Rapid methods for the isolation of actinides Sr, Tc and Po from raw urine.
McAlister, Daniel R; Horwitz, E Philip; Harvey, James T
2011-08-01
Rapid methods for the isolation and analysis of individual actinides (Th, U, Pu, Am/Cm) and Sr, Tc and Po from small volumes of raw urine have been developed. The methods involve acidification of the sample and the addition of aluminum nitrate or aluminum chloride salting-out agent prior to isolation of the desired analyte using a tandem combination of prefilter material and extraction chromatographic resin. The method has been applied to the separation of individual analytes from spiked urine samples. Analytes were recovered in high yield and radionuclide purity with separation times as low as 30 min. The chemistry employed is compatible with automation on the ARSIIe instrument.
USDA-ARS?s Scientific Manuscript database
Analytical methods for the determination of mycotoxins in foods are commonly based on chromatographic techniques (GC, HPLC or LC-MS). Although these methods permit a sensitive and accurate determination of the analyte, they require skilled personnel and are time-consuming, expensive, and unsuitable ...
Rapid Method for Sodium Hydroxide Fusion of Asphalt ...
Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 Rapid method developed for analysis of Americium-241 (241Am), plutonium-238 (238Pu), plutonium-239 (239Pu), radium-226 (226Ra), strontium-90 (90Sr), uranium-234 (234U), uranium-235 (235U) and uranium-238 (238U) in asphalt roofing material samples
Validation of Rapid Radiochemical Method for Californium ...
Technical Brief In the event of a radiological/nuclear contamination event, the response community would need tools and methodologies to rapidly assess the nature and the extent of contamination. To characterize a radiologically contaminated outdoor area and to inform risk assessment, large numbers of environmental samples would be collected and analyzed over a short period of time. To address the challenge of quickly providing analytical results to the field, the U.S. EPA developed a robust analytical method. This method allows response officials to characterize contaminated areas and to assess the effectiveness of remediation efforts, both rapidly and accurately, in the intermediate and late phases of environmental cleanup. Improvement in sample processing and analysis leads to increased laboratory capacity to handle the analysis of a large number of samples following the intentional or unintentional release of a radiological/nuclear contaminant.
Laboratory Methods for the Measurement of Pollutants in Water and Waste Effluents
NASA Technical Reports Server (NTRS)
Ballinger, Dwight G.
1971-01-01
The requirement for accurate, precise, and rapid analytical procedures for the examination of water and waste samples requires the use of a variety of instruments. The instrumentation in water laboratories includes atomic absorption, UV-visible. and infrared spectrophotometers, automatic colorimetric analyzers, gas chromatographs and mass spectrometers. Because of the emphasis on regulatory action, attention is being directed toward quality control of analytical results. Among the challenging problems are the differentiation of metallic species in water at nanogram concentrations, rapid measurement of free cyanide and free ammonia, more sensitive methods for arsenic and selenium and improved characterization of organic contaminants.
Rapid Method for Sodium Hydroxide/Sodium Peroxide Fusion ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Plutonium-238 and plutonium-239 in water and air filters Method Selected for: SAM lists this method as a pre-treatment technique supporting analysis of refractory radioisotopic forms of plutonium in drinking water and air filters using the following qualitative techniques: • Rapid methods for acid or fusion digestion • Rapid Radiochemical Method for Plutonium-238 and Plutonium 239/240 in Building Materials for Environmental Remediation Following Radiological Incidents. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
Hou, Yu-Lan; Wu, Shuang; Wang, Hua; Zhao, Yong; Liao, Peng; Tian, Qing-Qing; Sun, Wen-Jian; Chen, Bo
2013-01-01
A novel rapid method for detection of the illicit beta2-agonist additives in health foods and traditional Chinese patent medicines was developed with the desorption corona beam ionization mass spectrometry (DCBI-MS) technique. The DCBI conditions including temperature and sample volume were optimized according to the resulting mass spectra intensity. Matrix effect on 9 beta2-agonists additives was not significant in the proposed rapid determination procedure. All of the 9 target molecules were detected within 1 min. Quantification was achieved based on the typical fragment ion in MS2 spectra of each analyte. The method showed good linear coefficients in the range of 1-100 mg x L(-1) for all analytes. The relative deviation values were between 14.29% and 25.13%. Ten claimed antitussive and antiasthmatic health foods and traditional Chinese patent medicines from local pharmacies were analyzed. All of them were negative with the proposed DCBI-MS method. Without tedious sample pretreatments, the developed DCBI-MS is simple, rapid and sensitive for rapid qualification and semi-quantification of the illicit beta2-agonist additives in health foods and traditional Chinese patent medicines.
Intrinsic Bioprobes, Inc. (Tempe, AZ)
Nelson, Randall W [Phoenix, AZ; Williams, Peter [Phoenix, AZ; Krone, Jennifer Reeve [Granbury, TX
2008-07-15
Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.
Mass spectrometric immunoassay
Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve
2007-12-04
Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.
Mass spectrometric immunoassay
Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve
2013-07-16
Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.
Mass spectrometric immunoassay
Nelson, Randall W.; Williams, Peter; Krone, Jennifer Reeve
2005-12-13
Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.
Lim, Wei Yin; Goh, Boon Tong; Khor, Sook Mei
2017-08-15
Clinicians, working in the health-care diagnostic systems of developing countries, currently face the challenges of rising costs, increased number of patient visits, and limited resources. A significant trend is using low-cost substrates to develop microfluidic devices for diagnostic purposes. Various fabrication techniques, materials, and detection methods have been explored to develop these devices. Microfluidic paper-based analytical devices (μPADs) have gained attention for sensing multiplex analytes, confirming diagnostic test results, rapid sample analysis, and reducing the volume of samples and analytical reagents. μPADs, which can provide accurate and reliable direct measurement without sample pretreatment, can reduce patient medical burden and yield rapid test results, aiding physicians in choosing appropriate treatment. The objectives of this review are to provide an overview of the strategies used for developing paper-based sensors with enhanced analytical performances and to discuss the current challenges, limitations, advantages, disadvantages, and future prospects of paper-based microfluidic platforms in clinical diagnostics. μPADs, with validated and justified analytical performances, can potentially improve the quality of life by providing inexpensive, rapid, portable, biodegradable, and reliable diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Al Okab, Riyad Ahmed
2013-02-01
Green analytical methods using Cisapride (CPE) as green analytical reagent was investigated in this work. Rapid, simple, and sensitive spectrophotometric methods for the determination of bromate in water sample, bread and flour additives were developed. The proposed methods based on the oxidative coupling between phenoxazine and Cisapride in the presence of bromate to form red colored product with max at 520 nm. Phenoxazine and Cisapride and its reaction products were found to be environmentally friendly under the optimum experimental condition. The method obeys beers law in concentration range 0.11-4.00 g ml-1 and molar absorptivity 1.41 × 104 L mol-1 cm-1. All variables have been optimized and the presented reaction sequences were applied to the analysis of bromate in water, bread and flour additive samples. The performance of these method was evaluated in terms of Student's t-test and variance ratio F-test to find out the significance of proposed methods over the reference method. The combination of pharmaceutical drugs reagents with low concentration create some unique green chemical analyses.
Han, Thomas Yong-Jin; Valdez, Carlos A; Olson, Tammy Y; Kim, Sung Ho; Satcher, Jr., Joe H
2015-04-21
In one embodiment, a system includes a plurality of metal nanoparticles functionalized with a plurality of organic molecules tethered thereto, wherein the plurality of organic molecules preferentially interact with one or more analytes when placed in proximity therewith. According to another embodiment, a method for detecting analytes includes contacting a fluid having one or more analytes of interest therein with a plurality of metal nanoparticles, each metal nanoparticle having a plurality of organic molecules tethered thereto, and detecting Raman scattering from an analyte of interest from the fluid, the analyte interacting with one or more of the plurality of organic molecules. In another embodiment, a method includes chemically modifying a plurality of cyclodextrin molecules at a primary hydroxyl moiety to create a chemical handle, and tethering the plurality of cyclodextrin molecules to a metal nanoparticle using the chemical handle. Other systems and methods for detecting analytes are also described.
Rapid Method for Sodium Hydroxide Fusion of Asphalt ...
Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 The method will be used for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in asphalt matrices samples.
Koscho, Michael E; Grubbs, Robert H; Lewis, Nathan S
2002-03-15
Arrays of vapor detectors have been formed through addition of varying mass fractions of the plasticizer diethylene glycol dibenzoate to carbon black-polymer composites of poly(vinyl acetate) (PVAc) or of poly(N-vinylpyrrolidone). Addition of plasticizer in 5% mass fraction increments produced 20 compositionally different detectors from each polymer composite. Differences in vapor sorption and permeability that effected changes in the dc electrical resistance response of these compositionally different detectors allowed identification and classification of various test analytes using standard chemometric methods. Glass transition temperatures, Tg, were measured using differential scanning calorimetry for plasticized polymers having a mass fraction of 0, 0.10, 0.20, 0.30, 0.40, or 0.50 of plasticizer in the composite. The plasticized PVAc composites with Tg < 25 degrees C showed rapid responses at room temperature to all of the test analyte vapors studied in this work, whereas composites with Tg > 25 degrees C showed response times that were highly dependent on the polymer/analyte combination. These composites showed a discontinuity in the temperature dependence of their resistance, and this discontinuity provided a simple method for determining the Tg of the composite and for determining the temperature or plasticizer mass fraction above which rapid resistance responses could be obtained for all members of the test set of analyte vapors. The plasticization approach provides a method for achieving rapid detector response times as well as for producing a large number of chemically different vapor detectors from a limited number of initial chemical feedstocks.
Odoardi, Sara; Fisichella, Marco; Romolo, Francesco Saverio; Strano-Rossi, Sabina
2015-09-01
The increasing number of new psychoactive substances (NPS) present in the illicit market render their identification in biological fluids/tissues of great concern for clinical and forensic toxicology. Analytical methods able to detect the huge number of substances that can be used are sought, considering also that many NPS are not detected by the standard immunoassays generally used for routine drug screening. The aim of this work was to develop a method for the screening of different classes of NPS (a total of 78 analytes including cathinones, synthetic cannabinoids, phenethylamines, piperazines, ketamine and analogues, benzofurans, tryptamines) from blood samples. The simultaneous extraction of analytes was performed by Dispersive Liquid/Liquid Microextraction DLLME, a very rapid, cheap and efficient extraction technique that employs microliters amounts of organic solvents. Analyses were performed by a target Ultrahigh Performance Liquid Chromatography tandem Mass Spectrometry (UHPLC-MS/MS) method in multiple reaction monitoring (MRM). The method allowed the detection of the studied analytes with limits of detection (LODs) ranging from 0.2 to 2ng/mL. The proposed DLLME method can be used as an alternative to classical liquid/liquid or solid-phase extraction techniques due to its rapidity, necessity to use only microliters amounts of organic solvents, cheapness, and to its ability to extract simultaneously a huge number of analytes also from different chemical classes. The method was then applied to 60 authentic real samples from forensic cases, demonstrating its suitability for the screening of a wide number of NPS. Copyright © 2015 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A rapid high-throughput analytical method for the simultaneous determination of pesticides and environmental contaminants, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and flame retardants (FRs) in fish was developed and ...
