deficit. In contrast, insulin, which activates mTORC1 via the phosphatidylinositol 3-kinase pathway, increased ARC and VMH pS6-IR in the absence of neuronal activation. The regulation of mTORC1 in the basomedial hypothalamus thus varies by cell and stimulus type, as opposed to responding in a uniform manner to nutritional and hormonal perturbations.

  15. Target of rapamycin signaling regulates metabolism, growth, and lifespan in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TOR is a major nutrition and energy sensor that regulates growth and lifespan in yeast and animals. In plants growth and lifespan are intertwined with not only nutrient acquisition but also nutrition generation and unique aspects of development and differentiation. How TOR functions in these process...

  16. Anticancer peptidylarginine deiminase (PAD) inhibitors regulate the autophagy flux and the mammalian target of rapamycin complex 1 activity.

    PubMed

    Wang, Yuji; Li, Pingxin; Wang, Shu; Hu, Jing; Chen, Xiangyun Amy; Wu, Jianhui; Fisher, Megan; Oshaben, Kira; Zhao, Na; Gu, Ying; Wang, Dong; Chen, Gong; Wang, Yanming

    2012-07-27

    Tumor suppressor genes are frequently silenced in cancer cells by enzymes catalyzing epigenetic histone modifications. The peptidylarginine deiminase family member PAD4 (also called PADI4) is markedly overexpressed in a majority of human cancers, suggesting that PAD4 is a putative target for cancer treatment. Here, we have generated novel PAD inhibitors with low micromolar IC(50) in PAD activity and cancer cell growth inhibition. The lead compound YW3-56 alters the expression of genes controlling the cell cycle and cell death, including SESN2 that encodes an upstream inhibitor of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. Guided by the gene expression profile analyses with YW3-56, we found that PAD4 functions as a corepressor of p53 to regulate SESN2 expression by histone citrullination in cancer cells. Consistent with the mTORC1 inhibition by SESN2, the phosphorylation of its substrates including p70S6 kinase (p70S6K) and 4E-BP1 was decreased. Furthermore, macroautophagy is perturbed after YW3-56 treatment in cancer cells. In a mouse xenograft model, YW3-56 demonstrates cancer growth inhibition activity with little if any detectable adverse effect to vital organs, whereas a combination of PAD4 and histone deacetylase inhibitors further decreases tumor growth. Taken together, our work found that PAD4 regulates the mTORC1 signaling pathway and that PAD inhibitors are potential anticancer reagents that activate tumor suppressor gene expression alone or in combination with histone deacetylase inhibitors.

  17. NFκB up-regulation of glucose transporter 3 is essential for hyperactive mammalian target of rapamycin-induced aerobic glycolysis and tumor growth.

    PubMed

    Zha, Xiaojun; Hu, Zhongdong; Ji, Shuang; Jin, Fuquan; Jiang, Keguo; Li, Chunjia; Zhao, Pan; Tu, Zhenzhen; Chen, Xianguo; Di, Lijun; Zhou, Haisheng; Zhang, Hongbing

    2015-04-01

    Accumulating evidence indicates that mammalian target of rapamycin (mTOR) exerts a crucial role in aerobic glycolysis and tumorigenesis, but the underlying mechanisms remain largely obscure. Results from Tsc1- or Tsc2-null mouse embryonic fibroblasts (MEFs) and human cancer cell lines consistently indicate that the expression of glucose transporter 3 (Glut3) is dramatically up-regulated by mTOR. The rapamycin-sensitive mTOR complex 1 (mTORC1), but not the rapamycin-insensitive mTOR complex 2 (mTORC2), was involved in the regulation of Glut3 expression. Moreover, mTORC1 enhances Glut3 expression through the activation of the IKK/NFκB pathway. Depletion of Glut3 led to the suppression of aerobic glycolysis, the inhibition of cell proliferation and colony formation, and the attenuation of the tumorigenic potential of the cells with aberrantly hyper-activated mTORC1 signaling in nude mice. We conclude that Glut3 is a downstream target of mTORC1, and it is critical for oncogenic mTORC1-mediated aerobic glycolysis and tumorigenesis. Hence Glut3 may be a potential target for therapy against cancers caused by the aberrantly activated mTORC1 signaling.

  18. The Prolyl Peptidases PRCP/PREP Regulate IRS-1 Stability Critical for Rapamycin-induced Feedback Activation of PI3K and AKT*

    PubMed Central

    Duan, Lei; Ying, Guoguang; Danzer, Brian; Perez, Ricardo E.; Shariat-Madar, Zia; Levenson, Victor V.; Maki, Carl G.

    2014-01-01

    The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT)/mammalian target of rapamycin (mTOR) pathway conveys signals from receptor tyrosine kinases (RTKs) to regulate cell metabolism, proliferation, survival, and motility. Previously we found that prolylcarboxypeptidase (PRCP) regulate proliferation and survival in breast cancer cells. In this study, we found that PRCP and the related family member prolylendopeptidase (PREP) are essential for proliferation and survival of pancreatic cancer cells. Depletion/inhibition of PRCP and PREP-induced serine phosphorylation and degradation of IRS-1, leading to inactivation of the cellular PI3K and AKT. Notably, depletion/inhibition of PRCP/PREP destabilized IRS-1 in the cells treated with rapamycin, blocking the feedback activation PI3K/AKT. Consequently, inhibition of PRCP/PREP enhanced rapamycin-induced cytotoxicity. Thus, we have identified PRCP and PREP as a stabilizer of IRS-1 which is critical for PI3K/AKT/mTOR signaling in pancreatic cancer cells. PMID:24936056

  19. Membrane-Mediated Regulation of Vascular Identity

    PubMed Central

    Hashimoto, Takuya; Tsuneki, Masayuki; Foster, Trenton R.; Santana, Jeans M.; Bai, Hualong; Wang, Mo; Hu, Haidi; Hanisch, Jesse J.; Dardik, Alan

    2017-01-01

    Vascular diseases span diverse pathology, but frequently arise from aberrant signaling attributed to specific membrane-associated molecules, particularly the Eph-ephrin family. Originally recognized as markers of embryonic vessel identity, Eph receptors and their membrane-associated ligands, ephrins, are now known to have a range of vital functions in vascular physiology. Interactions of Ephs with ephrins at cell-to-cell interfaces promote a variety of cellular responses such as repulsion, adhesion, attraction, and migration, and frequently occur during organ development, including vessel formation. Elaborate coordination of Eph- and ephrin-related signaling among different cell populations is required for proper formation of the embryonic vessel network. There is growing evidence supporting the idea that Eph and ephrin proteins also have postnatal interactions with a number of other membrane-associated signal transduction pathways, coordinating translation of environmental signals into cells. This article provides an overview of membrane-bound signaling mechanisms that define vascular identity in both the embryo and the adult, focusing on Eph- and ephrin-related signaling. We also discuss the role and clinical significance of this signaling system in normal organ development, neoplasms, and vascular pathologies. PMID:26992081

  20. Ptc6 Is Required for Proper Rapamycin-Induced Down-Regulation of the Genes Coding for Ribosomal and rRNA Processing Proteins in S. cerevisiae

    PubMed Central

    González, Asier; Casado, Carlos; Ariño, Joaquín; Casamayor, Antonio

    2013-01-01

    Ptc6 is one of the seven components (Ptc1-Ptc7) of the protein phosphatase 2C family in the yeast Saccharomyces cerevisiae. In contrast to other type 2C phosphatases, the cellular role of this isoform is poorly understood. We present here a comprehensive characterization of this gene product. Cells lacking Ptc6 are sensitive to zinc ions, and somewhat tolerant to cell-wall damaging agents and to Li+. Ptc6 mutants are sensitive to rapamycin, albeit to lesser extent than ptc1 cells. This phenotype is not rescued by overexpression of PTC1 and mutation of ptc6 does not reproduce the characteristic genetic interactions of the ptc1 mutation with components of the TOR pathway, thus suggesting different cellular roles for both isoforms. We show here that the rapamycin-sensitive phenotype of ptc6 cells is unrelated to the reported role of Pt6 in controlling pyruvate dehydrogenase activity. Lack of Ptc6 results in substantial attenuation of the transcriptional response to rapamycin, particularly in the subset of repressed genes encoding ribosomal proteins or involved in rRNA processing. In contrast, repressed genes involved in translation are Ptc6-independent. These effects cannot be attributed to the regulation of the Sch9 kinase, but they could involve modulation of the binding of the Ifh1 co-activator to specific gene promoters. PMID:23704987

  1. The FKBP-rapamycin binding domain of human TOR undergoes strong conformational changes in the presence of membrane mimetics with and without the regulator phosphatidic acid.

    PubMed

    Rodriguez Camargo, Diana C; Link, Nina M; Dames, Sonja A

    2012-06-19

    The Ser/Thr kinase target of rapamycin (TOR) is a central controller of cellular growth and metabolism. Misregulation of TOR signaling is involved in metabolic and neurological disorders and tumor formation. TOR can be inhibited by association of a complex of rapamycin and FKBP12 to the FKBP12-rapamycin binding (FRB) domain. This domain was further proposed to interact with phosphatidic acid (PA), a lipid second messenger present in cellular membranes. Because mammalian TOR has been localized at various cellular membranes and in the nucleus, the output of TOR signaling may depend on its localization, which is expected to be influenced by the interaction with complex partners and regulators in response to cellular signals. Here, we present a detailed characterization of the interaction of the FRB domain with PA and how it is influenced by the surrounding membrane environment. On the basis of nuclear magnetic resonance- and circular dichroism-monitored binding studies using different neutral and negatively charged lipids as well as different membrane mimetics (micelles, bicelles, and liposomes), the FRB domain may function as a conditional peripheral membrane protein. However, the data for the isolated domain just indicate an increased affinity for negatively charged lipids and membrane patches but no specific preference for PA or PA-enriched regions. The membrane-mimetic environment induces strong conformational changes that largely maintain the α-helical secondary structure content but presumably disperse the helices in the lipidic environment. Consistent with overlapping binding surfaces for different lipids and the FKBP12-rapamycin complex, binding of the inhibitor complex protects the FRB domain from interactions with membrane mimetics at lower lipid concentrations.

  2. Regulation of RANKL-induced osteoclastic differentiation by vascular cells.

    PubMed

    Tintut, Yin; Abedin, Moeen; Cho, John; Choe, Andrea; Lim, Jina; Demer, Linda L

    2005-08-01

    Vascular calcification is a regulated process of biomineralization resembling osteogenesis. Many bone-related factors, including resorptive osteoclast-like cells, although in low abundance, have been found in calcified atherosclerotic lesions. The regulatory mechanisms governing them in the vasculature, however, are not clear. Previously, we found that calcifying vascular cells (CVC), a subpopulation of bovine aortic smooth muscle cells (BASMC), undergo osteoblastic differentiation and form mineralized nodules. Since osteoblasts and marrow stromal preosteoblasts regulate osteoclastic differentiation in bone, we hypothesized that vascular cells also regulate differentiation of osteoclastic precursors in the artery wall. Peripheral blood monocytes, which are osteoclast precursors, were co-cultured with CVC or BASMC. Results showed that monocytes co-cultured with both of the vascular cells yielded fewer resorption pits than monocytes cultured alone. Furthermore, monocytes co-cultured with CVC had fewer resorption pits than those co-cultured with BASMC. Conditioned media from the vascular cells also inhibited resorptive activity of monocytes suggesting that the inhibitory effect was mediated in part by soluble factors. Compared with BASMC, CVC had lower mRNA expression for osteopontin, which promotes osteoclast attachment, but greater mRNA expression for the soluble inhibitory cytokine, IL-18. Increased osteoclastic differentiation was observed when neutralizing antibody to IL-18 receptor was added to the cultures of preosteoclasts with CVC conditioned media. Osteoprotegerin, another osteoclast inhibitory cytokine, was expressed at similar levels in both cultures. These results suggest that vascular cells inhibit osteoclastic differentiation, and that CVC have greater inhibitory effects than BASMC.

  3. Antagonism of microRNA-99a promotes cell invasion and down-regulates E-cadherin expression in pancreatic cancer cells by regulating mammalian target of rapamycin.

    PubMed

    Li, Dan; Li, Xiaohan; Cao, Wei; Qi, Yafei; Yang, Xianghong

    2014-06-01

    MicroRNA-99a (miRNA-99a), a potential tumor suppressor, has been implicated in tumorigenesis of many human malignancies. However, the role of miRNA-99a in pancreatic cancer remains unclear. In the present study, we transfected miRNA-99a antagonism into human pancreatic cancer AsPC-1 cells to inhibit miRNA-99a expression and investigated its influence on cell migration and invasion as well as the underlying possible mechanisms. We found that miRNA-99a antagonism significantly increased proliferation, migration and invasion abilities of AsPC-1 cells, which was accompanied by increased expression of mesenchymal phenotype cell biomarkers (N-cadherin, Vimentin, and α-SMA), and decreased expression of epithelial phenotype cell biomarker (E-cadherin). Interestingly, small interfering RNA (siRNA)-mediated knockdown of mammalian target of rapamycin (mTOR) remarkably restored miRNA-99a antagonism-induced down-regulation of E-cadherin. In conclusion, our data suggest that miRNA-99a is involved in pancreatic cancer migration and invasion by regulating mTOR, and may provide a target for effective therapies against pancreatic cancer.

  4. Down-regulation of mitogen-activated protein kinases and nuclear factor-κB signaling is involved in rapamycin suppression of TLR2-induced inflammatory response in monocytic THP-1 cells.

    PubMed

    Sun, Ruili; Zhang, Yi; Ma, Shijiang; Qi, Hengtian; Wang, Mingyong; Duan, Juhong; Ma, Shujun; Zhu, Xiaofei; Li, Guancheng; Wang, Hui

    2015-10-01

    Tripalmitoyl-S-glycero-Cys-(Lys) 4 (Pam3CSK4) interacted with TLR2 induces inflammatory responses through the mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) signal pathway. Rapamycin can suppress TLR-induced inflammatory responses; however, the detailed molecular mechanism is not fully understood. Here, the mechanism by which rapamycin suppresses TLR2-induced inflammatory responses was investigated. It was found that Pam3CSK4-induced pro-inflammatory cytokines were significantly down-regulated at both the mRNA and protein levels in THP-1 cells pre-treated with various concentrations of rapamycin. Inhibition of phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling did not suppress the expression of pro-inflammatory cytokines, indicating that the immunosuppression mediated by rapamycin in THP1 cells is independent of the PI3K/AKT pathway. RT-PCR showed that Erk and NF-κB signal pathways are related to the production of pro-inflammatory cytokines. Inhibition of Erk or NF-κB signaling significantly down-regulated production of pro-inflammatory cytokines. Additionally, western blot showed that pre-treatment of THP-1 cells with rapamycin down-regulates MAPKs and NF-κB signaling induced by Pam3CSK4 stimulation, suggesting that rapamycin suppresses Pam3CSK4-induced pro-inflammatory cytokines via inhibition of TLR2 signaling. It was concluded that rapamycin suppresses TLR2-induced inflammatory responses by down-regulation of Erk and NF-κB signaling.

  5. HABP2 is a Novel Regulator of Vascular Integrity

    PubMed Central

    Mambetsariev, N.; Mirzapoiazova, T.; Mambetsariev, B.; Sammani, S.; Lennon, F.E.; Garcia, J.G.N.; Singleton, P.A.

    2010-01-01

    Objective We evaluated the role of the extracellular serine protease, Hyaluronic Acid Binding Protein 2 (HABP2), in vascular barrier regulation. Methods and Results Using immunoblot and immunohistochemical analysis, we observed that lipopolysaccharide (LPS)-induces HABP2 expression in murine lung endothelium in vivo and in human pulmonary microvascular endothelial cell (HPMVEC) in vitro. High molecular weight hyaluronan (HMW-HA, ~1 million Da) decreased HABP2 protein expression in HPMVEC and decreased purified HABP2 enzymatic activity whereas low MW HA (LMW-HA, ~2,500 Da) increased these activities. The effects of LMW-HA on HABP2 activity, but not HMW-HA, were inhibited with a peptide of the polyanion binding domain (PABD) of HABP2. Silencing (siRNA) HABP2 expression augmented HMW-HA-induced EC barrier enhancement and inhibited LPS and LMW-HA-mediated EC barrier disruption, results which were reversed with overexpression of HABP2. Silencing PAR receptors 1 and 3, RhoA or ROCK expression attenuated LPS, LMW-HA and HABP2-mediated EC barrier disruption. Utilizing murine models of acute lung injury, we observed that LPS- and ventilator-induced pulmonary vascular hyper-permeability were significantly reduced with vascular silencing (siRNA) of HABP2. Conclusions HABP2 negatively regulates vascular integrity via activation of PAR receptor/RhoA/ROCK signaling and represents a potentially useful therapeutic target for syndromes of increased vascular permeability. PMID:20042707

  6. Regulation of thrombosis and vascular function by protein methionine oxidation.

    PubMed

    Gu, Sean X; Stevens, Jeff W; Lentz, Steven R

    2015-06-18

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis.

  7. Biomechanical factors as regulators of biological responses to vascular grafts.

    PubMed

    Fortunato, J E; Glagov, S; Bassiouny, H S

    1999-03-01

    Biomechanical forces have been implicated in the induction and progression of intimal hyperplastic thickening in vein, prosthetic, and endovascular bypass grafts. Graft implantation imposes significant alterations is shear and tensile forces. Such physical forces play an important role in modulating those cellular and molecular events that underlie regulation of vascular healing and adaptation. Characterization of such hemodynamic variables that induce perpetual medial vascular smooth muscle cell proliferation and migration will help in identification of those grafts at risk for occlusion and limited long-term patency and in design of therapeutic strategies that attenuate progressive intimal hyperplasia.

  8. Impaired sympathetic vascular regulation in humans after acute dynamic exercise

    NASA Technical Reports Server (NTRS)

    Halliwill, J. R.; Taylor, J. A.; Eckberg, D. L.

    1996-01-01

    1. The reduction in vascular resistance which accompanies acute dynamic exercise does not subside immediately during recovery, resulting in a post-exercise hypotension. This sustained vasodilatation suggests that sympathetic vascular regulation is altered after exercise. 2. Therefore, we assessed the baroreflex control of sympathetic outflow in response to arterial pressure changes, and transduction of sympathetic activity into vascular resistance during a sympatho-excitatory stimulus (isometric handgrip exercise) after either exercise (60 min cycling at 60% peak aerobic power (VO2,peak)) or sham treatment (60 min seated rest) in nine healthy subjects. 3. Both muscle sympathetic nerve activity and calf vascular resistance were reduced after exercise (-29.7 +/- 8.8 and -25.3 +/- 9.1%, both P < 0.05). The baroreflex relation between diastolic pressure and sympathetic outflow was shifted downward after exercise (post-exercise intercept, 218 +/- 38 total integrated activity (heartbeat)-1; post-sham intercept, 318 +/- 51 total integrated activity (heartbeat)-1, P < 0.05), indicating less sympathetic outflow across all diastolic pressures. Further, the relation between sympathetic activity and vascular resistance was attenuated after exercise (post-exercise slope, 0.0031 +/- 0.0007 units (total integrated activity)-1 min; post-sham slope, 0.0100 +/- 0.0033 units (total integrated activity)-1 min, P < 0.05), indicating less vasoconstriction with any increase in sympathetic activity. 4. Thus, both baroreflex control of sympathetic outflow and the transduction of sympathetic activity into vascular resistance are altered after dynamic exercise. We conclude that the vasodilation which underlies post-exercise hypotension results from both neural and vascular phenomena.

  9. Impaired sympathetic vascular regulation in humans after acute dynamic exercise.

    PubMed Central

    Halliwill, J R; Taylor, J A; Eckberg, D L

    1996-01-01

    1. The reduction in vascular resistance which accompanies acute dynamic exercise does not subside immediately during recovery, resulting in a post-exercise hypotension. This sustained vasodilatation suggests that sympathetic vascular regulation is altered after exercise. 2. Therefore, we assessed the baroreflex control of sympathetic outflow in response to arterial pressure changes, and transduction of sympathetic activity into vascular resistance during a sympatho-excitatory stimulus (isometric handgrip exercise) after either exercise (60 min cycling at 60% peak aerobic power (VO2,peak)) or sham treatment (60 min seated rest) in nine healthy subjects. 3. Both muscle sympathetic nerve activity and calf vascular resistance were reduced after exercise (-29.7 +/- 8.8 and -25.3 +/- 9.1%, both P < 0.05). The baroreflex relation between diastolic pressure and sympathetic outflow was shifted downward after exercise (post-exercise intercept, 218 +/- 38 total integrated activity (heartbeat)-1; post-sham intercept, 318 +/- 51 total integrated activity (heartbeat)-1, P < 0.05), indicating less sympathetic outflow across all diastolic pressures. Further, the relation between sympathetic activity and vascular resistance was attenuated after exercise (post-exercise slope, 0.0031 +/- 0.0007 units (total integrated activity)-1 min; post-sham slope, 0.0100 +/- 0.0033 units (total integrated activity)-1 min, P < 0.05), indicating less vasoconstriction with any increase in sympathetic activity. 4. Thus, both baroreflex control of sympathetic outflow and the transduction of sympathetic activity into vascular resistance are altered after dynamic exercise. We conclude that the vasodilation which underlies post-exercise hypotension results from both neural and vascular phenomena. Images Figure 7 PMID:8866370

  10. [Regulative mechanisms of mammalian target of rapamycin signaling pathway in glomerular hypertrophy in diabetic nephropathy and interventional effects of Chinese herbal medicine].

    PubMed

    Yang, Jing-Jing; Huang, Yan-ru; Wan, Yi-gang; Shen, Shan-mei; Mao, Zhi-min; Wu, Wei; Yao, Jian

    2015-08-01

    Glomerular hypertrophy is the main pathological characteristic in the early stage of diabetic nephropathy (DN), and its regulatory mechanism is closely related to mammalian target of rapamycin (mTOR) signaling pathway activity. mTOR includes mTOR complex 1 (mTORC1) and mTOR complex 2(mTORC2), in which, the upstream pathway of mTORC1 is phosphatidylinositol-3-kinase (PI3K)/serine-threonine kinase(Akt)/adenosine monophosphate activated protein kinase(AMPK), and the representative signaling molecules in the downstream pathway of mTORC1 are 4E-binding proteins(4EBP) and phosphoprotein 70 S6Kinase(p70S6K). Some Chinese herbal extracts could improve cell proliferation via intervening the expressions of the key molecules in the upstream or downstream of PIK/Akt/mTOR signaling pathway in vivo. As for glomerular mesangial cells(MC) and podocyte, mTOR plays an important role in regulating glomerular inherent cells, including adjusting cell cycle, energy metabolism and matrix protein synthesis. Rapamycin, the inhibitor of mTOR, could suppress glomerular inherent cell hypertrophy, cell proliferation, glomerular basement membrane (GBM) thickening and mesangial matrix deposition in model rats with DN. Some Chinese herbal extracts could alleviate glomerular lesions by intervening mTOR signaling pathway activity in renal tissue of DN animal models or in renal inherent cells in vivo and in vitro.

  11. Regulation of the nascent brain vascular network by neural progenitors.

    PubMed

    Santhosh, Devi; Huang, Zhen

    2015-11-01

    Neural progenitors are central players in the development of the brain neural circuitry. They not only produce the diverse neuronal and glial cell types in the brain, but also guide their migration in this process. Recent evidence indicates that neural progenitors also play a critical role in the development of the brain vascular network. At an early stage, neural progenitors have been found to facilitate the ingression of blood vessels from outside the neural tube, through VEGF and canonical Wnt signaling. Subsequently, neural progenitors directly communicate with endothelial cells to stabilize nascent brain vessels, in part through down-regulating Wnt pathway activity. Furthermore, neural progenitors promote nascent brain vessel integrity, through integrin αvβ8-dependent TGFβ signaling. In this review, we will discuss the evidence for, as well as questions that remain, regarding these novel roles of neural progenitors and the underlying mechanisms in their regulation of the nascent brain vascular network.

  12. Rapamycin, a mTOR inhibitor, induced growth inhibition in retinoblastoma Y79 cell via down-regulation of Bmi-1.

    PubMed

    Wang, Yan-Dong; Su, Yong-Jing; Li, Jian-Ying; Yao, Xiang-Chao; Liang, Guang-Jiang

    2015-01-01

    Rapamycin is useful in the treatment of certain cancers by inhibiting mTOR(mammalian target of rapamycin) pathway. Here, anticancer activity and its acting mechanisms of rapamycin were investigated in human retinoblastoma Y79 cells. CCK-8 assay showed that the IC50 value of rapamycin against human retinoblastoma Y79 cells was 0.122±0.026 μmol/L. Flow cytometry analysis indicated that rapamycin induced G1 cell cycle arrest. Western blot assay demonstrated that the mTOR pathway in Y79 cells was blocked by rapamycin. Western blot and RT-PCR assay showed that Bmi-1 was downregulated in protein and mRNA level by rapamycin treatment. Further Western blot and RNA interference assays showed that rapamycin-mediated downregulation of Bmi-1 induced decreases of cyclin E1, which accounted for rapamycin-mediated G1 cell cycle arrest in human retinoblastoma cells. Together, all these results illustrated that rapamycin induced growth inhibition of human retinoblastoma cells, and inactive of mTOR pathway and downregulation of Bmi-1 was involved in its action mechanism.

  13. IP3 receptors regulate vascular smooth muscle contractility and hypertension

    PubMed Central

    Lin, Qingsong; Zhao, Guiling; Fang, Xi; Peng, Xiaohong; Tang, Huayuan; Wang, Hong; Jing, Ran; Liu, Jie; Ouyang, Kunfu

    2016-01-01

    Inositol 1, 4, 5-trisphosphate receptor–mediated (IP3R-mediated) calcium (Ca2+) release has been proposed to play an important role in regulating vascular smooth muscle cell (VSMC) contraction for decades. However, whether and how IP3R regulates blood pressure in vivo remains unclear. To address these questions, we have generated a smooth muscle–specific IP3R triple-knockout (smTKO) mouse model using a tamoxifen-inducible system. In this study, the role of IP3R-mediated Ca2+ release in adult VSMCs on aortic vascular contractility and blood pressure was assessed following tamoxifen induction. We demonstrated that deletion of IP3Rs significantly reduced aortic contractile responses to vasoconstrictors, including phenylephrine, U46619, serotonin, and endothelin 1. Deletion of IP3Rs also dramatically reduced the phosphorylation of MLC20 and MYPT1 induced by U46619. Furthermore, although the basal blood pressure of smTKO mice remained similar to that of wild-type controls, the increase in systolic blood pressure upon chronic infusion of angiotensin II was significantly attenuated in smTKO mice. Taken together, our results demonstrate an important role for IP3R-mediated Ca2+ release in VSMCs in regulating vascular contractility and hypertension. PMID:27777977

  14. Novel aspects of endothelium-dependent regulation of vascular tone.

    PubMed

    Villar, I C; Francis, S; Webb, A; Hobbs, A J; Ahluwalia, A

    2006-09-01

    The vascular endothelium plays a crucial role in the regulation of vascular homeostasis and in preventing the initiation and progress of cardiovascular disease by controlling mechanical functions of the underlying vascular smooth muscle. Three vasodilators: nitric oxide (NO), prostacyclin, and endothelium-derived hyperpolarizing factor, produced by the endothelium, underlie this activity. These substances act in a co-ordinated interactive manner to maintain normal endothelial function and operate as support mechanisms when one pathway malfunctions. In this review, we discuss recent advances in our understanding of how gender influences the interaction of these factors resulting in the vascular protective effects seen in pre-menopausal women. We also discuss how endothelial NO synthase (NOS) can act in both a pro- and anti-inflammatory action and therefore is likely to be pivotal in the initiation and time course of an inflammatory response, particularly with respect to inflammatory cardiovascular disorders. Finally, we review recent evidence demonstrating that it is not solely NOS-derived NO that mediates many of the beneficial effects of the endothelium, in particular, nitrite acts as a store of NO released during pathological episodes associated with NOS inactivity (ischemia/hypoxia). Each of these more recent findings has emphasized new pathways involved in endothelial biology, and following further research and understanding of the significance and mechanisms of these systems, it is likely that new and improved treatments for cardiovascular disease will result.

  15. Interleukin-32 Positively Regulates Radiation-Induced Vascular Inflammation

    SciTech Connect

    Kobayashi, Hanako; Yazlovitskaya, Eugenia M.; Lin, P. Charles

    2009-08-01

    Purpose: To study the role of interleukin-32 (IL-32), a novel protein only detected in human tissues, in ionizing radiation (IR)-induced vascular inflammation. Methods and Materials: Irradiated (0-6 Gy) human umbilical vein endothelial cells treated with or without various agents-a cytosolic phospholipase A2 (cPLA2) inhibitor, a cyclooxygenase-2 (Cox-2) inhibitor, or lysophosphatidylcholines (LPCs)-were used to assess IL-32 expression by Northern blot analysis and quantitative reverse transcriptase-polymerase chain reaction. Expression of cell adhesion molecules and leukocyte adhesion to endothelial cells using human acute monocytic leukemia cell line (THP-1) cells was also analyzed. Results: Ionizing radiation dramatically increased IL-32 expression in vascular endothelial cells through multiple pathways. Ionizing radiation induced IL-32 expression through nuclear factor {kappa}B activation, through induction of cPLA2 and LPC, as well as induction of Cox-2 and subsequent conversion of arachidonic acid to prostacyclin. Conversely, blocking nuclear factor {kappa}B, cPLA2, and Cox-2 activity impaired IR-induced IL-32 expression. Importantly, IL-32 significantly enhanced IR-induced expression of vascular cell adhesion molecules and leukocyte adhesion on endothelial cells. Conclusion: This study identifies IL-32 as a positive regulator in IR-induced vascular inflammation, and neutralization of IL-32 may be beneficial in protecting from IR-induced inflammation.

  16. Caveolin-1 regulates contractility in differentiated vascular smooth muscle.

    PubMed

    Je, Hyun-Dong; Gallant, Cynthia; Leavis, Paul C; Morgan, Kathleen G

    2004-01-01

    Caveolin is a principal component of caveolar membranes. In the present study, we utilized a decoy peptide approach to define the degree of involvement of caveolin in PKC-dependent regulation of contractility of differentiated vascular smooth muscle. The primary isoform of caveolin in ferret aorta vascular smooth muscle is caveolin-1. Chemical loading of contractile vascular smooth muscle tissue with a synthetic caveolin-1 scaffolding domain peptide inhibited PKC-dependent increases in contractility induced by a phorbol ester or an alpha agonist. Peptide loading also resulted in a significant inhibition of phorbol ester-induced adducin Ser662 phosphorylation, an intracellular monitor of PKC kinase activity, ERK1/2 activation, and Ser789 phosphorylation of the actin binding protein caldesmon. alpha-Agonist-induced ERK1-1/2 activation was also inhibited by the caveolin-1 peptide. Scrambled peptide-loaded tissues or sham-loaded tissues were unaffected with respect to both contractility and signaling. Depolarization-induced activation of contraction was not affected by caveolin peptide loading. Similar results with respect to contractility and ERK1/2 activation during exposure to the phorbol ester or the alpha-agonist were obtained with the cholesterol-depleting agent methyl-beta-cyclodextrin. These results are consistent with a role for caveolin-1 in the coordination of signaling leading to the regulation of contractility of smooth muscle.

  17. Radial glia regulate vascular patterning around the developing spinal cord

    PubMed Central

    Matsuoka, Ryota L; Marass, Michele; Avdesh, Avdesh; Helker, Christian SM; Maischein, Hans-Martin; Grosse, Ann S; Kaur, Harmandeep; Lawson, Nathan D; Herzog, Wiebke; Stainier, Didier YR

    2016-01-01

    Vascular networks surrounding individual organs are important for their development, maintenance, and function; however, how these networks are assembled remains poorly understood. Here we show that CNS progenitors, referred to as radial glia, modulate vascular patterning around the spinal cord by acting as negative regulators. We found that radial glia ablation in zebrafish embryos leads to excessive sprouting of the trunk vessels around the spinal cord, and exclusively those of venous identity. Mechanistically, we determined that radial glia control this process via the Vegf decoy receptor sFlt1: sflt1 mutants exhibit the venous over-sprouting observed in radial glia-ablated larvae, and sFlt1 overexpression rescues it. Genetic mosaic analyses show that sFlt1 function in trunk endothelial cells can limit their over-sprouting. Together, our findings identify CNS-resident progenitors as critical angiogenic regulators that determine the precise patterning of the vasculature around the spinal cord, providing novel insights into vascular network formation around developing organs. DOI: http://dx.doi.org/10.7554/eLife.20253.001 PMID:27852438

  18. Temporal changes in mammalian target of rapamycin (mTOR) and phosphorylated-mTOR expressions in the hippocampal CA1 region of rat with vascular dementia

    PubMed Central

    Park, Jin-A

    2017-01-01

    Mammalian target of rapamycin (mTOR) has an important role in various biological processes in cells. In the present study, we investigated temporal changes in mTOR and phosphorylated-mTOR (p-mTOR) expressions in the rat hippocampal CA1 region following chronic cerebral hypoperfusion (CCH) induced by permanent bilateral common carotid arteries occlusion (2VO). The mTOR immunoreactivity in the pyramidal neurons and mTOR protein level in the hippocampal CA1 region were markedly decreased at 21 and 28 days after 2VO surgery. However, p-mTOR protein expression was significantly increased at 7 days following CCH but then decreased with time. The results indicate that mTOR and p-mTOR expressions change in the hippocampal CA1 region after 2VO surgery and that reduced expressions of mTOR and p-mTOR may be closely related to the CCH-induced neuronal damage in the hippocampal CA1 region. PMID:27297423

  19. Mechanistic target of rapamycin (mTOR) regulates trophoblast folate uptake by modulating the cell surface expression of FR-α and the RFC

    PubMed Central

    Rosario, Fredrick J.; Powell, Theresa L.; Jansson, Thomas

    2016-01-01

    Folate deficiency in fetal life is strongly associated with structural malformations and linked to intrauterine growth restriction. In addition, limited availability of methyl donors, such as folate, during pregnancy may result in abnormal gene methylation patterns and contribute to developmental programming. The fetus is dependent on placental transfer of folate, however the molecular mechanisms regulating placental folate transport are unknown. We used cultured primary human trophoblast cells to test the hypothesis that mechanistic target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) regulate folate transport by post-translational mechanisms. Silencing raptor (inhibits mTORC1) or rictor (inhibits mTORC2) markedly decreased basal folate uptake. Folate uptake stimulated by insulin + IGF-1 was mediated by mTORC2 but did not involve mTORC1. mTORC1 or mTORC2 silencing markedly decreased the plasma membrane expression of FR-α and RFC transporter isoforms without affecting global protein expression. Inhibition of the ubiquitin ligase Nedd4-2 had no effect on folate transport. In conclusion, we report for the first time that mTORC1/C2 are positive regulators of cellular folate uptake by modulating the cell surface abundance of specific transporter isoforms. We propose that regulation of placental folate transport by mTOR signaling provide a direct link between placental function, gene methylation and fetal programming. PMID:27562465

  20. Mechanistic target of rapamycin (mTOR) regulates trophoblast folate uptake by modulating the cell surface expression of FR-α and the RFC.

    PubMed

    Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2016-08-26

    Folate deficiency in fetal life is strongly associated with structural malformations and linked to intrauterine growth restriction. In addition, limited availability of methyl donors, such as folate, during pregnancy may result in abnormal gene methylation patterns and contribute to developmental programming. The fetus is dependent on placental transfer of folate, however the molecular mechanisms regulating placental folate transport are unknown. We used cultured primary human trophoblast cells to test the hypothesis that mechanistic target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) regulate folate transport by post-translational mechanisms. Silencing raptor (inhibits mTORC1) or rictor (inhibits mTORC2) markedly decreased basal folate uptake. Folate uptake stimulated by insulin + IGF-1 was mediated by mTORC2 but did not involve mTORC1. mTORC1 or mTORC2 silencing markedly decreased the plasma membrane expression of FR-α and RFC transporter isoforms without affecting global protein expression. Inhibition of the ubiquitin ligase Nedd4-2 had no effect on folate transport. In conclusion, we report for the first time that mTORC1/C2 are positive regulators of cellular folate uptake by modulating the cell surface abundance of specific transporter isoforms. We propose that regulation of placental folate transport by mTOR signaling provide a direct link between placental function, gene methylation and fetal programming.

  1. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning

    PubMed Central

    Vempati, Prakash; Popel, Aleksander S.; Mac Gabhann, Feilim

    2014-01-01

    The regulation of vascular endothelial growth factor A (VEGF) is critical to neovascularization in numerous tissues under physiological and pathological conditions. VEGF has multiple isoforms, created by alternative splicing or proteolytic cleavage, and characterized by different receptor-binding and matrix-binding properties. These isoforms are known to give rise to a spectrum of angiogenesis patterns marked by differences in branching, which has functional implications for tissues. In this review, we detail the extensive extracellular regulation of VEGF and the ability of VEGF to dictate the vascular phenotype. We explore the role of VEGF-releasing proteases and soluble carrier molecules on VEGF activity. While proteases such as MMP9 can ‘release’ matrix-bound VEGF and promote angiogenesis, for example as a key step in carcinogenesis, proteases can also suppress VEGF’s angiogenic effects. We explore what dictates pro- or anti-angiogenic behavior. We also seek to understand the phenomenon of VEGF gradient formation. Strong VEGF gradients are thought to be due to decreased rates of diffusion from reversible matrix binding, however theoretical studies show that this scenario cannot give rise to lasting VEGF gradients in vivo. We propose that gradients are formed through degradation of sequestered VEGF. Finally, we review how different aspects of the VEGF signal, such as its concentration, gradient, matrix-binding, and NRP1-binding can differentially affect angiogenesis. We explore how this allows VEGF to regulate the formation of vascular networks across a spectrum of high to low branching densities, and from normal to pathological angiogenesis. A better understanding of the control of angiogenesis is necessary to improve upon limitations of current angiogenic therapies. PMID:24332926

  2. Regulation of tyrosine phosphatases in the adventitia during vascular remodelling

    SciTech Connect

    Micke, Patrick; Hackbusch, Daniel; Mercan, Sibel; Stawowy, Philipp; Ostman, Arne; Kappert, Kai

    2009-05-15

    Protein tyrosine phosphatases (PTPs) are regulators of growth factor signalling in vascular remodelling. The aim of this study was to evaluate PTP expression in the context of PDGF-signalling in the adventitia after angioplasty. Utilising a rat carotid artery model, the adventitial layers of injured and non-injured vessels were laser microdissected. The mRNA expression of the PDGF {beta}-receptor, the ligands PDGF-A/B/C/D and the receptor-antagonising PTPs (DEP-1, TC-PTP, SHP-2, PTP1B) were determined and correlated to vascular morphometrics, proliferation markers and PDGF {beta}-receptor phosphorylation. The levels of the PDGF {beta}-receptor, PDGF-C and PDGF-D were upregulated concurrently with the antagonising PTPs DEP-1 and TC-PTP at day 8, and normalised at day 14 after vessel injury. Although the proliferation parameters were time-dependently altered in the adventitial layer, the phosphorylation of the PDGF {beta}-receptor remained unchanged. The expression dynamics of specific PTPs indicate a regulatory role of PDGF-signalling also in the adventitia during vascular remodelling.

  3. Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants.

    PubMed

    Xiong, Yan; Sheen, Jen

    2012-01-20

    Target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrients, growth factors, and stress signals to promote survival and growth in all eukaryotes. The reported land plant resistance to rapamycin and the embryo lethality of the Arabidopsis tor mutants have hindered functional dissection of TOR signaling in plants. We developed sensitive cellular and seedling assays to monitor endogenous Arabidopsis TOR activity based on its conserved S6 kinase (S6K) phosphorylation. Surprisingly, rapamycin effectively inhibits Arabidopsis TOR-S6K1 signaling and retards glucose-mediated root and leaf growth, mimicking estradiol-inducible tor mutants. Rapamycin inhibition is relieved in transgenic plants deficient in Arabidopsis FK506-binding protein 12 (FKP12), whereas FKP12 overexpression dramatically enhances rapamycin sensitivity. The role of Arabidopsis FKP12 is highly specific as overexpression of seven closely related FKP proteins fails to increase rapamycin sensitivity. Rapamycin exerts TOR inhibition by inducing direct interaction between the TOR-FRB (FKP-rapamycin binding) domain and FKP12 in plant cells. We suggest that variable endogenous FKP12 protein levels may underlie the molecular explanation for longstanding enigmatic observations on inconsistent rapamycin resistance in plants and in various mammalian cell lines or diverse animal cell types. Integrative analyses with rapamycin and conditional tor and fkp12 mutants also reveal a central role of glucose-TOR signaling in root hair formation. Our studies demonstrate the power of chemical genetic approaches in the discovery of previously unknown and pivotal functions of glucose-TOR signaling in governing the growth of cotyledons, true leaves, petioles, and primary and secondary roots and root hairs.

  4. Extracellular matrix-modulated Heartless signaling in Drosophila blood progenitors regulates their differentiation via a Ras/ETS/FOG pathway and target of rapamycin function

    PubMed Central

    Dragojlovic-Munther, Michelle; Martinez-Agosto, Julian A

    2014-01-01

    Maintenance of hematopoietic progenitors ensures a continuous supply of blood cells during the lifespan of an organism. Thus, understanding the molecular basis for progenitor maintenance is a continued focus of investigation. A large pool of undifferentiated blood progenitors are maintained in the Drosophila hematopoietic organ, the larval lymph gland, by a complex network of signaling pathways that are mediated by niche-, progenitor-, or differentiated hemocyte-derived signals. In this study we examined the function of the Drosophila fibroblast growth factor receptor (FGFR), Heartless, a critical regulator of early lymph gland progenitor specification in the late embryo, during larval lymph gland hematopoiesis. Activation of Heartless signaling in hemocyte progenitors by its two ligands, Pyramus and Thisbe, is both required and sufficient to induce progenitor differentiation and formation of the plasmatocyte-rich lymph gland cortical zone. We identify two transcriptional regulators that function downstream of Heartless signaling in lymph gland progenitors, the ETS protein, Pointed, and the Friend-of-GATA (FOG) protein, U-shaped, which are required for this Heartless-induced differentiation response. Furthermore, cross-talk of Heartless and target of rapamycin signaling in hemocyte progenitors is required for lamellocyte differentiation downstream of Thisbe-mediated Heartless activation. Finally, we identify the Drosophila heparan sulfate proteoglycan, Trol, as a critical negative regulator of Heartless ligand signaling in the lymph gland, demonstrating that sequestration of differentiation signals by the extracellular matrix is a unique mechanism employed in blood progenitor maintenance that is of potential relevance to many other stem cell niches. PMID:23603494

  5. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions.

    PubMed

    O'Neil, T K; Duffy, L R; Frey, J W; Hornberger, T A

    2009-07-15

    Resistance exercise induces a hypertrophic response in skeletal muscle and recent studies have begun to shed light on the molecular mechanisms involved in this process. For example, several studies indicate that signalling by the mammalian target of rapamycin (mTOR) is necessary for a hypertrophic response. Furthermore, resistance exercise has been proposed to activate mTOR signalling through an upstream pathway involving the phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB); however, this hypothesis has not been thoroughly tested. To test this hypothesis, we first evaluated the temporal pattern of signalling through PI3K-PKB and mTOR following a bout of resistance exercise with eccentric contractions (EC). Our results indicated that the activation of signalling through PI3K-PKB is a transient event (<15 min), while the activation of mTOR is sustained for a long duration (>12 h). Furthermore, inhibition of PI3K-PKB activity did not prevent the activation of mTOR signalling by ECs, indicating that PI3K-PKB is not part of the upstream regulatory pathway. These observations led us to investigate an alternative pathway for the activation of mTOR signalling involving the synthesis of phosphatidic acid (PA) by phospholipase D (PLD). Our results demonstrate that ECs induce a sustained elevation in [PA] and inhibiting the synthesis of PA by PLD prevented the activation of mTOR. Furthermore, we determined that similar to ECs, PA activates mTOR signalling through a PI3K-PKB-independent mechanism. Combined, the results of this study indicate that the activation of mTOR following eccentric contractions occurs through a PI3K-PKB-independent mechanism that requires PLD and PA.

  6. Regulation of cyclooxygenase expression in cultured vascular cells

    SciTech Connect

    Pash, J.M.

    1988-01-01

    Arachidonic acid metabolism in vascular tissue results in synthesis of prostacylin. The key enzyme in this synthesis pathway, cyclooxygenase, is down-regulated through self-inactivation. An analogous refractory state is produced by aspirin which irreversibly acetylates the enzyme. To further understand this phenomenon, the inactivation and recovery of cyclooxygenase activity was assayed in cultured ray vascular smooth muscle cells using exogenously added arachidonic acid. Self-inactivation of cyclooxygenase was observed following treatment with micromolar amounts of arachidonic acid. The recovery of cyclooxygenase activity following self-inactivation was analogous to that observed following aspirin-inactivation in that it depended on protein synthesis and required either serum or EGF. Two additional factors, TGF-{beta} and uric acid, were found to enhance the stimulation of cyclooxygenase recovery by EGF. A defined medium containing 10 ng/mL EGF, 1 ng/mL TGF{beta} and 0.1 mM uric acid duplicated the cyclooxygenase recovery activity of 10% serum. Stimulation of cyclooxygenase activity by EGF and TGF-{beta} was inhibited by cycloheximide but not by actinomycin-D, indicating a link to increased translation of pre-existing mRNA. A lack of significant effect on overall protein synthesis by EGF and TGF-{beta}, measured by ({sup 35}S)-methionine incorporation under conditions where a multi-fold increase in cyclooxygenase activity was seen, indicates that the translational regulation of a small fraction of total mRNA and possibly cyclooxygenase is occurring.

  7. Regulation of Vascular and Renal Function by Metabolite Receptors*

    PubMed Central

    Peti-Peterdi, János; Kishore, Bellamkonda K.; Pluznick, Jennifer L.

    2016-01-01

    To maintain metabolic homeostasis, the body must be able to monitor the concentration of a large number of substances, including metabolites, in real time and to use that information to regulate the activities of different metabolic pathways. Such regulation is achieved by the presence of sensors, termed metabolite receptors, in various tissues and cells of the body, which in turn convey the information to appropriate regulatory or positive or negative feedback systems. In this review, we cover the unique roles of metabolite receptors in renal and vascular function. These receptors play a wide variety of important roles in maintaining various aspects of homeostasis—from salt and water balance to metabolism—by sensing metabolites from a wide variety of sources. We discuss the role of metabolite sensors in sensing metabolites generated locally, metabolites generated at distant tissues or organs, or even metabolites generated by resident microbes. Metabolite receptors are also involved in various pathophysiological conditions and are being recognized as potential targets for new drugs. By highlighting three receptor families—(a) citric acid cycle intermediate receptors, (b) purinergic receptors, and (c) short-chain fatty acid receptors—we emphasize the unique and important roles that these receptors play in renal and vascular physiology and pathophysiology. PMID:26667077

  8. The Transcription Factor p8 Regulates Autophagy in Response to Palmitic Acid Stress via a Mammalian Target of Rapamycin (mTOR)-independent Signaling Pathway.

    PubMed

    Jia, Sheng-Nan; Lin, Cheng; Chen, Dian-Fu; Li, An-Qi; Dai, Li; Zhang, Li; Zhao, Ling-Ling; Yang, Jin-Shu; Yang, Fan; Yang, Wei-Jun

    2016-02-26

    Autophagy is an evolutionarily conserved degradative process that allows cells to maintain homoeostasis in numerous physiological situations. This process also functions as an essential protective response to endoplasmic reticulum (ER) stress, which promotes the removal and degradation of unfolded proteins. However, little is known regarding the mechanism by which autophagy is initiated and regulated in response to ER stress. In this study, different types of autophagy were identified in human gastric cancer MKN45 cells in response to the stress induced by nutrient starvation or lipotoxicity in which the regulation of these pathways is mammalian target of rapamycin (mTOR)-dependent or -independent, respectively. Interestingly, we found that p8, a stress-inducible transcription factor, was enhanced in MKN45 cells treated with palmitic acid to induce lipotoxicity. Furthermore, an increase in autophagy was observed in MKN45 cells stably overexpressing p8 using a lentivirus system, and autophagy induced by palmitic acid was blocked by p8 RNAi compared with the control. Western blotting analyses showed that autophagy was regulated by p8 or mTOR in response to the protein kinase-like endoplasmic reticulum kinase/activating transcription factor 6-mediated ER stress of lipotoxicity or the parkin-mediated mitochondrial stress of nutrient starvation, respectively. Furthermore, our results indicated that autophagy induced by palmitic acid is mTOR-independent, but this autophagy pathway was regulated by p8 via p53- and PKCα-mediated signaling in MKN45 cells. Our findings provide insights into the role of p8 in regulating autophagy induced by the lipotoxic effects of excess fat accumulation in cells.

  9. Cortical actin regulation modulates vascular contractility and compliance in veins

    PubMed Central

    Saphirstein, Robert J; Gao, Yuan Z; Lin, Qian Qian; Morgan, Kathleen G

    2015-01-01

    Abstract The literature on arterial mechanics is extensive, but far less is known about mechanisms controlling mechanical properties of veins. We use here a multi-scale approach to identify subcellular sources of venous stiffness. Portal vein tissue displays a severalfold decrease in passive stiffness compared to aortic tissues. The α-adrenergic agonist phenylephrine (PE) increased tissue stress and stiffness, both attenuated by cytochalasin D (CytoD) and PP2, inhibitors of actin polymerization and Src activity, respectively. We quantify, for the first time, cortical cellular stiffness in freshly isolated contractile vascular smooth muscle cells using magnetic microneedle technology. Cortical stiffness is significantly increased by PE and CytoD inhibits this increase but, surprisingly, PP2 does not. No detectable change in focal adhesion size, measured by immunofluorescence of FAK and zyxin, accompanies the PE-induced changes in cortical stiffness. Probing with phospho-specific antibodies confirmed activation of FAK/Src and ERK pathways and caldesmon phosphorylation. Thus, venous tissue stiffness is regulated both at the level of the smooth muscle cell cortex, via cortical actin polymerization, and by downstream smooth muscle effectors of Src/ERK signalling pathways. These findings identify novel potential molecular targets for the modulation of venous capacitance and venous return in health and disease. Key points Most cardiovascular research focuses on arterial mechanisms of disease, largely ignoring venous mechanisms. Here we examine ex vivo venous stiffness, spanning tissue to molecular levels, using biomechanics and magnetic microneedle technology, and show for the first time that venous stiffness is regulated by a molecular actin switch within the vascular smooth muscle cell in the wall of the vein. This switch connects the contractile apparatus within the cell to adhesion structures and facilitates stiffening of the vessel wall, regulating blood flow return

  10. Sympathetic regulation of vascular function in health and disease

    PubMed Central

    Bruno, Rosa M.; Ghiadoni, Lorenzo; Seravalle, Gino; Dell'Oro, Raffaella; Taddei, Stefano; Grassi, Guido

    2012-01-01

    The sympathetic nervous system (SNS) is known to play a pivotal role in short- and long-term regulation of different functions of the cardiovascular system. In the past decades increasing evidence demonstrated that sympathetic neural control is involved not only in the vasomotor control of small resistance arteries but also in modulation of large artery function. Sympathetic activity and vascular function, both of which are key factors in the development and prognosis of cardiovascular events and disease, are linked at several levels. Evidence from experimental studies indicates that the SNS is critically influenced, at the central and also at the peripheral level, by the most relevant factors regulating vascular function, such as nitric oxide (NO), reactive oxygen species (ROS), endothelin (ET), the renin-angiotensin system. Additionally, there is indirect evidence of a reciprocal relationship between endothelial function and activity of the SNS. A number of cardiovascular risk factors and diseases are characterized both by increased sympathetic outflow and decreased endothelial function. In healthy subjects, muscle sympathetic nerve activity (MSNA) appears to be related to surrogate markers of endothelial function, and an acute increase in sympathetic activity has been associated with a decrease in endothelial function in healthy subjects. However, direct evidence of a cause-effect relationship from human studies is scanty. In humans large artery stiffness has been associated with increased sympathetic discharge, both in healthy subjects and in renal transplant recipients. Peripheral sympathetic discharge is also able to modulate wave reflection. On the other hand, large artery stiffness can interfere with autonomic regulation by impairing carotid baroreflex sensitivity. PMID:22934037

  11. Regulation of Hyaluronan Synthesis in Vascular Diseases and Diabetes

    PubMed Central

    Moretto, Paola; Karousou, Evgenia; Viola, Manuela; Caon, Ilaria; Passi, Alberto; Vigetti, Davide

    2015-01-01

    Cell microenvironment has a critical role determining cell fate and modulating cell responses to injuries. Hyaluronan (HA) is a ubiquitous extracellular matrix glycosaminoglycan that can be considered a signaling molecule. In fact, interacting with several cell surface receptors can deeply shape cell behavior. In vascular biology, HA triggers smooth muscle cells (SMCs) dedifferentiation which contributes to vessel wall thickening. Furthermore, HA is able to modulate inflammation by altering the adhesive properties of endothelial cells. In hyperglycemic conditions, HA accumulates in vessels and can contribute to the diabetic complications at micro- and macrovasculature. Due to the pivotal role in favoring atherogenesis and neointima formation after injuries, HA could be a new target for cardiovascular pathologies. This review will focus on the recent findings regarding the regulation of HA synthesis in human vascular SMCs. In particular, the effects of the intracellular HA substrates availability, adenosine monophosphate-activated protein kinase (AMPK), and protein O-GlcNAcylation on the main HA synthetic enzyme (i.e., HAS2) will be discussed. PMID:25834831

  12. Regulation of lung development and regeneration by the vascular system.

    PubMed

    Woik, Nicole; Kroll, Jens

    2015-07-01

    Blood vessels have been described a long time ago as passive circuits providing sufficient blood supply to ensure proper distribution of oxygen and nutrition. Blood vessels are mainly formed during embryonic development and in the early postnatal period. In the adult, blood vessels are quiescent, but can be activated and subsequently induced under pathophysiological conditions, such as ischemia and tumor growth. Surprisingly, recent data have suggested an active function for blood vessels, named angiocrine signaling, releasing trophogens which regulate organ development and organ regeneration including in the pancreas, lung, tumor cells, liver and bone. Lung development is driven by hypoxia as well as an intense endothelial-epithelial interaction, and important mechanisms contributing to these processes have recently been identified. This review aims to summarize recent developments and concepts about embryonic pulmonary vascular development and lung regeneration. We discuss hypoxia-inducible factor HIF-2α and vascular endothelial growth factor VEGF as important mediators in lung development and focus on endothelial-epithelial interactions and angiocrine signaling mechanisms.

  13. Rictor/mammalian target of rapamycin 2 regulates the development of Notch1 induced murine T-cell acute lymphoblastic leukemia via forkhead box O3.

    PubMed

    Hua, Chunlan; Guo, Huidong; Bu, Jiachen; Zhou, Mi; Cheng, Hui; He, Fuhong; Wang, Jinhong; Wang, Xiaomin; Zhang, Yinchi; Wang, Qianfei; Zhou, Jianfeng; Cheng, Tao; Xu, Mingjiang; Yuan, Weiping

    2014-12-01

    Mammalian target of rapamycin (mTOR) is composed of two distinct biochemical complexes, mTORC1 and mTORC2. In response to nutrients and growth factors, mTORC1 is known to control cellular growth by regulating the translational regulators S6 kinase 1 and 4E binding protein 1, whereas mTORC2 mediates cell proliferation and survival by activating Akt through phosphorylation at Ser473. Studies have shown that the deregulation of mTORC2 leads to the development of myeloproliferative disorder and leukemia in the phosphatase and tensin homolog deleted on chromosome ten (PTEN)-deleted mouse model. However, the mechanism by which mTORC2 specifically affects leukemogenesis is still not fully understood. Here, we investigated the role of mTORC2 in NOTCH1-driven T-cell acute lymphoblastic leukemia (T-ALL) in a Rictor-deficient mouse model. We found that, by deleting Rictor, an essential component of mTORC2, leukemia progression was significantly suppressed by arresting a greater proportion of Rictor(△/△) leukemic cells at the G0 phase of the cell cycle. Furthermore, the absence of Rictor led to the overexpression of chemotaxis-related genes, such as CCR2, CCR4 and CXCR4, which contributed to the homing and migration of Rictor-deficient T-ALL cells to the spleen but not the bone marrow. In addition, we demonstrated that inactivation of mTORC2 caused the overexpression of forkhead box O3 and its downstream effectors and eased the progression of leukemia in T-ALL mice. Our study thus indicates that forkhead box O3 could be a potential drug target for the treatment of T-ALL leukemia.

  14. Regulator of calcineurin 1 mediates pathological vascular wall remodeling

    PubMed Central

    Esteban, Vanesa; Méndez-Barbero, Nerea; Jesús Jiménez-Borreguero, Luis; Roqué, Mercè; Novensá, Laura; Belén García-Redondo, Ana; Salaices, Mercedes; Vila, Luis; Arbonés, María L.

    2011-01-01

    Artery wall remodeling, a major feature of diseases such as hypertension, restenosis, atherosclerosis, and aneurysm, involves changes in the tunica media mass that reduce or increase the vessel lumen. The identification of molecules involved in vessel remodeling could aid the development of improved treatments for these pathologies. Angiotensin II (AngII) is a key effector of aortic wall remodeling that contributes to aneurysm formation and restenosis through incompletely defined signaling pathways. We show that AngII induces vascular smooth muscle cell (VSMC) migration and vessel remodeling in mouse models of restenosis and aneurysm. These effects were prevented by pharmacological inhibition of calcineurin (CN) or lentiviral delivery of CN-inhibitory peptides. Whole-genome analysis revealed >1,500 AngII-regulated genes in VSMCs, with just 11 of them requiring CN activation. Of these, the most sensitive to CN activation was regulator of CN 1 (Rcan1). Rcan1 was strongly activated by AngII in vitro and in vivo and was required for AngII-induced VSMC migration. Remarkably, Rcan1−/− mice were resistant to AngII-induced aneurysm and restenosis. Our results indicate that aneurysm formation and restenosis share mechanistic elements and identify Rcan1 as a potential therapeutic target for prevention of aneurysm and restenosis progression. PMID:21930771

  15. Regulation of Vascular and Renal Function by Metabolite Receptors.

    PubMed

    Peti-Peterdi, János; Kishore, Bellamkonda K; Pluznick, Jennifer L

    2016-01-01

    To maintain metabolic homeostasis, the body must be able to monitor the concentration of a large number of substances, including metabolites, in real time and to use that information to regulate the activities of different metabolic pathways. Such regulation is achieved by the presence of sensors, termed metabolite receptors, in various tissues and cells of the body, which in turn convey the information to appropriate regulatory or positive or negative feedback systems. In this review, we cover the unique roles of metabolite receptors in renal and vascular function. These receptors play a wide variety of important roles in maintaining various aspects of homeostasis-from salt and water balance to metabolism-by sensing metabolites from a wide variety of sources. We discuss the role of metabolite sensors in sensing metabolites generated locally, metabolites generated at distant tissues or organs, or even metabolites generated by resident microbes. Metabolite receptors are also involved in various pathophysiological conditions and are being recognized as potential targets for new drugs. By highlighting three receptor families-(a) citric acid cycle intermediate receptors, (b) purinergic receptors, and

  16. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity.

    PubMed

    Umberger, Nicole L; Caspary, Tamara

    2015-01-15

    Primary cilia are built and maintained by intraflagellar transport (IFT), whereby the two IFT complexes, IFTA and IFTB, carry cargo via kinesin and dynein motors for anterograde and retrograde transport, respectively. Many signaling pathways, including platelet- derived growth factor (PDGF)-AA/αα, are linked to primary cilia. Active PDGF-AA/αα signaling results in phosphorylation of Akt at two residues: P-Akt(T308) and P-Akt(S473), and previous work showed decreased P-Akt(S473) in response to PDGF-AA upon anterograde transport disruption. In this study, we investigated PDGF-AA/αα signaling via P-Akt(T308) and P-Akt(S473) in distinct ciliary transport mutants. We found increased Akt phosphorylation in the absence of PDGF-AA stimulation, which we show is due to impaired dephosphorylation resulting from diminished PP2A activity toward P-Akt(T308). Anterograde transport mutants display low platelet-derived growth factor receptor (PDGFR)α levels, whereas retrograde mutants exhibit normal PDGFRα levels. Despite this, neither shows an increase in P-Akt(S473) or P-Akt(T308) upon PDGF-AA stimulation. Because mammalian target of rapamycin complex 1 (mTORC1) signaling is increased in ciliary transport mutant cells and mTOR signaling inhibits PDGFRα levels, we demonstrate that inhibition of mTORC1 rescues PDGFRα levels as well as PDGF-AA-dependent phosphorylation of Akt(S473) and Akt(T308) in ciliary transport mutant MEFs. Taken together, our data indicate that the regulation of mTORC1 signaling and PP2A activity by ciliary transport plays key roles in PDGF-AA/αα signaling.

  17. Cerebral vascular regulation and brain injury in preterm infants.

    PubMed

    Brew, Nadine; Walker, David; Wong, Flora Y

    2014-06-01

    Cerebrovascular lesions, mainly germinal matrix hemorrhage and ischemic injury to the periventricular white matter, are major causes of adverse neurodevelopmental outcome in preterm infants. Cerebrovascular lesions and neuromorbidity increase with decreasing gestational age, with the white matter predominantly affected. Developmental immaturity in the cerebral circulation, including ongoing angiogenesis and vasoregulatory immaturity, plays a major role in the severity and pattern of preterm brain injury. Prevention of this injury requires insight into pathogenesis. Cerebral blood flow (CBF) is low in the preterm white matter, which also has blunted vasoreactivity compared with other brain regions. Vasoreactivity in the preterm brain to cerebral perfusion pressure, oxygen, carbon dioxide, and neuronal metabolism is also immature. This could be related to immaturity of both the vasculature and vasoactive signaling. Other pathologies arising from preterm birth and the neonatal intensive care environment itself may contribute to impaired vasoreactivity and ineffective CBF regulation, resulting in the marked variations in cerebral hemodynamics reported both within and between infants depending on their clinical condition. Many gaps exist in our understanding of how neonatal treatment procedures and medications have an impact on cerebral hemodynamics and preterm brain injury. Future research directions for neuroprotective strategies include establishing cotside, real-time clinical reference values for cerebral hemodynamics and vasoregulatory capacity and to demonstrate that these thresholds improve long-term outcomes for the preterm infant. In addition, stimulation of vascular development and repair with growth factor and cell-based therapies also hold promise.

  18. Diosmetin inhibits cell proliferation and induces apoptosis by regulating autophagy via the mammalian target of rapamycin pathway in hepatocellular carcinoma HepG2 cells

    PubMed Central

    Liu, Jie; Ren, Hao; Liu, Bin; Zhang, Qingyu; Li, Mingyi; Zhu, Runzhi

    2016-01-01

    Hepatocellular carcinoma (HCC), which is a type of malignant tumor, is the fifth most common cancer in men and ninth in women worldwide. The aim of the present study was to investigate the antitumor effect of diosmetin (DIOS) in hepatocellular carcinoma HepG2 cells. The proliferation, apoptosis and autophagy rates of HepG2 cells were measured following treatment with DIOS. The effects of DIOS treatment on HepG2 cell proliferation and apoptosis rates were analyzed using MTT assays and Annexin V staining, respectively. The effect of DIOS treatment on autophagy levels was assessed using transmission electron microscopy, green fluorescent protein (GFP)-microtubule-associated protein 1 light chain (LC3) transfection and LysoTracker Red staining. Furthermore, bafilomycin A1 (BA1), an autophagy inhibitor, was used to assess the association between DIOS and cell autophagy, proliferation and apoptosis. In addition, the expression of autophagy-related proteins [mammalian target of rapamycin (mTOR), phosphatidylinositol 3-kinase, P70S6K, phosphoinositide-dependent kinase-1, extracellular signal-regulated kinase, 5′-AMP-activated protein kinase and Akt] and apoptosis-related proteins [B-cell lymphoma (Bcl)-2-associated X protein, Bak, p53, Bcl-2 and caspase-3] were analyzed by western blotting. The results revealed that DIOS significantly inhibited proliferation (P<0.01) and induced apoptosis (P<0.001) in HepG2 cells. It was also demonstrated that DIOS triggered autophagy by regulating the mTOR pathway in HepG2 cells. Notably, following treatment of HepG2 cells with the autophagy inhibitor, BA1, the expression of apoptosis-related proteins, including Bax, Bak and p53, were significantly decreased (P<0.05), and cell viability was recovered to a certain extent. In conclusion, DIOS inhibits cell proliferation and induces apoptosis in HepG2 cells via regulation of the mTOR pathway. Thus, the results of the current study indicate that DIOS may present a potential therapeutic

  19. Chemerin Regulates Crosstalk Between Adipocytes and Vascular Cells Through Nox.

    PubMed

    Neves, Karla Bianca; Nguyen Dinh Cat, Aurelie; Lopes, Rheure Alves Moreira; Rios, Francisco Jose; Anagnostopoulou, Aikaterini; Lobato, Nubia Souza; de Oliveira, Ana Maria; Tostes, Rita C; Montezano, Augusto C; Touyz, Rhian M

    2015-09-01

    Adipocytes produce adipokines, including chemerin, a chemoattractant that mediates effects through its ChemR23 receptor. Chemerin has been linked to endothelial dysfunction and vascular injury in pathological conditions, such as obesity, diabetes mellitus, and hypertension. Molecular mechanisms underlying this are elusive. Here we assessed whether chemerin through redox-sensitive signaling influences molecular processes associated with vascular growth, apoptosis, and inflammation. Human microvascular endothelial cells and vascular smooth muscle cells were stimulated with chemerin (50 ng/mL). Chemerin increased generation of reactive oxygen species and phosphorylation of mitogen-activated protein kinases, effects that were inhibited by ML171, GKT137831 (Nox inhibitors), and N-acetylcysteine (reactive oxygen species scavenger). Chemerin increased mRNA expression of proinflammatory mediators in vascular cells and increased monocyte-to-endothelial cell attachment. In human vascular smooth muscle cells, chemerin induced phosphorylation of mitogen-activated protein kinases and stimulated proliferation (increased proliferating cell nuclear antigen expression [proliferation marker] and BrdU incorporation [proliferation assay]). Chemerin decreased phosphatidylinositol 3-kinase/protein kinase B activation and increased TUNEL-positive human vascular smooth muscle cells. In human microvascular endothelial cells, chemerin reduced endothelial nitric oxide synthase activity and nitric oxide production. Adipocyte-conditioned medium from obese/diabetic mice (db/db), which have elevated chemerin levels, increased reactive oxygen species generation in vascular smooth muscle cells, whereas adipocyte-conditioned medium from control mice had no effect. Chemerin actions were blocked by CCX 832, a ChemR23 inhibitor. Our data demonstrate that chemerin, through Nox activation and redox-sensitive mitogen-activated protein kinases signaling, exerts proapoptotic, proinflammatory, and

  20. Rapamycin inhibits poly(ADP-ribosyl)ation in intact cells

    SciTech Connect

    Fahrer, Joerg; Wagner, Silvia; Buerkle, Alexander; Koenigsrainer, Alfred

    2009-08-14

    Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin did not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.

  1. Dynamic regulation of β1 subunit trafficking controls vascular contractility.

    PubMed

    Leo, M Dennis; Bannister, John P; Narayanan, Damodaran; Nair, Anitha; Grubbs, Jordan E; Gabrick, Kyle S; Boop, Frederick A; Jaggar, Jonathan H

    2014-02-11

    Ion channels composed of pore-forming and auxiliary subunits control physiological functions in virtually all cell types. A conventional view is that channels assemble with their auxiliary subunits before anterograde plasma membrane trafficking of the protein complex. Whether the multisubunit composition of surface channels is fixed following protein synthesis or flexible and open to acute and, potentially, rapid modulation to control activity and cellular excitability is unclear. Arterial smooth muscle cells (myocytes) express large-conductance Ca(2+)-activated potassium (BK) channel α and auxiliary β1 subunits that are functionally significant modulators of arterial contractility. Here, we show that native BKα subunits are primarily (∼95%) plasma membrane-localized in human and rat arterial myocytes. In contrast, only a small fraction (∼10%) of total β1 subunits are located at the cell surface. Immunofluorescence resonance energy transfer microscopy demonstrated that intracellular β1 subunits are stored within Rab11A-postive recycling endosomes. Nitric oxide (NO), acting via cGMP-dependent protein kinase, and cAMP-dependent pathways stimulated rapid (≤1 min) anterograde trafficking of β1 subunit-containing recycling endosomes, which increased surface β1 almost threefold. These β1 subunits associated with surface-resident BKα proteins, elevating channel Ca(2+) sensitivity and activity. Our data also show that rapid β1 subunit anterograde trafficking is the primary mechanism by which NO activates myocyte BK channels and induces vasodilation. In summary, we show that rapid β1 subunit surface trafficking controls functional BK channel activity in arterial myocytes and vascular contractility. Conceivably, regulated auxiliary subunit trafficking may control ion channel activity in a wide variety of cell types.

  2. Rac regulates vascular endothelial growth factor stimulated motility.

    PubMed

    Soga, N; Connolly, J O; Chellaiah, M; Kawamura, J; Hruska, K A

    2001-01-01

    During angiogenesis endothelial cells migrate towards a chemotactic stimulus. Understanding the mechanism of endothelial cell migration is critical to the therapeutic manipulation of angiogenesis and ultimately cancer prevention. Vascular endothelial growth factor (VEGF) is a potent chemotactic stimulus of endothelial cells during angiogenesis. The endothelial cell signal transduction pathway of VEGF represents a potential target for cancer therapy, but the mechanisms of post-receptor signal transduction including the roles of rho family GTPases in regulating the cytoskeletal effects of VEGF in endothelial cells are not understood. Here we analyze the mechanisms of cell migration in the mouse brain endothelial cell line (bEND3). Stable transfectants containing a tetracycline repressible expression vector were used to induce expression of Rac mutants. Endothelial cell haptotaxis was stimulated by constitutively active V12Rac on collagen and vitronectin coated supports, and chemotaxis was further stimulated by VEGF. Osteopontin coated supports were the most stimulatory to bEND3 haptotaxis, but VEGF was not effective in further increasing migration on osteopontin coated supports. Haptotaxis on support coated with collagen, vitronectin, and to a lesser degree osteopontin was inhibited by N17 Rac. N17 Rac expression blocked stimulation of endothelial cell chemotaxis by VEGF. As part of the chemotactic stimulation, VEGF caused a loss of actin organization at areas of cell-cell contact and increased stress fiber expression in endothelial cells which were directed towards pores in the transwell membrane. N17 Rac prevented the stimulation of cell-cell contact disruption and the stress fiber stimulation by VEGF. These data demonstrate two pathways of regulating endothelial cell motility, one in which Rac is activated by matrix/integrin stimulation and is a crucial modulator of endothelial cell haptotaxis. The other pathway, in the presence of osteopontin, is Rac independent

  3. Recovery from rapamycin: drug-insensitive activity of yeast target of rapamycin complex 1 (TORC1) supports residual proliferation that dilutes rapamycin among progeny cells.

    PubMed

    Evans, Stephanie K; Burgess, Karl E V; Gray, Joseph V

    2014-09-19

    The target of rapamycin complex 1 (TORC1) is a key conserved regulator of eukaryotic cell growth. The xenobiotic rapamycin is a potent inhibitor of the yeast complex. Surprisingly, the EGO complex, a nonessential in vivo activator of TORC1, is somehow required for yeast cells to recover efficiently from a period of treatment with rapamycin. Why? Here, we found that rapamycin is only a partial inhibitor of TORC1. We confirmed that saturating amounts of rapamycin do not fully inhibit proliferation of wild-type cells, and we found that the residual proliferation in the presence of the drug is dependent on the EGO complex and on the activity of TORC1. We found that this residual TORC1-dependent proliferation is key to recovery from rapamycin treatment. First, the residual proliferation rate correlates with the ability of cells to recover from treatment. Second, the residual proliferation rate persists long after washout of the drug and until cells recover. Third, the total observable pool of cell-associated rapamycin is extremely stable and decreases only with increasing cell number after washout of the drug. Finally, consideration of the residual proliferation rate alone accurately and quantitatively accounts for the kinetics of recovery of wild-type cells and for the nature and severity of the ego- mutant defect. Overall, our results revealed that rapamycin is a partial inhibitor of yeast TORC1, that persistence of the drug limits recovery, and that rapamycin is not detoxified by yeast but is passively diluted among progeny cells because of residual proliferation.

  4. Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes.

    PubMed

    Mayordomo, Isabel; Estruch, Francisco; Sanz, Pascual

    2002-09-20

    The subcellular localization of Msn2, a transcriptional activator of STRE (stress response element)-regulated genes, is modulated by carbon source availability. In cells growing in glucose, Msn2 is located mainly in the cytosol, whereas in carbon source-starved cells, Msn2 is located largely inside the nucleus. However, in cells lacking Reg1 (the regulatory subunit of the Reg1/Glc7 protein phosphatase complex), the regulation of subcellular distribution is absent, Msn2 being constitutively present in the cytosol. The localization defect in these mutants is specific for carbon starvation stress, and it is because of the presence of an abnormally active Snf1 protein kinase that inhibits the nuclear localization of Msn2 upon carbon starvation. Active Snf1 kinase is also able to avoid the effects of rapamycin, a drug that by inhibiting the TOR kinase pathway leads to a nuclear localization of Msn2 in wild type cells. Therefore, active Snf1 and the TOR kinase pathway may affect similar cytosolic steps in the regulation of the subcellular localization of Msn2.

  5. Mammalian target of rapamycin/eukaryotic initiation factor 4F pathway regulates follicle growth and development of theca cells in mice.