Wan, Lingzhong; Zhu, Haijing; Guan, Yafeng; Huang, Guangming
2017-07-01
A rapid and facile analytical method for quantification of ribonucleosides in human urine was developed by the combination of nanocoating cellulose paper based microextraction and nanoelectrospray ionization-tandem mass spectrometry (nESI-MS/MS). Cellulose paper used for microextraction was modified by nano-precision deposition of uniform ultrathin zirconia gel film using a sol-gel process. Due to the large surface area of the cellulose paper and the strong affinity between zirconia and the cis-diol compounds, the target analytes were selectively extracted from the complex matrix. Thus, the detection sensitivity was greatly improved. Typically, the nanocoating cellulose paper was immersed into the diluted urine for selective extraction of target analytes, then the extracted analytes were subjected to nESI-MS/MS detection. The whole analytical procedure could be completed within 10min. The method was evaluated by the determination of ribonucleosides (adenosine, cytidine, uridine, guanosine) in urine sample. The signal intensities of the ribonuclesides extracted by the nanocoating cellulose paper were greatly enhanced by 136-459-folds compared with the one of the unmodified cellulose paper based microextraction. The limits of detection (LODs) and the limits of quantification (LOQs) of the four ribonucleosides were in the range of 0.0136-1.258μgL -1 and 0.0454-4.194μgL -1 , respectively. The recoveries of the target nucleosides from spiked human urine were in the range of 75.64-103.49% with the relative standard deviations (RSDs) less than 9.36%. The results demonstrate the potential of the proposed method for rapid and facile determination of endogenous ribonucleosides in urine sample. Copyright © 2017. Published by Elsevier B.V.
An analytic data analysis method for oscillatory slug tests.
Chen, Chia-Shyun
2006-01-01
An analytical data analysis method is developed for slug tests in partially penetrating wells in confined or unconfined aquifers of high hydraulic conductivity. As adapted from the van der Kamp method, the determination of the hydraulic conductivity is based on the occurrence times and the displacements of the extreme points measured from the oscillatory data and their theoretical counterparts available in the literature. This method is applied to two sets of slug test response data presented by Butler et al.: one set shows slow damping with seven discernable extremities, and the other shows rapid damping with three extreme points. The estimates of the hydraulic conductivity obtained by the analytic method are in good agreement with those determined by an available curve-matching technique.
Guo, Tianyang; Fang, Pingping; Jiang, Juanjuan; Zhang, Feng; Yong, Wei; Liu, Jiahui; Dong, Yiyang
2016-11-04
A rapid method to screen and quantify multi-class analytic targets in red wine has been developed by direct analysis in real time (DART) coupled with triple quadruple tandem mass spectrometry (QqQ-MS). A modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) procedure was used for increasing analytical speed and reducing matrix effect, and the multiple reaction monitoring (MRM) in DART-MS/MS ensured accurate analysis. One bottle of wine containing 50 pesticides and 12 adulterants, i.e., preservatives, antioxidant, sweeteners, and azo dyes, could be totally determined less than 12min. This method exhibited proper linearity (R 2 ≥0.99) in the range of 1-1000ng/mL for pesticides and 10-5000ng/mL for adulterants. The limits of detection (LODs) were obtained in a 0.5-50ng/mL range for pesticides and 5-50ng/mL range for adulterants, and the limits of quantification (LOQs) were in a 1-100ng/mL range for pesticides and 10-250ng/mL range for adulterants. Three spiked levels for each analyte in wine were evaluated, and the recoveries were in a scope of 75-120%. The results demonstrated DART-MS/MS was a rapid and simple method, and could be applied to rapid analyze residual pesticides and illegal adulterants in a large quantities of red wine. Copyright © 2016 Elsevier B.V. All rights reserved.
El-Yazbi, Amira F
2017-07-01
Sofosbuvir (SOFO) was approved by the U.S. Food and Drug Administration in 2013 for the treatment of hepatitis C virus infection with enhanced antiviral potency compared with earlier analogs. Notwithstanding, all current editions of the pharmacopeias still do not present any analytical methods for the quantification of SOFO. Thus, rapid, simple, and ecofriendly methods for the routine analysis of commercial formulations of SOFO are desirable. In this study, five accurate methods for the determination of SOFO in pharmaceutical tablets were developed and validated. These methods include HPLC, capillary zone electrophoresis, HPTLC, and UV spectrophotometric and derivative spectrometry methods. The proposed methods proved to be rapid, simple, sensitive, selective, and accurate analytical procedures that were suitable for the reliable determination of SOFO in pharmaceutical tablets. An analysis of variance test with P-value > 0.05 confirmed that there were no significant differences between the proposed assays. Thus, any of these methods can be used for the routine analysis of SOFO in commercial tablets.
AN APPROACH TO METHODS DEVELOPMENT FOR HUMAN EXPOSURE ASSESSMENT STUDIES
Human exposure assessment studies require methods that are rapid, cost-effective and have a high sample through-put. The development of analytical methods for exposure studies should be based on specific information for individual studies. Human exposure studies suggest that di...
Podhorniak, Lynda V
2014-04-30
A miniaturized residue method was developed for the analysis of the fungicide zoxamide and its metabolites in dried ginseng root. The zoxamide metabolites, 3,5-dichloro-1,4-benzenedicarboxylic acid (DCBC) and 3,5-dichloro-4-hydroxymethylbenzoic acid (DCHB), are small acid molecules that have not been previously extracted from the ginseng matrix with common multiresidue methods. The presented extraction method effectively and rapidly recovers both the zoxamide parent compound and its acid metabolites from fortified ginseng root. The metabolites are extracted with an alkaline glycine buffer and the aqueous ginseng mixture is partitioned with ethyl acetate. In addition, this method avoids the use of derivatization of the small acid molecules by using UPLC-MS/MS instrumental analysis. In a quantitative validation of the analytical method at three levels for zoxamide (0.007 (LOD), 0.02 (LOQ), and 0.2 mg/kg) and four levels (0.07 (LOD), 0.2 (LOQ), and 0.6 and 6 mg/kg) for both metabolites, acceptable method performances were achieved with recoveries ranging from 86 to 107% (at levels of LOQ and 3×, 10×, and 30× the LOQ) with <20% RSD for the three analytes in accordance with international guidelines.1.
NASA Astrophysics Data System (ADS)
El-Nour, K. M. A.; Salam, E. T. A.; Soliman, H. M.; Orabi, A. S.
2017-03-01
A new optical sensor was developed for rapid screening with high sensitivity for the existence of biogenic amines (BAs) in poultry meat samples. Gold nanoparticles (GNPs) with particle size 11-19 nm function as a fast and sensitive biosensor for detection of histamine resulting from bacterial decarboxylation of histidine as a spoilage marker for stored poultry meat. Upon reaction with histamine, the red color of the GNPs converted into deep blue. The appearance of blue color favorably coincides with the concentration of BAs that can induce symptoms of poisoning. This biosensor enables a semi-quantitative detection of analyte in real samples by eye-vision. Quality evaluation is carried out by measuring histamine and histidine using different analytical techniques such as UV-vis, FTIR, and fluorescence spectroscopy as well as TEM. A rapid quantitative readout of samples by UV-vis and fluorescence methods with standard instrumentation were proposed in a short time unlike chromatographic and electrophoretic methods. Sensitivity and limit of detection (LOD) of 6.59 × 10-4 and 0.6 μM, respectively, are determined for histamine as a spoilage marker with a correlation coefficient ( R 2) of 0.993.
Rapid Harmonic Analysis of Piezoelectric MEMS Resonators.
Puder, Jonathan M; Pulskamp, Jeffrey S; Rudy, Ryan Q; Cassella, Cristian; Rinaldi, Matteo; Chen, Guofeng; Bhave, Sunil A; Polcawich, Ronald G
2018-06-01
This paper reports on a novel simulation method combining the speed of analytical evaluation with the accuracy of finite-element analysis (FEA). This method is known as the rapid analytical-FEA technique (RAFT). The ability of the RAFT to accurately predict frequency response orders of magnitude faster than conventional simulation methods while providing deeper insights into device design not possible with other types of analysis is detailed. Simulation results from the RAFT across wide bandwidths are compared to measured results of resonators fabricated with various materials, frequencies, and topologies with good agreement. These include resonators targeting beam extension, disk flexure, and Lamé beam modes. An example scaling analysis is presented and other applications enabled are discussed as well. The supplemental material includes example code for implementation in ANSYS, although any commonly employed FEA package may be used.
Tak For Yu, Zeta; Guan, Huijiao; Ki Cheung, Mei; McHugh, Walker M.; Cornell, Timothy T.; Shanley, Thomas P.; Kurabayashi, Katsuo; Fu, Jianping
2015-01-01
Immunoassays represent one of the most popular analytical methods for detection and quantification of biomolecules. However, conventional immunoassays such as ELISA and flow cytometry, even though providing high sensitivity and specificity and multiplexing capability, can be labor-intensive and prone to human error, making them unsuitable for standardized clinical diagnoses. Using a commercialized no-wash, homogeneous immunoassay technology (‘AlphaLISA’) in conjunction with integrated microfluidics, herein we developed a microfluidic immunoassay chip capable of rapid, automated, parallel immunoassays of microliter quantities of samples. Operation of the microfluidic immunoassay chip entailed rapid mixing and conjugation of AlphaLISA components with target analytes before quantitative imaging for analyte detections in up to eight samples simultaneously. Aspects such as fluid handling and operation, surface passivation, imaging uniformity, and detection sensitivity of the microfluidic immunoassay chip using AlphaLISA were investigated. The microfluidic immunoassay chip could detect one target analyte simultaneously for up to eight samples in 45 min with a limit of detection down to 10 pg mL−1. The microfluidic immunoassay chip was further utilized for functional immunophenotyping to examine cytokine secretion from human immune cells stimulated ex vivo. Together, the microfluidic immunoassay chip provides a promising high-throughput, high-content platform for rapid, automated, parallel quantitative immunosensing applications. PMID:26074253
Vosough, Maryam; Rashvand, Masoumeh; Esfahani, Hadi M; Kargosha, Kazem; Salemi, Amir
2015-04-01
In this work, a rapid HPLC-DAD method has been developed for the analysis of six antibiotics (amoxicillin, metronidazole, sulfamethoxazole, ofloxacine, sulfadiazine and sulfamerazine) in the sewage treatment plant influent and effluent samples. Decreasing the chromatographic run time to less than 4 min as well as lowering the cost per analysis, were achieved through direct injection of the samples into the HPLC system followed by chemometric analysis. The problem of the complete separation of the analytes from each other and/or from the matrix ingredients was resolved as a posteriori. The performance of MCR/ALS and U-PLS/RBL, as second-order algorithms, was studied and comparable results were obtained from implication of these modeling methods. It was demonstrated that the proposed methods could be used promisingly as green analytical strategies for detection and quantification of the targeted pollutants in wastewater samples while avoiding the more complicated high cost instrumentations. Copyright © 2014 Elsevier B.V. All rights reserved.
Analytical Fuselage and Wing Weight Estimation of Transport Aircraft
DOT National Transportation Integrated Search
1996-05-01
A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of comp...
ERIC Educational Resources Information Center
Avella, John T.; Kebritchi, Mansureh; Nunn, Sandra G.; Kanai, Therese
2016-01-01
Higher education for the 21st century continues to promote discoveries in the field through learning analytics (LA). The problem is that the rapid embrace of of LA diverts educators' attention from clearly identifying requirements and implications of using LA in higher education. LA is a promising emerging field, yet higher education stakeholders…
A close-range photogrammetric technique for mapping neotectonic features in trenches
Fairer, G.M.; Whitney, J.W.; Coe, J.A.
1989-01-01
Close-range photogrammetric techniques and newly available computerized plotting equipment were used to map exploratory trench walls that expose Quaternary faults in the vicinity of Yucca Mountain, Nevada. Small-scale structural, lithologic, and stratigraphic features can be rapidly mapped by the photogrammetric method. This method is more accurate and significantly more rapid than conventional trench-mapping methods, and the analytical plotter is capable of producing cartographic definition of high resolution when detailed trench maps are necessary. -from Authors
One-calibrant kinetic calibration for on-site water sampling with solid-phase microextraction.
Ouyang, Gangfeng; Cui, Shufen; Qin, Zhipei; Pawliszyn, Janusz
2009-07-15
The existing solid-phase microextraction (SPME) kinetic calibration technique, using the desorption of the preloaded standards to calibrate the extraction of the analytes, requires that the physicochemical properties of the standard should be similar to those of the analyte, which limited the application of the technique. In this study, a new method, termed the one-calibrant kinetic calibration technique, which can use the desorption of a single standard to calibrate all extracted analytes, was proposed. The theoretical considerations were validated by passive water sampling in laboratory and rapid water sampling in the field. To mimic the variety of the environment, such as temperature, turbulence, and the concentration of the analytes, the flow-through system for the generation of standard aqueous polycyclic aromatic hydrocarbons (PAHs) solution was modified. The experimental results of the passive samplings in the flow-through system illustrated that the effect of the environmental variables was successfully compensated with the kinetic calibration technique, and all extracted analytes can be calibrated through the desorption of a single calibrant. On-site water sampling with rotated SPME fibers also illustrated the feasibility of the new technique for rapid on-site sampling of hydrophobic organic pollutants in water. This technique will accelerate the application of the kinetic calibration method and also will be useful for other microextraction techniques.
Gentili, Alessandra; Caretti, Fulvia; D'Ascenzo, Giuseppe; Marchese, Stefano; Perret, Daniela; Di Corcia, Daniele; Rocca, Lucia Mainero
2008-07-01
A rapid, simple and sensitive method based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) with an electrospray ionization (ESI) source for the simultaneous analysis of fourteen water-soluble vitamins (B1, B2, two B3 vitamers, B5, five B6 vitamers, B8, B9, B12 and C) in various food matrices, i.e. maize flour, green and golden kiwi and tomato pulp, is presented here. Analytes were separated by ion-suppression reversed-phase liquid chromatography in less than 10 min and detected in positive ion mode. Sensitivity and specificity of this method allowed two important results to be achieved: (i) limits of detection of the analytes at ng g(-1) levels (except for vitamin C); (ii) development of a rapid sample treatment that minimizes analyte exposition to light, air and heat, eliminating any step of extract concentration. Analyte recovery depended on the type of matrix. In particular, recovery of the analytes in maize flour was > or =70%, with the exception of vitamin C, pyridoxal-5'-phosphate and vitamin B9 (ca 40%); with tomato pulp, recovery was > or =64%, except for vitamin C (41%); with kiwi, recovery was > or =73%, except for nicotinamide (ca. 30%).
Xu, Benjin; Liu, Ling; Liu, Li; Li, Xinping; Li, Xiaofang; Wang, Xin
2012-11-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a global health concern, which had been detected in food and food production animals. Conventional testing for detection of MRSA takes 3 to 5 d to yield complete information of the organism and its antibiotic sensitivity pattern. So, a rapid method is needed to diagnose and treat the MRSA infections. The present study focused on the development of a multiplex PCR assay for the rapid and sensitive detection of MRSA. The assay simultaneously detected 4 genes, namely, 16S rRNA of the Staphylococcus genus, femA of S. aureus, mecA that encodes methicillin resistance, and one internal control. It was rapid and yielded results within 4 h. The analytical sensitivity and specificity of the multiplex PCR assay was evaluated by comparing it with the conventional method. The analytical sensitivity of the multiplex PCR assay at the DNA level was 10 ng DNA. The analytical specificity was evaluated with 10 reference staphylococci strains and was 100%. The diagnostic evaluation of MRSA was carried out using 360 foodborne staphylococci isolates, and showed 99.1% of specificity, 96.4% of sensitivity, 97.5% of positive predictive value, and 97.3% of negative predictive value compared to the conventional method. The inclusion of an internal control in the multiplex PCR assay is important to exclude false-negative cases. This test can be used as an effective diagnostic and surveillance tool to investigate the spread and emergence of MRSA. © 2012 Institute of Food Technologists®
Oyaert, Matthijs; Van Maerken, Tom; Bridts, Silke; Van Loon, Silvi; Laverge, Heleen; Stove, Veronique
2018-03-01
Point-of-care blood gas test results may benefit therapeutic decision making by their immediate impact on patient care. We evaluated the (pre-)analytical performance of a novel cartridge-type blood gas analyzer, the GEM Premier 5000 (Werfen), for the determination of pH, partial carbon dioxide pressure (pCO 2 ), partial oxygen pressure (pO 2 ), sodium (Na + ), potassium (K + ), chloride (Cl - ), ionized calcium ( i Ca 2+ ), glucose, lactate, and total hemoglobin (tHb). Total imprecision was estimated according to the CLSI EP5-A2 protocol. The estimated total error was calculated based on the mean of the range claimed by the manufacturer. Based on the CLSI EP9-A2 evaluation protocol, a method comparison with the Siemens RapidPoint 500 and Abbott i-STAT CG8+ was performed. Obtained data were compared against preset quality specifications. Interference of potential pre-analytical confounders on co-oximetry and electrolyte concentrations were studied. The analytical performance was acceptable for all parameters tested. Method comparison demonstrated good agreement to the RapidPoint 500 and i-STAT CG8+, except for some parameters (RapidPoint 500: pCO 2 , K + , lactate and tHb; i-STAT CG8+: pO 2 , Na + , i Ca 2+ and tHb) for which significant differences between analyzers were recorded. No interference of lipemia or methylene blue on CO-oximetry results was found. On the contrary, significant interference for benzalkonium and hemolysis on electrolyte measurements were found, for which the user is notified by an interferent specific flag. Identification of sample errors from pre-analytical sources, such as interferences and automatic corrective actions, along with the analytical performance, ease of use and low maintenance time of the instrument, makes the evaluated instrument a suitable blood gas analyzer for both POCT and laboratory use. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Rapid Radiochemical Method for Radium-226 in Building ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Radium-226 in building materials Method Selected for: SAM lists this method for qualitative analysis of radium-226 in concrete or brick building materials Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
Rapid Radiochemical Method for Americium-241 in Building ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Americium-241 in building materials Method Selected for: SAM lists this method for qualitative analysis of americium-241 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
Li, Frederick; Tice, Joseph; Musselman, Brian D; Hall, Adam B
2016-09-01
Improvised explosive devices (IEDs) are often used by terrorists and criminals to create public panic and destruction, necessitating rapid investigative information. However, backlogs in many forensic laboratories resulting in part from time-consuming GC-MS and LC-MS techniques prevent prompt analytical information. Direct analysis in real time - mass spectrometry (DART-MS) is a promising analytical technique that can address this challenge in the forensic science community by permitting rapid trace analysis of energetic materials. Therefore, we have designed a qualitative analytical approach that utilizes novel sorbent-coated wire mesh and dynamic headspace concentration to permit the generation of information rich chemical attribute signatures (CAS) for trace energetic materials in smokeless powder with DART-MS. Sorbent-coated wire mesh improves the overall efficiency of capturing trace energetic materials in comparison to swabbing or vacuuming. Hodgdon Lil' Gun smokeless powder was used to optimize the dynamic headspace parameters. This method was compared to traditional GC-MS methods and validated using the NIST RM 8107 smokeless powder reference standard. Additives and energetic materials, notably nitroglycerin, were rapidly and efficiently captured by the Carbopack X wire mesh, followed by detection and identification using DART-MS. This approach has demonstrated the capability of generating comparable results with significantly reduced analysis time in comparison to GC-MS. All targeted components that can be detected by GC-MS were detected by DART-MS in less than a minute. Furthermore, DART-MS offers the advantage of detecting targeted analytes that are not amenable to GC-MS. The speed and efficiency associated with both the sample collection technique and DART-MS demonstrate an attractive and viable potential alternative to conventional techniques. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
Nie, Honggang; Li, Xianjiang; Hua, Zhendong; Pan, Wei; Bai, Yanping; Fu, Xiaofang
2016-08-01
With the amounts and types of new psychoactive substances (NPSs) increasing rapidly in recent years, an excellent high-throughput method for the analysis of these compounds is urgently needed. In this article, a rapid screening method and a quantitative analysis method for 11 NPSs are described and compared, respectively. A simple direct analysis in real time mass spectrometry (DART-MS) method was developed for the analysis of 11 NPSs including three categories of these substances present on the global market such as four cathinones, one phenylethylamine, and six synthetic cannabinoids. In order to analyze these compounds quantitatively with better accuracy and sensitivity, another rapid analytical method with a low limit of detection (LOD) was also developed using liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (LC/QTOFMS). The 11 NPSs could be determined within 0.5 min by DART-MS. Furthermore, they could also be separated and determined within 5 min by the LC/QTOFMS method. The two methods both showed good linearity with correlation coefficients (r(2) ) higher than 0.99. The LODs for all these target NPSs by DART-MS and LC/QTOFMS ranged from 5 to 40 ng mL(-1) and 0.1 to 1 ng mL(-1) , respectively. Confiscated samples, named as "music vanilla" and "bath salt", and 11 spiked samples were firstly screened by DART-MS and then determined by LC/QTOFMS. The identification of NPSs in confiscated materials was successfully achieved, and the proposed analytical methodology could offer rapid screening and accurate analysis results. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Lloyd, Lyrelle S; Adams, Ralph W; Bernstein, Michael; Coombes, Steven; Duckett, Simon B; Green, Gary G R; Lewis, Richard J; Mewis, Ryan E; Sleigh, Christopher J
2012-08-08
The characterization of materials by the inherently insensitive method of NMR spectroscopy plays a vital role in chemistry. Increasingly, hyperpolarization is being used to address the sensitivity limitation. Here, by reference to quinoline, we illustrate that the SABRE hyperpolarization technique, which uses para-hydrogen as the source of polarization, enables the rapid completion of a range of NMR measurements. These include the collection of (13)C, (13)C{(1)H}, and NOE data in addition to more complex 2D COSY, ultrafast 2D COSY and 2D HMBC spectra. The observations are made possible by the use of a flow probe and external sample preparation cell to re-hyperpolarize the substrate between transients, allowing repeat measurements to be made within seconds. The potential benefit of the combination of SABRE and 2D NMR methods for rapid characterization of low-concentration analytes is therefore established.