    PubMed

    Zhang, Chao; Liu, Xiao-Ran; Cao, Yong-Chun; Tian, Jin-Ling; Zhen, Di; Luo, Xiao-Fei; Wang, Xin-Mei; Tian, Jian-Hui; Gao, Jian-Ming

    2016-01-11

    The aim of the present study was to clarify the roles of the mammalian target of rapamycin (mTOR) signalling pathway in follicular growth and development of thecal cells. Using in vivo-grown and in vitro-cultured ovaries, histological changes were evaluated using haematoxylin and eosin (HE) staining. Differentially expressed genes (DEGs) from 0 day post partum (d.p.p.) to 8 d.p.p. ovaries were screened by microarray and verified by quantitative real-time polymerase chain reaction. Forty-two DEGs related to cell proliferation and differentiation were screened out, with most DEGs being related to the to mTOR signalling pathway. Then, 3 d.p.p. ovaries were retrieved and used to verify the role of mTOR signalling in follicle and thecal cell development using its activators (Ras homologue enriched in brain (Rheb) and GTP) and inhibitor (rapamycin). The development of follicles and thecal cells was significantly impaired in ovaries cultured in vitro Day 3 to Day 8. In in vitro-cultured ovaries, Rheb and GTP (is 100 ng mL-1 Rheb and 500 ng mL-1 GTP for 48 h) significantly increased follicle diameter, the percentage of primary and secondary follicles and the umber of thecal cells, and upregulated expression of mTOR, phosphorylated eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), eukaryotic initiation factor (eIF) 4F and cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1). Rapamycin (10 nM rapamycin for 24 h) had opposite effects to those of Rheb and GTP, and partly abrogated (significant) the effects of Rheb and GTP when added to the culture in combination with these drugs. Thus, mTOR signalling plays an important role in follicle growth and thecal cell development.

  6. Procontractile G protein–mediated signaling pathways antagonistically regulate smooth muscle differentiation in vascular remodeling

    PubMed Central

    Althoff, Till F.; Juárez, Julián Albarrán; Troidl, Kerstin; Tang, Cong; Wang, Shengpeng; Wirth, Angela; Takefuji, Mikito; Wettschureck, Nina

    2012-01-01

    Vascular smooth muscle (Sm) cells (VSMCs) are highly plastic. Their differentiation state can be regulated by serum response factor (SRF), which activates genes involved in Sm differentiation and proliferation by recruiting cofactors, such as members of the myocardin family and ternary complex factors (TCFs), respectively. However, the extracellular cues and upstream signaling mechanisms regulating SRF-dependent VSMC differentiation under in vivo conditions are poorly understood. In this study, we show that the procontractile signaling pathways mediated by the G proteins G12/G13 and Gq/G11 antagonistically regulate VSMC plasticity in different models of vascular remodeling. In mice lacking Gα12/Gα13 or their effector, the RhoGEF protein LARG, RhoA-dependent SRF-regulation was blocked and down-regulation of VSMC differentiation marker genes was enhanced. This was accompanied by an excessive vascular remodeling and exacerbation of atherosclerosis. In contrast, Sm-specific Gαq/Gα11 deficiency blocked activation of extracellular signal-regulated kinase 1/2 and the TCF Elk-1, resulting in a reduced VSMC dedifferentiation in response to flow cessation or vascular injury. These data show that the balanced activity of both G protein–mediated pathways in VSMCs is required for an appropriate vessel remodeling response in vascular diseases and suggest new approaches to modulate Sm differentiation in vascular pathologies. PMID:23129751

  7. Rapamycin induces Bad phosphorylation in association with its resistance to human lung cancer cells.

    PubMed

    Liu, Yan; Sun, Shi-Yong; Owonikoko, Taofeek K; Sica, Gabriel L; Curran, Walter J; Khuri, Fadlo R; Deng, Xingming

    2012-01-01

    Inhibition of mTOR signaling by rapamycin has been shown to activate extracellular signal-regulated kinase 1 or 2 (ERK1/2) and Akt in various types of cancer cells, which contributes to rapamycin resistance. However, the downstream effect of rapamycin-activated ERKs and Akt on survival or death substrate(s) remains unclear. We discovered that treatment of human lung cancer cells with rapamycin results in enhanced phosphorylation of Bad at serine (S) 112 and S136 but not S155 in association with activation of ERK1/2 and Akt. A higher level of Bad phosphorylation was observed in rapamycin-resistant cells compared with parental rapamycin-sensitive cells. Thus, Bad phosphorylation may contribute to rapamycin resistance. Mechanistically, rapamycin promotes Bad accumulation in the cytosol, enhances Bad/14-3-3 interaction, and reduces Bad/Bcl-XL binding. Rapamycin-induced Bad phosphorylation promotes its ubiquitination and degradation, with a significant reduction of its half-life (i.e., from 53.3-37.5 hours). Inhibition of MEK/ERK by PD98059 or depletion of Akt by RNA interference blocks rapamycin-induced Bad phosphorylation at S112 or S136, respectively. Simultaneous blockage of S112 and S136 phosphorylation of Bad by PD98059 and silencing of Akt significantly enhances rapamycin-induced growth inhibition in vitro and synergistically increases the antitumor efficacy of rapamycin in lung cancer xenografts. Intriguingly, either suppression of Bad phosphorylation at S112 and S136 sites or expression of the nonphosphorylatable Bad mutant (S112A/S136A) can reverse rapamycin resistance. These findings uncover a novel mechanism of rapamycin resistance, which may promote the development of new strategies for overcoming rapamycin resistance by manipulating Bad phosphorylation at S112 and S136 in human lung cancer.

  8. Enzymatic regulation of functional vascular networks using gelatin hydrogels

    PubMed Central

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296

  9. Enzymatic regulation of functional vascular networks using gelatin hydrogels.

    PubMed

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M; Chen, Ying-Chieh

    2015-06-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues.

  10. VEGF-A regulated by progesterone governs uterine angiogenesis and vascular remodelling during pregnancy

    PubMed Central

    Kim, Minah; Park, Hyeung Ju; Seol, Jae Won; Jang, Jeon Yeob; Cho, Young-Suk; Kim, Kyu Rae; Choi, Youngsok; Lydon, John P; DeMayo, Francesco J; Shibuya, Masabumi; Ferrara, Napoleone; Sung, Hoon-Ki; Nagy, Andras; Alitalo, Kari; Koh, Gou Young

    2013-01-01

    The features and regulation of uterine angiogenesis and vascular remodelling during pregnancy are poorly defined. Here we show that dynamic and variable decidual angiogenesis (sprouting, intussusception and networking), and active vigorous vascular remodelling such as enlargement and elongation of ‘vascular sinus folding’ (VSF) and mural cell drop-out occur distinctly in a spatiotemporal manner in the rapidly growing mouse uterus during early pregnancy — just after implantation but before placentation. Decidual angiogenesis is mainly regulated through VEGF-A secreted from the progesterone receptor (PR)-expressing decidual stromal cells which are largely distributed in the anti-mesometrial region (AMR). In comparison, P4-PR-regulated VEGF-A-VEGFR2 signalling, ligand-independent VEGFR3 signalling and uterine natural killer (uNK) cells positively and coordinately regulate enlargement and elongation of VSF. During the postpartum period, Tie2 signalling could be involved in vascular maturation at the endometrium in a ligand-independent manner, with marked reduction of VEGF-A, VEGFR2 and PR expressions. Overall, we show that two key vascular growth factor receptors — VEGFR2 and Tie2 — strikingly but differentially regulate decidual angiogenesis and vascular remodelling in rapidly growing and regressing uteri in an organotypic manner. PMID:23853117

  11. Matrix Metalloproteinases: Inflammatory Regulators of Cell Behaviors in Vascular Formation and Remodeling

    PubMed Central

    Chen, Qishan; Jin, Min; Yang, Feng; Zhu, Jianhua; Xiao, Qingzhong; Zhang, Li

    2013-01-01

    Abnormal angiogenesis and vascular remodeling contribute to pathogenesis of a number of disorders such as tumor, arthritis, atherosclerosis, restenosis, hypertension, and neurodegeneration. During angiogenesis and vascular remodeling, behaviors of stem/progenitor cells, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs) and its interaction with extracellular matrix (ECM) play a critical role in the processes. Matrix metalloproteinases (MMPs), well-known inflammatory mediators are a family of zinc-dependent proteolytic enzymes that degrade various components of ECM and non-ECM molecules mediating tissue remodeling in both physiological and pathological processes. MMPs including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, and MT1-MMP, are stimulated and activated by various stimuli in vascular tissues. Once activated, MMPs degrade ECM proteins or other related signal molecules to promote recruitment of stem/progenitor cells and facilitate migration and invasion of ECs and VSMCs. Moreover, vascular cell proliferation and apoptosis can also be regulated by MMPs via proteolytically cleaving and modulating bioactive molecules and relevant signaling pathways. Regarding the importance of vascular cells in abnormal angiogenesis and vascular remodeling, regulation of vascular cell behaviors through modulating expression and activation of MMPs shows therapeutic potential. PMID:23840100

  12. Post-transcriptional gene regulation by RNA-binding proteins in vascular endothelial dysfunction.

    PubMed

    Xin, HongBo; Deng, KeYu; Fu, MinGui

    2014-08-01

    Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative and migratory capacity of endothelial cells, as well as control of leukocyte trafficking. Endothelial dysfunction is an early step in vascular inflammatory diseases such as atherosclerosis, diabetic vascular complications, sepsis-induced or severe virus infection-induced organ injuries. The expressions of inflammatory cytokines and vascular adhesion molecules induced by various stimuli, such as modified lipids, smoking, advanced glycation end products and bacteria toxin, significantly contribute to the development of endothelial dysfunction. The transcriptional regulation of inflammatory cytokines and vascular adhesion molecules has been well-studied. However, the regulation of those gene expressions at post-transcriptional level is emerging. RNA-binding proteins have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level in microRNA-dependent or independent manners. This review summarizes the latest insights into the roles of RNA-binding proteins in controlling vascular endothelial cell functions and their contribution to the pathogenesis of vascular inflammatory diseases.

  13. Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development

    PubMed Central

    Jung, Bongnam; Obinata, Hideru; Galvani, Sylvain; Mendelson, Karen; Ding, Bisen; Skoura, Athanasia; Kinzel, Bernd; Brinkmann, Volker; Rafii, Shahin; Evans, Todd; Hla, Timothy

    2012-01-01

    SUMMARY During angiogenesis, nascent vascular sprouts fuse to form vascular networks enabling efficient circulation. Mechanisms that stabilize the vascular plexus are not well understood. Sphingosine 1-phosphate (S1P) is a blood-borne lipid mediator implicated in the regulation of vascular and immune systems. Here we describe a mechanism by which the G protein-coupled S1P receptor-1 (S1P1) stabilizes the primary vascular network. A gradient of S1P1 expression from the mature regions of the vascular network to the growing vascular front was observed. In the absence of endothelial S1P1, adherens junctions are destabilized, barrier function is breached, and flow is perturbed resulting in abnormal vascular hypersprouting. Interestingly, S1P1 responds to S1P as well as laminar shear stress to transduce flow-mediated signaling in endothelial cells both in vitro and in vivo. These data demonstrate that blood flow and circulating S1P activate endothelial S1P1 to stabilize blood vessels in development and homeostasis. PMID:22975328

  14. Nitric oxide regulates retinal vascular tone in humans.

    PubMed

    Dorner, Guido T; Garhofer, Gerhard; Kiss, Barbara; Polska, Elzbieta; Polak, Kaija; Riva, Charles E; Schmetterer, Leopold

    2003-08-01

    The purpose of the present study was to investigate the contribution of basal nitric oxide (NO) on retinal vascular tone in humans. In addition, we set out to elucidate the role of NO in flicker-induced retinal vasodilation in humans. Twelve healthy young subjects were studied in a three-way crossover design. Subjects received an intravenous infusion of either placebo or NG-monomethyl-L-arginine (L-NMMA; 3 or 6 mg/kg over 5 min), an inhibitor of NO synthase. Thereafter, diffuse luminance flicker was consecutively performed for 16, 32, and 64 s at a frequency of 8 Hz. The effect of L-NMMA on retinal arterial and venous diameter was assessed under resting conditions and during the hyperemic flicker response. Retinal vessel diameter was measured with a Zeiss retinal vessel analyzer. L-NMMA significantly reduced arterial diameter (3 mg/kg: -2%; 6 mg/kg: -4%, P < 0.001) and venous diameter (3 mg/kg: -5%; 6 mg/kg: -8%, P < 0.001). After placebo infusion, flicker induced a significant increase in retinal vessel diameter (P < 0.001). At a flicker duration of 64 s, arterial diameter increased by 4% and venous diameter increased by 3%. L-NMMA did not abolish these hyperemic responses but blunted venous vasodilation (P = 0.017) and arterial vasodilation (P = 0.02) in response to flicker stimulation. Our data indicate that NO contributes to basal retinal vascular tone in humans. In addition, NO appears to play a role in flicker-induced vasodilation of the human retinal vasculature.

  15. Nogo-A regulates vascular network architecture in the postnatal brain.

    PubMed

    Wälchli, Thomas; Ulmann-Schuler, Alexandra; Hintermüller, Christoph; Meyer, Eric; Stampanoni, Marco; Carmeliet, Peter; Emmert, Maximilian Y; Bozinov, Oliver; Regli, Luca; Schwab, Martin E; Vogel, Johannes; Hoerstrup, Simon P

    2017-02-01

    Recently, we discovered a new role for the well-known axonal growth inhibitory molecule Nogo-A as a negative regulator of angiogenesis in the developing central nervous system. However, how Nogo-A affected the three-dimensional (3D) central nervous system (CNS) vascular network architecture remained unknown. Here, using vascular corrosion casting, hierarchical, synchrotron radiation μCT-based network imaging and computer-aided network analysis, we found that genetic ablation of Nogo-A significantly increased the three-dimensional vascular volume fraction in the postnatal day 10 (P10) mouse brain. More detailed analysis of the cerebral cortex revealed that this effect was mainly due to an increased number of capillaries and capillary branchpoints. Interestingly, other vascular parameters such as vessel diameter, -length, -tortuosity, and -volume were comparable between both genotypes for non-capillary vessels and capillaries. Taken together, our three-dimensional data showing more vessel segments and branchpoints at unchanged vessel morphology suggest that stimulated angiogenesis upon Nogo-A gene deletion results in the insertion of complete capillary micro-networks and not just single vessels into existing vascular networks. These findings significantly enhance our understanding of how angiogenesis, vascular remodeling, and three-dimensional vessel network architecture are regulated during central nervous system development. Nogo-A may therefore be a potential novel target for angiogenesis-dependent central nervous system pathologies such as brain tumors or stroke.

  16. Combination of Rapamycin and Resveratrol for Treatment of Bladder Cancer.

    PubMed

    Alayev, Anya; Salamon, Rachel S; Schwartz, Naomi S; Berman, Adi Y; Wiener, Sara L; Holz, Marina K

    2017-02-01

    Loss of TSC1 function, a crucial negative regulator of mTOR signaling, is a common alteration in bladder cancer. Mutations in other members of the PI3K pathway, leading to mTOR activation, are also found in bladder cancer. This provides rationale for targeting mTOR for treatment of bladder cancer characterized by TSC1 mutations and/or mTOR activation. In this study, we asked whether combination treatment with rapamycin and resveratrol could be effective in concurrently inhibiting mTOR and PI3K signaling and inducing cell death in bladder cancer cells. In combination with rapamycin, resveratrol was able to block rapamycin-induced Akt activation, while maintaining mTOR pathway inhibition. In addition, combination treatment with rapamycin and resveratrol induced cell death specifically in TSC1(-/-) MEF cells, and not in wild-type MEFs. Similarly, resveratrol alone or in combination with rapamycin induced cell death in human bladder cancer cell lines. These data indicate that administration of resveratrol together with rapamycin may be a promising therapeutic option for treatment of bladder cancer. J. Cell. Physiol. 232: 436-446, 2017. © 2016 Wiley Periodicals, Inc.

  17. Rapamycin induces the anti-apoptotic protein survivin in neuroblastoma.

    PubMed

    Samkari, Ayman; Cooper, Zachary A; Holloway, Michael P; Liu, Jiebin; Altura, Rachel A

    2012-01-01

    Neuroblastoma is the most common solid tumor of infancy, accounting for 15% of all cancer cell deaths in children. Expression of the anti-apoptotic protein survivin in these tumors correlates with poor prognostic features and resistance to therapy. The mammalian target of rapamycin (mTOR) protein is being explored as a potential therapeutic target in patients with this disease. The objective of this study was to test the hypothesis that rapamycin regulates survivin expression and function in neuroblastoma cells. To explore this hypothesis, we treated two different neuroblastoma lines (NB7, NB8) and a well-characterized control lung cancer cell line, A549, with varying doses of rapamycin (0.1-10μM) for serial time points (2-48 hours). RNA and protein expression levels were then evaluated by quantitative RT-PCR and western blotting, respectively. Cell proliferation and apoptosis were assayed by WST-1 and Annexin V. The results showed a rapamycin-dependent increase in survivin mRNA and protein levels in the neuroblastoma cell lines in a dose- and time-dependent fashion, while a decrease in these levels was observed in control cells. Rapamycin inhibited cell proliferation in both A549 and neuroblastoma cells however neuroblastoma cells had less apoptosis than A549 cells (9% vs. 20%). In summary, our results indicate that rapamycin induces expression of the anti-apoptotic protein survivin in neuroblastoma cells which may protect these cells from programmed cell death. Induction of survivin by rapamycin could therefore be a potential mechanism of neuroblastoma tumor cell resistance and rapamycin may not be an effective therapeutic agent for these tumors.

  18. Tomato FK506 Binding Protein 12KD (FKBP12) Mediates the Interaction between Rapamycin and Target of Rapamycin (TOR).

    PubMed

    Xiong, Fangjie; Dong, Pan; Liu, Mei; Xie, Gengxin; Wang, Kai; Zhuo, Fengping; Feng, Li; Yang, Lu; Li, Zhengguo; Ren, Maozhi

    2016-01-01

    Target of Rapamycin (TOR) signaling is an important regulator in multiple organisms including yeast, plants, and animals. However, the TOR signaling in plants is much less understood as compared to that in yeast and animals. TOR kinase can be efficiently suppressed by rapamycin in the presence of functional FK506 Binding Protein 12 KD (FKBP12) in yeast and animals. In most examined higher plants rapamycin fails to inhibit TOR kinase due to the non-functional FKBP12. Here we find that tomato plants showed obvious growth inhibition when treated with rapamycin and the inhibitory phenotype is similar to suppression of TOR causing by active-site TOR inhibitors (asTORis) such as KU63794, AZD8055, and Torin1. The chemical genetic assays using TOR inhibitors and heterologous expressing SlFKBP12 in Arabidopsis indicated that the TOR signaling is functional in tomato. The protein gel shifting and TOR inhibitors combination assays showed that SlFKBP12 can mediate the interaction between rapamycin and TOR. Furthermore, comparative expression profile analysis between treatments with rapamycin and KU63794 identified highly overlapped Differentially Expressed Genes (DEGs) which are involved in many anabolic and catabolic processes, such as photosynthesis, cell wall restructuring, and senescence in tomato. These observations suggest that SlFFBP12 is functional in tomato. The results provided basic information of TOR signaling in tomato, and also some new insights into how TOR controls plant growth and development through reprogramming the transcription profiles.

  19. Tomato FK506 Binding Protein 12KD (FKBP12) Mediates the Interaction between Rapamycin and Target of Rapamycin (TOR)

    PubMed Central

    Xiong, Fangjie; Dong, Pan; Liu, Mei; Xie, Gengxin; Wang, Kai; Zhuo, Fengping; Feng, Li; Yang, Lu; Li, Zhengguo; Ren, Maozhi

    2016-01-01

    Target of Rapamycin (TOR) signaling is an important regulator in multiple organisms including yeast, plants, and animals. However, the TOR signaling in plants is much less understood as compared to that in yeast and animals. TOR kinase can be efficiently suppressed by rapamycin in the presence of functional FK506 Binding Protein 12 KD (FKBP12) in yeast and animals. In most examined higher plants rapamycin fails to inhibit TOR kinase due to the non-functional FKBP12. Here we find that tomato plants showed obvious growth inhibition when treated with rapamycin and the inhibitory phenotype is similar to suppression of TOR causing by active-site TOR inhibitors (asTORis) such as KU63794, AZD8055, and Torin1. The chemical genetic assays using TOR inhibitors and heterologous expressing SlFKBP12 in Arabidopsis indicated that the TOR signaling is functional in tomato. The protein gel shifting and TOR inhibitors combination assays showed that SlFKBP12 can mediate the interaction between rapamycin and TOR. Furthermore, comparative expression profile analysis between treatments with rapamycin and KU63794 identified highly overlapped Differentially Expressed Genes (DEGs) which are involved in many anabolic and catabolic processes, such as photosynthesis, cell wall restructuring, and senescence in tomato. These observations suggest that SlFFBP12 is functional in tomato. The results provided basic information of TOR signaling in tomato, and also some new insights into how TOR controls plant growth and development through reprogramming the transcription profiles. PMID:27917191

  20. Expression of set is downregulated by rapamycin in human colorectal cancer cells

    PubMed Central

    WEN, XIAOXIA; CHEN, YAO

    2013-01-01

    The purpose of this study was to determine the mechanism through which rapamycin treatment affects the expression of the set gene in human colorectal adenocarcinoma cells. The effect of rapamycin treatment on set expression was evaluated by assessing the mRNA and protein expression of set in the SW480 and LoVo human colon carcinoma cell lines following treatment with rapamycin by quantitative polymerase chain reaction (qPCR) and western blot analysis, respectively. Our results demonstrated that the mRNA and protein levels of set were significantly decreased subsequent to rapamycin treatment in the two cell lines, indicating that set expression may be downregulated by rapamycin in human colorectal adenocarcinoma cells. Our findings suggested that the mammalian target of rapamycin signaling pathway may play a role in tumorigenesis through the regulation of the set gene. PMID:24649018

  1. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    SciTech Connect

    Kim, Se-Hee; Schmitt, Christopher E.; Woolls, Melissa J.; Holland, Melinda B.; Kim, Jun-Dae; Jin, Suk-Won

    2013-01-25

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A) signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process.

  2. Delayed reendothelialization with rapamycin is rescued by the addition of nicorandil in balloon-injured rat carotid arteries

    PubMed Central

    Zhang, Ying Qian; Tian, Feng; Chen, Jin Song; Chen, Yun Dai; Zhou, Ying; Li, Bo; Ma, Qiang; Zhang, Ying

    2016-01-01

    Rapamycin is an immunosuppressive agent that is added to drug eluting stents. It prevents restenosis, but it also impairs reendothelialization. Nicorandil is a hybrid agent with adenosine triphosphated (ATP)-sensitive K+ (KATP) channel opener and nitrate properties. It prevents oxidative stress and cell apoptosis induced by rapamycin in endothelial cells in vitro. However, whether nicorandil promotes reendothelialization after angioplasty delayed by rapamycin remains to be determined. Balloon injury model was established in SD rats. Nicorandil increased reendothelialization impaired by rapamycin, and it decreased xanthine oxidase (XO)-generated reactive oxygen species (ROS) induced by rapamycin. In addition, eNOS expression inhibited by rapamycin was increased by nicorandil in vivo. In vitro, rapamycin-impeded cardiac microvascular endothelial cells (CMECs) migration, proliferation and rapamycin-induced ROS production were reversed by nicorandil. Knockdown of XO partially inhibited rapamycin-induced ROS production and cell apoptosis in CMECs, and it promoted CMECs migration and proliferation suppressed by rapamycin. Knockdown of Akt partially prevents eNOS upregulation promoted by nicorandil. The beneficial effect of nicorandil is exhibited by inhibiting XO and up-regulating Akt pathway. Nicorandil combined with rapamycin in effect rescue the deficiencies of rapamycin alone in arterial healing after angioplasty. PMID:27713157

  3. VE-cadherin interacts with cell polarity protein Pals1 to regulate vascular lumen formation.

    PubMed

    Brinkmann, Benjamin F; Steinbacher, Tim; Hartmann, Christian; Kummer, Daniel; Pajonczyk, Denise; Mirzapourshafiyi, Fatemeh; Nakayama, Masanori; Weide, Thomas; Gerke, Volker; Ebnet, Klaus

    2016-09-15

    Blood vessel tubulogenesis requires the formation of stable cell-to-cell contacts and the establishment of apicobasal polarity of vascular endothelial cells. Cell polarity is regulated by highly conserved cell polarity protein complexes such as the Par3-aPKC-Par6 complex and the CRB3-Pals1-PATJ complex, which are expressed by many different cell types and regulate various aspects of cell polarity. Here we describe a functional interaction of VE-cadherin with the cell polarity protein Pals1. Pals1 directly interacts with VE-cadherin through a membrane-proximal motif in the cytoplasmic domain of VE-cadherin. VE-cadherin clusters Pals1 at cell-cell junctions. Mutating the Pals1-binding motif in VE-cadherin abrogates the ability of VE-cadherin to regulate apicobasal polarity and vascular lumen formation. In a similar way, deletion of the Par3-binding motif at the C-terminus of VE-cadherin impairs apicobasal polarity and vascular lumen formation. Our findings indicate that the biological activity of VE-cadherin in regulating endothelial polarity and vascular lumen formation is mediated through its interaction with the two cell polarity proteins Pals1 and Par3.

  4. VE-cadherin interacts with cell polarity protein Pals1 to regulate vascular lumen formation

    PubMed Central

    Brinkmann, Benjamin F.; Steinbacher, Tim; Hartmann, Christian; Kummer, Daniel; Pajonczyk, Denise; Mirzapourshafiyi, Fatemeh; Nakayama, Masanori; Weide, Thomas; Gerke, Volker; Ebnet, Klaus

    2016-01-01

    Blood vessel tubulogenesis requires the formation of stable cell-to-cell contacts and the establishment of apicobasal polarity of vascular endothelial cells. Cell polarity is regulated by highly conserved cell polarity protein complexes such as the Par3-aPKC-Par6 complex and the CRB3-Pals1-PATJ complex, which are expressed by many different cell types and regulate various aspects of cell polarity. Here we describe a functional interaction of VE-cadherin with the cell polarity protein Pals1. Pals1 directly interacts with VE-cadherin through a membrane-proximal motif in the cytoplasmic domain of VE-cadherin. VE-cadherin clusters Pals1 at cell–cell junctions. Mutating the Pals1-binding motif in VE-cadherin abrogates the ability of VE-cadherin to regulate apicobasal polarity and vascular lumen formation. In a similar way, deletion of the Par3-binding motif at the C-terminus of VE-cadherin impairs apicobasal polarity and vascular lumen formation. Our findings indicate that the biological activity of VE-cadherin in regulating endothelial polarity and vascular lumen formation is mediated through its interaction with the two cell polarity proteins Pals1 and Par3. PMID:27466317

  5. The Fractal-based Analysis of the Regulation of Vascular Remodeling in the Quail Chorioallantoic Membrane

    NASA Technical Reports Server (NTRS)

    Smith, Genee S.

    2004-01-01

    Critical to the advancement of space exploration is the safety and well being of astronauts while in space. This study focuses on the second highest of NASA-defined risk categories for human space exploration, cardiovascular alterations. Current research of this problem is being tackled by investigating angiogenesis through vascular remodeling. Angiogenesis is the growth and formation of new blood vessels. Angiogenesis is an important part of maintaining normal development and bodily functions. The loss of control of this process, either insufficient or excessive vascular growth, is considered a common denominator in many diseases, such as cancer, diabetes, and coronary artery disease. Objectives are presently being met by observing the effects of various regulators, like thrombospondin 1 (TSP-1) and a novel vessel tortuosity factor (TF), through the use of the chorioallantoic membrane (CAM) of Japanese quail embryos, which enables the direct optical imaging of 2-dimensional vascular branching trees. Research within the CAM is being performed to deduce numerous methods of regulating vessel growth. This project centers on the ability of a novel vessel regulator to affect angiogenesis. For example, it is hypothesized that the TSP-1 will inhibit the growth of CAM vasculature. Fractal/VESGEN-based techniques and PTV analysis are the methodologies used to investigate vascular differentiation. This tactic is used to quantify results and measure the growth patterns and morphology of blood vessels. The regulatory mechanisms posed by this vessel regulator can be deduced by alterations found within the vasculature patterns of quail embryos.

  6. Platelets regulate vascular endothelial stability: assessing the storage lesion and donor variability of apheresis platelets

    PubMed Central

    Baimukanova, Gyulnar; Miyazawa, Byron; Potter, Daniel R.; Muench, Marcus O.; Bruhn, Roberta; Gibb, Stuart L.; Spinella, Philip C.; Cap, Andrew P.; Cohen, Mitchell J.; Pati, Shibani

    2016-01-01

    BACKGROUND In current blood banking practices, platelets (PLTs) are stored in plasma at 22°C, with gentle agitation for up to 5 days. To date, the effects of storage and donor variability on PLT regulation of vascular integrity are not known. STUDY DESIGN AND METHODS In this study, we examined the donor variability of leukoreduced fresh (Day 1) or stored (Day 5) PLTs on vascular endothelial barrier function in vitro and in vivo. In vitro, PLT effects on endothelial cell (EC) monolayer permeability were assessed by analyzing transendothelial electrical resistances (TEER). PLT aggregation, a measure of hemostatic potential, was analyzed by impedance aggregometry. In vivo, PLTs were investigated in a vascular endothelial growth factor A (VEGF-A)-induced vascular permeability model in NSG mice, and PLT circulation was measured by flow cytometry. RESULTS Treatment of endothelial monolayers with fresh Day 1 PLTs resulted in an increase in EC barrier resistance and decreased permeability in a dose-dependent manner. Subsequent treatment of EC monolayers with Day 5 PLTs demonstrated diminished vasculoprotective effects. Donor variability was noted in all measures of PLT function. Day 1 PLT donors were more variable in their effects on TEER than Day 5 PLTs. In mice, while all PLTs regardless of storage time demonstrated significant protection against VEGF-A–induced vascular leakage, Day 5 PLTs exhibited reduced protection when compared to Day 1 PLTs. Day 1 PLTs demonstrated significant donor variability against VEGF-A–challenged vascular leakage in vivo. Systemic circulating levels of Day 1 PLTs were higher than those of Day 5 PLTs CONCLUSIONS In vitro and in vivo, Day 1 PLTs are protective in measures of vascular endothelial permeability. Donor variability is most prominent in Day 1 PLTs. A decrease in the protective effects is found with storage of the PLT units between Day 1 and Day 5 at 22°C, thereby suggesting that Day 5 PLTs are diminished in their ability to

  7. Topical rapamycin (sirolimus) for facial angiofibromas.

    PubMed

    Madke, Bhushan

    2013-01-01

    Rapamycin (sirolimus) is a fungal fermentation product that inhibits the proper functioning of a serine/threonine protein kinase in mammalian cells eponymously named mammalian target of rapamycin, or mTOR. Rapamycin is a novel class of anticancer and immunosuppressant drugs targeting the proteins at molecular level. Rapamycin (sirolimus) is routinely incorporated in drug-eluting stents used for cardiac angioplasty. In recent years, rapamycin was found to be efficacious in managing the symptom complex of tuberous sclerosis, i.e. renal angiomyolipoma, giant cell astrocytoma and pulmonary lymphangiomyomatosis. Various investigators have also proved that topically applied rapamycin causes regression of facial angiofibromas, giving better cosmetic results.

  8. Mammalian target of rapamycin signaling in diabetic cardiovascular disease.

    PubMed

    Chong, Zhao Zhong; Maiese, Kenneth

    2012-07-16

    Diabetes mellitus currently affects more than 170 million individuals worldwide and is expected to afflict another 200 million individuals in the next 30 years. Complications of diabetes as a result of oxidant stress affect multiple systems throughout the body, but involvement of the cardiovascular system may be one of the most severe in light of the impact upon cardiac and vascular function that can result in rapid morbidity and mortality for individuals. Given these concerns, the signaling pathways of the mammalian target of rapamycin (mTOR) offer exciting prospects for the development of novel therapies for the cardiovascular complications of diabetes. In the cardiovascular and metabolic systems, mTOR and its multi-protein complexes of TORC1 and TORC2 regulate insulin release and signaling, endothelial cell survival and growth, cardiomyocyte proliferation, resistance to β-cell injury, and cell longevity. Yet, mTOR can, at times, alter insulin signaling and lead to insulin resistance in the cardiovascular system during diabetes mellitus. It is therefore vital to understand the complex relationship mTOR and its downstream pathways hold during metabolic disease in order to develop novel strategies for the complications of diabetes mellitus in the cardiovascular system.

  9. A new functional role for mechanistic/mammalian target of rapamycin complex 1 (mTORC1) in the circadian regulation of L-type voltage-gated calcium channels in avian cone photoreceptors.

    PubMed

    Huang, Cathy Chia-Yu; Ko, Michael Lee; Ko, Gladys Yi-Ping

    2013-01-01

    In the retina, the L-type voltage-gated calcium channels (L-VGCCs) are responsible for neurotransmitter release from photoreceptors and are under circadian regulation. Both the current densities and protein expression of L-VGCCs are significantly higher at night than during the day. However, the underlying mechanisms of circadian regulation of L-VGCCs in the retina are not completely understood. In this study, we demonstrated that the mechanistic/mammalian target of rapamycin complex (mTORC) signaling pathway participated in the circadian phase-dependent modulation of L-VGCCs. The activities of the mTOR cascade, from mTORC1 to its downstream targets, displayed circadian oscillations throughout the course of a day. Disruption of mTORC1 signaling dampened the L-VGCC current densities, as well as the protein expression of L-VGCCs at night. The decrease of L-VGCCs at night by mTORC1 inhibition was in part due to a reduction of L-VGCCα1 subunit translocation from the cytosol to the plasma membrane. Finally, we showed that mTORC1 was downstream of the phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT) signaling pathway. Taken together, mTORC1 signaling played a role in the circadian regulation of L-VGCCs, in part through regulation of ion channel trafficking and translocation, which brings to light a new functional role for mTORC1: the modulation of ion channel activities.

  10. The mammalian target of rapamycin complex 1 regulates leptin biosynthesis in adipocytes at the level of translation: the role of the 5'-untranslated region in the expression of leptin messenger ribonucleic acid.

    PubMed

    Chakrabarti, Partha; Anno, Takatoshi; Manning, Brendan D; Luo, Zhijun; Kandror, Konstantin V

    2008-10-01

    Leptin production by adipose cells in vivo is increased after feeding and decreased by food deprivation. However, molecular mechanisms that control leptin expression in response to food intake remain unknown. Here, we test the hypothesis that leptin expression in adipose cells is regulated by nutrient- and insulin-sensitive mammalian target of rapamycin complex 1 (mTORC1)-mediated pathway. The activity of mTORC1 in 3T3-L1 adipocytes was up-regulated by stable expression of either constitutively active Rheb or dominant-negative AMP-activated protein kinase. In both cases, expression of endogenous leptin was significantly elevated at the level of translation. To investigate the role of leptin 5'-untranslated region (UTR) in the regulation of protein expression, we created bicistronic reporter constructs with and without the 5'-UTR. We found that the presence of leptin 5'-UTR renders mRNA resistant to regulation by mTORC1. It appears, therefore, that mTORC1 controls translation of leptin mRNA via a novel mechanism that does not require the presence of either the 5'-terminal oligopyrimidine tract or the 5'-UTR.

  11. Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis

    PubMed Central

    Aronow, Bruce J.; Tong, Wilson S.; Manka, David; Tang, Yaoliang; Bogdanov, Vladimir Y.; Unruh, Dusten; Blomkalns, Andra L.; Piegore, Mark G.; Weintraub, Daniel S.; Rudich, Steven M.; Kuhel, David G.; Hui, David Y.; Weintraub, Neal L.

    2013-01-01

    Inflammatory cross talk between perivascular adipose tissue and the blood vessel wall has been proposed to contribute to the pathogenesis of atherosclerosis. We previously reported that human perivascular (PV) adipocytes exhibit a proinflammatory phenotype and less adipogenic differentiation than do subcutaneous (SQ) adipocytes. To gain a global view of the genomic basis of biologic differences between PV and SQ adipocytes, we performed genome-wide expression analyses to identify differentially expressed genes between adipocytes derived from human SQ vs. PV adipose tissues. Although >90% of well-expressed genes were similarly regulated, we identified a signature of 307 differentially expressed genes that were highly enriched for functions associated with the regulation of angiogenesis, vascular morphology, inflammation, and blood clotting. Of the 156 PV upregulated genes, 59 associate with angiogenesis, vascular biology, or inflammation, noteworthy of which include TNFRSF11B (osteoprotegerin), PLAT, TGFB1, THBS2, HIF1A, GATA6, and SERPINE1. Of 166 PV downregulated genes, 21 associated with vascular biology and inflammation, including ANGPT1, ANGPTL1, and VEGFC. Consistent with the emergent hypothesis that PV adipocytes differentially regulate angiogenesis and inflammation, cell culture-derived adipocyte-conditioned media from PV adipocytes strongly enhanced endothelial cell tubulogenesis and monocyte migration compared with media from SQ adipocytes. These findings demonstrate that PV adipocytes have the potential to significantly modulate vascular inflammatory crosstalk in the setting of atherosclerosis by their ability to signal to both endothelial and inflammatory cells. PMID:23737535

  12. The alternative splicing factor Nova2 regulates vascular development and lumen formation

    PubMed Central

    Giampietro, Costanza; Deflorian, Gianluca; Gallo, Stefania; Di Matteo, Anna; Pradella, Davide; Bonomi, Serena; Belloni, Elisa; Nyqvist, Daniel; Quaranta, Valeria; Confalonieri, Stefano; Bertalot, Giovanni; Orsenigo, Fabrizio; Pisati, Federica; Ferrero, Elisabetta; Biamonti, Giuseppe; Fredrickx, Evelien; Taveggia, Carla; Wyatt, Chris D. R.; Irimia, Manuel; Di Fiore, Pier Paolo; Blencowe, Benjamin J.; Dejana, Elisabetta; Ghigna, Claudia

    2015-01-01

    Vascular lumen formation is a fundamental step during angiogenesis; yet, the molecular mechanisms underlying this process are poorly understood. Recent studies have shown that neural and vascular systems share common anatomical, functional and molecular similarities. Here we show that the organization of endothelial lumen is controlled at the post-transcriptional level by the alternative splicing (AS) regulator Nova2, which was previously considered to be neural cell-specific. Nova2 is expressed during angiogenesis and its depletion disrupts vascular lumen formation in vivo. Similarly, Nova2 depletion in cultured endothelial cells (ECs) impairs the apical distribution and the downstream signalling of the Par polarity complex, resulting in altered EC polarity, a process required for vascular lumen formation. These defects are linked to AS changes of Nova2 target exons affecting the Par complex and its regulators. Collectively, our results reveal that Nova2 functions as an AS regulator in angiogenesis and is a novel member of the ‘angioneurins' family. PMID:26446569

  13. Acute systemic rapamycin induces neurobehavioral alterations in rats.

    PubMed

    Hadamitzky, Martin; Herring, Arne; Keyvani, Kathy; Doenlen, Raphael; Krügel, Ute; Bösche, Katharina; Orlowski, Kathrin; Engler, Harald; Schedlowski, Manfred

    2014-10-15

    Rapamycin is a drug with antiproliferative and immunosuppressive properties, widely used for prevention of acute graft rejection and cancer therapy. It specifically inhibits the activity of the mammalian target of rapamycin (mTOR), a protein kinase known to play an important role in cell growth, proliferation and antibody production. Clinical observations show that patients undergoing therapy with immunosuppressive drugs frequently suffer from affective disorders such as anxiety or depression. However, whether these symptoms are attributed to the action of the distinct compounds remains rather elusive. The present study investigated in rats neurobehavioral consequences of acute rapamycin treatment. Systemic administration of a single low dose rapamycin (3mg/kg) led to enhanced neuronal activity in the amygdala analyzed by intracerebral electroencephalography and FOS protein expression 90min after drug injection. Moreover, behavioral investigations revealed a rapamycin-induced increase in anxiety-related behaviors in the elevated plus-maze and in the open-field. The behavioral alterations correlated to enhanced amygdaloid expression of KLK8 and FKBP51, proteins that have been implicated in the development of anxiety and depression. Together, these results demonstrate that acute blockade of mTOR signaling by acute rapamycin administration not only causes changes in neuronal activity, but also leads to elevated protein expression in protein kinase pathways others than mTOR, contributing to the development of anxiety-like behavior. Given the pivotal role of the amygdala in mood regulation, associative learning, and modulation of cognitive functions, our findings raise the question whether therapy with rapamycin may induce alterations in patients neuropsychological functioning.

  14. mTORC1 inhibitors rapamycin and metformin affect cardiovascular markers differentially in ZDF rats.

    PubMed

    Nistala, Ravi; Raja, Ahmad; Pulakat, Lakshmi

    2017-03-01

    Mammalian target for rapamycin complex 1 (mTORC1) is a common target for the action of immunosuppressant macrolide rapamycin and glucose-lowering metformin. Inhibition of mTORC1 can exert both beneficial and detrimental effects in different pathologies. Here, we investigated the differential effects of rapamycin (1.2 mg/kg per day delivered subcutaneously for 6 weeks) and metformin (300 mg/kg per day delivered orally for 11 weeks) treatments on male Zucker diabetic fatty (ZDF) rats that mimic the cardiorenal pathology of type 2 diabetic patients and progress to insulin insufficiency. Rapamycin and metformin improved proteinuria, and rapamycin also reduced urinary gamma glutamyl transferase (GGT) indicating improvement of tubular health. Metformin reduced food and water intake, and urinary sodium and potassium, whereas rapamycin increased urinary sodium. Metformin reduced plasma alkaline phosphatase, but induced transaminitis as evidenced by significant increases in plasma AST and ALT. Metformin also induced hyperinsulinemia, but did not suppress fasting plasma glucose after ZDF rats reached 17 weeks of age, and worsened lipid profile. Rapamycin also induced mild transaminitis. Additionally, both rapamycin and metformin increased plasma uric acid and creatinine, biomarkers for cardiovascular and renal disease. These observations define how rapamycin and metformin differentially modulate metabolic profiles that regulate cardiorenal pathology in conditions of severe type 2 diabetes.

  15. Morphogenesis of 3D vascular networks is regulated by tensile forces

    PubMed Central

    Rosenfeld, Dekel; Landau, Shira; Shandalov, Yulia; Raindel, Noa; Freiman, Alina; Shor, Erez; Blinder, Yaron; Vandenburgh, Herman H.; Mooney, David J.; Levenberg, Shulamit

    2016-01-01

    Understanding the forces controlling vascular network properties and morphology can enhance in vitro tissue vascularization and graft integration prospects. This work assessed the effect of uniaxial cell-induced and externally applied tensile forces on the morphology of vascular networks formed within fibroblast and endothelial cell-embedded 3D polymeric constructs. Force intensity correlated with network quality, as verified by inhibition of force and of angiogenesis-related regulators. Tensile forces during vessel formation resulted in parallel vessel orientation under static stretching and diagonal orientation under cyclic stretching, supported by angiogenic factors secreted in response to each stretch protocol. Implantation of scaffolds bearing network orientations matching those of host abdominal muscle tissue improved graft integration and the mechanical properties of the implantation site, a critical factor in repair of defects in this area. This study demonstrates the regulatory role of forces in angiogenesis and their capacities in vessel structure manipulation, which can be exploited to improve scaffolds for tissue repair. PMID:26951667

  16. Function and regulation of large conductance Ca(2+)-activated K+ channel in vascular smooth muscle cells.

    PubMed

    Hu, Xiang-Qun; Zhang, Lubo

    2012-09-01

    Large conductance Ca(2+)-activated K(+) (BK(Ca)) channels are abundantly expressed in vascular smooth muscle cells. Activation of BK(Ca) channels leads to hyperpolarization of cell membrane, which in turn counteracts vasoconstriction. Therefore, BK(Ca) channels have an important role in regulation of vascular tone and blood pressure. The activity of BK(Ca) channels is subject to modulation by various factors. Furthermore, the function of BK(Ca) channels are altered in both physiological and pathophysiological conditions, such as pregnancy, hypertension and diabetes, which has dramatic impacts on vascular tone and hemodynamics. Consequently, compounds and genetic manipulation that alter activity and expression of the channel might be of therapeutic interest.

  17. MicroRNA-297a regulates vascular calcification by targeting fibroblast growth factor 23

    PubMed Central

    Zheng, Shouhua; Zhang, Shuijun; Song, Yan; Guo, Wenzhi; Zhai, Wenlong; Qiu, Xinguang; Li, Jianhua

    2016-01-01

    Objective(s): Vascular calcification is one the major characteristics in patients with various types of chronic inflammatory disorders. MiRNAs have been shown to be involved in many normal biological functions as well as diseases; however, their role in vascular calcification has not received much attention. Materials and Methods: In the current study, we built a vascular calcification rat model using vitamin D3 plus nicotine and analyzed miRNA expression profile by miRNA chip assay. Potential target of one selected miRNA with sharpest variation in expression were predicted by both PicTar and TargetScan. The impact of the selected miRNA on the expression of the potential target on both mRNA and protein levels were measured by RT-PCR and Western blot, respectively. Results: Our results identified 16 dysregulated miRNAs, among which miR-297a showed the sharpest variation. Further analysis focusing on miR-297a revealed that fibroblast growth factor 23 (FGF23) was a potential target of miR297a. Measurement of FGF23 and its regulator Klotho on both mRNA and protein levels demonstrated that FGF23 was significantly increased while Klotho was decreased in rats with vascular calcification. Conclusion: Our results indicated that FGF23 was target of miR-297a and decreased miR-297a in vascular calcification lead to the increase of FGF23, which together with Klotho might enhance vascular calcification. The findings of this study could provide valuable information for the understanding of mechanisms underlying miR-dependent vascular calcification as well as potential treatment target for the disease. PMID:28096966

  18. Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation.

    PubMed

    Hong, Sungki; Zhao, Bin; Lombard, David B; Fingar, Diane C; Inoki, Ken

    2014-05-09

    p70 ribosomal S6 kinase (S6K1), a major substrate of the mammalian target of rapamycin (mTOR) kinase, regulates diverse cellular processes including protein synthesis, cell growth, and survival. Although it is well known that the activity of S6K1 is tightly coupled to its phosphorylation status, the regulation of S6K1 activity by other post-translational modifications such as acetylation has not been well understood. Here we show that the acetylation of the C-terminal region (CTR) of S6K1 blocks mTORC1-dependent Thr-389 phosphorylation, an essential phosphorylation site for S6K1 activity. The acetylation of the CTR of S6K1 is inhibited by the class III histone deacetylases, SIRT1 and SIRT2. An S6K1 mutant lacking acetylation sites in its CTR shows enhanced Thr-389 phosphorylation and kinase activity, whereas the acetylation-mimetic S6K1 mutant exhibits decreased Thr-389 phosphorylation and kinase activity. Interestingly, relative to the acetylation-mimetic S6K1 mutant, the acetylation-defective mutant displays higher affinity toward Raptor, an essential scaffolding component of mTORC1 that recruits mTORC1 substrates. These observations indicate that sirtuin-mediated regulation of S6K1 acetylation is an additional important regulatory modification that impinges on the mechanisms underlying mTORC1-dependent S6K1 activation.

  19. Vascular plants as regulators of methane emissions from a subarctic mire ecosystem

    NASA Astrophysics Data System (ADS)

    Öquist, M. G.; Svensson, B. H.

    2002-11-01

    Vascular plant functions as controlling mechanisms of methane emissions were investigated at two contrasting habitat types at a subarctic peatland ecosystem in northern Sweden. One of the habitats was ombrotrophic (vegetation dominated by Eriophorum vaginatum and Carex rotundata), while the other was minerotrophic (vegetation dominated by Eriophorum angustifolium). Through shading manipulations we successfully reduced the gross photosynthetic rates of the vascular plant communities. At the ombrotrophic site a 25% reduction in gross photosynthesis lead to a concomitant 20% reduction in methane emission rates, indicating a strong substrate-based coupling between the vascular plant community and the methanogenic populations. At the minerotrophic site, methane emission rates were unaffected, although plant photosynthesis was reduced by almost 50%. However, the methane emission rates at the minerotrophic site were significantly correlated with the number of vascular plants. We conclude that at the minerotrophic site the vegetation influences methane emission rates by facilitating methane transportation between the soil and the atmosphere, while at the ombrotrophic site the relationship between the vascular plant community and methane emissions is mediated by substrate-based interactions regulated by plant photosynthetic activity.

  20. Rapamycin causes down-regulation of CCR5 and accumulation of anti-HIV beta-chemokines: an approach to suppress R5 strains of HIV-1.

    PubMed

    Heredia, A; Amoroso, A; Davis, C; Le, N; Reardon, E; Dominique, J K; Klingebiel, E; Gallo, R C; Redfield, R R

    2003-09-02

    Propagation of R5 strains of HIV-1 on CD4 lymphocytes and macrophages requires expression of the CCR5 coreceptor on the cell surface. Individuals lacking CCR5 (CCR5 Delta 32 homozygous genotype) are phenotypically normal and resistant to infection with HIV-1. CCR5 expression on lymphocytes depends on signaling through the IL-2 receptor. By FACS analysis we demonstrate that rapamycin (RAPA), a drug that disrupts IL-2 receptor signaling, reduces CCR5 surface expression on T cells at concentrations as low as 1 nM. In addition, lower concentrations of RAPA (0.01 nM) were sufficient to reduce CCR5 surface expression on maturing monocytes. PCR analysis on peripheral blood mononuclear cells (PBMCs) showed that RAPA interfered with CCR5 expression at the transcriptional level. Reduced expression of CCR5 on PBMCs cultured in the presence of RAPA was associated with increased extracellular levels of macrophage inflammatory protein (MIP)-1 alpha and MIP-1 beta. In infectivity assays, RAPA suppressed the replication of R5 strains of HIV-1 both in PBMC and macrophage cultures. In total PBMC cultures, RAPA-mediated inhibition of CCR5-using strains of HIV-1 occurred at 0.01 nM, a concentration of drug that is approximately 103 times lower than therapeutic through levels of drug in renal transplant recipients. In addition, RAPA enhanced the antiviral activity of the CCR5 antagonist TAK-779. These results suggest that low concentrations of RAPA may have a role in both the treatment and prevention of HIV-1 infection.

  1. Anti-remodeling effects of rapamycin in experimental heart failure: dose response and interaction with angiotensin receptor blockade.

    PubMed

    Bishu, Kalkidan; Ogut, Ozgur; Kushwaha, Sudhir; Mohammed, Selma F; Ohtani, Tomohito; Xu, Xiaolei; Brozovich, Frank V; Redfield, Margaret M

    2013-01-01

    While neurohumoral antagonists improve outcomes in heart failure (HF), cardiac remodeling and dysfunction progress and outcomes remain poor. Therapies superior or additive to standard HF therapy are needed. Pharmacologic mTOR inhibition by rapamycin attenuated adverse cardiac remodeling and dysfunction in experimental heart failure (HF). However, these studies used rapamycin doses that produced blood drug levels targeted for primary immunosuppression in human transplantation and therefore the immunosuppressive effects may limit clinical translation. Further, the relative or incremental effect of rapamycin combined with standard HF therapies targeting upstream regulators of cardiac remodeling (neurohumoral antagonists) has not been defined. Our objectives were to determine if anti-remodeling effects of rapamycin were preserved at lower doses and whether rapamycin effects were similar or additive to a standard HF therapy (angiotensin receptor blocker (losartan)). Experimental murine HF was produced by transverse aortic constriction (TAC). At three weeks post-TAC, male mice with established HF were treated with placebo, rapamycin at a dose producing immunosuppressive drug levels (target dose), low dose (50% target dose) rapamycin, losartan or rapamycin + losartan for six weeks. Cardiac structure and function (echocardiography, catheterization, pathology, hypertrophic and fibrotic gene expression profiles) were assessed. Downstream mTOR signaling pathways regulating protein synthesis (S6K1 and S6) and autophagy (LC3B-II) were characterized. TAC-HF mice displayed eccentric hypertrophy, systolic dysfunction and pulmonary congestion. These perturbations were attenuated to a similar degree by oral rapamycin doses achieving target (13.3±2.1 ng/dL) or low (6.7±2.5 ng/dL) blood levels. Rapamycin treatment decreased mTOR mediated regulators of protein synthesis and increased mTOR mediated regulators of autophagy. Losartan monotherapy did not attenuate remodeling, whereas

  2. Serendipity in splendid isolation: rapamycin.

    PubMed

    Rao, V Koneti

    2016-01-07

    In this issue of Blood, Bride et al report results of the first prospective multi-institutional trial of a long-term single-agent therapy for refractory cytopenias using rapamycin in 30 patients and show remarkable efficacy in children with autoimmune lymphoproliferative syndrome (ALPS).

  3. The matricellular protein CCN1 regulates TNF-α induced vascular endothelial cell apoptosis.

    PubMed

    Zhang, Jin; Wu, Gongxiong; Dai, Haibin

    2016-01-01

    Due to the epidemic obesity and associated diabetes, the incidence of atherosclerosis is increasing worldwide. Atherosclerosis is a chronic inflammatory disease characterized by the hardening and narrowing of arteries with plaques that consist of inflammatory cells, dead endothelial cells, lipids, and often hyper proliferated vascular smooth muscle cells. During the development of atherosclerosis, vascular endothelial cell (EC) apoptosis induced by the adipokine tumor necrosis factor alpha (TNF-α), is an early event in the plaque formation. However, TNF-α alone is not sufficient to induce apoptosis of endothelial cells. Recent studies suggested that the matricellular protein CCN family member 1 (CCN1) involves in endothelial cell dysfunction besides its well-known angiogenic function during tissue repair by promoting vascular smooth muscle cells proliferation and migration. Herein, we explored the possibility and mechanism of CCN1 in TNF-α induced endothelial cells apoptosis. Both mRNA and protein levels of CCN1 are found up-regulated in endothelial cells after TNF-α treatment. In addition, overexpression of CCN1 promoted endothelial cell apoptosis in the presence of TNF-α. Furthermore, CCN1 directly up-regulated the expression of TNF-α-target genes, and this up-regulation required the activation of P53 and NF-κB both in vivo and in vitro. Taken together, CNN1 regulates TNF-α induced endothelial cells apoptosis that may underlie poor response to TNF-α therapy and hence may be a better therapeutic target for preventing vascular dysfunction in obesity.

  4. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells.

    PubMed

    Bretschneider, Maria; Busch, Bianca; Mueller, Daniel; Nolze, Alexander; Schreier, Barbara; Gekle, Michael; Grossmann, Claudia

    2016-04-01

    Inappropriately activated mineralocorticoid receptor (MR) is a risk factor for vascular remodeling with unclear molecular mechanism. Recent findings suggest that post-transcriptional regulation by micro-RNAs (miRs) may be involved. Our aim was to search for MR-dependent miRs in vascular smooth muscle cells (VSMCs) and to explore the underlying molecular mechanism and the pathologic relevance. We detected that aldosteroneviathe MR reduces miR-29bin vivoin murine aorta and in human primary and cultured VSMCs (ED50= 0.07 nM) but not in endothelial cells [quantitative PCR (qPCR), luciferase assays]. This effect was mediated by an increased decay of miR-29b in the cytoplasm with unchanged miR-29 family member or primary-miR levels. Decreased miR-29b led to an increase in extracellular matrix measured by ELISA and qPCR and enhanced VSMC migration in single cell-tracking experiments. Additionally, cell proliferation and the apoptosis/necrosis ratio (caspase/lactate dehydrogenase assay) was modulated by miR-29b. Enhanced VSMC migration by aldosterone required miR-29b regulation. Control experiments were performed with scrambled RNA and empty plasmids, by comparing aldosterone-stimulated with vehicle-incubated cells. Overall, our findings provide novel insights into the molecular mechanism of aldosterone-mediated vascular pathogenesis by identifying miR-29b as a pathophysiologic relevant target of activated MR in VSMCs and by highlighting the importance of miR processing for miR regulation.-Bretschneider, M., Busch, B., Mueller, D., Nolze, A., Schreier, B., Gekle, M., Grossmann, C. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells.

  5. MicroRNA-181b regulates NF-κB-mediated vascular inflammation.

    PubMed

    Sun, Xinghui; Icli, Basak; Wara, Akm Khyrul; Belkin, Nathan; He, Shaolin; Kobzik, Lester; Hunninghake, Gary M; Vera, Miguel Pinilla; Blackwell, Timothy S; Baron, Rebecca M; Feinberg, Mark W

    2012-06-01

    EC activation and dysfunction have been linked to a variety of vascular inflammatory disease states. The function of microRNAs (miRNAs) in vascular EC activation and inflammation remains poorly understood. Herein, we report that microRNA-181b (miR-181b) serves as a potent regulator of downstream NF-κB signaling in the vascular endothelium by targeting importin-α3, a protein that is required for nuclear translocation of NF-κB. Overexpression of miR-181b inhibited importin-α3 expression and an enriched set of NF-κB-responsive genes such as adhesion molecules VCAM-1 and E-selectin in ECs in vitro and in vivo. In addition, treatment of mice with proinflammatory stimuli reduced miR-181b expression. Rescue of miR-181b levels by systemic administration of miR-181b "mimics" reduced downstream NF-κB signaling and leukocyte influx in the vascular endothelium and decreased lung injury and mortality in endotoxemic mice. In contrast, miR-181b inhibition exacerbated endotoxin-induced NF-κB activity, leukocyte influx, and lung injury. Finally, we observed that critically ill patients with sepsis had reduced levels of miR-181b compared with control intensive care unit (ICU) subjects. Collectively, these findings demonstrate that miR-181b regulates NF-κB-mediated EC activation and vascular inflammation in response to proinflammatory stimuli and that rescue of miR-181b expression could provide a new target for antiinflammatory therapy and critical illness.

  6. Divergent tissue and sex effects of rapamycin on the proteasome-chaperone network of old mice

    PubMed Central

    Rodriguez, Karl A.; Dodds, Sherry G.; Strong, Randy; Galvan, Veronica; Sharp, Z. D.; Buffenstein, Rochelle

    2014-01-01

    Rapamycin, an allosteric inhibitor of the mTOR kinase, increases longevity in mice in a sex-specific manner. In contrast to the widely accepted theory that a loss of proteasome activity is detrimental to both life- and healthspan, biochemical studies in vitro reveal that rapamycin inhibits 20S proteasome peptidase activity. We tested if this unexpected finding is also evident after chronic rapamycin treatment in vivo by measuring peptidase activities for both the 26S and 20S proteasome in liver, fat, and brain tissues of old, male and female mice fed encapsulated chow containing 2.24 mg/kg (14 ppm) rapamycin for 6 months. Further we assessed if rapamycin altered expression of the chaperone proteins known to interact with the proteasome-mediated degradation system (PMDS), heat shock factor 1 (HSF1), and the levels of key mTOR pathway proteins. Rapamycin had little effect on liver proteasome activity in either gender, but increased proteasome activity in female brain lysates and lowered its activity in female fat tissue. Rapamycin-induced changes in molecular chaperone levels were also more substantial in tissues from female animals. Furthermore, mTOR pathway proteins showed more significant changes in female tissues compared to those from males. These data show collectively that there are divergent tissue and sex effects of rapamycin on the proteasome-chaperone network and that these may be linked to the disparate effects of rapamycin on males and females. Further our findings suggest that rapamycin induces indirect regulation of the PMDS/heat-shock response through its modulation of the mTOR pathway rather than via direct interactions between rapamycin and the proteasome. PMID:25414638

  7. Divergent tissue and sex effects of rapamycin on the proteasome-chaperone network of old mice.

    PubMed

    Rodriguez, Karl A; Dodds, Sherry G; Strong, Randy; Galvan, Veronica; Sharp, Z D; Buffenstein, Rochelle

    2014-01-01

    Rapamycin, an allosteric inhibitor of the mTOR kinase, increases longevity in mice in a sex-specific manner. In contrast to the widely accepted theory that a loss of proteasome activity is detrimental to both life- and healthspan, biochemical studies in vitro reveal that rapamycin inhibits 20S proteasome peptidase activity. We tested if this unexpected finding is also evident after chronic rapamycin treatment in vivo by measuring peptidase activities for both the 26S and 20S proteasome in liver, fat, and brain tissues of old, male and female mice fed encapsulated chow containing 2.24 mg/kg (14 ppm) rapamycin for 6 months. Further we assessed if rapamycin altered expression of the chaperone proteins known to interact with the proteasome-mediated degradation system (PMDS), heat shock factor 1 (HSF1), and the levels of key mTOR pathway proteins. Rapamycin had little effect on liver proteasome activity in either gender, but increased proteasome activity in female brain lysates and lowered its activity in female fat tissue. Rapamycin-induced changes in molecular chaperone levels were also more substantial in tissues from female animals. Furthermore, mTOR pathway proteins showed more significant changes in female tissues compared to those from males. These data show collectively that there are divergent tissue and sex effects of rapamycin on the proteasome-chaperone network and that these may be linked to the disparate effects of rapamycin on males and females. Further our findings suggest that rapamycin induces indirect regulation of the PMDS/heat-shock response through its modulation of the mTOR pathway rather than via direct interactions between rapamycin and the proteasome.

  8. A New Functional Role for Mechanistic/Mammalian Target of Rapamycin Complex 1 (mTORC1) in the Circadian Regulation of L-Type Voltage-Gated Calcium Channels in Avian Cone Photoreceptors

    PubMed Central

    Huang, Cathy Chia-Yu; Ko, Michael Lee; Ko, Gladys Yi-Ping

    2013-01-01

    In the retina, the L-type voltage-gated calcium channels (L-VGCCs) are responsible for neurotransmitter release from photoreceptors and are under circadian regulation. Both the current densities and protein expression of L-VGCCs are significantly higher at night than during the day. However, the underlying mechanisms of circadian regulation of L-VGCCs in the retina are not completely understood. In this study, we demonstrated that the mechanistic/mammalian target of rapamycin complex (mTORC) signaling pathway participated in the circadian phase-dependent modulation of L-VGCCs. The activities of the mTOR cascade, from mTORC1 to its downstream targets, displayed circadian oscillations throughout the course of a day. Disruption of mTORC1 signaling dampened the L-VGCC current densities, as well as the protein expression of L-VGCCs at night. The decrease of L-VGCCs at night by mTORC1 inhibition was in part due to a reduction of L-VGCCα1 subunit translocation from the cytosol to the plasma membrane. Finally, we showed that mTORC1 was downstream of the phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT) signaling pathway. Taken together, mTORC1 signaling played a role in the circadian regulation of L-VGCCs, in part through regulation of ion channel trafficking and translocation, which brings to light a new functional role for mTORC1: the modulation of ion channel activities. PMID:23977383

  9. Distal vessel stiffening is an early and pivotal mechanobiological regulator of vascular remodeling and pulmonary hypertension

    PubMed Central

    Liu, Fei; Haeger, Christina Mallarino; Dieffenbach, Paul B.; Sicard, Delphine; Chrobak, Izabela; Coronata, Anna Maria F.; Velandia, Margarita M. Suárez; Vitali, Sally; Colas, Romain A.; Norris, Paul C.; Marinković, Aleksandar; Liu, Xiaoli; Ma, Jun; Rose, Chase D.; Lee, Seon-Jin; Comhair, Suzy A.A.; Erzurum, Serpil C.; McDonald, Jacob D.; Serhan, Charles N.; Walsh, Stephen R.; Tschumperlin, Daniel J.; Fredenburgh, Laura E.

    2016-01-01

    Pulmonary arterial (PA) stiffness is associated with increased mortality in patients with pulmonary hypertension (PH); however, the role of PA stiffening in the pathogenesis of PH remains elusive. Here, we show that distal vascular matrix stiffening is an early mechanobiological regulator of experimental PH. We identify cyclooxygenase-2 (COX-2) suppression and corresponding reduction in prostaglandin production as pivotal regulators of stiffness-dependent vascular cell activation. Atomic force microscopy microindentation demonstrated early PA stiffening in experimental PH and human lung tissue. Pulmonary artery smooth muscle cells (PASMC) grown on substrates with the stiffness of remodeled PAs showed increased proliferation, decreased apoptosis, exaggerated contraction, enhanced matrix deposition, and reduced COX-2–derived prostanoid production compared with cells grown on substrates approximating normal PA stiffness. Treatment with a prostaglandin I2 analog abrogated monocrotaline-induced PA stiffening and attenuated stiffness-dependent increases in proliferation, matrix deposition, and contraction in PASMC. Our results suggest a pivotal role for early PA stiffening in PH and demonstrate the therapeutic potential of interrupting mechanobiological feedback amplification of vascular remodeling in experimental PH. PMID:27347562

  10. Endothelial Snail Regulates Capillary Branching Morphogenesis via Vascular Endothelial Growth Factor Receptor 3 Expression.

    PubMed

    Park, Jeong Ae; Kim, Dong Young; Kim, Young-Myeong; Lee, In-Kyu; Kwon, Young-Guen

    2015-07-01

    Vascular branching morphogenesis is activated and maintained by several signaling pathways. Among them, vascular endothelial growth factor receptor 2 (VEGFR2) signaling is largely presented in arteries, and VEGFR3 signaling is in veins and capillaries. Recent reports have documented that Snail, a well-known epithelial-to-mesenchymal transition protein, is expressed in endothelial cells, where it regulates sprouting angiogenesis and embryonic vascular development. Here, we identified Snail as a regulator of VEGFR3 expression during capillary branching morphogenesis. Snail was dramatically upregulated in sprouting vessels in the developing retinal vasculature, including the leading-edged vessels and vertical sprouting vessels for capillary extension toward the deep retina. Results from in vitro functional studies demonstrate that Snail expression colocalized with VEGFR3 and upregulated VEGFR3 mRNA by directly binding to the VEGFR3 promoter via cooperating with early growth response protein-1. Snail knockdown in postnatal mice attenuated the formation of the deep capillary plexus, not only by impairing vertical sprouting vessels but also by downregulating VEGFR3 expression. Collectively, these data suggest that the Snail-VEGFR3 axis controls capillary extension, especially in vessels expressing VEGFR2 at low levels.

  11. Nitric oxide production and NO synthase gene expression contribute to vascular regulation during exercise.

    PubMed

    Shen, W; Zhang, X; Zhao, G; Wolin, M S; Sessa, W; Hintze, T H

    1995-08-01

    Nitric oxide (NO) is a vasodilator produced under normal physiologic conditions primarily by the vascular endothelium lining all blood vessels. The primary stimulus for the production of nitric oxide by the constitutive endothelial nitric oxide synthase (ECNOS, Type II) found in blood vessels is most likely the shear stress, the frictional force, caused by blood flowing through blood vessels. During exercise there is an increase in cardiac output and redistribution of blood flow to increase blood flow in skeletal muscle and in the coronary circulation. These adjustments provide increased oxygen delivery to support aerobic energy production and to sustain the exercise response. NO may be involved in the regulation of vascular tone in exercising skeletal and cardiac muscle by promoting, enhancing the metabolic vasodilation. In addition, the production of NO by capillary endothelium may regulate oxygen consumption by mitochondria through chemical interactions between NO and the iron-sulfur center of these enzymes. Finally, brief exercise training may alter the gene expression for the enzyme, the constitutive endothelial NO synthase, which forms NO and may be part of the vascular adaptation seen after aerobic exercise training. Furthermore, if there is a genetic predisposition to produce NO, as in world class athletes or animals bred to race, NO may contribute to spectacular exercise performance. These three potential roles of NO will be discussed and data presented to support each of these in our review.

  12. Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation.

    PubMed

    Ohtani, Misato; Akiyoshi, Nobuhiro; Takenaka, Yuto; Sano, Ryosuke; Demura, Taku

    2017-01-01

    One crucial problem that plants faced during their evolution, particularly during the transition to growth on land, was how to transport water, nutrients, metabolites, and small signaling molecules within a large, multicellular body. As a solution to this problem, land plants developed specific tissues for conducting molecules, called water-conducting cells (WCCs) and food-conducting cells (FCCs). The well-developed WCCs and FCCs in extant plants are the tracheary elements and sieve elements, respectively, which are found in vascular plants. Recent molecular genetic studies revealed that transcriptional networks regulate the differentiation of tracheary and sieve elements, and that the networks governing WCC differentiation are largely conserved among land plant species. In this review, we discuss the molecular evolution of plant conducting cells. By focusing on the evolution of the key transcription factors that regulate vascular cell differentiation, the NAC transcription factor VASCULAR-RELATED NAC-DOMAIN for WCCs and the MYB-coiled-coil (CC)-type transcription factor ALTERED PHLOEM DEVELOPMENT for sieve elements, we describe how land plants evolved molecular systems to produce the specialized cells that function as WCCs and FCCs.

  13. Ryanodine receptors, calcium signaling and regulation of vascular tone in the cerebral parenchymal microcirculation

    PubMed Central

    Dabertrand, Fabrice; Nelson, Mark T.; Brayden, Joseph E.

    2012-01-01

    The cerebral blood supply is delivered by a surface network of pial arteries and arterioles from which arise (parenchymal) arterioles that penetrate into the cortex and terminate in a rich capillary bed. The critical regulation of cerebral blood flow, locally and globally, requires precise vasomotor regulation of the intracerebral microvasculature. This vascular region is anatomically unique as illustrated by the presence of astrocytic processes that envelope almost the entire basolateral surface of parenchymal arterioles. There are, moreover, notable functional differences between pial arteries and parenchymal arterioles. For example, in pial vascular smooth muscle cells (VSMCs), local calcium release events (“calcium sparks”) through ryanodine receptor (RyR) channels in sarcoplasmic reticulum membrane activate large conductance, calcium-sensitive potassium (BK) channels to modulate vascular diameter. In contrast, VSMCs in parenchymal arterioles express functional RyR and BK channels, but under physiological conditions these channels do not oppose pressure-induced vasoconstriction. Here we summarize the roles of ryanodine receptors in the parenchymal microvasculature under physiologic and pathologic conditions, and discuss their importance in the control of cerebral blood flow. PMID:23216877

  14. PPARβ/δ, a Novel Regulator for Vascular Smooth Muscle Cells Phenotypic Modulation and Vascular Remodeling after Subarachnoid Hemorrhage in Rats.

    PubMed

    Zhang, Hongrong; Jiang, Li; Guo, Zongduo; Zhong, Jianjun; Wu, Jingchuan; He, Junchi; Liu, Han; He, Zhaohui; Wu, Haitao; Cheng, Chongjie; Sun, Xiaochuan

    2017-03-22

    Cerebral vascular smooth muscle cell (VSMC) phenotypic switch is involved in the pathophysiology of vascular injury after aneurysmal subarachnoid hemorrhage (aSAH), whereas the molecular mechanism underlying it remains largely speculative. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) has been implicated to modulate the vascular cells proliferation and vascular homeostasis. In the present study, we investigated the potential role of PPARβ/δ in VSMC phenotypic switch following SAH. Activation of PPARβ/δ by GW0742 and adenoviruses PPARβ/δ (Ad-PPARβ/δ) significantly inhibited hemoglobin-induced VSMC phenotypic switch. However, the effects of PPARβ/δ on VSMC phenotypic switch were partly obstacled in the presence of LY294002, a potent inhibitor of Phosphatidyl-Inositol-3 Kinase-AKT (PI3K/AKT). Furthermore, following study demonstrated that PPARβ/δ-induced PI3K/AKT activation can also contribute to Serum Response Factor (SRF) nucleus localization and Myocardin expression, which was highly associated with VSMC phenotypic switch. Finally, we found that Ad-PPARβ/δ positively modulated vascular remodeling in SAH rats, i.e. the diameter of basilar artery and the thickness of vessel wall. In addition, overexpression of PPARβ/δ by adenoviruses significantly improved neurological outcome. Taken together, this study identified PPARβ/δ as a useful regulator for VSMC phenotypic switch and vascular remodeling following SAH, providing novel insights into the therapeutic strategies of delayed cerebral ischemia.

  15. PPARβ/δ, a Novel Regulator for Vascular Smooth Muscle Cells Phenotypic Modulation and Vascular Remodeling after Subarachnoid Hemorrhage in Rats

    PubMed Central

    Zhang, Hongrong; Jiang, Li; Guo, Zongduo; Zhong, Jianjun; Wu, Jingchuan; He, Junchi; Liu, Han; He, Zhaohui; Wu, Haitao; Cheng, Chongjie; Sun, Xiaochuan

    2017-01-01

    Cerebral vascular smooth muscle cell (VSMC) phenotypic switch is involved in the pathophysiology of vascular injury after aneurysmal subarachnoid hemorrhage (aSAH), whereas the molecular mechanism underlying it remains largely speculative. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) has been implicated to modulate the vascular cells proliferation and vascular homeostasis. In the present study, we investigated the potential role of PPARβ/δ in VSMC phenotypic switch following SAH. Activation of PPARβ/δ by GW0742 and adenoviruses PPARβ/δ (Ad-PPARβ/δ) significantly inhibited hemoglobin-induced VSMC phenotypic switch. However, the effects of PPARβ/δ on VSMC phenotypic switch were partly obstacled in the presence of LY294002, a potent inhibitor of Phosphatidyl-Inositol-3 Kinase-AKT (PI3K/AKT). Furthermore, following study demonstrated that PPARβ/δ-induced PI3K/AKT activation can also contribute to Serum Response Factor (SRF) nucleus localization and Myocardin expression, which was highly associated with VSMC phenotypic switch. Finally, we found that Ad-PPARβ/δ positively modulated vascular remodeling in SAH rats, i.e. the diameter of basilar artery and the thickness of vessel wall. In addition, overexpression of PPARβ/δ by adenoviruses significantly improved neurological outcome. Taken together, this study identified PPARβ/δ as a useful regulator for VSMC phenotypic switch and vascular remodeling following SAH, providing novel insights into the therapeutic strategies of delayed cerebral ischemia. PMID:28327554

  16. microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems

    PubMed Central

    Kim, Joonki; Jung, Jae-Hoon; Reyes, Jose L.; Kim, Youn-Sung; Kim, Sun-Young; Chung, Kyung-Sook; Kim, Jin A.; Lee, Minsun; Lee, Yoontae; Kim, V. Narry; Chua, Nam-Hai; Park, Chung-Mo

    2006-01-01

    Summary Class III homeodomain-leucine zipper proteins regulate critical aspects of plant development, including lateral organ polarity, apical and lateral meristem formation, and vascular development. ATHB15, a member of this transcription factor family, is exclusively expressed in vascular tissues. Recently, a microRNA (miRNA) binding sequence has been identified in ATHB15 mRNA, suggesting that a molecular mechanism governed by miRNA binding may direct vascular development through ATHB15. Here, we show that miR166-mediated ATHB15 mRNA cleavage is a principal mechanism for the regulation of vascular development. In a gain-of-function MIR166a mutant, the decreased transcript level of ATHB15 was accompanied by an altered vascular system with expanded xylem tissue and interfascicular region, indicative of accelerated vascular cell differentiation from cambial/procambial cells. A similar phenotype was observed in Arabidopsis plants with reduced ATHB15 expression but reversed in transgenic plants overexpressing an miR166-resistant ATHB15. ATHB15 mRNA cleavage occurred in standard wheat germ extracts and in Arabidopsis and was mediated by miR166 in Nicotiana benthamiana cells. miR166-assisted ATHB15 repression is likely to be a conserved mechanism that regulates vascular development in all vascular plants. PMID:15773855

  17. Elementary Ca2+ Signals Through Endothelial TRPV4 Channels Regulate Vascular Function

    PubMed Central

    Sonkusare, Swapnil K.; Bonev, Adrian D.; Ledoux, Jonathan; Liedtke, Wolfgang; Kotlikoff, Michael I.; Heppner, Thomas J.; Hill-Eubanks, David C.; Nelson, Mark T.