El-Yazbi, Amira F
2017-01-20
Sofosbuvir (SOFO) was approved by the U.S. Food and Drug Administration in 2013 for the treatment of hepatitis C virusinfection with enhanced antiviral potency compared with earlier analogs. Notwithstanding, all current editions of the pharmacopeias still do not present any analytical methods for the quantification of SOFO. Thus, rapid, simple, and ecofriendly methods for the routine analysis of commercial formulations of SOFO are desirable. In this study, five accurate methods for the determination of SOFO in pharmaceutical tablets were developed and validated. These methods include HPLC, capillary zone electrophoresis, HPTLC, and UV spectrophotometric and derivative spectrometry methods. The proposed methods proved to be rapid, simple, sensitive, selective, and accurate analytical procedures that were suitable for the reliable determination of SOFO in pharmaceutical tablets. An analysis of variance test with <em>P</em>-value > 0.05 confirmed that there were no significant differences between the proposed assays. Thus, any of these methods can be used for the routine analysis of SOFO in commercial tablets.
NASA Astrophysics Data System (ADS)
Nikolić, G. S.; Žerajić, S.; Cakić, M.
2011-10-01
Multivariate calibration method is a powerful mathematical tool that can be applied in analytical chemistry when the analytical signals are highly overlapped. The method with regression by partial least squares is proposed for the simultaneous spectrophotometric determination of adrenergic vasoconstrictors in decongestive solution containing two active components: phenyleprine hydrochloride and trimazoline hydrochloride. These sympathomimetic agents are that frequently associated in pharmaceutical formulations against the common cold. The proposed method, which is, simple and rapid, offers the advantages of sensitivity and wide range of determinations without the need for extraction of the vasoconstrictors. In order to minimize the optimal factors necessary to obtain the calibration matrix by multivariate calibration, different parameters were evaluated. The adequate selection of the spectral regions proved to be important on the number of factors. In order to simultaneously quantify both hydrochlorides among excipients, the spectral region between 250 and 290 nm was selected. A recovery for the vasoconstrictor was 98-101%. The developed method was applied to assay of two decongestive pharmaceutical preparations.
Kangas, Michael J; Burks, Raychelle M; Atwater, Jordyn; Lukowicz, Rachel M; Garver, Billy; Holmes, Andrea E
2018-02-01
With the increasing availability of digital imaging devices, colorimetric sensor arrays are rapidly becoming a simple, yet effective tool for the identification and quantification of various analytes. Colorimetric arrays utilize colorimetric data from many colorimetric sensors, with the multidimensional nature of the resulting data necessitating the use of chemometric analysis. Herein, an 8 sensor colorimetric array was used to analyze select acid and basic samples (0.5 - 10 M) to determine which chemometric methods are best suited for classification quantification of analytes within clusters. PCA, HCA, and LDA were used to visualize the data set. All three methods showed well-separated clusters for each of the acid or base analytes and moderate separation between analyte concentrations, indicating that the sensor array can be used to identify and quantify samples. Furthermore, PCA could be used to determine which sensors showed the most effective analyte identification. LDA, KNN, and HQI were used for identification of analyte and concentration. HQI and KNN could be used to correctly identify the analytes in all cases, while LDA correctly identified 95 of 96 analytes correctly. Additional studies demonstrated that controlling for solvent and image effects was unnecessary for all chemometric methods utilized in this study.
Wegner, Katrin; Just, Sarah; Gau, Laura; Mueller, Henrike; Gérard, Philippe; Lepage, Patricia; Clavel, Thomas; Rohn, Sascha
2017-02-01
Bile acids are important signaling molecules that regulate cholesterol, glucose, and energy homoeostasis and have thus been implicated in the development of metabolic disorders. Their bioavailability is strongly modulated by the gut microbiota, which contributes to generation of complex individual-specific bile acid profiles. Hence, it is important to have accurate methods at hand for precise measurement of these important metabolites. Here, a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous identification and quantitation of primary and secondary bile acids as well as their taurine and glycine conjugates was developed and validated. Applicability of the method was demonstrated for mammalian tissues, biofluids, and cell culture media. The analytical approach mainly consists of a simple and rapid liquid-liquid extraction procedure in presence of deuterium-labeled internal standards. Baseline separation of all isobaric bile acid species was achieved and a linear correlation over a broad concentration range was observed. The method showed acceptable accuracy and precision on intra-day (1.42-11.07 %) and inter-day (2.11-12.71 %) analyses and achieved good recovery rates for representative analytes (83.7-107.1 %). As a proof of concept, the analytical method was applied to mouse tissues and biofluids, but especially to samples from in vitro fermentations with gut bacteria of the family Coriobacteriaceae. The developed method revealed that the species Eggerthella lenta and Collinsella aerofaciens possess bile salt hydrolase activity, and for the first time that the species Enterorhabdus mucosicola is able to deconjugate and dehydrogenate primary bile acids in vitro.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munson, Matthew S.; Karp, Eric M.; Nimlos, Claire T.
Biomass conversion processes such as pretreatment, liquefaction, and pyrolysis often produce complex mixtures of intermediates that are a substantial challenge to analyze rapidly and reliably. To characterize these streams more comprehensively and efficiently, new techniques are needed to track species through biomass deconstruction and conversion processes. Here, we present the application of an emerging analytical method, gradient elution moving boundary electrophoresis (GEMBE), to quantify a suite of acids in a complex, biomass-derived streams from alkaline pretreatment of corn stover. GEMBE offers distinct advantages over common chromatography-spectrometry analytical approaches in terms of analysis time, sample preparation requirements, and cost of equipment.more » As demonstrated here, GEMBE is able to track 17 distinct compounds (oxalate, formate, succinate, malate, acetate, glycolate, protocatechuate, 3-hydroxypropanoate, lactate, glycerate, 2-hydroxybutanoate, 4-hydroxybenzoate, vanillate, p-coumarate, ferulate, sinapate, and acetovanillone). The lower limit of detection was compound dependent and ranged between 0.9 and 3.5 umol/L. Results from GEMBE were similar to recent results from an orthogonal method based on GCxGC-TOF/MS. Altogether, GEMBE offers a rapid, robust approach to analyze complex biomass-derived samples, and given the ease and convenience of deployment, may offer an analytical solution for online tracking of multiple types of biomass streams.« less
Munson, Matthew S.; Karp, Eric M.; Nimlos, Claire T.; ...
2016-09-27
Biomass conversion processes such as pretreatment, liquefaction, and pyrolysis often produce complex mixtures of intermediates that are a substantial challenge to analyze rapidly and reliably. To characterize these streams more comprehensively and efficiently, new techniques are needed to track species through biomass deconstruction and conversion processes. Here, we present the application of an emerging analytical method, gradient elution moving boundary electrophoresis (GEMBE), to quantify a suite of acids in a complex, biomass-derived streams from alkaline pretreatment of corn stover. GEMBE offers distinct advantages over common chromatography-spectrometry analytical approaches in terms of analysis time, sample preparation requirements, and cost of equipment.more » As demonstrated here, GEMBE is able to track 17 distinct compounds (oxalate, formate, succinate, malate, acetate, glycolate, protocatechuate, 3-hydroxypropanoate, lactate, glycerate, 2-hydroxybutanoate, 4-hydroxybenzoate, vanillate, p-coumarate, ferulate, sinapate, and acetovanillone). The lower limit of detection was compound dependent and ranged between 0.9 and 3.5 umol/L. Results from GEMBE were similar to recent results from an orthogonal method based on GCxGC-TOF/MS. Altogether, GEMBE offers a rapid, robust approach to analyze complex biomass-derived samples, and given the ease and convenience of deployment, may offer an analytical solution for online tracking of multiple types of biomass streams.« less
Rapid Radiochemical Method for Total Radiostrontium (Sr-90) ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Beta counting Method Developed for: Strontium-89 and strontium-90 in building materials Method Selected for: SAM lists this method for qualitative analysis of strontium-89 and strontium-90 in concrete or brick building materials Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
Silvestre, Dolores; Fraga, Miriam; Gormaz, María; Torres, Ester; Vento, Máximo
2014-07-01
The variability of human milk (HM) composition renders analysis of its components essential for optimal nutrition of preterm fed either with donor's or own mother's milk. To fulfil this requirement, various analytical instruments have been subjected to scientific and clinical evaluation. The objective of this study was to evaluate the suitability of a rapid method for the analysis of macronutrients in HM as compared with the analytical methods applied by cow's milk industry. Mature milk from 39 donors was analysed using an infrared human milk analyser (HMA) and compared with biochemical reference laboratory methods. The statistical analysis was based on the use of paired data tests. The use of an infrared HMA for the analysis of lipids, proteins and lactose in HM proved satisfactory as regards the rapidity, simplicity and the required sample volume. The instrument afforded good linearity and precision in application to all three nutrients. However, accuracy was not acceptable when compared with the reference methods, with overestimation of the lipid content and underestimation of the amount of proteins and lactose contents. The use of mid-infrared HMA might become the standard for rapid analysis of HM once standardisation and rigorous and systematic calibration is provided. © 2012 John Wiley & Sons Ltd.