    2013-01-01

    Major features of the transcellular signaling mechanism responsible for endothelium-dependent regulation of vascular smooth muscle tone are unresolved. We identified local calcium (Ca2+) signals (“sparklets”) in the vascular endothelium of resistance arteries that represent Ca2+ influx through single TRPV4 cation channels. Gating of individual TRPV4 channels within a four-channel cluster was cooperative, with activation of as few as three channels per cell causing maximal dilation through activation of endothelial cell intermediate (IK)- and small (SK)-conductance, Ca2+-sensitive potassium (K+) channels. Endothelial-dependent muscarinic receptor signaling also acted largely through TRPV4 sparklet-mediated stimulation of IK and SK channels to promote vasodilation. These results support the concept that Ca2+ influx through single TRPV4 channels is leveraged by the amplifier effect of cooperative channel gating and the high Ca2+ sensitivity of IK and SK channels to cause vasodilation. PMID:22556255

  18. Evidence of species specific vascular plant functions as regulators of methane emissions from northern peatlands

    NASA Astrophysics Data System (ADS)

    Oquist, M. G.

    2001-05-01

    Peatlands play an indisputable role in the global carbon cycle by their net accumulation of atmospheric carbon dioxide and storage of carbon in the form of peat. They are also intimately tied into the fundamental processes of the atmospheric greenhouse gas balance through their production and concomitant emission of methane. During the last decade several studies have emphasized the function of vegetation as an important regulator of methane emissions from wetland ecosystems, including northern peatlands. Vascular plants can affect methane emissions either by facilitating transportation of methane over the soil/atmosphere interface, or by supplying the microbial soil communities with readily degradable organic substrates through root activity, stimulating biogeochemical transformation rates including methanogenesis. We found evidence of both these types of vegetation-based interactions in a sub-arctic peatland ecosystem and also indications that the two different processes of vegetation induced stimulation of methane emission rates are species specific with respect to the vascular plant communities. By reducing incoming PAR through shading manipulations and comparing these to ambient light control plots we created an intra-habitat gradient of vascular plant photosynthesis at two contrasting sites, one ombrotrophic (dominated by Eriophorum vaginatum/Carex rotundata) and one minerotrophic (dominated by Eriophorum angustifolium). The position of the water table was found to be the dominating environmental factor controlling methane emission rates in both habitat types. At the ombrotrophic site the photosynthetic rate was the second most important factor, especially during peak vascular plant activity (late June- early August) when this variable could explain ca 15% of the variations in methane flux rates. Furthermore, the photosynthetic rates in the shaded plots were reduced by ca 25% and was accompanied by a significant 20% (P=0.01) reduction in methane emission

  19. Regulation of Vascular Growth in the Chorioallantoic Membrane of Japanese Quail Eggs

    NASA Technical Reports Server (NTRS)

    Montague, Idoreyin P.

    2004-01-01

    The Microgravity Research Program is part of NASA's Office of Biological and Physical Research (OBPR). The mission of the Microgravity Fluid Physics research program is to facilitate and conduct the best possible fluid physics research using the space environment and make this knowledge available to the scientific community and the public at large. During the summer of 2004, I worked in this division with Dr. Patricia Parsons-Wingerter. Dr. Parsons was working on several projects that used the chorioallantoic membrane (CAM) of Japanese quail eggs. The CAM develops in the eggs of birds and reptiles and is a very vascular fetal membrane composed of the fused chorion and adjacent wall of the allantois. The CAM is formed on day 4 of incubation and its primary job is to mediate gas exchanges with the extra embryonic environment. The CAM of our Japanese quail eggs is easily identifiable to us because it is transparent and it sits on top of the yolk with the embryo in the center. The CAM is of interest because of its many applications in the field of medicine as it relates to vascular remodeling and angiogenesis. Angiogenesis is simply the growth or formation of new blood vessels and anti-angiogenesis is the inhibition of said vessels. Angiogenesis occurs naturally in a healthy body for healing wounds and for restoring blood flow to tissues after injury and in females during the monthly reproductive cycle. In many serious diseases, like several types of cancer and those that affect the heart and cardiovascular system, the body loses control over angiogenesis. These diseases, which are dependent on angiogenesis, result when new blood vessels either grow excessively or insufficiently. The chorioallantoic membrane of our Japanese quail eggs gives a good model of angiogenesis. We used angiogenic regulators to inhibit or stimulate vascular growth in the CAM in a healthy manner and they induced distinct vascular patterns in vivo. Certain dominant regulators can be recognized by

  20. Smooth Muscle Endothelin B Receptors Regulate Blood Pressure but Not Vascular Function or Neointimal Remodeling.

    PubMed

    Miller, Eileen; Czopek, Alicja; Duthie, Karolina M; Kirkby, Nicholas S; van de Putte, Elisabeth E Fransen; Christen, Sibylle; Kimmitt, Robert A; Moorhouse, Rebecca; Castellan, Raphael F P; Kotelevtsev, Yuri V; Kuc, Rhoda E; Davenport, Anthony P; Dhaun, Neeraj; Webb, David J; Hadoke, Patrick W F

    2017-02-01

    The role of smooth muscle endothelinB (ETB) receptors in regulating vascular function, blood pressure (BP), and neointimal remodeling has not been established. Selective knockout mice were generated to address the hypothesis that loss of smooth muscle ETB receptors would reduce BP, alter vascular contractility, and inhibit neointimal remodeling. ETB receptors were selectively deleted from smooth muscle by crossing floxed ETB mice with those expressing cre-recombinase controlled by the transgelin promoter. Functional consequences of ETB deletion were assessed using myography. BP was measured by telemetry, and neointimal lesion formation induced by femoral artery injury. Lesion size and composition (day 28) were analyzed using optical projection tomography, histology, and immunohistochemistry. Selective deletion of ETB was confirmed by genotyping, autoradiography, polymerase chain reaction, and immunohistochemistry. ETB-mediated contraction was reduced in trachea, but abolished from mesenteric veins, of knockout mice. Induction of ETB-mediated contraction in mesenteric arteries was also abolished in these mice. Femoral artery function was unaltered, and baseline BP modestly elevated in smooth muscle ETB knockout compared with controls (+4.2±0.2 mm Hg; P<0.0001), but salt-induced and ETB blockade-mediated hypertension were unaltered. Circulating endothelin-1 was not altered in knockout mice. ETB-mediated contraction was not induced in femoral arteries by incubation in culture medium or lesion formation, and lesion size was not altered in smooth muscle ETB knockout mice. In the absence of other pathology, ETB receptors in vascular smooth muscle make a small but significant contribution to ETB-dependent regulation of BP. These ETB receptors have no effect on vascular contraction or neointimal remodeling.

  1. Smooth Muscle Endothelin B Receptors Regulate Blood Pressure but Not Vascular Function or Neointimal Remodeling

    PubMed Central

    Miller, Eileen; Czopek, Alicja; Duthie, Karolina M.; Kirkby, Nicholas S.; van de Putte, Elisabeth E. Fransen; Christen, Sibylle; Kimmitt, Robert A.; Moorhouse, Rebecca; Castellan, Raphael F.P.; Kotelevtsev, Yuri V.; Kuc, Rhoda E.; Davenport, Anthony P.; Dhaun, Neeraj; Webb, David J.

    2017-01-01

    The role of smooth muscle endothelinB (ETB) receptors in regulating vascular function, blood pressure (BP), and neointimal remodeling has not been established. Selective knockout mice were generated to address the hypothesis that loss of smooth muscle ETB receptors would reduce BP, alter vascular contractility, and inhibit neointimal remodeling. ETB receptors were selectively deleted from smooth muscle by crossing floxed ETB mice with those expressing cre-recombinase controlled by the transgelin promoter. Functional consequences of ETB deletion were assessed using myography. BP was measured by telemetry, and neointimal lesion formation induced by femoral artery injury. Lesion size and composition (day 28) were analyzed using optical projection tomography, histology, and immunohistochemistry. Selective deletion of ETB was confirmed by genotyping, autoradiography, polymerase chain reaction, and immunohistochemistry. ETB-mediated contraction was reduced in trachea, but abolished from mesenteric veins, of knockout mice. Induction of ETB-mediated contraction in mesenteric arteries was also abolished in these mice. Femoral artery function was unaltered, and baseline BP modestly elevated in smooth muscle ETB knockout compared with controls (+4.2±0.2 mm Hg; P<0.0001), but salt-induced and ETB blockade–mediated hypertension were unaltered. Circulating endothelin-1 was not altered in knockout mice. ETB-mediated contraction was not induced in femoral arteries by incubation in culture medium or lesion formation, and lesion size was not altered in smooth muscle ETB knockout mice. In the absence of other pathology, ETB receptors in vascular smooth muscle make a small but significant contribution to ETB-dependent regulation of BP. These ETB receptors have no effect on vascular contraction or neointimal remodeling. PMID:28028193

  2. Pituitary adenylate cyclase activating polypeptide: an important vascular regulator in human skin in vivo.

    PubMed

    Seeliger, Stephan; Buddenkotte, Jörg; Schmidt-Choudhury, Anjona; Rosignoli, Carine; Shpacovitch, Victoria; von Arnim, Ulrike; Metze, Dieter; Rukwied, Roman; Schmelz, Martin; Paus, Ralf; Voegel, Johannes J; Schmidt, Wolfgang E; Steinhoff, Martin

    2010-11-01

    Pituitary adenylate cyclase-activating peptide (PACAP) is an important neuropeptide and immunomodulator in various tissues. Although this peptide and its receptors (ie, VPAC1R, VPAC2R, and PAC1R) are expressed in human skin, their biological roles are unknown. Therefore, we tested whether PACAP regulates vascular responses in human skin in vivo. When injected intravenously, PACAP induced a significant, concentration-dependent vascular response (ie, flush, erythema, edema) and mediated a significant and concentration-dependent increase in intrarectal body temperature that peaked at 2.7°C. Topical application of PACAP induced marked concentration-dependent edema. Immunohistochemistry revealed a close association of PACAP-immunoreactive nerve fibers with mast cells and dermal blood vessels. VPAC1R was expressed by dermal endothelial cells, CD4+ and CD8+ T cells, mast cells, and keratinocytes, whereas VPAC2R was expressed only in keratinocytes. VPAC1R protein and mRNA were also detected in human dermal microvascular endothelial cells. The PACAP-induced change in cAMP production in these cells demonstrated VPAC1R to be functional. PACAP treatment of organ-cultured human skin strongly increased the number of CD31+ vessel cross-sections. Taken together, these results suggest that PACAP directly induces vascular responses that may be associated with neurogenic inflammation, indicating for the first time that PACAP may be a crucial vascular regulator in human skin in vivo. Antagonists to PACAP function may be beneficial for the treatment of inflammatory skin diseases with a neurogenic component.

  3. Molecular Mechanisms Regulating the Vascular Prostacyclin Pathways and Their Adaptation during Pregnancy and in the Newborn

    PubMed Central

    Majed, Batoule H.

    2012-01-01

    Prostacyclin (PGI2) is a member of the prostanoid group of eicosanoids that regulate homeostasis, hemostasis, smooth muscle function and inflammation. Prostanoids are derived from arachidonic acid by the sequential actions of phospholipase A2, cyclooxygenase (COX), and specific prostaglandin (PG) synthases. There are two major COX enzymes, COX1 and COX2, that differ in structure, tissue distribution, subcellular localization, and function. COX1 is largely constitutively expressed, whereas COX2 is induced at sites of inflammation and vascular injury. PGI2 is produced by endothelial cells and influences many cardiovascular processes. PGI2 acts mainly on the prostacyclin (IP) receptor, but because of receptor homology, PGI2 analogs such as iloprost may act on other prostanoid receptors with variable affinities. PGI2/IP interaction stimulates G protein-coupled increase in cAMP and protein kinase A, resulting in decreased [Ca2+]i, and could also cause inhibition of Rho kinase, leading to vascular smooth muscle relaxation. In addition, PGI2 intracrine signaling may target nuclear peroxisome proliferator-activated receptors and regulate gene transcription. PGI2 counteracts the vasoconstrictor and platelet aggregation effects of thromboxane A2 (TXA2), and both prostanoids create an important balance in cardiovascular homeostasis. The PGI2/TXA2 balance is particularly critical in the regulation of maternal and fetal vascular function during pregnancy and in the newborn. A decrease in PGI2/TXA2 ratio in the maternal, fetal, and neonatal circulation may contribute to preeclampsia, intrauterine growth restriction, and persistent pulmonary hypertension of the newborn (PPHN), respectively. On the other hand, increased PGI2 activity may contribute to patent ductus arteriosus (PDA) and intraventricular hemorrhage in premature newborns. These observations have raised interest in the use of COX inhibitors and PGI2 analogs in the management of pregnancy-associated and neonatal

  4. Regulation of SIRT1 in vascular smooth muscle cells from streptozotocin-diabetic rats.

    PubMed

    Toniolo, Alice; Warden, Erica Alessia; Nassi, Alberto; Cignarella, Andrea; Bolego, Chiara

    2013-01-01

    Sirtuins enzymes are a conserved family of nicotinamide adenine dinucleotide (NAD)-dependent deacetylases and ADP-ribosyltransferases that mediate responses to oxidative stress, fasting and dietary restriction in mammals. Vascular smooth muscle cells (VSMCs) are involved in many mechanisms that regulate vascular biology in vivo but the role of SIRT1 has not been explored in much detail. Therefore, we investigated the regulation of SIRT1 in cultured VSMCs under various stress conditions including diabetes. Sprague-Dawley rats were made diabetic by injecting a single dose of streptozotocin (65 mg/Kg), and aortic VSMCs were isolated after 4 weeks. Immunocytochemistry showed that SIRT1 was localized predominantly in the nucleus, with lower staining in VSMCs from STZ-diabetic as compared with normoglycemic rats. Previous diabetes induction in vivo and high glucose concentrations in vitro significantly downregulated SIRT1 amounts as detected in Western blot assays, whereas TNF-α (30 ng/ml) stimulation failed to induce significant changes. Because estrogen signaling affects several pathways of oxidative stress control, we also investigated SIRT1 modulation by 17β-estradiol. Treatment with the hormone (10 nM) or a selective estrogen receptor-α agonist decreased SIRT1 levels in VSMCs from normoglycemic but not in those from STZ-diabetic animals. 17β-estradiol treatment also enhanced activation of AMP-dependent kinase, which partners with SIRT1 in a signaling axis. SIRT1 downregulation by 17β-estradiol could be observed as well in human peripheral blood mononuclear cells, a cell type in which SIRT1 downregulation is associated with insulin resistance and subclinical atherosclerosis. These data suggest that SIRT1 protein levels are regulated by diverse cellular stressors to a variable extent in VSMCs from diabetic and normoglycemic rats, warranting further investigation on SIRT1 as a modulator of VSMC activity in settings of vascular inflammation.

  5. Vascular remodeling: A redox-modulated mechanism of vessel caliber regulation.

    PubMed

    Tanaka, Leonardo Y; Laurindo, Francisco R M

    2017-01-18

    Vascular remodeling, i.e. whole-vessel structural reshaping, determines lumen caliber in (patho)physiology. Here we review mechanisms underlying vessel remodeling, with emphasis in redox regulation. First, we discuss confusing terminology and focus on strictu sensu remodeling. Second, we propose a mechanobiological remodeling paradigm based on the concept of tensional homeostasis as a setpoint regulator. We first focus on shear-mediated models as prototypes of remodeling closely dominated by highly redox-sensitive endothelial function. More detailed discussions focus on mechanosensors, integrins, extracellular matrix, cytoskeleton and inflammatory pathways as potential of mechanisms potentially coupling tensional homeostasis to redox regulation. Further discussion of remodeling associated with atherosclerosis and injury repair highlights important aspects of redox vascular responses. While neointima formation has not shown consistent responsiveness to antioxidants, vessel remodeling has been more clearly responsive, indicating that despite the multilevel redox signaling pathways, there is a coordinated response of the whole vessel. Among mechanisms that may orchestrate redox pathways, we discuss roles of superoxide dismutase activity and extracellular protein disulfide isomerase. We then discuss redox modulation of aneurysms, a special case of expansive remodeling. We propose that the redox modulation of vascular remodeling may reflect (1) remodeling pathophysiology is dominated by a particularly redox-sensitive cell type, e.g., endothelial cells (2) redox pathways are temporospatially coordinated at an organ level across distinct cellular and acellular structures or (3) the tensional homeostasis setpoint is closely connected to redox signaling. The mechanobiological/redox model discussed here can be a basis for improved understanding of remodeling and helps clarifying mechanisms underlying prevalent hard-to-treat diseases.

  6. Rapamycin Effectively Impedes Melamine-Induced Impairments of Cognition and Synaptic Plasticity in Wistar Rats.

    PubMed

    Fu, Jingxuan; Wang, Hui; Gao, Jing; Yu, Mei; Wang, Rubin; Yang, Zhuo; Zhang, Tao

    2017-03-01

    Our previous investigation demonstrated that autophagy significantly reduced melamine-induced cell death in PC12 cells via inhibiting the excessive generation of ROS. In the present study, we further examine if rapamycin, used as an autophagy activator, can play a significant role in protecting neurons and alleviating the impairment of spatial cognition and hippocampal synaptic plasticity in melamine-treated rats. Male Wistar rats were divided into three groups: control, melamine-treated, and melamine-treated + rapamycin. The animal model was established by administering melamine at a dose of 300 mg/kg/day for 4 weeks. Rapamycin was intraperitoneally given at a dose of 1 mg/kg/day for 28 consecutive days. The Morris water maze test showed that spatial learning and reversal learning in melamine-treated rats were considerably damaged, whereas rapamycin significantly impeded the cognitive function impairment. Rapamycin efficiently alleviated the melamine-induced impairments of both long-term potentiation (LTP) and depotentiation, which were damaged in melamine rats. Rapamycin further increased the expression level of autophagy markers, which were significantly enhanced in melamine rats. Moreover, rapamycin noticeably decreased the reactive oxygen species level, while the superoxide dismutase activity was remarkably increased by rapamycin in melamine rats. Malondialdehyde assay exhibited that rapamycin prominently reduced the malondialdehyde (MDA) level of hippocampal neurons in melamine-treated rats. In addition, rapamycin significantly decreased the caspase-3 activity, which was elevated by melamine. Consequently, our results suggest that regulating autophagy may become a new targeted therapy to relieve the damage induced by melamine.

  7. Angiogenesis is regulated by angiopoietins during experimental autoimmune encephalomyelitis and is indirectly related to vascular permeability.

    PubMed

    Macmillan, Carolyn J; Starkey, Ryan J; Easton, Alexander S

    2011-12-01

    The regulation of angiogenesis was studied over the course of the animal model of multiple sclerosis, acute experimental autoimmune encephalomyelitis (EAE) in mice using immunohistochemistry. During EAE, angiogenesis peaked 21 days after disease induction, with significant increases in gray matter and adjacent to the leptomeninges. Angiogenesis correlated with clinical and pathologic scores. Spinal cord expression of angiopoietin 1 (Ang-1) by neurons and glia was reduced at Day 14, but expression by inflammatory cells restored earlier levels at Day 21. Angiopoietin 2 expression increased markedly at Day 21 and was mostly associated with inflammatory cells. Levels of the angiopoietin receptor Tie-2 were reduced at Day 14, but recovered by day D21. Double labeling demonstrated Ang-1 expression on infiltrating CD3-positive T cells; Ang-2 was expressed by monocytes/macrophages. During EAE, the expression of vascular endothelial growth factor peaked at Day 14 and began to decrease by Day 21. Double labeling showed expression of Tie-2 and vascular endothelial growth factor receptor 2 but not Ang-2 in blood vessels at Day 21. Vascular permeability increased early in EAE, but was reduced by Day 21. Although individual values did not correlate with angiogenesis, the volume of permeable tissue showed a weak positive correlation with angiogenesis. These temporal changes in angiogenic factors suggest an integral role during EAE-related angiogenesis.

  8. Albumin-based microbubbles bind up-regulated scavenger receptors following vascular injury.

    PubMed

    Anderson, Daniel R; Duryee, Michael J; Anchan, Rajeev K; Garvin, Robert P; Johnston, Michael D; Porter, Thomas R; Thiele, Geoffrey M; Klassen, Lynell W

    2010-12-24

    We have shown previously that perfluorocarbon-exposed sonicated dextrose albumin (PESDA) microbubbles bind to injured vascular tissue and can be detected with ultrasound imaging techniques. Prior studies have shown that scavenger receptors (SRs) are regulators of innate and adaptive immune responses and are involved in the progression of vascular disease such as atherosclerosis. In this study, we sought to determine the molecular mechanism of PESDA binding to balloon-injured vasculature. RT-PCR analysis of angioplastied aortas demonstrated a significantly (p ≤ 0.01) increased expression of SRs. Binding to SRs was confirmed using SR-expressing CHO cells, and this binding was blocked by competitive inhibition with the SR-binding ligands oxidized LDL and malondialdehyde-acetaldehyde-modified LDL. Confocal imaging confirmed the co-localization of PESDA microbubbles to CD36, SRB-1, and Toll-like receptor 4, but not to monocytes/macrophages. This study demonstrates that PESDA binds to SRs and that this binding is in major part dependent upon the oxidized nature of PESDA microbubble shell proteins. The extent of SR mRNA expression was increased with injury and associated with microbubble retention as defined by scanning electron microscopy and immunohistochemistry. These findings clarify the mechanisms of how albumin-based microbubbles bind to injured and inflamed vasculature and further support the potential of this imaging technique to detect early vascular innate inflammatory pathophysiologic processes.

  9. Suppression of the proliferation of hypoxia-Induced retinal pigment epithelial cell by rapamycin through the /mTOR/HIF-1α/VEGF/ signaling.

    PubMed

    Liu, Ning-Ning; Zhao, Ning; Cai, Na

    2015-06-01

    Rapamycin, a highly specific inhibitor of mammalian target of rapamycin (mTOR), exhibits significant antitumor/antiangiogenic activity in human cancer cells. Its effect on the retinal pigment epithelial (RPE) cells was rarely investigated. This study assessed the proliferation of hypoxia-induced RPE and the inhibitory effects of rapamycin using 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and examined the expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in RPE cells with or without rapamycin under normoxic and hypoxic conditions using real-time PCR and Western blot. We found that hypoxia increased the levels of mTOR, HIF-1α, and VEGF. The suppression of HIF-1α and VEGF by rapamycin was associated with dephosphorylation of mTOR and the downstream effector ribosomal protein S6 kinase (P70S6K) and 4E-binding protein-1 (4E-BP1) of mTORC1. Rapamycin only inhibited the protein levels and did not change the mRNA expression of HIF-1α. No cytotoxicity to the RPE cells by rapamycin was caused under either normoxia or hypoxia. Our data suggest that rapamycin suppresses hypoxia-induced RPE cell proliferation through a mechanism related to the targeting of mTOR/HIF-1α/VEGF signaling. Rapamycin may potentially provide a safe and effective novel treatment for choroidal vascular disease.

  10. Progeria, rapamycin and normal aging: recent breakthrough.

    PubMed

    Blagosklonny, Mikhail V

    2011-07-01

    A recent discovery that rapamycin suppresses a pro-senescent phenotype in progeric cells not only suggests a non-toxic therapy for progeria but also implies its similarity with normal aging. For one, rapamycin is also known to suppress aging of regular human cells. Here I discuss four potential scenarios, comparing progeria with both normal and accelerated aging. This reveals further indications of rapamycin both for accelerated aging in obese and for progeria.

  11. p73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGFβ signaling

    PubMed Central

    Fernandez-Alonso, R; Martin-Lopez, M; Gonzalez-Cano, L; Garcia, S; Castrillo, F; Diez-Prieto, I; Fernandez-Corona, A; Lorenzo-Marcos, M E; Li, X; Claesson-Welsh, L; Marques, M M; Marin, M C

    2015-01-01

    Vasculogenesis, the establishment of the vascular plexus and angiogenesis, branching of new vessels from the preexisting vasculature, involves coordinated endothelial differentiation, proliferation and migration. Disturbances in these coordinated processes may accompany diseases such as cancer. We hypothesized that the p53 family member p73, which regulates cell differentiation in several contexts, may be important in vascular development. We demonstrate that p73 deficiency perturbed vascular development in the mouse retina, decreasing vascular branching, density and stability. Furthermore, p73 deficiency could affect non endothelial cells (ECs) resulting in reduced in vivo proangiogenic milieu. Moreover, p73 functional inhibition, as well as p73 deficiency, hindered vessel sprouting, tubulogenesis and the assembly of vascular structures in mouse embryonic stem cell and induced pluripotent stem cell cultures. Therefore, p73 is necessary for EC biology and vasculogenesis and, in particular, that DNp73 regulates EC migration and tube formation capacity by regulation of expression of pro-angiogenic factors such as transforming growth factor-β and vascular endothelial growth factors. DNp73 expression is upregulated in the tumor environment, resulting in enhanced angiogenic potential of B16-F10 melanoma cells. Our results demonstrate, by the first time, that differential p73-isoform regulation is necessary for physiological vasculogenesis and angiogenesis and DNp73 overexpression becomes a positive advantage for tumor progression due to its pro-angiogenic capacity. PMID:25571973

  12. p73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGFβ signaling.

    PubMed

    Fernandez-Alonso, R; Martin-Lopez, M; Gonzalez-Cano, L; Garcia, S; Castrillo, F; Diez-Prieto, I; Fernandez-Corona, A; Lorenzo-Marcos, M E; Li, X; Claesson-Welsh, L; Marques, M M; Marin, M C

    2015-08-01

    Vasculogenesis, the establishment of the vascular plexus and angiogenesis, branching of new vessels from the preexisting vasculature, involves coordinated endothelial differentiation, proliferation and migration. Disturbances in these coordinated processes may accompany diseases such as cancer. We hypothesized that the p53 family member p73, which regulates cell differentiation in several contexts, may be important in vascular development. We demonstrate that p73 deficiency perturbed vascular development in the mouse retina, decreasing vascular branching, density and stability. Furthermore, p73 deficiency could affect non endothelial cells (ECs) resulting in reduced in vivo proangiogenic milieu. Moreover, p73 functional inhibition, as well as p73 deficiency, hindered vessel sprouting, tubulogenesis and the assembly of vascular structures in mouse embryonic stem cell and induced pluripotent stem cell cultures. Therefore, p73 is necessary for EC biology and vasculogenesis and, in particular, that DNp73 regulates EC migration and tube formation capacity by regulation of expression of pro-angiogenic factors such as transforming growth factor-β and vascular endothelial growth factors. DNp73 expression is upregulated in the tumor environment, resulting in enhanced angiogenic potential of B16-F10 melanoma cells. Our results demonstrate, by the first time, that differential p73-isoform regulation is necessary for physiological vasculogenesis and angiogenesis and DNp73 overexpression becomes a positive advantage for tumor progression due to its pro-angiogenic capacity.

  13. Soluble Epoxide Hydrolase Null Mice Exhibit Female and Male Differences In Regulation of Vascular Homeostasis

    PubMed Central

    Vanella, Luca; Canestraro, Martina; Lee, Craig R.; Cao, Jian; Zeldin, Darryl C.; Schwartzman, Michal L.; Abraham, Nader G.

    2015-01-01

    Increased CYP epoxygenase activity and consequently up regulation of epoxyeicosatrienoic acids (EETs) levels provides protection against metabolic syndrome and cardiovascular diseases. Conversion of arachidonic acid epoxides to diols by soluble epoxide hydrolase (sEH) diminishes the beneficial cardiovascular properties of these epoxyeicosanoids. We therefore examined the possible biochemical consequences of sEH deletion on vascular responses in male and female mice. Through the use of the sEH KO mouse, we provide evidence of differences in the compensatory response in the balance between nitric oxide (NO), carbon monoxide (CO), EETs and the vasoconstrictor 20-HETE in male and female KO mice. Serum levels of adiponectin, TNFα, IL-1b and MCP1 and protein expression in vascular tissue of p-AMPK, p-AKT and p-eNOS were measured. Deletion of sEH caused a significant (p<0,05) decrease in body weight, and an increase in adiponectin, pAMPK and pAKT levels in female KO mice compared to male KO mice. Gene deletion resulted in a higher production of renal EETs in female KO compared to male KO mice and, concomitantly, we observed an increase in renal 20-HETEs levels and superoxide anion production only in male KO mice. sEH deletion increased p-AKT and p-eNOS protein expression but decreased p-AMPK levels in female KO mice. Increased levels of p-eNOS at Thr-495 were observed only in KO male mice. While p-eNOS at 1177 were not significantly different between male and female. Nitric oxide production was unaltered in male KO mice. These results provide evidence of gender differences in the preservation of vascular homeostasis in response to sEH deletion which involves regulation of phosphorylation of eNOS at the 495 site. PMID:25908301

  14. Rapamycin antagonizes TNF induction of VCAM-1 on endothelial cells by inhibiting mTORC2

    PubMed Central

    Wang, Chen; Qin, Lingfeng; Manes, Thomas D.; Kirkiles-Smith, Nancy C.; Tellides, George

    2014-01-01

    Recruitment of circulating leukocytes into inflamed tissues depends on adhesion molecules expressed by endothelial cells (ECs). Here we report that rapamycin pretreatment reduced the ability of TNF-treated ECs to capture T cells under conditions of venular flow. This functional change was caused by inhibition of TNF-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and could be mimicked by knockdown of mammalian target of rapamycin (mTOR) or rictor, but not raptor, implicating mTORC2 as the target of rapamycin for this effect. Mechanistically, mTORC2 acts through Akt to repress Raf1-MEK1/2-ERK1/2 signaling, and inhibition of mTORC2 consequently results in hyperactivation of ERK1/2. Increased ERK1/2 activity antagonizes VCAM-1 expression by repressing TNF induction of the transcription factor IRF-1. Preventing activation of ERK1/2 reduced the ability of rapamycin to inhibit TNF-induced VCAM-1 expression. In vivo, rapamycin inhibited mTORC2 activity and potentiated activation of ERK1/2. These changes correlated with reduced endothelial expression of TNF-induced VCAM-1, which was restored via pharmacological inhibition of ERK1/2. Functionally, rapamycin reduced infiltration of leukocytes into renal glomeruli, an effect which was partially reversed by inhibition of ERK1/2. These data demonstrate a novel mechanism by which rapamycin modulates the ability of vascular endothelium to mediate inflammation and identifies endothelial mTORC2 as a potential therapeutic target. PMID:24516119

  15. Osteopontin regulates macrophage activation and osteoclast formation in hypertensive patients with vascular calcification

    PubMed Central

    Ge, Qian; Ruan, Cheng-Chao; Ma, Yu; Tang, Xiao-Feng; Wu, Qi-Hong; Wang, Ji-Guang; Zhu, Ding-Liang; Gao, Ping-Jin

    2017-01-01

    Vascular calcification (VC) is a highly regulated ectopic mineral deposition process involving immune cell infiltration in the vasculatures, which has been recognized to be promoted by hypertension. The matricellular glycoprotein osteopontin (OPN) is strongly induced in myeloid cells as a potential inflammatory mediator of vascular injury. This study aims to examine whether OPN is involved in the regulation of macrophage activation and osteoclast formation in hypertensive subjects with VC. We firstly found an increased proportion of CD11c+CD163- pro-inflammatory peripheral monocytes in hypertensive subjects with VC compared to those without VC by flow cytometric analysis. Primary cultured macrophages from hypertensive subjects with VC also showed altered expression profile of inflammatory factors and higher serum OPN level. Exogenous OPN promoted the differentiation of peripheral monocytes into an alternative, anti-inflammatory phenotype, and inhibited macrophage-to-osteoclast differentiation from these VC patients. In addition, calcified vessels showed increased osteoclasts accumulation accompanied with decreased macrophages infiltration in the of hypertensive subjects. Taken together, these demonstrated that OPN exerts an important role in the monocytes/macrophage phenotypic differentiation from hypertensive patients with VC, which includes reducing inflammatory factor expression and attenuating osteoclast formation. PMID:28091516

  16. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium

    PubMed Central

    Qian, Jin; Fulton, David

    2013-01-01

    Nitric oxide (NO) is a short-lived gaseous signaling molecule. In blood vessels, it is synthesized in a dynamic fashion by endothelial nitric oxide synthase (eNOS) and influences vascular function via two distinct mechanisms, the activation of soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP)-dependent signaling and the S-nitrosylation of proteins with reactive thiols (S-nitrosylation). The regulation of eNOS activity and NO bioavailability is critical to maintain blood vessel function. The activity of eNOS and ability to generate NO is regulated at the transcriptional, posttranscriptional, and posttranslational levels. Post-translational modifications acutely impact eNOS activity and dysregulation of these mechanisms compromise eNOS activity and foster the development of cardiovascular diseases (CVDs). This review will intergrate past and current literature on the post-translational modifications of eNOS in both health and disease. PMID:24379783

  17. Increase of microRNA-210, Decrease of Raptor Gene Expression and Alteration of Mammalian Target of Rapamycin Regulated Proteins following Mithramycin Treatment of Human Erythroid Cells

    PubMed Central

    Bianchi, Nicoletta; Finotti, Alessia; Ferracin, Manuela; Lampronti, Ilaria; Zuccato, Cristina; Breveglieri, Giulia; Brognara, Eleonora; Fabbri, Enrica; Borgatti, Monica; Negrini, Massimo; Gambari, Roberto

    2015-01-01

    Expression and regulation of microRNAs is an emerging issue in erythroid differentiation and globin gene expression in hemoglobin disorders. In the first part of this study microarray analysis was performed both in mithramycin-induced K562 cells and erythroid precursors from healthy subjects or β-thalassemia patients producing low or high levels of fetal hemoglobin. We demonstrated that: (a) microRNA-210 expression is higher in erythroid precursors from β-thalassemia patients with high production of fetal hemoglobin; (b) microRNA-210 increases as a consequence of mithramycin treatment of K562 cells and human erythroid progenitors both from healthy and β-thalassemia subjects; (c) this increase is associated with erythroid induction and elevated expression of γ-globin genes; (d) an anti-microRNA against microRNA-210 interferes with the mithramycin-induced changes of gene expression. In the second part of the study we have obtained convergent evidences suggesting raptor mRNA as a putative target of microRNA-210. Indeed, microRNA-210 binding sites of its 3’-UTR region were involved in expression and are targets of microRNA-210-mediated modulation in a luciferase reporter assays. Furthermore, (i) raptor mRNA and protein are down-regulated upon mithramycin-induction both in K562 cells and erythroid progenitors from healthy and β-thalassemia subjects. In addition, (ii) administration of anti-microRNA-210 to K562 cells decreased endogenous microRNA-210 and increased raptor mRNA and protein expression. Finally, (iii) treatment of K562 cells with premicroRNA-210 led to a decrease of raptor mRNA and protein. In conclusion, microRNA-210 and raptor are involved in mithramycin-mediated erythroid differentiation of K562 cells and participate to the fine-tuning and control of γ-globin gene expression in erythroid precursor cells. PMID:25849663

  18. Rapamycin with Antiretroviral Therapy in AIDS-Associated Kaposi Sarcoma: An AIDS Malignancy Consortium Study

    PubMed Central

    Krown, Susan E.; Roy, Debasmita; Lee, Jeannette Y.; Dezube, Bruce J.; Reid, Erin G.; Venkataramanan, Raman; Han, Kelong; Cesarman, Ethel; Dittmer, Dirk P.

    2011-01-01

    Purpose The mammalian target of rapamycin (mTOR) is activated in Kaposi sarcoma (KS) and its inhibitor, rapamycin, has induced KS regression in transplant-associated KS. This study aimed to evaluate rapamycin's safety and toxicity in HIV-infected individuals with KS receiving antiretroviral therapy (ART), investigate rapamycin interactions with both protease inhibitor (PI)-containing and non-nucleoside reverse transcriptase inhibitor (NNRTI)-containing ART regimens, and assess clinical and biological endpoints including KS response and mTOR-dependent signaling. Methods Seven participants, 4 on PI-based and 3 on NNRTI-based ART, had rapamycin titrated to achieve trough concentrations of 5-10 ng/mL. Patients were monitored for safety and KS response. KS biopsies were evaluated for changes in phospho-Ribosomal S6 protein (pRPS6), and phospho-Akt expression. Interleukin-6 and vascular endothelial growth factor levels, HIV and KS-associated herpesvirus viral loads, and CD4 counts were monitored. Results Despite pharmacokinetic interactions resulting in >200-fold differences in cumulative weekly rapamycin doses between participants on PI-containing and NNRTI-containing regimens, treatment was well tolerated. There were no significant changes in viral loads or cytokine levels; modest initial decreases in CD4 counts occurred in some patients. Three participants, all on PI-containing regimens and with higher rapamycin exposure, showed partial KS responses. Three of four subjects whose biopsies were studied at ≥day 50 showed decreased pRPS6 staining. Conclusions Rapamycin appears safe in HIV-infected individuals with KS and can, in some cases, induce tumor regression and affect its molecular targets. Significant pharmacokinetic interactions require careful titration to achieve target drug trough concentrations, but may be exploited to achieve therapeutic benefit. PMID:22067664

  19. Destabilization of TNF-α mRNA by Rapamycin

    PubMed Central

    Park, Jong-Woo; Jeon, Ye Ji; Lee, Jae Cheol; Ahn, So Ra; Ha, Shin Won; Bang, So Young; Park, Eun Kyung; Yi, Sang Ah; Lee, Min Gyu; Han, Jeung-Whan

    2012-01-01

    Stimulation of mast cells through the high affinity IgE receptor (FcεRI) induces degranulation, lipid mediator release, and cytokine secretion leading to allergic reactions. Although various signaling pathways have been characterized to be involved in the FcεRI-mediated responses, little is known about the precious mechanism for the expression of tumor necrosis factor-α (TNF-α) in mast cells. Here, we report that rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR), reduces the expression of TNF-α in rat basophilic leukemia (RBL-2H3) cells. IgE or specific antigen stimulation of RBL-2H3 cells increases the expression of TNF-α and activates various signaling molecules including S6K1, Akt and p38 MAPK. Rapamycin specifically inhibits antigen-induced TNF-α mRNA level, while other kinase inhibitors have no effect on TNF-α mRNA level. These data indicate that mTOR signaling pathway is the main regulation mechanism for antigen-induced TNF-α expression. TNF-α mRNA stability analysis using reporter construct containing TNF-α adenylate/uridylate-rich elements (AREs) shows that rapamycin destabilizes TNF-α mRNA via regulating the AU-rich element of TNF-α mRNA. The antigen-induced activation of S6K1 is inhibited by specific kinase inhibitors including mTOR, PI3K, PKC and Ca2+chelator inhibitor, while TNF-α mRNA level is reduced only by rapamycin treatment. These data suggest that the effects of rapamycin on the expression of TNF-α mRNA are not mediated by S6K1 but regulated by mTOR. Taken together, our results reveal that mTOR signaling pathway is a novel regulation mechanism for antigen-induced TNF-α expression in RBL-2H3 cells. PMID:24116273

  20. The Effects of Protein Regulators on the Vascular Remodeling of Japanese Quail Chorioallantoic Membrane

    NASA Technical Reports Server (NTRS)

    Deshpande, Arati

    2004-01-01

    Contributing to NASA s mission, the Microgravity Fluid Physics research program conducts experiments to promote space exploration and improvement of processes and products on Earth. One of the projects through this program deals with the affect of regulators on vascular remodeling and angiogenesis. This project is being led by Dr. Patricia Parsons-Wingerter. To perform the experiments, protein regulators are tested on the chorioallantoic membrane (CAM) of the Japanese quail embryos. The different types of regulators used can be broken down into two major groups of stimulators, and inhibitors. Stimulators increase the rate of blood vessel growth and inhibitors decrease of blood vessel growth. The specified regulator proteins include thrombospondin 1 (TSP-1) and a novel vessel tortuosity factor (TF), these are just the ones used in this specific experiment; other various protein regulators can also be used. The novel vessel tortuosity factor (TF) is a special kind of stimulator because it stimulates vessel tortuosity and curvature, rather than actual blood vessel growth. These regulators are being tested on Japanese quail embryos. The Japanese quail embryos naturally form a chorioallantoic membrane (CAM) from which blood flow, vascular remodeling, and angiogenesis can be observed. Chorioallantoic membranes are also easier to use because they are two dimensional when mounted onto a slide for examination. The analysis of the affect of the regulators on the CAM can be studied through PIVPROC; the program is used to analyze the altered blood flow in response to application of TF. Regulators are being thoroughly studied because cardiovascular alterations are the second highest, NASA-defined, risk categories in human space exploration. This research done on the quail is extending to even more projects that will be done on lab animals such as mice and also in human clinical studies like the diabetic retina. Not only will this research be beneficial to further space

  1. Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system.

    PubMed

    Arriola Apelo, Sebastian I; Neuman, Joshua C; Baar, Emma L; Syed, Faizan A; Cummings, Nicole E; Brar, Harpreet K; Pumper, Cassidy P; Kimple, Michelle E; Lamming, Dudley W

    2016-02-01

    Inhibition of the mechanistic target of rapamycin (mTOR) signaling pathway by the FDA-approved drug rapamycin has been shown to promote lifespan and delay age-related diseases in model organisms including mice. Unfortunately, rapamycin has potentially serious side effects in humans, including glucose intolerance and immunosuppression, which may preclude the long-term prophylactic use of rapamycin as a therapy for age-related diseases. While the beneficial effects of rapamycin are largely mediated by the inhibition of mTOR complex 1 (mTORC1), which is acutely sensitive to rapamycin, many of the negative side effects are mediated by the inhibition of a second mTOR-containing complex, mTORC2, which is much less sensitive to rapamycin. We hypothesized that different rapamycin dosing schedules or the use of FDA-approved rapamycin analogs with different pharmacokinetics might expand the therapeutic window of rapamycin by more specifically targeting mTORC1. Here, we identified an intermittent rapamycin dosing schedule with minimal effects on glucose tolerance, and we find that this schedule has a reduced impact on pyruvate tolerance, fasting glucose and insulin levels, beta cell function, and the immune system compared to daily rapamycin treatment. Further, we find that the FDA-approved rapamycin analogs everolimus and temsirolimus efficiently inhibit mTORC1 while having a reduced impact on glucose and pyruvate tolerance. Our results suggest that many of the negative side effects of rapamycin treatment can be mitigated through intermittent dosing or the use of rapamycin analogs.

  2. Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms.

    PubMed

    Manea, Simona-Adriana; Constantin, Alina; Manda, Gina; Sasson, Shlomo; Manea, Adrian

    2015-08-01

    NADPH oxidases (Nox) represent a family of hetero-oligomeric enzymes whose exclusive biological function is the generation of reactive oxygen species (ROS). Nox-derived ROS are essential modulators of signal transduction pathways that control key physiological activities such as cell growth, proliferation, migration, differentiation, and apoptosis, immune responses, and biochemical pathways. Enhanced formation of Nox-derived ROS, which is generally associated with the up-regulation of different Nox subtypes, has been established in various pathologies, namely cardiovascular diseases, diabetes, obesity, cancer, and neurodegeneration. The detrimental effects of Nox-derived ROS are related to alterations in cell signalling and/or direct irreversible oxidative damage of nucleic acids, proteins, carbohydrates, and lipids. Thus, understanding of transcriptional regulation mechanisms of Nox enzymes have been extensively investigated in an attempt to find ways to counteract the excessive formation of Nox-derived ROS in various pathological states. Despite the numerous existing data, the molecular pathways responsible for Nox up-regulation are not completely understood. This review article summarizes some of the recent advances and concepts related to the regulation of Nox expression in the vascular pathophysiology. It highlights the role of transcription factors and epigenetic mechanisms in this process. Identification of the signalling molecules involved in Nox up-regulation, which is associated with the onset and development of cardiovascular dysfunction may contribute to the development of novel strategies for the treatment of cardiovascular diseases.

  3. Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms

    PubMed Central

    Manea, Simona-Adriana; Constantin, Alina; Manda, Gina; Sasson, Shlomo; Manea, Adrian

    2015-01-01

    NADPH oxidases (Nox) represent a family of hetero-oligomeric enzymes whose exclusive biological function is the generation of reactive oxygen species (ROS). Nox-derived ROS are essential modulators of signal transduction pathways that control key physiological activities such as cell growth, proliferation, migration, differentiation, and apoptosis, immune responses, and biochemical pathways. Enhanced formation of Nox-derived ROS, which is generally associated with the up-regulation of different Nox subtypes, has been established in various pathologies, namely cardiovascular diseases, diabetes, obesity, cancer, and neurodegeneration. The detrimental effects of Nox-derived ROS are related to alterations in cell signalling and/or direct irreversible oxidative damage of nucleic acids, proteins, carbohydrates, and lipids. Thus, understanding of transcriptional regulation mechanisms of Nox enzymes have been extensively investigated in an attempt to find ways to counteract the excessive formation of Nox-derived ROS in various pathological states. Despite the numerous existing data, the molecular pathways responsible for Nox up-regulation are not completely understood. This review article summarizes some of the recent advances and concepts related to the regulation of Nox expression in the vascular pathophysiology. It highlights the role of transcription factors and epigenetic mechanisms in this process. Identification of the signalling molecules involved in Nox up-regulation, which is associated with the onset and development of cardiovascular dysfunction may contribute to the development of novel strategies for the treatment of cardiovascular diseases. PMID:26133261

  4. Regulation of vascular endothelial junction stability and remodeling through Rap1-Rasip1 signaling.

    PubMed

    Wilson, Christopher W; Ye, Weilan

    2014-01-01

    The ability of blood vessels to sense and respond to stimuli such as fluid flow, shear stress, and trafficking of immune cells is critical to the proper function of the vascular system. Endothelial cells constantly remodel their cell-cell junctions and the underlying cytoskeletal network in response to these exogenous signals. This remodeling, which depends on regulation of the linkage between actin and integral junction proteins, is controlled by a complex signaling network consisting of small G proteins and their various downstream effectors. In this commentary, we summarize recent developments in understanding the small G protein RAP1 and its effector RASIP1 as critical mediators of endothelial junction stabilization, and the relationship between RAP1 effectors and modulation of different subsets of endothelial junctions.   The vasculature is a dynamic organ that is constantly exposed to a variety of signaling stimuli and mechanical stresses. In embryogenesis, nascent blood vessels form via a process termed vasculogenesis, wherein mesodermally derived endothelial precursor cells aggregate into cords, which subsequently form a lumen that permits trafficking of plasma and erythrocytes. (1)(,) (2) Angiogenesis occurs after establishment of this primitive vascular network, where new vessels sprout from existing vessels, migrate into newly expanded tissues, and anastomose to form a functional and complex circulatory network. (1)(,) (2) In the mouse, this process occurs through the second half of embryogenesis and into postnatal development in some tissues, such as the developing retinal vasculature. (3) Further, angiogenesis occurs in a variety of pathological conditions, such as diabetic retinopathy, age-related macular degeneration, inflammatory diseases such as rheumatoid arthritis, wound healing, and tumor growth. (1)(,) (2)(,) (4) Both vasculogenesis and angiogenesis are driven through signaling by vascular endothelial growth factor (VEGF), and therapeutic

  5. L-leucine availability regulates phosphatidylinositol 3-kinase, p70 S6 kinase and glycogen synthase kinase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of rapamycin (mTOR) pathway in the L-leucine-induced up-regulation of system A amino acid transport.

    PubMed Central

    Peyrollier, K; Hajduch, E; Blair, A S; Hyde, R; Hundal, H S

    2000-01-01

    Amino acid availability is known to regulate diverse cell processes including the activation of p70 S6 kinase, initiation factors involved in mRNA translation, gene expression and cellular amino acid uptake. Essential amino acids, in particular the branched-chain amino acids (e.g. leucine), have been shown to be the dominant players in mediating these effects, although the precise nature by which they regulate these processes remain poorly understood. In this study we have investigated the mechanisms involved in the leucine-induced modulation of p70 S6 kinase and addressed whether this kinase participates in the up-regulation of the System A amino acid transporter in L6 muscle cells. Incubation of muscle cells that had been amino acid-deprived for 1 h with L-leucine (2 mM) led to a rapid (>2-fold) activation of p70 S6 kinase, which was suppressed by both wortmannin and rapamycin. Consistent with this finding, addition of leucine caused a rapid ( approximately 5-fold) but transient stimulation of phosphatidylinositol 3-kinase (PI3K). PI3K activation was inhibited by wortmannin and was not dependent upon insulin receptor substrate-1 activation. Unlike stimulation by insulin, activation of neither protein kinase B nor p42/p44 mitogen-activated protein kinase accompanied the leucine-induced stimulation of PI3K. However, the leucine-induced activation of PI3K and p70 S6 kinase did result in the concomitant inactivation of glycogen synthase kinase-3 (GSK-3). Leucine enhanced System A transport by approximately 50%. We have shown previously that this stimulation is protein-synthesis-dependent and in the current study we show that it was blocked by both wortmannin and rapamycin. Our findings indicate that PI3K and the mammalian target of rapamycin are components of a nutrient signalling pathway that regulates the activation of p70 S6 kinase and induction of System A in L6 cells. The activation of this pathway by leucine is also responsible for the inactivation of GSK-3

  6. Inhibition of the mechanistic target of rapamycin (mTOR) - Rapamycin and beyond

    PubMed Central

    Lamming, Dudley W.

    2016-01-01

    Rapamycin is an FDA-approved immunosuppressant and anti-cancer agent discovered in the soil of Easter Island in the early 1970s. Rapamycin is a potent and selective inhibitor of the mTOR (mechanistic Target Of Rapamycin) protein kinase, which acts as a central integrator of nutrient signaling pathways. During the last decade, genetic and pharmaceutical inhibition of mTOR pathway signaling has been found to promote longevity in yeast, worms, flies and mice. In this chapter, we will discuss the molecular biology underlying the effects of rapamycin and its physiological effects; evidence for rapamycin as an anti-aging compound; mechanisms by which rapamycin may extend lifespan; and the potential limitations of rapamycin as an anti-aging molecule. Finally, we will discuss possible strategies that may allow us to inhibit mTOR signaling safely while minimizing side effects, and reap the health, social and economic benefits from slowing the aging process. PMID:27048303

  7. Rapamycin disrupts cyclin/cyclin-dependent kinase/p21/proliferating cell nuclear antigen complexes and cyclin D1 reverses rapamycin action by stabilizing these complexes.

    PubMed

    Law, Mary; Forrester, Elizabeth; Chytil, Anna; Corsino, Patrick; Green, Gail; Davis, Bradley; Rowe, Thomas; Law, Brian

    2006-01-15

    Rapamycin and its derivatives are promising anticancer agents, but the exact mechanisms by which these drugs induce cell cycle arrest and inhibit tumor growth are unknown. A biochemical analysis of human mammary tumor cell lines indicated that rapamycin-induced antiproliferative effects correlated with down-regulation of cellular p21 levels and the levels of p21 in cyclin-dependent kinase (Cdk) 2 and 4 complexes. Cyclin D1 overexpression reversed rapamycin action and this reversal correlated with increased levels of cellular p21, higher levels of p21 associated with Cdk2, and stabilization of cyclin D1/Cdk2/p21/proliferating cell nuclear antigen (PCNA) complexes. Experiments using a novel cyclin D1-Cdk2 fusion protein or a kinase-dead mutant of the fusion protein indicated that reversal of rapamycin action required not only the formation of complexes with p21 and PCNA but also complex-associated kinase activity. Similar results were observed in vivo. The rapamycin derivative RAD001 (everolimus) inhibited the growth of mouse mammary tumors, which correlated with the disruption of cyclin D1/Cdk2 complexes. The potential implications of these results with respect to the use of rapamycin derivatives in breast cancer therapy are discussed.

  8. Regulation of vascular endothelial growth factor secretion in human meningioma cells.

    PubMed

    Tsai, J C; Hsiao, Y Y; Teng, L J; Shun, C T; Chen, C T; Goldman, C K; Kao, M C

    1999-02-01

    Previously, we induced vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) secretion in glioma cell lines by using physiologic concentrations of epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), or platelet-derived growth factor-BB (PDGF-BB). We hypothesized that VEGF/VPF might enhance the blood supply required for the unregulated growth of tumors, and that it acts as the central mediator of tumor angiogenesis. The objective of this study was to determine whether the expression of VEGF/VPF by meningiomas is regulated by growth factors or sex hormones. By means of an enzyme-linked immunosorbent assay of CH-157MN meningioma cell supernatants, we demonstrated that EGF and bFGF similarly induce VEGF secretion by CH-157MN meningioma cells. At the maximum concentrations of EGF (50 ng/mL) and bFGF (50 ng/mL) used in this study, VEGF secretion was induced to 140% to 160% above baseline constitutive secretion. PDGF-BB homodimer did not enhance VEGF secretion significantly. Estradiol (up to 10(-7) mol/L), progesterone (up to 10(-5) mol/L), or testosterone (up to 10(-5) mol/L) did not stimulate or inhibit VEGF secretion in CH-157MN meningioma cells (p > 0.05). Furthermore, we demonstrated that dexamethasone decreased VEGF secretion to 32% of baseline constitutive secretion. This might explain the effect of corticosteroids in alleviating peritumoral brain edema in meningiomas. These results suggest that VEGF secretion in CH-157MN meningioma cells is mainly regulated by growth factors and corticosteroids, but not by sex hormones. Understanding the regulation of VEGF/VPF secretion in meningiomas might contribute to the development of a new therapeutic strategy.

  9. Combustion smoke exposure induces up-regulated expression of vascular endothelial growth factor, aquaporin 4, nitric oxide synthases and vascular permeability in the retina of adult rats.

    PubMed

    Zou, Y Y; Lu, J; Poon, D J F; Kaur, C; Cao, Q; Teo, A L; Ling, E A

    2009-05-19

    Retinal cells respond to various experimental stimuli including hypoxia, yet it remains to be investigated whether they react to smoke inhalation. We show here that retinal cells in rats, notably the ganglion cells, Müller cells, astrocytes and blood vessels responded vigorously to a smoke challenge. The major changes included up-regulated expression of vascular endothelial growth factor (VEGF), aquaporin 4 (AQP4) and nitric oxide synthase (NOS). VEGF expression was localized in the ganglion cells, Müller cells, astrocytes and associated blood vessels. AQP4 was markedly enhanced in both astrocytes and Müller cells. Increase in vascular permeability after smoke exposure was evidenced by extravasation of serum derived rhodamine isothiocyanate which was internalized by Müller cells and ganglion cells. The tracer leakage was attenuated by aminoguanidine and N(G)-nitro-L-arginine methyl ester (L-NAME) treatment which suppressed retinal tissue NOS and nitric oxide (NO) levels concomitantly. It is suggested that VEGF, AQP4 and NO are involved in increased vascular permeability following acute smoke exposure in which hypoxia was ultimately implicated as shown by blood gases analysis. NOS inhibitors effectively reduced the vascular leakage and hence may ameliorate possible retinal edema in smoke inhalation.

  10. beta-Catenin regulates vascular endothelial growth factor expression in colon cancer.

    PubMed

    Easwaran, Vijay; Lee, Sang H; Inge, Landon; Guo, Lida; Goldbeck, Cheryl; Garrett, Evelyn; Wiesmann, Marion; Garcia, Pablo D; Fuller, John H; Chan, Vivien; Randazzo, Filippo; Gundel, Robert; Warren, Robert S; Escobedo, Jaime; Aukerman, Sharon L; Taylor, Robert N; Fantl, Wendy J

    2003-06-15

    To evaluate whether beta-catenin signaling has a role in the regulation of angiogenesis in colon cancer, a series of angiogenesis-related gene promoters was analyzed for beta-catenin/TCF binding sites. Strikingly, the gene promoter of human vascular endothelial growth factor (VEGF, or VEGF-A) contains seven consensus binding sites for beta-catenin/TCF. Analysis of laser capture microdissected human colon cancer tissue indicated a direct correlation between up-regulation of VEGF-A expression and adenomatous polyposis coli (APC) mutational status (activation of beta-catenin signaling) in primary tumors. In metastases, this correlation was not observed. Analysis by immunohistochemistry of intestinal polyps in mice heterozygous for the multiple intestinal neoplasia gene (Min/+) at 5 months revealed an increase and redistribution of VEGF-A in proximity to those cells expressing nuclear beta-catenin with a corresponding increase in vessel density. Transfection of normal colon epithelial cells with activated beta-catenin up-regulated levels of VEGF-A mRNA and protein by 250-300%. When colon cancer cells with elevated beta-catenin levels were treated with beta-catenin antisense oligodeoxynucleotides, VEGF-A expression was reduced by more than 50%. Taken together, our observations indicate a close link between beta-catenin signaling and the regulation of VEGF-A expression in colon cancer.

  11. Target of rapamycin signaling mediates vacuolar fragmentation.

    PubMed

    Stauffer, Bobbiejane; Powers, Ted

    2017-02-01

    In eukaryotic cells, cellular homeostasis requires that different organelles respond to intracellular as well as environmental signals and modulate their behavior as conditions demand. Understanding the molecular mechanisms required for these changes remains an outstanding goal. One such organelle is the lysosome/vacuole, which undergoes alterations in size and number in response to environmental and physiological stimuli. Changes in the morphology of this organelle are mediated in part by the equilibrium between fusion and fission processes. While the fusion of the yeast vacuole has been studied intensively, the regulation of vacuolar fission remains poorly characterized by comparison. In recent years, a number of studies have incorporated genome-wide visual screens and high-throughput microscopy to identify factors required for vacuolar fission in response to diverse cellular insults, including hyperosmotic and endoplasmic reticulum stress. Available evidence now demonstrates that the rapamycin-sensitive TOR network, a master regulator of cell growth, is required for vacuolar fragmentation in response to stress. Importantly, many of the genes identified in these studies provide new insights into potential links between the vacuolar fission machinery and TOR signaling. Together these advances both extend our understanding of the regulation of vacuolar fragmentation in yeast as well as underscore the role of analogous events in mammalian cells.

  12. Role of Endogenous Sulfur Dioxide in Regulating Vascular Structural Remodeling in Hypertension

    PubMed Central

    Chen, Selena; Tang, Chaoshu

    2016-01-01

    Sulfur dioxide (SO2), an emerging gasotransmitter, was discovered to be endogenously generated in the cardiovascular system. Recently, the physiological effects of endogenous SO2 were confirmed. Vascular structural remodeling (VSR), an important pathological change in many cardiovascular diseases, plays a crucial role in the pathogenesis of the diseases. Here, the authors reviewed the research progress of endogenous SO2 in regulating VSR by searching the relevant data from PubMed and Medline. In spontaneously hypertensive rats (SHRs) and pulmonary hypertensive rats, SO2/aspartate aminotransferase (AAT) pathway was significantly altered. SO2 inhibited vascular smooth muscle cell (VSMC) proliferation, promoted apoptosis, inhibited the synthesis of extracellular collagen but promoted its degradation, and enhanced antioxidative capacity, thereby playing a significant role in attenuating VSR. However, the detailed mechanisms needed to be further explored. Further studies in this field would be important for the better understanding of the pathogenesis of systemic hypertension and pulmonary hypertension. Also, clinical trials are needed to demonstrate if SO2 would be a potential therapeutic target in cardiovascular diseases. PMID:27721913

  13. Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure

    PubMed Central

    Kothiya, Milankumar; Galvani, Sylvain; Obinata, Hideru; Bucci, Mariarosaria; Giordano, Frank J; Jiang, Xian-Cheng; Hla, Timothy; Di Lorenzo, Annarita

    2015-01-01

    Endothelial dysfunction is a critical factor in many cardiovascular diseases, including hypertension. Although lipid signaling has been implicated in endothelial dysfunction and cardiovascular disease, specific molecular mechanisms are poorly understood. Here we report that Nogo-B, a membrane protein of the endoplasmic reticulum, regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Nogo-B inhibits serine palmitoyltransferase, the rate-limiting enzyme of the de novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine 1-phosphate and autocrine, G protein–coupled receptor–dependent signaling by this metabolite. Mice lacking Nogo-B either systemically or specifically in endothelial cells are hypotensive, resistant to angiotensin II–induced hypertension and have preserved endothelial function and nitric oxide release. In mice that lack Nogo-B, pharmacological inhibition of serine palmitoyltransferase with myriocin reinstates endothelial dysfunction and angiotensin II–induced hypertension. Our study identifies Nogo-B as a key inhibitor of local sphingolipid synthesis and shows that autocrine sphingolipid signaling within the endothelium is critical for vascular function and blood pressure homeostasis. PMID:26301690

  14. TLR4 regulates pulmonary vascular homeostasis and remodeling via redox signaling

    PubMed Central

    Ma, Liping; Ambalavanan, Namasivayam; Liu, Hui; Sun, Yong; Jhala, Nirag; Bradley, Wayne E.; Dell’Italia, Louis J.; Michalek, Sue; Wu, Hui; Steele, Chad; Benza, Raymond L; Chen, Yabing

    2016-01-01

    Pulmonary arterial hypertension (PAH) contributes to morbidity and mortality of patients with lung and heart diseases. We demonstrated that hypoxia induced PAH and increased pulmonary arterial wall thickness in wild-type mice. Mice deficient in toll-like receptor 4 (TLR4−/−) spontaneously developed PAH, which was not further enhanced by hypoxia. Echocardiography determined right ventricular hypertrophy and decreased pulmonary arterial acceleration time were associated with the development of PAH in TLR4−/− mice. In pulmonary arterial smooth muscle cells (PASMC), hypoxia decreased TLR4 expression and induced reactive oxygen species (ROS) and Nox1/Nox4. Inhibition of NADPH oxidase decreased hypoxia-induced proliferation of wild-type PASMC. PASMC derived from TLR4−/− mice exhibited increased ROS and Nox4/Nox1 expression. Our studies demonstrate an important role of TLR4 in maintaining normal pulmonary vasculature and in hypoxia-induced PAH. Inhibition of TLR4, by genetic ablation or hypoxia, increases the expression of Nox1/Nox4 and induces PASMC proliferation and vascular remodeling. These results support a novel function of TLR4 in regulating the development of PAH and reveal a new regulatory axis contributing to TLR4 deficiency-induced vascular hypertrophy and remodeling. PMID:26709781

  15. TLR4 regulates pulmonary vascular homeostasis and remodeling via redox signaling.

    PubMed

    Ma, Liping; Ambalavanan, Namasivayam; Liu, Hui; Sun, Yong; Jhala, Nirag; Bradley, Wayne E; Dell'Italia, Louis J; Michalek, Sue; Wu, Hui; Steele, Chad; Benza, Raymond L; Chen, Yabing

    2016-01-01

    Pulmonary arterial hypertension (PAH) contributes to morbidity and mortality of patients with lung and heart diseases. We demonstrated that hypoxia induced PAH and increased pulmonary arterial wall thickness in wild-type mice. Mice deficient in toll-like receptor 4 (TLR4-/-) spontaneously developed PAH, which was not further enhanced by hypoxia. Echocardiography determined right ventricular hypertrophy and decreased pulmonary arterial acceleration time were associated with the development of PAH in TLR4(-/-) mice. In pulmonary arterial smooth muscle cells (PASMC), hypoxia decreased TLR4 expression and induced reactive oxygen species (ROS) and Nox1/Nox4. Inhibition of NADPH oxidase decreased hypoxia-induced proliferation of wild-type PASMC. PASMC derived from TLR4(-/-) mice exhibited increased ROS and Nox4/Nox1 expression. Our studies demonstrate an important role of TLR4 in maintaining normal pulmonary vasculature and in hypoxia-induced PAH. Inhibition of TLR4, by genetic ablation or hypoxia, increases the expression of Nox1/Nox4 and induces PASMC proliferation and vascular remodeling. These results support a novel function of TLR4 in regulating the development of PAH and reveal a new regulatory axis contributing to TLR4 deficiency-induced vascular hypertrophy and remodeling.

  16. Vascular smooth muscle cell spreading onto fibrinogen is regulated by calpains and phospholipase C.

    PubMed

    Paulhe, F; Bogyo, A; Chap, H; Perret, B; Racaud-Sultan, C

    2001-11-09

    Fibrinogen deposition and smooth muscle cell migration are important causes of atherosclerosis and angiogenesis. Involvement of calpains in vascular smooth muscle cell adhesion onto fibrinogen was investigated. Using calpain inhibitors, we showed that activation of calpains was required for smooth muscle cell spreading. An increase of (32)P-labeled phosphatidic acid and phosphatidylinositol-3,4-bisphosphate, respective products of phospholipase C and phosphoinositide 3-kinase activities, was measured in adherent cells. Addition of the calpain inhibitor calpeptin strongly decreased phosphatidic acid and phosphatidylinositol-3,4-bisphosphate. However, smooth muscle cell spreading was prevented by the phospholipase C inhibitor U-73122, but poorly modified by phosphoinositide 3-kinase inhibitors wortmannin and LY-294002. Moreover, PLC was found to act upstream of the PI 3-kinase IA isoform. Thus, our data provide the first evidence that calpains are required for smooth muscle cell spreading. Further, phospholipase C activation is pointed as a key step of cell-spreading regulation by calpains.

  17. Fluid shear stress as a regulator of gene expression in vascular cells: possible correlations with diabetic abnormalities

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Eskin, S. G.; Ruef, J.; Runge, M. S.; McIntire, L. V.

    1999-01-01

    Diabetes mellitus is associated with increased frequency, severity and more rapid progression of cardiovascular diseases. Metabolic perturbations from hyperglycemia result in disturbed endothelium-dependent relaxation, activation of coagulation pathways, depressed fibrinolysis, and other abnormalities in vascular homeostasis. Atherosclerosis is localized mainly at areas of geometric irregularity at which blood vessels branch, curve and change diameter, and where blood is subjected to sudden changes in velocity and/or direction of flow. Shear stress resulting from blood flow is a well known modulator of vascular cell function. This paper presents what is currently known regarding the molecular mechanisms responsible for signal transduction and gene regulation in vascular cells exposed to shear stress. Considering the importance of the hemodynamic environment of vascular cells might be vital to increasing our understanding of diabetes.

  18. Rapamycin reduces fibroblast proliferation without causing quiescence and induces STAT5A/B-mediated cytokine production

    PubMed Central

    Gillespie, Zoe E; MacKay, Kimberly; Sander, Michelle; Trost, Brett; Dawicki, Wojciech; Wickramarathna, Aruna; Gordon, John; Eramian, Mark; Kill, Ian R; Bridger, Joanna M; Kusalik, Anthony; Mitchell, Jennifer A; Eskiw, Christopher H

    2015-01-01

    Rapamycin is a well-known inhibitor of the Target of Rapamycin (TOR) signaling cascade; however, the impact of this drug on global genome function and organization in normal primary cells is poorly understood. To explore this impact, we treated primary human foreskin fibroblasts with rapamycin and observed a decrease in cell proliferation without causing cell death. Upon rapamycin treatment chromosomes 18 and 10 were repositioned to a location similar to that of fibroblasts induced into quiescence by serum reduction. Although similar changes in positioning occurred, comparative transcriptome analyses demonstrated significant divergence in gene expression patterns between rapamycin-treated and quiescence-induced fibroblasts. Rapamycin treatment induced the upregulation of cytokine genes, including those from the Interleukin (IL)-6 signaling network, such as IL-8 and the Leukemia Inhibitory Factor (LIF), while quiescent fibroblasts demonstrated up-regulation of genes involved in the complement and coagulation cascade. In addition, genes significantly up-regulated by rapamycin treatment demonstrated increased promoter occupancy of the transcription factor Signal Transducer and Activator of Transcription 5A/B (STAT5A/B). In summary, we demonstrated that the treatment of fibroblasts with rapamycin decreased proliferation, caused chromosome territory repositioning and induced STAT5A/B-mediated changes in gene expression enriched for cytokines. PMID:26652669

  19. Cyclin-dependent kinase inhibitor, p21Waf1, regulates vascular smooth muscle cell hypertrophy.

    PubMed

    Okamoto, Kenichi; Kato, Seiya; Arima, Nobuyuki; Fujii, Teruhiko; Morimatsu, Minoru; Imaizumi, Tsutomu

    2004-04-01

    In the process of vascular diseases, smooth muscle cells (SMC) undergo not only hyperplasia but also hypertrophy, resulting in vascular remodeling. A cyclin-dependent kinase inhibitor (CDKI), p21Waf1, has been shown to play an important role in SMC hyperplasia. Here we investigated a potential role of p21Waf1 in SMC hypertrophy. An exposure of cultured rat SMC to serum drove the cell cycle progression with up-regulation of various cell cycle markers and increased activities of cyclin-dependent kinases, but did not cause SMC hypertrophy. In contrast, incubation of SMC for 48 h with angiotensin II (AII, 100 nmol/l) resulted in a significant increase in the cell size measured by flowcytometric forward-angle light scatter assay, in association with an increase in the ratio of [3H]leucine/[3H]thymidine uptake, indicating SMC hypertrophy. At 48 h, p21Waf1 expression was up-regulated in SMC exposed to AII but not in those exposed to serum. These results suggest that p21Waf1 may be involved in hypertrophy. To further investigate this issue, two manipulations of the p21Waf1 gene were performed. Adenovirus-mediated over-expression of p21Waf1 not only reduced S-phasic cells but also caused hypertrophy, despite the exposure to serum. Antisense oligodeoxynucleotide for p21Waf1 inhibited the hypertrophy of SMC exposed to AII. Our data suggest that p21Waf1 may play a role in SMC hypertrophy as well.

  20. Nrf2 in ischemic neurons promotes retinal vascular regeneration through regulation of semaphorin 6A

    PubMed Central

    Wei, Yanhong; Gong, Junsong; Xu, Zhenhua; Thimmulappa, Rajesh K.; Mitchell, Katherine L.; Welsbie, Derek S.; Biswal, Shyam; Duh, Elia J.

    2015-01-01

    Delayed revascularization of ischemic neural tissue is a major impediment to preservation of function in central nervous system (CNS) diseases including stroke and ischemic retinopathies. Therapeutic strategies allowing rapid revascularization are greatly needed to reduce ischemia-induced cellular damage and suppress harmful pathologic neovascularization. However, key mechanisms governing vascular recovery in ischemic CNS, including regulatory molecules governing the transition from tissue injury to tissue repair, are largely unknown. NF-E2-related factor 2 (Nrf2) is a major stress-response transcription factor well known for its cell-intrinsic cytoprotective function. However, its role in cell–cell crosstalk is less appreciated. Here we report that Nrf2 is highly activated in ischemic retina and promotes revascularization by modulating neurons in their paracrine regulation of endothelial cells. Global Nrf2 deficiency strongly suppresses retinal revascularization and increases pathologic neovascularization in a mouse model of ischemic retinopathy. Conditional knockout studies demonstrate a major role for neuronal Nrf2 in vascular regrowth into avascular retina. Deletion of neuronal Nrf2 results in semaphorin 6A (Sema6A) induction in hypoxic/ischemic retinal ganglion cells in a hypoxia-inducible factor-1 alpha (HIF-1α)-dependent fashion. Sema6A expression increases in avascular inner retina and colocalizes with Nrf2 in human fetal eyes. Extracellular Sema6A leads to dose-dependent suppression of the migratory phenotype of endothelial cells through activation of Notch signaling. Lentiviral-mediated delivery of Sema6A small hairpin RNA (shRNA) abrogates the defective retinal revascularization in Nrf2-deficient mice. Importantly, pharmacologic Nrf2 activation promotes reparative angiogenesis and suppresses pathologic neovascularization. Our findings reveal a unique function of Nrf2 in reprogramming ischemic tissue toward neurovascular repair via Sema6A regulation

  1. Essential Role of TGF-β/Smad Pathway on Statin Dependent Vascular Smooth Muscle Cell Regulation

    PubMed Central

    Rodríguez-Vita, Juan; Sánchez-Galán, Eva; Santamaría, Beatriz; Sánchez-López, Elsa; Rodrigues-Díez, Raquel; Blanco-Colio, Luís Miguel; Egido, Jesús; Ortiz, Alberto; Ruiz-Ortega, Marta

    2008-01-01

    Background The 3-hydroxy-3-methylglutaryl CoA reductase inhibitors (also called statins) exert proven beneficial effects on cardiovascular diseases. Recent data suggest a protective role for Transforming Growth Factor-β (TGF-β) in atherosclerosis by regulating the balance between inflammation and extracellular matrix accumulation. However, there are no studies about the effect of statins on TGF-β/Smad pathway in atherosclerosis and vascular cells. Methodology In cultured vascular smooth muscle cells (VSMCs) statins enhanced Smad pathway activation caused by TGF-β. In addition, statins upregulated TGF-β receptor type II (TRII), and increased TGF-β synthesis and TGF-β/Smad-dependent actions. In this sense, statins, through Smad activation, render VSMCs more susceptible to TGF-β induced apoptosis and increased TGF-β-mediated ECM production. It is well documented that high doses of statins induce apoptosis in cultured VSMC in the presence of serum; however the precise mechanism of this effect remains to be elucidated. We have found that statins-induced apoptosis was mediated by TGF-β/Smad pathway. Finally, we have described that RhoA inhibition is a common intracellular mechanisms involved in statins effects. The in vivo relevance of these findings was assessed in an experimental model of atherosclerosis in apolipoprotein E deficient mice: Treatment with Atorvastatin increased Smad3 phosphorylation and TRII overexpression, associated to elevated ECM deposition in the VSMCs within atheroma plaques, while apoptosis was not detected. Conclusions Statins enhance TGF-β/Smad pathway, regulating ligand levels, receptor, main signaling pathway and cellular responses of VSMC, including apoptosis and ECM accumulation. Our findings show that TGF-β/Smad pathway is essential for statins-dependent actions in VSMCs. PMID:19088845

  2. Localized Ultrasound Enhances Delivery of Rapamycin from Microbubbles to Prevent Smooth Muscle Proliferation

    PubMed Central

    Phillips, Linsey C.; Klibanov, Alexander L.; Wamhoff, Brian R.; Hossack, John A.

    2011-01-01

    Microbubble contrast agents have been shown to enhance reagent delivery when activated by ultrasound. We hypothesized that ultrasound would enhance delivery of rapamycin, an antiproliferative agent, from the shell of microbubbles, thus reducing proliferation of vascular smooth muscle cells. Our objective was to determine optimal ultrasound parameters that maximized therapeutic efficacy, maintained cell adherence, and minimized the drug exposure time. In vitro assays determined that ultrasound (1 MHz, 0.5% duty cycle) is required to successfully deliver rapamycin from microbubbles and reduce proliferation. Co-injection of rapamycin with control microbubbles did not result in a reduction in proliferation. Successful reduction in proliferation (>50%) required pulses at least 10 cycles in length and at least 300 kPa peak negative pressure at which point 90% of cells remained adherent. The anti-proliferative effect was also localized within a 6mm wide zone by focusing the ultrasound beam. PMID:21549778

  3. Rab5a-mediated autophagy regulates the phenotype and behavior of vascular smooth muscle cells

    PubMed Central

    Tan, Jin-Yun; Jia, Luo-Qi; Shi, Wei-Hao; He, Qing; Zhu, Lei; Yu, Bo

    2016-01-01

    Rab5a, a key member of the Rab family of GTPases, was determined to be a regulator of vascular smooth muscle cell (VSMC) proliferation and migration. However, the exact regulatory mechanism remains unclear. As Rab5a has been shown to be associated with autophagy, which is essential for the conversion of VSMCs from a contractile to a synthetic phenotype in order to prevent cell death due to oxidative stress. The present study hypothesized that autophagy may be responsible for the proliferation and migration of VSMCs via the Rab5a protein. The aim of the present study was to evaluate the effect of Rab5a on autophagy in VSMCs. The human aorta vascular smooth muscle cell line, T/G HA-VSMCs, was treated with small interfering (si)RNA against Rab5a and/or platelet-derived growth factor (PDGF). Following treatment, the phenotype transition of the VSMCs was evaluated by detecting the mRNA and protien expression levels of VSMC molecular markers using reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. In addition, autophagy in VSMCs was evaluated by western blotting for autophagy-associated proteins, flow cytometry of acidic vesicular organelles, punctate fluorescence of microtubule associated protein light chain 3 and transmission electron microscopy of typical scattered double-membrane vacuolar structures. Additionally, the proliferation, migration, cell cycle and apoptotic response of VSMCs were detected by sulforhodamine B assay, transwell assay and flow cytometry, respectively. The results revealed that transfection with siRNA against Rab5a led to a significant decrease in Rab5a protein expression, while the reduced expression trend of Rab5a was rescued by intervention with PDGF. Furthermore, cells transfected with siRNA against Rab5a inhibited the autophagy of VSMCs. Downregulated Rab5a inhibited the phenotype transition of VSMCs. Additionally, downregulated Rab5a led to slowed cell growth, decreased numbers of migrated

  4. Vascular heat shock protein expression in response to stress. Endocrine and autonomic regulation of this age-dependent response.

    PubMed Central

    Udelsman, R; Blake, M J; Stagg, C A; Li, D G; Putney, D J; Holbrook, N J

    1993-01-01

    Adaptation to stress requires coordinated interactions between the vascular and endocrine systems. Previously we demonstrated that restraint stress induces the expression of the major heat shock protein, HSP70, in the adrenal cortex of the rat. Here we demonstrate that restraint also induces expression of HSP70 in the vasculature. We further demonstrate that the adrenal and vascular responses are differentially regulated: the adrenal response is adrenocorticotropin dependent, whereas the vascular response is under adrenergic control. In addition, the adrenal response is restricted to members of the HSP70 gene family, whereas in vascular tissue the low molecular weight HSP, HSP27, is also induced by restraint. Further characterization of the vascular response revealed that HSP70 induction occurred in both the thoracic and abdominal aortas as well as in the vena cava. However, no HSP70 induction was apparent in the heart or in a wide variety of other tissues examined. In situ hybridization showed that the vascular expression was localized to the aortic smooth muscle cells with minimal expression in the endothelium. Induction of HSP70 mRNA in both the adrenal cortex and aorta was followed by an elevation in HSP70 protein. Maximum HSP70 protein levels were seen within 3-12 h after restraint, but declined thereafter. Stress induced HSP70 expression was dramatically reduced with age, which may explain, in part, the diminished tolerance to stress seen in elderly individuals. Images PMID:8094399

  5. Granulocytes and Vascularization Regulate Uterine Bleeding and Tissue Remodeling in a Mouse Menstruation Model

    PubMed Central

    Menning, Astrid; Walter, Alexander; Rudolph, Marion; Gashaw, Isabella; Fritzemeier, Karl-Heinrich; Roese, Lars

    2012-01-01

    Menstruation-associated disorders negatively interfere with the quality of life of many women. However, mechanisms underlying pathogenesis of menstrual disorders remain poorly investigated up to date. Among others, this is based on a lack of appropriate pre-clinical animal models. We here employ a mouse menstruation model induced by priming mice with gonadal hormones and application of a physical stimulus into the uterus followed by progesterone removal. As in women, these events are accompanied by menstrual-like bleeding and tissue remodeling processes, i.e. disintegration of decidualized endometrium, as well as subsequent repair. We demonstrate that the onset of bleeding coincides with strong upregulation of inflammatory mediators and massive granulocyte influx into the uterus. Uterine granulocytes play a central role in regulating local tissue remodeling since depletion of these cells results in dysregulated expression of matrix modifying enzymes. As described here for the first time, uterine blood loss can be quantified by help of tampon-like cotton pads. Using this novel technique, we reveal that blood loss is strongly reduced upon inhibition of endometrial vascularization and thus, is a key regulator of menstrual bleeding. Taken together, we here identify angiogenesis and infiltrating granulocytes as critical determinants of uterine bleeding and tissue remodeling in a mouse menstruation model. Importantly, our study provides a technical and scientific basis allowing quantification of uterine blood loss in mice and thus, assessment of therapeutic intervention, proving great potential for future use in basic research and drug discovery. PMID:22879894

  6. Calcitonin gene-related peptide (CGRP) in autonomic cardiovascular regulation and vascular structure.

    PubMed

    Mai, Tu H; Wu, Jing; Diedrich, André; Garland, Emily M; Robertson, David

    2014-05-01

    Calcitonin gene-related peptide (CGRP) is reported to play important roles in cardiovascular regulation in human and animal models. In spite of this, its role remains controversial. We aim to clarify this by studying the autonomic cardiovascular function and vascular structure in CGRP knockout (CGRP(-/-)) mice. Blood pressure (BP) and heart rate (HR) were assessed by telemeters. Urine (24-hour) and blood were collected for catecholamines measurements. Baroreflex sensitivity was assessed using phenylephrine and sodium nitroprusside administered in an acute study. Daytime mean arterial pressure (MAP; 12-hour period) was significantly higher in the CGRP(-/-) mice than in the wild type (WT) mice (114.5 vs. 104.5 mm Hg; P = .04). Norepinephrine was elevated in plasma and 24-hour urine in the knockouts (Urine, 956 vs. 618 pg/mL; P = .004; Plasma, 2505 vs. 1168 pg/mL; P = .04). Paradoxically, cardiovagal baroreflex sensitivity was higher in CGRP(-/-) mice (3.2 vs. 1.4 ms/mm Hg; P = .03). To increase insight, we studied aortic stiffness in CGRP(-/-) mice and found it increased compared with age-matched WT mice, as evidenced by the depression of the compliance curve (P < .05). CGRP(-/-) mice have higher BP due to elevated sympathetic signals and abnormalities in blood vessel structure. Moreover, our data also showed that CGRP plays an important role in the regulation of the cardio-vagal tone.

  7. Regulation of ERK5 by insulin and angiotensin-II in vascular smooth muscle cells

    SciTech Connect

    Sharma, Girish; Goalstone, Marc Lee; E-mail: Marc.Goalstone@uchsc.edu

    2007-03-23

    ERK5 is involved in proliferation of vascular smooth muscle cells (VSMC). The proliferative actions of insulin and angiotensin-II (A-II) in VSMC are mediated in part by ERK1/2. We hypothesized that insulin and A-II also regulate ERK5 activity in VSMC. Acute treatment (<60 min) with insulin or A-II increased phosphorylation of ERK1/2 at 15 min and ERK5 at 5 min. Chronic treatment ({<=}8 h) with insulin increased ERK1/2 phosphorylation by 4 h and ERK5 by 8 h. A-II-stimulated phosphorylation of ERK1/2 by 8 h and ERK5 by 4 h. The EC{sub 50} for insulin treatment effecting ERK1/2 and ERK5 phosphorylation was 1.5 and 0.1 nM, whereas the EC{sub 50} for A-II was 2 nM, each. Insulin plus A-II induced an additive effect only on ERK5 phosphorylation. Inhibition of insulin- and A-II-stimulated phosphorylation of ERK5 and ERK1/2 by PD98059 and Wortmannin exhibited differential and time-dependent effects. Taken together, these data indicate that insulin and A-II regulate the activity of ERK5, but different from that seen for ERK1/2.

  8. Effect of surface chemistry on the integrin induced pathway in regulating vascular endothelial cells migration.

    PubMed

    Shen, Yang; Gao, Min; Ma, Yunlong; Yu, Hongchi; Cui, Fu-zhai; Gregersen, Hans; Yu, Qingsong; Wang, Guixue; Liu, Xiaoheng

    2015-02-01

    The migration of vascular endothelial cells (ECs) is essential for reendothelialization after implantation of cardiovascular biomaterials. Reendothelialization is largely determined by surface properties of implants. In this study, surfaces modified with various chemical functional groups (CH3, NH2, COOH, OH) prepared by self-assembled monolayers (SAMs) were used as model system. Expressions and distributions of critical proteins in the integrin-induced signaling pathway were examined to explore the mechanisms of surface chemistry regulating EC migration. The results showed that SAMs modulated cell migration were in the order CH3>NH2>OH>COOH, determined by differences in the expressions of focal adhesion components and Rho GTPases. Multiple integrin subunits showed difference in a surface chemistry-dependent manner, which induced a stepwise activation of signaling cascades associated with EC migration. This work provides a broad overview of surface chemistry regulated endothelial cell migration and establishes association among the surface chemistry, cell migration behavior and associated integrin signaling events. Understanding the relationship between these factors will help us to understand the surface/interface behavior between biomaterials and cells, reveal molecular mechanism of cells sensing surface characterization, and guide surface modification of cardiovascular implanted materials.

  9. Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells.

    PubMed

    Feaver, Ryan E; Gelfand, Bradley D; Blackman, Brett R

    2013-01-01

    Haemodynamic variations are inherent to blood vessel geometries (such as bifurcations) and correlate with regional development of inflammation and atherosclerosis. However, the complex frequency spectrum characteristics from these haemodynamics have never been exploited to test whether frequency variations are critical determinants of endothelial inflammatory phenotype. Here we utilize an experimental Fourier transform analysis to systematically manipulate individual frequency harmonics from human carotid shear stress waveforms applied in vitro to human endothelial cells. The frequency spectrum, specifically the 0 th and 1st harmonics, is a significant regulator of inflammation, including NF-κB activity and downstream inflammatory phenotype. Further, a harmonic-based regression-model predicts eccentric NF-κB activity observed in the human internal carotid artery. Finally, short interfering RNA-knockdown of the mechanosensor PECAM-1 reverses frequency-dependent regulation of NF-κB activity. Thus, PECAM-1 may have a critical role in the endothelium's exquisite sensitivity to complex shear stress frequency harmonics and provide a mechanism for the focal development of vascular inflammation.

  10. CHD4-regulated plasmin activation impacts lymphovenous hemostasis and hepatic vascular integrity

    PubMed Central

    Crosswhite, Patrick L.; Podsiadlowska, Joanna J.; Curtis, Carol D.; Gao, Siqi; Srinivasan, R. Sathish; Griffin, Courtney T.

    2016-01-01

    The chromatin-remodeling enzyme CHD4 maintains vascular integrity at mid-gestation; however, it is unknown whether this enzyme contributes to later blood vessel or lymphatic vessel development. Here, we addressed this issue in mice harboring a deletion of Chd4 specifically in cells that express lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), which include lymphatic endothelial cells (LECs) and liver sinusoidal endothelial cells. Chd4 mutant embryos died before birth and exhibited severe edema, blood-filled lymphatics, and liver hemorrhage. CHD4-deficient embryos developed normal lymphovenous (LV) valves, which regulate the return of lymph to the blood circulation; however, these valves lacked the fibrin-rich thrombi that prevent blood from entering the lymphatic system. Transcripts of the urokinase plasminogen activator receptor (uPAR), which facilitates activation of the fibrin-degrading protease plasmin, were upregulated in Chd4 mutant LYVE1+ cells, and plasmin activity was elevated near the LV valves. Genetic reduction of the uPAR ligand urokinase prevented degradation of fibrin-rich thrombi at the LV valves and largely resolved the blood-filled lymphatics in Chd4 mutants. Urokinase reduction also ameliorated liver hemorrhage and prolonged embryonic survival by reducing plasmin-mediated extracellular matrix degradation around sinusoidal blood vessels. These results highlight the susceptibility of LV thrombi and liver sinusoidal vessels to plasmin-mediated damage and demonstrate the importance of CHD4 in regulating embryonic plasmin activation after mid-gestation. PMID:27140400

  11. Rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms.

    PubMed

    Tian, Jihua; Wang, Yanhong; Liu, Xinyan; Zhou, Xiaoshuang; Li, Rongshan

    2015-07-01

    IgA nephropathy is the most frequent type of glomerulonephritis worldwide. The role of cell cycle regulation in the pathogenesis of IgA nephropathy has been studied. The present study was designed to explore whether rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. After establishing an IgA nephropathy model, rats were randomly divided into four groups. Coomassie Brilliant Blue was used to measure the 24-h urinary protein levels. Renal function was determined using an autoanalyzer. Proliferation was assayed via Proliferating Cell Nuclear Antigen (PCNA) immunohistochemistry. Rat mesangial cells were cultured and divided into the six groups. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) and flow cytometry were used to detect cell proliferation and the cell cycle phase. Western blotting was performed to determine cyclin E, cyclin-dependent kinase 2, p27(Kip1), p70S6K/p-p70S6K, and extracellular signal-regulated kinase 1/2/p- extracellular signal-regulated kinase 1/2 protein expression. A low dose of the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented an additional increase in proteinuria, protected kidney function, and reduced IgA deposition in a model of IgA nephropathy. Rapamycin inhibited mesangial cell proliferation and arrested the cell cycle in the G1 phase. Rapamycin did not affect the expression of cyclin E and cyclin-dependent kinase 2. However, rapamycin upregulated p27(Kip1) at least in part via AKT (also known as protein kinase B)/mTOR. In conclusion, rapamycin can affect cell cycle regulation to inhibit mesangial cell proliferation, thereby reduce IgA deposition, and slow the progression of IgAN.

  12. The vascular Ca2+-sensing receptor regulates blood vessel tone and blood pressure

    PubMed Central

    Schepelmann, M.; Yarova, P. L.; Lopez-Fernandez, I.; Davies, T. S.; Brennan, S. C.; Edwards, P. J.; Aggarwal, A.; Graça, J.; Rietdorf, K.; Matchkov, V.; Fenton, R. A.; Chang, W.; Krssak, M.; Stewart, A.; Broadley, K. J.; Ward, D. T.; Price, S. A.; Edwards, D. H.; Kemp, P. J.

    2015-01-01

    The extracellular calcium-sensing receptor CaSR is expressed in blood vessels where its role is not completely understood. In this study, we tested the hypothesis that the CaSR expressed in vascular smooth muscle cells (VSMC) is directly involved in regulation of blood pressure and blood vessel tone. Mice with targeted CaSR gene ablation from vascular smooth muscle cells (VSMC) were generated by breeding exon 7 LoxP-CaSR mice with animals in which Cre recombinase is driven by a SM22α promoter (SM22α-Cre). Wire myography performed on Cre-negative [wild-type (WT)] and Cre-positive SM22αCaSRΔflox/Δflox [knockout (KO)] mice showed an endothelium-independent reduction in aorta and mesenteric artery contractility of KO compared with WT mice in response to KCl and to phenylephrine. Increasing extracellular calcium ion (Ca2+) concentrations (1–5 mM) evoked contraction in WT but only relaxation in KO aortas. Accordingly, diastolic and mean arterial blood pressures of KO animals were significantly reduced compared with WT, as measured by both tail cuff and radiotelemetry. This hypotension was mostly pronounced during the animals' active phase and was not rescued by either nitric oxide-synthase inhibition with nitro-l-arginine methyl ester or by a high-salt-supplemented diet. KO animals also exhibited cardiac remodeling, bradycardia, and reduced spontaneous activity in isolated hearts and cardiomyocyte-like cells. Our findings demonstrate a role for CaSR in the cardiovascular system and suggest that physiologically relevant changes in extracellular Ca2+ concentrations could contribute to setting blood vessel tone levels and heart rate by directly acting on the cardiovascular CaSR. PMID:26538090

  13. Functional regulation of ClC-3 in the migration of vascular smooth muscle cells.

    PubMed

    Ganapathi, Sindura B; Wei, Shun-Guang; Zaremba, Angelika; Lamb, Fred S; Shears, Stephen B

    2013-01-01

    Migration of vascular smooth muscle cells (VSMCs) into neointima contributes to atherosclerosis and restenosis. This migration requires coordinated plasmalemmal fluxes of water and ions. Here, we show that aortic VSMC migration depends on the regulation of transmembrane Cl(-) flux by ClC-3, a Cl(-) channel/transporter. The contribution of ClC-3 to plasmalemmal Cl(-) current was studied in VSMCs by electrophysiological recordings. Cl(-) current was negligible in cells perfused with 0 [Ca(2+)]. Raising intracellular [Ca(2+)] to 0.5 μM activated a Cl(-) current (I(Cl.Ca)), approximately half of which was eliminated on inhibition by KN-93 of calmodulin-dependent protein kinase II. I(Cl.Ca) was also halved by inositol-3,4,5,6-tetrakisphosphate, a cellular signal with the biological function of specifically preventing calmodulin-dependent protein kinase II from activating I(Cl.Ca). Gene disruption of ClC-3 reduced I(Cl.Ca) by 50%. Moreover, I(Cl.Ca) in the ClC-3 null VSMCs was not affected by either KN-93 or inositol-3,4,5,6-tetrakisphosphate. We conclude that I(Cl.Ca) is composed of 2 components, one is ClC-3 independent whereas the other is ClC-3 dependent, activated by calmodulin-dependent protein kinase II and inhibited by inositol-3,4,5,6-tetrakisphosphate. We also assayed VSMC migration in transwell assays. Migration was halved in ClC-3 null cells versus wild-type cells. In addition, inhibition of ClC-3 by niflumic acid, KN-93, or inositol-3,4,5,6-tetrakisphosphate each reduced cell migration in wild-type cells but not in ClC-3 null cells. These cell-signaling roles of ClC-3 in VSMC migration suggest new therapeutic approaches to vascular remodeling diseases.

  14. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Crespo, José L; Díaz-Troya, Sandra; Florencio, Francisco J

    2005-12-01

    The macrolide rapamycin specifically binds the 12-kD FK506-binding protein (FKBP12), and this complex potently inhibits the target of rapamycin (TOR) kinase. The identification of TOR in Arabidopsis (Arabidopsis thaliana) revealed that TOR is conserved in photosynthetic eukaryotes. However, research on TOR signaling in plants has been hampered by the natural resistance of plants to rapamycin. Here, we report TOR inactivation by rapamycin treatment in a photosynthetic organism. We identified and characterized TOR and FKBP12 homologs in the unicellular green alga Chlamydomonas reinhardtii. Whereas growth of wild-type Chlamydomonas cells is sensitive to rapamycin, cells lacking FKBP12 are fully resistant to the drug, indicating that this protein mediates rapamycin action to inhibit cell growth. Unlike its plant homolog, Chlamydomonas FKBP12 exhibits high affinity to rapamycin in vivo, which was increased by mutation of conserved residues in the drug-binding pocket. Furthermore, pull-down assays demonstrated that TOR binds FKBP12 in the presence of rapamycin. Finally, rapamycin treatment resulted in a pronounced increase of vacuole size that resembled autophagic-like processes. Thus, our findings suggest that Chlamydomonas cell growth is positively controlled by a conserved TOR kinase and establish this unicellular alga as a useful model system for studying TOR signaling in photosynthetic eukaryotes.

  15. p53 and rapamycin are additive

    PubMed Central

    Campisi, Judith; Huang, Jing; Jones, Diane; Dodds, Sherry G.; Williams, Charnae; Hubbard, Gene; Livi, Carolina B.; Gao, Xiaoli; Weintraub, Susan; Curiel, Tyler; Sharp, Z. Dave; Hasty, Paul

    2015-01-01

    Mechanistic target of rapamycin (mTOR) is a kinase found in a complex (mTORC1) that enables macromolecular synthesis and cell growth and is implicated in cancer etiology. The rapamycin-FK506 binding protein 12 (FKBP12) complex allosterically inhibits mTORC1. In response to stress, p53 inhibits mTORC1 through a separate pathway involving cell signaling and amino acid sensing. Thus, these different mechanisms could be additive. Here we show that p53 improved the ability of rapamycin to: 1) extend mouse life span, 2) suppress ionizing radiation (IR)-induced senescence-associated secretory phenotype (SASP) and 3) increase the levels of amino acids and citric acid in mouse embryonic stem (ES) cells. This additive effect could have implications for cancer treatment since rapamycin and p53 are anti-oncogenic. PMID:26158292

  16. MicroRNAs 29b, 133b, and 211 Regulate Vascular Smooth Muscle Calcification Mediated by High Phosphorus.

    PubMed

    Panizo, Sara; Naves-Díaz, Manuel; Carrillo-López, Natalia; Martínez-Arias, Laura; Fernández-Martín, José Luis; Ruiz-Torres, María Piedad; Cannata-Andía, Jorge B; Rodríguez, Isabel

    2016-03-01

    Vascular calcification is a frequent cause of morbidity and mortality in patients with CKD and the general population. The common association between vascular calcification and osteoporosis suggests a link between bone and vascular disorders. Because microRNAs (miRs) are involved in the transdifferentiation of vascular smooth muscle cells into osteoblast-like cells, we investigated whether miRs implicated in osteoblast differentiation and bone formation are involved in vascular calcification. Different levels of uremia, hyperphosphatemia, and aortic calcification were induced by feeding nephrectomized rats a normal or high-phosphorus diet for 12 or 20 weeks, at which times the levels of eight miRs (miR-29b, miR-125, miR-133b, miR-135, miR-141, miR-200a, miR-204, and miR-211) in the aorta were analyzed. Compared with controls and uremic rats fed a normal diet, uremic rats fed a high-phosphorous diet had lower levels of miR-133b and miR-211 and higher levels of miR-29b that correlated respectively with greater expression of osteogenic RUNX2 and with lower expression of several inhibitors of osteoblastic differentiation. Uremia per se mildly reduced miR-133b levels only. Similar results were obtained in two in vitro models of vascular calcification (uremic serum and high-calcium and -phosphorus medium), and experiments using antagomirs and mimics to modify miR-29b, miR-133b, and miR-211 expression levels in these models confirmed that these miRs regulate the calcification process. We conclude that miR-29b, miR-133b, and miR-211 have direct roles in the vascular smooth muscle calcification induced by high phosphorus and may be new therapeutic targets in the management of vascular calcification.

  17. Phosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition

    PubMed Central

    Xie, Yi; Jin, Yu; Merenick, Bethany L.; Ding, Min; Fetalvero, Kristina M.; Wagner, Robert J.; Mai, Alice; Gleim, Scott; Tucker, David; Birnbaum, Morris J.; Ballif, Bryan A.; Luciano, Amelia K.; Sessa, William C.; Rzucidlo, Eva M.; Powell, Richard J.; Hou, Lin; Zhao, Hongyu; Hwa, John; Yu, Jun; Martin, Kathleen A.

    2015-01-01

    Vascular smooth muscle cells (VSMCs) undergo transcriptionally regulated reversible differentiation in growing and injured blood vessels. This de-differentiation also contributes to VSMC hyperplasia following vascular injury, including that caused by angioplasty and stenting. Stents provide mechanical support and can contain and release rapamycin, an inhibitor of the mammalian target of rapamycin complex 1 (mTORC1). Rapamycin suppresses VSMC hyperplasia and promotes VSMC differentiation. We report that rapamycin-induced differentiation of VSMCs required the transcription factor GATA-6. Inhibition of mTORC1 stabilized GATA-6 and promoted the nuclear accumulation of GATA-6, its binding to DNA, and its transactivation of promoters encoding contractile proteins and inhibitors of proliferation. These effects were mediated by phosphorylation of GATA-6 at Ser290, potentially by Akt2, a kinase that is activated in VSMCs when mTORC1 is inhibited. Rapamycin induced phosphorylation of GATA-6 in wild-type mice, but not in Akt2−/− mice. Intimal hyperplasia after arterial injury was greater in Akt2−/− mice than in wild-type mice, and the exacerbated response in Akt2−/− mice was rescued to a greater extent by local overexpression of the wild-type or phosphomimetic (S290D) mutant GATA-6 than by that of the phosphorylation-deficient (S290A) mutant. Our data indicated that GATA-6 and Akt2 are involved in the mTORC1-mediated regulation of VSMC proliferation and differentiation. Identifying the downstream transcriptional targets of mTORC1 may provide cell type-specific drug targets to combat cardiovascular diseases associated with excessive proliferation of VSMCs. PMID:25969542

  18. Chronic rapamycin treatment on the nutrient utilization and metabolism of juvenile turbot (Psetta maxima)

    PubMed Central

    Wang, Qingchao; He, Gen; Mai, Kangsen; Xu, Wei; Zhou, Huihui; Wang, Xuan; Mei, Lin

    2016-01-01

    High dietary protein inclusion is necessary in fish feeds and also represents a major cost in the aquaculture industry, which demands improved dietary conversion into body proteins in fish. In mammals, the target of rapamycin (TOR) is a key nutritionally responsive molecule governing postprandial anabolism. However, its physiological significance in teleosts has not been fully examined. In the present study, we examined the nutritional physiology of turbot after chronic rapamycin inhibition. Our results showed that a 6-week inhibition of TOR using dietary rapamycin inclusion (30 mg/kg diet) reduced growth performance and feed utilization. The rapamycin treatment inhibited TOR signaling and reduced expression of key enzymes in glycolysis, lipogenesis, cholesterol biosynthesis, while increasing the expression of enzymes involved in gluconeogenesis. Furthermore, rapamycin treatment increased intestinal goblet cell number in turbot, while the expressions of Notch and Hes1 were down regulated. It was possible that stimulated goblet cell differentiation by rapamycin was mediated through Notch-Hes1 pathway. Therefore, our results demonstrate the important role of TOR signaling in fish nutritional physiology. PMID:27305975

  19. Rapamycin Prolongs Cardiac Allograft Survival in a Mouse Model by Inducing Myeloid-Derived Suppressor Cells.

    PubMed

    Nakamura, T; Nakao, T; Yoshimura, N; Ashihara, E

    2015-09-01

    Mammalian target of rapamycin (mTOR) inhibitors are the main immunosuppressive drugs for organ transplant recipients. Nevertheless, the mechanisms by which mTOR inhibitors induce immunosuppression is not fully understood. Myeloid-derived suppressor cells (MDSCs) maintain host immunity; however, the relationship between mTOR inhibitors and MDSCs is unclear. Here, the results from a murine cardiac transplantation model revealed that rapamycin treatment (3 mg/kg, intraperitoneally on postoperative days 0, 2, 4, and 6) led to the recruitment of MDSCs and increased their expression of inducible nitric oxide synthase (iNOS). Immunohistochemical analysis revealed that rapamycin induced the migration of iNOS-expressing MDSCs into the subintimal space within the allograft vessels, resulting in a significant prolongation of graft survival compared with that in the untreated group (67 days vs. 7 days, respectively). These effects were counterbalanced by the administration of an anti-Gr-1, which reduced allograft survival to 21 days. Moreover, adoptive transcoronary arterial transfer of MDSCs from rapamycin-treated recipients prolonged allograft survival; this increase was reversed by the anti-Gr-1 antibody. Finally, co-administration of rapamycin and a mitogen-activated protein kinase kinase (MEK) inhibitor trametinib reversed rapamycin-mediated MDSC recruitment. Thus, the mTOR and Raf/MEK/extracellular signal regulated kinase (ERK) signaling pathways appear to play an important role in MDSC expansion.

  20. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism.

    PubMed

    Wang, Rong; Yu, Zhen; Sunchu, Bharath; Shoaf, James; Dang, Ivana; Zhao, Stephanie; Caples, Kelsey; Bradley, Lynda; Beaver, Laura M; Ho, Emily; Löhr, Christiane V; Perez, Viviana I

    2017-03-31

    Senescent cells contribute to age-related pathology and loss of function, and their selective removal improves physiological function and extends longevity. Rapamycin, an inhibitor of mTOR, inhibits cell senescence in vitro and increases longevity in several species. Nrf2 levels have been shown to decrease with aging and silencing Nrf2 gene induces premature senescence. Therefore, we explored whether Nrf2 is involved in the mechanism by which rapamycin delays cell senescence. In wild-type (WT) mouse fibroblasts, rapamycin increased the levels of Nrf2, and this correlates with the activation of autophagy and a reduction in the induction of cell senescence, as measured by SA-β-galactosidase (β-gal) staining, senescence-associated secretory phenotype (SASP), and p16 and p21 molecular markers. In Nrf2KO fibroblasts, however, rapamycin still decreased β-gal staining and the SASP, but rapamycin did not activate the autophagy pathway or decrease p16 and p21 levels. These observations were further confirmed in vivo using Nrf2KO mice, where rapamycin treatment led to a decrease in β-gal staining and pro-inflammatory cytokines in serum and fat tissue; however, p16 levels were not significantly decreased in fat tissue. Consistent with literature demonstrating that the Stat3 pathway is linked to the production of SASP, we found that rapamycin decreased activation of the Stat3 pathway in cells or tissue samples from both WT and Nrf2KO mice. Our data thus suggest that cell senescence is a complex process that involves at least two arms, and rapamycin uses Nrf2 to regulate cell cycle arrest, but not the production of SASP.

  1. Phosphodiesterases Regulate BAY 41-2272-Induced VASP Phosphorylation in Vascular Smooth Muscle Cells

    PubMed Central

    Adderley, Shaquria P.; Joshi, Chintamani N.; Martin, Danielle N.; Tulis, David Anthony

    2012-01-01

    BAY 41-2272 (BAY), a stimulator of soluble guanylyl cyclase, increases cyclic nucleotides and inhibits proliferation of vascular smooth muscle cells (VSMCs). In this study, we elucidated mechanisms of action of BAY in its regulation of vasodilator-stimulated phosphoprotein (VASP) with an emphasis on VSMC phosphodiesterases (PDEs). BAY alone increased phosphorylation of VASPSer239 and VASPSer157, respective indicators of PKG and PKA signaling. IBMX, a non-selective inhibitor of PDEs, had no effect on BAY-induced phosphorylation at VASPSer239 but inhibited phosphorylation at VASPSer157. Selective inhibitors of PDE3 or PDE4 attenuated BAY-mediated increases at VASPSer239 and VASPSer157, whereas PDE5 inhibition potentiated BAY-mediated increases only at VASPSer157. In comparison, 8Br-cGMP increased phosphorylation at VASPSer239 and VASPSer157 which were not affected by selective PDE inhibitors. In the presence of 8Br-cAMP, inhibition of either PDE4 or PDE5 decreased VASPSer239 phosphorylation and inhibition of PDE3 increased phosphorylation at VASPSer239, while inhibition of PDE3 or PDE4 increased and PDE5 inhibition had no effect on VASPSer157 phosphorylation. These findings demonstrate that BAY operates via cAMP and cGMP along with regulation by PDEs to phosphorylate VASP in VSMCs and that the mechanism of action of BAY in VSMCs is different from that of direct cyclic nucleotide analogs with respect to VASP phosphorylation and the involvement of PDEs. Given a role for VASP as a critical cytoskeletal protein, these findings provide evidence for BAY as a regulator of VSMC growth and a potential therapeutic agent against vasculoproliferative disorders. PMID:22347188

  2. Potential use of rapamycin in HIV infection

    PubMed Central

    Donia, Marco; McCubrey, James A; Bendtzen, Klaus; Nicoletti, Ferdinando

    2010-01-01

    The strong need for the development of alternative anti-HIV agents is primarily due to the emergence of strain-resistant viruses, the need for sustained adherence to complex treatment regimens and the toxicity of currently used antiviral drugs. This review analyzes proof of concept studies indicating that the immunomodulatory drug rapamycin (RAPA) possesses anti-HIV properties both in vitro and in vivo that qualifies it as a potential new anti-HIV drug. It represents a literature review of published studies that evaluated the in vitro and in vivo activity of RAPA in HIV. RAPA represses HIV-1 replication in vitro through different mechanisms including, but not limited, to down regulation of CCR5. In addition RAPA synergistically enhances the anti-HIV activity of entry inhibitors such as vicriviroc, aplaviroc and enfuvirtide in vitro. RAPA also inhibits HIV-1 infection in human peripheral blood leucocytes-SCID reconstituted mice. In addition, a prospective nonrandomized trial of HIV patient series receiving RAPA monotherapy after liver transplantation indicated significantly better control of HIV and hepatitis C virus (HCV) replication among patients taking RAPA monotherapy. Taken together, the evidence presented in this review suggests that RAPA may be a useful drug that should be evaluated for the prevention and treatment of HIV-1 infection. PMID:21175433

  3. Arap3 is dysregulated in a mouse model of hypotrichosis-lymphedema-telangiectasia and regulates lymphatic vascular development.

    PubMed

    Kartopawiro, Joëlle; Bower, Neil I; Karnezis, Tara; Kazenwadel, Jan; Betterman, Kelly L; Lesieur, Emmanuelle; Koltowska, Katarzyna; Astin, Jonathan; Crosier, Philip; Vermeren, Sonja; Achen, Marc G; Stacker, Steven A; Smith, Kelly A; Harvey, Natasha L; François, Mathias; Hogan, Benjamin M

    2014-03-01

    Mutations in SOX18, VEGFC and Vascular Endothelial Growth Factor 3 underlie the hereditary lymphatic disorders hypotrichosis-lymphedema-telangiectasia (HLT), Milroy-like lymphedema and Milroy disease, respectively. Genes responsible for hereditary lymphedema are key regulators of lymphatic vascular development in the embryo. To identify novel modulators of lymphangiogenesis, we used a mouse model of HLT (Ragged Opossum) and performed gene expression profiling of aberrant dermal lymphatic vessels. Expression studies and functional analysis in zebrafish and mice revealed one candidate, ArfGAP with RhoGAP domain, Ankyrin repeat and PH domain 3 (ARAP3), which is down-regulated in HLT mouse lymphatic vessels and necessary for lymphatic vascular development in mice and zebrafish. We position this known regulator of cell behaviour during migration as a mediator of the cellular response to Vegfc signalling in lymphatic endothelial cells in vitro and in vivo. Our data refine common mechanisms that are likely to contribute during both development and the pathogenesis of lymphatic vascular disorders.

  4. Regulation of vascular smooth muscle phenotype by cross-regulation of krüppel-like factors

    PubMed Central

    Ha, Jung Min; Yun, Sung Ji; Jin, Seo Yeon; Lee, Hye Sun; Kim, Sun Ja; Shin, Hwa Kyoung

    2017-01-01

    Regulation of vascular smooth muscle cell (VSMC) phenotype plays an essential role in many cardiovascular diseases. In the present study, we provide evidence that krüppel-like factor 8 (KLF8) is essential for tumor necrosis factor α (TNFα)-induced phenotypic conversion of VSMC obtained from thoracic aorta from 4-week-old SD rats. Stimulation of the contractile phenotype of VSMCs with TNFα significantly reduced the VSMC marker gene expression and KLF8. The gene expression of KLF8 was blocked by TNFα stimulation in an ERK-dependent manner. The promoter region of KLF8 contained putative Sp1, KLF4, and NFκB binding sites. Myocardin significantly enhanced the promoter activity of KLF4 and KLF8. The ectopic expression of KLF4 strongly enhanced the promoter activity of KLF8. Moreover, silencing of Akt1 significantly attenuated the promoter activity of KLF8; conversely, the overexpression of Akt1 significantly enhanced the promoter activity of KLF8. The promoter activity of SMA, SM22α, and KLF8 was significantly elevated in the contractile phenotype of VSMCs. The ectopic expression of KLF8 markedly enhanced the expression of SMA and SM22α concomitant with morphological changes. The overexpression of KLF8 stimulated the promoter activity of SMA. Stimulation of VSMCs with TNFα enhanced the expression of KLF5, and the promoter activity of KLF5 was markedly suppressed by KLF8 ectopic expression. Finally, the overexpression of KLF5 suppressed the promoter activity of SMA and SM22α, thereby reduced the contractility in response to the stimulation of angiotensin II. These results suggest that cross-regulation of KLF family of transcription factors plays an essential role in the VSMC phenotype. PMID:28066139

  5. miR-320 regulates tumor angiogenesis driven by vascular endothelial cells in oral cancer by silencing neuropilin 1.

    PubMed

    Wu, Yi-Ying; Chen, Yuh-Ling; Jao, Yun-Chia; Hsieh, I-Shan; Chang, Kung-Chao; Hong, Tse-Ming

    2014-01-01

    Tumor angiogenesis is a critical process during cancer progression that modulates tumor growth and metastasis. Here, we identified an anti-angiogenic microRNA, miR-320, which is decreased in oral squamous cell carcinoma (OSCC) cell lines and tumor tissues from OSCC patients, down-regulated in blood vessels and inversely correlated with vascularity in OSCC tissues. Neuropilin 1 (NRP1), an important regulator of angiogenesis, was found to be a target of miR-320. The 3'-untranslated region of NRP1 mRNA contains multiple miR-320 binding sites, and its expression was regulated by miR-320. By administering either miR-320 precursor or antagonist, we found that miR-320 suppressed the migration, adhesion and tube formation of vascular endothelial cells. Knockdown of NRP1 abolished antagomiR-320-induced cell migration. Additionally, miR-320 expression was regulated by hypoxia in growth factor-deficient conditions by the hypoxia-inducible factor 1-alpha. Furthermore, lentivirus carrying the miR-320 precursor suppressed the tumorigenicity of OSCC cells and tumor angiogenesis in vivo. Taken together, these data show that miR-320 regulates the function of vascular endothelial cells by targeting NRP1 and has the potential to be developed as an anti-angiogenic or anti-cancer drug.

  6. Are invertebrates relevant models in ageing research? Focus on the effects of rapamycin on TOR.

    PubMed

    Erdogan, Cihan Suleyman; Hansen, Benni Winding; Vang, Ole

    2016-01-01

    Ageing is the organisms increased susceptibility to death, which is linked to accumulated damage in the cells and tissues. Ageing is a complex process regulated by crosstalk of various pathways in the cells. Ageing is highly regulated by the Target of Rapamycin (TOR) pathway activity. TOR is an evolutionary conserved key protein kinase in the TOR pathway that regulates growth, proliferation and cell metabolism in response to nutrients, growth factors and stress. Comparing the ageing process in invertebrate model organisms with relatively short lifespan with mammals provides valuable information about the molecular mechanisms underlying the ageing process faster than mammal systems. Inhibition of the TOR pathway activity via either genetic manipulation or rapamycin increases lifespan profoundly in most invertebrate model organisms. This contribution will review the recent findings in invertebrates concerning the TOR pathway and effects of TOR inhibition by rapamycin on lifespan. Besides some contradictory results, the majority points out that rapamycin induces longevity. This suggests that administration of rapamycin in invertebrates is a promising tool for pursuing the scientific puzzle of lifespan prolongation.

  7. Regulation and localization of vascular endothelial growth factor within the mammary glands during the transition from late gestation to lactation.

    PubMed

    VanKlompenberg, M K; Manjarín, R; Donovan, C E; Trott, J F; Hovey, R C

    2016-01-01

    The vascular network within the developing mammary gland (MG) grows in concert with the epithelium to prepare for lactation, although the mechanisms coordinating this vascular development are unresolved. Vascular endothelial growth factor A (VEGF-A) mediates angiogenesis and vascular permeability in the MG during pregnancy and lactation, where its expression is upregulated by prolactin. Given our previous finding that late-gestational hyperprolactinemia induced by domperidone (DOM) increased subsequent milk yield from gilts, we sought to establish changes in vascular development during late gestation and lactation in the MGs of these pigs and determine whether DOM altered MG angiogenesis and the factors regulating it. Gilts received either no treatment (n = 6) or DOM (n = 6) during late gestation, then had their MG biopsied from late gestation through lactation to assess microvessel density, VEGF-A distribution and messenger RNA expression, and aquaporin (AQP) gene expression. Microvessel density in the MG was unchanged during gestation then increased between days 2 and 21 of lactation (P < 0.05). The local expression of messenger RNA for VEGF-A120, VEGF-A147, VEGF-A164, VEGF-A164b, VEGF-A188, VEGF receptors-1 and -2, and AQP1 and AQP3 all generally increased during the transition from gestation to lactation (P < 0.05). Immunostaining localized VEGF-A to the apical cytoplasm of secretory epithelial cells, consistent with a far greater concentration of VEGF-A in colostrum and/or milk vs plasma (P < 0.0001). There was no effect of DOM on any of the variables analyzed. In summary, we found that vascular development in the MG increases during lactation in first-parity gilts and that VEGF-A is a part of the mammary secretome. Although late-gestational hyperprolactinemia increases milk yield, there was no evidence that it altered vascular development.

  8. Vascular dermatan sulfate regulates the antithrombotic activity of heparin cofactor II

    PubMed Central

    He, Li; Giri, Tusar K.; Vicente, Cristina P.

    2008-01-01

    Heparin cofactor II (HCII)–deficient mice form occlusive thrombi more rapidly than do wild-type mice following injury to the carotid arterial endothelium. Dermatan sulfate (DS) and heparan sulfate (HS) increase the rate of inhibition of thrombin by HCII in vitro, but it is unknown whether vascular glycosaminoglycans play a role in the antithrombotic effect of HCII in vivo. In this study, we found that intravenous injection of either wild-type recombinant HCII or a variant with low affinity for HS (K173H) corrected the abnormally short thrombosis time of HCII-deficient mice, while a variant with low affinity for DS (R189H) had no effect. When HCII was incubated with frozen sections of the mouse carotid artery, it bound specifically to DS in the adventitia. HCII was undetectable in the wall of the uninjured carotid artery, but it became concentrated in the adventitia following endothelial injury. These results support the hypothesis that HCII interacts with DS in the vessel wall after disruption of the endothelium and that this interaction regulates thrombus formation in vivo. PMID:18281504

  9. Activin A in the Regulation of Corneal Neovascularization and Vascular Endothelial Growth Factor Expression

    PubMed Central

    Poulaki, Vassiliki; Mitsiades, Nicholas; Kruse, Friedrich E.; Radetzky, Sven; Iliaki, Eirini; Kirchhof, Bernd; Joussen, Antonia M.

    2004-01-01

    Activin A, a dimeric glycoprotein that belongs to the transforming growth factor-β superfamily, governs cellular differentiation in a wide variety of models and has been implicated in the regulation of angiogenesis. We examined the role of activin A and its downstream signaling pathway in a murine model of inflammatory corneal neovascularization induced by mechanical injury (debridement), and in vitro in corneal epithelial cells. Activin A expression increased steadily from day 2 until day 8 after mechanical debridement in vivo, paralleling vascular endothelial growth factor (VEGF) expression. Administration of recombinant activin A in mice increased the area of neovascularization, VEGF expression, and the kinase activities of p38 and p42/44 MAPKs after mechanical debridement. Systemic inhibition of activin A in vivo with a neutralizing antibody reduced the area of neovascularization, VEGF expression, and p38 and p42/44 MAPK activity, whereas administration of an isotype-matched control antibody had no effect. In vitro treatment with activin A increased VEGF secretion, as well as p38 and p42/44 MAPK activity in corneal epithelial cells, whereas concurrent administration of specific inhibitors of p38 or p42/44 MAPK abolished the stimulatory effect of activin A on VEGF production. We conclude that activin A stimulates inflammatory corneal angiogenesis by increasing VEGF levels through a p38 and p42/44 MAPK-dependent mechanism. PMID:15039217

  10. Developmental and tumoral vascularization is regulated by G protein–coupled receptor kinase 2

    PubMed Central

    Rivas, Verónica; Carmona, Rita; Muñoz-Chápuli, Ramón; Mendiola, Marta; Nogués, Laura; Reglero, Clara; Miguel-Martín, María; García-Escudero, Ramón; Dorn, Gerald W.; Hardisson, David; Mayor, Federico; Penela, Petronila

    2013-01-01

    Tumor vessel dysfunction is a pivotal event in cancer progression. Using an in vivo neovascularization model, we identified G protein–coupled receptor kinase 2 (GRK2) as a key angiogenesis regulator. An impaired angiogenic response involving immature vessels was observed in mice hemizygous for Grk2 or in animals with endothelium-specific Grk2 silencing. ECs isolated from these animals displayed intrinsic alterations in migration, TGF-β signaling, and formation of tubular networks. Remarkably, an altered pattern of vessel growth and maturation was detected in postnatal retinas from endothelium-specific Grk2 knockout animals. Mouse embryos with systemic or endothelium-selective Grk2 ablation had marked vascular malformations involving impaired recruitment of mural cells. Moreover, decreased endothelial Grk2 dosage accelerated tumor growth in mice, along with reduced pericyte vessel coverage and enhanced macrophage infiltration, and this transformed environment promoted decreased GRK2 in ECs and human breast cancer vessels. Our study suggests that GRK2 downregulation is a relevant event in the tumoral angiogenic switch. PMID:24135140

  11. TLR4-Activated MAPK-IL-6 Axis Regulates Vascular Smooth Muscle Cell Function.

    PubMed

    Lee, Guan-Lin; Wu, Jing-Yiing; Tsai, Chien-Sung; Lin, Chih-Yuan; Tsai, Yi-Ting; Lin, Chin-Sheng; Wang, Yi-Fu; Yet, Shaw-Fang; Hsu, Yu-Juei; Kuo, Cheng-Chin

    2016-08-24

    Migration of vascular smooth muscle cells (VSMCs) into the intima is considered to be a vital event in the pathophysiology of atherosclerosis. Despite substantial evidence supporting the pathogenic role of Toll-like receptor 4 (TLR4) in the progression of atherogenesis, its function in the regulation of VSMC migration remains unclear. The goal of the present study was to elucidate the mechanism by which TLR4 regulates VSMC migration. Inhibitor experiments revealed that TLR4-induced IL-6 secretion and VSMC migration were mediated via the concerted actions of MyD88 and TRIF on the activation of p38 MAPK and ERK1/2 signaling. Neutralizing anti-IL-6 antibodies abrogated TLR4-driven VSMC migration and F-actin polymerization. Blockade of p38 MAPK or ERK1/2 signaling cascade inhibited TLR4 agonist-mediated activation of cAMP response element binding protein (CREB). Moreover, siRNA-mediated suppression of CREB production repressed TLR4-induced IL-6 production and VSMC migration. Rac-1 inhibitor suppressed TLR4-driven VSMC migration but not IL-6 production. Importantly, the serum level of IL-6 and TLR4 endogenous ligand HMGB1 was significantly higher in patients with coronary artery diseases (CAD) than in healthy subjects. Serum HMGB1 level was positively correlated with serum IL-6 level in CAD patients. The expression of both HMGB1 and IL-6 was clearly detected in the atherosclerotic tissue of the CAD patients. Additionally, there was a positive association between p-CREB and HMGB1 in mouse atherosclerotic tissue. Based on our findings, we concluded that, upon ligand binding, TLR4 activates p38 MAPK and ERK1/2 signaling through MyD88 and TRIF in VSMCs. These signaling pathways subsequently coordinate an additive augmentation of CREB-driven IL-6 production, which in turn triggers Rac-1-mediated actin cytoskeleton to promote VSMC migration.

  12. Monocyte/macrophage cytokine activity regulates vascular smooth muscle cell function within a degradable polyurethane scaffold.

    PubMed

    Battiston, K G; Ouyang, B; Labow, R S; Simmons, C A; Santerre, J P

    2014-03-01

    Tissue engineering strategies rely on the ability to promote cell proliferation and migration into porous biomaterial constructs, as well as to support specific phenotypic states of the cells in vitro. The present study investigated the use of released factors from monocytes and their derived macrophages (MDM) and the mechanism by which they regulate vascular smooth muscle cell (VSMC) response in a VSMC-monocyte co-culture system within a porous degradable polyurethane (D-PHI) scaffold. VSMCs cultured in monocyte/MDM-conditioned medium (MCM), generated from the culture of monocytes/MDM on D-PHI scaffolds for up to 28 days, similarly affected VSMC contractile marker expression, growth and three-dimensional migration when compared to direct VSMC-monocyte co-culture. Monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6) were identified as two cytokines present in MCM, at concentrations that have previously been shown to influence VSMC phenotype. VSMCs cultured alone on D-PHI scaffolds and exposed to MCP-1 (5 ng ml(-1)) or IL-6 (1 ng ml(-1)) for 7 days experienced a suppression in contractile marker expression (with MCP-1 or IL-6) and increased growth (with MCP-1) compared to no cytokine medium supplementation. These effects were also observed in VSMC-monocyte co-culture on D-PHI. Neutralization of IL-6, but not MCP-1, was subsequently shown to decrease VSMC growth and enhance calponin expression for VSMC-monocyte co-cultures on D-PHI scaffolds for 7 days, implying that IL-6 mediates VSMC response in monocyte-VSMC co-cultures. This study highlights the use of monocytes and their derived macrophages in conjunction with immunomodulatory biomaterials, such as D-PHI, as agents for regulating VSMC response, and demonstrates the importance of monocyte/MDM-released factors, such as IL-6 in particular, in this process.

  13. Molecular Control of Vascular Tube Morphogenesis and Stabilization: Regulation by Extracellular Matrix, Matrix Metalloproteinases, and Endothelial Cell-Pericyte Interactions

    NASA Astrophysics Data System (ADS)

    Davis, George E.; Stratman, Amber N.; Sacharidou, Anastasia

    Recent studies have revealed a critical role for both extracellular matrices and matrix metalloproteinases in the molecular control of vascular morphogenesis and stabilization in three-dimensional (3D) tissue environments. Key interactions involve endothelial cells (ECs) and pericytes, which coassemble to affect vessel formation, remodeling, and stabilization events during development and postnatal life. EC-pericyte interactions control extracellular matrix remodeling events including vascular basement membrane matrix assembly, a necessary step for endothelial tube maturation and stabilization. ECs form tube networks in 3D extracellular matrices in a manner dependent on integrins, membrane-type metalloproteinases, and the Rho GTPases, Cdc42 and Rac1. Recent work has defined an EC lumen signaling complex of proteins composed of these proteins that controls 3D matrix-specific signaling events required for these processes. The EC tube formation process results in the creation of a network of proteolytically generated vascular guidance tunnels. These tunnels are physical matrix spaces that regulate vascular tube remodeling and represent matrix conduits into which pericytes are recruited to allow dynamic cell-cell interactions with ECs. These dynamic EC-pericyte interactions induce vascular basement membrane matrix deposition, leading to vessel maturation and stabilization.

  14. UAP56 is a novel interacting partner of Bcr in regulating vascular smooth muscle cell DNA synthesis

    SciTech Connect

    Sahni, Abha; Wang, Nadan; Alexis, Jeffrey D.

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer UAP56 is an important regulator of DNA synthesis in vascular smooth muscle cells. Black-Right-Pointing-Pointer UAP56 binds to Bcr. Black-Right-Pointing-Pointer Interaction between Bcr and UAP56 is critical for Bcr induced DNA synthesis. -- Abstract: Bcr is a serine/threonine kinase that is a critical regulator of vascular smooth muscle cell inflammation and proliferation. We have previously demonstrated that Bcr acts in part via phosphorylation and inhibition of PPAR{gamma}. We have identified the RNA helicase UAP56 as another substrate of Bcr. In this report we demonstrate that knockdown of UAP56 blocks Bcr induced DNA synthesis in vascular smooth muscle cells (VSMC). We also found that over expression of Bcr increased the expression of cyclin E and decreased the expression of p27. Knockdown of UAP56 reversed the effect of Bcr on cyclin E and p27 expression. Furthermore, we found that Bcr binds to UAP56 and demonstrate that binding of UAP56 to Bcr is critical for Bcr induced DNA synthesis in VSMC. Our data identify UAP56 as an important binding partner of Bcr and a novel target for inhibiting vascular smooth muscle cell proliferation.

  15. Low-dose rapamycin treatment increases the ability of human regulatory T cells to inhibit transplant arteriosclerosis in vivo.

    PubMed

    Hester, J; Schiopu, A; Nadig, S N; Wood, K J

    2012-08-01

    Regulatory T cells (T(reg)) are currently being tested in clinical trials as a potential therapy in cell and solid organ transplantation. The immunosuppressive drug rapamycin has been shown to preferentially promote T(reg) expansion. Here, we hypothesized that adjunctive rapamycin therapy might potentiate the ability of ex vivo expanded human T(reg) to inhibit vascular allograft rejection in a humanized mouse model of arterial transplantation. We studied the influence of combined treatment with low-dose rapamycin and subtherapeutic T(reg) numbers on the development of transplant arteriosclerosis (TA) in human arterial grafts transplanted into immunodeficient BALB/cRag2(-/-) Il2rg(-/-) mice reconstituted with allogeneic human peripheral blood mononuclear cell. In addition, we assessed the effects of the treatment on the proliferation and apoptosis of naïve/effector T cells. The combined therapy efficiently suppressed T-cell proliferation in vivo and in vitro. Neointima formation in the human arterial allografts was potently inhibited compared with each treatment alone. Interestingly, CD4(+) but not CD8(+) T lymphocytes were sensitive to T(reg) and rapamycin-induced apoptosis in vitro. Our data support the concept that rapamycin can be used as an adjunctive therapy to improve efficacy of T(reg)-based immunosuppressive protocols in clinical practice. By inhibiting TA, T(reg) and rapamycin may prevent chronic transplant dysfunction and improve long-term allograft survival.

  16. Rapid cytoplasmic turnover of yeast ribosomes in response to rapamycin inhibition of TOR.

    PubMed

    Pestov, Dimitri G; Shcherbik, Natalia

    2012-06-01

    The target of rapamycin (TOR) pathway is the central regulator of cell growth in eukaryotes. Inhibition of TOR by rapamycin elicits changes in translation attributed mainly to altered translation initiation and repression of the synthesis of new ribosomes. Using quantitative analysis of rRNA, we found that the number of existing ribosomes present in a Saccharomyces cerevisiae culture during growth in rich medium rapidly decreases by 40 to 60% when the cells are treated with rapamycin. This process is not appreciably affected by a suppression of autophagy, previously implicated in degradation of ribosomes in eukaryotes upon starvation. Yeast cells deficient in the exosome function or lacking its cytoplasmic Ski cofactors show an abnormal pattern of rRNA degradation, particularly in the large ribosomal subunit, and accumulate rRNA fragments after rapamycin treatment and during diauxic shift. The exosome and Ski proteins are thus important for processing of rRNA decay intermediates, although they are probably not responsible for initiating rRNA decay. The role of cytoplasmic nucleases in rapamycin-induced rRNA degradation suggests mechanistic parallels of this process to nutrient-controlled ribosome turnover in prokaryotes. We propose that ribosome content is regulated dynamically in eukaryotes by TOR through both ribosome synthesis and the cytoplasmic turnover of mature ribosomes.

  17. Resveratrol Ameliorated Vascular Calcification by Regulating Sirt-1 and Nrf2.

    PubMed

    Zhang, P; Li, Y; Du, Y; Li, G; Wang, L; Zhou, F

    2016-12-01

    Pathologic vascular calcification is a significant reason for mortality and morbidity in patients who suffer from end-stage renal disease (ESRD). Resveratrol, a scavenger for many free radicals, is a crucial compound for biomedicine. However, the role and mechanism of resveratrol in vascular calcification is still unknown. In this study, to mimic vascular calcification in ESRD, we used β-glyceophosphate to stimulate the rat vascular smooth muscle cells (RASMCs). We investigate the therapeutic role of resveratrol pretreatment in vascular calcification. In the current in vitro study, we observe the effects of resveratrol on improving intracellular calcium deposition and protecting against mitochondria dysfunction in calcific RASMCs. Resveratrol decreased the mRNA level of fibroblast growth factor-23, then increased the mRNA level of klotho and the nuclear transcription factor NF-E2-related factor 2 (nuclear factor-erythroid 2-related factor 2 [Nrf2]) in RASMCs after calcification. Further, resveratrol activated the expression of sirtuin-1 and Nrf2, and inhibited the expression of osteopontin, runt-related transcription factor 2, and heme oxygenase-1. Our study shows that resveratrol could ameliorate oxidative injury of RASMCs by preventing vascular calcification-induced calcium deposition and mitochondria dysfunction through involving sirtuin-1 and Nrf2. These results might indicate a novel role for resveratrol in resistance to oxidative stress for ESRD patients suffering from vascular calcification.

  18. Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel

    PubMed Central

    Lin, Ruei-Zeng; Chen, Ying-Chieh; Moreno-Luna, Rafael; Khademhosseini, Ali; Melero-Martin, Juan M.

    2013-01-01

    The search for hydrogel materials compatible with vascular morphogenesis is an active area of investigation in tissue engineering. One candidate material is methacrylated gelatin (GelMA), a UV-photocrosslinkable hydrogel that is synthesized by adding methacrylate groups to the amine-containing side-groups of gelatin. GelMA hydrogels containing human endothelial colony-forming cells (ECFCs) and mesenchymal stem cells (MSCs) can be photopolymerized ex vivo and then surgically transplanted in vivo as a means to generate vascular networks. However, the full clinical potential of GelMA will be best captured by enabling minimally invasive implantation and in situ polymerization. In this study, we demonstrated the feasibility of bioengineering human vascular networks inside GelMA constructs that were first subcutaneously injected into immunodeficient mice while in liquid form, and then rapidly crosslinked via transdermal exposure to UV light. These bioengineered vascular networks developed within 7 days, formed functional anastomoses with the host vasculature, and were uniformly distributed throughout the constructs. Most notably, we demonstrated that the vascularization process can be directly modulated by adjusting the initial exposure time to UV light (15–45 s range), with constructs displaying progressively less vascular density and smaller average lumen size as the degree of GelMA crosslinking was increased. Our studies support the use of GelMA in its injectable form, followed by in situ transdermal photopolymerization, as a preferable means to deliver cells in applications that require the formation of vascular networks in vivo. PMID:23773819

  19. SIRT1 inhibits inflammatory response partly through regulation of NLRP3 inflammasome in vascular endothelial cells.

    PubMed

    Li, Yanxiang; Wang, Ping; Yang, Xiaofeng; Wang, Weirong; Zhang, Jiye; He, Yanhao; Zhang, Wei; Jing, Ting; Wang, Bo; Lin, Rong

    2016-09-01

    Emerging evidence has indicated that vascular endothelial cells (ECs) not only form the barrier between blood and the vessel wall but also serve as conditional innate immune cells. Our previous study found that SIRT1, a class III histone deacetylase, inhibits the inflammatory response in ECs. Recent studies revealed that SIRT1 also participates in the modulation of immune responses. Although the NLRP3 inflammasome is known to be a crucial component of the innate immune system, there is no direct evidence demonstrating the anti-inflammatory effect of SIRT1 on ECs through the NLRP3 inflammasome. In this study, we observed that lipopolysaccharide (LPS) and adenosine triphosphate (ATP) triggered the activation of NLRP3 inflammasome in human umbilical vein ECs (HUVECs). Moreover, SIRT1 expression was reduced in HUVECs stimulated with LPS and ATP. SIRT1 activator inhibited the expression of monocyte chemotactic protein-1 (MCP-1) and C-reactive protein (CRP), whereas SIRT1 knockdown resulted in significant increases in MCP-1 and CRP levels in HUVECs stimulated with LPS and ATP. Importantly, the lack of SIRT1 enhanced NLRP3 inflammasome activation and subsequent caspase-1 cleavage. On the other hand, NLRP3 siRNA blocked the activation of the NLRP3 inflammasome in HUVECs stimulated with LPS plus ATP. Further study revealed that NLRP3 inflammasome blockade significantly reduced MCP-1 and CRP production in HUVECs. In vivo studies indicated that implantation of the periarterial carotid collar inhibited arterial SIRT1 expression in rabbits. Meanwhile, treatment with a SIRT1 activator decreased the expression levels of MCP-1 and CRP in collared arteries and the interleukin (IL)-1β level in serum. Taken together, these findings indicate that NLRP3 inflammasome activation promoted endothelial inflammation and that SIRT1 inhibits the inflammatory response partly through regulation of the NLRP3 inflammasome in ECs.

  20. Epigenetic regulation of vascular endothelial growth factor a dynamic expression in transitional cell carcinoma.

    PubMed

    Ping, Szu-Yuan; Shen, Kun-Hung; Yu, Dah-Shyong

    2013-07-01

    Vascular endothelial growth factor A (VEGF-A) is a key mediator in the neovascularization of cancers. We have found that VEGF-A was expressed at significantly higher levels in high-grade transitional cell carcinoma (TCC) cells than low-grade TCC cells in our previous study. In the present study, promoter methylation pattern was assessed and quantified by bisulfite genomic sequencing (BGS) and specific VEGF-A CpG sites in low-grade, but not in high-grade, TCC cells were observed. Reporter assays indicated that hypermethylation of nine CpG sites can inhibit the transcriptional activity of the VEGF-A gene. Subsequent chromatin immunoprecipitation (ChIP) assay revealed down-regulation of transcription activity of VEGF-A with increasing binding of methyl-CpG-binding protein 2 (MBD2) and trimethyl-histone H3 (Lys9) proteins to these CpG sites in low-grade TCC cells during hypermethylation. Furthermore, treatment of low-grade TCC cells with DNA methyltransferase inhibitor and histone deacetylase inhibitor can restore the expression of VEGF-A and promote the invasive ability of low-grade TCC cells. Hypermethylation with lower expression levels of VEGF-A in low-grade TCC tumors than high-grade TCC tumors was also confirmed in clinical specimens by reverse transcriptase-PCR and pyrosequencing analyses. Our findings are the first results indicating that VEGF-A expression is suppressed in low-grade TCC tumors by promoter hypermethylation. This offers a new perspective on the role of VEGF-A in TCC tumor behavior.

  1. The prolactin family hormones regulate vascular tone through NO and prostacyclin production in isolated rat aortic rings

    PubMed Central

    Gonzalez, Carmen; Rosas-Hernandez, Hector; Jurado-manzano, Brenda; Ramirez-Lee, Manuel Alejandro; Salazar-Garcia, Samuel; Martinez-Cuevas, Pedro Pablo; Velarde-salcedo, Aída Jimena; Morales-Loredo, Humberto; Espinosa-Tanguma, Ricardo; Ali, Syed F; Rubio, Rafael

    2015-01-01

    Aim: Prolactin family hormones include growth hormone, placental lactogen and prolactin, which are able to regulate angiogenesis via NO and prostaglandins. However, their effects on vascular tone are not fully understood. The aim of this study was to evaluate the effects of prolactin family hormones on rat vascular tone in vitro. Methods: Aortic rings were prepared from adult male rats and precontracted with phenylephrine, then treated with the hormones and drugs. The tension was measured with isometric force displacement transducer connected to a polygraph. NO production and prostacyclin release in physiological solution was determined. Cultured rat aortic endothelial cells (RAECs) were treated with the hormones and drugs, and the phosphorylation of eNOS at serine 1177 was assessed using Western bolt analysis. Results: Administration of growth hormone or placental lactogen (0.01–100 nmol/L) induced endothelium-dependent vasodilation. Both the hormones significantly increased the phosphorylation of eNOS in RAECs and NO level in physiological solution. Preincubation with L-NAME blocked growth hormone- or placental lactogen-induced vasodilation and NO production. Preincubation with an antibody against growth hormone receptors blocked growth hormone- and placental lactogen-induced vasodilation. Addition of a single dose of prolactin (0.01 nmol/L) induced sustained vessel relaxation, whereas multiple doses of prolactin induced a biphasic contraction-relaxation effect. The vascular effects of prolactin depended on endothelium. Prolactin significantly increased the level of prostacyclin I2 in physiological solution. Preincubation with indomethacin or an antibody against prolactin receptors blocked prolactin-induced vasodilation. Conclusion: The prolactin family hormones regulate rat vascular tone, selectively promoting either relaxation or contraction of vascular smooth muscle via activation of either growth hormone receptors or prolactin receptors within the

  2. Angiotensin-(1-7) regulates Angiotensin II-induced VCAM-1 expression on vascular endothelial cells

    SciTech Connect

    Zhang, Feng; Ren, Jingyi; Chan, Kenneth; Chen, Hong

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We for the first time found that Ang-(1-7) inhibits Ang II-induced VCAM-1 expression. Black-Right-Pointing-Pointer The inhibitory effect of Ang-(1-7) on VCAM-1 is mediated by MAS receptor. Black-Right-Pointing-Pointer The effect of Ang-(1-7) is due to the suppression of NF-kappaB translocation. -- Abstract: Angiotensin II (Ang II) and Angiotensin-(1-7) (Ang-(1-7)) are key effector peptides in the renin-angiotensin system. Increased circulatory Ang II level is associated with the development of hypertension and atherosclerosis, whereas Ang-(1-7) is a counter-regulatory mediator of Ang II which appears to be protective against cardiovascular disease. However, whether Ang-(1-7) regulates the action of Ang II on vascular endothelial cells (EC) remains unclear. We investigated the effects of Ang II and Ang-(1-7) in the context of atherogenesis, specifically endothelial cell VCAM-1 expression that is implicated in early plaque formation. The results show that Ang II increased VCAM-1 mRNA expression and protein displayed on EC surface, while Ang-(1-7) alone exerted no effects. However, Ang-(1-7) significantly suppressed Ang II-induced VCAM-1 expression. Ang-(1-7) also inhibited the Ang II-induced VCAM-1 promoter activity driven by transcription factor NF-KappaB. Furthermore, immunofluorescence assay and ELISA showed that Ang II facilitated the nuclear translocation of NF-kappaB in ECs, and this was attenuated by the presence of Ang-(1-7). The inhibitory effects of Ang-(1-7) on Ang II-induced VCAM-1 promoter activity and NF-kappaB nuclear translocation were all reversed by the competitive antagonist of Ang-(1-7) at the Mas receptor. Our results suggest that Ang-(1-7) mediates its affects on ECs through the Mas receptor, and negatively regulates Ang II-induced VCAM-1 expression by attenuating nuclear translocation of NF-kappaB.

  3. ATP-Competitive Inhibitors of the Mammalian Target of Rapamycin: Design and Synthesis of Highly Potent and Selective Pyrazolopyrimidines

    SciTech Connect

    Zask, Arie; Verheijen, Jeroen C.; Curran, Kevin; Kaplan, Joshua; Richard, David J.; Nowak, Pawel; Malwitz, David J.; Brooijmans, Natasja; Bard, Joel; Svenson, Kristine; Lucas, Judy; Toral-Barza, Lourdes; Zhang, Wei-Guo; Hollander, Irwin; Gibbons, James J.; Abraham, Robert T.; Ayral-Kaloustian, Semiramis; Mansour, Tarek S.; Yu, Ker

    2009-09-18

    The mammalian target of rapamycin (mTOR), a central regulator of growth, survival, and metabolism, is a validated target for cancer therapy. Rapamycin and its analogues, allosteric inhibitors of mTOR, only partially inhibit one mTOR protein complex. ATP-competitive, global inhibitors of mTOR that have the potential for enhanced anticancer efficacy are described. Structural features leading to potency and selectivity were identified and refined leading to compounds with in vivo efficacy in tumor xenograft models.

  4. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension

    PubMed Central

    Mikolajczyk, Tomasz P.; Nosalski, Ryszard; Szczepaniak, Piotr; Budzyn, Klaudia; Osmenda, Grzegorz; Skiba, Dominik; Sagan, Agnieszka; Wu, Jing; Vinh, Antony; Marvar, Paul J.; Guzik, Bartlomiej; Podolec, Jakub; Drummond, Grant; Lob, Heinrich E.; Harrison, David G.; Guzik, Tomasz J.

    2016-01-01

    Recent studies have emphasized the role of perivascular inflammation in cardiovascular disease. We studied mechanisms of perivascular leukocyte infiltration in angiotensin II (Ang II)-induced hypertension and their links to vascular dysfunction. Chronic Ang II infusion in mice increased immune cell content of T cells (255 ± 130 to 1664 ± 349 cells/mg; P < 0.01), M1 and M2 macrophages, and dendritic cells in perivascular adipose tissue. In particular, the content of T lymphocytes bearing CC chemokine receptor (CCR) 1, CCR3, and CCR5 receptors for RANTES chemokine was increased by Ang II (CCR1, 15.6 ± 1.5% vs. 31 ± 5%; P < 0.01). Hypertension was associated with an increase in perivascular adipose tissue expression of the chemokine RANTES (relative quantification, 1.2 ± 0.2 vs. 3.5 ± 1.1; P < 0.05), which induced T-cell chemotaxis and vascular accumulation of T cells expressing the chemokine receptors CCR1, CCR3, and CCR5. Mechanistically, RANTES−/− knockout protected against vascular leukocyte, and in particular T lymphocyte infiltration (26 ± 5% in wild type Ang II vs. 15 ± 4% in RANTES−/−), which was associated with protection from endothelial dysfunction induced by Ang II. This effect was linked with diminished infiltration of IFN-γ-producing CD8+ and double-negative CD3+CD4−CD8− T cells in perivascular space and reduced vascular oxidative stress while FoxP3+ T-regulatory cells were unaltered. IFN-γ ex vivo caused significant endothelial dysfunction, which was reduced by superoxide anion scavenging. In a human cohort, a significant inverse correlation was observed between circulating RANTES levels as a biomarker and vascular function measured as flow-mediated dilatation (R = −0.3, P < 0.01) or endothelial injury marker von Willebrand factor (R = +0.3; P < 0.01). Thus, chemokine RANTES is important in the regulation of vascular dysfunction through modulation of perivascular inflammation.—Mikolajczyk, T. P., Nosalski, R., Szczepaniak, P

  5. Heparanase Regulates Thrombosis in Vascular Injury and Stent-Induced Flow Disturbance

    PubMed Central

    Baker, Aaron B.; Gibson, William J.; Kolachalama, Vijaya B.; Golomb, Mordechai; Indolfi, Laura; Spruell, Christopher; Zcharia, Eyal; Vlodavsky, Israel; Edelman, Elazer R.

    2014-01-01

    Objectives The purpose of this study was to examine the role of heparanase in controlling thrombosis following vascular injury or endovascular stenting. Background The use of endovascular stents are a common clinical intervention for the treatment of arteries occluded due to vascular disease. Both heparin and heparan sulfate are known to be potent inhibitors of thrombosis. Heparanase is the major enzyme that degrades heparan sulfate in mammalian cells. This study examined the role of heparanase in controlling thrombosis following vascular injury and stent-induced flow disturbance. Methods This study used mice overexpressing human heparanase and examined the time to thrombosis using a laser-induced arterial thrombosis model in combination with vascular injury. An ex vivo system was used to examine the formation of thrombus to stent-induced flow disturbance. Results In the absence of vascular injury, wild type and heparanase overexpressing (HPA Tg) mice had similar times to thrombosis in a laser-induced arterial thrombosis model. However, in the presence of vascular injury, the time to thrombosis was dramatically reduced in HPA Tg mice. An ex vivo system was used to flow blood from wild type and HPA Tg mice over stents and stented arterial segments from both animal types. These studies demonstrate markedly increased thromboses on stents with blood isolated from HPA Tg mice in comparison to blood from wild type animals. We found that blood from HPA Tg animals had markedly increased thrombosis when applied to stented arterial segments from either wild type or HPA Tg mice. Conclusions Taken together, this study’s results indicate that heparanase is a powerful mediator of thrombosis in the context of vascular injury and stent-induced flow disturbance. PMID:22516446

  6. Rapamycin protects against neuronal death and improves neurological function with modulation of microglia after experimental intracerebral hemorrhage in rats.

    PubMed

    Li, D; Liu, F; Yang, T; Jin, T; Zhang, H; Luo, X; Wang, M

    2016-09-30

    Intracerebral hemorrhage (ICH) results in a devastating brain disorder with high mortality and poor prognosis and effective therapeutic intervention for the disease remains a challenge at present. The present study investigated the neuroprotective effects of rapamycin on ICH-induced brain damage and the possible involvement of activated microglia. ICH was induced in rats by injection of type IV collagenase into striatum. Different dose of rapamycin was systemically administrated by intraperitoneal injection beginning at 1 h after ICH induction. Western blot analysis showed that ICH led to a long-lasting increase of phosphorylated mTOR and this hyperactivation of mTOR was reduced by systemic administration of rapamycin. Rapamycin treatment significantly improved the sensorimotor deficits induced by ICH, and attenuated ICH-induced brain edema formation as well as lesion volume. Nissl and Fluoro-Jade C staining demonstrated that administration with rapamycin remarkably decreased neuronal death surrounding the hematoma at 7 d after ICH insult. ELISA and real-time quantitative PCR demonstrated that rapamycin inhibited ICH-induced excessive expression of TNF-α and IL-1β in ipsilateral hemisphere. Furthermore, activation of microglia induced by ICH was significantly suppressed by rapamycin administration. These data indicated that treatment of rapamycin following ICH decreased the brain injuries and neuronal death at the peri-hematoma striatum, and increased neurological function, which associated with reduced the levels of proinflammatory cytokines and activated microglia. The results provide novel insight into the neuroprotective therapeutic strategy of rapamycin for ICH insult, which possibly involving the regulation of microglial activation.

  7. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae.

    PubMed

    Imamura, Sousuke; Kawase, Yasuko; Kobayashi, Ikki; Sone, Toshiyuki; Era, Atsuko; Miyagishima, Shin-Ya; Shimojima, Mie; Ohta, Hiroyuki; Tanaka, Kan

    2015-10-01

    Most microalgae produce triacylglycerol (TAG) under stress conditions such as nitrogen depletion, but the underlying molecular mechanism remains unclear. In this study, we focused on the role of target of rapamycin (TOR) in TAG accumulation. TOR is a serine/threonine protein kinase that is highly conserved and plays pivotal roles in nitrogen and other signaling pathways in eukaryotes. We previously constructed a rapamycin-susceptible Cyanidioschyzon merolae, a unicellular red alga, by expressing yeast FKBP12 protein to evaluate the results of TOR inhibition (Imamura et al. in Biochem Biophys Res Commun 439:264-269, 2013). By using this strain, we here report that rapamycin-induced TOR inhibition results in accumulation of cytoplasmic lipid droplets containing TAG. Transcripts for TAG synthesis-related genes, such as glycerol-3-phosphate acyltransferase and acyl-CoA:diacylglycerol acyltransferase (DGAT), were increased by rapamycin treatment. We also found that fatty acid synthase-dependent de novo fatty acid synthesis was required for the accumulation of lipid droplets. Induction of TAG and up-regulation of DGAT gene expression by rapamycin were similarly observed in the unicellular green alga, Chlamydomonas reinhardtii. These results suggest the general involvement of TOR signaling in TAG accumulation in divergent microalgae.