Li, Yubo; Zhang, Zhenzhu; Liu, Xinyu; Li, Aizhu; Hou, Zhiguo; Wang, Yuming; Zhang, Yanjun
2015-08-28
This study combines solid phase extraction (SPE) using 96-well plates with column-switching technology to construct a rapid and high-throughput method for the simultaneous extraction and non-targeted analysis of small molecules metabolome and lipidome based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. This study first investigated the columns and analytical conditions for small molecules metabolome and lipidome, separated by an HSS T3 and BEH C18 columns, respectively. Next, the loading capacity and actuation duration of SPE were further optimized. Subsequently, SPE and column switching were used together to rapidly and comprehensively analyze the biological samples. The experimental results showed that the new analytical procedure had good precision and maintained sample stability (RSD<15%). The method was then satisfactorily applied to more widely analyze the small molecules metabolome and lipidome to test the throughput. The resulting method represents a new analytical approach for biological samples, and a highly useful tool for researches in metabolomics and lipidomics. Copyright © 2015 Elsevier B.V. All rights reserved.
A fluorescence anisotropy method for measuring protein concentration in complex cell culture media.
Groza, Radu Constantin; Calvet, Amandine; Ryder, Alan G
2014-04-22
The rapid, quantitative analysis of the complex cell culture media used in biopharmaceutical manufacturing is of critical importance. Requirements for cell culture media composition profiling, or changes in specific analyte concentrations (e.g. amino acids in the media or product protein in the bioprocess broth) often necessitate the use of complicated analytical methods and extensive sample handling. Rapid spectroscopic methods like multi-dimensional fluorescence (MDF) spectroscopy have been successfully applied for the routine determination of compositional changes in cell culture media and bioprocess broths. Quantifying macromolecules in cell culture media is a specific challenge as there is a need to implement measurements rapidly on the prepared media. However, the use of standard fluorescence spectroscopy is complicated by the emission overlap from many media components. Here, we demonstrate how combining anisotropy measurements with standard total synchronous fluorescence spectroscopy (TSFS) provides a rapid, accurate quantitation method for cell culture media. Anisotropy provides emission resolution between large and small fluorophores while TSFS provides a robust measurement space. Model cell culture media was prepared using yeastolate (2.5 mg mL(-1)) spiked with bovine serum albumin (0 to 5 mg mL(-1)). Using this method, protein emission is clearly discriminated from background yeastolate emission, allowing for accurate bovine serum albumin (BSA) quantification over a 0.1 to 4.0 mg mL(-1) range with a limit of detection (LOD) of 13.8 μg mL(-1). Copyright © 2014. Published by Elsevier B.V.
Magnusson, R; Nordlander, T; Östin, A
2016-01-15
Sampling teams performing work at sea in areas where chemical munitions may have been dumped require rapid and reliable analytical methods for verifying sulfur mustard leakage from suspected objects. Here we present such an on-site analysis method based on dynamic headspace GC-MS for analysis of five cyclic sulfur mustard degradation products that have previously been detected in sediments from chemical weapon dumping sites: 1,4-oxathiane, 1,3-dithiolane, 1,4-dithiane, 1,4,5-oxadithiephane, and 1,2,5-trithiephane. An experimental design involving authentic Baltic Sea sediments spiked with the target analytes was used to develop an optimized protocol for sample preparation, headspace extraction and analysis that afforded recoveries of up to 60-90%. The optimized method needs no organic solvents, uses only two grams of sediment on a dry weight basis and involves a unique sample presentation whereby sediment is spread uniformly as a thin layer inside the walls of a glass headspace vial. The method showed good linearity for analyte concentrations of 5-200 ng/g dw, good repeatability, and acceptable carry-over. The method's limits of detection for spiked sediment samples ranged from 2.5 to 11 μg/kg dw, with matrix interference being the main limiting factor. The instrumental detection limits were one to two orders of magnitude lower. Full-scan GC-MS analysis enabled the use of automated mass spectral deconvolution for rapid identification of target analytes. Using this approach, analytes could be identified in spiked sediment samples at concentrations down to 13-65 μg/kg dw. On-site validation experiments conducted aboard the research vessel R/V Oceania demonstrated the method's practical applicability, enabling the successful identification of four cyclic sulfur mustard degradation products at concentrations of 15-308μg/kg in sediments immediately after being collected near a wreck at the Bornholm Deep dumpsite in the Baltic Sea. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Fangfang; Gong, Zhiyuan; Kelly, Barry C
2015-02-27
A sensitive analytical method based on liquid-liquid extraction (LLE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed for rapid analysis of 11 pharmaceuticals and personal care products (PPCPs) in fish plasma micro-aliquots (∼20μL). Target PPCPs included, bisphenol A, carbamazepine, diclofenac, fluoxetine, gemfibrozil, ibuprofen, naproxen, risperidone, sertraline, simvastatin and triclosan. A relatively quicker and cheaper LLE procedure exhibited comparable analyte recoveries with solid-phase extraction. Rapid separation and analysis of target compounds in fish plasma extracts was achieved by employing a high efficiency C-18 HPLC column (Agilent Poroshell 120 SB-C18, 2.1mm×50mm, 2.7μm) and fast polarity switching, enabling effective monitoring of positive and negative ions in a single 9min run. With the exception of bisphenol A, which exhibited relatively high background contamination, method detection limits of individual PPCPs ranged between 0.15 and 0.69pg/μL, while method quantification limits were between 0.05 and 2.3pg/μL. Mean matrix effect (ME) values ranged between 65 and 156% for the various target analytes. Isotope dilution quantification using isotopically labelled internal surrogates was utilized to correct for signal suppression or enhancement and analyte losses during sample preparation. The method was evaluated by analysis of 20μL plasma micro-aliquots collected from zebrafish (Danio rerio) from a laboratory bioaccumulation study, which included control group fish (no exposure), as well as fish exposed to environmentally relevant concentrations of PPCPs. Using the developed LC-MS/MS based method, concentrations of the studied PPCPs were consistently detected in the low pg/μL (ppb) range. The method may be useful for investigations requiring fast, reliable concentration measurements of PPCPs in fish plasma. In particular, the method may be applicable for in situ contaminant biomonitoring, as well as bioaccumulation and toxicology studies employing small fishes with low blood compartment volumes. Copyright © 2015 Elsevier B.V. All rights reserved.
Bagnasco, Lucia; Cosulich, M Elisabetta; Speranza, Giovanna; Medini, Luca; Oliveri, Paolo; Lanteri, Silvia
2014-08-15
The relationships between sensory attribute and analytical measurements, performed by electronic tongue (ET) and near-infrared spectroscopy (NIRS), were investigated in order to develop a rapid method for the assessment of umami taste. Commercially available umami products and some aminoacids were submitted to sensory analysis. Results were analysed in comparison with the outcomes of analytical measurements. Multivariate exploratory analysis was performed by principal component analysis (PCA). Calibration models for prediction of the umami taste on the basis of ET and NIR signals were obtained using partial least squares (PLS) regression. Different approaches for merging data from the two different analytical instruments were considered. Both of the techniques demonstrated to provide information related with umami taste. In particular, ET signals showed the higher correlation with umami attribute. Data fusion was found to be slightly beneficial - not so significantly as to justify the coupled use of the two analytical techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fitz, Brian D; Mannion, Brandyn C; To, Khang; Hoac, Trinh; Synovec, Robert E
2015-05-01
Low thermal mass gas chromatography (LTM-GC) was evaluated for rapid, high peak capacity separations with three injection methods: liquid, headspace solid phase micro-extraction (HS-SPME), and direct vapor. An Agilent LTM equipped with a short microbore capillary column was operated at a column heating rate of 250 °C/min to produce a 60s separation. Two sets of experiments were conducted in parallel to characterize the instrumental platform. First, the three injection methods were performed in conjunction with in-house built high-speed cryo-focusing injection (HSCFI) to cryogenically trap and re-inject the analytes onto the LTM-GC column in a narrower band. Next, the three injection methods were performed natively with LTM-GC. Using HSCFI, the peak capacity of a separation of 50 nl of a 73 component liquid test mixture was 270, which was 23% higher than without HSCFI. Similar peak capacity gains were obtained when using the HSCFI with HS-SPME (25%), and even greater with vapor injection (56%). For the 100 μl vapor sample injected without HSCFI, the preconcentration factor, defined as the ratio of the maximum concentration of the detected analyte peak relative to the analyte concentration injected with the syringe, was determined to be 11 for the earliest eluting peak (most volatile analyte). In contrast, the preconcentration factor for the earliest eluting peak using HSCFI was 103. Therefore, LTM-GC is demonstrated to natively provide in situ analyte trapping, although not to as great an extent as with HSCFI. We also report the use of LTM-GC applied with time-of-flight mass spectrometry (TOFMS) detection for rapid, high peak capacity separations from SPME sampled banana peel headspace. Copyright © 2015 Elsevier B.V. All rights reserved.
Rapid qualitative and quantitative analysis of proanthocyanidin oligomers and polymers by UPLC-MS/MS
USDA-ARS?s Scientific Manuscript database
Proanthocyanidins (PAs) are a structurally complex and bioactive group of tannins. Detailed analysis of PA concentration, composition, and structure typically requires the use of one or more time-consuming analytical methods. For example, the commonly employed thiolysis and phloroglucinolysis method...
Abbasi, U M; Chand, F; Bhanger, M I; Memon, S A
1986-02-01
A simple and rapid method is described for the direct thermometric determination of milligram amounts of methyl dopa, propranolol hydrochloride, 1-phenyl-3-methylpyrazolone (MPP) and 2,3-dimethyl-1-phenylpyrazol-5-one (phenazone) in the presence of excipients. The compounds are reacted with N'-bromosuccinimide and the heat of reaction is used to determine the end-point of the titration. The time required is approximately 2 min, and the accuracy is analytically acceptable.