  8. Inhibition of mTOR kinase via rapamycin blocks persistent predator stress-induced hyperarousal.

    PubMed

    Fifield, Kathleen; Hebert, Mark; Angel, Rebecca; Adamec, Robert; Blundell, Jacqueline

    2013-11-01

    Traumatic, stressful life events are thought to trigger acquired anxiety disorders such as post-traumatic stress disorder (PTSD). Recent data suggests that the mammalian target of rapamycin (mTOR) plays a key role in the formation of traumatic memories. The predator stress paradigm allows us to determine whether mTOR mediates the formation of both context-dependent (associative) and context-independent (non-associative) fear memories. Predator stress involves an acute, unprotected exposure of a rat to a cat which causes long-lasting non-associative fear memories manifested as generalized hyperarousal and increased anxiety-like behavior. Here, we show that rapamycin, an mTOR inhibitor, attenuates predator stress-induced hyperarousal, lasting at least three weeks. In addition, rapamycin blocks a subset of anxiety-like behaviors as measured in the elevated plus maze and hole board. Furthermore, when re-exposed to the predator stress context, rapamycin-treated stressed rats showed increased activity compared to vehicle controls suggesting that rapamycin blocks predator stress-induced associative fear memory. Taken together with past research, our results indicate that mTOR regulation of protein translation is required for the formation of both associative and non-associative fear memories. Overall, these data suggest that mTOR activation may contribute to the development of acquired anxiety disorders such as PTSD.

  9. S6 kinase 1 is required for rapamycin-sensitive liver proliferation after mouse hepatectomy.

    PubMed

    Espeillac, Catherine; Mitchell, Claudia; Celton-Morizur, Séverine; Chauvin, Céline; Koka, Vonda; Gillet, Cynthia; Albrecht, Jeffrey H; Desdouets, Chantal; Pende, Mario

    2011-07-01

    Rapamycin is an antibiotic inhibiting eukaryotic cell growth and proliferation by acting on target of rapamycin (TOR) kinase. Mammalian TOR (mTOR) is thought to work through 2 independent complexes to regulate cell size and cell replication, and these 2 complexes show differential sensitivity to rapamycin. Here we combine functional genetics and pharmacological treatments to analyze rapamycin-sensitive mTOR substrates that are involved in cell proliferation and tissue regeneration after partial hepatectomy in mice. After hepatectomy, hepatocytes proliferated rapidly, correlating with increased S6 kinase phosphorylation, while treatment with rapamycin derivatives impaired regeneration and blocked S6 kinase activation. In addition, genetic deletion of S6 kinase 1 (S6K1) caused a delay in S phase entry in hepatocytes after hepatectomy. The proliferative defect of S6K1-deficient hepatocytes was cell autonomous, as it was also observed in primary cultures and hepatic overexpression of S6K1-rescued proliferation. We found that S6K1 controlled steady-state levels of cyclin D1 (Ccnd1) mRNA in liver, and cyclin D1 expression was required to promote hepatocyte cell cycle. Notably, in vivo overexpression of cyclin D1 was sufficient to restore the proliferative capacity of S6K-null livers. The identification of an S6K1-dependent mechanism participating in cell proliferation in vivo may be relevant for cancer cells displaying high mTOR complex 1 activity and cyclin D1 accumulation.

  10. HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 up-regulation.

    PubMed

    González-Ramos, Marta; Calleros, Laura; López-Ongil, Susana; Raoch, Viviana; Griera, Mercedes; Rodríguez-Puyol, Manuel; de Frutos, Sergio; Rodríguez-Puyol, Diego

    2013-02-01

    The circulating levels of heat shock proteins (HSP) are increased in cardiovascular diseases; however, the implication of this for the fibrotic process typical of such diseases remains unclear. HSP70 can interact with the vascular smooth muscle cells (SMC), the major producer of extracellular matrix (ECM) proteins, through the Toll-like receptors 4 (TLR4). The transforming growth factor type-β1 (TGF-β1) is a well known vascular pro-fibrotic cytokine that is regulated in part by AP-1-dependent transcriptional mechanisms. We hypothesized that extracellular HSP70 could interact with SMCs, inducing TGF-β1 synthesis and subsequent changes in the vascular ECM. We demonstrate that extracellular HSP70 binds to human aorta SMC TLR4, which up-regulates the AP-1-dependent transcriptional activity of the TGF-β1 promoter. This is achieved through the mitogen activated protein kinases JNK and ERK, as demonstrated by the use of specific blockers and the knockdown of TLR4 with specific small interfering RNAs. The TGF-β1 upregulation increase the expression of the ECM proteins type I collagen and fibronectin. This novel observation may elucidate the mechanisms by which HSP70 contributes in the inflammation and fibrosis present in atherosclerosis and other fibrosis-related diseases.

  11. Chronic rapamycin treatment causes diabetes in male mice.

    PubMed

    Schindler, Christine E; Partap, Uttara; Patchen, Bonnie K; Swoap, Steven J

    2014-08-15

    Current evidence indicates that the mammalian target of rapamycin inhibitor rapamycin both increases longevity and, seemingly contradictorily, impairs glucose homeostasis. Most studies exploring the dimensions of this paradox have been based on rapamycin treatment in mice for up to 20 wk. We sought to better understand the metabolic effects of oral rapamycin over a substantially longer period of time in HET3 mice. We observed that treatment with rapamycin for 52 wk induced diabetes in male mice, characterized by hyperglycemia, significant urine glucose levels, and severe glucose and pyruvate intolerance. Glucose intolerance occurred in male mice by 4 wk on rapamycin and could be only partially reversed with cessation of rapamycin treatment. Female mice developed moderate glucose intolerance over 1 yr of rapamycin treatment, but not diabetes. The role of sex hormones in the differential development of diabetic symptoms in male and female mice was further explored. HET3 mice treated with rapamycin for 52 wk were gonadectomized and monitored over 10 wk. Castrated male mice remained glucose intolerant, while ovariectomized females developed significant glucose intolerance over the same time period. Subsequent replacement of 17β-estradiol (E2) in ovariectomized females promoted a recovery of glucose tolerance over a 4-wk period, suggesting the protective role of E2 against rapamycin-induced diabetes. These results indicate that 1) oral rapamycin treatment causes diabetes in male mice, 2) the diabetes is partially reversible with cessation of treatment, and 3) E2 plays a protective role against the development of rapamycin-induced diabetes.

  12. Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development.

    PubMed

    Breier, G; Clauss, M; Risau, W

    1995-11-01

    Vascular endothelial growth factor (VEGF) is a candidate regulator of blood vessel growth during embryonic development and in tumors. To evaluate the role of VEGF receptor-1/flt-1 (VEGFR1/flt-1) in the development of the vascular system, we have characterized the murine homolog of the human flt-1 gene and have analyzed its expression pattern during mouse embryogenesis. Receptor binding studies using transfected COS cells revealed that the murine flt-1 gene encodes a high affinity receptor for VEGF. The apparent Kd for VEGF binding, as determined by Scatchard analysis, was 114 pM, demonstrating that VEGFR1/flt-1 has a higher affinity to VEGF than VEGF receptor-2/flk-1 (VEGFR2/flk-1). By in situ hybridization, VEGFR1/flt-1 was detected in the yolk sac mesoderm already at the early stages of vascular development, while the receptor ligand was expressed in the entire endoderm of 7.5-day mouse embryos. A comparison with VEGFR2/flk-1 showed that the two receptors shared a common expression domain in the yolk sac mesoderm, but were expressed at different sites in the ectoplacental cone. The differential expression of the two VEGF receptors persisted in the developing placenta, where VEGFR1/flt-1 mRNA was detected in the spongiotrophoblast layer, whereas VEGFR2/flk-1 transcripts were present in the labyrinthine layer which is the site of VEGF expression. In the embryo proper, VEGFR1/flt-1 mRNA was specifically localized in blood vessels and capillaries of the developing organs, closely resembling the pattern of VEGFR2/flk-1 transcript distribution. In the developing brain, the expression of VEGF receptors in the perineural capillary plexus and in capillary sprouts which have invaded the neuro-ectoderm correlated with endothelial cell proliferation and brain angiogenesis. The data are consistent with the hypothesis that VEGF and its receptors have an important function both in the differentiation of the endothelial lineage and in the neovascularization of developing organs

  13. Protective effects of hydrogen-rich medium on lipopolysaccharide-induced monocytic adhesion and vascular endothelial permeability through regulation of vascular endothelial cadherin.

    PubMed

    Yu, Y; Wang, W N; Han, H Z; Xie, K L; Wang, G L; Yu, Y H

    2015-06-11

    We observed the effect of hydrogen-rich medium on lipopolysaccharide (LPS)-induced human umbilical vein endothelial cells (HUVECs), hyaline leukocyte conglutination, and permeability of the endothelium. Endotheliocytes were inoculated on 6-well plates and randomly divided into 4 groups: control, H2, LPS, LPS+H2, H2, and LPS+H2 in saturated hydrogen-rich medium. We applied Wright's stain-ing to observe conglutination of hyaline leukocytes and HUVECs, flow cytometry to determine the content of vascular cell adhesion protein 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), enzyme-linked immunosorbent assay to measure the E-selectin concentration in the cell liquor, the transendothelial electrical resistance (TEER) to test the permeability of endothelial cells, and Western blot and immunofluorescence to test the expression and distribution of vascular endothelial (VE)-cadherin. Compared with control cells, there was an increase in endothelium-hyaline leukocyte conglutination, a reduction in VCAM-1, ICAM-1, and E-selectin, and the TEER value increased obviously. Compared with LPS, there was an obvious reduction in the conglutination of LPS+H2 cells, a reduction in VCAM-1, ICAM-1, and E-selectin levels, and a reduction in the TEER-resistance value, while the expression of VE-cadherin increased. Fluorescence results showed that, compared with control cells, the VE-cadherin in LPS cells was in-complete at the cell joints. Compared with LPS cells, the VE-cadherin in LPS+H2 cells was even and complete at the cell joints. Liquid rich in hydrogen could reduce LPS-induced production of adhesion molecules and endothelium-hyaline leukocyte conglutination, and influence the expression and distribution of VE-cadherin to regulate the permeability of the endothelium.

  14. Small-Nucleic-Acid-Based Therapeutic Strategy Targeting the Transcription Factors Regulating the Vascular Inflammation, Remodeling and Fibrosis in Atherosclerosis

    PubMed Central

    Youn, Sung Won; Park, Kwan-Kyu

    2015-01-01

    Atherosclerosis arises when injury to the arterial wall induces an inflammatory cascade that is sustained by a complex network of cytokines, together with accumulation of lipids and fibrous material. Inflammatory cascades involve leukocyte adherence and chemotaxis, which are coordinated by the local secretion of adhesion molecules, chemotactic factors, and cytokines. Transcription factors are critical to the integration of the various steps of the cascade response to mediators of vascular injury, and are induced in a stimulus-dependent and cell-type-specific manner. Several small-nucleic-acid-based therapeutic strategies have recently been developed to target transcription factors: antisense oligodeoxynucleotides, RNA interference, microRNA, and decoy oligodeoxynucleotides. The aim of this review was to provide an overview of these particular targeted therapeutic strategies, toward regulation of the vascular inflammation, remodeling and fibrosis associated with atherosclerosis. PMID:26006249

  15. Glutathione regulation of redox-sensitive signals in tumor necrosis factor-alpha-induced vascular endothelial dysfunction.

    PubMed

    Tsou, Tsui-Chun; Yeh, Szu Ching; Tsai, Feng-Yuan; Chen, Jein-Wen; Chiang, Huai-Chih

    2007-06-01

    We investigated the regulatory role of glutathione in tumor necrosis factor-alpha (TNF-alpha)-induced vascular endothelial dysfunction as evaluated by using vascular endothelial adhesion molecule expression and monocyte-endothelial monolayer binding. Since TNF-alpha induces various biological effects on vascular cells, TNF-alpha dosage could be a determinant factor directing vascular cells into different biological fates. Based on the adhesion molecule expression patterns responding to different TNF-alpha concentrations, we adopted the lower TNF-alpha (0.2 ng/ml) to rule out the possible involvement of other TNF-alpha-induced biological effects. Inhibition of glutathione synthesis by l-buthionine-(S,R)-sulfoximine (BSO) resulted in down-regulations of the TNF-alpha-induced adhesion molecule expression and monocyte-endothelial monolayer binding. BSO attenuated the TNF-alpha-induced nuclear factor-kappaB (NF-kappaB) activation, however, with no detectable effect on AP-1 and its related mitogen-activated protein kinases (MAPKs). Deletion of an AP-1 binding site in intercellular adhesion molecule-1 (ICAM-1) promoter totally abolished its constitutive promoter activity and its responsiveness to TNF-alpha. Inhibition of ERK, JNK, or NF-kappaB attenuates TNF-alpha-induced ICAM-1 promoter activation and monocyte-endothelial monolayer binding. Our study indicates that TNF-alpha induces adhesion molecule expression and monocyte-endothelial monolayer binding mainly via activation of NF-kappaB in a glutathione-sensitive manner. We also demonstrated that intracellular glutathione does not modulate the activation of MAPKs and/or their downstream AP-1 induced by lower TNF-alpha. Although AP-1 activation by the lower TNF-alpha was not detected in our systems, we could not rule out the possible involvement of transiently activated MAPKs/AP-1 in the regulation of TNF-alpha-induced adhesion molecule expression.

  16. Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases.

    PubMed

    Uchida, Naoyuki; Tasaka, Masao

    2013-12-01

    Plant vasculatures are complex tissues consisting of (pro)cambium, phloem, and xylem. The (pro)cambium serves as vascular stem cells that produce all vascular cells. The Arabidopsis ERECTA (ER) receptor kinase is known to regulate the architecture of inflorescence stems. It was recently reported that the er mutation enhances a vascular phenotype induced by a mutation of TDR/PXY, which plays a significant role in procambial proliferation, suggesting that ER participates in vascular development. However, detailed molecular mechanisms of the ER-dependent vascular regulation are largely unknown. Here, this work found that ER and its paralogue, ER-LIKE1, were redundantly involved in procambial development of inflorescence stems. Interestingly, their activity in the phloem was sufficient for vascular regulation. Furthermore, two endodermis-derived peptide hormones, EPFL4 and EPFL6, were redundantly involved in such regulation. It has been previously reported that EPFL4 and EPFL6 act as ligands of phloem-expressed ER for stem elongation. Therefore, these findings indicate that cell-cell communication between the endodermis and the phloem plays an important role in procambial development as well as stem elongation. Interestingly, similar EPFL-ER modules control two distinct developmental events by slightly changing their components: the EPFL4/6-ER module for stem elongation and the EPFL4/6-ER/ERL1 module for vascular development.

  17. Endothelium-Independent Effect of Fisetin on the Agonist-Induced Regulation of Vascular Contractility

    PubMed Central

    Je, Hyun Dong; Sohn, Uy Dong; La, Hyen-Oh

    2016-01-01

    Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function. PMID:26759702

  18. The Inhibitory Effect of Shikonin on the Agonist-Induced Regulation of Vascular Contractility

    PubMed Central

    Je, Hyun Dong; Kim, Hyeong-Dong; La, Hyen-Oh

    2015-01-01

    Shikonin, a natural flavonoid found in the roots of Lithospermum erythrorhizon, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of shikonin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Shikonin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, shikonin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and the inhibition of MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of shikonin on agonist-induced vascular contraction regardless of endothelial function. PMID:25995821

  19. Endothelium-Independent Effect of Fisetin on the Agonist-Induced Regulation of Vascular Contractility.

    PubMed

    Je, Hyun Dong; Sohn, Uy Dong; La, Hyen-Oh

    2016-01-01

    Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function.

  20. Stromal vascular cells and adipogenesis: Cells within adipose depots regulate adipogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A collection of investigations indicate the importance of adipose tissue stromal/stem cells to vasculogenesis and angiogenesis during adipogenesis. Early in development the stromal-vascular (S-V) elements control and dictate the extent of adipogenesis in a depot dependent manner. For instance, the...

  1. Monocyte-expressed urokinase regulates human vascular smooth muscle cell migration in a coculture model.

    PubMed

    Kusch, Angelika; Tkachuk, Sergey; Lutter, Steffen; Haller, Hermann; Dietz, Rainer; Lipp, Martin; Dumler, Inna

    2002-01-01

    Interactions of vascular smooth muscle cells (VSMC) with monocytes recruited to the arterial wall at a site of injury, with resultant modulation of VSMC growth and migration, are central to the development of vascular intimal thickening. Urokinase-type plasminogen activator (uPA) expressed by monocytes is a potent chemotactic factor for VSMC and might serve for the acceleration of vascular remodeling. In this report, we demonstrate that coculture of human VSMC with freshly isolated peripheral blood-derived human monocytes results in significant VSMC migration that increases during the coculture period. Accordingly, VSMC adhesion was inhibited with similar kinetics. VSMC proliferation, however, was not affected and remained at the same basal level during the whole period of coculture. The increase of VSMC migration in coculture was equivalent to the uPA-induced migration of monocultured VSMC and was blocked by addition into coculture of soluble uPAR (suPAR). Analysis of uPA and uPAR expression in cocultured cells demonstrated that monocytes are a major source of uPA, whose expression increases in coculture five-fold, whereas VSMC display an increased expression of cell surface-associated uPAR. These findings indicate that upregulated uPA production by monocytes following vascular injury acts most likely as an endogenous activator of VSMC migration contributing to the remodeling of vessel walls.

  2. Rapamycin promotes Schwann cell migration and nerve growth factor secretion

    PubMed Central

    Liu, Fang; Zhang, Haiwei; Zhang, Kaiming; Wang, Xinyu; Li, Shipu; Yin, Yixia

    2014-01-01

    Rapamycin, similar to FK506, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of rapamycin and FK506 on Schwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more significantly promoted Schwann cell migration than the highest FK506 concentration (100μmol/L). Rapamycin promoted the secretion of nerve growth factors and upregulated growth-associated protein 43 expression in Schwann cells, but did not significantly affect Schwann cell proliferation. Therefore, rapamycin has potential application in peripheral nerve regeneration therapy. PMID:25206862

  3. Sirolimus (rapamycin): from the soil of Easter Island to a bright future.

    PubMed

    Paghdal, Kapila V; Schwartz, Robert A

    2007-12-01

    Discovered in fungi in the remote Easter Island, sirolimus (rapamycin) shows potential beyond its obvious antiproliferative and immunosuppressant activity. Studies have demonstrated that sirolimus acts as a vascular endothelial growth factor inhibitor, providing prospective therapeutic benefits and possible prevention of tuberous sclerosis and Kaposi's sarcoma. Its ability to decrease keratinocyte proliferation may help patients with psoriasis. In those with tuberous sclerosis complex, it may prevent the development of hamartomas and reduce or eliminate them once grown by blocking the mammalian target of rapamycin, a critical regulatory kinase. A great advantage for this drug is in the decreased risk of malignancies, including Kaposi's sarcoma, associated with its use compared with other immunosuppressants, namely calcineurin inhibitors. This review will focus on the pharmacology and potential uses of sirolimus.

  4. H2S Regulates Hypobaric Hypoxia-Induced Early Glio-Vascular Dysfunction and Neuro-Pathophysiological Effects

    PubMed Central

    Kumar, Gaurav; Chhabra, Aastha; Mishra, Shalini; Kalam, Haroon; Kumar, Dhiraj; Meena, Ramniwas; Ahmad, Yasmin; Bhargava, Kalpana; Prasad, Dipti N.; Sharma, Manish

    2016-01-01

    Hypobaric Hypoxia (HH) is an established risk factor for various neuro-physiological perturbations including cognitive impairment. The origin and mechanistic basis of such responses however remain elusive. We here combined systems level analysis with classical neuro-physiological approaches, in a rat model system, to understand pathological responses of brain to HH. Unbiased ‘statistical co-expression networks’ generated utilizing temporal, differential transcriptome signatures of hippocampus—centrally involved in regulating cognition—implicated perturbation of Glio-Vascular homeostasis during early responses to HH, with concurrent modulation of vasomodulatory, hemostatic and proteolytic processes. Further, multiple lines of experimental evidence from ultra-structural, immuno-histological, substrate-zymography and barrier function studies unambiguously supported this proposition. Interestingly, we show a significant lowering of H2S levels in the brain, under chronic HH conditions. This phenomenon functionally impacted hypoxia-induced modulation of cerebral blood flow (hypoxic autoregulation) besides perturbing the strength of functional hyperemia responses. The augmentation of H2S levels, during HH conditions, remarkably preserved Glio-Vascular homeostasis and key neuro-physiological functions (cerebral blood flow, functional hyperemia and spatial memory) besides curtailing HH-induced neuronal apoptosis in hippocampus. Our data thus revealed causal role of H2S during HH-induced early Glio-Vascular dysfunction and consequent cognitive impairment. PMID:27211559

  5. Di-peptidyl peptidase-4 inhibitor sitagliptin protects vascular function in metabolic syndrome: possible role of epigenetic regulation.

    PubMed

    Cicek, Figen Amber; Amber, Cicek Figen; Tokcaer-Keskin, Zeynep; Zeynep, Tokcaer-Keskin; Ozcinar, Evren; Evren, Ozcinar; Bozkus, Yosuf; Yusuf, Bozkus; Akcali, Kamil Can; Can, Akcali Kamil; Turan, Belma; Belma, Turan

    2014-08-01

    Metabolic syndrome (MetS) is a complex medical disorder characterized by insulin resistance, hypertension, and high risk of coronary disease and stroke. Microvascular rarefaction and endothelial dysfunction have also been linked with MetS, and recent evidence from clinical studies supports the efficacy of incretin-based antidiabetic therapies for vascular protection in diabetes. Previous studies pointed out the importance of dipeptidyl peptidase-4 (DPP-4) inhibition in endothelial cells due to getting protection against metabolic pathologies. We therefore aimed to investigate the acute effects of a DPP-4 inhibitor, sitagliptin, on vascular function in rats with high-sucrose diet-induced MetS. In order to elucidate the mechanisms implicated in the effects of DPP-4 inhibition, we tested the involvement of NO pathway and epigenetic regulation in the MetS. Acute use of sitagliptin protects the vascular function in the rats with MetS in part due to NO pathway via restoring the depressed aortic relaxation responses mediated by receptors. Application of sitagliptin enhanced the depressed phosphorylation levels of both the endothelial NO synthase and the apoptotic status of protein kinase B, known as Akt, in endothelium-intact thoracic aorta from rats with MetS. One-hour application of sitagliptin on aortic rings from rats with MetS also induced remarkable histon posttranslational modifications such as increased expression of H3K27Me3, but not of H3K27Me2, resulting in an accumulation of the H3K27Me3. Our findings suggest that, in addition to its well-known hypoglycemic action, sitagliptin may also have beneficial effects on hyperglycemia-induced vascular changes in an endotheium-dependent manner. These present results with sitagliptin aside from the glycaemic control, may demonstrate its important role in the treatment of patients with MetS.

  6. A Rapamycin-Releasing Perivascular Polymeric Sheath Produces Highly Effective Inhibition of Intimal Hyperplasia

    PubMed Central

    Yu, Xaohua; Takayama, Toshio; Goel, Shakti A.; Shi, Xudong; Zhou, Yifan; Kent, K. Craig; Murphy, William L.; Guo, Lian-Wang

    2014-01-01

    Intimal hyperplasia produces restenosis (re-narrowing) of the vessel lumen following vascular intervention. Drugs that inhibit intimal hyperplasia have been developed, however there is currently no clinical method of perivascular drug-delivery to prevent restenosis following open surgical procedures. Here we report a poly(ε-caprolactone) (PCL) sheath that is highly effective in preventing intimal hyperplasia through perivascular delivery of rapamycin. We first screened a series of bioresorbable polymers, i.e., poly(lactide-co-glycolide) (PLGA), poly(lactic acid) (PLLA), PCL, and their blends, to identify desired release kinetics and sheath physical properties. Both PLGA and PLLA sheaths produced minimal (<30%) rapamycin release within 50 days in PBS buffer. In contrast, PCL sheaths exhibited more rapid and near-linear release kinetics, as well as durable integrity (>90 days) as evidenced in both scanning electron microscopy and subcutaneous embedding experiments. Moreover, a PCL sheath deployed around balloon-injured rat carotid arteries was associated with a minimum rate of thrombosis compared to PLGA and PLLA. Morphometric analysis and immunohistochemistry revealed that rapamycin-loaded perivascular PCL sheaths produced pronounced (85%) inhibition of intimal hyperplasia (0.15±0.05 vs 1.01±0.16), without impairment of the luminal endothelium, the vessel’s anti-thrombotic layer. Our data collectively show that a rapamycin-loaded PCL delivery system produces substantial mitigation of neointima, likely due to its favorable physical properties leading to a stable yet flexible perivascular sheath and steady and prolonged release kinetics. Thus, a PCL sheath may provide useful scaffolding for devising effective perivascular drug delivery particularly suited for preventing restenosis following open vascular surgery. PMID:24852098

  7. A rapamycin-releasing perivascular polymeric sheath produces highly effective inhibition of intimal hyperplasia.

    PubMed

    Yu, Xiaohua; Takayama, Toshio; Goel, Shakti A; Shi, Xudong; Zhou, Yifan; Kent, K Craig; Murphy, William L; Guo, Lian-Wang

    2014-10-10

    Intimal hyperplasia produces restenosis (re-narrowing) of the vessel lumen following vascular intervention. Drugs that inhibit intimal hyperplasia have been developed, however there is currently no clinical method of perivascular drug-delivery to prevent restenosis following open surgical procedures. Here we report a poly(ε-caprolactone) (PCL) sheath that is highly effective in preventing intimal hyperplasia through perivascular delivery of rapamycin. We first screened a series of bioresorbable polymers, i.e., poly(lactide-co-glycolide) (PLGA), poly(lactic acid) (PLLA), PCL, and their blends, to identify desired release kinetics and sheath physical properties. Both PLGA and PLLA sheaths produced minimal (<30%) rapamycin release within 50days in PBS buffer. In contrast, PCL sheaths exhibited more rapid and near-linear release kinetics, as well as durable integrity (>90days) as evidenced in both scanning electron microscopy and subcutaneous embedding experiments. Moreover, a PCL sheath deployed around balloon-injured rat carotid arteries was associated with a minimum rate of thrombosis compared to PLGA and PLLA. Morphometric analysis and immunohistochemistry revealed that rapamycin-loaded perivascular PCL sheaths produced pronounced (85%) inhibition of intimal hyperplasia (0.15±0.05 vs 1.01±0.16), without impairment of the luminal endothelium, the vessel's anti-thrombotic layer. Our data collectively show that a rapamycin-loaded PCL delivery system produces substantial mitigation of neointima, likely due to its favorable physical properties leading to a stable yet flexible perivascular sheath and steady and prolonged release kinetics. Thus, a PCL sheath may provide useful scaffolding for devising effective perivascular drug delivery particularly suited for preventing restenosis following open vascular surgery.

  8. Endothelial GRK2 regulates vascular homeostasis through the control of free radical oxygen species

    PubMed Central

    Ciccarelli, Michele; Sorriento, Daniela; Franco, Antonietta; Fusco, Anna; Giudice, Carmine Del; Annunziata, Roberto; Cipolletta, Ersilia; Monti, Maria Gaia; Dorn, Gerald W; Trimarco, Bruno; Iaccarino, Guido

    2014-01-01

    Objective The role of endothelial GRK2 was investigated in mice with selective deletion of the kinase in the endothelium (Tie2-CRE/GRK2fl/fl). Approach and Results Aortas from Tie2-CRE/GRK2fl/fl presented functional and structural alterations as compared to control GRK2fl/fl mice. In particular, vasoconstriction was blunted to different agonists, and collagen and elastic rearrangement and macrophage infiltration were observed. In primary cultured endothelial cells deficient for GRK2, mitochondrial reactive oxygen species (ROS) was increased, leading to expression of cytokines. Chronic treatment with a ROS scavenger in mice corrected the vascular phenotype by recovering vasoconstriction, structural abnormalities and reducing macrophage infiltration. Conclusions These results demonstrate that GRK2 removal compromises vascular phenotype and integrity by increasing endothelial ROS production. PMID:23950144

  9. Importance of the splanchnic vascular bed in human blood pressure regulation.

    NASA Technical Reports Server (NTRS)

    Rowell, L. B.; Detry, J.-M. R.; Blackmon, J. R.; Wyss, C.

    1972-01-01

    Three-part experiment in which five subjects were exposed to lower body negative pressure (LBNP) at -50 mm Hg below the iliac crests. Duration of LBNP to earliest vagal symptoms was 7 to 21 min; all data are expressed as changes from control period to the last measurements before these symptoms. In part I, forearm blood flow (by Whitney gauge) fell 45% during LBNP. In part II, splanchnic blood flow (from arterial clearance hepatic extraction of indocyanine green) fell 32% and splanchnic vascular resistance rose 30%. In part III, cardiac output fell 28%, stroke volume 51%, and central blood volume 21%. Total peripheral resistance and heart rate rose 19% and 52%. Of the reduction in total vascular conductance, decreased splanchnic conductance accounted for approximately 33%; skin plus muscle conductance decreased similarly.

  10. Calcium regulation of vascular smooth muscle cell-derived matrix vesicles.

    PubMed

    Kapustin, Alexander N; Shanahan, Catherine M

    2012-07-01

    Vascular calcification is a pathological process common in patients with disorders of mineral metabolism and mediated by vascular smooth muscle cells (VSMCs). A key event in the initiation of VSMC calcification is the release of mineralization-competent matrix vesicles (MVs), small membrane-bound bodies with structural features enabling them to efficiently nucleate hydroxyapatite. These bodies are similar to MVs secreted by chondrocytes during bone development and their properties include the absence of calcification inhibitors, formation of nucleation sites, and accumulation of matrix metalloproteinases such as MMP-2. The mechanisms of MV biogenesis and loading remain poorly understood; however, emerging data have demonstrated that alterations in cytosolic calcium homeostasis can trigger multiple changes in MV composition that promote their mineralization.

  11. Heparan Sulfate Regulates VEGF165- and VEGF121-mediated Vascular Hyperpermeability*

    PubMed Central

    Xu, Ding; Fuster, Mark M.; Lawrence, Roger; Esko, Jeffrey D.

    2011-01-01

    VEGF was first described as vascular permeability factor, a potent inducer of vascular leakage. Genetic evidence indicates that VEGF-stimulated endothelial proliferation in vitro and angiogenesis in vivo depend on heparan sulfate, but a requirement for heparan sulfate in vascular hyperpermeability has not been explored. Here we show that altering endothelial cell heparan sulfate biosynthesis in vivo decreases hyperpermeability induced by both VEGF165 and VEGF121. Because VEGF121 does not bind heparan sulfate, the requirement for heparan sulfate suggested that it interacted with VEGF receptors rather than the ligand. By applying proximity ligation assays to primary brain endothelial cells, we show a direct interaction in situ between heparan sulfate and the VEGF receptor, VEGFR2. Furthermore, the number of heparan sulfate-VEGFR2 complexes increased in response to both VEGF165 and VEGF121. Genetic or heparin lyase-mediated alteration of endothelial heparan sulfate attenuated phosphorylation of VEGFR2 in response to VEGF165 and VEGF121, suggesting that the functional VEGF receptor complex contains heparan sulfate. Pharmacological blockade of heparan sulfate-protein interactions inhibited hyperpermeability in vivo, suggesting heparan sulfate as a potential target for treating hyperpermeability associated with ischemic disease. PMID:20974861

  12. Chemokine CXCL12 uses CXCR4 and a signaling core formed by bifunctional Akt, extracellular signal-regulated kinase (ERK)1/2, and mammalian target of rapamycin complex 1 (mTORC1) proteins to control chemotaxis and survival simultaneously in mature dendritic cells.

    PubMed

    Delgado-Martín, Cristina; Escribano, Cristina; Pablos, José Luis; Riol-Blanco, Lorena; Rodríguez-Fernández, José Luis

    2011-10-28

    Chemokines control several cell functions in addition to chemotaxis. Although much information is available on the involvement of specific signaling molecules in the control of single functions controlled by chemokines, especially chemotaxis, the mechanisms used by these ligands to regulate several cell functions simultaneously are completely unknown. Mature dendritic cells (maDCs) migrate through the afferent lymphatic vessels to the lymph nodes, where they regulate the initiation of the immune response. As maDCs are exposed to chemokine CXCL12 (receptors CXCR4 and CXCR7) during their migration, its functions are amenable to be regulated by this ligand. We have used maDCs as a model system to analyze the mechanisms whereby CXCL12 simultaneously controls chemotaxis and survival in maDCs. We show that CXCL12 uses CXCR4, but not CXCR7, and the components of a signaling core that includes G(i)/Gβγ, PI3K-α/-δ/-γ, Akt, ERK1/2 and mammalian target of rapamycin complex 1 (mTORC1), which organize hierarchically to control both functions. Downstream of Akt, Forkhead box class O (FOXO) regulates CXCL12-dependent survival, but not chemotaxis, suggesting that downstream of the aforementioned signaling core, additional signaling molecules may control more selectively CXCL12-dependent chemotaxis or survival. Finally, the data obtained also show that CXCR4 uses a signaling signature that is different from that used by CCR7 to control similar functions.

  13. Rapamycin reverses the senescent phenotype and improves immuno-regulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway

    PubMed Central

    Feng, Guijian; Meng, Yan; Da, Zhanyun; Guo, Genkai; Xia, Yunfei; Zhu, Xinhang; Shi, Guixiu; Cheng, Chun

    2016-01-01

    We have shown that bone marrow (BM)-derived mesenchymal stem cells (BM-MSCs) from SLE patients exhibit senescent behavior and are involved in the pathogenesis of SLE. The aim of this study was to investigate the effects of rapamycin (RAPA) on the senescences and immunoregulatory ability of MSCs of MRL/lpr mice and SLE patients and the underlying mechanisms. Cell morphology, senescence associated β-galactosidase (SA-β-gal) staining, F-actin staining were used to detect the senescence of cells. BM-MSCs and purified CD4+ T cells were co-cultured indirectly. Flow cytometry was used to inspect the proportion of regulatory T (Treg) /T helper type 17 (Th17). We used small interfering RNA (siRNA) to interfere the expression of mTOR, and detect the effects by RT-PCR, WB and immunofluorescence. Finally, 1×106 of SLE BM-MSCs treated with RAPA were transplanted to cure the 8 MRL/lpr mice aged 16 weeks for 12 weeks. We demonstrated that RAPA alleviated the clinical symptoms of lupus nephritis and prolonged survival in MRL/lpr mice. RAPA reversed the senescent phenotype and improved immunoregulation of MSCs from MRL/lpr mice and SLE patients through inhibition of the mTOR signaling pathway. Marked therapeutic effects were observed in MRL/lpr mice following transplantation of BM-MSCs from SLE patients pretreated with RAPA. PMID:27048648

  14. Rapamycin transiently induces mitochondrial remodeling to reprogram energy metabolism in old hearts

    PubMed Central

    Chiao, Ying Ann; Kolwicz, Stephen C.; Basisty, Nathan; Gagnidze, Arni; Zhang, Julia; Gu, Haiwei; Djukovic, Danijel; Beyer, Richard P.; Raftery, Daniel; MacCoss, Michael; Tian, Rong; Rabinovitch, Peter S.

    2016-01-01

    Rapamycin, an inhibitor of mTOR signaling, has been shown to reverse diastolic dysfunction in old mice in 10 weeks, highlighting its therapeutic potential for a poorly treatable condition. However, the mechanisms and temporal regulation of its cardiac benefits remain unclear. We show that improved diastolic function in old mice begins at 2-4 weeks, progressing over the course of 10-week treatment. While TORC1-mediated S6 phosphorylation and TORC2 mediated AKT and PKCα phosphorylation are inhibited throughout the course of treatment, rapamycin inhibits ULK phosphorylation and induces autophagy during just the first week of treatment, returning to baseline at two weeks and after. Concordantly, markers of mitochondrial biogenesis increase over the first two weeks of treatment and return to control levels thereafter. This transient induction of autophagy and mitochondrial biogenesis suggests that damaged mitochondria are replaced by newly synthesized ones to rejuvenate mitochondrial homeostasis. This remodeling is shown to rapidly reverse the age-related reduction in fatty acid oxidation to restore a more youthful substrate utilization and energetic profile in old isolated perfused hearts, and modulates the myocardial metabolome in vivo. This study demonstrates the differential and dynamic mechanisms following rapamycin treatment and highlights the importance of understanding the temporal regulation of rapamycin effects. PMID:26872208

  15. Disintegrin Metalloprotease (ADAM) 10 Regulates Endothelial Permeability and T Cell Transmigration by Proteolysis of Vascular Endothelial Cadherin

    PubMed Central

    Schulz, Beate; Pruessmeyer, Jessica; Maretzky, Thorsten; Ludwig, Andreas; Blobel, Carl P.; Saftig, Paul; Reiss, Karina

    2009-01-01

    Vascular endothelial (VE)-cadherin is the major adhesion molecule of endothelial adherens junctions. It plays an essential role in controlling endothelial permeability, vascular integrity, leukocyte transmigration, and angiogenesis. Elevated levels of soluble VE-cadherin are associated with diseases like coronary atherosclerosis. Previous data showed that the extracellular domain of VE-cadherin is released by an unknown metalloprotease activity during apoptosis. In this study, we used gain of function analyses, inhibitor studies and RNA interference experiments to analyze the proteolytic release of VE-cadherin in human umbilical vein endothelial cells (HUVECs). We found that VE-cadherin is specifically cleaved by the disintegrin and metalloprotease ADAM10 in its ectodomain releasing a soluble fragment and generating a carboxyterminal membrane bound stub, which is a substrate for a subsequent γ-secretase cleavage. This ADAM10-mediated proteolysis could be induced by Ca2+-influx and staurosporine treatment, indicating that ADAM10-mediated VE-cadherin cleavage contributes to the dissolution of adherens junctions during endothelial cell activation and apoptosis, respectively. In contrast, protein kinase C activation or inhibition did not modulate VE-cadherin processing. Increased ADAM10 expression was functionally associated with an increase in endothelial permeability. Remarkably, our data indicate that ADAM10 activity also contributes to the thrombin-induced decrease of endothelial cell-cell adhesion. Moreover, knockdown of ADAM10 in HUVECs as well as in T cells by small interfering RNA impaired T cell transmigration. Taken together our data identify ADAM10 as a novel regulator of vascular permeability and demonstrate a hitherto unknown function of ADAM10 in the regulation of VE-cadherin-dependent endothelial cell functions and leukocyte transendothelial migration. PMID:18420943

  16. Central role of endogenous Toll-like receptor-2 activation in regulating inflammation, reactive oxygen species production, and subsequent neointimal formation after vascular injury

    SciTech Connect

    Shishido, Tetsuro . E-mail: Tetsuro_Shishido@URMC.Rochester.edu; Nozaki, Naoki; Takahashi, Hiroki; Arimoto, Takanori; Niizeki, Takeshi; Koyama, Yo; Abe, Jun-ichi; Takeishi, Yasuchika; Kubota, Isao

    2006-07-14

    Background: It is now evident that inflammation after vascular injury has significant impact on the restenosis after revascularization procedures such as angioplasty, stenting, and bypass grafting. However, the mechanisms that regulate inflammation and repair after vascular injury are incompletely understood. Here, we report that vascular injury-mediated cytokine expression, reactive oxygen species (ROS) production, as well as subsequent neointimal formation requires Toll-like receptor-2 (TLR-2) mediated signaling pathway in vivo. Methods and results: Vascular injury was induced by cuff-placement around the femoral artery in non-transgenic littermates (NLC) and TLR-2 knockout (TLR-2KO) mice. After cuff-placement in NLC mice, expression of TLR-2 was significantly increased in both smooth muscle medial layer and adventitia. Interestingly, we found that inflammatory genes expression such as tumor necrosis factor-{alpha}, interleukin-1{beta} (IL-1{beta}), IL-6, and monocyte chemoattractant protein-1 were markedly decreased in TLR-2KO mice compared with NLC mice. In addition, ROS production after vascular injury was attenuated in TLR-2KO mice compared with NLC mice. Since we observed the significant role of endogenous TLR-2 activation in regulating inflammatory responses and ROS production after vascular injury, we determined whether inhibition of endogenous TLR-2 activation can inhibit neointimal proliferation after vascular injury. Neointimal hyperplasia was markedly suppressed in TLR-2KO mice compared with WT mice at both 2 and 4 weeks after vascular injury. Conclusions: These findings suggested that endogenous TLR-2 activation might play a central role in the regulation of vascular inflammation as well as subsequent neointimal formation in injured vessels.

  17. Differential Regulation of NOTCH2 and NOTCH3 Contribute to Their Unique Functions in Vascular Smooth Muscle Cells*

    PubMed Central

    Baeten, Jeremy T.; Lilly, Brenda

    2015-01-01

    Notch signaling is a key regulator of vascular smooth muscle cell (VSMC) phenotypes, including differentiation, proliferation, and cell survival. However, the exact contribution of the individual Notch receptors has not been thoroughly delineated. In this study, we identify unique roles for NOTCH2 and NOTCH3 in regulating proliferation and cell survival in cultured VSMCs. Our results indicate that NOTCH2 inhibits PDGF-B-dependent proliferation and its expression is decreased by PDGF-B. In contrast, NOTCH3 promotes proliferation and receptor expression is increased by PDGF-B. Additionally, data show that NOTCH3, but not NOTCH2 protects VSMCs from apoptosis and apoptosis mediators degrade NOTCH3 protein. We identified three pro-survival genes specifically regulated by NOTCH3 in cultured VSMCs and in mouse aortas. This regulation is mediated through MAP kinase signaling, which we demonstrate can be activated by NOTCH3, but not NOTCH2. Overall, this study highlights discrete roles for NOTCH2 and NOTCH3 in VSMCs and connects these roles to specific upstream regulators that control their expression. PMID:25957400

  18. DHEA attenuates PDGF-induced phenotypic proliferation of vascular smooth muscle A7r5 cells through redox regulation

    SciTech Connect

    Urata, Yoshishige; Goto, Shinji; Kawakatsu, Miho; Yodoi, Junji; Eto, Masato; Akishita, Masahiro; Kondo, Takahito

    2010-05-28

    It is known that dehydroepiandrosterone (DHEA) inhibits a phenotypic switch in vascular smooth muscle cells (VSMC) induced by platelet-derived growth factor (PDGF)-BB. However, the mechanism behind the effect of DHEA on VSMC is not clear. Previously we reported that low molecular weight-protein tyrosine phosphatase (LMW-PTP) dephosphorylates PDGF receptor (PDGFR)-{beta} via a redox-dependent mechanism involving glutathione (GSH)/glutaredoxin (GRX)1. Here we demonstrate that the redox regulation of PDGFR-{beta} is involved in the effect of DHEA on VSMC. DHEA suppressed the PDGF-BB-dependent phosphorylation of PDGFR-{beta}. As expected, DHEA increased the levels of GSH and GRX1, and the GSH/GRX1 system maintained the redox state of LMW-PTP. Down-regulation of the expression of LMW-PTP using siRNA restored the suppression of PDGFR-{beta}-phosphorylation by DHEA. A promoter analysis of GRX1 and {gamma}-glutamylcysteine synthetase ({gamma}-GCS), a rate-limiting enzyme of GSH synthesis, showed that DHEA up-regulated the transcriptional activity at the peroxisome proliferator-activated receptor (PPAR) response element, suggesting PPAR{alpha} plays a role in the induction of GRX1 and {gamma}-GCS expression by DHEA. In conclusion, the redox regulation of PDGFR-{beta} is involved in the suppressive effect of DHEA on VSMC proliferation through the up-regulation of GSH/GRX system.

  19. MicroRNA857 Is Involved in the Regulation of Secondary Growth of Vascular Tissues in Arabidopsis1

    PubMed Central

    Zhao, Yuanyuan; Lin, Sen; Qiu, Zongbo; Cao, Dechang; Wen, Jialong; Deng, Xin; Wang, Xiaohua; Lin, Jinxing; Li, Xiaojuan

    2015-01-01

    MicroRNAs (miRNAs) are endogenous small RNAs that repress target gene expression posttranscriptionally, and are critically involved in various developmental processes and responses to environmental stresses in eukaryotes. MiRNA857 is not widely distributed in plants and is encoded by a single gene, AtMIR857, in Arabidopsis (Arabidopsis thaliana). The functions of miR857 and its mechanisms in regulating plant growth and development are still unclear. Here, by means of genetic analysis coupled with cytological studies, we investigated the expression pattern and regulation mechanism of miR857 and its biological functions in Arabidopsis development. We found that miR857 regulates its target gene, Arabidopsis LACCASE7, at the transcriptional level, thereby reducing laccase activity. Using stimulated Raman scattering and x-ray microtomography three-dimensional analyses, we showed that miR857 was involved in the regulation of lignin content and consequently morphogenesis of the secondary xylem. In addition, miR857 was activated by SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 in response to low copper conditions. Collectively, these findings demonstrate the role of miR857 in the regulation of secondary growth of vascular tissues in Arabidopsis and reveal a unique control mechanism for secondary growth based on the miR857 expression in response to copper deficiency. PMID:26511915

  20. Adrenergic and myogenic regulation of viscoelasticity in the vascular bed of the human forearm.

    PubMed

    Frances, M F; Goswami, R; Rachinsky, M; Craen, R; Kiviniemi, A M; Fleischhauer, A; Steinback, C D; Zamir, M; Shoemaker, J K

    2011-11-01

    This study tested the hypothesis that the compliance (C) and viscoelasticity (K) of the forearm vascular bed are controlled by myogenic and/or α-adrenergic receptor (αAR) activation. Heart rate (HR) and waveforms of brachial artery blood pressure (Finometer) and forearm blood flow (Doppler ultrasound) were measured in baseline conditions and during infusion of noradrenaline (NA; αAR agonist), with and without phentolamine (αAR antagonist; n = 10; 6 men and 4 women). These baseline and αAR-agonist-based measures were repeated when the arm was positioned above or below the heart to modify the myogenic stimulus. A lumped Windkessel model was used to quantify the values of forearm C and K in each set of conditions. Baseline forearm C was inversely, and K directly, related to the myogenic load (P < 0.001). Compared with saline infusion, C was increased, but K was unaffected, with phentolanine, but only in the 'above' position. Compliance was reduced (P < 0.001) and K increased (P = 0.06) with NA infusion (main effects of NA) across arm positions; phentolamine minimized these NA-induced changes in C and K for both arm positions. Examination of conditions with and without NA infusion at similar forearm intravascular pressures indicated that the NA-induced changes in C and K were due largely to the concurrent changes in blood pressure. Therefore, within the range of arm positions used, it was concluded that vascular stiffness and vessel wall viscoelastic properties are acutely affected by myogenic stimuli. Additionally, forearm vascular compliance is sensitive to baseline levels of αAR activation when transmural pressure is low.

  1. PHABULOSA Mediates an Auxin Signaling Loop to Regulate Vascular Patterning in Arabidopsis.

    PubMed

    Müller, Christina Joy; Valdés, Ana Elisa; Wang, Guodong; Ramachandran, Prashanth; Beste, Lisa; Uddenberg, Daniel; Carlsbecker, Annelie

    2016-02-01

    Plant vascular tissues, xylem and phloem, differentiate in distinct patterns from procambial cells as an integral transport system for water, sugars, and signaling molecules. Procambium formation is promoted by high auxin levels activating class III homeodomain leucine zipper (HD-ZIP III) transcription factors (TFs). In the root of Arabidopsis (Arabidopsis thaliana), HD-ZIP III TFs dose-dependently govern the patterning of the xylem axis, with higher levels promoting metaxylem cell identity in the central axis and lower levels promoting protoxylem at its flanks. It is unclear, however, by what mechanisms the HD-ZIP III TFs control xylem axis patterning. Here, we present data suggesting that an important mechanism is their ability to moderate the auxin response. We found that changes in HD-ZIP III TF levels affect the expression of genes encoding core auxin response molecules. We show that one of the HD-ZIP III TFs, PHABULOSA, directly binds the promoter of both MONOPTEROS (MP)/AUXIN RESPONSE FACTOR5, a key factor in vascular formation, and IAA20, encoding an auxin/indole acetic acid protein that is stable in the presence of auxin and able to interact with and repress MP activity. The double mutant of IAA20 and its closest homolog IAA30 forms ectopic protoxylem, while overexpression of IAA30 causes discontinuous protoxylem and occasional ectopic metaxylem, similar to a weak loss-of-function mp mutant. Our results provide evidence that HD-ZIP III TFs directly affect the auxin response and mediate a feed-forward loop formed by MP and IAA20 that may focus and stabilize the auxin response during vascular patterning and the differentiation of xylem cell types.

  2. Functional Mineralocorticoid Receptors in Human Vascular Endothelial Cells Regulate ICAM-1 Expression and Promote Leukocyte Adhesion

    PubMed Central

    Caprio, Massimiliano; Newfell, Brenna G.; la Sala, Andrea; Baur, Wendy; Fabbri, Andrea; Rosano, Giuseppe; Mendelsohn, Michael E.; Jaffe, Iris Z.

    2008-01-01

    In clinical trials, aldosterone antagonists decrease cardiovascular mortality and ischemia by unknown mechanisms. The steroid hormone aldosterone acts by binding to the mineralocorticoid receptor (MR), a ligand-activated transcription factor. In humans, aldosterone causes MR-dependent endothelial cell (EC) dysfunction and in animal models, aldosterone increases vascular macrophage infiltration and atherosclerosis. MR antagonists inhibit these effects without changing blood pressure, suggesting a direct role for vascular MR in EC function and atherosclerosis. Whether human vascular EC express functional MR is not known. Here we show that human coronary artery and aortic EC express MR mRNA and protein and that EC MR mediates aldosterone-dependent gene transcription. Human EC also express the enzyme 11-beta hydroxysteroid dehydrogenase-2(11βHSD2) and inhibition of 11βHSD2 in aortic EC enhances gene transactivation by cortisol, supporting that EC 11βHSD2 is functional. Furthermore, aldosterone stimulates transcription of the proatherogenic leukocyte-EC adhesion molecule Intercellular Adhesion Molecule-1(ICAM1) gene and protein expression on human coronary artery EC, an effect inhibited by the MR antagonist spironolactone and by MR knock-down with siRNA. Cell adhesion assays demonstrate that aldosterone promotes leukocyte-EC adhesion, an effect that is inhibited by spironolactone and ICAM1 blocking antibody, supporting that aldosterone induction of EC ICAM1 surface expression via MR mediates leukocyte-EC adhesion. These data show that aldosterone activates endogenous EC MR and proatherogenic gene expression in clinically important human EC. These studies describe a novel mechanism by which aldosterone may influence ischemic cardiovascular events and support a new explanation for the decrease in ischemic events in patients treated with aldosterone antagonists. PMID:18467630

  3. Rho kinase acts as a downstream molecule to participate in protein kinase Cε regulation of vascular reactivity after hemorrhagic shock in rats.

    PubMed

    Li, Tao; Zhu, Yu; Zang, Jia-tao; Peng, Xiao-yong; Lan, Dan; Yang, Guang-ming; Xu, Jing; Liu, Liang-ming

    2014-09-01

    Our previous study demonstrated that Rho kinase and protein kinase C (PKC) played important parts in the regulation of vascular reactivity after shock. Using superior mesenteric arteries (SMAs) from hemorrhagic shock rats and hypoxia-treated vascular smooth muscle cells (VSMCs), relationship of PKCε regulation of vascular reactivity to Rho kinase, as well as the signal transduction after shock, was investigated. The results showed that inhibition of Rho kinase with the Rho kinase-specific inhibitor Y-27632 antagonized the PKCε-specific agonist carbachol and highly expressed PKCε-induced increase of vascular reactivity in SMAs and VSMCs, whereas inhibition of PKCε with its specific inhibitory peptide did not antagonize the Rho kinase agonist (U-46619)-induced increase of vascular reactivity in SMAs and VSMCs. Activation of PKCε or highly expressed PKCε upregulated the activity of Rho kinase and the phosphorylation of PKC-dependent phosphatase inhibitor 17 (CPI-17), zipper interacting protein kinase (ZIPK), and integrin-linked kinase (ILK), whereas activation of Rho kinase increased only CPI-17 phosphorylation. The specific neutralization antibodies of ZIPK and ILK antagonized PKCε-induced increases in the activity of Rho kinase, but CPI-17 neutralization antibody did not antagonize this effect. These results suggested that Rho kinase takes part in the regulation of PKCε on vascular reactivity after shock. Rho kinase is downstream of PKCε. Protein kinase Cε activates Rho kinase via ZIPK and ILK; CPI-17 is downstream of Rho kinase.

  4. miR-181b regulates vascular stiffness age dependently in part by regulating TGF-β signaling

    PubMed Central

    Hori, Daijiro; Dunkerly-Eyring, Brittany; Nomura, Yohei; Biswas, Debjit; Steppan, Jochen; Henao-Mejia, Jorge; Adachi, Hideo; Santhanam, Lakshmi; Berkowitz, Dan E.; Steenbergen, Charles; Flavell, Richard A.

    2017-01-01

    Background Endothelial dysfunction and arterial stiffening play major roles in cardiovascular diseases. The critical role for the miR-181 family in vascular inflammation has been documented. Here we tested whether the miR-181 family can influence the pathogenesis of hypertension and vascular stiffening. Methods and results qPCR data showed a significant decrease in miR-181b expression in the aorta of the older mice. Eight miR-181a1/b1-/- mice and wild types (C57BL6J:WT) were followed weekly for pulse wave velocity (PWV) and blood pressure measurements. After 20 weeks, the mice were tested for endothelial function and aortic modulus. There was a progressive increase in PWV and higher systolic blood pressure in miR-181a1/b1-/- mice compared with WTs. At 21 weeks, aortic modulus was significantly greater in the miR-181a1/b1-/- group, and serum TGF-β was found to be elevated at this time. A luciferase reporter assay confirmed miR-181b targets TGF-βi (TGF-β induced) in the aortic VSMCs. In contrast, wire myography revealed unaltered endothelial function along with higher nitric oxide production in the miR-181a1/b1-/- group. Cultured VECs and VSMCs from the mouse aorta showed more secreted TGF-β in VSMCs of the miR-181a1/b1-/- group; whereas, no change was observed from VECs. Circulating levels of angiotensin II were similar in both groups. Treatment with losartan (0.6 g/L) prevented the increase in PWV, blood pressure, and vascular stiffness in miR-181a1/b1-/- mice. Immunohistochemistry and western blot for p-SMAD2/3 validated the inhibitory effect of losartan on TGF-β signaling in miR-181a1/b1-/- mice. Conclusions Decreased miR-181b with aging plays a critical role in ECM remodeling by removing the brake on the TGF-β, pSMAD2/3 pathway. PMID:28323879

  5. Sann-Joong-Kuey-Jian-Tang induces autophagy in HepG2 cells via regulation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and p38 mitogen-activated protein kinase pathways.

    PubMed

    Chuang, Wan-Ling; Su, Chin-Cheng; Lin, Ping-Yi; Lin, Chi-Chen; Chen, Yao-Li

    2015-08-01

    Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional Chinese medicine, was previously reported to induce autophagy and inhibit the proliferation of the human HepG2 hepatocellular carcinoma cell line via an extrinsic pathway. In the present study, the effects of SJKJT-induced autophagy and the cytotoxic mechanisms mediating these effects were investigated in HepG2 cells. The cytotoxicity of SJKJT in the HepG2 cells was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results demonstrated that the half-maximal inhibitory concentration of SJKJT was 2.91 mg/ml at 24 h, 1.64 mg/ml at 48 h and 1.26 mg/ml at 72 h. The results of confocal fluorescence microscopy indicated that SJKJT resulted in the accumulation of green fluorescent protein-LC3 and vacuolation of the cytoplasm. Flow cytometric analysis revealed the accumulation of acidic vesicular organelles. Furthermore, western blot analysis, used to determine the expression levels of autophagy-associated proteins, demonstrated that the HepG2 cells treated with SJKJT exhibited LC3B-I/LC3B-II conversion, increased expression levels of Beclin, Atg-3 and Atg-5 and reduced expression levels of p62 and decreased signaling of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and the p38 mitogen-activated protein kinase pathways. Taken together, these findings may assist in the development of novel chemotherapeutic agents for the treatment of malignant types of liver cancer.

  6. Sann-Joong-Kuey-Jian-Tang induces autophagy in HepG2 cells via regulation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and p38 mitogen-activated protein kinase pathways

    PubMed Central

    CHUANG, WAN-LING; SU, CHIN-CHENG; LIN, PING-YI; LIN, CHI-CHEN; CHEN, YAO-LI

    2015-01-01

    Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional Chinese medicine, was previously reported to induce autophagy and inhibit the proliferation of the human HepG2 hepatocellular carcinoma cell line via an extrinsic pathway. In the present study, the effects of SJKJT-induced autophagy and the cytotoxic mechanisms mediating these effects were investigated in HepG2 cells. The cytotoxicity of SJKJT in the HepG2 cells was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results demonstrated that the half-maximal inhibitory concentration of SJKJT was 2.91 mg/ml at 24 h, 1.64 mg/ml at 48 h and 1.26 mg/ml at 72 h. The results of confocal fluorescence microscopy indicated that SJKJT resulted in the accumulation of green fluorescent protein-LC3 and vacuolation of the cytoplasm. Flow cytometric analysis revealed the accumulation of acidic vesicular organelles. Furthermore, western blot analysis, used to determine the expression levels of autophagy-associated proteins, demonstrated that the HepG2 cells treated with SJKJT exhibited LC3B-I/LC3B-II conversion, increased expression levels of Beclin, Atg-3 and Atg-5 and reduced expression levels of p62 and decreased signaling of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and the p38 mitogen-activated protein kinase pathways. Taken together, these findings may assist in the development of novel chemotherapeutic agents for the treatment of malignant types of liver cancer. PMID:25847489

  7. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism.

  8. Pulmonary vascular inflammation: effect of TLR signalling on angiopoietin/TIE regulation.

    PubMed

    Hilbert, Tobias; Dornbusch, Kathrin; Baumgarten, Georg; Hoeft, Andreas; Frede, Stilla; Klaschik, Sven

    2017-01-01

    Increased pulmonary vascular resistance is a critical complication in sepsis. Toll-like receptor (TLR) as well as angiopoietin (ANG) signalling both contribute to the emergence of pulmonary arterial hypertension. We hypothesized that TLR stimulation by bacterial ligands directly affects expression and secretion of ligands and receptors of the angiopoietin/TIE axis. Microvascular endothelial (HPMEC) and smooth muscle cells (SMC) of pulmonary origin were incubated with thrombin and with ligands for TLR2, -4, -5, and -9. Expression and secretion of ANG1, -2, TIE2 and IL-8 were determined using quantitative real-time PCR and ELISA. TLR stimulation had no impact either on the expression of ANG2 and TIE2 in HPMEC or on that of ANG1 in SMC. However, overall levels of both released ANG1 and -2 were halved upon stimulation with the TLR9 ligand CpG, and ANG2 release was significantly enhanced by TLR4 activation when initially provoked by sequentially performed stimulation. Furthermore, enhanced ANG2 activity increased endothelial permeability, as demonstrated in an in vitro transwell assay. We conclude that sole TLR stimulation by bacterial ligands plays no significant role for altered expression and secretion of ANG1, -2 and TIE2 in human pulmonary vascular cells. The interplay between various stimuli is required to induce imbalances between ANG1 and -2.

  9. Yolk-sac–derived macrophages regulate fetal testis vascularization and morphogenesis

    PubMed Central

    DeFalco, Tony; Bhattacharya, Indrashis; Williams, Alyna V.; Sams, Dustin M.; Capel, Blanche

    2014-01-01

    Organogenesis of the testis is initiated when expression of Sry in pre-Sertoli cells directs the gonad toward a male-specific fate. The cells in the early bipotential gonad undergo de novo organization to form testis cords that enclose germ cells inside tubules lined by epithelial Sertoli cells. Although Sertoli cells are a driving force in the de novo formation of testis cords, recent studies in mouse showed that reorganization of the vasculature and of interstitial cells also play critical roles in testis cord morphogenesis. However, the mechanism driving reorganization of the vasculature during fetal organogenesis remained unclear. Here we demonstrate that fetal macrophages are associated with nascent gonadal and mesonephric vasculature during the initial phases of testis morphogenesis. Macrophages mediate vascular reorganization and prune errant germ cells and somatic cells after testis architecture is established. We show that gonadal macrophages are derived from primitive yolk-sac hematopoietic progenitors and exhibit hallmarks of M2 activation status, suggestive of angiogenic and tissue remodeling functions. Depletion of macrophages resulted in impaired vascular reorganization and abnormal cord formation. These findings reveal a previously unappreciated role for macrophages in testis morphogenesis and suggest that macrophages are an intermediary between neovascularization and organ architecture during fetal organogenesis. PMID:24912173

  10. Thrombospondin-1 is a Central Regulator of Nitric Oxide Signaling in Vascular Physiology

    PubMed Central

    Isenberg, Jeff S.; Frazier, William A.; Roberts, David D.

    2008-01-01

    Thrombospondin-1 is secreted protein that modulates vascular cell behavior via several cell surface receptors. In vitro, nanomolar concentrations of thrombospondin-1 are required to alter endothelial and vascular smooth muscle cell adhesion, proliferation, motility, and survival. Yet, much lower levels of thrombospondin-1 are clearly functional in vivo. This discrepancy was explained with the discovery that the potency of thrombospondin-1 increases more than 100-fold in the presence of physiological levels of NO. Thrombospondin-1 binding to CD47 inhibits NO signaling by preventing cGMP synthesis and activation of its target cGMP-dependent protein kinase. This potent antagonism of NO signaling allows thrombospondin-1 to acutely constrict blood vessels, accelerate platelet aggregation and, if sustained, inhibit angiogenic responses. Acute antagonism of NO signaling by thrombospondin-1 is important for hemostasis but becomes detrimental for tissue survival of ischemic injuries. New therapeutic approaches targeting thrombospondin-1 or CD47 can improve recovery from ischemic injuries and overcome a deficit in NO-responsiveness in aging. PMID:18193160

  11. Resveratrol attenuates myocardial ischemia/reperfusion injury through up-regulation of vascular endothelial growth factor B.

    PubMed

    Yang, Lei; Zhang, Yan; Zhu, Mengmeng; Zhang, Qiong; Wang, Xiaoling; Wang, Yanjiao; Zhang, Jincai; Li, Jing; Yang, Liang; Liu, Jie; Liu, Fei; Yang, Yinan; Kang, Licheng; Shen, Yanna; Qi, Zhi

    2016-12-01

    The objective was to examine the protective effect of resveratrol (RSV) on myocardial ischemia/reperfusion (IR) injury and whether the mechanism was related to vascular endothelial growth factor B (VEGF-B) signaling pathway. Rat hearts were isolated for Langendorff perfusion test and H9c2 cells were used for in vitro assessments. RSV treatment significantly improved left ventricular function, inhibited CK-MB release, and reduced infarct size in comparison with IR group ex vivo. RSV treatment markedly decreased cell death and apoptosis of H9c2 cells during IR. We found that RSV was responsible for the up-regulation of VEGF-B mRNA and protein level, which caused the activation of Akt and the inhibition of GSK3β. Additionally, RSV prevented the generation of reactive oxygen species (ROS) by up-regulating the expression of MnSOD either in vitro or ex vivo. We also found that the inhibition of VEGF-B abolished the cardioprotective effect of RSV, increased apoptosis, and led to the down-regulation of phosphorylated Akt, GSK3β, and MnSOD in H9c2 cells. These results demonstrated that RSV was able to attenuate myocardial IR injury via promotion of VEGF-B/antioxidant signaling pathway. Therefore, the up-regulation of VEGF-B can be a promising modality for clinical myocardial IR injury therapy.

  12. The phytochrome-interacting vascular plant one-zinc finger1 and VOZ2 redundantly regulate flowering in Arabidopsis.

    PubMed

    Yasui, Yukiko; Mukougawa, Keiko; Uemoto, Mitsuhiro; Yokofuji, Akira; Suzuri, Ryota; Nishitani, Aiko; Kohchi, Takayuki

    2012-08-01

    The timing of the transition to flowering in plants is regulated by various environmental factors, including daylength and light quality. Although the red/far-red photoreceptor phytochrome B (phyB) represses flowering by indirectly regulating the expression of a key flowering regulator, FLOWERING LOCUS T (FT), the mechanism of phyB signaling for flowering is largely unknown. Here, we identified two Arabidopsis thaliana genes, VASCULAR PLANT ONE-ZINC FINGER1 (VOZ1) and VOZ2, which are highly conserved throughout land plant evolution, as phyB-interacting factors. voz1 voz2 double mutants, but neither single mutant, showed a late-flowering phenotype under long-day conditions, which indicated that VOZ1 and VOZ2 redundantly promote flowering. voz1 voz2 mutations suppressed the early-flowering phenotype of the phyB mutant, and FT expression was repressed in the voz1 voz2 mutant. Green fluorescent protein-VOZ2 signal was observed in the cytoplasm, and interaction of VOZ proteins with phyB was indicated to occur in the cytoplasm under far-red light. However, VOZ2 protein modified to localize constitutively in the nucleus promoted flowering. In addition, the stability of VOZ2 proteins in the nucleus was modulated by light quality in a phytochrome-dependent manner. We propose that partial translocation of VOZ proteins from the cytoplasm to the nucleus mediates the initial step of the phyB signal transduction pathway that regulates flowering.

  13. Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats.

    PubMed

    Ren, Bei; Qin, Weiwei; Wu, Feihua; Wang, Shanshan; Pan, Cheng; Wang, Liying; Zeng, Biao; Ma, Shiping; Liang, Jingyu

    2016-02-15

    Vascular endothelial dysfunction is regarded as the initial step of vascular complications in diabetes mellitus. This study investigated the amelioration of apigenin and naringenin in type 2 diabetic (T2D) rats induced by high-fat diet and streptozotocin and explored the underlying mechanism. Apigenin or naringenin was intragastrically administered at 50 or 100mg/kg once a day for 6 weeks. Biochemical parameters including blood glucose, glycated serum protein, serum lipid, insulin, superoxide dismutase (SOD), malonaldehyde and intercellular adhesion molecule-1 (ICAM-1) were measured. Vascular reactivity in isolated thoracic aortic rings was examined. Pathological features of the thoracic aorta were further observed through optical microscopy and transmission electron microscopy. Lastly, we evaluated their effects on insulin resistance of palmitic acid (PA)-induced endothelial cells. Compared with diabetic control group, apigenin and naringenin significantly decreased the levels of blood glucose, serum lipid, malonaldehyde, ICAM-1 and insulin resistance index, increased SOD activity and improved impaired glucose tolerance. Apigenin and naringenin restored phenylephrine-mediated contractions and acetylcholine or insulin-induced relaxations in aortic tissues. Furthermore, pathological damage in the thoracic aorta of apigenin and naringenin groups was more remissive than diabetic control group. In vitro, apigenin and naringenin inhibited NF-κB activation and ICAM-1 mRNA expression in PA-treated endothelial cells and improved nitric oxide production in the presence of insulin. In conclusion, both apigenin and naringenin can ameliorate glucose and lipid metabolism, as well as endothelial dysfunction in T2D rats at least in part by down-regulating oxidative stress and inflammation. In general, apigenin showed greater potency than naringenin equivalent.

  14. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia

    NASA Astrophysics Data System (ADS)

    Ferreira, R.; Fonseca, M. C.; Santos, T.; Sargento-Freitas, J.; Tjeng, R.; Paiva, F.; Castelo-Branco, M.; Ferreira, L. S.; Bernardino, L.

    2016-04-01

    Stroke is one of the leading causes of death and disability worldwide. However, current therapies only reach a small percentage of patients and may cause serious side effects. We propose the therapeutic use of retinoic acid-loaded nanoparticles (RA-NP) to safely and efficiently repair the ischaemic brain by creating a favourable pro-angiogenic environment that enhances neurogenesis and neuronal restitution. Our data showed that RA-NP enhanced endothelial cell proliferation and tubule network formation and protected against ischaemia-induced death. To evaluate the effect of RA-NP on vascular regulation of neural stem cell (NSC) survival and differentiation, endothelial cell-conditioned media (EC-CM) were collected. EC-CM from healthy RA-NP-treated cells reduced NSC death and promoted proliferation while EC-CM from ischaemic RA-NP-treated cells decreased cell death, increased proliferation and neuronal differentiation. In parallel, human endothelial progenitor cells (hEPC), which are part of the endogenous repair response to vascular injury, were collected from ischaemic stroke patients. hEPC treated with RA-NP had significantly higher proliferation, which further highlights the therapeutic potential of this formulation. To conclude, RA-NP protected endothelial cells from ischaemic death and stimulated the release of pro-survival, proliferation-stimulating factors and differentiation cues for NSC. RA-NP were shown to be up to 83-fold more efficient than free RA and to enhance hEPC proliferation. These data serve as a stepping stone to use RA-NP as vasculotrophic and neurogenic agents for vascular disorders and neurodegenerative diseases with compromised vasculature.

  15. Rapamycin ameliorates chitosan nanoparticle-induced developmental defects of preimplantation embryos in mice

    PubMed Central

    Choi, Yun-Jung; Gurunathan, Sangiliyandi; Kim, DaSom; Jang, Hyung Seok; Park, Woo-Jin; Cho, Ssang-Goo; Park, Chankyu; Song, Hyuk; Seo, Han Geuk; Kim, Jin-Hoi

    2016-01-01

    Chitosan nanoparticles (CSNPs) are used as drug or gene delivery vehicles. However, a detailed understanding of the effects of CSNPs on embryonic development remains obscure. Here, we show that CSNPs can be internalized into mouse blastocysts, such as the zona pellucida, the perivitelline space, and the cytoplasm. Consequently, CSNPs-induced endoplasmic reticulum (ER) stress increases both of Bip/Grp78, Chop, Atf4, Perk, and Ire1a mRNAs expression levels, and reactive oxygen species. Moreover, CSNPs show double- and multi-membraned autophagic vesicles, and lead to cell death of blastocoels. Conversely, treatment with rapamycin, which plays an important role as a central regulator of cellular proliferation and stress responses, decreased CSNPs-induced mitochondrial Ca+2 overloading, apoptosis, oxidative stress, ER stress, and autophagy. In vivo studies demonstrated that CSNPs injection has significant toxic effect on primordial and developing follicles. Notably, rapamycin rescued oxidative stress-induced embryonic defects via modulating gene expression of sirtuin and mammalian target of rapamycin. Interestingly, CSNPs treatment alters epigenetic reprogramming in mouse embryos. Overall, these observations suggest that rapamycin treatment could ameliorate CSNPs-induced developmental defects in preimplantation embryos. The data from this study would facilitate to understand the toxicity of these CSNPs, and enable the engineering of safer nanomaterials for therapeutic applications. PMID:27463007

  16. [Rapamycin: a new immunosuppressive agent capable of inhibiting chronic rejection?].

    PubMed

    Viklický, O; Matl, I

    2001-01-19

    Chronic rejection represents the most common cause of transplanted graft loss in the long term. Rapamycin (sirolimus), and it's derivate RAD, are new and potent, immunosuppressive drugs. They inhibit cell proliferation driven by various growth factors. These drugs were successfully tested in some experimental models of the chronic rejection. Results of the first clinical trials have defined rapamycin pharmacokinetics and proved immunosuppressive efficacy. Rapamycin acts synergistically with cyclosporin A. The side effects are a dose-dependent thrombocytopenia and leukopenia but the most frequent is hyperlipidemia. The question, if rapamycin and RAD inhibit development of chronic rejection in man, will be solved by the prospective clinical trials over years.

  17. Rapamycin Prolongs the Survival of Corneal Epithelial Cells in Culture

    PubMed Central

    Gidfar, Sanaz; Milani, Farnoud Y.; Milani, Behrad Y.; Shen, Xiang; Eslani, Medi; Putra, Ilham; Huvard, Michael J.; Sagha, Hossein; Djalilian, Ali R.

    2017-01-01

    Rapamycin has previously been shown to have anti-aging effects in cells and organisms. These studies were undertaken to investigate the effects of rapamycin on primary human corneal epithelial cells in vitro. Cell growth and viability were evaluated by bright field microscopy. Cell proliferation and cycle were evaluated by flow cytometry. The expression of differentiation markers was evaluated by quantitative PCR and Western blot. Senescence was evaluated by senescence-associated β-Galactosidase staining and by Western blot analysis of p16. Apoptosis was evaluated by a TUNEL assay. The results demonstrated that primary HCEC treated with rapamycin had lower proliferation but considerably longer survival in vitro. Rapamycin-treated cells maintained a higher capacity to proliferate after removal of rapamycin and expressed more keratin 14, N-Cadherin, DeltaNp63 and ABCG2, and less keratin 12, consistent with their less differentiated state. Rapamycin treated cells demonstrated less senescence by X-β-Gal SA staining and by lower expression of p16. Apoptosis was also lower in the rapamycin treated cells. These results indicate that rapamycin treatment of HCEC prevents the loss of corneal epithelial stem/progenitor cells to replicative senescence and apoptosis. Rapamycin may be a useful additive for ex vivo expansion of corneal epithelial cells. PMID:28054657

  18. Functionally conserved effects of rapamycin exposure on zebrafish.

    PubMed

    Sucularli, Ceren; Shehwana, Huma; Kuscu, Cem; Dungul, Dilay Ciglidag; Ozdag, Hilal; Konu, Ozlen

    2016-05-01

    Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase important in cell proliferation, growth and protein translation. Rapamycin, a well‑known anti‑cancer agent and immunosuppressant drug, inhibits mTOR activity in different taxa including zebrafish. In the present study, the effect of rapamycin exposure on the transcriptome of a zebrafish fibroblast cell line, ZF4, was investigated. Microarray analysis demonstrated that rapamycin treatment modulated a large set of genes with varying functions including protein synthesis, assembly of mitochondrial and proteasomal machinery, cell cycle, metabolism and oxidative phosphorylation in ZF4 cells. A mild however, coordinated reduction in the expression of proteasomal and mitochondrial ribosomal subunits was detected, while the expression of numerous ribosomal subunits increased. Meta‑analysis of heterogeneous mouse rapamycin microarray datasets enabled the comparison of zebrafish and mouse pathways modulated by rapamycin, using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway analysis. The analyses demonstrated a high degree of functional conservation between zebrafish and mice in response to rapamycin. In addition, rapamycin treatment resulted in a marked dose‑dependent reduction in body size and pigmentation in zebrafish embryos. The present study is the first, to the best of our knowledge, to evaluate the conservation of rapamycin‑modulated functional pathways between zebrafish and mice, in addition to the dose‑dependent growth curves of zebrafish embryos upon rapamycin exposure.