Zhang, Cheng; Cagliero, Cecilia; Pierson, Stephen A; Anderson, Jared L
2017-01-20
A simple and rapid ionic liquid (IL)-based in situ dispersive liquid-liquid microextraction (DLLME) method was developed and coupled to headspace gas chromatography (HS-GC) employing electron capture (ECD) and mass spectrometry (MS) detection for the analysis of polychlorinated biphenyls (PCBs) and acrylamide at trace levels from milk and coffee samples. The chemical structures of the halide-based ILs were tailored by introducing various functional groups to the cations to evaluate the effect of different structural features on the extraction efficiency of the target analytes. Extraction parameters including the molar ratio of IL to metathesis reagent and IL mass were optimized. The effects of HS oven temperature and the HS sample vial volume on the analyte response were also evaluated. The optimized in situ DLLME method exhibited good analytical precision, good linearity, and provided detection limits down to the low ppt level for PCBs and the low ppb level for acrylamide in aqueous samples. The matrix-compatibility of the developed method was also established by quantifying acrylamide in brewed coffee samples. This method is much simpler and faster compared to previously reported GC-MS methods using solid-phase microextraction (SPME) for the extraction/preconcentration of PCBs and acrylamide from complex food samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Rapid and sensitive analytical method for monitoring of 12 organotin compounds in natural waters.
Vahčič, Mitja; Milačič, Radmila; Sčančar, Janez
2011-03-01
A rapid analytical method for the simultaneous determination of 12 different organotin compounds (OTC): methyl-, butyl-, phenyl- and octyl-tins in natural water samples was developed. It comprises of in situ derivatisation (by using NaBEt4) of OTC in salty or fresh water sample matrix adjusted to pH 6 with Tris-citrate buffer, extraction of ethylated OTC into hexane, separation of OTC in organic phase on 15 m GC column and subsequent quantitative determination of separated OTC by ICP-MS. To optimise the pH of ethylation, phosphate, carbonate and Tris-citrate buffer were investigated alternatively to commonly applied sodium acetate - acetic acid buffer. The ethylation yields in Tris-citrate buffer were found to be better for TBT, MOcT and DOcT in comparison to commonly used acetate buffer. Iso-octane and hexane were examined as organic phase for extraction of ethylated OTC. The advantage of hexane was in its ability for quantitative determination of TMeT. GC column of 15 m in length was used for separation of studied OTC under the optimised separation conditions and its performances compared to 30 m column. The analytical method developed enables sensitive simultaneous determination of 12 different OTC and appreciably shortened analysis time in larger series of water samples. LOD's obtained for the newly developed method ranged from 0.05-0.06 ng Sn L-1 for methyl-, 0.11-0.45 ng Sn L-1 for butyl-, 0.11-0.16 ng Sn L-1 for phenyl-, and 0.07-0.10 ng Sn L-1 for octyl-tins. By applying the developed analytical method, marine water samples from the Northern Adriatic Sea containing mainly butyl- and methyl-tin species were analysed to confirm the proposed method's applicability.
Zhou, Guisheng; Wang, Mengyue; Li, Yang; Peng, Ying; Li, Xiaobo
2015-08-01
In the present study, a new strategy based on chemical analysis and chemometrics methods was proposed for the comprehensive analysis and profiling of underivatized free amino acids (FAAs) and small peptides among various Luo-Han-Guo (LHG) samples. Firstly, the ultrasound-assisted extraction (UAE) parameters were optimized using Plackett-Burman (PB) screening and Box-Behnken designs (BBD), and the following optimal UAE conditions were obtained: ultrasound power of 280 W, extraction time of 43 min, and the solid-liquid ratio of 302 mL/g. Secondly, a rapid and sensitive analytical method was developed for simultaneous quantification of 24 FAAs and 3 active small peptides in LHG at trace levels using hydrophilic interaction ultra-performance liquid chromatography coupled with triple-quadrupole linear ion-trap tandem mass spectrometry (HILIC-UHPLC-QTRAP(®)/MS(2)). The analytical method was validated by matrix effects, linearity, LODs, LOQs, precision, repeatability, stability, and recovery. Thirdly, the proposed optimal UAE conditions and analytical methods were applied to measurement of LHG samples. It was shown that LHG was rich in essential amino acids, which were beneficial nutrient substances for human health. Finally, based on the contents of the 27 analytes, the chemometrics methods of unsupervised principal component analysis (PCA) and supervised counter propagation artificial neural network (CP-ANN) were applied to differentiate and classify the 40 batches of LHG samples from different cultivated forms, regions, and varieties. As a result, these samples were mainly clustered into three clusters, which illustrated the cultivating disparity among the samples. In summary, the presented strategy had potential for the investigation of edible plants and agricultural products containing FAAs and small peptides.
Mirski, Tomasz; Bartoszcze, Michał; Bielawska-Drózd, Agata; Cieślik, Piotr; Michalski, Aleksander J; Niemcewicz, Marcin; Kocik, Janusz; Chomiczewski, Krzysztof
2014-01-01
Modern threats of bioterrorism force the need to develop methods for rapid and accurate identification of dangerous biological agents. Currently, there are many types of methods used in this field of studies that are based on immunological or genetic techniques, or constitute a combination of both methods (immuno-genetic). There are also methods that have been developed on the basis of physical and chemical properties of the analytes. Each group of these analytical assays can be further divided into conventional methods (e.g. simple antigen-antibody reactions, classical PCR, real-time PCR), and modern technologies (e.g. microarray technology, aptamers, phosphors, etc.). Nanodiagnostics constitute another group of methods that utilize the objects at a nanoscale (below 100 nm). There are also integrated and automated diagnostic systems, which combine different methods and allow simultaneous sampling, extraction of genetic material and detection and identification of the analyte using genetic, as well as immunological techniques.
Kumar, Sandeep; Lather, Viney; Pandita, Deepti
2016-04-15
Resveratrol and quercetin are well-known polyphenolic compounds present in common foods, which have demonstrated enormous potential in the treatment of a wide variety of diseases. Owing to their exciting synergistic potential and combination delivery applications, we developed a simple and rapid RP-HPLC method based on isosbestic point detection. The separation was carried out on phenomenex Synergi 4μ Hydro-RP 80A column using methanol: acetonitrile (ACN): 0.1% phosphoric acid (60:10:30) as mobile phase. The method was able to quantify nanograms of analytes simultaneously on a single wavelength (269 nm), making it highly sensitive, rapid as well as economical. Additionally, forced degradation studies of resveratrol and quercetin were established and the method's applicability was evaluated on PLGA nanoparticles and human plasma. The analytes peaks were found to be well resolved in the presence of degradation products and excipients. The simplicity of the developed method potentializes its suitability for routine in vitro and in vivo analysis of resveratrol and quercetin. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples
Maxwell, Sherrod L.; Hutchison, Jay B.; McAlister, Daniel R.
2015-02-14
Recently, approximately 80% of participating laboratories failed to accurately determine uranium isotopes in soil samples in the U.S Department of Energy Mixed Analyte Performance Evaluation Program (MAPEP) Session 30, due to incomplete dissolution of refractory particles in the samples. Failing laboratories employed acid dissolution methods, including hydrofluoric acid, to recover uranium from the soil matrix. The failures illustrate the importance of rugged soil dissolution methods for the accurate measurement of analytes in the sample matrix. A new rapid fusion method has been developed by the Savannah River National Laboratory (SRNL) to prepare 1-2 g soil sample aliquots very quickly, withmore » total dissolution of refractory particles. Soil samples are fused with sodium hydroxide at 600 ºC in zirconium crucibles to enable complete dissolution of the sample. Uranium and thorium are separated on stacked TEVA and TRU extraction chromatographic resin cartridges, prior to isotopic measurements by alpha spectrometry on cerium fluoride microprecipitation sources. Plutonium can also be separated and measured using this method. Batches of 12 samples can be prepared for measurement in <5 hours.« less
Performance of Traditional and Molecular Methods for Detecting Biological Agents in Drinking Water
USGS Report - To reduce the impact from a possible bioterrorist attack on drinking-water supplies, analytical methods are needed to rapidly detect the presence of biological agents in water. To this end, 13 drinking-water samples were collected at 9 water-treatment plants in Ohio...
USDA-ARS?s Scientific Manuscript database
Increasing availability of genomic data and sophistication of analytical methodology in fungi has elevated the need for functional genomics tools in these organisms. Gene deletion is a critical tool for functional analysis. The targeted deletion of genes requires both a suitable method for the trans...
USDA-ARS?s Scientific Manuscript database
A rapid, quantitative research method using microwave-assisted probe ultrasonication was developed to facilitate the determination of total insoluble, and soluble starch in various sugar crop products. Several variables that affect starch solubilization were evaluated, 1) conductive boiling time, 2...
Recent Trends in Analytical Methods to Determine New Psychoactive Substances in Hair
Kyriakou, Chrystalla; Pellegrini, Manuela; García-Algar, Oscar; Marinelli, Enrico; Zaami, Simona
2017-01-01
New Psychoactive Substances (NPS) belong to several chemical classes, including phenethylamines, piperazines, synthetic cathinones and synthetic cannabinoids. Development and validation of analytical methods for the determination of NPS both in traditional and alternative matrices is of crucial importance to study drug metabolism and to associate consumption to clinical outcomes and eventual intoxication symptoms. Among different biological matrices, hair is the one with the widest time window to investigate drug-related history and demonstrate past intake. The aim of this paper was to overview the trends of the rapidly evolving analytical methods for the determination of NPS in hair and the usefulness of these methods when applied to real cases. A number of rapid and sensitive methods for the determination of NPS in hair matrix has been recently published, most of them using liquid chromatography coupled to mass spectrometry. Hair digestion and subsequent solid phase extraction or liquid-liquid extraction were described as well as extraction in organic solvents. For most of the methods limits of quantification at picogram per milligram hair were obtained. The measured concentrations for most of the NPS in real samples were in the range of picograms of drug per milligram of hair. Interpretation of the results and lack of cut-off values for the discrimination between chronic consumption and occasional use or external contamination are still challenging. Methods for the determination of NPS in hair are continually emerging to include as many NPS as possible due to the great demand for their detection. PMID:27834146
Zhang, Lei; Yue, Hong-Shui; Ju, Ai-Chun; Ye, Zheng-Liang
2016-10-01
Currently, near infrared spectroscopy (NIRS) has been considered as an efficient tool for achieving process analytical technology(PAT) in the manufacture of traditional Chinese medicine (TCM) products. In this article, the NIRS based process analytical system for the production of salvianolic acid for injection was introduced. The design of the process analytical system was described in detail, including the selection of monitored processes and testing mode, and potential risks that should be avoided. Moreover, the development of relative technologies was also presented, which contained the establishment of the monitoring methods for the elution of polyamide resin and macroporous resin chromatography processes, as well as the rapid analysis method for finished products. Based on author's experience of research and work, several issues in the application of NIRS to the process monitoring and control in TCM production were then raised, and some potential solutions were also discussed. The issues include building the technical team for process analytical system, the design of the process analytical system in the manufacture of TCM products, standardization of the NIRS-based analytical methods, and improving the management of process analytical system. Finally, the prospect for the application of NIRS in the TCM industry was put forward. Copyright© by the Chinese Pharmaceutical Association.