  19. Sex differences in angiotensin II responses contribute to a differential regulation of cox-mediated vascular dysfunction during aging.

    PubMed

    Costa, Gustavo; Garabito, Manel; Jiménez-Altayó, Francesc; Onetti, Yara; Sabate, Manel; Vila, Elisabet; Dantas, Ana Paula

    2016-12-01

    Aging is a cardiovascular risk factor partially related to activation of the Renin-Angiotensin System (RAS). RAS activation is also influenced by sex. In this regard, our study aims to determine whether sex-associated differences in RAS contribute to a differential regulation of vascular aging and associated dysfunction. Male and female outbreed CD-1 mice were studied at 3 and 12months of age (M). Contribution of RAS was determined by treating mice from 3M to 12M with the AngII type 1 receptor blocker losartan (0.6g/L in the drinking water). At 12M, contractions to AngII were higher in males compared to females (P<0.05). This effect was paralleled by a decrease in AngII type 2 receptors in 12M males. Aging also diminished ACh relaxation in males, but did not modify female responses. Treatment of aortas with indomethacin (10μM) restored the impaired endothelium-dependent relaxation in 12M males, suggesting an increase of cyclooxygenase (COX)-derived vasoconstrictors in aged males. Chronic treatment of mice with losartan also improved endothelium-dependent relaxation. Besides, losartan significantly decreased COX-2 expression and activity in 12M male, with a minor effect in aged females. Aging increases AngII contraction and induces endothelial dysfunction differently in males and females. In aged males, RAS contributed to increased COX-2 expression and activity, which in turn may lead to vascular dysfunction.

  20. Evolutionary aspects of non-cell-autonomous regulation in vascular plants: structural background and models to study

    PubMed Central

    Evkaikina, Anastasiia I.; Romanova, Marina A.; Voitsekhovskaja, Olga V.

    2014-01-01

    Plasmodesmata (PD) serve for the exchange of information in form of miRNA, proteins, and mRNA between adjacent cells in the course of plant development. This fundamental role of PD is well established in angiosperms but has not yet been traced back to the evolutionary ancient plant taxa where functional studies lag behind studies of PD structure and ontogenetic origin. There is convincing evidence that the ability to form secondary (post-cytokinesis) PD, which can connect any adjacent cells, contrary to primary PD which form during cytokinesis and link only cells of the same lineage, appeared in the evolution of higher plants at least twice: in seed plants and in some representatives of the Lycopodiophyta. The (in)ability to form secondary PD is manifested in the symplasmic organization of the shoot apical meristem (SAM) which in most taxa of seedless vascular plants differs dramatically from that in seed plants. Lycopodiophyta appear to be suitable models to analyze the transport of developmental regulators via PD in SAMs with symplasmic organization both different from, as well as analogous to, that in angiosperms, and to understand the evolutionary aspects of the role of this transport in the morphogenesis of vascular plant taxa. PMID:24575105

  1. Evolutionary aspects of non-cell-autonomous regulation in vascular plants: structural background and models to study.

    PubMed

    Evkaikina, Anastasiia I; Romanova, Marina A; Voitsekhovskaja, Olga V

    2014-01-01

    Plasmodesmata (PD) serve for the exchange of information in form of miRNA, proteins, and mRNA between adjacent cells in the course of plant development. This fundamental role of PD is well established in angiosperms but has not yet been traced back to the evolutionary ancient plant taxa where functional studies lag behind studies of PD structure and ontogenetic origin. There is convincing evidence that the ability to form secondary (post-cytokinesis) PD, which can connect any adjacent cells, contrary to primary PD which form during cytokinesis and link only cells of the same lineage, appeared in the evolution of higher plants at least twice: in seed plants and in some representatives of the Lycopodiophyta. The (in)ability to form secondary PD is manifested in the symplasmic organization of the shoot apical meristem (SAM) which in most taxa of seedless vascular plants differs dramatically from that in seed plants. Lycopodiophyta appear to be suitable models to analyze the transport of developmental regulators via PD in SAMs with symplasmic organization both different from, as well as analogous to, that in angiosperms, and to understand the evolutionary aspects of the role of this transport in the morphogenesis of vascular plant taxa.

  2. MARCKS Signaling Differentially Regulates Vascular Smooth Muscle and Endothelial Cell Proliferation through a KIS-, p27kip1- Dependent Mechanism

    PubMed Central

    Yu, Dan; Makkar, George; Dong, Tuo; Strickland, Dudley K.; Sarkar, Rajabrata; Monahan, Thomas Stacey

    2015-01-01

    Background Overexpression of the myristolated alanine-rich C kinase substrate (MARCKS) occurs in vascular proliferative diseases such as restenosis after bypass surgery. MARCKS knockdown results in arrest of vascular smooth muscle cell (VSMC) proliferation with little effect on endothelial cell (EC) proliferation. We sought to identify the mechanism of differential regulation by MARCKS of VSMC and EC proliferation in vitro and in vivo. Methods and Results siRNA-mediated MARCKS knockdown in VSMCs inhibited proliferation and prevented progression from phase G0/G1 to S. Protein expression of the cyclin-dependent kinase inhibitor p27kip1, but not p21cip1 was increased by MARCKS knockdown. MARCKS knockdown did not affect proliferation in VSMCs derived from p27kip1-/- mice indicating that the effect of MARCKS is p27kip1-dependent. MARCKS knockdown resulted in decreased phosphorylation of p27kip1 at threonine 187 and serine 10 as well as, kinase interacting with stathmin (KIS), cyclin D1, and Skp2 expression. Phosphorylation of p27kip1 at serine 10 by KIS is required for nuclear export and degradation of p27kip1. MARCKS knockdown caused nuclear trapping of p27kip1. Both p27kip1 nuclear trapping and cell cycle arrest were released by overexpression of KIS, but not catalytically inactive KIS. In ECs, MARCKS knockdown paradoxically increased KIS expression and cell proliferation. MARCKS knockdown in a murine aortic injury model resulted in decreased VSMC proliferation determined by bromodeoxyuridine (BrdU) integration assay, and inhibition of vascular wall thickening. MARCKS knockdown increased the rate of re-endothelialization. Conclusions MARCKS knockdown arrested VSMC cell cycle by decreasing KIS expression. Decreased KIS expression resulted in nuclear trapping of p27kip1 in VSMCs. MARCKS knockdown paradoxically increased KIS expression in ECs resulting in increased EC proliferation. MARCKS knockdown significantly attenuated the VSMC proliferative response to vascular

  3. Adaptations to chronic rapamycin in mice

    PubMed Central

    Dodds, Sherry G.; Livi, Carolina B.; Parihar, Manish; Hsu, Hang-Kai; Benavides, Adriana D.; Morris, Jay; Javors, Martin; Strong, Randy; Christy, Barbara; Hasty, Paul; Sharp, Zelton Dave

    2016-01-01

    Rapamycin inhibits mechanistic (or mammalian) target of rapamycin (mTOR) that promotes protein production in cells by facilitating ribosome biogenesis (RiBi) and eIF4E-mediated 5'cap mRNA translation. Chronic treatment with encapsulated rapamycin (eRapa) extended health and life span for wild-type and cancer-prone mice. Yet, the long-term consequences of chronic eRapa treatment are not known at the organ level. Here, we report our observations of chronic eRapa treatment on mTORC1 signaling and RiBi in mouse colon and visceral adipose. As expected, chronic eRapa treatment decreased detection of phosphorylated mTORC1/S6K substrate, ribosomal protein (rpS6) in colon and fat. However, in colon, contrary to expectations, there was an upregulation of 18S rRNA and some ribosomal protein genes (RPGs) suggesting increased RiBi. Among RPGs, eRapa increases rpl22l1 mRNA but not its paralog rpl22. Furthermore, there was an increase in the cap-binding protein, eIF4E relative to its repressor 4E-BP1 suggesting increased translation. By comparison, in fat, there was a decrease in the level of 18S rRNA (opposite to colon), while overall mRNAs encoding ribosomal protein genes appeared to increase, including rpl22, but not rpl22l1 (opposite to colon). In fat, there was a decrease in eIF4E relative to actin (opposite to colon) but also an increase in the eIF4E/4E-BP1 ratio likely due to reductions in 4E-BP1 at our lower eRapa dose (similar to colon). Thus, in contrast to predictions of decreased protein production seen in cell-based studies, we provide evidence that colon from chronically treated mice exhibited an adaptive ‘pseudo-anabolic’ state, which is only partially present in fat, which might relate to differing tissue levels of rapamycin, cell-type-specific responses, and/or strain differences. PMID:27237224

  4. SY 17-1 DYNAMIC REGULATION OF REDOX REGULATING FACTOR APE1/REF-1 ON THE OXIDATIVE STRESS AND VASCULAR INFLAMMATION.

    PubMed

    Jeon, Byeong Hwa

    2016-09-01

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that plays a central role in the cellular response to DNA damage and redox regulation against oxidative stress. APE1/Ref-1 is essential for cellular survival and embryonic lethal in knockout mouse models. Heterozygous APE1/Ref-1 mice showed impaired endothelium-dependent vasorelaxation, reduced vascular NO levels, and are hypertensive. APE1/Ref-1 reduces intracellular reactive oxygen species production by negatively regulating the activity of the NADPH oxidase. APE1/Ref-1 is predominantly localized in the nucleus; however, its subcellular localization is dynamically regulated. Recently, it was shown that APE1/Ref-1 is secreted in response to hyperacetylation at specific lysine residues. We investigated the functions of extracellular APE1/Ref-1 with respect to leading anti-inflammatory signaling in TNF-α-stimulated endothelial cells in response to acetylation. Trichostatin A (TSA), an inhibitor of histone deacetylase, considerably suppressed vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-stimulated endothelial cells. During TSA-mediated acetylation in culture, a time-dependent increase in secreted APE1/Ref-1 was confirmed. Recombinant human APE1/Ref-1 with reducing activity induced a conformational change in TNFR1 by thiol-disulfide exchange. Following treatment with the neutralizing anti-APE1/Ref-1 antibody, inflammatory signals via the binding of TNF-α to TNFR1 were remarkably recovered. Furthermore, rhAPE1/Ref-1 inhibited IL-1β-induced VCAM-1 expression in endothelial cells, and it inhibited iNOS or COX-2 expression in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. These results strongly indicate that anti-inflammatory effects of secreted APE1/Ref-1 and its property of secreted APE1/Ref-1 may be useful as a therapeutic biomolecule in cardiovascular disease.

  5. Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model

    PubMed Central

    Buchanan, Cara F; Verbridge, Scott S; Vlachos, Pavlos P; Rylander, Marissa Nichole

    2014-01-01

    Endothelial cells lining blood vessels are exposed to various hemodynamic forces associated with blood flow. These include fluid shear, the tangential force derived from the friction of blood flowing across the luminal cell surface, tensile stress due to deformation of the vessel wall by transvascular flow, and normal stress caused by the hydrodynamic pressure differential across the vessel wall. While it is well known that these fluid forces induce changes in endothelial morphology, cytoskeletal remodeling, and altered gene expression, the effect of flow on endothelial organization within the context of the tumor microenvironment is largely unknown. Using a previously established microfluidic tumor vascular model, the objective of this study was to investigate the effect of normal (4 dyn/cm2), low (1 dyn/cm2), and high (10 dyn/cm2) microvascular wall shear stress (WSS) on tumor-endothelial paracrine signaling associated with angiogenesis. It is hypothesized that high WSS will alter the endothelial phenotype such that vascular permeability and tumor-expressed angiogenic factors are reduced. Results demonstrate that endothelial permeability decreases as a function of increasing WSS, while co-culture with tumor cells increases permeability relative to mono-cultures. This response is likely due to shear stress-mediated endothelial cell alignment and tumor-VEGF-induced permeability. In addition, gene expression analysis revealed that high WSS (10 dyn/cm2) significantly down-regulates tumor-expressed MMP9, HIF1, VEGFA, ANG1, and ANG2, all of which are important factors implicated in tumor angiogenesis. This result was not observed in tumor mono-cultures or static conditioned media experiments, suggesting a flow-mediated paracrine signaling mechanism exists with surrounding tumor cells that elicits a change in expression of angiogenic factors. Findings from this work have significant implications regarding low blood velocities commonly seen in the tumor vasculature

  6. KV7 channels contribute to paracrine, but not metabolic or ischemic, regulation of coronary vascular reactivity in swine.

    PubMed

    Goodwill, Adam G; Fu, Lijuan; Noblet, Jillian N; Casalini, Eli D; Sassoon, Daniel; Berwick, Zachary C; Kassab, Ghassan S; Tune, Johnathan D; Dick, Gregory M

    2016-03-15

    Hydrogen peroxide (H2O2) and voltage-dependent K(+) (KV) channels play key roles in regulating coronary blood flow in response to metabolic, ischemic, and paracrine stimuli. The KV channels responsible have not been identified, but KV7 channels are possible candidates. Existing data regarding KV7 channel function in the coronary circulation (limited to ex vivo assessments) are mixed. Thus we examined the hypothesis that KV7 channels are present in cells of the coronary vascular wall and regulate vasodilation in swine. We performed a variety of molecular, biochemical, and functional (in vivo and ex vivo) studies. Coronary arteries expressed KCNQ genes (quantitative PCR) and KV7.4 protein (Western blot). Immunostaining demonstrated KV7.4 expression in conduit and resistance vessels, perhaps most prominently in the endothelial and adventitial layers. Flupirtine, a KV7 opener, relaxed coronary artery rings, and this was attenuated by linopirdine, a KV7 blocker. Endothelial denudation inhibited the flupirtine-induced and linopirdine-sensitive relaxation of coronary artery rings. Moreover, linopirdine diminished bradykinin-induced endothelial-dependent relaxation of coronary artery rings. There was no effect of intracoronary flupirtine or linopirdine on coronary blood flow at the resting heart rate in vivo. Linopirdine had no effect on coronary vasodilation in vivo elicited by ischemia, H2O2, or tachycardia. However, bradykinin increased coronary blood flow in vivo, and this was attenuated by linopirdine. These data indicate that KV7 channels are expressed in some coronary cell type(s) and influence endothelial function. Other physiological functions of coronary vascular KV7 channels remain unclear, but they do appear to contribute to endothelium-dependent responses to paracrine stimuli.

  7. KV7 channels contribute to paracrine, but not metabolic or ischemic, regulation of coronary vascular reactivity in swine

    PubMed Central

    Goodwill, Adam G.; Fu, Lijuan; Noblet, Jillian N.; Casalini, Eli D.; Berwick, Zachary C.; Kassab, Ghassan S.; Tune, Johnathan D.

    2016-01-01

    Hydrogen peroxide (H2O2) and voltage-dependent K+ (KV) channels play key roles in regulating coronary blood flow in response to metabolic, ischemic, and paracrine stimuli. The KV channels responsible have not been identified, but KV7 channels are possible candidates. Existing data regarding KV7 channel function in the coronary circulation (limited to ex vivo assessments) are mixed. Thus we examined the hypothesis that KV7 channels are present in cells of the coronary vascular wall and regulate vasodilation in swine. We performed a variety of molecular, biochemical, and functional (in vivo and ex vivo) studies. Coronary arteries expressed KCNQ genes (quantitative PCR) and KV7.4 protein (Western blot). Immunostaining demonstrated KV7.4 expression in conduit and resistance vessels, perhaps most prominently in the endothelial and adventitial layers. Flupirtine, a KV7 opener, relaxed coronary artery rings, and this was attenuated by linopirdine, a KV7 blocker. Endothelial denudation inhibited the flupirtine-induced and linopirdine-sensitive relaxation of coronary artery rings. Moreover, linopirdine diminished bradykinin-induced endothelial-dependent relaxation of coronary artery rings. There was no effect of intracoronary flupirtine or linopirdine on coronary blood flow at the resting heart rate in vivo. Linopirdine had no effect on coronary vasodilation in vivo elicited by ischemia, H2O2, or tachycardia. However, bradykinin increased coronary blood flow in vivo, and this was attenuated by linopirdine. These data indicate that KV7 channels are expressed in some coronary cell type(s) and influence endothelial function. Other physiological functions of coronary vascular KV7 channels remain unclear, but they do appear to contribute to endothelium-dependent responses to paracrine stimuli. PMID:26825518

  8. Inducible nitric oxide synthase activity contributes to the regulation of peripheral vascular tone in patients with cirrhosis and ascites

    PubMed Central

    Ferguson, J W; Dover, A R; Chia, S; Cruden, N L M; Hayes, P C; Newby, D E

    2006-01-01

    Background Overexpression of inducible nitric oxide synthase (iNOS) and increased nitric oxide generation may be associated with the hyperdynamic circulation of patients with cirrhosis. We have, for the first time, used the highly selective iNOS inhibitor, 1400W, to determine whether iNOS activity contributes to the regulation of vascular tone in patients with cirrhosis and ascites. Methods Bilateral forearm blood flow was measured using strain gauge plethysmography in eight patients with cirrhosis and ascites, and eight matched healthy volunteers during intrabrachial infusion of 1400W (0.1–1 μmol/min), NG‐monomethyl‐L‐arginine (L‐NMMA, a non‐selective NOS inhibitor; 2–8 μmol), and norepinephrine (a control vasoconstrictor; 60–480 pmol/min). Results In patients with cirrhosis, 1400W, L‐NMMA, and norepinephrine caused dose dependent reductions in forearm blood flow: peak reductions of 11 (5)%, 37 (4)%, and 48 (5)%, respectively (p<0.05 for all). In contrast, 1400W had no effect on blood flow (+4 (8)%; NS) in healthy controls despite similar reductions in blood flow with L‐NMMA and norepinephrine (39 (5)% and 49 (5)%, respectively; p<0.05 for both). Conclusions We have, for the first time, demonstrated that 1400W causes peripheral vasoconstriction in patients with cirrhosis but not healthy matched controls. This suggests that iNOS contributes to the regulation of peripheral vascular tone in patients with cirrhosis and ascites, and may contribute towards the hyperdynamic circulation associated with this condition. PMID:16299035

  9. Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids.

    PubMed Central

    McLaren, J; Prentice, A; Charnock-Jones, D S; Millican, S A; Müller, K H; Sharkey, A M; Smith, S K

    1996-01-01

    Angiogenesis is important in the pathophysiology of endometriosis, a condition characterized by implantation of ectopic endometrium in the peritoneal cavity. Vascular endothelial growth factor (VEGF) is a potent angiogenic factor involved in physiological and pathological angiogenesis, and elevated levels of VEGF are found in peritoneal fluid of patients with endometriosis. Our aim was to investigate the site of expression and regulation of VEGF in endometriosis. VEGF immunoreactivity was found in tissue macrophages present in ectopic endometrium and in activated peritoneal fluid macrophages. Macrophage activation was highest in women with endometriosis, and media conditioned by peritoneal fluid macrophages from these women caused a VEGF-dependent increase in endothelial cell proliferation above that seen from normal women. Peritoneal fluid macrophages secreted VEGF in response to ovarian steroids, and this secretion was enhanced after activation with lipopolysaccharide. Peritoneal fluid macrophages expressed receptors for steroid hormones. VEGF receptors flt and KDR (kinase domain receptor) were also detected, suggesting autocrine regulation. During the menstrual cycle, expression of flt was constant but that of KDR was increased in the luteal phase, at which time the cells migrated in response to VEGF. KDR expression and the migratory response were significantly higher in patients with endometriosis. This study demonstrates that activated macrophages are a major source of VEGF in endometriosis and that this expression is regulated directly by ovarian steroids. PMID:8755660

  10. Role of integrin-linked kinase in vascular smooth muscle cells: Regulation by statins and angiotensin II

    SciTech Connect

    Friedrich, Erik B. . E-mail: efriedrich@med-in.uni-sb.de; Clever, Yvonne P.; Wassmann, Sven; Werner, Nikos; Boehm, Michael; Nickenig, Georg

    2006-10-27

    Our goal was to characterize the role of integrin-linked kinase (ILK) in vascular smooth muscle cells (VSMC), which play a crucial role in atherogenesis. Transfection of VSMC with wild-type and dominant-negative ILK cDNA constructs revealed that ILK mediates migration and proliferation of VSMC but has no effect on VSMC survival. The pro-atherogenic mediator angiotensin II increases ILK protein expression and kinase activity while statin treatment down-regulates ILK in VSMC. Functionally, ILK is necessary for angiotensin II-mediated VSMC migration and proliferation. In VSMC transduced with dominant-negative ILK, statins mediate an additive inhibition of VSMC migration and proliferation, while transfection with wild-type ILK is sufficient to overcome the inhibitory effects of statin treatment on VSMC migration and proliferation. In vivo, ILK is expressed in VSMC of aortic sections from wild-type mice where it is down-regulated following statin treatment and up-regulated following induction of atherosclerosis in apoE-/- mice. These data identify ILK as a novel target in VSMC for anti-atherosclerotic therapy.

  11. Vascular mineralocorticoid receptor regulates microRNA-155 to promote vasoconstriction and rising blood pressure with aging

    PubMed Central

    DuPont, Jennifer J.; McCurley, Amy; Davel, Ana P.; McCarthy, Joseph; Bender, Shawn B.; Hong, Kwangseok; Yang, Yan; Yoo, Jeung-Ki; Aronovitz, Mark; Baur, Wendy E.; Christou, Demetra D.; Hill, Michael A.; Jaffe, Iris Z.

    2016-01-01

    Hypertension is nearly universal yet poorly controlled in the elderly despite proven benefits of intensive treatment. Mice lacking mineralocorticoid receptors in smooth muscle cells (SMC-MR-KO) are protected from rising blood pressure (BP) with aging, despite normal renal function. Vasoconstriction is attenuated in aged SMC-MR-KO mice, thus they were used to explore vascular mechanisms that may contribute to hypertension with aging. MicroRNA (miR) profiling identified miR-155 as the most down-regulated miR with vascular aging in MR-intact but not SMC-MR-KO mice. The aging-associated decrease in miR-155 in mesenteric resistance vessels was associated with increased mRNA abundance of MR and of predicted miR-155 targets Cav1.2 (L-type calcium channel (LTCC) subunit) and angiotensin type-1 receptor (AgtR1). SMC-MR-KO mice lacked these aging-associated vascular gene expression changes. In HEK293 cells, MR repressed miR-155 promoter activity. In cultured SMCs, miR-155 decreased Cav1.2 and AgtR1 mRNA. Compared to MR-intact littermates, aged SMC-MR-KO mice had decreased systolic BP, myogenic tone, SMC LTCC current, mesenteric vessel calcium influx, LTCC-induced vasoconstriction and angiotensin II-induced vasoconstriction and oxidative stress. Restoration of miR-155 specifically in SMCs of aged MR-intact mice decreased Cav1.2 and AgtR1 mRNA and attenuated LTCC-mediated and angiotensin II-induced vasoconstriction and oxidative stress. Finally, in a trial of MR blockade in elderly humans, changes in serum miR-155 predicted the BP treatment response. Thus, SMC-MR regulation of miR-155, Cav1.2 and AgtR1 impacts vasoconstriction with aging. This novel mechanism identifies potential new treatment strategies and biomarkers to improve and individualize antihypertensive therapy in the elderly. PMID:27683672

  12. Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression.

    PubMed Central

    Brogi, E; Schatteman, G; Wu, T; Kim, E A; Varticovski, L; Keyt, B; Isner, J M

    1996-01-01

    Vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF), an endothelial cell (EC)-specific mitogen, stimulates angiogenesis in vivo, particularly in ischemic regions. VEGF/VPF expression by cells of hypoxic tissues coincides with expression of its two receptors, KDR and flt-1, by ECs in the same tissues. We investigated whether hypoxia or hypoxia-dependent conditions operate in coordinating this phenomenon. Human umbilical vein and microvascular ECs were exposed to direct hypoxia or to medium conditioned (CM) by myoblasts maintained in hypoxia for 4 d. Control ECs were maintained in normoxia or normoxia-CM. Binding of 125I-VEGF to ECs was then evaluated. Hypoxic treatment of ECs had no effect on 125I-VEGF binding. However, treatment of ECs with hypoxia-CM produced a threefold increase in 125I-VEGF binding, with peak at 24 h (P < 0.001, ANOVA). Scatchard analysis disclosed that increased binding was due to a 13-fold increase in KDR receptors/cell, with no change in KDR affinity (Kd = 260 +/- 51 pM, normoxia-CM versus Kd = 281 +/- 94 pM, hypoxia-CM) and no change in EC number (35.6 +/- 5.9 x 10(3) ECs/cm2, normoxia-CM versus 33.5 +/- 5.5 x 10(3) ECs/cm2, hypoxia-CM). Similar results were obtained using CM from hypoxic smooth muscle cells. KDR upregulation was not prevented by addition to the hypoxia-CM of neutralizing antibodies against VEGF, tumor necrosis factor-alpha, transforming growth factor beta 1 or basic fibroblast growth factor. Similarly, addition of VEGF or lactic acid to the normoxia-CM had no effect on VEGF binding. We conclude that mechanism(s) initiated by hypoxia can induce KDR receptor upregulation in ECs. Hypoxic cells, normal or neoplastic, not only can produce VEGF/VPF, but can also modulate its effects via paracrine induction of VEGF/VPF receptors in ECs. PMID:8567969

  13. Autocrine secretion of osteopontin by vascular smooth muscle cells regulates their adhesion to collagen gels.

    PubMed Central

    Weintraub, A. S.; Giachelli, C. M.; Krauss, R. S.; Almeida, M.; Taubman, M. B.

    1996-01-01

    Osteopontin (OPN) is a secreted protein postulated to facilitate vascular smooth muscle cell (VSMC) adhesion and migration. Rat aortic VSMC lines were isolated after infection with recombinant retroviruses harboring OPN sense and antisense constructs. All lines grew normally in monolayer culture. On three-dimensional collagen gels, normal VSMCs and lines containing sense constructs (n=15) or empty vector (n=10) attached to gel and invaded the matrix. Four of five antisense clones did not adhere or invade. Antisense clones had lower OPN levels after stimulation with angiotensin II than sense clones or clones containing the empty vector (antisense, 257+/-102 ng/ml; sense, 473+/-104; vector, 434+/-66). Non-adhering antisense clones had lower mean OPN levels after angiotensin II stimulation (161+/-47 ng/ml) than sense or antisense lines with normal adhesion (486+/-63 ng/ml). The ability to adhere correlated with OPN levels >250 ng/ml. Adhesion and invasion were fully restored with addition of 100 to 200 ng/ml of exogenous OPN and were inhibited in normal VSMCs by incubation with 1 microgram/ml anti-OPN antibody. The autocrine secretion of OPN appears to play an important role in VSMC adhesion, spreading, and invasion. Images Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 PMID:8686750

  14. Benidipine, a calcium channel blocker, regulates proliferation and phenotype of vascular smooth muscle cells.

    PubMed

    Arakawa, Emi; Hasegawa, Kazuhide

    2006-02-01

    Hyperproliferation of phenotypically modified vascular smooth muscle cells (VSMCs) is one of the major factors in the development of atherosclerosis and restenosis. Previously it was demonstrated that benidipine, a dihydropyridine-calcium channel antagonist, reduced neointimal formation in a rat balloon-injury model. In the present study, we examined the effect of benidipine on the phenotypic modulation and proliferation of VSMCs, using primary cultures of rat VSMCs. In the absence of drug treatment, protein levels of the smooth muscle specific markers, such as smooth muscle myosin heavy chain-1 (SM1), calponin 1, and alpha-actin, decreased during culture. However, treatment of VSMCs with benidipine (3 - 10 micromol/L) for 1 week reversed the effect in a concentration-related manner so that high levels of marker proteins were maintained. The expression of calponin mRNAs was reduced markedly during 1-week culture, and treatment with benidipine (3 micromol/L) significantly inhibited the reduction. Treatment with benidipine for 2 days increased the level of p21 protein and partially reduced p70 S6 kinase 1 (p70S6K1) activity. These data suggest that benidipine may arrest the growth of VSMCs, thereby preventing cell dedifferentiation. These additional properties of benidipine suggest that the drug should provide useful therapy for atherosclerosis and restenosis.

  15. Cardamonin Regulates miR-21 Expression and Suppresses Angiogenesis Induced by Vascular Endothelial Growth Factor

    PubMed Central

    Jiang, Fu-Sheng; Tian, Sha-Sha; Lu, Jin-Jian; Ding, Xing-Hong; Qian, Chao-Dong; Ding, Bin; Ding, Zhi-Shan; Jin, Bo

    2015-01-01

    Cardamonin has promising potential in cancer prevention and therapy by interacting with proteins and modifying the expressions and activities, including factors of cell survival, proliferation, and angiogenesis. In our precious study, we have demonstrated that cardamonin suppressed vascular endothelial growth factor- (VEGF-) induced angiogenesis as evaluated in the mouse aortic ring assay. It is also known that microRNAs (miRNAs) play important roles in angiogenesis. Herein, we hypothesized whether antiangiogenesis effect of cardamonin in human umbilical vein endothelial cells (HUVECs) triggered by VEGF was associated with miRNAs. We found that cardamonin reduced the miR-21 expression induced by VEGF in HUVECs. Treatment with miR-21 mimics abolished the effects of cardamonin on VEGF-induced cell proliferation, migration, and angiogenesis in HUVECs. However, treatment with miR-21 inhibitors presented the opposite effects, indicating the vital role of miR-21 in this process. Our study provides a new insight of the preliminary mechanism of anti-VEGF-induced angiogenesis by cardamonin in HUVECs. PMID:26266258

  16. Vascular Cures

    MedlinePlus

    ... Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic Dissection Arteriovenous Malformation Atherosclerosis Buerger's Disease Carotid Artery Disease ...

  17. PRR3 Is a Vascular Regulator of TOC1 Stability in the Arabidopsis Circadian Clock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pseudoresponse regulators (PRRs) participate in the progression of the circadian clock in Arabidopsis thaliana. The founding member of the family, TIMING OF CAB EXPRESSION1 (TOC1), is an essential component of the transcriptional network that constitutes the core mechanism of the circadian oscil...

  18. Rapamycin improves lymphoproliferative disease in murine autoimmune lymphoproliferative syndrome (ALPS).

    PubMed

    Teachey, David T; Obzut, Dana A; Axsom, Kelly; Choi, John K; Goldsmith, Kelly C; Hall, Junior; Hulitt, Jessica; Manno, Catherine S; Maris, John M; Rhodin, Nicholas; Sullivan, Kathleen E; Brown, Valerie I; Grupp, Stephan A

    2006-09-15

    Autoimmune lymphoproliferative syndrome (ALPS) is a disorder of abnormal lymphocyte survival caused by defective Fas-mediated apoptosis, leading to lymphadenopathy, hepatosplenomegaly, and an increased number of double-negative T cells (DNTs). Treatment options for patients with ALPS are limited. Rapamycin has been shown to induce apoptosis in normal and malignant lymphocytes. Since ALPS is caused by defective lymphocyte apoptosis, we hypothesized that rapamycin would be effective in treating ALPS. We tested this hypothesis using rapamycin in murine models of ALPS. We followed treatment response with serial assessment of DNTs by flow cytometry in blood and lymphoid tissue, by serial monitoring of lymph node and spleen size with ultrasonography, and by enzyme-linked immunosorbent assay (ELISA) for anti-double-stranded DNA (dsDNA) antibodies. Three-dimensional ultrasound measurements in the mice correlated to actual tissue measurements at death (r = .9648). We found a dramatic and statistically significant decrease in DNTs, lymphadenopathy, splenomegaly, and autoantibodies after only 4 weeks when comparing rapamycin-treated mice with controls. Rapamycin induced apoptosis through the intrinsic mitochondrial pathway. We compared rapamycin to mycophenolate mofetil, a second-line agent used to treat ALPS, and found rapamycin's control of lymphoproliferation was superior. We conclude that rapamycin is an effective treatment for murine ALPS and should be explored as treatment for affected humans.

  19. Flowers regulate the growth and vascular development of the inflorescence rachis in Vitis vinifera L.

    PubMed

    Gourieroux, Aude M; McCully, Margaret E; Holzapfel, Bruno P; Scollary, Geoffrey R; Rogiers, Suzy Y

    2016-11-01

    The rachis, the structural framework of the grapevine (Vitis vinifera L.) inflorescence (and subsequent bunch), consists of a main axis and one or more orders of lateral branches with the flower-bearing pedicels at their fine tips. The rachis is crucial both for support, and transport from the shoot. Earlier suggestions that the flowers per se affect normal rachis development are investigated further in this study. Different percentages (0, 25, 50, 75 or 100) of flowers were removed manually one week before anthesis on field-grown vines. Treatment effects on subsequent rachis development (curvature, vitality, anatomy, starch deposit) were assessed. Sections, both fixed and embedded, and fresh hand-cut were observed by fluorescence and bright-field optics after appropriate staining. Emphasis was on measurement of changes in cross-sectional area of secondary xylem and phloem, and on maturation of fibres and periderm. Specific defects in rachis development were dependent on the percent and location of flower removal one week prior to anthesis. The rachises curved inwards where most of the flowers were removed. When fully de-flowered, they became progressively necrotic from the laterals back to the primary axes and from the distal to the proximal end of those axes, with a concurrent disorganisation of their anatomy. A few remaining groups of flowers prevented desiccation and abscission of the rachis axes proximal to the group, but not distally. Flower removal (50%) reduced rachis elongation, while 75% removal reduced xylem and phloem area and delayed phloem fibre and periderm development. 75% flower removal did not affect starch present in the rachis during berry development. Developing flowers affect the growth and vitality of the rachis and the development of its vascular and support structures. The extent of these effects depends on the cultivar and the number and position of flowers remaining after some are removed one week before anthesis.

  20. Role of cAMP-Phosphodiesterase 1C Signaling in Regulating Growth Factor Receptor Stability, Vascular Smooth Muscle Cell Growth, Migration, and Neointimal Hyperplasia

    PubMed Central

    Cai, Yujun; Nagel, David J.; Zhou, Qian; Cygnar, Katherine D.; Zhao, Haiqing; Li, Faqian; Pi, Xinchun; Knight, Peter A.; Yan, Chen

    2015-01-01

    Objective Neointimal hyperplasia characterized by abnormal accumulation of vascular smooth muscle cells (SMCs) is a hallmark of occlusive disorders such as atherosclerosis, post-angioplasty restenosis, vein graft stenosis, and allograft vasculopathy. Cyclic nucleotides are vital in SMC proliferation and migration, which are regulated by cyclic nucleotide phosphodiesterases (PDEs). Our goal is to understand the regulation and function of PDEs in SMC pathogenesis of vascular diseases. Methods & Results We performed screening for genes differentially expressed in normal contractile versus proliferating synthetic SMCs. We observed that PDE1C expression was low in contractile SMCs but drastically elevated in synthetic SMCs in vitro and in various mouse vascular injury models in vivo. Additionally, PDE1C was highly induced in neointimal SMCs of human coronary arteries. More importantly, injury-induced neointimal formation was significantly attenuated by PDE1C deficiency or PDE1 inhibition in vivo. PDE1 inhibition suppressed vascular remodeling of human saphenous vein explants ex vivo. In cultured SMCs, PDE1C deficiency or PDE1 inhibition attenuated SMC proliferation and migration. Mechanistic studies revealed that PDE1C plays a critical role in regulating the stability of growth factor receptors, such as PDGF-receptor-beta (PDGFRβ) known to be important in pathological vascular remodeling. PDE1C interacts with LDL-receptor-related-protein-1 (LRP1) and PDGFRβ, thus regulating PDGFRβ endocytosis and lysosome-dependent degradation in an LRP1-dependent manner. A transmembrane-adenylyl-cyclase (tmAC)-cAMP-PKA cascade modulated by PDE1C is critical in regulating PDGFRβ degradation. Conclusion These findings demonstrated that PDE1C is an important regulator of SMC proliferation, migration, and neointimal hyperplasia, in part through modulating endosome/lysosome dependent PDGFRβ protein degradation via LRP1. PMID:25608528

  1. Signaling Mechanisms that Suppress the Cytostatic Actions of Rapamycin

    PubMed Central

    Jahn, Stephan C.; Law, Mary E.; Corsino, Patrick E.; Davis, Bradley J.; Harrison, Jeffrey K.; Law, Brian K.

    2014-01-01

    While rapamycin and the “rapalogs” Everolimus and Temsirolimus have been approved for clinical use in the treatment of a number of forms of cancer, they have not met overarching success. Some tumors are largely refractory to rapamycin treatment, with some even undergoing an increase in growth rates. However the mechanisms by which this occurs are largely unknown. The results presented here reveal novel cell-signaling mechanisms that may lead to this resistance. The absence of TGFβ signaling results in resistance to rapamycin. Additionally, we observed that treatment of some cancer cell lines with rapamycin and its analogs not only potentiates mitogenic signaling and proliferation induced by HGF, but also stimulates the pro-survival kinase Akt. Together, the data show that the effectiveness of rapamycin treatment can be influenced by a number of factors and bring to light potential biomarkers for the prediction of responsiveness to treatment, and suggest combination therapies to optimize rapalog anticancer efficacy. PMID:24927123

  2. Role of leptin signaling in hemato-vascular development and niche function: Leptin receptor-mediated signaling regulates LT-HSC homeostasis in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Homeostatic functioning of the cardiovascular and hematopoietic systems is known to be interdependent and strongly influenced by the microenvironment in which hemato-vascular cells develop and reside. The role of nutrition and metabolism as regulable and dynamic extracellular cues however, remains a...

  3. Eosinophils are key regulators of perivascular adipose tissue and vascular functionality

    PubMed Central

    Withers, Sarah B.; Forman, Ruth; Meza-Perez, Selene; Sorobetea, Daniel; Sitnik, Kasia; Hopwood, Thomas; Lawrence, Catherine B.; Agace, William W.; Else, Kathryn J.; Heagerty, Anthony M.; Svensson-Frej, Marcus; Cruickshank, Sheena M.

    2017-01-01

    Obesity impairs the relaxant capacity of adipose tissue surrounding the vasculature (PVAT) and has been implicated in resultant obesity-related hypertension and impaired glucose intolerance. Resident immune cells are thought to regulate adipocyte activity. We investigated the role of eosinophils in mediating normal PVAT function. Healthy PVAT elicits an anti-contractile effect, which was lost in mice deficient in eosinophils, mimicking the obese phenotype, and was restored upon eosinophil reconstitution. Ex vivo studies demonstrated that the loss of PVAT function was due to reduced bioavailability of adiponectin and adipocyte-derived nitric oxide, which was restored after eosinophil reconstitution. Mechanistic studies demonstrated that adiponectin and nitric oxide are released after activation of adipocyte-expressed β3 adrenoceptors by catecholamines, and identified eosinophils as a novel source of these mediators. We conclude that adipose tissue eosinophils play a key role in the regulation of normal PVAT anti-contractile function. PMID:28303919

  4. Vascular endothelial growth factor in primate endometrium is regulated by oestrogen-receptor and progesterone-receptor ligands in vivo.

    PubMed

    Greb, R R; Heikinheimo, O; Williams, R F; Hodgen, G D; Goodman, A L

    1997-06-01

    We investigated hormonal regulation of endometrial angiogenesis in menstruating primates. This study was designed to demonstrate: (i) that cell-specific vascular endothelial growth factor (VEGF) production and expression in monkey endometrium are regulated by steroid receptor ligands; and (ii) mifepristone (RU 486) alters VEGF production even in the absence of a progestin agonist. Endometrial VEGF production was compared by computer-assisted immunohistochemical analysis during induced hypoestrogenism and after oestradiol, progestin, or antiprogestin (mifepristone) treatment. VEGF gene expression was estimated by quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) in endometrial samples from castrate cynomolgus monkeys, from intact monkeys in the luteal phase, and from monkeys treated for 20 days with levonorgestrel (LNG) or mifepristone. VEGF staining intensities in glandular epithelium and VEGF mRNA expression were highest in hypoestrogenic monkeys. Progestin treatment induced intense VEGF staining in the stroma. Gene expression of VEGF-189, but not other isoforms, was higher in progesterone- and progestin (LNG)-exposed endometria compared to mifepristone-exposed endometria or endometria from anovulatory cycles (P < 0.04). Mifepristone abolished VEGF staining in glandular epithelium almost completely. We conclude that VEGF protein and VEGF mRNA expression levels in primate endometrium depend on the steroidal milieu. Anti-angiogenic effects of mifepristone via suppression of VEGF production might represent a mechanism for its quelling effects on endometrium.

  5. Cinnamon and its Components Suppress Vascular Smooth Muscle Cell Proliferation by Up-Regulating Cyclin-Dependent Kinase Inhibitors.

    PubMed

    Kwon, Hyeeun; Lee, Jung-Jin; Lee, Ji-Hye; Cho, Won-Kyung; Gu, Min Jung; Lee, Kwang Jin; Ma, Jin Yeul

    2015-01-01

    Cinnamomum cassia bark has been used in traditional herbal medicine to treat a variety of cardiovascular diseases. However, the antiproliferative effect of cinnamon extract on vascular smooth muscle cells (VSMCs) and the corresponding restenosis has not been explored. Hence, after examining the effect of cinnamon extract on VSMC proliferation, we investigated the possible involvement of signal transduction pathways associated with early signal and cell cycle analysis, including regulatory proteins. Besides, to identify the active components, we investigated the components of cinnamon extract on VSMC proliferation. Cinnamon extract inhibited platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation and suppressed the PDGF-stimulated early signal transduction. In addition, cinnamon extract arrested the cell cycle and inhibited positive regulatory proteins. Correspondingly, the protein levels of p21 and p27 not only were increased in the presence of cinnamon extract, also the expression of proliferating cell nuclear antigen (PCNA) was inhibited by cinnamon extract. Besides, among the components of cinnamon extract, cinnamic acid (CA), eugenol (EG) and cinnamyl alcohol significantly inhibited the VSMC proliferation. Overall, the present study demonstrates that cinnamon extract inhibited the PDGF-BB-induced proliferation of VSMCs through a G0/G1 arrest, which down-regulated the expression of cell cycle positive regulatory proteins by up-regulating p21 and p27 expression.

  6. Xenobiotic pregnane X receptor (PXR) regulates innate immunity via activation of NLRP3 inflammasome in vascular endothelial cells.

    PubMed

    Wang, Shaolan; Lei, Ting; Zhang, Kang; Zhao, Wenxiang; Fang, Li; Lai, Baochang; Han, Jie; Xiao, Lei; Wang, Nanping

    2014-10-24

    Pregnane X receptor (PXR) is a member of nuclear receptor superfamily and responsible for the detoxification of xenobiotics. Our previously study demonstrated that PXR is expressed in endothelial cells (ECs) and acts as a master regulator of detoxification genes to protect ECs against xenobiotics. Vascular endothelial cells are key sentinel cells to sense the pathogens and xenobiotics. In this study, we examined the potential function of PXR in the regulation of innate immunity in vasculatures. Treatments with PXR agonists or overexpression of a constitutively active PXR in cultured ECs increased gene expression of the key pattern recognition receptors, including Toll-like receptors (TLR-2, -4, -9) and NOD-like receptors (NOD-1 and -2 and NLRP3). In particular, PXR agonism triggered the activation of NLRP3 inflammasome and the ensuing cleavage and maturation of caspase-1 and interleukin-1β (IL-1β). Conversely, selective antagonism or gene silencing of PXR abrogated NLRP3 inflammasome activation. In addition, we identified NLRP3 as a transcriptional target of PXR by using the promoter-reporter and ChIP assays. In summary, our findings revealed a novel regulatory mechanism of innate immune by PXR, which may act as a master transcription factor controlling the convergence between the detoxification of xenobiotics and the innate immunity against them.

  7. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; P<0.05) at all examined time points (2 to 24 hours). mRNA half-life studies showed that this response was not due to increased mRNA instability. tPA mRNA expression was decreased (to 10% of stationary control; P<0.05) by low shear stress after 12 hours of exposure and was increased (to 250% of stationary control; P<0.05) after 24 hours at high shear stress. The same trends in PAR-1 mRNA levels were observed in rat smooth muscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  8. Mitogen Activated Protein Kinase Activated Protein Kinase 2 Regulates Actin Polymerization and Vascular Leak in Ventilator Associated Lung Injury

    PubMed Central

    Damarla, Mahendra; Hasan, Emile; Boueiz, Adel; Le, Anne; Pae, Hyun Hae; Montouchet, Calypso; Kolb, Todd; Simms, Tiffany; Myers, Allen; Kayyali, Usamah S.; Gaestel, Matthias; Peng, Xinqi; Reddy, Sekhar P.; Damico, Rachel; Hassoun, Paul M.

    2009-01-01

    Mechanical ventilation, a fundamental therapy for acute lung injury, worsens pulmonary vascular permeability by exacting mechanical stress on various components of the respiratory system causing ventilator associated lung injury. We postulated that MK2 activation via p38 MAP kinase induced HSP25 phosphorylation, in response to mechanical stress, leading to actin stress fiber formation and endothelial barrier dysfunction. We sought to determine the role of p38 MAP kinase and its downstream effector MK2 on HSP25 phosphorylation and actin stress fiber formation in ventilator associated lung injury. Wild type and MK2−/− mice received mechanical ventilation with high (20 ml/kg) or low (7 ml/kg) tidal volumes up to 4 hrs, after which lungs were harvested for immunohistochemistry, immunoblotting and lung permeability assays. High tidal volume mechanical ventilation resulted in significant phosphorylation of p38 MAP kinase, MK2, HSP25, actin polymerization, and an increase in pulmonary vascular permeability in wild type mice as compared to spontaneous breathing or low tidal volume mechanical ventilation. However, pretreatment of wild type mice with specific p38 MAP kinase or MK2 inhibitors abrogated HSP25 phosphorylation and actin polymerization, and protected against increased lung permeability. Finally, MK2−/− mice were unable to phosphorylate HSP25 or increase actin polymerization from baseline, and were resistant to increases in lung permeability in response to HVT MV. Our results suggest that p38 MAP kinase and its downstream effector MK2 mediate lung permeability in ventilator associated lung injury by regulating HSP25 phosphorylation and actin cytoskeletal remodeling. PMID:19240800

  9. Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases

    PubMed Central

    Perl, Andras

    2017-01-01

    Mechanistic target of rapamycin (mTOR, also known as mammalian target of rapamycin) is a ubiquitous serine/threonine kinase that regulates cell growth, proliferation and survival. These effects are cell-type-specific, and are elicited in response to stimulation by growth factors, hormones and cytokines, as well as to internal and external metabolic cues. Rapamycin was initially developed as an inhibitor of T-cell proliferation and allograft rejection in the organ transplant setting. Subsequently, its molecular target (mTOR) was identified as a component of two interacting complexes, mTORC1 and mTORC2, that regulate T-cell lineage specification and macrophage differentiation. mTORC1 drives the proinflammatory expansion of T helper (TH) type 1, TH17, and CD4−CD8− (double-negative, DN) T cells. Both mTORC1 and mTORC2 inhibit the development of CD4+CD25+FoxP3+ T regulatory (TREG) cells and, indirectly, mTORC2 favours the expansion of Tfollicular helper (TFH) cells which, similarly to DN T cells, promote B-cell activation and autoantibody production. In contrast to this proinflammatory effect of mTORC2, mTORC1 favours, to some extent, an anti-inflammatory macrophage polarization that is protective against infections and tissue inflammation. Outside the immune system, mTORC1 controls fibroblast proliferation and chondrocyte survival, with implications for tissue fibrosis and osteoarthritis, respectively. Rapamycin (which primarily inhibits mTORC1), ATP-competitive, dual mTORC1/mTORC2 inhibitors and upstream regulators of the mTOR pathway are being developed to treat autoimmune, hyperproliferative and degenerative diseases. In this regard, mTOR blockade promises to increase life expectancy through treatment and prevention of rheumatic diseases. PMID:26698023

  10. Initiation of vascular development.

    PubMed

    Ohashi-Ito, Kyoko; Fukuda, Hiroo

    2014-06-01

    The initiation of vascular development occurs during embryogenesis and the development of lateral organs, such as lateral roots and leaves. Understanding the mechanism underlying the initiation of vascular development has been an important goal of plant biologists. Auxin flow is a crucial factor involved in the initiation of vascular development. In addition, recent studies have identified key factors that regulate the establishment of vascular initial cells in embryos and roots. In this review, we summarize the recent findings in this field and discuss the initiation of vascular development.

  11. Negative regulation of NLRP3 inflammasome by SIRT1 in vascular endothelial cells.

    PubMed

    Li, Yanxiang; Yang, Xiaofeng; He, Yanhao; Wang, Weirong; Zhang, Jiye; Zhang, Wei; Jing, Ting; Wang, Bo; Lin, Rong

    2017-03-01

    NLRP3 inflammasome not only functions as a critical effector in innate immunity, but also triggers the production of proinflammatory cytokines involved in inflammation-associated diseases. Sirtuin 1 (SIRT1) plays an important role in the regulation of cellular inflammation. However, whether the activation of NLRP3 inflammasome is regulated by SIRT1 remains unknown. In this study, we investigated the regulatory effect of SIRT1 on NLRP3 inflammasome and the underlying mechanisms. We found that lipopolysaccharide (LPS) and adenosine triphosphate (ATP)-induced the activation of NLRP3 inflammasome in human umbilical vein endothelial cells (HUVECs). Activation of SIRT1 inhibited NLRP3 inflammasome activation and subsequent caspase-1 cleavage as well as interleukin (IL)-1β secretion, whereas SIRT1 knockdown obviously enhanced the activation of NLRP3 inflammasome in HUVECs. Importantly, gene silencing of SIRT1 abrogated the inhibitory effect of SIRT1 activator on NLRP3 inflammasome formation and IL-1β production in HUVECs stimulated with LPS plus ATP. Further study indicated that cluster of differentiation 40 (CD40) may be involved in the regulation of NLRP3 inflammasome by SIRT1. In vivo studies indicated that implantation of the periarterial carotid collar increased the arterial expression levels of CD40 and CD40 Ligand (CD40L), but inhibited arterial SIRT1 expression in the rabbits. Moreover, treatment with SIRT1 activator decreased CD40 and CD40L levels in collared arteries. Meanwhile, serum IL-1β level, the marker of inflammasome activation, was also inhibited by SIRT1 activation. Taken together, these findings revealed a novel regulatory mechanism of NLRP3 inflammasome by SIRT1, which may be related to suppression of CD40.

  12. Lipid rafts regulate cellular CD40 receptor localization in vascular endothelial cells

    SciTech Connect

    Xia Min; Wang Qing; Zhu Huilian; Ma Jing; Hou Mengjun; Tang Zhihong; Li Juanjuan; Ling Wenhua

    2007-09-28

    Cholesterol enriched lipid rafts are considered to function as platforms involved in the regulation of membrane receptor signaling complex through the clustering of signaling molecules. In this study, we tested whether these specialized membrane microdomains affect CD40 localization in vitro and in vivo. Here, we provide evidence that upon CD40 ligand stimulation, endogenous and exogenous CD40 receptor is rapidly mobilized into lipid rafts compared with unstimulated HAECs. Efficient binding between CD40L and CD40 receptor also increases amounts of CD40 protein levels in lipid rafts. Deficiency of intracellular conserved C terminus of the CD40 cytoplasmic tail impairs CD40 partitioning in raft. Raft disorganization after methyl-{beta}-cyclodextrin treatment diminishes CD40 localization into rafts. In vivo studies show that elevation of circulating cholesterol in high-cholesterol fed rabbits increases the cholesterol content and CD40 receptor localization in lipid rafts. These findings identify a physiological role for membrane lipid rafts as a critical regulator of CD40-mediated signal transduction and raise the possibility that certain pathologic conditions may be treated by altering CD40 signaling with drugs affecting its raft localization.

  13. MST1-dependent vesicle trafficking regulates neutrophil transmigration through the vascular basement membrane

    PubMed Central

    Kurz, Angela R.M.; Pruenster, Monika; Rohwedder, Ina; Ramadass, Mahalakshmi; Schäfer, Kerstin; Harrison, Ute; Nussbaum, Claudia; Immler, Roland; Wiessner, Johannes R.; Lim, Dae-Sik; Walzog, Barbara; Dietzel, Steffen; Moser, Markus; Klein, Christoph; Vestweber, Dietmar; Catz, Sergio D.

    2016-01-01

    Neutrophils need to penetrate the perivascular basement membrane for successful extravasation into inflamed tissue, but this process is incompletely understood. Recent findings have associated mammalian sterile 20–like kinase 1 (MST1) loss of function with a human primary immunodeficiency disorder, suggesting that MST1 may be involved in immune cell migration. Here, we have shown that MST1 is a critical regulator of neutrophil extravasation during inflammation. Mst1-deficient (Mst1–/–) neutrophils were unable to migrate into inflamed murine cremaster muscle venules, instead persisting between the endothelium and the basement membrane. Mst1–/– neutrophils also failed to extravasate from gastric submucosal vessels in a murine model of Helicobacter pylori infection. Mechanistically, we observed defective translocation of VLA-3, VLA-6, and neutrophil elastase from intracellular vesicles to the surface of Mst1–/– neutrophils, indicating that MST1 is required for this crucial step in neutrophil transmigration. Furthermore, we found that MST1 associates with the Rab27 effector protein synaptotagmin-like protein 1 (JFC1, encoded by Sytl1 in mice), but not Munc13-4, thereby regulating the trafficking of Rab27-positive vesicles to the cellular membrane. Together, these findings highlight a role for MST1 in vesicle trafficking and extravasation in neutrophils, providing an additional mechanistic explanation for the severe immune defect observed in patients with MST1 deficiency. PMID:27701149

  14. Expression and regulation of endothelial nitric oxide synthase by vascular endothelial growth factor in ECV 304 cells.

    PubMed Central

    Park, Jong Seon; Hong, Gu Ru; Baek, Suk Whan; Shin, Dong Gu; Kim, Young Jo; Shim, Bong Sup

    2002-01-01

    Nitric oxide (NO) seems to play a pivotal role in the vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation. This study was designed to investigate the role and intracellular signal pathway of endothelial nitric oxide synthase (eNOS) activation induced by VEGF. ECV 304 cells were treated with VEGF(165) and then cell proliferation, eNOS protein and mRNA expression levels were analyzed to elucidate the functional role of eNOS in cell proliferation induced by VEGF. After exposure of cells to VEGF(165), eNOS activity and cell growth were increased by approximately two-fold in the VEGF(165) -treated cells compared to the untreated cells. In addition, VEGF stimulated eNOS expression at both the mRNA and protein levels in a dose-dependent manner. Phosphatidylinositol-3 kinase (PI-3K) inhibitors were used to assess PI-3K involvement in eNOS regulation. LY294002 was found to attenuate VEGF-stimulated eNOS expression. Wortmannin was not as effective as LY294002, but the reduction effect was detectable. Cells activated by VEGF showed increased ERK1/2 levels. Moreover, the VEGF-induced eNOS expression was reduced by the PD98059, MAPK pathway inhibitor. This suggests that eNOS expression might be regulated by PI-3K and the ERK1/2 signaling pathway. In conclusion, VEGF(165) induces ECV 304 cell proliferation via the NO produced by eNOS. In addition, eNOS may be regulated by the PI-3K or mitogen-activated protein kinase pathway. PMID:11961297

  15. P66(Shc)-SIRT1 Regulation of Oxidative Stress Protects Against Cardio-cerebral Vascular Disease.

    PubMed

    Kong, Xiangyi; Guan, Jian; Li, Jun; Wei, Junji; Wang, Renzhi

    2016-08-30

    Growing evidence shows that acute and chronic overproduction of reactive oxygen species (ROS) and increased oxidants under pathophysiologic circumstances are of vital importance in the development of cardio-cerebral vascular diseases (CCVDs). It has been revealed that the impact of ROS can be suppressed by sirtuin 1 (SIRT1), a member of the highly conserved nicotinamide adenine dinucleotide-dependent class III histone deacetylases through protecting endothelial cells from oxidative injury. Plenty of evidences indicate that p66Shc stimulates mitochondrial ROS generation through its oxidoreductase activity and plays a vital role in the pathophysiology of CCVDs. The link between SIRT and p66Shc, though not very clear yet, may be generally illustrated like this: SIRT1 negatively regulates the expression of p66Shc in transcriptional level. In this review, the authors aimed to discuss the link between the pathogenesis of CCVDs, the regulation of ROS, the interrelation between SIRT1 and p66Shc, and the protective effect of the proper regulation of p66Shc/SIRT1 on CCVDs. The imbalance between the elimination and production of ROS can lead to oxidative stress (OS). More and more evidence suggest that ROS pathological overproduction is closely connected to the genesis and growth of CCVDs. P66shc is a gene that controls ROS level, apoptosis induction, and lifespan. Lots of evidence also indicate a role for SIRT1 mediating OS responses through several ways including directly deacetylating some transcription factors that control anti-OS genes. SIRT1 downregulation can lead to a decreased deacetylation of p66shc gene promoter and can then result in p66shc transcription. SIRT1 binds to the promoter of p66Shc where it can deacetylate histone H3, which weakens the transcription and translation of p66shc.

  16. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    SciTech Connect

    Yang, Bin; Li, Wei; Zheng, Qichang; Qin, Tao; Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen; Liu, Sanguang; Song, Zifang

    2015-07-17

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.

  17. Long-term effects of rapamycin treatment on insulin mediated phosphorylation of Akt/PKB and glycogen synthase activity

    SciTech Connect

    Varma, Shailly; Shrivastav, Anuraag; Changela, Sheena; Khandelwal, Ramji L.

    2008-04-01

    Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3{beta} (GSK-3{beta}) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-{alpha} (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.

  18. Rapamycin targeting mTOR and hedgehog signaling pathways blocks human rhabdomyosarcoma growth in xenograft murine model

    SciTech Connect

    Kaylani, Samer Z.; Xu, Jianmin; Srivastava, Ritesh K.; Kopelovich, Levy; Pressey, Joseph G.; Athar, Mohammad

    2013-06-14

    Graphical abstract: Intervention of poorly differentiated RMS by rapamycin: In poorly differentiated RMS, rapamycin blocks mTOR and Hh signaling pathways concomitantly. This leads to dampening in cell cycle regulation and induction of apoptosis. This study provides a rationale for the therapeutic intervention of poorly differentiated RMS by treating patients with rapamycin alone or in combination with other chemotherapeutic agents. -- Highlights: •Rapamycin abrogates RMS tumor growth by modulating proliferation and apoptosis. •Co-targeting mTOR/Hh pathways underlie the molecular basis of effectiveness. •Reduction in mTOR/Hh pathways diminish EMT leading to reduced invasiveness. -- Abstract: Rhabdomyosarcomas (RMS) represent the most common childhood soft-tissue sarcoma. Over the past few decades outcomes for low and intermediate risk RMS patients have slowly improved while patients with metastatic or relapsed RMS still face a grim prognosis. New chemotherapeutic agents or combinations of chemotherapies have largely failed to improve the outcome. Based on the identification of novel molecular targets, potential therapeutic approaches in RMS may offer a decreased reliance on conventional chemotherapy. Thus, identification of effective therapeutic agents that specifically target relevant pathways may be particularly beneficial for patients with metastatic and refractory RMS. The PI3K/AKT/mTOR pathway has been found to be a potentially attractive target in RMS therapy. In this study, we provide evidence that rapamycin (sirolimus) abrogates growth of RMS development in a RMS xenograft mouse model. As compared to a vehicle-treated control group, more than 95% inhibition in tumor growth was observed in mice receiving parenteral administration of rapamycin. The residual tumors in rapamycin-treated group showed significant reduction in the expression of biomarkers indicative of proliferation and tumor invasiveness. These tumors also showed enhanced apoptosis

  19. Reduction of GTP cyclohydrolase I feedback regulating protein expression by hydrogen peroxide in vascular endothelial cells.

    PubMed

    Ishii, Masakazu; Shimizu, Shunichi; Wajima, Teruaki; Hagiwara, Tamio; Negoro, Takaharu; Miyazaki, Akira; Tobe, Takashi; Kiuchi, Yuji

    2005-02-01

    We examined the effect of H(2)O(2) on the expression of GTP cyclohydrolase I (GTPCH) feedback regulating protein (GFRP). Addition of H(2)O(2) to endothelial cells decreased GFRP mRNA levels, in contrast to the increase of tetrahydrobiopterin (BH(4)) content and GTPCH mRNA levels. The inhibitors of nitric oxide (NO) synthase and GTPCH had no influence on the decrease of GFRP mRNA levels in H(2)O(2)-treated cells. It is suggested that H(2)O(2) induces BH(4) synthesis through not only induction of GTPCH but also reduction of GFRP. The decrease of GFRP mRNA level appears to be independent of the produced NO and BH(4).

  20. NOR-1/NR4A3 regulates the cellular inhibitor of apoptosis 2 (cIAP2) in vascular cells: role in the survival response to hypoxic stress

    PubMed Central

    Alonso, Judith; Galán, María; Martí-Pàmies, Ingrid; Romero, José María; Camacho, Mercedes; Rodríguez, Cristina; Martínez-González, José

    2016-01-01

    Vascular cell survival is compromised under pathological conditions such as abdominal aortic aneurysm (AAA). We have previously shown that the nuclear receptor NOR-1 is involved in the survival response of vascular cells to hypoxia. Here, we identify the anti-apoptotic protein cIAP2 as a downstream effector of NOR-1. NOR-1 and cIAP2 were up-regulated in human AAA samples, colocalizing in vascular smooth muscle cells (VSMC). While NOR-1 silencing reduced cIAP2 expression in vascular cells, lentiviral over-expression of this receptor increased cIAP2 mRNA and protein levels. The transcriptional regulation of the human cIAP2 promoter was analyzed in cells over-expressing NOR-1 by luciferase reporter assays, electrophoretic mobility shift analysis and chromatin immunoprecipitation, identifying a NGFI-B site (NBRE-358/-351) essential for NOR-1 responsiveness. NOR-1 and cIAP2 were up-regulated by hypoxia and by a hypoxia mimetic showing a similar time-dependent pattern. Deletion and site-directed mutagenesis studies show that NOR-1 mediates the hypoxia-induced cIAP2 expression. While NOR-1 over-expression up-regulated cIAP2 and limited VSMC apoptosis induced by hypoxic stress, cIAP2 silencing partially prevented this NOR-1 pro-survival effect. These results indicate that cIAP2 is a target of NOR-1, and suggest that this anti-apoptotic protein is involved in the survival response to hypoxic stress mediated by NOR-1 in vascular cells. PMID:27654514

  1. NOR-1/NR4A3 regulates the cellular inhibitor of apoptosis 2 (cIAP2) in vascular cells: role in the survival response to hypoxic stress.

    PubMed

    Alonso, Judith; Galán, María; Martí-Pàmies, Ingrid; Romero, José María; Camacho, Mercedes; Rodríguez, Cristina; Martínez-González, José

    2016-09-22

    Vascular cell survival is compromised under pathological conditions such as abdominal aortic aneurysm (AAA). We have previously shown that the nuclear receptor NOR-1 is involved in the survival response of vascular cells to hypoxia. Here, we identify the anti-apoptotic protein cIAP2 as a downstream effector of NOR-1. NOR-1 and cIAP2 were up-regulated in human AAA samples, colocalizing in vascular smooth muscle cells (VSMC). While NOR-1 silencing reduced cIAP2 expression in vascular cells, lentiviral over-expression of this receptor increased cIAP2 mRNA and protein levels. The transcriptional regulation of the human cIAP2 promoter was analyzed in cells over-expressing NOR-1 by luciferase reporter assays, electrophoretic mobility shift analysis and chromatin immunoprecipitation, identifying a NGFI-B site (NBRE-358/-351) essential for NOR-1 responsiveness. NOR-1 and cIAP2 were up-regulated by hypoxia and by a hypoxia mimetic showing a similar time-dependent pattern. Deletion and site-directed mutagenesis studies show that NOR-1 mediates the hypoxia-induced cIAP2 expression. While NOR-1 over-expression up-regulated cIAP2 and limited VSMC apoptosis induced by hypoxic stress, cIAP2 silencing partially prevented this NOR-1 pro-survival effect. These results indicate that cIAP2 is a target of NOR-1, and suggest that this anti-apoptotic protein is involved in the survival response to hypoxic stress mediated by NOR-1 in vascular cells.

  2. Mechanism of IFN-γ in regulating OPN/Th17 pathway during vascular collagen remodeling of hypertension induced by ANG II.

    PubMed

    Jiang, Lei; He, Pengcheng; Liu, Yong; Chen, Jiyan; Wei, Xuebiao; Tan, Ning

    2015-01-01

    More and more researches show that hypertensive vascular remodeling is closely related to the imbalance of immune system in recent years. IFN-γ is natural protein with the function of immune regulation and has resistance effect on vascular remodeling. However, the mechanism of IFN-γ is to be defined. This paper is to explore the mechanism of IFN-γ in regulating OPN/Th17 pathway. In this research, animal models of vascular collagen remodeling were established by inducing hypertensive mice with ANG II. There was no statistical significance when the systolic blood pressures and the percentages of wall thickness/lumen diameter in both groups of WT + AngII + IFN-γ and WT + PBS were compared (P=0.219>0.05, P=0.118>0.05). The concentration of serum precollagen-type I and III and their ratio in WT + AngII + IFN-γ group were decreased after the IFN-γ being given (P<0.01). Expression of OPN within tissue in WT + Ang II group was relatively high, but lowered after treated by IFN-γ. Th17 cell ratio was decreased in WT + AngII + IFN-γ group (P<0.01). Expressions of RORα and RORγt mRNA within Th17 cell were decreased (P<0.01). The content of IL-23 in WT + AngII + IFN-γ group was increased, while IL-10 and TGF-β decreased. It has proved that IFN-γ can regulate the hypertensive vascular collagen remodeling induced by ANG II, lower the systolic pressure and reduce the pathological damage of vascular collagen remodeling and the collagen synthesis. The mechanism may that the differentiation of Th17 is inhibited by suppressing the OPN expression and regulating the secretion of inflammatory cytokines.

  3. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    PubMed

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  4. A CLE-WOX signalling module regulates root meristem maintenance and vascular tissue development in rice.

    PubMed

    Chu, Huangwei; Liang, Wanqi; Li, Juan; Hong, Fan; Wu, Yunfei; Wang, Likai; Wang, Juan; Wu, Ping; Liu, Chunming; Zhang, Qifa; Xu, Jian; Zhang, Dabing

    2013-12-01

    CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR)-related (CLE) proteins belong to a small peptide family conserved in plants. Recent studies in Arabidopsis and rice have revealed a key role for CLEs in mediating cell-cell communication and stem cell maintenance during plant development, but how CLE signalling controls root development in the rice remains largely unknown. Here it is shown that exogenous application of a synthetic dodeca-amino acid peptide corresponding to the CLE motif of the rice FON2-LIKE CLE PROTEIN2 (FCP2p) protein or overexpression of FCP2 terminates root apical meristem (RAM) activity and impairs late metaxylem formation. FCP2p treatment suppresses the expression of the rice QUIESCENT-CENTER-SPECIFIC HOMEOBOX (QHB) gene, a putative orthologue of Arabidopsis WUSCHEL (WUS)-RELATED HOMEOBOX 5 (WOX5) gene, in both quiescent centre and late metaxylem cells; whereas inducible overexpression of QHB reduces the sensitivity of rice to FCP2p treatment. These results together suggest that in rice RAM maintenance and late metaxylem development are probably controlled by the mutual regulation between FCP2 and QHB. Moreover, a cross-species peptide treatment experiment in Arabidopsis implies that FCP2 has both evolutionarily conserved and species-specific roles in root development.

  5. Rapamycin extends life- and health span because it slows aging

    PubMed Central

    Blagosklonny, Mikhail V.

    2013-01-01

    Making headlines, a thought-provocative paper by Neff, Ehninger and coworkers claims that rapamycin extends life span but has limited effects on aging. How is that possibly possible? And what is aging if not an increase of the probability of death with age. I discuss that the JCI paper actually shows that rapamycin slows aging and also extends lifespan regardless of its direct anti-cancer activities. Aging is, in part, MTOR-driven: a purposeless continuation of developmental growth. Rapamycin affects the same processes in young and old animals: young animals' traits and phenotypes, which continuations become hyperfunctional, harmful and lethal later in life. PMID:23934728

  6. Rapamycin extends life- and health span because it slows aging.

    PubMed

    Blagosklonny, Mikhail V

    2013-08-01

    Making headlines, a thought-provocative paper by Neff, Ehninger and coworkers claims that rapamycin extends life span but has limited effects on aging. How is that possibly possible? And what is aging if not an increase of the probability of death with age. I discuss that the JCI paper actually shows that rapamycin slows aging and also extends lifespan regardless of its direct anti-cancer activities. Aging is, in part, MTOR-driven: a purposeless continuation of developmental growth. Rapamycin affects the same processes in young and old animals: young animals' traits and phenotypes, which continuations become hyperfunctional, harmful and lethal later in life.

  7. The CUL3-SPOP-DAXX axis is a novel regulator of VEGFR2 expression in vascular endothelial cells

    PubMed Central

    Sakaue, Tomohisa; Sakakibara, Iori; Uesugi, Takahiro; Fujisaki, Ayako; Nakashiro, Koh-ichi; Hamakawa, Hiroyuki; Kubota, Eiji; Joh, Takashi; Imai, Yu-ki; Izutani, Hironori; Higashiyama, Shigeki

    2017-01-01

    Vascular endothelial cell growth factor receptor 2 (VEGFR2) is an essential receptor for the homeostasis of endothelial cells. In this study, we showed that NEDD8-conjugated Cullin3 (CUL3)-based ubiquitin E3 (UbE3) ligase plays a crucial role in VEGFR2 mRNA expression. Human umbilical vein endothelial cells treated with MLN4924, an inhibitor of NEDD8-activating enzyme, or with CUL3 siRNA drastically lost their response to VEGF due to the intense decrease in VEGFR2 expression. Moreover, speckle-type POZ protein (SPOP) and death-domain associated protein (DAXX) were involved in the CUL3 UbE3 ligase complex as a substrate adaptor and a substrate, respectively. Knockdown of SPOP and CUL3 led to the upregulation of DAXX protein and downregulation of VEGFR2 levels. These levels were inversely correlated with one another. In addition, simultaneous knockdown of SPOP and DAXX completely reversed the downregulation of VEGFR2 levels. Moreover, the CUL3-SPOP-DAXX axis had the same effects on NOTCH1, DLL4 and NRP1 expression. Taken together, these findings suggest that the CUL3-SPOP-DAXX axis plays a very important role in endothelial cell function by targeting key angiogenic regulators. PMID:28216678

  8. VEGF dose regulates vascular stabilization through Semaphorin3A and the Neuropilin-1+ monocyte/TGF-β1 paracrine axis.

    PubMed

    Groppa, Elena; Brkic, Sime; Bovo, Emmanuela; Reginato, Silvia; Sacchi, Veronica; Di Maggio, Nunzia; Muraro, Manuele G; Calabrese, Diego; Heberer, Michael; Gianni-Barrera, Roberto; Banfi, Andrea

    2015-10-01

    VEGF is widely investigated for therapeutic angiogenesis, but while short-term delivery is desirable for safety, it is insufficient for new vessel persistence, jeopardizing efficacy. Here, we investigated whether and how VEGF dose regulates nascent vessel stabilization, to identify novel therapeutic targets. Monoclonal populations of transduced myoblasts were used to homogeneously express specific VEGF doses in SCID mouse muscles. VEGF was abrogated after 10 and 17 days by Aflibercept treatment. Vascular stabilization was fastest with low VEGF, but delayed or prevented by higher doses, without affecting pericyte coverage. Rather, VEGF dose-dependently inhibited endothelial Semaphorin3A expression, thereby impairing recruitment of Neuropilin-1-expressing monocytes (NEM), TGF-β1 production and endothelial SMAD2/3 activation. TGF-β1 further initiated a feedback loop stimulating endothelial Semaphorin3A expression, thereby amplifying the stabilizing signals. Blocking experiments showed that NEM recruitment required endogenous Semaphorin3A and that TGF-β1 was necessary to start the Semaphorin3A/NEM axis. Conversely, Semaphorin3A treatment promoted NEM recruitment and vessel stabilization despite high VEGF doses or transient adenoviral delivery. Therefore, VEGF inhibits the endothelial Semaphorin3A/NEM/TGF-β1 paracrine axis and Semaphorin3A treatment accelerates stabilization of VEGF-induced angiogenesis.

  9. Tonic regulation of vascular tone by nitric oxide and chloride ions in rat isolated small coronary arteries.

    PubMed

    Graves, J E; Greenwood, I A; Large, W A

    2000-12-01

    We have investigated the involvement of Cl(-) in regulating vascular tone in rat isolated coronary arteries mounted on a small vessel myograph. Mechanical removal of the endothelium or inhibition of nitric oxide (NO) synthase with N(omega)-nitro-L-arginine methyl ester (L-NAME, 10(-4) M) led to contraction of rat coronary arteries, and these contractions were sensitive to nicardipine (10(-6) M). This suggests that release of NO tonically inhibits a contractile mechanism that involves voltage-dependent Ca(2+) channels. In arteries contracted with L-NAME, switching the bathing solution to physiological saline solution with a reduced Cl(-) concentration potentiated the contraction. DIDS (5 x 10(-6)-3 x 10(-4) M) caused relaxation of L-NAME-induced tension (IC(50) = 55 +/- 10 microM), providing evidence for a role of Cl(-). SITS (10(-5)-5 x 10(-4) M) did not affect L-NAME-induced tension, suggesting that DIDS is not acting by inhibition of anion exchange. Mechanical removal of the endothelium led to contraction of arteries, which was sensitive to DIDS (IC(50) = 50 +/- 8 microM) and was not affected by SITS. This study suggests that, in rat coronary arteries, NO tonically suppresses a contractile mechanism that involves a Cl(-) conductance.

  10. Oxygen as a regulator of MA-10 cell functions: effect of cobalt chloride on vascular endothelial growth factor production.