ERIC Educational Resources Information Center
Namwong, Pithakpong; Jarujamrus, Purim; Amatatongchai, Maliwan; Chairam, Sanoe
2018-01-01
In this article, a low-cost, simple, and rapid fabrication of paper-based analytical devices (PADs) using a wax screen-printing method is reported here. The acid-base reaction is implemented in the simple PADs to demonstrate to students the chemistry concept of a limiting reagent. When a fixed concentration of base reacts with a gradually…
Furukawa, Koji; Hashimoto, Makoto; Kaneco, Satoshi
2017-01-01
A rapid determination of aniline in environmental water was examined based on liquid chromatography/tandem mass spectrometry (LC/MS/MS). Environmental water samples were diluted 20-fold with Mill-Q water and measured by LC/MS/MS after adding a surrogate substance (aniline-d 5 ). In the results of the present study, the calibration curve of aniline showed good linearity in the range of 0.05 - 2.0 μg/L. Since the RSD (repeatability) by measuring repeatedly an aniline standard solution (0.05 μg/L, n = 7) was 3.2%, the repeatability of this work was very excellent. In addition, the recovery rate of aniline in environmental water was in the range of 99.0 - 102% with RSD 3.4 - 7.7%, and very good recovery test results were obtained. From these results, this analytical method was confirmed to be effective for aniline measurements of environmental water samples. Also, it is possible to conduct rapid analyses of aniline in environmental water without any solid-phase extraction process, compared to the solid-phase extraction-GC/MS method.
Joshi, Varsha; Kumar, Vijesh; Rathore, Anurag S
2015-08-07
A method is proposed for rapid development of a short, analytical cation exchange high performance liquid chromatography method for analysis of charge heterogeneity in monoclonal antibody products. The parameters investigated and optimized include pH, shape of elution gradient and length of the column. It is found that the most important parameter for development of a shorter method is the choice of the shape of elution gradient. In this paper, we propose a step by step approach to develop a non-linear sigmoidal shape gradient for analysis of charge heterogeneity for two different monoclonal antibody products. The use of this gradient not only decreases the run time of the method to 4min against the conventional method that takes more than 40min but also the resolution is retained. Superiority of the phosphate gradient over sodium chloride gradient for elution of mAbs is also observed. The method has been successfully evaluated for specificity, sensitivity, linearity, limit of detection, and limit of quantification. Application of this method as a potential at-line process analytical technology tool has been suggested. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Islam, Syed K.; Cheng, Yin Pak; Birke, Ronald L.; Green, Omar; Kubic, Thomas; Lombardi, John R.
2018-04-01
The application of surface enhanced Raman scattering (SERS) has been reported as a fast and sensitive analytical method in the trace detection of the two most commonly known synthetic cannabinoids AMB-FUBINACA and alpha-pyrrolidinovalerophenone (α-PVP). FUBINACA and α-PVP are two of the most dangerous synthetic cannabinoids which have been reported to cause numerous deaths in the United States. While instruments such as GC-MS, LC-MS have been traditionally recognized as analytical tools for the detection of these synthetic drugs, SERS has been recently gaining ground in the analysis of these synthetic drugs due to its sensitivity in trace analysis and its effectiveness as a rapid method of detection. This present study shows the limit of detection of a concentration as low as picomolar for AMB-FUBINACA while for α-PVP, the limit of detection is in nanomolar concentration using SERS.
Martínez-Algaba, C; Bermúdez-Saldaña, J M; Villanueva-Camañas, R M; Sagrado, S; Medina-Hernández, M J
2006-02-13
Rapid chromatographic procedures for analytical quality control of pharmaceutical preparations containing antihistamine drugs, alone or together with other kind of compounds are proposed. The method uses C18 stationary phases and micellar mobile phases of cetyltrimethylammonium bromide (CTAB) with either 1-propanol or 1-butanol as organic modifier. The proposed procedures allow the determination of the antihistamines: brompheniramine, chlorcyclizine, chlorpheniramine, diphenhydramine, doxylamine, flunarizine, hydroxyzine, promethazine, terfenadine, tripelennamine and triprolidine, in addition to caffeine, dextromethorphan, guaifenesin, paracetamol and pyridoxine in different pharmaceutical presentations (tablets, capsules, suppositories, syrups and ointments). The methods require minimum handling sample and are rapid (between 3 and 12 min at 1 mLmin(-1) flow rate) and reproducible (R.S.D. values<5%). Limits of detection are lower than 1 microgmL(-1) and the recoveries of the analytes in the pharmaceutical preparations are in the range 100+/-10%.
Rapid Radiochemical Method for Isotopic Uranium in Building ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Uranium-234, uranium-235, and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of uranium-234, uranium-235, and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
Pappula, Nagaraju; Kodali, Balaji; Datla, Peda Varma
2018-04-15
Highly selective and fast liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for simultaneous determination of tadalafil (TDL) and finasteride (FNS) in human plasma. The method was successfully applied for analysis of TDL and FNS samples in clinical study. The method was validated as per USFDA (United States Food and Drug Administration), EMA (European Medicines Agency), and ANVISA (Agência Nacional de Vigilância Sanitária-Brazil) bio analytical method validation guidelines. Glyburide (GLB) was used as common internal standard (ISTD) for both analytes. The selected multiple reaction monitoring (MRM) transitions for mass spectrometric analysis were m/z 390.2/268.2, m/z 373.3/305.4 and m/z 494.2/369.1 for TDL, FNS and ISTD respectively. The extraction of analytes and ISTD was accomplished by a simple solid phase extraction (SPE) procedure. Rapid analysis time was achieved on Zorbax Eclipse C18 column (50 × 4.6 mm, 5 μm). The calibration ranges for TDL and FNS were 5-800 ng/ml and 0.2-30 ng/ml respectively. The results of precision and accuracy, linearity, recovery and matrix effect of the method are acceptable. The accuracy was in the range of 92.9%-106.4% and method precision was also good; %CV was less than 8.1%. Copyright © 2018 Elsevier B.V. All rights reserved.
Kazmierczak, Steven C; Leen, Todd K; Erdogmus, Deniz; Carreira-Perpinan, Miguel A
2007-01-01
The clinical laboratory generates large amounts of patient-specific data. Detection of errors that arise during pre-analytical, analytical, and post-analytical processes is difficult. We performed a pilot study, utilizing a multidimensional data reduction technique, to assess the utility of this method for identifying errors in laboratory data. We evaluated 13,670 individual patient records collected over a 2-month period from hospital inpatients and outpatients. We utilized those patient records that contained a complete set of 14 different biochemical analytes. We used two-dimensional generative topographic mapping to project the 14-dimensional record to a two-dimensional space. The use of a two-dimensional generative topographic mapping technique to plot multi-analyte patient data as a two-dimensional graph allows for the rapid identification of potentially anomalous data. Although we performed a retrospective analysis, this technique has the benefit of being able to assess laboratory-generated data in real time, allowing for the rapid identification and correction of anomalous data before they are released to the physician. In addition, serial laboratory multi-analyte data for an individual patient can also be plotted as a two-dimensional plot. This tool might also be useful for assessing patient wellbeing and prognosis.
Chang, Yue-Yue; Wu, Hai-Long; Fang, Huan; Wang, Tong; Liu, Zhi; Ouyang, Yang-Zi; Ding, Yu-Jie; Yu, Ru-Qin
2018-06-15
In this study, a smart and green analytical method based on the second-order calibration algorithm coupled with excitation-emission matrix (EEM) fluorescence was developed for the determination of rhodamine dyes illegally added into chilli samples. The proposed method not only has the advantage of high sensitivity over the traditional fluorescence method but also fully displays the "second-order advantage". Pure signals of analytes were successfully extracted from severely interferential EEMs profiles via using alternating trilinear decomposition (ATLD) algorithm even in the presence of common fluorescence problems such as scattering, peak overlaps and unknown interferences. It is worth noting that the unknown interferents can denote different kinds of backgrounds, not only refer to a constant background. In addition, the method using interpolation method could avoid the information loss of analytes of interest. The use of "mathematical separation" instead of complicated "chemical or physical separation" strategy can be more effective and environmentally friendly. A series of statistical parameters including figures of merit and RSDs of intra- (≤1.9%) and inter-day (≤6.6%) were calculated to validate the accuracy of the proposed method. Furthermore, the authoritative method of HPLC-FLD was adopted to verify the qualitative and quantitative results of the proposed method. Compared with the two methods, it also showed that the ATLD-EEMs method has the advantages of accuracy, rapidness, simplicity and green, which is expected to be developed as an attractive alternative method for simultaneous and interference-free determination of rhodamine dyes illegally added into complex matrices. Copyright © 2018. Published by Elsevier B.V.
Quantitative PCR for Genetic Markers of Human Fecal Pollution
Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantificationapproach. We report the development of quantitative PCR assays for quantification of two recently described human-...
BIOLOGICALLY-BASED RAPID SCREENING METHODS FOR DIOXINS IN THE UNITED STATES
Because of the extensive cost, in personnel, time, equipment, and money to measure dioxin-like chemicals analytically, alternative technologies have been developed to measure the integrated sum of the activity of the dioxin-like chemicals.
RAPID ON-SITE METHODS OF CHEMICAL ANALYSIS
The analysis of potentially hazardous air, water and soil samples collected and shipped to service laboratories off-site is time consuming and expensive. This Chapter addresses the practical alternative of performing the requisite analytical services on-site. The most significant...