    PubMed

    Kumar, A; Rani, L; Dhole, B; Chaturvedi, P K

    2012-05-01

    Mammalian testis functions at a temperature and oxygen tension (pO(2)) lower than the core body. Hypoxia-inducible factor-1α (HIF-1α) mediates the adaptive responses to hypoxia such as production of angiogenic vascular endothelial growth factor (VEGF) in a variety of cells and tissues. VEGF production in Leydig cells is stimulated by luteinising hormone (LH)/cAMP. We have conducted experiments to find out whether HIF-1α is involved in LH/cAMP-induced secretion of VEGF by Leydig cell-derived MA-10 cells. Both cobalt chloride (CoCl(2)), an inducer of hypoxia, and 8-Br-cAMP enhanced HIF-1α activity followed by an increase in VEGF secretion. However, there was no change in mRNA levels of HIF-1α. Inhibition of HIF-1α activity by cyclosporine A (CsA) inhibited a rise in VEGF production in response to CoCl(2) as well as 8-Br-cAMP. Inhibitors of protein kinase A (PKA), extracellular regulated kinase 1/2 (ERK1/2) and phosphatidyl inositol-3 kinase/Akt (PI3-K/Akt) inhibited the increase in VEGF levels in response to both CoCl(2) and 8-Br-cAMP. The data suggest that HIF-1α is a mediator of hypoxia- as well as 8-Br-cAMP-stimulated production of VEGF in MA-10 cells; both the stimuli act through a common signalling cascade.

  11. Up-Regulation of Pressure-activated Ca2+-permeable Cation Channel in Intact Vascular Endothelium of Hypertensive Rats

    NASA Astrophysics Data System (ADS)

    Hoyer, J.; Kohler, R.; Haase, W.; Distler, A.

    1996-10-01

    In endothelial cells, stretch-activated cation channels have been proposed to act as mechanosensors for changes in hemodynamic forces. We have identified a novel mechanosensitive pressure-activated channel in intact endothelium from rat aorta and mesenteric artery. The 18-pS cation channel responded with a multifold increase in channel activity when positive pressure was applied to the luminal cell surface with the patch pipette and inactivated at negative pipette pressure. Channel permeability ratio for K+, Na+, and Ca2+ ions was 1:0.98:0.23. Ca2+ influx through the channel was sufficient to activate a neighboring Ca2+-dependent K+ channel. Hemodynamic forces are chronically disturbed in arterial hypertension. Endothelial cell dysfunction has been implicated in the pathogenesis of arterial hypertension. In two comparative studies, density of the pressure-activated channel was found to be significantly higher in spontaneously hypertensive rats and renovascular hypertensive rats compared with their respective normotensive controls. Channel activity presumably leads to mechanosensitive Ca2+ influx and induces cell hyperpolarization by K+ channel activity. Both Ca2+ influx and hyperpolarization are known to induce a vasodilatory endothelial response by stimulating endothelial nitric oxide (NO) production. Up-regulation of channel density in hypertension could, therefore, represent a counterregulatory mechanism of vascular endothelium.

  12. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis.

    PubMed Central

    Warren, R S; Yuan, H; Matli, M R; Gillett, N A; Ferrara, N

    1995-01-01

    To investigate the relationship between angiogenesis and hepatic tumorigenesis, we examined the expression of vascular endothelial growth factor (VEGF) in 8 human colon carcinoma cell lines and in 30 human colorectal cancer liver metastases. Abundant message for VEGF was found in all tumors, localized to the malignant cells within each neoplasm. Two receptors for VEGF, KDR and flt1, were also demonstrated in most of the tumors examined. KDR and flt1 mRNA were limited to tumor endothelial cells and were more strongly expressed in the hepatic metastases than in the sinusoidal endothelium of the surrounding liver parenchyma. VEGF monoclonal antibody administration in tumor-bearing athymic mice led to a dose- and time-dependent inhibition of growth of subcutaneous xenografts and to a marked reduction in the number and size of experimental liver metastases. In hepatic metastases of VEGF antibody-treated mice, neither blood vessels nor expression of the mouse KDR homologue flk-1 could be demonstrated. These data indicate that VEGF is a commonly expressed angiogenic factor in human colorectal cancer metastases, that VEGF receptors are up-regulated as a concomitant of hepatic tumorigenesis, and that modulation of VEGF gene expression or activity may represent a potentially effective antineoplastic therapy in colorectal cancer. Images PMID:7535799

  13. Transcriptional profiling reveals ductus arteriosus-specific genes that regulate vascular tone

    PubMed Central

    Ector, Gerren; Galindo, Cristi L.; Hooper, Christopher W.; Brown, Naoko; Wilkerson, Irene; Pfaltzgraff, Elise R.; Paria, Bibhash C.; Cotton, Robert B.; Stoller, Jason Z.; Reese, Jeff

    2014-01-01

    Failure of the ductus arteriosus (DA) to close at birth can lead to serious complications. Conversely, certain profound congenital cardiac malformations require the DA to be patent until corrective surgery can be performed. In each instance, clinicians have a very limited repertoire of therapeutic options at their disposal - indomethacin or ibuprofen to close a patent DA (PDA) and prostaglandin E1 to maintain patency of the DA. Neither treatment is specific to the DA and both may have deleterious off-target effects. Therefore, more therapeutic options specifically targeted to the DA should be considered. We hypothesized the DA possesses a unique genetic signature that would set it apart from other vessels. A microarray was used to compare the genetic profiles of the murine DA and ascending aorta (AO). Over 4,000 genes were differentially expressed between these vessels including a subset of ion channel-related genes. Specifically, the alpha and beta subunits of large-conductance calcium-activated potassium (BKCa) channels are enriched in the DA. Gain- and loss-of-function studies showed inhibition of BKCa channels caused the DA to constrict, while activation caused DA relaxation even in the presence of O2. This study identifies subsets of genes that are enriched in the DA that may be used to develop DA-specific drugs. Ion channels that regulate DA tone, including BKCa channels, are promising targets. Specifically, BKCa channel agonists like NS1619 maintain DA patency even in the presence of O2 and may be clinically useful. PMID:24790087

  14. Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis.

    PubMed

    Nakai, Yusuke; Nakahira, Yoichi; Sumida, Hiroki; Takebayashi, Kosuke; Nagasawa, Yumiko; Yamasaki, Kanako; Akiyama, Masako; Ohme-Takagi, Masaru; Fujiwara, Sumire; Shiina, Takashi; Mitsuda, Nobutaka; Fukusaki, Eiichiro; Kubo, Yasuyuki; Sato, Masa H

    2013-03-01

    Plants adapt to abiotic and biotic stresses by activating abscisic acid-mediated (ABA) abiotic stress-responsive and salicylic acid-(SA) or jasmonic acid-mediated (JA) biotic stress-responsive pathways, respectively. Although the abiotic stress-responsive pathway interacts antagonistically with the biotic stress-responsive pathways, the mechanisms that regulate these pathways remain largely unknown. In this study, we provide insight into the function of vascular plant one-zinc-finger proteins (VOZs) that modulate various stress responses in Arabidopsis. The expression of many stress-responsive genes was changed in the voz1voz2 double mutant under normal growth conditions. Consistent with altered stress-responsive gene expression, freezing- and drought-stress tolerances were increased in the voz1voz2 double mutant. In contrast, resistance to a fungal pathogen, Colletotrichum higginsianum, and to a bacterial pathogen, Pseudomonas syringae, was severely impaired. Thus, impairing VOZ function simultaneously conferred increased abiotic tolerance and biotic stress susceptibility. In a chilling stress condition, both the VOZ1 and VOZ2 mRNA expression levels and the VOZ2 protein level gradually decreased. VOZ2 degradation during cold exposure was completely inhibited by the addition of the 26S proteasome inhibitor, MG132, a finding that suggested that VOZ2 degradation is dependent on the ubiquitin/26S proteasome system. In voz1voz2, ABA-inducible transcription factor CBF4 expression was enhanced significantly even under normal growth conditions, despite an unchanged endogenous ABA content. A finding that suggested that VOZs negatively affect CBF4 expression in an ABA-independent manner. These results suggest that VOZs function as both negative and positive regulators of the abiotic and biotic stress-responsive pathways, and control Arabidopsis adaptation to various stress conditions.

  15. KDM4B histone demethylase and G9a regulate expression of vascular adhesion proteins in cerebral microvessels

    PubMed Central

    Choi, Ji-Young; Yoon, Sang-Sun; Kim, Sang-Eun; Ahn Jo, Sangmee

    2017-01-01

    Intercellular adhesion molecule 1 (ICAM1) mediates the adhesion and transmigration of leukocytes across the endothelium, promoting inflammation. We investigated the epigenetic mechanism regulating ICAM1 expression. The pro-inflammatory cytokine TNF-α dramatically increased ICAM1 mRNA and protein levels in human brain microvascular endothelial cells and mouse brain microvessels. Chromatin immunoprecipitation revealed that TNF-α reduced methylation of histone H3 at lysines 9 and 27 (H3K9 and H3K27), well-known residues involved in gene suppression. Inhibition of G9a and EZH2, histone methyltransferases responsible for methylation at H3K9 and H3K27, respectively as well as G9a overexpression demonstrated the involvement of G9a in TNF-α-induced ICAM1 expression and leukocyte adhesion and transmigration. A specific role for KDM4B, a histone demethylase targeting H3K9me2, in TNF-α-induced ICAM1 upregulation was validated with siRNA. Moreover, treating mice with a KDM4 inhibitor ML324 blocked TNF-α-mediated neutrophil adhesion. Similarly, TNF-α-induced VCAM1 expression was suppressed by G9a overexpression and KDM4B knockdown. Collectively, we demonstrated that modification of H3K9me2 by G9a and KDM4B regulates expression of vascular adhesion molecules, and that depletion of these proteins or KDM4B reduces inflammation-induced leukocyte extravasation. Thus, blocking ICAM1 or KDM4B could offer a novel therapeutic opportunity treating brain diseases. PMID:28327608

  16. TRAF6 inhibits proangiogenic signals in endothelial cells and regulates the expression of vascular endothelial growth factor

    SciTech Connect

    Bruneau, Sarah; Datta, Dipak; Flaxenburg, Jesse A.; Pal, Soumitro; Briscoe, David M.

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer TNF-receptor associated factors (TRAFs) function in the angiogenesis response. Black-Right-Pointing-Pointer TRAF6 regulates basal and inducible expression of VEGF in endothelial cells (EC). Black-Right-Pointing-Pointer TRAF6 is an endogenous inhibitor of EC proliferation and migration in EC. Black-Right-Pointing-Pointer TRAF6 inhibits VEGF expression in part via its ability to regulate Src signaling. -- Abstract: TNF-family molecules induce the expression Vascular Endothelial Growth Factor (VEGF) in endothelial cells (EC) and elicit signaling responses that result in angiogenesis. However, the role of TNF-receptor associated factors (TRAFs) as upstream regulators of VEGF expression or as mediators of angiogenesis is not known. In this study, HUVEC were cotransfected with a full-length VEGF promoter-luciferase construct and siRNAs to TRAF 1, -2, -3, -5, -6, and promoter activity was measured. Paradoxically, rather than inhibiting VEGF expression, we found that knockdown of TRAF6 resulted in a 4-6-fold increase in basal VEGF promoter activity compared to control siRNA-transfected EC (P < 0.0001). In addition, knockdown of TRAF 1, -2, -3 or -5 resulted in a slight increase or no change in VEGF promoter activation. Using [{sup 3}H]thymidine incorporation assays as well as the in vitro wound healing assay, we also found that basal rates of EC proliferation and migration were increased following TRAF6 knockdown; and this response was inhibited by the addition of a blocking anti-VEGF antibody into cell cultures. Using a limited protein array to gain insight into TRAF6-dependent intermediary signaling responses, we observed that TRAF6 knockdown resulted in an increase in the activity of Src family kinases. In addition, we found that treatment with AZD-0530, a pharmacological Src inhibitor, reduced the regulatory effect of TRAF6 knockdown on VEGF promoter activity. Collectively, these findings define a novel pro-angiogenic signaling

  17. Magnesium regulates intracellular ionized calcium concentration and cell geometry in vascular smooth muscle cells (VSMC)

    SciTech Connect

    Zhang, A.; Cheng, T.P.; Altura, B.M. )

    1991-03-11

    It has been suggested that the extracellular Mg{sup 2+} may modulate contractility of VSMC by controlling the cellular level of free Ca{sup 2+}. The present studies were designed to determine the effects of (Mg{sup 2+}) on the distribution of intracellular free Ca{sup 2+} using digital imaging fluorescence microscopy of Fura-2 fluorescence of single VSMC cultured from rat aortas. When incubated with HEPES buffer solution containing 1.2mM Mg{sup 2+}, the myocytes are spindle-shaped, and the basal level of (Ca{sup 2+}){sub i} estimated from the ratio (F340/F380) is 96.6 {plus minus} 7.9nM with a heterogeneous distribution. (Mg{sup 2+}){sub o} withdrawal from the incubation medium induces consistently a dramatic increment of (Ca{sup 2+}){sub i} up to 579.6 {plus minus} 39.3nM, about a 5.8-fold elevation compared to control experiments. Similarly, lowering (Mg{sup 2+}){sub o} to 0.3mM (the lowest physiological range) elevates (Ca{sup 2+}){sub i} to the intermediate level of 348.0 {plus minus} 31.5nM. However, the heterogeneous distribution of (Ca{sup 2+}){sub i} is still evident when (Mg{sup 2+}){sub o} is lowered. Simultaneously to the (Ca{sup 2+}){sub i} increments, cell shapes were changed. In contrast, elevation of (Mg{sup 2+}){sub o} to 4.8mM was found to decrease (Ca{sup 2+}){sub i} to 72.0 {plus minus} 4.6nM. Removal of (Ca{sup 2+}){sub o}, however, abolished the increments of (Ca{sup 2+}){sub i} induced by (Mg{sup 2+}){sub o} withdrawal. These results demonstrate that (Mg{sup 2+}){sub o} regulated (Ca{sup 2+}){sub i} and geometry of VSMC, probably through controlling plasma membrane permeability to Ca{sup 2+}.

  18. Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNF{alpha}-mediated vascular smooth muscle cell proliferation via suppressing ERK activation

    SciTech Connect

    Ichikawa, Tomonaga; Li, Jinqing; Dong, Xiaoyu; Potts, Jay D.; Tang, Dong-Qi; Li, Dong-Sheng; Cui, Taixing

    2010-01-01

    Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation. We have recently demonstrated that a DUB of ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) inhibits vascular lesion formation via suppressing inflammatory responses in vasculature. However, the precise underlying mechanism remains to be defined. Herein, we report that a posttranscriptional up-regulation of UCH-L1 provides a negative feedback to tumor necrosis factor alpha (TNF{alpha})-mediated activation of extracellular signal-regulated kinases (ERK) and proliferation in vascular smooth muscle cells (VSMCs). In rat adult VSMCs, adenoviral over-expression of UCH-L1 inhibited TNF{alpha}-induced activation of ERK and DNA synthesis. In contrast, over-expression of UCH-L1 did not affect platelet derived growth factor (PDGF)-induced VSMC proliferation and activation of growth stimulating cascades including ERK. TNF{alpha} hardly altered UCH-L1 mRNA expression and stability; however, up-regulated UCH-L1 protein expression via increasing UCH-L1 translation. These results uncover a novel mechanism by which UCH-L1 suppresses vascular inflammation.

  19. Systemic inhibition of mTOR kinase via rapamycin disrupts consolidation and reconsolidation of auditory fear memory.

    PubMed

    Mac Callum, Phillip E; Hebert, Mark; Adamec, Robert E; Blundell, Jacqueline

    2014-07-01

    The mammalian target of rapamycin (mTOR) kinase is a critical regulator of mRNA translation and is known to be involved in various long lasting forms of synaptic and behavioural plasticity. However, information concerning the temporal pattern of mTOR activation and susceptibility to pharmacological intervention during both consolidation and reconsolidation of long-term memory (LTM) remains scant. Male C57BL/6 mice were injected systemically with rapamycin at various time points following conditioning or retrieval in an auditory fear conditioning paradigm, and compared to vehicle (and/or anisomycin) controls for subsequent memory recall. Systemic blockade of mTOR with rapamycin immediately or 12h after training or reactivation impairs both consolidation and reconsolidation of an auditory fear memory. Further behavioural analysis revealed that the enduring effects of rapamycin on reconsolidation are dependent upon reactivation of the memory trace. Rapamycin, however, has no effect on short-term memory or the ability to retrieve an established fear memory. Collectively, our data suggest that biphasic mTOR signalling is essential for both consolidation and reconsolidation-like activities that contribute to the formation, re-stabilization, and persistence of long term auditory-fear memories, while not influencing other aspects of the memory trace. These findings also provide evidence for a cogent treatment model for reducing the emotional strength of established, traumatic memories analogous to those observed in acquired anxiety disorders such as posttraumatic stress disorder (PTSD) and specific phobias, through pharmacologic blockade of mTOR using systemic rapamycin following reactivation.

  20. Rapamycin increases the yield and effector function of human γδ T cells stimulated in vitro

    PubMed Central

    Li, Haishan

    2011-01-01

    Clinical strategies to exploit Vγ2Vδ2 T cell responses for immunotherapy are confronted with short-term increases in cell levels or activity and the development of anergy that reduces the response to therapy with succeeding treatments. We are exploring strategies to increase the yield and durability of elicited Vγ2Vδ2 T cell responses. One approach focuses on the mammalian target of rapamycin (mTOR), which is important for regulating T cell metabolism and function. In Vγ2Vδ2 T cells, mTOR phosphorylates the S6K1 and eIF4EBP1 signaling intermediates after antigen stimulation. Rapamycin inhibited these phosphorylation events without impacting Akt or Erk activation, even though specific inhibition of Akt or Erk in turn reduced the activation of mTOR. The effects of rapamycin on the T cell receptor signaling pathway lead to increased proliferation of treated and antigen-exposed Vγ2Vδ2 cells. Rapamycin altered the phenotype of antigen-specific Vγ2Vδ2 cells by inducing a population shift from CD62L + CD69−to CD62L-CD69+, higher expression of CD25 or Bcl-2, lower levels of CCR5 and increased resistance to Fas-mediated cellular apoptosis. These changes were consistent with rapamycin promoting cell activation while decreasing the susceptibility to cell death that might occur by CCR5 or Fas signaling. Rapamycin treatment during antigen-stimulation of Vγ2Vδ2 T cells may be a strategy for overcoming current obstacles in tumor immunotherapy. PMID:21107834

  1. FOXO3a reactivation mediates the synergistic cytotoxic effects of rapamycin and cisplatin in oral squamous cell carcinoma cells

    SciTech Connect

    Fang Liang; Wang Huiming; Zhou Lin; Yu Da

    2011-02-15

    FOXO3a, a well-known transcriptional regulator, controls a wide spectrum of biological processes. The Phosphoinositide-3-kinase (PI3K)/Akt signaling pathway inactivates FOXO3a via phosphorylation-induced nuclear exclusion and degradation. A loss or gain of FOXO3a activity has been correlated with efficiency of chemotherapies in various cancers including oral squamous cell carcinoma (OSCC). Therefore, in the current study, we have investigated the FOXO3a activity modulating and antitumor effects of rapamycin and cisplatin in OSCC cells. Cisplatin inhibited proliferation and induced apoptosis in a dose-dependent way in OSCC Tca8113 cells. Rapamycin alone had no effect on cell proliferation and apoptosis. Rapamycin downregulated the expression of S-phase kinase associated protein-2 (Skp2) and increased the FOXO3a protein stability but induced the upregulation of feedback Akt activation-mediated FOXO3a phosphorylation. Cisplatin decreased the phosphorylation of FOXO3a via Akt inhibition. Rapamycin combined with cisplatin as its feedback Akt activation inhibitor revealed the most dramatic FOXO3a nuclear localization and reactivation with the prevention of its feedback loop and exposed significant synergistic effects of decreased cell proliferation and increased apoptosis in vitro and decreased tumor size in vivo. Furthermore, the downstream effects of FOXO3a reactivation were found to be accumulation of p27 and Bim. In conclusion, rapamycin/cisplatin combination therapy boosts synergistic antitumor effects through the significant FOXO3a reactivation in OSCC cells. These results may represent a novel mechanism by which rapamycin/cisplatin combination therapy proves to be a potent molecular-targeted strategy for OSCC.

  2. Modelization of the regulation of protein synthesis following fertilization in sea urchin shows requirement of two processes: a destabilization of eIF4E:4E-BP complex and a great stimulation of the 4E-BP-degradation mechanism, both rapamycin-sensitive

    PubMed Central

    Laurent, Sébastien; Richard, Adrien; Mulner-Lorillon, Odile; Morales, Julia; Flament, Didier; Glippa, Virginie; Bourdon, Jérémie; Gosselin, Pauline; Siegel, Anne; Cormier, Patrick; Bellé, Robert

    2014-01-01

    Fertilization of sea urchin eggs involves an increase in protein synthesis associated with a decrease in the amount of the translation initiation inhibitor 4E-BP. A highly simple reaction model for the regulation of protein synthesis was built and was used to simulate the physiological changes in the total 4E-BP amount observed during time after fertilization. Our study evidenced that two changes occurring at fertilization are necessary to fit with experimental data. The first change was an 8-fold increase in the dissociation parameter (koff1) of the eIF4E:4E-BP complex. The second was an important 32.5-fold activation of the degradation mechanism of the protein 4E-BP. Additionally, the changes in both processes should occur in 5 min time interval post-fertilization. To validate the model, we checked that the kinetic of the predicted 4.2-fold increase of eIF4E:eIF4G complex concentration at fertilization matched the increase of protein synthesis experimentally observed after fertilization (6.6-fold, SD = 2.3, n = 8). The minimal model was also used to simulate changes observed after fertilization in the presence of rapamycin, a FRAP/mTOR inhibitor. The model showed that the eIF4E:4E-BP complex destabilization was impacted and surprisingly, that the mechanism of 4E-BP degradation was also strongly affected, therefore suggesting that both processes are controlled by the protein kinase FRAP/mTOR. PMID:24834072

  3. Modelization of the regulation of protein synthesis following fertilization in sea urchin shows requirement of two processes: a destabilization of eIF4E:4E-BP complex and a great stimulation of the 4E-BP-degradation mechanism, both rapamycin-sensitive.

    PubMed

    Laurent, Sébastien; Richard, Adrien; Mulner-Lorillon, Odile; Morales, Julia; Flament, Didier; Glippa, Virginie; Bourdon, Jérémie; Gosselin, Pauline; Siegel, Anne; Cormier, Patrick; Bellé, Robert

    2014-01-01

    Fertilization of sea urchin eggs involves an increase in protein synthesis associated with a decrease in the amount of the translation initiation inhibitor 4E-BP. A highly simple reaction model for the regulation of protein synthesis was built and was used to simulate the physiological changes in the total 4E-BP amount observed during time after fertilization. Our study evidenced that two changes occurring at fertilization are necessary to fit with experimental data. The first change was an 8-fold increase in the dissociation parameter (koff1) of the eIF4E:4E-BP complex. The second was an important 32.5-fold activation of the degradation mechanism of the protein 4E-BP. Additionally, the changes in both processes should occur in 5 min time interval post-fertilization. To validate the model, we checked that the kinetic of the predicted 4.2-fold increase of eIF4E:eIF4G complex concentration at fertilization matched the increase of protein synthesis experimentally observed after fertilization (6.6-fold, SD = 2.3, n = 8). The minimal model was also used to simulate changes observed after fertilization in the presence of rapamycin, a FRAP/mTOR inhibitor. The model showed that the eIF4E:4E-BP complex destabilization was impacted and surprisingly, that the mechanism of 4E-BP degradation was also strongly affected, therefore suggesting that both processes are controlled by the protein kinase FRAP/mTOR.

  4. Rapamycin extends murine lifespan but has limited effects on aging

    PubMed Central

    Neff, Frauke; Flores-Dominguez, Diana; Ryan, Devon P.; Horsch, Marion; Schröder, Susanne; Adler, Thure; Afonso, Luciana Caminha; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Garrett, Lillian; Hans, Wolfgang; Hettich, Moritz M.; Holtmeier, Richard; Hölter, Sabine M.; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Rathkolb, Birgit; Rozman, Jan; Naton, Beatrix; Ordemann, Rainer; Adamski, Jerzy; Beckers, Johannes; Bekeredjian, Raffi; Busch, Dirk H.; Ehninger, Gerhard; Graw, Jochen; Höfler, Heinz; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Stypmann, Jörg; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabe de Angelis, Martin; Ehninger, Dan

    2013-01-01

    Aging is a major risk factor for a large number of disorders and functional impairments. Therapeutic targeting of the aging process may therefore represent an innovative strategy in the quest for novel and broadly effective treatments against age-related diseases. The recent report of lifespan extension in mice treated with the FDA-approved mTOR inhibitor rapamycin represented the first demonstration of pharmacological extension of maximal lifespan in mammals. Longevity effects of rapamycin may, however, be due to rapamycin’s effects on specific life-limiting pathologies, such as cancers, and it remains unclear if this compound actually slows the rate of aging in mammals. Here, we present results from a comprehensive, large-scale assessment of a wide range of structural and functional aging phenotypes, which we performed to determine whether rapamycin slows the rate of aging in male C57BL/6J mice. While rapamycin did extend lifespan, it ameliorated few studied aging phenotypes. A subset of aging traits appeared to be rescued by rapamycin. Rapamycin, however, had similar effects on many of these traits in young animals, indicating that these effects were not due to a modulation of aging, but rather related to aging-independent drug effects. Therefore, our data largely dissociate rapamycin’s longevity effects from effects on aging itself. PMID:23863708

  5. Targeted Inhibition of Rictor/mTORC2 in Cancer Treatment: A New Era after Rapamycin.

    PubMed

    Zou, Zhipeng; Chen, Juan; Yang, Jun; Bai, Xiaochun

    2016-01-01

    The evolutionarily conserved mechanistic target of rapamycin (mTOR) forms two functionally distinct complexes, mTORC1 and mTORC2. mTORC1, consisting of mTOR, raptor, and mLST8 (GβL), is sensitive to rapamycin and thought to control autonomous cell growth in response to nutrient availability and growth factors. mTORC2, containing the core components mTOR, mLST8, Rictor, mSIN1, and Protor1/2 is largely insensitive to rapamycin. mTORC2 specifically senses growth factors and regulates cell proliferation, metabolism, actin rearrangement, and survival. Dysregulation of mTOR signaling often occurs in a variety of human malignant diseases, rendering it a crucial and validated target in cancer treatment. However, the effectiveness of rapamycin as single-agent therapy is suppressed, in part, by the numerous strong mTORC1-dependent negative feedback loops. Although preclinical and clinical studies of ATP-competitive mTOR inhibitors that target both mTORC1 and mTORC2 have shown greater effectiveness than rapalogs for cancer treatment, the mTORC1 inhibition-induced negative feedback activation of PI3- K/PDK1 and Akt (Thr308) may be sufficient to promote cell survival. Recent cancer biology studies indicated that mTORC2 is a promising target, since its activity is essential for the development of a number of cancers. These studies provide a rationale for developing inhibitors specifically targeting mTORC2, which do not perturb the mTORC1- dependent negative feedback loops and have a more acceptable therapeutic window. This review summarizes the present understanding of mTORC2 signaling and functions, especially tumorigenic functions, highlighting the current status and future perspectives for targeting mTORC2 in cancer treatment.

  6. The progesterone-induced enhancement of object recognition memory consolidation involves activation of the extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) pathways in the dorsal hippocampus.

    PubMed

    Orr, Patrick T; Rubin, Amanda J; Fan, Lu; Kent, Brianne A; Frick, Karyn M

    2012-04-01

    Although much recent work has elucidated the biochemical mechanisms underlying the modulation of memory by 17β-estradiol, little is known about the signaling events through which progesterone (P) regulates memory. We recently demonstrated that immediate post-training infusion of P into the dorsal hippocampus enhances object recognition memory consolidation in young ovariectomized female mice (Orr et al., 2009). The goal of the present study was to identify the biochemical alterations that might underlie this mnemonic enhancement. We hypothesized that the P-induced enhancement of object recognition would be dependent on activation of the ERK and mTOR pathways. In young ovariectomized mice, we found that bilateral dorsal hippocampal infusion of P significantly increased levels of phospho-p42 ERK and the mTOR substrate S6K in the dorsal hippocampus 5 min after infusion. Phospho-p42 ERK levels were downregulated 15 min after infusion and returned to baseline 30 min after infusion, suggesting a biphasic effect of P on ERK activation. Dorsal hippocampal ERK and mTOR activation were necessary for P to facilitate memory consolidation, as suggested by the fact that inhibitors of both pathways infused into the dorsal hippocampus immediately after training blocked the P-induced enhancement of object recognition. Collectively, these data provide the first demonstration that the ability of P to enhance memory consolidation depends on the rapid activation of cell signaling and protein synthesis pathways in the dorsal hippocampus.

  7. [Involvement of the receptor component protein in the regulation of vascular peroxidase-1 expression induced by calcitonin gene-related peptide and angiotensin II in vascular smooth muscle cell].

    PubMed

    Liu, Yan-Mei; Peng, Hong-Yan; Guo, Feng; Quan, Hai-Yan; Luo, Jing-Fei; Qin, Xu-Ping

    2015-04-25

    Angiotensin II (Ang II) and calcitonin gene-related peptide (CGRP) play important roles in vascular injury and protection. In order to determine the role of CGRP receptor component protein (RCP) in signal transduction whereby CGRP and Ang II mediate the expression of vascular peroxidase-1 (VPO1) in vascular smooth muscle cell (VSMC), mouse derived A10 vascular smooth muscle cell line (A10VSMC) was cultured with CGRP or/and Ang II in vitro. RCP-specific small interference RNA (siRNA-RCP) was used to silence oligonucleotide sequence. Western blot and RT-PCR were used to determine the protein and mRNA expressions of RCP and VPO1, respectively. The results showed that the expressions of RCP and VPO1 were increased in the presence of CGRP or Ang II in the quiescent A10VSMC. But the protein expressions of RCP and VPO1 induced by Ang II were decreased by pretreatment of CGRP (P < 0.05). The expressions of VPO1 were decreased in all the groups treated with siRNA-RCP, compared with those of wide-type counterparts. Meanwhile, the expression of VPO1 was significantly induced by CGRP but not Ang II in the siRNA-RCP treated A10VSMCs. Ang II in combination with CGRP increased the protein expression of VPO1 in the siRNA-RCP-transfected cells, compared with Ang II alone, and this effect could be abolished by catalase. The results suggest that RCP may play an important role in the integration of signal transduction whereby CGRP and Ang II receptors jointly regulate VPO1 expression in VSMC.

  8. Angiotensin II up-regulates CX3CR1 expression in THP-1 monocytes: impact on vascular inflammation and atherogenesis.

    PubMed

    Apostolakis, Stavros; Vlata, Zacharenia; Vogiatzi, Konstantina; Krambovitis, Elias; Spandidos, Demetrios A

    2010-05-01

    The potential regulatory effect of angiotensins on circulating mononuclear cell activation and migration has not yet been thoroughly evaluated. Using flow cytometry we assessed the possible effect of angiotensin I and II on the expression of CX3CR1 and a single representative of each major chemokine family (CCR5 and CXCR4) in THP-1 monocytes, Jurcat T lymphocytes and primary monocytes-isolated from healthy donors. Fluorescence intensity and the rate of chemokine-positive cells was measured in naïve cells and cells treated with angiotensin I and II. Neither angiotensin I nor angiotensin II exhibited any effect on fluorescence intensity and the rate of CX3CR1-, CCR5- and CXCR4-positive cells in primary peripheral blood mononuclear cells and Jurkat T cells. However, angiotensin II significantly increased the rate of CX3CR1-positive THP-1 cells. This effect was not attenuated by the pre-incubation of THP-1 cells with the AT-1 receptor blocker losartan, suggesting that this was not an AT-1-mediated effect. Angiotensin I and II had no effect on fluorescence intensity and the rate of CCR5- and CXCR4-positive THP-1 cells. In conclusion, angiotensin II increases the rate of CX3CR1-positive THP-1 cells. By extrapolating this in vitro observation to disease mechanisms, we speculate that angiotensin II induces up-regulation of CX3CR1 and promotes firm adhesion of circulation CX3CR1-positive monocytes on CX3CL1 expressing endothelial cells inducing vascular inflammation and atherogenesis.

  9. Growth Differentiation Factor‐15 Deficiency Inhibits Atherosclerosis Progression by Regulating Interleukin‐6–Dependent Inflammatory Response to Vascular Injury

    PubMed Central

    Bonaterra, Gabriel A.; Zügel, Stefanie; Thogersen, Joel; Walter, Sabrina A.; Haberkorn, Uwe; Strelau, Jens; Kinscherf, Ralf

    2012-01-01

    Background Growth differentiation factor (GDF)‐15 is a distant and divergent member of the transforming growth factor‐β superfamily (TGF‐β) . There is growing evidence indicating the involvement of GDF‐15 in various pathologies. Expression of GDF‐15 is induced under conditions of inflammation and increased GDF‐15 serum levels are suggested as a risk factor for cardiovascular diseases. Methods and Results We show here that GDF‐15 and proinflammatory cytokine interleukin (IL)‐6 levels are highly increased (5‐fold) in cultured oxidized low‐density lipoproteins–stimulated peritoneal macrophages derived from GDF‐15+/+/apolipoprotein (apo) E−/−, mice. Notably, IL‐6 induction on oxidized low‐density lipoproteins stimulation is completely abolished in the absence of GDF‐15. Consistent with our in vitro data GDF‐15 mRNA expression and protein levels are upregulated (2.5‐ to 6‐fold) in the atherosclerotic vessel wall of GDF‐15+/+/apoE−/− mice after a cholesterol‐enriched diet. GDF‐15 deficiency inhibits lumen stenosis (52%) and 18FDG uptake (34%) in the aortic arch despite increased serum triglyceride/cholesterol levels and elevated body weight. Immunohistomorphometric investigations of atherosclerotic lesions reveal a decreased percentage of inflammatory CD11b+ (57%) or IL‐6+, leukocytes, and apoptotic cells (74%) after 20 weeks. However, the total number of macrophages and cell density in atherosclerotic lesions of the innominate artery are increased in GDF‐15−/−/apoE−/− mice. Conclusions Our data suggest that GDF‐15 is involved in orchestrating atherosclerotic lesion progression by regulating apoptotic cell death and IL‐6–dependent inflammatory responses to vascular injury. PMID:23316317

  10. Prostaglandin E2 regulation of amnion cell vascular endothelial growth factor expression: relationship with intramembranous absorption rate in fetal sheep.

    PubMed

    Cheung, Cecilia Y; Beardall, Michael K; Anderson, Debra F; Brace, Robert A

    2014-08-01

    We hypothesized that prostaglandin E2 (PGE2) stimulates amniotic fluid transport across the amnion by upregulating vascular endothelial growth factor (VEGF) expression in amnion cells and that amniotic PGE2 concentration correlates positively with intramembranous (IM) absorption rate in fetal sheep. The effects of PGE2 at a range of concentrations on VEGF 164 and caveolin-1 gene expressions were analyzed in cultured ovine amnion cells. IM absorption rate, amniotic fluid (AF) volume, and PGE2 concentration in AF were determined in late-gestation fetal sheep during control conditions, isovolumic fetal urine replacement (low IM absorption rate), or intra-amniotic fluid infusion (high IM absorption rate). In ovine amnion cells, PGE2 induced dose- and time-dependent increases in VEGF 164 mRNA levels and reduced caveolin-1 mRNA and protein levels. VEGF receptor blockade abolished the caveolin-1 response, while minimally affecting the VEGF response to PGE2. In sheep fetuses, urine replacement reduced amniotic PGE2 concentration by 58%, decreased IM absorption rate by half, and doubled AF volume (P < 0.01). Intra-amniotic fluid infusion increased IM absorption rate and AF volume (P < 0.01), while amniotic PGE2 concentration was unchanged. Neither IM absorption rate nor AF volume correlated with amniotic PGE2 concentration under each experimental condition. Although PGE2 at micromolar concentrations induced dose-dependent responses in VEGF and caveolin-1 gene expression in cultured amnion cells consistent with a role of PGE2 in activating VEGF to mediate AF transport across the amnion, amniotic PGE2 at physiological nanomolar concentrations does not appear to regulate IM absorption rate or AF volume.

  11. Nesprin-2-dependent ERK1/2 compartmentalisation regulates the DNA damage response in vascular smooth muscle cell ageing

    PubMed Central

    Warren, D T; Tajsic, T; Porter, L J; Minaisah, R M; Cobb, A; Jacob, A; Rajgor, D; Zhang, Q P; Shanahan, C M

    2015-01-01

    Prelamin A accumulation and persistent DNA damage response (DDR) are hallmarks of vascular smooth muscle cell (VSMC) ageing and dysfunction. Although prelamin A is proposed to interfere with DNA repair, our understanding of the crosstalk between prelamin A and the repair process remains limited. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) have emerged as key players in the DDR and are known to enhance ataxia telangiectasia-mutated protein (ATM) activity at DNA lesions, and in this study, we identified a novel relationship between prelamin A accumulation and ERK1/2 nuclear compartmentalisation during VSMC ageing. We show both prelamin A accumulation and increased DNA damage occur concomitantly, before VSMC replicative senescence, and induce the localisation of ERK1/2 to promyelocytic leukaemia protein nuclear bodies (PML NBs) at the sites of DNA damage via nesprin-2 and lamin A interactions. Importantly, VSMCs treated with DNA damaging agents also displayed prelamin A accumulation and ERK compartmentalisation at PML NBs, suggesting that prelamin A and nesprin-2 are novel components of the DDR. In support of this, disruption of ERK compartmentalisation at PML NBs, by either depletion of nesprin-2 or lamins A/C, resulted in the loss of ATM from DNA lesions. However, ATM signalling and DNA repair remained intact after lamins A/C depletion, whereas nesprin-2 disruption ablated downstream Chk2 activation and induced genomic instability. We conclude that lamins A/C and PML act as scaffolds to organise DNA-repair foci and compartmentalise nesprin-2/ERK signalling. However, nesprin-2/ERK signalling fidelity, but not their compartmentalisation at PML NBs, is essential for efficient DDR in VSMCs. PMID:25744025

  12. The regulation of Jmjd3 upon the expression of NF-κB downstream inflammatory genes in LPS activated vascular endothelial cells.

    PubMed

    Yu, Shaoqing; Chen, Xia; Xiu, Min; He, Feng; Xing, Juanjuan; Min, Dinghong; Guo, Fei

    2017-02-09

    Inflammatory mediators and adhesion molecules have been implicated in a variety of diseases including atherosclerosis. As both the mediator-releasing and targeted cells, vascular endothelial cells play key role in pathological processes. NF-κB signaling regulates a cluster of inflammatory factors in LPS-activated vascular endothelial cells but the underlying mechanisms remain largely unknown. Here, we investigated the epigenetic regulation of LPS upon the expression of inflammatory mediators and adhesion molecules. We found that LPS treatment promoted jmjd3 expression, enhanced Jmjd3 nuclear accumulation in human vascular endothelial cells. In addition, LPS enhanced the demethylation of H3K27me3, a specific substrate of Jmjd3. LPS treatment recruited Jmjd3 and NF-κB to the promoter region of target genes, suggesting Jmjd3 synergizes with NF-κB to activate the expression of target genes. We further found that Jmjd3 attenuated the methylation status in promoter region of target genes, culminating in target gene expression. Our findings unveil epigenetic regulations of LPS upon NF-κB pathway and identify Jmjd3 as a critical modulator of NF-κB pathway and potential therapeutic target for NF-κB related diseases including atherosclerosis.

  13. Involvement of mTOR and Regulation by AMPK in Early Iodine Deficiency-Induced Thyroid Microvascular Activation.

    PubMed

    Craps, J; Joris, V; De Jongh, B; Sonveaux, P; Horman, S; Lengelé, B; Bertrand, L; Many, M-C; Colin, I M; Gérard, A-C

    2016-06-01

    Iodine deficiency (ID) induces TSH-independent microvascular activation in the thyroid via the reactive oxygen species/nitric oxide-hypoxia-inducible factor-1α/vascular endothelial growth factor (VEGF) pathway. We hypothesized the additional involvement of mammalian target of rapamycin (mTOR) as a positive regulator of this pathway and AMP-activated protein kinase (AMPK) as a negative feedback regulator to explain the transient nature of ID-induced microvascular changes under nonmalignant conditions. mTOR and AMPK involvement was investigated using an in vitro model (human thyrocytes in primary cultures) and 2 murine models of goitrogenesis (normal NMRI and RET-PTC mice [a papillary thyroid cancer model]). In NMRI mice, ID had no effect on the phosphorylation of ribosomal S6 kinase (p70S6K), a downstream target of mTOR. However, rapamycin inhibited ID-induced thyroid blood flow and VEGF protein expression. In the RET-PTC model, ID strongly increased the phosphorylation of p70S6K, whereas rapamycin completely inhibited the ID-induced increase in p70S6K phosphorylation, thyroid blood flow, and VEGF-A expression. In vitro, although ID increased p70S6K phosphorylation, the ID-stimulated hypoxia-inducible factor/VEGF pathway was inhibited by rapamycin. Activation of AMPK by metformin inhibited ID effects both in vivo and in vitro. In AMPK-α1 knockout mice, the ID-induced increase in thyroid blood flow and VEGF-A protein expression persisted throughout the treatment, whereas both parameters returned to control values in wild-type mice after 4 days of ID. In conclusion, mTOR is required for early ID-induced thyroid microvascular activation. AMPK negatively regulates this pathway, which may account for the transient nature of ID-induced TSH-independent vascular effects under benign conditions.

  14. MicroRNA regulation of endothelial homeostasis and commitment-implications for vascular regeneration strategies using stem cell therapies.

    PubMed

    Scott, Elizabeth; Loya, Komal; Mountford, Joanne; Milligan, Graeme; Baker, Andrew H

    2013-09-01

    Human embryonic (hESC) and induced pluripotent (hiPSC) stem cells have broad therapeutic potential in the treatment of a range of diseases, including those of the vascular system. Both hESCs and hiPSCs have the capacity for indefinite self-renewal, in addition to their ability to differentiate into any adult cell type. These cells could provide a potentially unlimited source of cells for transplantation and, therefore, provide novel treatments, e.g. in the production of endothelial cells for vascular regeneration. MicroRNAs are short, noncoding RNAs that act posttranscriptionally to control gene expression and thereby exert influence over a wide range of cellular processes, including maintenance of pluripotency and differentiation. Expression patterns of these small RNAs are tissue specific, and changes in microRNA levels have often been associated with disease states in humans, including vascular pathologies. Here, we review the roles of microRNAs in endothelial cell function and vascular disease, as well as their role in the differentiation of pluripotent stem cells to the vascular endothelial lineage. Furthermore, we discuss the therapeutic potential of stem cells and how knowledge and manipulation of microRNAs in stem cells may enhance their capacity for vascular regeneration.

  15. Hypoxic priming of mESCs accelerates vascular-lineage differentiation through HIF1-mediated inverse regulation of Oct4 and VEGF

    PubMed Central

    Lee, Sae-Won; Jeong, Han-Kyul; Lee, Ji-Young; Yang, Jimin; Lee, Eun Ju; Kim, Su-Yeon; Youn, Seock-Won; Lee, Jaewon; Kim, Woo Jean; Kim, Kyu-Won; Lim, Jeong Mook; Park, Jong-Wan; Park, Young-Bae; Kim, Hyo-Soo

    2012-01-01

    Hypoxic microenvironment plays an important role in determining stem cell fates. However, it is controversial to which direction between self-renewal and differentiation the hypoxia drives the stem cells. Here, we investigated whether a short exposure to hypoxia (termed ‘hypoxic-priming’) efficiently directed and promoted mouse embryonic stem cells (mESCs) to differentiate into vascular-lineage. During spontaneous differentiation of embryoid bodies (EBs), hypoxic region was observed inside EB spheroids even under normoxic conditions. Indeed, hypoxia-primed EBs more efficiently differentiated into cells of vascular-lineage, than normoxic EBs did. We found that hypoxia suppressed Oct4 expression via direct binding of HIF-1 to reverse hypoxia-responsive elements (rHREs) in the Oct4 promoter. Furthermore, vascular endothelial growth factor (VEGF) was highly upregulated in hypoxia-primed EBs, which differentiated towards endothelial cells in the absence of exogenous VEGF. Interestingly, this differentiation was abolished by the HIF-1 or VEGF blocking. In vivo transplantation of hypoxia-primed EBs into mice ischemic limb elicited enhanced vessel differentiation. Collectively, our findings identify that hypoxia enhanced ESC differentiation by HIF-1-mediated inverse regulation of Oct4 and VEGF, which is a novel pathway to promote vascular-lineage differentiation. PMID:22821840

  16. Rapamycin inhibits BAFF-stimulated cell proliferation and survival by suppressing mTOR-mediated PP2A-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells.

    PubMed

    Zeng, Qingyu; Zhang, Hai; Qin, Jiamin; Xu, Zhigang; Gui, Lin; Liu, Beibei; Liu, Chunxiao; Xu, Chong; Liu, Wen; Zhang, Shuangquan; Huang, Shile; Chen, Long

    2015-12-01

    B-cell activating factor (BAFF) is involved in not only physiology of normal B cells, but also pathophysiology of aggressive B cells related to malignant and autoimmune diseases. Rapamycin, a lipophilic macrolide antibiotic, has recently shown to be effective in the treatment of human lupus erythematosus. However, how rapamycin inhibits BAFF-stimulated B-cell proliferation and survival has not been fully elucidated. Here, we show that rapamycin inhibited human soluble BAFF (hsBAFF)-induced cell proliferation and survival in normal and B-lymphoid (Raji and Daudi) cells by activation of PP2A and inactivation of Erk1/2. Pretreatment with PD98059, down-regulation of Erk1/2, expression of dominant negative MKK1, or overexpression of wild-type PP2A potentiated rapamycin's suppression of hsBAFF-activated Erk1/2 and B-cell proliferation/viability, whereas expression of constitutively active MKK1, inhibition of PP2A by okadaic acid, or expression of dominant negative PP2A attenuated the inhibitory effects of rapamycin. Furthermore, expression of a rapamycin-resistant and kinase-active mTOR (mTOR-T), but not a rapamycin-resistant and kinase-dead mTOR-T (mTOR-TE), conferred resistance to rapamycin's effects on PP2A, Erk1/2 and B-cell proliferation/viability, implying mTOR-dependent mechanism involved. The findings indicate that rapamycin inhibits BAFF-stimulated cell proliferation/survival by targeting mTOR-mediated PP2A-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells. Our data highlight that rapamycin may be exploited for preventing excessive BAFF-induced aggressive B-cell malignancies and autoimmune diseases.

  17. Rapamycin drives selection against a pathogenic heteroplasmic mitochondrial DNA mutation.

    PubMed

    Dai, Ying; Zheng, Kangni; Clark, Joanne; Swerdlow, Russell H; Pulst, Stefan M; Sutton, James P; Shinobu, Leslie A; Simon, David K

    2014-02-01

    Mitochondrial DNA (mtDNA) mutations cause a variety of mitochondrial disorders for which effective treatments are lacking. Emerging data indicate that selective mitochondrial degradation through autophagy (mitophagy) plays a critical role in mitochondrial quality control. Inhibition of mammalian target of rapamycin (mTOR) kinase activity can activate mitophagy. To test the hypothesis that enhancing mitophagy would drive selection against dysfunctional mitochondria harboring higher levels of mutations, thereby decreasing mutation levels over time, we examined the impact of rapamycin on mutation levels in a human cytoplasmic hybrid (cybrid) cell line expressing a heteroplasmic mtDNA G11778A mutation, the most common cause of Leber's hereditary optic neuropathy. Inhibition of mTORC1/S6 kinase signaling by rapamycin induced colocalization of mitochondria with autophagosomes, and resulted in a striking progressive decrease in levels of the G11778A mutation and partial restoration of ATP levels. Rapamycin-induced upregulation of mitophagy was confirmed by electron microscopic evidence of increased autophagic vacuoles containing mitochondria-like organelles. The decreased mutational burden was not due to rapamycin-induced cell death or mtDNA depletion, as there was no significant difference in cytotoxicity/apoptosis or mtDNA copy number between rapamycin and vehicle-treated cells. These data demonstrate the potential for pharmacological inhibition of mTOR kinase activity to activate mitophagy as a strategy to drive selection against a heteroplasmic mtDNA G11778A mutation and raise the exciting possibility that rapamycin may have therapeutic potential for the treatment of mitochondrial disorders associated with heteroplasmic mtDNA mutations, although further studies are needed to determine if a similar strategy will be effective for other mutations and other cell types.

  18. DNA Damage: A Main Determinant of Vascular Aging.

    PubMed

    Bautista-Niño, Paula K; Portilla-Fernandez, Eliana; Vaughan, Douglas E; Danser, A H Jan; Roks, Anton J M

    2016-05-18

    Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (c

  19. DNA Damage: A Main Determinant of Vascular Aging

    PubMed Central

    Bautista-Niño, Paula K.; Portilla-Fernandez, Eliana; Vaughan, Douglas E.; Danser, A. H. Jan; Roks, Anton J. M.

    2016-01-01

    Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (c

  20. Rapamycin Protects from Type-I Peritoneal Membrane Failure Inhibiting the Angiogenesis, Lymphangiogenesis, and Endo-MT

    PubMed Central

    Aguirre, Anna Rita; Loureiro, Jesús; Abensur, Hugo; Sandoval, Pilar; Sánchez-Tomero, José Antonio; del Peso, Gloria; Jiménez-Heffernan, José Antonio; Ruiz-Carpio, Vicente; Selgas, Rafael; López-Cabrera, Manuel; Aguilera, Abelardo; Liappas, Georgios

    2015-01-01

    Preservation of peritoneal membrane (PM) is essential for long-term survival in peritoneal dialysis (PD). Continuous presence of PD fluids (PDF) in the peritoneal cavity generates chronic inflammation and promotes changes of the PM, such as fibrosis, angiogenesis, and lymphangiogenesis. Mesothelial-to-mesenchymal transition (MMT) and endothelial-to-mesenchymal transition (Endo-MT) seem to play a central role in this pathogenesis. We speculated that Rapamycin, a potent immunosuppressor, could be beneficial by regulating blood and lymphatic vessels proliferation. We demonstrate that mice undergoing a combined PD and Rapamycin treatment (PDF + Rapa group) presented a reduced PM thickness and lower number of submesothelial blood and lymphatic vessels, as well as decreased MMT and Endo-MT, comparing with their counterparts exposed to PD alone (PDF group). Peritoneal water transport in the PDF + Rapa group remained at control level, whereas PD effluent levels of VEGF, TGF-β, and TNF-α were lower than in the PDF group. Moreover, the treatment of mesothelial cells with Rapamycin in vitro significantly decreased VEGF synthesis and selectively inhibited the VEGF-C and VEGF-D release when compared with control cells. Thus, Rapamycin has a protective effect on PM in PD through an antifibrotic and antiproliferative effect on blood and lymphatic vessels. Moreover, it inhibits Endo-MT and, at least partially, MMT. PMID:26688823

  1. Rapamycin Protects from Type-I Peritoneal Membrane Failure Inhibiting the Angiogenesis, Lymphangiogenesis, and Endo-MT.

    PubMed

    González-Mateo, Guadalupe Tirma; Aguirre, Anna Rita; Loureiro, Jesús; Abensur, Hugo; Sandoval, Pilar; Sánchez-Tomero, José Antonio; del Peso, Gloria; Jiménez-Heffernan, José Antonio; Ruiz-Carpio, Vicente; Selgas, Rafael; López-Cabrera, Manuel; Aguilera, Abelardo; Liappas, Georgios

    2015-01-01

    Preservation of peritoneal membrane (PM) is essential for long-term survival in peritoneal dialysis (PD). Continuous presence of PD fluids (PDF) in the peritoneal cavity generates chronic inflammation and promotes changes of the PM, such as fibrosis, angiogenesis, and lymphangiogenesis. Mesothelial-to-mesenchymal transition (MMT) and endothelial-to-mesenchymal transition (Endo-MT) seem to play a central role in this pathogenesis. We speculated that Rapamycin, a potent immunosuppressor, could be beneficial by regulating blood and lymphatic vessels proliferation. We demonstrate that mice undergoing a combined PD and Rapamycin treatment (PDF + Rapa group) presented a reduced PM thickness and lower number of submesothelial blood and lymphatic vessels, as well as decreased MMT and Endo-MT, comparing with their counterparts exposed to PD alone (PDF group). Peritoneal water transport in the PDF + Rapa group remained at control level, whereas PD effluent levels of VEGF, TGF-β, and TNF-α were lower than in the PDF group. Moreover, the treatment of mesothelial cells with Rapamycin in vitro significantly decreased VEGF synthesis and selectively inhibited the VEGF-C and VEGF-D release when compared with control cells. Thus, Rapamycin has a protective effect on PM in PD through an antifibrotic and antiproliferative effect on blood and lymphatic vessels. Moreover, it inhibits Endo-MT and, at least partially, MMT.

  2. Sphingolipids regulate [Mg2+]o uptake and [Mg2+]i content in vascular smooth muscle cells: potential mechanisms and importance to membrane transport of Mg2+.

    PubMed

    Zheng, Tao; Li, Wenyan; Altura, Bella T; Shah, Nilank C; Altura, Burton M

    2011-02-01

    Sphingolipids have a variety of important signaling roles in mammalian cells. We tested the hypothesis that certain sphingolipids and neutral sphingomyelinase (N-SMase) can regulate intracellular free magnesium ions ([Mg2+]i) in vascular smooth muscle (VSM) cells. Herein, we show that several sphingolipids, including C2-ceramide, C8-ceramide, C16-ceramide, and sphingosine, as well as N-SMase, have potent and direct effects on content and mobilization of [Mg2+]i in primary cultured rat aortic smooth muscle cells. All of these sphingolipid molecules increase, rapidly, [Mg2+]i in these vascular cells in a concentration-dependent manner. The increments of [Mg2+]i, induced by these agents, are derived from influx of extracellular Mg2+ and are extracellular Ca2+ concentration-dependent. Phospholipase C and Ca2+/calmodulin/Ca2+-ATPase activity appear to be important in the sphingolipid-induced rises of [Mg2+]i. Activation of certain PKC isozymes may also be required for sphingolipid-induced rises in [Mg2+]i. These novel results suggest that sphingolipids may be homeostatic regulators of extracellular Mg2+ concentration influx (and transport) and [Mg2+]i content in vascular muscle cells.

  3. Expression of the bumetanide-sensitive Na-K-Cl cotransporter BSC2 is differentially regulated by fluid mechanical and inflammatory cytokine stimuli in vascular endothelium.

    PubMed Central

    Topper, J N; Wasserman, S M; Anderson, K R; Cai, J; Falb, D; Gimbrone, M A

    1997-01-01

    In vascular endothelium, the electroneutral Na-K-Cl cotransport system is thought to function in the maintenance of a selective permeability barrier in certain vascular beds (e.g., brain), as well as in the preservation of endothelial homeostasis in the face of fluctuating osmotic conditions that may accompany certain pathophysiological conditions (e.g., diabetes mellitus). Here we demonstrate that the gene encoding the bumetanide-sensitive cotransporter BSC2, one of the two major isoforms of Na-K-Cl cotransporters present in mammalian cells, can be differentially regulated by inflammatory cytokines and fluid mechanical forces in cultured endothelium. Interleukin-1beta and tumor necrosis factor-alpha significantly upregulate expression of BSC2 mRNA and protein in human umbilical vein endothelial cells, a response that is inhibited by pretreatment with interferon-gamma. Steady laminar fluid shear stress, at a physiologic magnitude (10 dyn/cm2), is also able to induce and maintain elevated expression of BSC2 in cultured human umbilical vein endothelial cells, while a comparable time-averaged magnitude of turbulent fluid shear stress is not. In vivo, BSC2 mRNA is upregulated after intraperitoneal administration of bacterial endotoxin (LPS) in murine lung and kidney, but not in cardiac tissue. These results provide the first experimental evidence that the BSC2 gene can be selectively regulated by different inflammatory cytokine and fluid mechanical stimuli in endothelium, and support a role for BSC2 in vascular homeostasis and inflammation. PMID:9185518

  4. Rapamycin Rescues the Poor Developmental Capacity of Aged Porcine Oocytes

    PubMed Central

    Lee, Seung Eun; Kim, Eun Young; Choi, Hyun Yong; Moon, Jeremiah Jiman; Park, Min Jee; Lee, Jun Beom; Jeong, Chang Jin; Park, Se Pill

    2014-01-01

    Unfertilized oocytes age inevitably after ovulation, which limits their fertilizable life span and embryonic development. Rapamycin affects mammalian target of rapamycin (mTOR) expression and cytoskeleton reorganization during oocyte meiotic maturation. The goal of this study was to examine the effects of rapamycin treatment on aged porcine oocytes and their in vitro development. Rapamycin treatment of aged oocytes for 24 h (68 h in vitro maturation [IVM]; 44 h+10 μM rapamycin/24 h, 47.52±5.68) or control oocytes (44 h IVM; 42.14±4.40) significantly increased the development rate and total cell number compared with untreated aged oocytes (68 h IVM, 22.04±5.68) (p<0.05). Rapamycin treatment of aged IVM oocytes for 24 h also rescued aberrant spindle organization and chromosomal misalignment, blocked the decrease in the level of phosphorylated-p44/42 mitogen-activated protein kinase (MAPK), and increased the mRNA expression of cytoplasmic maturation factor genes (MOS, BMP15, GDF9, and CCNB1) compared with untreated, 24 h-aged IVM oocytes (p<0.05). Furthermore, rapamycin treatment of aged oocytes decreased reactive oxygen species (ROS) activity and DNA fragmentation (p<0.05), and downregulated the mRNA expression of mTOR compared with control or untreated aged oocytes. By contrast, rapamycin treatment of aged oocytes increased mitochondrial localization (p<0.05) and upregulated the mRNA expression of autophagy (BECN1, ATG7, MAP1LC3B, ATG12, GABARAP, and GABARAPL1), anti-apoptosis (BCL2L1 and BIRC5; p<0.05), and development (NANOG and SOX2; p<0.05) genes, but it did not affect the mRNA expression of pro-apoptosis genes (FAS and CASP3) compared with the control. This study demonstrates that rapamycin treatment can rescue the poor developmental capacity of aged porcine oocytes. PMID:25049998

  5. P2Y1 and P2Y2 receptor distribution varies along the human placental vascular tree: role of nucleotides in vascular tone regulation

    PubMed Central

    Buvinic, Sonja; Poblete, M Inés; Donoso, M Verónica; Delpiano, Ana María; Briones, René; Miranda, Ramiro; Huidobro-Toro, J Pablo

    2006-01-01

    The expression of purinergic P2Y receptors (P2YRs) along the cord, superficial chorionic vessels and cotyledons of the human placenta was analysed and functional assays were performed to determine their vasomotor activity. Immunoblots for the P2Y1R and P2Y2R revealed a 6- to 8-fold increase in receptor expression from the cord to the chorionic or cotyledon vessels. In the cord and chorionic vessels the receptor distribution was mainly in the smooth muscle, whereas in the cotyledon vessels these receptors were equally distributed between the endothelium and smooth muscle cells. An exception was the P2Y2R at the umbilical artery, which was distributed as in the cotyledon. mRNA coding for the P2Y1R and P2Y2R were detected by RT-PCR and the mRNA coding for the P2Y4R, P2Y6R and P2Y11R was also identified. Application of 2-MeSADP and uridine triphosphate (UTP), preferential P2Y1R and P2Y2R ligands, respectively, resulted in contraction of isolated rings from umbilical and chorionic vessels. The vasoconstriction was blocked in a concentration-dependent manner by 10–100 nm indomethacin or 10 nm GR32191, suggesting the involvement of thromboxane receptors. MRS 2179, a selective P2Y1R antagonist, reduced the 2-MeSADP- but not the UTP-evoked contractions. Perfusion of cotyledons with 2-MeSADP or UTP evoked concentration-dependent reductions in perfusion pressure mediated by the NO–cGMP pathway. Blockade of NO synthase abolished the vasodilatation and the rise in luminal NO elicited by either agonist. MRS 2179 antagonized the dilatation and rise in luminal NO evoked by 2-MeSADP but not by UTP. In summary, P2Y1R and P2Y2R are unevenly distributed along the human placental vascular tree; both receptors are coupled to different signalling pathways in the cord/chorionic vessels versus the cotyledon leading to opposing vasomotor responses. PMID:16543271

  6. The immunosuppressive agents rapamycin, cyclosporin A and tacrolimus increase lipolysis, inhibit lipid storage and alter expression of genes involved in lipid metabolism in human adipose tissue.

    PubMed

    Pereira, Maria J; Palming, Jenny; Rizell, Magnus; Aureliano, Manuel; Carvalho, Eugénia; Svensson, Maria K; Eriksson, Jan W

    2013-01-30

    Cyclosporin A (CsA), tacrolimus and rapamycin are immunosuppressive agents (IAs) associated with insulin resistance and dyslipidemia, although their molecular effects on lipid metabolism in adipose tissue are unknown. We explored IAs effects on lipolysis, lipid storage and expression of genes involved on lipid metabolism in isolated human adipocytes and/or adipose tissue obtained via subcutaneous and omental fat biopsies. CsA, tacrolimus and rapamycin increased isoproterenol-stimulated lipolysis and inhibited lipid storage by 20-35% and enhanced isoproterenol-stimulated hormone-sensitive lipase Ser552 phosphorylation. Rapamycin also increased basal lipolysis (~20%) and impaired insulin's antilipolytic effect. Rapamycin, down-regulated the gene expression of perilipin, sterol regulatory element-binding protein 1 (SREBP1) and lipin 1, while tacrolimus down-regulated CD36 and aP2 gene expression. All three IAs increased IL-6 gene expression and secretion, but not expression and secretion of TNF-α or adiponectin. These findings suggest that CsA, tacrolimus and rapamycin enhance lipolysis, inhibit lipid storage and expression of lipogenic genes in adipose tissue, which may contribute to the development of dyslipidemia and insulin resistance associated with immunosuppressive therapy.

  7. Signaling of angiotensin II-induced vascular protein synthesis in conduit and resistance arteries in vivo

    PubMed Central

    Daigle, Christine; Martens, Fabrice MAC; Girardot, Daphné; Dao, Huy Hao; Touyz, Rhian M; Moreau, Pierre

    2004-01-01

    Background From in vitro studies, it has become clear that several signaling cascades are involved in angiotensin II-induced cellular hypertrophy. The aim of the present study was to determine some of the signaling pathways mediating angiotensin II (Ang II)-induced protein synthesis in vivo in large and small arteries. Methods Newly synthesized proteins were labeled during 4 hours with tritiated leucine in conscious control animals, or animals infused for 24 hours with angiotensin II (400 ng/kg/min). Hemodynamic parameters were measure simultaneously. Pharmacological agents affecting signaling cascades were injected 5 hours before the end of Ang II infusion. Results Angiotensin II nearly doubled the protein synthesis rate in the aorta and small mesenteric arteries, without affecting arterial pressure. The AT1 receptor antagonist Irbesartan antagonized the actions of Ang II. The Ang II-induced protein synthesis was associated with increased extracellular signal-regulated kinases (ERK)1/2 phosphorylation in aortic, but not in mesenteric vessels. Systemic administration of PD98059, an inhibitor of the ERK-1/2 pathway, produced a significant reduction of protein synthesis rate in the aorta, and only a modest decrease in mesenteric arteries. Rapamycin, which influences protein synthesis by alternative signaling, had a significant effect in both vessel types. Rapamycin and PD98059 did not alter basal protein synthesis and had minimal effects on arterial pressure. Conclusion ERK1/2 and rapamycin-sensitive pathways are involved in pressure-independent angiotensin II-induced vascular protein synthesis in vivo. However, their relative contribution may vary depending on the nature of the artery under investigation. PMID:15134586

  8. Mitogen-Activated Protein Kinase Phosphatase-1 Is a Key Regulator of Hypoxia-Induced Vascular Endothelial Growth Factor Expression and Vessel Density in Lung

    PubMed Central

    Shields, Kristin M.; Panzhinskiy, Evgeniy; Burns, Nana; Zawada, W. Michael; Das, Mita

    2011-01-01

    Although mitogen-activated protein kinase phosphatase-1 (MKP-1) is a key deactivator of MAP kinases, known effectors of lung vessel formation, whether it plays a role in the expression of proangiogenic vascular endothelial growth factor (VEGF) in hypoxic lung is unknown. We therefore hypothesized that MKP-1 is a crucial modulator of hypoxia-stimulated vessel development by regulating lung VEGF levels. Wild-type MKP-1+/+, heterozygous MKP-1+/−, and deficient MKP-1−/− mice were exposed to sea level (SL), Denver altitude (DA) (1609 m [5280 feet]), and severe high altitude (HYP) (∼5182 m [∼17,000 feet]) for 6 weeks. Hypoxia enhanced phosphorylation of p38 MAP kinase, a substrate of MKP-1, as well as α smooth muscle actin (αSMA) expression in vessels, respiratory epithelium, and interstitium of phosphatase-deficient lung. αSMA-positive vessel (<50 μm outside diameter) densities were markedly reduced, whereas vessel wall thickness was increased in hypoxic MKP-1−/− lung. Mouse embryonic fibroblasts (MEFs) of all three genotypes were isolated to pinpoint the mechanism involved in hypoxia-induced vascular abnormalities of MKP-1−/− lung. Sustained phosphorylation of p38 MAP kinase was observed in MKP-1-null MEFs in response to hypoxia exposure. Although hypoxia up-regulated VEGF levels in MKP-1+/+ MEFs eightfold, only a 70% increase in VEGF expression was observed in MKP-1-deficient cells. Therefore, our data strongly suggest that MKP-1 might be the key regulator of vascular densities through the regulation of VEGF levels in hypoxic lung. PMID:21224048

  9. AMP-Activated Protein Kinase α2 in Neutrophils Regulates Vascular Repair via Hypoxia-Inducible Factor-1α and a Network of Proteins Affecting Metabolism and Apoptosis

    PubMed Central

    Abdel Malik, Randa; Zippel, Nina; Frömel, Timo; Heidler, Juliana; Zukunft, Sven; Walzog, Barbara; Ansari, Nariman; Pampaloni, Francesco; Wingert, Susanne; Rieger, Michael A.; Wittig, Ilka; Fisslthaler, Beate

    2017-01-01

    Rationale: The AMP-activated protein kinase (AMPK) is stimulated by hypoxia, and although the AMPKα1 catalytic subunit has been implicated in angiogenesis, little is known about the role played by the AMPKα2 subunit in vascular repair. Objective: To determine the role of the AMPKα2 subunit in vascular repair. Methods and Results: Recovery of blood flow after femoral artery ligation was impaired (>80%) in AMPKα2−/− versus wild-type mice, a phenotype reproduced in mice lacking AMPKα2 in myeloid cells (AMPKα2ΔMC). Three days after ligation, neutrophil infiltration into ischemic limbs of AMPKα2ΔMC mice was lower than that in wild-type mice despite being higher after 24 hours. Neutrophil survival in ischemic tissue is required to attract monocytes that contribute to the angiogenic response. Indeed, apoptosis was increased in hypoxic neutrophils from AMPKα2ΔMC mice, fewer monocytes were recruited, and gene array analysis revealed attenuated expression of proangiogenic proteins in ischemic AMPKα2ΔMC hindlimbs. Many angiogenic growth factors are regulated by hypoxia-inducible factor, and hypoxia-inducible factor-1α induction was attenuated in AMPKα2-deficient cells and accompanied by its enhanced hydroxylation. Also, fewer proteins were regulated by hypoxia in neutrophils from AMPKα2ΔMC mice. Mechanistically, isocitrate dehydrogenase expression and the production of α-ketoglutarate, which negatively regulate hypoxia-inducible factor-1α stability, were attenuated in neutrophils from wild-type mice but remained elevated in cells from AMPKα2ΔMC mice. Conclusions: AMPKα2 regulates α-ketoglutarate generation, hypoxia-inducible factor-1α stability, and neutrophil survival, which in turn determine further myeloid cell recruitment and repair potential. The activation of AMPKα2 in neutrophils is a decisive event in the initiation of vascular repair after ischemia. PMID:27777247

  10. Rice sucrose transporter1 (OsSUT1) up-regulation in xylem parenchyma is caused by aphid feeding on rice leaf blade vascular bundles.

    PubMed

    Ibraheem, O; Botha, C E J; Bradley, G; Dealtry, G; Roux, S

    2014-07-01

    The role of the sucrose transporter OsSUT1 in assimilate retrieval via the xylem, as a result of damage to and leakage from punctured phloem was examined after rusty plum aphid (Hysteroneura setariae, Thomas) infestation on leaves from 3-week-old rice (Oryza sativa L. cv Nipponbare) plants. Leaves were examined over a 1- to 10-day infestation time course, using a combination of gene expression and β-glucuronidase (GUS) reporter gene analyses. qPCR and Western blot analyses revealed differential expression of OsSUT1 during aphid infestation. Wide-field fluorescence microscopy was used to confirm the expression of OsSUT1-promoter::GUS reporter gene in vascular parenchyma associated with xylem elements, as well as in companion cells associated with phloem sieve tubes of large, intermediate and small vascular bundles within the leaf blade, in regions where the aphids had settled and were feeding. Of great interest was up-regulation of OsSUT1 expression associated with the xylem parenchyma cells, abutting the metaxylem vessels, which confirmed that OsSUT1 was not only involved in loading of sugars into the phloem under normal physiological conditions, but was apparently involved in the retrieval of sucrose leaked into the xylem conduits, which occurred as a direct result of aphid feeding, probing and puncturing of vascular bundles. The up-regulation of OsSUT1 in xylem vascular parenchyma thus provides evidence in support of the location within the xylem parenchyma cells of an efficient mechanism to ensure sucrose recovery after loss to the apoplast (xylem) after aphid-related feeding damage and its transfer back to the symplast (phloem) in O. sativa leaves.

  11. The Inhibitory Effect of Apigenin on the Agonist-Induced Regulation of Vascular Contractility via Calcium Desensitization-Related Pathways

    PubMed Central

    Je, Hyun Dong; Kim, Hyeong-Dong; La, Hyen-Oh

    2014-01-01

    Apigenin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of apigenin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Apigenin significantly relaxed fluoride-, thromboxane A2 mimetic- or phorbol ester-induced vascular contraction, which suggests that apigenin could be an anti-hypertensive that reduces agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, apigenin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels, which suggests the mechanism involving the inhibition of Rho-kinase and MEK activity and the subsequent phosphorylation of MYPT1 and ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of apigenin on agonist-induced vascular contraction regardless of endothelial function. PMID:24753814

  12. microRNAs Distinctively Regulate Vascular Smooth Muscle and Endothelial Cells: Functional Implications in Angiogenesis, Atherosclerosis, and In-Stent Restenosis

    PubMed Central

    Santulli, Gaetano

    2016-01-01

    Endothelial cells (EC) and vascular smooth muscle cells (VSMC) are the main cell types within the vasculature. We describe here how microRNAs (miRs)—noncoding RNAs that can regulate gene expression via translational repression and/or post-transcriptional degradation—distinctively modulate EC and VSMC function in physiology and disease. In particular, the specific roles of miR-126 and miR-143/145, master regulators of EC and VSMC function, respectively, are deeply explored. We also describe the mechanistic role of miRs in the regulation of the pathophysiology of key cardiovascular processes including angiogenesis, atherosclerosis, and in-stent restenosis post-angioplasty. Drawbacks of currently available therapeutic options are discussed, pointing at the challenges and potential clinical opportunities provided by miR-based treatments. PMID:26662986

  13. P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration.

    PubMed

    Hernández-Negrete, Ivette; Carretero-Ortega, Jorge; Rosenfeldt, Hans; Hernández-García, Ricardo; Calderón-Salinas, J Victor; Reyes-Cruz, Guadalupe; Gutkind, J Silvio; Vázquez-Prado, José

    2007-08-10

    Polarized cell migration results from the transduction of extra-cellular cues promoting the activation of Rho GTPases with the intervention of multidomain proteins, including guanine exchange factors. P-Rex1 and P-Rex2 are Rac GEFs connecting Gbetagamma and phosphatidylinositol 3-kinase signaling to Rac activation. Their complex architecture suggests their regulation by protein-protein interactions. Novel mechanisms of activation of Rho GTPases are associated with mammalian target of rapamycin (mTOR), a serine/threonine kinase known as a central regulator of cell growth and proliferation. Recently, two independent multiprotein complexes containing mTOR have been described. mTORC1 links to the classical rapamycin-sensitive pathways relevant for protein synthesis; mTORC2 links to the activation of Rho GTPases and cytoskeletal events via undefined mechanisms. Here we demonstrate that P-Rex1 and P-Rex2 establish, through their tandem DEP domains, interactions with mTOR, suggesting their potential as effectors in the signaling of mTOR to Rac activation and cell migration. This possibility was consistent with the effect of dominant-negative constructs and short hairpin RNA-mediated knockdown of P-Rex1, which decreased mTOR-dependent leucine-induced activation of Rac and cell migration. Rapamycin, a widely used inhibitor of mTOR signaling, did not inhibit Rac activity and cell migration induced by leucine, indicating that P-Rex1, which we found associated to both mTOR complexes, is only active when in the mTORC2 complex. mTORC2 has been described as the catalytic complex that phosphorylates AKT/PKB at Ser-473 and elicits activation of Rho GTPases and cytoskeletal reorganization. Thus, P-Rex1 links mTOR signaling to Rac activation and cell migration.

  14. Chemical-Genetics of Rapamycin-Insensitive TORC2 in S. cerevisiae

    PubMed Central

    Kliegman, Joseph I.; Fiedler, Dorothea; Ryan, Colm J.; Xu, Yi-Fan; Su, Xiao-yang; Thomas, David; Caccese, Max C.; Cheng, Ada; Shales, Michael; Rabinowitz, Joshua D.; Krogan, Nevan J.; Shokat, Kevan M.

    2014-01-01

    Current approaches for identifying synergistic targets use cell culture models with combinations of clinically available drugs to see if the combined effect of the combination is better than predicted by their individual efficacy. New techniques are needed to systematically and rationally identify targets and pathways that have a high potential as synergistic targets. In this study, we create a tool to screen and identify molecular targets that may synergize with new inhibitors of TOR (Target of Rapamycin), a conserved protein that is a major integrator of cell proliferation signals in the nutrient-signaling pathway. While clinical results from TORC1 inhibition using rapamycin analogs (that only inhibit TORC1) have been disappointing, trials using inhibitors that also target TORC2 have been promising. To understand the molecular basis for this increased therapeutic efficacy and to discover secondary targets that may have potential in targeted combination therapy, we engineered TOR2 in S. cerevisiae to accept an orthogonal inhibitor in order to create the first chemical tool to selectively inhibit TORC2. We used this tool to create a Chemical Epistasis Mini-Array Profile, or ChE-MAP, by measuring interactions between the chemically inhibited TOR2 kinase and a diverse library of deletion mutants. The ChE-MAP identified known TOR components and distinguished between TORC1 (assessed using rapamycin) and TORC2 dependent functions. Results showed a novel TORC2-specific interaction with the pentose phosphate pathway (PPP). We used global metabolic profiling to show that that TORC2 inhibition led to decreases in metabolites specific to the PPP and confirmed that TOR2 was regulating this process using metabolic flux analysis. Regulation of the PPP is a previously unappreciated role for TORC2 that may suggest a role for the complex in balancing the high energy demand required for ribosome biogenesis. PMID:24360963

  15. Mammalian target of rapamycin signaling modulates photic entrainment of the suprachiasmatic circadian clock

    PubMed Central

    Cao, Ruifeng; Li, Aiqing; Cho, Hee-yeon; Lee, Boyoung; Obrietan, Karl

    2010-01-01

    Inducible gene expression appears to be an essential event that couples light to entrainment of the master mammalian circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Recently, we reported that light triggers phase-dependent activation of the mammalian target of rapamycin (mTOR) signaling pathway, a major regulator of protein synthesis, in the SCN, thus raising the possibility that mTOR-evoked mRNA translation contributes to clock entrainment. Here, we employed a combination of cellular, molecular and behavioral assays to address this question. To this end, we show that the in vivo infusion of the mTOR inhibitor rapamycin led to a significant attenuation of the phase-delaying effect of early night light. Conversely, disruption of mTOR during the late night augmented the phase-advancing effect of light. To assess the role of mTOR signaling within the context of molecular entrainment, the effects of rapamycin on light-induced expression of PERIOD1 and PERIOD2 were examined. At both the early and late night time points, abrogation of mTOR signaling led to a significant attenuation of light-evoked PERIOD protein expression. Our results also reveal that light-induced mTOR activation leads to translation of mRNAs with a 5′-terminal oligopyrimidine tract such as eukaryotic elongation factor 1 A (eEF1A) and the immediate early gene JunB. Together, these data indicate that the mTOR pathway functions as potent and selective regulator of light-evoked protein translation and SCN clock entrainment. PMID:20445056

  16. Rapamycin-sensitive induction of eukaryotic initiation factor 4F in regenerating mouse liver.

    PubMed

    Goggin, Melissa M; Nelsen, Christopher J; Kimball, Scot R; Jefferson, Leonard S; Morley, Simon J; Albrecht, Jeffrey H

    2004-09-01

    Following acute injuries that diminish functional liver mass, the remaining hepatocytes substantially increase overall protein synthesis to meet increased metabolic demands and to allow for compensatory liver growth. Previous studies have not clearly defined the mechanisms that promote protein synthesis in the regenerating liver. In the current study, we examined the regulation of key proteins involved in translation initiation following 70% partial hepatectomy (PH) in mice. PH promoted the assembly of eukaryotic initiation factor (eIF) 4F complexes consisting of eIF4E, eIF4G, eIF4A1, and poly-A binding protein. eIF4F complex formation after PH occurred without detectable changes in eIF4E-binding protein 1 (4E-BP1) phosphorylation or its binding eIF4E. The amount of serine 1108-phosphorylated eIF4G (but not Ser209-phosphorylated eIF4E) was induced following PH. These effects were antagonized by treatment with rapamycin, indicating that target of rapamycin (TOR) activity is required for eIF4F assembly in the regenerating liver. Rapamycin inhibited the induction of cyclin D1, a known eIF4F-sensitive gene, at the level of protein expression but not messenger RNA (mRNA) expression. In conclusion, increased translation initiation mediated by the mRNA cap-binding complex eIF4F contributes to the induction of protein synthesis during compensatory liver growth. Further study of factors that regulate translation initiation may provide insight into mechanisms that govern metabolic homeostasis and regeneration in response to liver injury.

  17. Mammalian target of rapamycin signaling modulates photic entrainment of the suprachiasmatic circadian clock.

    PubMed

    Cao, Ruifeng; Li, Aiqing; Cho, Hee-yeon; Lee, Boyoung; Obrietan, Karl

    2010-05-05

    Inducible gene expression appears to be an essential event that couples light to entrainment of the master mammalian circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Recently, we reported that light triggers phase-dependent activation of the mammalian target of rapamycin (mTOR) signaling pathway, a major regulator of protein synthesis, in the SCN, thus raising the possibility that mTOR-evoked mRNA translation contributes to clock entrainment. Here, we used a combination of cellular, molecular, and behavioral assays to address this question. To this end, we show that the in vivo infusion of the mTOR inhibitor rapamycin led to a significant attenuation of the phase-delaying effect of early-night light. Conversely, disruption of mTOR during the late night augmented the phase-advancing effect of light. To assess the role of mTOR signaling within the context of molecular entrainment, the effects of rapamycin on light-induced expression of PERIOD1 and PERIOD2 were examined. At both the early- and late-night time points, abrogation of mTOR signaling led to a significant attenuation of light-evoked PERIOD protein expression. Our results also reveal that light-induced mTOR activation leads to the translation of mRNAs with a 5'-terminal oligopyrimidine tract such as eukaryotic elongation factor 1A and the immediate early gene JunB. Together, these data indicate that the mTOR pathway functions as potent and selective regulator of light-evoked protein translation and SCN clock entrainment.

  18. Differential regulation of blood flow‐induced neovascularization and mural cell recruitment by vascular endothelial growth factor and angiopoietin signalling

    PubMed Central

    Stone, Oliver A.; Carter, James G.; Lin, P. Charles; Paleolog, Ewa; Machado, Maria J. C.

    2017-01-01

    Key points Combining nitric oxide (NO)‐mediated increased blood flow with angiopoietin‐1–Tie2 receptor signalling induces arteriolargenesis – the formation of arterioles from capillaries – in a model of physiological angiogenesis.This NO–Tie‐mediated arteriolargenesis requires endogenous vascular endothelial growth factor (VEGF) signalling.Inhibition of VEGF signalling increases pericyte coverage in microvessels.Together these findings indicate that generation of functional neovasculature requires close titration of NO–Tie2 signalling and localized VEGF induction, suggesting that the use of exogenous VEGF expression as a therapeutic for neovascularization may not be successful. Abstract Signalling through vascular endothelial growth factor (VEGF) receptors and the tyrosine kinase with IgG and EGF domains‐2 (Tie2) receptor by angiopoietins is required in combination with blood flow for the formation of a functional vascular network. We tested the hypothesis that VEGF and angiopoietin‐1 (Ang1) contribute differentially to neovascularization induced by nitric oxide (NO)‐mediated vasodilatation, by comparing the phenotype of new microvessels in the mesentery during induction of vascular remodelling by over‐expression of endothelial nitric oxide synthase in the fat pad of the adult rat mesentery during inhibition of angiopoietin signalling with soluble Tie2 (sTie2) and VEGF signalling with soluble Fms‐like tyrosine kinase receptor‐1 (sFlt1). We found that NO‐mediated angiogenesis was blocked by inhibition of VEGF with sFlt1 (from 881 ± 98% increase in functional vessel area to 279 ± 72%) and by inhibition of angiopoietin with sTie2 (to 337 ± 67%). Exogenous angiopoietin‐1 was required to induce arteriolargenesis (8.6 ± 1.3% of vessels with recruitment of vascular smooth muscle cells; VSMCs) in the presence of enhanced flow. sTie2 and sFlt1 both inhibited VSMC recruitment (both 0%), and VEGF inhibition increased pericyte

  19. Mammalian target of rapamycin inhibition in hepatocellular carcinoma

    PubMed Central

    Ashworth, René E; Wu, Jennifer

    2014-01-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. It is associated with a poor prognosis and has limited treatment options. Sorafenib, a multi-targeted kinase inhibitor, is the only available systemic agent for treatment of HCC that improves overall survival for patients with advanced stage disease; unfortunately, an effective second-line agent for the treatment of progressive or sorafenib-resistant HCC has yet to be identified. This review focuses on components of the mammalian target of rapamycin (mTOR) pathway, its role in HCC pathogenesis, and dual mTOR inhibition as a therapeutic option with potential efficacy in advanced HCC. There are several important upstream and downstream signals in the mTOR pathway, and alternative tumor-promoting pathways are known to exist beyond mTORC1 inhibition in HCC. This review analyzes the relationships of the upstream and downstream regulators of mTORC1 and mTORC2 signaling; it also provides a comprehensive global picture of the interaction between mTORC1 and mTORC2 which demonstrates the pre-clinical relevance of the mTOR pathway in HCC pathogenesis and progression. Finally, it provides scientific rationale for dual mTORC1 and mTORC2 inhibition in the treatment of HCC. Clinical trials utilizing mTORC1 inhibitors and dual mTOR inhibitors in HCC are discussed as well. The mTOR pathway is comprised of two main components, mTORC1 and mTORC2; each has a unique role in the pathogenesis and progression of HCC. In phase III studies, mTORC1 inhibitors demonstrate anti-tumor activity in advanced HCC, but dual mTOR (mTORC1 and mTORC2) inhibition has greater therapeutic potential in HCC treatment which warrants further clinical investigation. PMID:25429315

  20. Expression of Vascular Endothelial Growth Factor A During Ligand-Induced Down-Regulation of Luteinizing Hormone Receptor in the Ovary☆

    PubMed Central

    Harada, M.; Peegel, H.; Menon, K. M. J.

    2010-01-01

    Vascular endothelial growth factor A (VEGF-A) is one of the most important regulators of ovarian angiogenesis. In this study, we examined the temporal relationship between VEGF-A and luteinizing hormone receptor (LHR) mRNA expression during ligand-induced down-regulation of LHR. Immature female rats were treated with pregnant mare’s serum gonadotropin followed by 25 IU hCG 56h later (day 0). On day 5, treatment with hCG (50 IU) to down-regulate LHR showed a temporal decrease in VEGF-A mRNA and protein levels in parallel with decreasing LHR mRNA. This effect was specific since the expression of CYP11A1 mRNA showed no decline. Examination of VEGF-A mRNA expression, using in situ hybridization histochemistry with 35S-labeled antisense VEGF-A mRNA probe, showed intense signal in the corpora lutea on day 5. Treatment with 50 IU hCG to down-regulate LHR mRNA showed a decline in the intensity of VEGF-A mRNA in the corpora lutea. VEGF-A mRNA expression returned to control level 53 hours later when the expression of LHR mRNA also recovered. These results show that the transient down-regulation of VEGF-A mRNA and protein closely parallels the ligand-induced down-regulation of LHR mRNA. The present study establishes a close association between VEGF-A and LHR mRNA expression, suggesting the possibility that VEGF-A-induced vascularization of the ovary is dictated by the expression of LHR and this might play a regulatory role in ovarian physiology. PMID:20619315

  1. HCdc14A is involved in cell cycle regulation of human brain vascular endothelial cells following injury induced by high glucose, free fatty acids and hypoxia.

    PubMed

    Su, Jingjing; Zhou, Houguang; Tao, Yinghong; Guo, Zhuangli; Zhang, Shuo; Zhang, Yu; Huang, Yanyan; Tang, Yuping; Hu, Renming; Dong, Qiang

    2015-01-01

    Cell cycle processes play a vital role in vascular endothelial proliferation and dysfunction. Cell division cycle protein 14 (Cdc14) is an important cell cycle regulatory phosphatase. Previous studies in budding yeast demonstrated that Cdc14 could trigger the inactivation of mitotic cyclin-dependent kinases (Cdks), which are required for mitotic exit and cytokinesis. However, the exact function of human Cdc14 (hCdc14) in cell cycle regulation during vascular diseases is yet to be elucidated. There are two HCdc14 homologs: hCdc14A and hCdc14B. In the current study, we investigated the potential role of hCdc14A in high glucose-, free fatty acids (FFAs)-, and hypoxia-induced injury in cultured human brain vascular endothelial cells (HBVECs). Data revealed that high glucose, FFA, and hypoxia down-regulated hCdc14A expression remarkably, and also affected the expression of other cell cycle-related proteins such as cyclin B, cyclin D, cyclin E, and p53. Furthermore, the combined addition of the three stimuli largely blocked cell cycle progression, decreased cell proliferation, and increased apoptosis. We also determined that hCdc14A was localized mainly to centrosomes during interphase and spindles during mitosis using confocal microscopy, and that it could affect the expression of other cycle-related proteins. More importantly, the overexpression of hCdc14A accelerated cell cycle progression, enhanced cell proliferation, and promoted neoplastic transformation, whereas the knockdown of hCdc14A using small interfering RNA produced the opposite effects. Therefore, these findings provide novel evidence that hCdc14A might be involved in cell cycle regulation in cultured HBVECs during high glucose-, FFA-, and hypoxia-induced injury.

  2. Rapamycin does not prevent increases in myofibrillar or mitochondrial protein synthesis following endurance exercise

    PubMed Central

    Philp, Andrew; Schenk, Simon; Perez-Schindler, Joaquin; Hamilton, D Lee; Breen, Leigh; Laverone, Erin; Jeromson, Stewart; Phillips, Stuart M; Baar, Keith

    2015-01-01

    Abstract The present study aimed to investigate the role of the mechanistic target of rapamycin complex 1 (mTORC1) in the regulation of myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis following endurance exercise. Forty-two female C57BL/6 mice performed 1 h of treadmill running (18 m min−1; 5° grade), 1 h after i.p. administration of rapamycin (1.5 mg · kg−1) or vehicle. To quantify skeletal muscle protein fractional synthesis rates, a flooding dose (50 mg · kg−1) of l-[ring-13C6]phenylalanine was administered via i.p. injection. Blood and gastrocnemius muscle were collected in non-exercised control mice, as well as at 0.5, 3 and 6 h after completing exercise (n = 4 per time point). Skeletal muscle MyoPS and MitoPS were determined by measuring isotope incorporation in their respective protein pools. Activation of the mTORC1-signalling cascade was measured via direct kinase activity assay and immunoblotting, whereas genes related to mitochondrial biogenesis were measured via a quantitative RT-PCR. MyoPS increased rapidly in the vehicle group post-exercise and remained elevated for 6 h, whereas this response was transiently blunted (30 min post-exercise) by rapamycin. By contrast, MitoPS was unaffected by rapamycin, and was increased over the entire post-exercise recovery period in both groups (P < 0.05). Despite rapid increases in both MyoPS and MitoPS, mTORC1 activation was suppressed in both groups post-exercise for the entire 6 h recovery period. Peroxisome proliferator activated receptor-γ coactivator-1α, pyruvate dehydrogenase kinase 4 and mitochondrial transcription factor A mRNA increased post-exercise (P < 0.05) and this response was augmented by rapamycin (P < 0.05). Collectively, these data suggest that endurance exercise stimulates MyoPS and MitoPS in skeletal muscle independently of mTORC1 activation. Key points Previous studies have shown that endurance exercise increases myofibrillar (MyoPS) and

  3. The effect of rapamycin on biodiesel-producing protist Euglena gracilis.

    PubMed

    Mukaida, Shiho; Ogawa, Takumi; Ohishi, Kazuko; Tanizawa, Yasuhiro; Ohta, Daisaku; Arita, Masanori

    2016-06-01

    Rapamycin induces autophagy with lipid remodeling in yeast and mammalian cells. To investigate the lipid biosynthesis of Euglena gracilis, rapamycin was supplemented in comparison with two model algae, Chlamydomonas reinhardtii and Cyanidioschyzon merolae. In Euglena, rapamycin induced the reduction of chlorophylls and the accumulation of neutral lipids without deterring its cell proliferation. Its lipidomic profile revealed that the fatty acid composition did not alter by supplementing rapamycin. In Chlamydomonas, however, rapamycin induced serious growth inhibition as reported elsewhere. With a lower concentration of rapamycin, the alga accumulated neutral lipids without reducing chlorophylls. In Cyanidioschyzon, rapamycin did not increase neutral lipids but reduced its chlorophyll content. We also tested fatty acid elongase inhibitors such as pyroxasulfone or flufenacet in Euglena with no significant change in its neutral lipid contents. In summary, controlled supplementation of rapamycin can increase the yield of neutral lipids while the scheme is not always applicable for other algal species.

  4. Vascular ring

    MedlinePlus

    ... with aberrant subclavian and left ligamentum ateriosus; Congenital heart defect - vascular ring; Birth defect heart - vascular ring ... accounts for less than 1% of all congenital heart problems. The condition occurs as often in males ...

  5. Growth of Steptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.

    2000-01-01

    Growth of Streptomyces hygroscopicus under conditions of simulated microgravity in a rotating-wall bioreactor resulted in a pellet form of growth, lowered dry cell weight, and inhibition of rapamycin production. With the addition of Teflon beads to the bioreactor, growth became much less pelleted, dry cell weight increased but rapamycin production was still markedly inhibited. Growth under simulated microgravity favored extracellular production of rapamycin, in contrast to a greater percentage of cell-bound rapamycin observed under normal gravity conditions.

  6. Growth of Steptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production.

    PubMed

    Fang, A; Pierson, D L; Mishra, S K; Demain, A L

    2000-07-01

    Growth of Streptomyces hygroscopicus under conditions of simulated microgravity in a rotating-wall bioreactor resulted in a pellet form of growth, lowered dry cell weight, and inhibition of rapamycin production. With the addition of Teflon beads to the bioreactor, growth became much less pelleted, dry cell weight increased but rapamycin production was still markedly inhibited. Growth under simulated microgravity favored extracellular production of rapamycin, in contrast to a greater percentage of cell-bound rapamycin observed under normal gravity conditions.

  7. Growth of Streptomyces Hygroscopicus in Rotating-Wall Bioreactor Under Simulated Microgravity Inhibits Rapamycin Production

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.

    2000-01-01

    Growth of Streptomyces hygroscopicus under conditions of simulated microgravity in a rotating-wall bioreactor resulted in a pellet form of growth, lowered dry cell weight, and inhibition of rapamycin production. With the addition of Teflon beads to the bioreactor, growth became much less pelleted, dry cell weight increased but rapamycin production was still markedly inhibited. Growth under simulated microgravity favored extracellular production of rapamycin in contrast to a greater percentage of cell-bound rapamycin observed under normal gravity conditions.

  8. Rapamycin: An InhibiTOR of Aging Emerges From the Soil of Easter Island.

    PubMed

    Arriola Apelo, Sebastian I; Lamming, Dudley W

    2016-07-01

    Rapamycin (sirolimus) is a macrolide immunosuppressant that inhibits the mechanistic target of rapamycin (mTOR) protein kinase and extends lifespan in model organisms including mice. Although rapamycin is an FDA-approved drug for select indications, a diverse set of negative side effects may preclude its wide-scale deployment as an antiaging therapy. mTOR forms two different protein complexes, mTORC1 and mTORC2; the former is acutely sensitive to rapamycin whereas the latter is only chronically sensitive to rapamycin in vivo. Over the past decade, it has become clear that although genetic and pharmacological inhibition of mTORC1 extends lifespan and delays aging, inhibition of mTORC2 has negative effects on mammalian health and longevity and is responsible for many of the negative side effects of rapamycin. In this review, we discuss recent advances in understanding the molecular and physiological effects of rapamycin treatment, and we discuss how the use of alternative rapamycin treatment regimens or rapamycin analogs has the potential to mitigate the deleterious side effects of rapamycin treatment by more specifically targeting mTORC1. Although the side effects of rapamycin are still of significant concern, rapid progress is being made in realizing the revolutionary potential of rapamycin-based therapies for the treatment of diseases of aging.

  9. Rapamycin treatment causes developmental delay, pigmentation defects, and gastrointestinal malformation on Xenopus embryogenesis

    SciTech Connect

    Moriyama, Yuki; Ohata, Yoshihisa; Mori, Shoko; Matsukawa, Shinya; Michiue, Tatsuo; Asashima, Makoto; Kuroda, Hiroki

    2011-01-28

    Research highlights: {yields} Does famous anti-aging drug rapamycin work from the beginning of life? The answer is yes. {yields} This study shows that developmental speed of frog embryo was dose-dependently decreased by rapamycin treatment. {yields} In additions, morphogenetic effects such as less pigmentations and gut malformation are occurred by rapamycin. -- Abstract: Rapamycin is a drug working as an inhibitor of the TOR (target of rapamycin) signaling pathway and influences various life phenomena such as cell growth, proliferation, and life span extension in eukaryote. However, the extent to which rapamycin controls early developmental events of amphibians remains to be understood. Here we report an examination of rapamycin effects during Xenopus early development, followed by a confirmation of suppression of TOR downstream kinase S6K by rapamycin treatment. First, we found that developmental speed was declined in dose-dependent manner of rapamycin. Second, black pigment spots located at dorsal and lateral skin in tadpoles were reduced by rapamycin treatment. Moreover, in tadpole stages severe gastrointestinal malformations were observed in rapamycin-treated embryos. Taken together with these results, we conclude that treatment of the drug rapamycin causes enormous influences on early developmental period.

  10. Differing Effects of Systemically Administered Rapamycin on Consolidation and Reconsolidation of Context vs. Cued Fear Memories

    ERIC Educational Resources Information Center

    Glover, Ebony M.; Ressler, Kerry J.; Davis, Michael

    2010-01-01

    Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR) kinase, has attracted interest as a possible prophylactic for post-traumatic stress disorder (PTSD)-associated fear memories. We report here that although rapamycin (40 mg/kg, i.p.) disrupted the consolidation and reconsolidation of fear-potentiated startle paradigm to a…

  11. Local generation of angiotensin II as a mechanism of regulation of peripheral vascular tone in the rat.

    PubMed Central

    Oliver, J A; Sciacca, R R

    1984-01-01

    Renin is present in vascular smooth muscle cells and has been shown to coexist with angiotensins I (AI) and II (AII) in many cell types. Accordingly, we postulated that the renin-angiotensin system controls vascular tone, not by the action of circulating renal renin but rather, by the local generation of angiotensin by vascular renin. Isolated rat hindquarters were perfused in vitro with Krebs-Henseleit buffer containing 7% albumin, and flow-adjusted to obtain a perfusion pressure of approximately 90 mmHg. Infusion of 4.8 nmol X min-1 for 5 min of AII or AI markedly increased perfusion pressure. An identical dose of the synthetic tetradecaptide of renin substrate (TDCP-RS) increased pressure similarly to AI. The pressure increase evoked by TDCP-RS was markedly decreased by captopril and by two different peptides that inhibit renin. Renin activity in the perfusate, incubated with semipurified rat renin substrate, was 21 +/- 3 pg AI X ml-1 X h-1 (mean +/- SEM) at 15 min of perfusion and 47 +/- 4 pg AI X ml-1 X h-1 at 45 min (n = 9; P less than 0.01). When TDCP-RS was infused at 4.8 nmol X min-1 for 5 min in the presence of captopril, AI in the perfusate increased linearly at a rate of 16.5 pmol X min-1 for 10 min (n = 5). The results indicate that TDCP-RS constricted the vasculature by its conversion to AII and suggest that AII was generated from a two-step hydrolysis of TDCP-RS by renin and converting enzyme. The data thus suggest that the renin-angiotensin system controls vascular tone by the local generation of AII by renin and converting enzyme in the vasculature. PMID:6384268

  12. Regulation of methane production, oxidation, and emission by vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra

    NASA Astrophysics Data System (ADS)

    Knoblauch, Christian; Spott, Oliver; Evgrafova, Svetlana; Kutzbach, Lars; Pfeiffer, Eva-Maria

    2015-12-01

    Methane (CH4) production, oxidation, and emission were studied in ponds of the permafrost-affected polygonal tundra in northeast Siberia. Microbial degradation of organic matter in water-saturated soils is the most important source for the climate-relevant trace gas CH4. Although ponds and lakes cover a substantial fraction of the land surface of northern Siberia, data on CH4 fluxes from these water bodies are scarce. Summer CH4 fluxes were measured with closed chambers at the margins of ponds vegetated by vascular plants and in their centers without vascular plants. Furthermore, CH4 and oxygen concentration gradients, stable carbon isotope signatures of dissolved and emitted CH4, and microbial CH4 production and CH4 oxidation were determined. Mean summer fluxes were significantly higher at the margins of the ponds (46.1 ± 15.4 mg CH4 m-2 d-1) than at the centers (5.9 ± 8.2 mg CH4 m-2 d-1). CH4 transport was dominated by diffusion in most open water sites, but substantial ebullitive fluxes (12.0 ± 8.1 mg CH4 m-2 d-1) were detected in one pond. Plant-mediated transport accounted for 70 to 90% of total CH4 fluxes above emerged vegetation. In the absence of vascular plants, 61 to 99% of the CH4 produced in the anoxic bottom soil was consumed in a layer of the submerged moss Scorpidium scorpioides, which covered the bottoms of the ponds. The fraction of CH4 oxidized was lower at sites with vascular plants since CH4 was predominantly transported through their aerenchyma, thereby bypassing the CH4 oxidation zone in the moss layer. These results emphasize the importance of moss-associated CH4 oxidation causing low CH4 fluxes from the studied Siberian ponds.

  13. Pigment epithelium derived factor upregulates expression of vascular endothelial growth factor by human mesenchymal stem cells: Possible role in PEDF regulated matrix mineralization.

    PubMed

    Li, Feng; Armstrong, Gillian B; Tombran-Tink, Joyce; Niyibizi, Christopher

    2016-09-23

    Pigment epithelium-derived factor (PEDF) encoded by serpinf1 is a potent antiangiogenic factor found in a wide variety of fetal and adult tissues. Several reports have shown that lack of PEDF leads to osteogenesis imperfecta (OI) type VI whose hallmark is a defect in mineralization that leads to excessive osteoid build up that fails to mineralize. Because PEDF is antiangiogenic factor it would pose serious consequences on bone development and healing of fractures. To understand possible mechanisms by which PEDF plays a role in bone development and regulation of matrix mineralization, we determined the effects of exogenous PEDF on vascular endothelial growth factor (VEGF) expression by human mesenchymal stem cells (hMSCs) and mechanisms of its regulation by PEDF. Human MSCs incubated in normal medium supplemented with exogenous PEDF increased VEGF expression; this increase was also seen when PEDF was added to hMSCs undergoing osteogenic differentiation. MSCs maintained in osteogenic medium increased synthesis of both VEGF and PEDF but both factors were maintained relatively in balance during differentiation. To understand mechanisms by which exogenous PEDF regulated VEGF expression, hMSCs exposed to PEDF activated Erk signaling pathway in MSCs; inhibition of Erk signaling reduced VEGF mRNA expression as well as protein production suggesting that PEDF regulates VEGF expression in MSCs via Erk signaling pathway. In conclusion, PEDF increases VEGF expression by MSCs suggesting that regulation of VEGF by PEDF may be part of the mechanisms by which PEDF regulates osteoblastic mineralization.

  14. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation.

    PubMed

    Ohashi-Ito, Kyoko; Oda, Yoshihisa; Fukuda, Hiroo

    2010-10-01

    Xylem consists of three types of cells: tracheary elements (TEs), parenchyma cells, and fiber cells. TE differentiation includes two essential processes, programmed cell death (PCD) and secondary cell wall formation. These two processes are tightly coupled. However, little is known about the molecular mechanisms underlying these processes. Here, we show that VASCULAR-RELATED NAC-DOMAIN6 (VND6), a master regulator of TEs, regulates some of the downstream genes involved in these processes in a coordinated manner. We first identified genes that are expressed downstream of VND6 but not downstream of SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1), a master regulator of xylem fiber cells, using transformed suspension culture cells in microarray experiments. We found that VND6 and SND1 governed distinct aspects of xylem formation, whereas they regulated a number of genes in common, specifically those related to secondary cell wall formation. Genes involved in TE-specific PCD were upregulated only by VND6. Moreover, we revealed that VND6 directly regulated genes that harbor a TE-specific cis-element, TERE, in their promoters. Thus, we found that VND6 is a direct regulator of genes related to PCD as well as to secondary wall formation.

  15. Possible role of mechanical force in regulating regeneration of the vascularized fat flap inside a tissue engineering chamber.

    PubMed

    Ye, Yuan; Yuan, Yi; Lu, Feng; Gao, Jianhua

    2015-12-01

    In plastic and reconstructive surgery, adipose tissue is widely used as effective filler for tissue defects. Strategies for treating soft tissue deficiency, which include free adipose tissue grafts, use of hyaluronic acid, collagen injections, and implantation of synthetic materials, have several clinical limitations. With the aim of overcoming these limitations, researchers have recently utilized tissue engineering chambers to produce large volumes of engineered vascularized fat tissue. However, the process of growing fat tissue in a chamber is still relatively limited, and can result in unpredictable or dissatisfactory final tissue volumes. Therefore, detailed understanding of the process is both necessary and urgent. Many studies have shown that mechanical force can change the function of cells via mechanotransduction. Here, we hypothesized that, besides the inflammatory response, one of the key factors to control the regeneration of vascularized fat flap inside a tissue engineering chamber might be the balance of mechanical forces. To test our hypothesis, we intend to change the balance of forces by means of measures in order to make the equilibrium point in favor of the direction of regeneration. If those measures proved to be feasible, they could be applied in clinical practice to engineer vascularized adipose tissue of predictable size and shape, which would in turn help in the advancement of tissue engineering.

  16. Antitumor effects of rapamycin in pancreatic cancer cells by inducing apoptosis and autophagy.

    PubMed

    Dai, Zhi-Jun; Gao, Jie; Ma, Xiao-Bin; Kang, Hua-Feng; Wang, Bao-Feng; Lu, Wang-Feng; Lin, Shuai; Wang, Xi-Jing; Wu, Wen-Ying

    2012-12-21

    Rapamycin (Rapa), an inhibitor of mammalian target of Rapamycin (mTOR), is an immunosuppressive agent that has anti-proliferative effects on some tumors. This study aims to investigate the effects of Rapa suppressing proliferation of pancreatic carcinoma PC-2 cells in vitro and its molecular mechanism involved in antitumor activities. MTT assays showed that the inhibition of proliferation of PC-2 cells in vitro was in a time- and dose-dependent manner. By using transmission electron microscopy, apoptosis bodies and formation of abundant autophagic vacuoles were observed in PC-2 cells after Rapa treatment. Flow cytometry assays also showed Rapa had a positive effect on apoptosis. MDC staining showed that the fluorescent density was higher and the number of MDC-labeled particles in PC-2 cells was greater in the Rapa treatment group than in the control group. RT-PCR revealed that the expression levels of p53, Bax and Beclin 1 were up-regulated in a dose-dependent manner, indicating that Beclin 1 was involved in Rapa induced autophagy and Rapa induced apoptosis as well as p53 up-regulation in PC-2 cells. The results demonstrated that Rapa could effectively inhibit proliferation and induce apoptosis and autophagy in PC-2 cells.

  17. BEST: A Randomized Phase II Study of Vascular Endothelial Growth Factor, RAF Kinase, and Mammalian Target of Rapamycin Combination Targeted Therapy With Bevacizumab, Sorafenib, and Temsirolimus in Advanced Renal Cell Carcinoma—A Trial of the ECOG–ACRIN Cancer Research Group (E2804)

    PubMed Central

    Flaherty, Keith T.; Manola, Judith B.; Pins, Michael; McDermott, David F.; Atkins, Michael B.; Dutcher, Janice J.; George, Daniel J.; Margolin, Kim A.; DiPaola, Robert S.

    2015-01-01

    Purpose On the basis of evidence that resistance to vascular endothelial growth factor (VEGF) receptor inhibition is caused by hypoxia-driven residual VEGF and other proangiogenic factors, combinations of agents from these classes were hypothesized to improve treatment outcomes relative to single-agent VEGF pathway blockade. Patients and Methods A total of 361 patients with metastatic clear cell renal cell carcinoma were randomly assigned equally to arm A (bevacizumab monotherapy 10 mg/kg intravenously [IV] every 2 weeks), B (bevacizumab 10 mg/kg IV every 2 weeks and temsirolimus 25 mg IV every week), C (bevacizumab 5 mg/kg IV every 2 weeks and sorafenib 200 mg orally twice daily on days 1 to 5, 8 to 12, 15 to 19, and 22 to 26), or D (sorafenib 200 mg twice daily and temsirolimus 25 mg IV weekly). Progression-free survival was the primary end point. Results Among 331 eligible treated patients, median PFS was 7.5 months for bevacizumab alone (90% CI, 5.8 to 10.8 months), 7.6 months for bevacizumab plus temsirolimus (90% CI, 6.7 to 9.2 months), 9.2 months for bevacizumab plus sorafenib (90% CI, 7.5 to 11.4 months), and 7.4 months for sorafenib plus temsirolimus (90% CI, 5.6 to 7.9 months). Hazard ratios from stratified Cox proportional hazards models were 1.01, 0.89, and 1.07 (with respective P values of .95, .49, and .68) for the three combinations, respectively, compared with bevacizumab alone. Adverse events did not differ significantly among treatment arms. Conclusion The activity of sorafenib, temsirolimus, and bevacizumab administered in doublet combinations did not significantly improve median progression-free survival in comparison with bevacizumab monotherapy. PMID:26077237

  18. Nuclear envelope proteins Nesprin2 and LaminA regulate proliferation and apoptosis of vascular endothelial cells in response to shear stress.

    PubMed

    Han, Yue; Wang, Lu; Yao, Qing-Ping; Zhang, Ping; Liu, Bo; Wang, Guo-Liang; Shen, Bao-Rong; Cheng, Binbin; Wang, Yingxiao; Jiang, Zong-Lai; Qi, Ying-Xin

    2015-05-01

    The dysfunction of vascular endothelial cells (ECs) influenced by flow shear stress is crucial for vascular remodeling. However, the roles of nuclear envelope (NE) proteins in shear stress-induced EC dysfunction are still unknown. Our results indicated that, compared with normal shear stress (NSS), low shear stress (LowSS) suppressed the expression of two types of NE proteins, Nesprin2 and LaminA, and increased the proliferation and apoptosis of ECs. Targeted small interfering RNA (siRNA) and gene overexpression plasmid transfection revealed that Nesprin2 and LaminA participate in the regulation of EC proliferation and apoptosis. A protein/DNA array was further used to detect the activation of transcription factors in ECs following transfection with target siRNAs and overexpression plasmids. The regulation of AP-2 and TFIID mediated by Nesprin2 and the activation of Stat-1, Stat-3, Stat-5 and Stat-6 by LaminA were verified under shear stress. Furthermore, using Ingenuity Pathway Analysis software and real-time RT-PCR, the effects of Nesprin2 or LaminA on the downstream target genes of AP-2, TFIID, and Stat-1, Stat-3, Stat-5 and Stat-6, respectively, were investigated under LowSS. Our study has revealed that NE proteins are novel mechano-sensitive molecules in ECs. LowSS suppresses the expression of Nesprin2 and LaminA, which may subsequently modulate the activation of important transcription factors and eventually lead to EC dysfunction.

  19. Lycopene Ameliorates Transplant Arteriosclerosis in Vascular Allograft Transplantation by Regulating the NO/cGMP Pathways and Rho-Associated Kinases Expression

    PubMed Central

    Xia, Peng; Jin, Hao; Zhang, Yan

    2016-01-01

    Objective. Transplant arteriosclerosis is considered one of the major factors affecting the survival time of grafts after organ transplantation. In this study, we proposed a hypothesis of whether lycopene can protect grafted vessels through regulating key proteins expression involved in arteriosclerosis. Methods. Allogeneic aortic transplantation was performed using Brow-Norway rats as donors and Lewis rats as recipients. After transplantation, the recipients were divided into two groups: the allograft group and the lycopene group. Negative control rats (isograft group) were also established. Histopathological staining was performed to observe the pathological changes, and the expression levels of Ki-67, caspase-3, Rho-associated kinases, intercellular adhesion molecules (ICAM-1), and eNOS were assessed. Western blotting analysis and real-time PCR were also performed for quantitative analysis. Results. The histopathological staining showed that vascular stenosis and intimal thickening were not evident after lycopene treatment. The Ki-67, ROCK1, ROCK2, and ICAM-1 expression levels were significantly decreased. However, eNOS expression in grafted arteries and plasma cGMP concentration were increased after lycopene treatment. Conclusions. Lycopene could alleviate vascular arteriosclerosis in allograft transplantation via downregulating Rho-associated kinases and regulating key factor expression through the NO/cGMP pathways, which may provide a potentially effective method for transplant arteriosclerosis in clinical organ transplantation. PMID:28050227

  20. Glycolaldehyde-derived advanced glycation end products (glycol-AGEs)-induced vascular smooth muscle cell dysfunction is regulated by the AGES-receptor (RAGE) axis in endothelium.

    PubMed

    Nam, Mi-Hyun; Son, Won-Rak; Lee, Young Sik; Lee, Kwang-Won

    Advanced glycation end-products (AGEs) are involved in the development of vascular smooth muscle cell (VSMC) dysfunction and the progression of atherosclerosis. However, AGEs may indirectly affect VSMCs via AGEs-induced signal transduction between monocytes and human umbilical endothelial cells (HUVECs), rather than having a direct influence. This study was designed to elucidate the signaling pathway underlying AGEs-RAGE axis influence on VSMC dysfunction using a co-culture system with monocytes, HUVECs and VSMCs. AGEs stimulated production of reactive oxygen species and pro-inflammatory mediators such as tumor necrosis factor-α and interleukin-1β via extracellular-signal-regulated kinases phosphorylation and nuclear factor-κB activation in HUVECs. It was observed that AGEs-induced pro-inflammatory cytokines increase VSMC proliferation, inflammation and vascular remodeling in the co-culture system. This result implies that RAGE plays a role in AGEs-induced VSMC dysfunction. We suggest that the regulation of signal transduction via the AGEs-RAGE axis in the endothelium can be a therapeutic target for preventing atherosclerosis.

  1. Lycopene Ameliorates Transplant Arteriosclerosis in Vascular Allograft Transplantation by Regulating the NO/cGMP Pathways and Rho-Associated Kinases Expression.

    PubMed

    He, Yunqiang; Xia, Peng; Jin, Hao; Zhang, Yan; Chen, Bicheng; Xu, Ziqiang

    2016-01-01

    Objective. Transplant arteriosclerosis is considered one of the major factors affecting the survival time of grafts after organ transplantation. In this study, we proposed a hypothesis of whether lycopene can protect grafted vessels through regulating key proteins expression involved in arteriosclerosis. Methods. Allogeneic aortic transplantation was performed using Brow-Norway rats as donors and Lewis rats as recipients. After transplantation, the recipients were divided into two groups: the allograft group and the lycopene group. Negative control rats (isograft group) were also established. Histopathological staining was performed to observe the pathological changes, and the expression levels of Ki-67, caspase-3, Rho-associated kinases, intercellular adhesion molecules (ICAM-1), and eNOS were assessed. Western blotting analysis and real-time PCR were also performed for quantitative analysis. Results. The histopathological staining showed that vascular stenosis and intimal thickening were not evident after lycopene treatment. The Ki-67, ROCK1, ROCK2, and ICAM-1 expression levels were significantly decreased. However, eNOS expression in grafted arteries and plasma cGMP concentration were increased after lycopene treatment. Conclusions. Lycopene could alleviate vascular arteriosclerosis in allograft transplantation via downregulating Rho-associated kinases and regulating key factor expression through the NO/cGMP pathways, which may provide a potentially effective method for transplant arteriosclerosis in clinical organ transplantation.

  2. Intrathecal administration of rapamycin inhibits the phosphorylation of DRG Nav1.8 and attenuates STZ-induced painful diabetic neuropathy in rats.

    PubMed

    He, Wan-You; Zhang, Bin; Xiong, Qing-Ming; Yang, Cheng-Xiang; Zhao, Wei-Cheng; He, Jian; Zhou, Jun; Wang, Han-Bing

    2016-04-21

    The mammalian target of rapamycin (mTOR) is a key regulator of mRNA translation and protein synthesis, and it is specifically inhibited by rapamycin. In chronic pain conditions, mTOR-mediated local protein synthesis is crucial for neuronal hyperexcitability and synaptic plasticity. The tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8 plays a major role in action potential initiation and propagation and cellular excitability in DRG (dorsal root ganglion) neurons. In this study, we investigated if mTOR modulates the phosphorylation of Nav1.8 that is associated with neuronal hyperexcitability and behavioral hypersensitivity in STZ-induced diabetic rats. Painful diabetic neuropathy (PDN) was induced in Sprague-Dawley rats by intraperitoneal injection with streptozotocin (STZ) at 60mg/kg. After the onset of PDN, the rats received daily intrathecal administrations of rapamycin (1μg, 3μg, or 10μg/day) for 7 days; other diabetic rats received the same volumes of dimethyl sulfoxide (DMSO). Herein, we demonstrate a marked increase in protein expression of total mTOR and phospho-mTOR (p-mTOR) together with the up-regulation of phosphor-Nav1.8 (p-Nav1.8) prior to the mechanical withdrawal threshold reaching a significant reduction in dorsal root ganglions (DRGs). Furthermore, the intrathecal administration of rapamycin, inhibiting the activity of mTOR, suppressed the phosphorylation of DRG Nav1.8, reduced the TTX-R current density, heightened the voltage threshold for activation and lowered the voltage threshold for inactivation and relieved mechanical hypersensitivity in diabetic rats. An intrathecal injection (i.t.) of rapamycin inhibited the phosphorylation and enhanced the functional availability of DRG Nav1.8 attenuated STZ-induced hyperalgesia. These results suggest that rapamycin is a potential therapeutic intervention for clinical PDN.

  3. BMP-9 regulates the osteoblastic differentiation and calcification of vascular smooth muscle cells through an ALK1 mediated pathway

    PubMed Central

    Zhu, Dongxing; Mackenzie, Neil Charles Wallace; Shanahan, Catherine M; Shroff, Rukshana C; Farquharson, Colin; MacRae, Vicky Elizabeth

    2015-01-01

    The process of vascular calcification shares many similarities with that of physiological skeletal mineralization, and involves the deposition of hydroxyapatite crystals in arteries. However, the cellular mechanisms responsible have yet to be fully explained. Bone morphogenetic protein (BMP-9) has been shown to exert direct effects on both bone development and vascular function. In the present study, we have investigated the role of BMP-9 in vascular smooth muscle cell (VSMC) calcification. Vessel calcification in chronic kidney disease (CKD) begins pre-dialysis, with factors specific to the dialysis milieu triggering accelerated calcification. Intriguingly, BMP-9 was markedly elevated in serum from CKD children on dialysis. Furthermore, in vitro studies revealed that BMP-9 treatment causes a significant increase in VSMC calcium content, alkaline phosphatase (ALP) activity and mRNA expression of osteogenic markers. BMP-9-induced calcium deposition was significantly reduced following treatment with the ALP inhibitor 2,5-Dimethoxy-N-(quinolin-3-yl) benzenesulfonamide confirming the mediatory role of ALP in this process. The inhibition of ALK1 signalling using a soluble chimeric protein significantly reduced calcium deposition and ALP activity, confirming that BMP-9 is a physiological ALK1 ligand. Signal transduction studies revealed that BMP-9 induced Smad2, Smad3 and Smad1/5/8 phosphorylation. As these Smad proteins directly bind to Smad4 to activate target genes, siRNA studies were subsequently undertaken to examine the functional role of Smad4 in VSMC calcification. Smad4-siRNA transfection induced a significant reduction in ALP activity and calcium deposition. These novel data demonstrate that BMP-9 induces VSMC osteogenic differentiation and calcification via ALK1, Smad and ALP dependent mechanisms. This may identify new potential therapeutic strategies for clinical intervention. PMID:25297851

  4. Rapamycin and Interleukin-1β Impair Brain-derived Neurotrophic Factor-dependent Neuron Survival by Modulating Autophagy*

    PubMed Central

    Smith, Erica D.; Prieto, G. Aleph; Tong, Liqi; Sears-Kraxberger, Ilse; Rice, Jeffrey D.; Steward, Oswald; Cotman, Carl W.

    2014-01-01

    The mammalian target of rapamycin (mTOR) pathway has multiple important physiological functions, including regulation of protein synthesis, cell growth, autophagy, and synaptic plasticity. Activation of mTOR is necessary for the many beneficial effects of brain-derived neurotrophic factor (BDNF), including dendritic translation and memory formation in the hippocampus. At present, however, the role of mTOR in BDNF's support of survival is not clear. We report that mTOR activation is necessary for BDNF-dependent survival of primary rat hippocampal neurons, as either mTOR inhibition by rapamycin or genetic manipulation of the downstream molecule p70S6K specifically blocked BDNF rescue. Surprisingly, however, BDNF did not promote neuron survival by up-regulating mTOR-dependent protein synthesis or through mTOR-dependent suppression of caspase-3 activation. Instead, activated mTOR was responsible for BDNF's suppression of autophagic flux. shRNA against the autophagic machinery Atg7 or Atg5 prolonged the survival of neurons co-treated with BDNF and rapamycin, suggesting that suppression of mTOR in BDNF-treated cells resulted in excessive autophagy. Finally, acting as a physiological analog of rapamycin, IL-1β impaired BDNF signaling by way of inhibiting mTOR activation as follows: the cytokine induced caspase-independent neuronal death and accelerated autophagic flux in BDNF-treated cells. These findings reveal a novel mechanism of BDNF neuroprotection; BDNF not only prevents apoptosis through inhibiting caspase activation but also promotes neuron survival through modulation of autophagy. This protection mechanism is vulnerable under chronic inflammation, which deregulates autophagy through impairing mTOR signaling. These results may be relevant to age-related changes observed in neurodegenerative diseases. PMID:24917666

  5. A central role for the mammalian target of rapamycin in LPS-induced anorexia in mice.

    PubMed

    Yue, Yunshuang; Wang, Yi; Li, Dan; Song, Zhigang; Jiao, Hongchao; Lin, Hai

    2015-01-01

    Bacterial lipopolysaccharide (LPS), also known as endotoxin, induces profound anorexia. However, the LPS-provoked pro-inflammatory signaling cascades and the neural mechanisms underlying the development of anorexia are not clear. Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. This study aimed to determine whether the mTOR pathway is involved in LPS-induced anorexia. Effects of LPS on hypothalamic gene/protein expression in mice were measured by RT-PCR or western blotting analysis. To determine whether inhibition of mTOR signaling could attenuate LPS-induced anorexia, we administered an i.c.v. injection of rapamycin, an mTOR inhibitor, on LPS-treated male mice. In this study, we showed that LPS stimulates the mTOR signaling pathway through the enhanced phosphorylation of mTOR(Ser2448) and p70S6K(Thr389). We also showed that LPS administration increased the phosphorylation of FOXO1(Ser256), the p65 subunit of nuclear factor kappa B (P<0.05), and FOXO1/3a(Thr) (24) (/) (32) (P<0.01). Blocking the mTOR pathway significantly attenuated the LPS-induced anorexia by decreasing the phosphorylation of p70S6K(Thr389), FOXO1(Ser256), and FOXO1/3a(Thr) (24) (/) (32). These results suggest promising approaches for the prevention and treatment of LPS-induced anorexia.

  6. Blocking mammalian target of rapamycin alleviates bladder hyperactivity and pain in rats with cystitis

    PubMed Central

    Li, Jie; Gou, Xin; Chen, Daihui

    2016-01-01

    Background Bladder disorders associated with interstitial cystitis are frequently characterized by increased contractility and pain. The purposes of this study were to examine (1) the effects of blocking mammalian target of rapamycin (mTOR) on the exaggerated bladder activity and pain evoked by cystitis and (2) the underlying mechanisms responsible for the role of mTOR in regulating cystic sensory activity. Results The expression of p-mTOR, mTOR-mediated phosphorylation of p70 ribosomal S6 protein kinase 1 (p-S6K1), 4 E–binding protein 4 (p-4 E-BP1), as well as phosphatidylinositide 3-kinase (p-PI3K) pathway were amplified in cyclophosphamide rats as compared with control rats. Blocking mTOR by intrathecal infusion of rapamycin attenuated bladder hyperactivity and pain. In addition, blocking PI3K signal pathway attenuated activities of mTOR, which was accompanied with decreasing bladder hyperactivity and pain. Inhibition of either mTOR or PI3K blunted the enhanced spinal substance P and calcitonin gene-related peptide in cyclophosphamide rats. Conclusions The data for the first time revealed specific signaling pathways leading to cyclophosphamide-induced bladder hyperactivity and pain, including the activation of mTOR and PI3K. Inhibition of these pathways alleviates cystic pain. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of overactive bladder and pain often observed in cystitis. PMID:27780878

  7. Vascular Tone Regulation Induced by C-Type Natriuretic Peptide: Differences in Endothelium-Dependent and -Independent Mechanisms Involved in Normotensive and Spontaneously Hypertensive Rats

    PubMed Central

    Caniffi, Carolina; Cerniello, Flavia M.; Gobetto, María N.; Sueiro, María L.; Arranz, Cristina

    2016-01-01

    Given that the role of C-type natriuretic peptide (CNP) in the regulation of vascular tone in hypertensive states is unclear, we hypothesized that impaired response of the nitric oxide system to CNP in spontaneously hypertensive rats (SHR) could affect vascular relaxation induced by the peptide in this model of hypertension, and that other endothelial systems or potassium channels opening could also be involved. We examined the effect of CNP on isolated SHR aortas, and the hindlimb vascular resistance (HVR) in response to CNP administration compared to normotensive rats. Aortas were mounted in an isometric organ bath and contracted with phenylephrine. CNP relaxed arteries in a concentration-dependent manner but was less potent in inducing relaxation in SHR. The action of CNP was diminished by removal of the endothelium, inhibition of nitric oxide synthase by Nω-nitro-L-arginine methyl ester, and inhibition of soluble guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one in both groups. In contrast, blockade of cyclooxygenase or subtype 2 bradykinin receptor increased CNP potency only in SHR. In both Wistar and SHR, CNP relaxation was blunted by tetraethylammonium and partially inhibited by BaCl2 and iberiotoxin, indicating that it was due to opening of the Kir and BKCa channels. However, SHR seem to be more sensitive to Kir channel blockade and less sensitive to BKCa channel blockade than normotensive rats. In addition, CNP decreases HVR in Wistar and SHR, but the effect of CNP increasing blood flow was more marked in SHR. We conclude that CNP induces aorta relaxation by activation of the nitric oxide system and opening of potassium channels, but the response to the peptide is impaired in conductance vessel of hypertensive rats. PMID:27936197

  8. cGMP-dependent protein kinase and the regulation of vascular smooth muscle cell gene expression: possible involvement of Elk-1 sumoylation.

    PubMed

    Choi, ChungSik; Sellak, Hassan; Brown, Felricia M; Lincoln, Thomas M

    2010-11-01

    Although the regulation of smooth muscle cell (SMC) gene expression by cGMP-dependent protein kinase (PKG) is now recognized, the mechanisms underlying these effects are not fully understood. In this study, we report that PKG-I stimulates myocardin/serum response factor (SRF)-dependent gene expression in vascular SMCs. The expression of PKG in PKG-deficient cells enhanced myocardin-induced SM22 promoter activity in a concentration-dependent fashion. However, neither SRF nor myocardin expression was affected. To investigate alternative mechanisms, we examined whether PKG affects the phosphorylation of E26-like protein-1 (Elk-1), a SRF/myocardin transcription antagonist. The activation of PKG caused an increase in a higher molecular mass form of phospho-Elk-1 that was determined to be small ubiquitin-related modifier (sumo)ylated Elk-1. PKG increased Elk-1 sumoylation twofold compared with the PKG-deficient cells, and Elk-1 sumoylation was reduced using dominant-negative sumo-conjugating enzyme, DN-Ubc9, confirming PKG-dependent sumoylation of phospho-Elk-1 in vascular SMCs. In addition, PKG stimulated Elk-1 sumoylation in COS-7 cells overexpressing Elk-1, sumo-1, and PKG-I. The increased expression of PKG in vascular SMCs inhibited Elk-1 binding to SMC-specific promoters, SM22 and smooth muscle myosin heavy chain, as measured by EMSA and chromatin immunoprecipitation assay, and PKG suppressed the Elk-1 inhibition of SM22 reporter gene expression. Taken together, these data suggest that PKG-I decreases Elk-1 activity by sumo modification of Elk-1, thereby increasing myocardin-SRF activity on SMC-specific gene expression.

  9. MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes

    SciTech Connect

    Wang, Jie; Yan, Cheng-Hui; Li, Yang; Xu, Kai; Tian, Xiao-Xiang; Peng, Cheng-Fei; Tao, Jie; Sun, Ming-Yu; Han, Ya-Ling

    2013-05-01

    Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of a variety of proliferative vascular diseases. The cellular repressor of E1A-stimulated genes (CREG) has been shown to play an important role in phenotypic modulation of VSMCs. However, the mechanism regulating CREG upstream signaling remains unclear. MicroRNAs (miRNAs) have recently been found to play a critical role in cell differentiation via target-gene regulation. This study aimed to identify a miRNA that binds directly to CREG, and may thus be involved in CREG-mediated VSMC phenotypic modulation. Computational analysis indicated that miR-31 bound to the CREG mRNA 3′ untranslated region (3′-UTR). miR-31 was upregulated in quiescent differentiated VSMCs and downregulated in proliferative cells stimulated by platelet-derived growth factor and serum starvation, demonstrating a negative relationship with the VSMC differentiation marker genes, smooth muscle α-actin, calponin and CREG. Using gain-of-function and loss-of-function approaches, CREG and VSMC differentiation marker gene expression levels were shown to be suppressed by a miR-31 mimic, but increased by a miR-31 inhibitor at both protein and mRNA levels. Notably, miR-31 overexpression or inhibition affected luciferase expression driven by the CREG 3′-UTR containing the miR-31 binding site. Furthermore, miR-31-mediated VSMC phenotypic modulation was inhibited in CREG-knockdown human VSMCs. We also determined miR-31 levels in the serum of patients with coronary artery disease (CAD), with or without in stent restenosis and in healthy controls. miR-31 levels were higher in the serum of CAD patients with restenosis compared to CAD patients without restenosis and in healthy controls. In summary, these data demonstrate that miR-31 not only directly binds to its target gene CREG and modulates the VSMC phenotype through this interaction, but also can be an important biomarker in diseases involving VSMC

  10. Hantavirus interferon regulation and virulence determinants.

    PubMed

    Mackow, Erich R; Dalrymple, Nadine A; Cimica, Velasco; Matthys, Valery; Gorbunova, Elena; Gavrilovskaya, Irina

    2014-07-17

    Hantaviruses predominantly replicate in primary human endothelial cells and cause 2 diseases characterized by altered barrier functions of vascular endothelium. Most hantaviruses restrict the early induction of interferon-β (IFNβ) and interferon stimulated genes (ISGs) within human endothelial cells to permit their successful replication. PHV fails to regulate IFN induction within human endothelial cells which self-limits PHV replication and its potential as a human pathogen. These findings, and the altered regulation of endothelial cell barrier functions by pathogenic hantaviruses, suggest that virulence is determined by the ability of hantaviruses to alter key signaling pathways within human endothelial cells. Our findings indicate that the Gn protein from ANDV, but not PHV, inhibits TBK1 directed ISRE, kB and IFNβ induction through virulence determinants in the Gn cytoplasmic tail (GnT) that inhibit TBK1 directed IRF3 phosphorylation. Further studies indicate that in response to hypoxia induced VEGF, ANDV infection enhances the permeability and adherens junction internalization of microvascular and lymphatic endothelial cells. These hypoxia/VEGF directed responses are rapamycin sensitive and directed by mTOR signaling pathways. These results demonstrate the presence of at least two hantavirus virulence determinants that act on endothelial cell signaling pathways: one that regulates antiviral IFN signaling responses, and a second that enhances normal hypoxia-VEGF-mTOR signaling pathways to facilitate endothelial cell permeability. These findings suggest signaling pathways as potential targets for therapeutic regulation of vascular deficits that contribute to hantavirus diseases and viral protein targets for attenuating pathogenic hantaviruses.

  11. Megakaryocytes, malignancy and bone marrow vascular niches.

    PubMed

    Psaila, B; Lyden, D; Roberts, I

    2012-02-01

    Dynamic interactions between hematopoietic cells and their specialized bone marrow microenvironments, namely the vascular and osteoblastic 'niches', regulate hematopoiesis. The vascular niche is conducive for thrombopoiesis and megakaryocytes may, in turn, regulate the vascular niche, especially in supporting vascular and hematopoietic regeneration following irradiation or chemotherapy. A role for platelets in tumor growth and metastasis is well established and, more recently, the vascular niche has also been implicated as an area for preferential homing and engraftment of malignant cells. This article aims to provide an overview of the dynamic interactions between cellular and molecular components of the bone marrow vascular niche and the potential role of megakaryocytes in bone marrow malignancy.

  12. Hypoxia stimulates the autocrine regulation of migration of vascular smooth muscle cells via HIF-1alpha-dependent expression of thrombospondin-1.

    PubMed

    Osada-Oka, Mayuko; Ikeda, Takako; Akiba, Satoshi; Sato, Takashi

    2008-08-01

    The migration of vascular smooth muscle cells from the media to intima and their subsequent proliferation are critical causes of arterial wall thickening. In atherosclerotic lesions increases in the thickness of the vascular wall and the impairment of oxygen diffusion capacity result in the development of hypoxic lesions. We investigated the effect of hypoxia on the migration of human coronary artery smooth muscle cells (CASMCs) via HIF-1alpha-dependent expression of thrombospondin-1 (TSP-1). When the cells were cultured under hypoxic conditions, mRNA and protein levels of TSP-1, and mRNA levels of integrin beta(3) were increased with the increase in HIF-1alpha protein. DNA synthesis and migration of the cells were stimulated under the conditions, and a neutralizing anti-TSP-1 antibody apparently suppressed the migration, but not DNA synthesis. The migration was also inhibited by RGD peptide that binds to integrin beta(3). Furthermore, the migration was completely suppressed in HIF-1alpha-knockdown cells exposed to hypoxia, while it was significantly enhanced in HIF-1alpha-overexpressing cells. These results suggest that the hypoxia induces the migration of CASMCs, and that the migration is elicited by TSP-1 of which induction is fully dependent on the stabilization of HIF-1alpha, in autocrine regulation. Thus we suggest that HIF-1alpha plays an important role in the pathogenesis of atherosclerosis.

  13. Arabidopsis wat1 (walls are thin1)-mediated resistance to the bacterial vascular pathogen, Ralstonia solanacearum, is accompanied by cross-regulation of salicylic acid and tryptophan metabolism.

    PubMed

    Denancé, Nicolas; Ranocha, Philippe; Oria, Nicolas; Barlet, Xavier; Rivière, Marie-Pierre; Yadeta, Koste A; Hoffmann, Laurent; Perreau, François; Clément, Gilles; Maia-Grondard, Alessandra; van den Berg, Grardy C M; Savelli, Bruno; Fournier, Sylvie; Aubert, Yann; Pelletier, Sandra; Thomma, Bart P H J; Molina, Antonio; Jouanin, Lise; Marco, Yves; Goffner, Deborah

    2013-01-01

    Inactivation of Arabidopsis WAT1 (Walls Are Thin1), a gene required for secondary cell-wall deposition, conferred broad-spectrum resistance to vascular pathogens, including the bacteria Ralstonia solanacearum and Xanthomonas campestris pv. campestris, and the fungi Verticillium dahliae and Verticillium albo-atrum. Introduction of NahG, the bacterial salicylic acid (SA)-degrading salicylate hydroxylase gene, into the wat1 mutant restored full susceptibility to both R. solanacearum and X. campestris pv. campestris. Moreover, SA content was constitutively higher in wat1 roots, further supporting a role for SA in wat1-mediated resistance to vascular pathogens. By combining transcriptomic and metabolomic data, we demonstrated a general repression of indole metabolism in wat1-1 roots as shown by constitutive down-regulation of several genes encoding proteins of the indole glucosinolate biosynthetic pathway and reduced amounts of tryptophan (Trp), indole-3-acetic acid and neoglucobrassicin, the major form of indole glucosinolate in roots. Furthermore, the susceptibility of the wat1 mutant to R. solanacearum was partially restored when crossed with either the trp5 mutant, an over-accumulator of Trp, or Pro35S:AFB1-myc, in which indole-3-acetic acid signaling is constitutively activated. Our original hypothesis placed cell-wall modifications at the heart of the wat1 resistance phenotype. However, the results presented here suggest a mechanism involving root-localized metabolic channeling away from indole metabolites to SA as a central feature of wat1 resistance to R. solanacearum.

  14. α-Solanine inhibits vascular endothelial growth factor expression by down-regulating the ERK1/2-HIF-1α and STAT3 signaling pathways.

    PubMed

    Wen, Zhengde; Huang, Chaohao; Xu, Yaya; Xiao, Yuwu; Tang, Lili; Dai, Juji; Sun, Hongwei; Chen, Bicheng; Zhou, Mengtao

    2016-01-15

    In tumors, vascular endothelial growth factor (VEGF) contributes to angiogenesis, vascular permeability, and tumorigenesis. In our previous study, we found that α-solanine, which is widespread in solanaceae, has a strong anti-cancer effect under normoxia. However, it is unknown whether α-solanine has a similar effect under hypoxia. We used cobalt chloride (CoCl2) to mimic hypoxia in vitro. HIF-1α, which is almost undetectable under normoxia, was significantly increased. Simultaneously, another regulator of VEGF, STAT3, was also significantly activated by CoCl2. We utilized α-solanine in co-culture with CoCl2. α-solanine decreased the expression of VEGF and loss of E-cadherin. α-solanine also suppressed the activation of phospho-ERK1/2 (p-ERK1/2), HIF-1α, and STAT3 signaling. The results provide new evidence that α-solanine has a strong anti-cancer effect via the ERK1/2-HIF-1α and STAT3 signaling pathways and suggest that it may be a potential new drug.

  15. Cargo and Carrier Effects of Rapamycin-Loaded Perfluorocarbon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bibee, Kristin Page

    Nanoparticle-based drug delivery has been championed as a means to increase local delivery of therapeutics while decreasing systemic drug exposure. By targeting the particles, and therefore the drugs, to diseased cells of interest, healthy cells will be spared and side effects avoided. This delivery mechanism would be particularly useful for drugs that interfere with cell growth and proliferation pathways, as blocking proliferation in normal cells leads to significant patient morbidity. Rapamycin is a macrolide and a known inhibitor of mTORC1, a protein complex that plays a crucial role in protein translation and cell growth. This work demonstrates the effects of rapamycin complexed with a nanoparticle carrier on two distinct pathologies: a new triple negative breast cancer cell line and a conventional mouse model of muscular dystrophy (mdx). Rapamycin is able to alter mitochondrial function and thus metabolism in both free and nanoparticle-delivered form without killing the cells. Although nanoparticles are considered to be a benign carrier, this work shows that perfluorocarbon nanoparticles are able to induce autophagy in vitro. The benefits of autophagy induction in cancer cells is cell and stage specific, but has been reported to be useful for radiosensitization of triple negative breast cancers. Additionally, the particles are shown to induce autophagy in the mdx model of Duchenne Muscular Dystrophy and, when loaded with rapamycin, dramatically improve strength even in older animals with muscular dystrophy. Overall, this work enhances our understanding of the cellular effects of perfluorocarbon nanoparticles in two different disease models and enhances prospects for clinical translation of nanoparticle-based drug delivery.

  16. Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors.

    PubMed

    Komeili, A; Wedaman, K P; O'Shea, E K; Powers, T

    2000-11-13

    De novo biosynthesis of amino acids uses intermediates provided by the TCA cycle that must be replenished by anaplerotic reactions to maintain the respiratory competency of the cell. Genome-wide expression analyses in Saccharomyces cerevisiae reveal that many of the genes involved in these reactions are repressed in the presence of the preferred nitrogen sources glutamine or glutamate. Expression of these genes in media containing urea or ammonia as a sole nitrogen source requires the heterodimeric bZip transcription factors Rtg1 and Rtg3 and correlates with a redistribution of the Rtg1p/Rtg3 complex from a predominantly cytoplasmic to a predominantly nuclear location. Nuclear import of the complex requires the cytoplasmic protein Rtg2, a previously identified upstream regulator of Rtg1 and Rtg3, whereas export requires the importin-beta-family member Msn5. Remarkably, nuclear accumulation of Rtg1/Rtg3, as well as expression of their target genes, is induced by addition of rapamycin, a specific inhibitor of the target of rapamycin (TOR) kinases. We demonstrate further that Rtg3 is a phosphoprotein and that its phosphorylation state changes after rapamycin treatment. Taken together, these results demonstrate that target of rapamycin signaling regulates specific anaplerotic reactions by coupling nitrogen quality to the activity and subcellular localization of distinct transcription factors.

  17. Impact on Autophagy and Ultraviolet B Induced Responses of Treatment with the MTOR Inhibitors Rapamycin, Everolimus, Torin 1, and pp242 in Human Keratinocytes

    PubMed Central

    Xu, Song; Li, Li; Li, Min; Zhang, Mengli

    2017-01-01

    The mechanistic target of Rapamycin (MTOR) protein is a crucial signaling regulator in mammalian cells that is extensively involved in cellular biology. The function of MTOR signaling in keratinocytes remains unclear. In this study, we detected the MTOR signaling and autophagy response in the human keratinocyte cell line HaCaT and human epidermal keratinocytes treated with MTOR inhibitors. Moreover, we detected the impact of MTOR inhibitors on keratinocytes exposed to the common carcinogenic stressors ultraviolet B (UVB) and UVA radiation. As a result, keratinocytes were sensitive to the MTOR inhibitors Rapamycin, everolimus, Torin 1, and pp242, but the regulation of MTOR downstream signaling was distinct. Next, autophagy induction only was observed in HaCaT cells treated with Rapamycin. Furthermore, we found that MTOR signaling was insensitive to UVB but sensitive to UVA radiation. UVB treatment also had no impact on the inhibition of MTOR signaling by MTOR inhibitors. Finally, MTOR inhibition by Rapamycin, everolimus, or pp242 did not affect the series of biological events in keratinocytes exposed to UVB, including the downregulation of BiP and PERK, activation of Histone H2A and JNK, and cleavage of caspase-3 and PARP. Our study demonstrated that MTOR inhibition in keratinocytes cannot always induce autophagy, and the MTOR pathway does not play a central role in the UVB triggered cellular response.

  18. CD99 (E2) up-regulates alpha4beta1-dependent T cell adhesion to inflamed vascular endothelium under flow conditions.

    PubMed

    Bernard, G; Raimondi, V; Alberti, I; Pourtein, M; Widjenes, J; Ticchioni, M; Bernard, A

    2000-10-01

    CD99/E2 is an integral transmembrane protein which forms, together with Xga, a distinct family whose genes are located in the pseudoautosomal region. The number of T cells that firmly bound to vascular endothelial cells under physiological shear stress increased 2-14-fold upon CD99 stimulation, and bound cells became much more resistant to detachment forces and spread. T cell arrest occurred within 1 min and was dependent on the alpha4beta1-VCAM-1 pathway. In contrast, the alphaLbeta2-ICAM-1 pathway remained unactivated. This was observed with T cell lines and with activated peripheral blood lymphocytes, and was limited within the resting peripheral CD4+ T cells to the memory subset, while virgin cells were unaffected. This discloses a stepwise regulation of the T cell extravasation cascade.

  19. Acute Response of Circulating Vascular Regulating MicroRNAs during and after High-Intensity and High-Volume Cycling in Children

    PubMed Central

    Kilian, Yvonne; Wehmeier, Udo F.; Wahl, Patrick; Mester, Joachim; Hilberg, Thomas; Sperlich, Billy

    2016-01-01

    Aim: The aim of the present study was to analyze the response of vascular circulating microRNAs (miRNAs; miR-16, miR-21, miR-126) and the VEGF mRNA following an acute bout of HIIT and HVT in children. Methods:Twelve healthy competitive young male cyclists (14.4 ± 0.8 years; 57.9 ± 9.4 ml·min−1·kg−1 peak oxygen uptake) performed one session of high intensity 4 × 4 min intervals (HIIT) at 90–95% peak power output (PPO), each interval separated by 3 min of active recovery, and one high volume session (HVT) consisting of a constant load exercise for 90 min at 60% PPO. Capillary blood from the earlobe was collected under resting conditions, during exercise (d1 = 20 min, d2 = 30 min, d3 = 60 min), and 0, 30, 60, 180 min after the exercise to determine miR-16, -21, -126, and VEGF mRNA. Results: HVT significantly increased miR-16 and miR-126 during and after the exercise compared to pre-values, whereas HIIT showed no significant influence on the miRNAs compared to pre-values. VEGF mRNA significantly increased during and after HIIT (d1, 30′, 60′, 180′) and HVT (d3, 0′, 60′). Conclusion: Results of the present investigation suggest a volume dependent exercise regulation of vascular regulating miRNAs (miR-16, miR-21, miR-126) in children. In line with previous data, our data show that acute exercise can alter circulating miRNAs profiles that might be used as novel biomarkers to monitor acute and chronic changes due to exercise in various tissues. PMID:27014090

  20. Positive regulation of the Egr-1/osteopontin positive feedback loop in rat vascular smooth muscle cells by TGF-{beta}, ERK, JNK, and p38 MAPK signaling

    SciTech Connect

    Yu, Hong-Wei; Liu, Qi-Feng; Liu, Gui-Nan

    2010-05-28

    Previous studies identified a positive feedback loop in rat vascular smooth muscle cells (VSMCs) in which early growth response factor-1 (Egr-1) binds to the osteopontin (OPN) promoter and upregulates OPN expression, and OPN upregulates Egr-1 expression via the extracellular signal-regulated protein kinase (ERK) signaling pathway. The current study examined whether transforming growth factor-{beta} (TGF-{beta}) activity contributes to Egr-1 binding to the OPN promoter, and whether other signaling pathways act downstream of OPN to regulate Egr-1 expression. ChIP assays using an anti-Egr-1 antibody showed that amplification of the OPN promoter sequence decreased in TGF-{beta} DNA enzyme-transfected VSMCs relative to control VSMCs. Treatment of VSMCs with PD98059 (ERK inhibitor), SP600125 (JNK inhibitor), or SB203580 (p38 MAPK inhibitor) significantly inhibited OPN-induced Egr-1 expression, and PD98059 treatment was associated with the most significant decrease in Egr-1 expression. OPN-stimulated VSMC cell migration was inhibited by SP600125 or SB203580, but not by PD98059. Furthermore, MTT assays showed that OPN-mediated cell proliferation was inhibited by PD98059, but not by SP600125 or SB203580. Taken together, the results of the current study show that Egr-1 binding to the OPN promoter is positively regulated by TGF-{beta}, and that the p38 MAPK, JNK, and ERK pathways are involved in OPN-mediated Egr-1 upregulation.

  1. Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4.

    PubMed

    Zeng, Qiu; Wei, Bin; Zhao, Yu; Wang, Xuehu; Fu, Qining; Liu, Hong; Li, Fenghe

    2016-07-01

    Platelet-derived growth factor (PDGF) is known to induce phenotypic switching of vascular smooth muscle cells (VSMCs) from contractile to a pathological synthetic state, which played an essential role in proliferation of VSMCs. Sonic hedgehog (Shh) contributes to the proliferation of VSMCs when induced by PDGF. Here, we investigated the probable role of Shh in PDGF-induced VSMC dedifferentiation and its underlying mechanisms. We found that PDGF stimulated Shh expression in VSMCs, which was mediated by activation of PDGFRβ/ERK1/2 cell signaling pathway. Further, we found PDGF-induced VSMC phenotypic modulation was accompanied by up-regulation of Shh/Gli family zinc finger 2 (Gli2) signaling and Krüppel-like factor 4 (KLF4). When inhibited Shh in the presence of PDGF, the expressions of KLF4 and VSMC dedifferentiation markers were down-regulated and the effect of PDGF in inducing VSMC dedifferentiation was blocked. In the absence of PDGF, Shh signaling activation increased the expression of KLF4 and promoted VSMC dedifferentiation. The results indicate Shh participated in the regulation of PDGF-induced VSMC dedifferentiation. Finally, we found that KLF4 was closely involved in this process. On inhibition of KLF4, PDGF induced VSMC dedifferentiation was abrogated, even in the presence of Shh. Taken together, the results provide critical insights into the newly discovered role of Shh in phenotypic modulation of VSMCs which depends on KLF4.

  2. Regulation of vascular endothelial genes by dietary flavonoids: structure-expression relationship studies and the role of the transcription factor KLF-2.

    PubMed

    Martínez-Fernández, Leyre; Pons, Zara; Margalef, Maria; Arola-Arnal, Anna; Muguerza, Begoña

    2015-03-01

    Physiological concentrations (1 μM) of 15 flavonoids were evaluated in human umbilical vein endothelial cells in the presence of hydrogen peroxide (H₂O₂) for their ability to affect endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) expression in order to establish the structural basis of their bioactivity. Flavonoid effects on eNOS transcription factor Krüpple like factor-2 (KLF-2) expression were also evaluated. All studied flavonoids appeared to be effective compounds for counteracting the oxidative stress-induced effects on vascular gene expression, indicating that flavonoids are an excellent source of functional endothelial regulator products. Notably, the more effective flavonoids for KLF-2 up-regulation resulted in the highest values for eNOS expression, showing that the increment of eNOS expression would take place through KLF-2 induction. Structure-activity relationship studies showed that the combinations of substructures on flavonoid skeleton that regulate eNOS expression are made up of the following elements: glycosylation and hydroxylation of C-ring, double bond C2=C3 at C-ring, methoxylation and hydroxylation of B-ring, ketone group in C4 at C-ring and glycosylation in C7 of A-ring, while flavonoid features involved in the reduction of vasoconstrictor ET-1 expression are as follows: double bond C2=C3 at C-ring glycosylation in C7 of A-ring and ketone group in C4 of C-ring.

  3. Extracellular magnesium regulates nuclear and perinuclear free ionized calcium in cerebral vascular smooth muscle cells: possible relation to alcohol and central nervous system injury.

    PubMed

    Altura, B M; Zhang, A; Cheng, T P; Altura, B T

    2001-02-01

    Quantitative digital imaging microscopy, confocal laser scanning microscopy (CLSM), and multiple molecular fluorescent probes were utilized to test the hypothesis that cerebral vascular muscle cell nuclear ([Ca(2+)](n)), perinuclear ([Ca(2+)](pn)), and cytoplasmic free calcium ([Ca(2+)](i)) levels