Han, Jiangbin; Zhang, Shu; Liu, Wanhui; Leng, Guangyi; Sun, Kaoxiang; Li, Youxin; Di, Xin
2014-04-01
Triptorelin, a gonadotropin-releasing hormone agonist, has been used in the treatment of hormone-responsive prostate cancer by inducing testosterone suppression. Research on the relationship between the time courses of triptorelin and testosterone is very important, but accurate quantification of triptorelin and testosterone simultaneously in biological specimens is a challenging analytical problem. In the present study, a rapid, sensitive, and selective method for simultaneous determination of triptorelin and testosterone in rat plasma by solid-phase extraction and liquid chromatography-tandem mass spectrometry was developed using a ZORBAX RRHD Eclipse Plus C8 column (2.1 × 50 mm, 1.8 μm) with a 0.05% propionic acid/methanol gradient. In view of the polarity difference between the two analytes, two internal standards, i.e., leuprolide and testosterone-(13)C3, were used for individual quantitation of triptorelin and testosterone. Endogenous testosterone was determined by reference to a calibration curve prepared using testosterone-D3 as a surrogate analyte. The method exhibits excellent linearity over three orders of magnitude for each analyte. The lower limit of quantification was 0.01 ng/mL for triptorelin and 0.05 ng/mL for testosterone, with consumption of 100 μL of plasma. The method was successfully applied to characterize the pharmacokinetics and pharmacodynamics of slow-release 28-day form triptorelin acetate biodegradable microspheres in rats after intramuscular injections of three consecutive doses of 0.6 mg/kg per 28 days. The results revealed that the pharmacokinetic profile of triptorelin produced an initial flare-up in testosterone levels, rapid castration within 5 days after injection, and long-term castration until the next dose.
Finite analytic numerical solution of heat transfer and flow past a square channel cavity
NASA Technical Reports Server (NTRS)
Chen, C.-J.; Obasih, K.
1982-01-01
A numerical solution of flow and heat transfer characteristics is obtained by the finite analytic method for a two dimensional laminar channel flow over a two-dimensional square cavity. The finite analytic method utilizes the local analytic solution in a small element of the problem region to form the algebraic equation relating an interior nodal value with its surrounding nodal values. Stable and rapidly converged solutions were obtained for Reynolds numbers ranging to 1000 and Prandtl number to 10. Streamfunction, vorticity and temperature profiles are solved. Local and mean Nusselt number are given. It is found that the separation streamlines between the cavity and channel flow are concave into the cavity at low Reynolds number and convex at high Reynolds number (Re greater than 100) and for square cavity the mean Nusselt number may be approximately correlated with Peclet number as Nu(m) = 0.365 Pe exp 0.2.
Ohura, Hiroki; Imato, Toshihiko
2011-01-01
Two analytical methods, which prove the utility of a potentiometric flow injection technique for determining various redox species, based on the use of some redox potential buffers, are reviewed. The first is a potentiometric flow injection method in which a redox couple such as Fe(III)-Fe(II), Fe(CN)6 3−-Fe(CN)(CN)6 4−, and bromide-bromine and a redox electrode or a combined platinum-bromide ion selective electrode are used. The analytical principle and advantages of the method are discussed, and several examples of its application are reported. Another example is a highly sensitive potentiometric flow injection method, in which a large transient potential change due to bromine or chlorine as an intermediate, generated during the reaction of the oxidative species with an Fe(III)-Fe(II) potential buffer containing bromide or chloride, is utilized. The analytical principle and details of the proposed method are described, and examples of several applications are described. The determination of trace amounts of hydrazine, based on the detection of a transient change in potential caused by the reaction with a Ce(IV)-Ce(III) potential buffer, is also described. PMID:21584280
Evaporative concentration on a paper-based device to concentrate analytes in a biological fluid.
Wong, Sharon Y; Cabodi, Mario; Rolland, Jason; Klapperich, Catherine M
2014-12-16
We report the first demonstration of using heat on a paper device to rapidly concentrate a clinically relevant analyte of interest from a biological fluid. Our technology relies on the application of localized heat to a paper strip to evaporate off hundreds of microliters of liquid to concentrate the target analyte. This method can be used to enrich for a target analyte that is present at low concentrations within a biological fluid to enhance the sensitivity of downstream detection methods. We demonstrate our method by concentrating the tuberculosis-specific glycolipid, lipoarabinomannan (LAM), a promising urinary biomarker for the detection and diagnosis of tuberculosis. We show that the heat does not compromise the subsequent immunodetectability of LAM, and in 20 min, the tuberculosis biomarker was concentrated by nearly 20-fold in simulated urine. Our method requires only 500 mW of power, and sample flow is self-driven via capillary action. As such, our technology can be readily integrated into portable, battery-powered, instrument-free diagnostic devices intended for use in low-resource settings.
Recent Trends in Analytical Methods to Determine New Psychoactive Substances in Hair.
Kyriakou, Chrystalla; Pellegrini, Manuela; García-Algar, Oscar; Marinelli, Enrico; Zaami, Simona
2017-01-01
New Psychoactive Substances (NPS) belong to several chemical classes, including phenethylamines, piperazines, synthetic cathinones and synthetic cannabinoids. Development and validation of analytical methods for the determination of NPS both in traditional and alternative matrices is of crucial importance to study drug metabolism and to associate consumption to clinical outcomes and eventual intoxication symptoms. Among different biological matrices, hair is the one with the widest time window to investigate drug-related history and demonstrate past intake. The aim of this paper was to overview the trends of the rapidly evolving analytical methods for the determination of NPS in hair and the usefulness of these methods when applied to real cases. A number of rapid and sensitive methods for the determination of NPS in hair matrix has been recently published, most of them using liquid chromatography coupled to mass spectrometry. Hair digestion and subsequent solid phase extraction or liquid-liquid extraction were described as well as extraction in organic solvents. For most of the methods limits of quantification at picogram per milligram hair were obtained. The measured concentrations for most of the NPS in real samples were in the range of picograms of drug per milligram of hair. Interpretation of the results and lack of cut-off values for the discrimination between chronic consumption and occasional use or external contamination are still challenging. Methods for the determination of NPS in hair are continually emerging to include as many NPS as possible due to the great demand for their detection. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Chen, Di; Hu, Yu-Ning; Hussain, Dilshad; Zhu, Gang-Tian; Huang, Yun-Qing; Feng, Yu-Qi
2016-05-15
Appropriate sample preparations prior to analysis can significantly enhance the sensitivity of ambient ionization techniques, especially during the enrichment or purification of analytes in the presence of complex biological matrix. Here in, we developed a rapid analysis method by the combination of thin film microextraction (TFME) and desorption corona beam ionization (DCBI) for the determination of antidepressants in human plasma. Thin films used for extraction consisted of sub-micron sized highly ordered mesoporous silica-carbon composite fibers (OMSCFs), simply prepared by electrospinning and subsequent carbonization. Typically, OMSCFs thin film was immersed into the diluted plasma for extraction of target analytes and then directly subjected to the DCBI-MS for detection. Size-exclusion effect of mesopores contributed to avoid of the protein precipitation step prior to extraction. Mass transfer was benefited from high surface-to-volume ratio which is attributed to macroporous network and ordered mesostructures. Moreover, the OMSCFs provided mixed-mode hydrophobic/ion-exchange interactions towards target analytes. Thus, the detection sensitivity was greatly improved due to effective enrichment of the target analytes and elimination of matrix interferences. After optimization of several parameters related to extraction performance, the proposed method was eventually applied for the determination of three antidepressants in human plasma. The calibration curves were plotted in the range of 5-1000 ng/mL with acceptable linearity (R(2) >0.983). The limits of detection (S/N=3) of three antidepressants were in ranges of 0.3-1 ng/mL. Reproducibility was achieved with RSD less than 17.6% and the relative recoveries were in ranges of 83.6-116.9%. Taken together, TFME-DCBI-MS method offers a powerful capacity for rapid analysis to achieve much-improved sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Rapid Radiochemical Analyses in Support of Fukushima Nuclear Accident - 13196
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.
There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples [1, 2]. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and datamore » assessment teams were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90}Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation [3, 4]. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride precipitations, followed by Sr-Resin separation and gas flow proportional counting. To achieve a lower detection limit for analysis of some of the Japanese soil samples, a 10 gram aliquot of soil was taken, acid-leached and processed with similar preconcentration chemistry. The MDA using this approach was ∼0.03 pCi/g (1.1 mBq/g)/, which is less than the 0.05-0.10 pCi/g {sup 90}Sr levels found in soil as a result of global fallout. The chemical yields observed for the Japanese soil samples was typically 75-80% and the laboratory control sample (LCS) and matrix spike (MS) results looked very good for this work Individual QC results were well within the ± 25% acceptable range and the average of these results does not show significant bias. Additional data for a radiostrontium in soil method for 50 gram samples will also be presented, which appears to be a significant step forward based on looking at the current literature, with higher chemical yields for even larger sample aliquots and lower MDA [5, 6, 7] Hou et al surveyed a wide range of separation methods for Pu in waters and environmental solid samples [8]. While there are many actinide methods in the scientific literature, few would be considered rapid due to the tedious and time-consuming steps involved. For actinide analyses in soil, a new rapid method for the determination of actinide isotopes in soil samples using both alpha spectrometry and inductively-coupled plasma mass spectrometry was employed. The new rapid soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using these two simple precipitations with high chemical recoveries and effective removal of interferences. [9, 10] Vacuum box technology and rapid flow rates were used to reduce analytical time. Challenges associated with the mineral content in the volcanic soil will be discussed. Air filter samples were reported within twenty-four (24) hours of receipt using rapid techniques published previously. [11] The rapid reporting of high quality analytical data arranged through the U.S. Department of Energy Consequence Management Home Team was critical to allow the government of Japan to readily evaluate radiological impacts from the nuclear reactor incident to both personnel and the environment. SRNL employed unique rapid methods capability for radionuclides to support Japan that can also be applied to environmental, bioassay and waste management samples. New rapid radiochemical techniques for radionuclides in soil and other environmental matrices as well as some of the unique challenges associated with this work will be presented that can be used for application to environmental monitoring, environmental remediation, decommissioning and decontamination activities. (authors)« less
RAPID RADIOCHEMICAL ANALYSES IN SUPPORT OF FUKUSHIMA NUCLEAR ACCIDENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, S.
2012-11-07
There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and data assessment teamsmore » were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90} Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride precipitations, followed by Sr-Resin separation and gas flow proportional counting. To achieve a lower detection limit for analysis of some of the Japanese soil samples, a 10 gram aliquot of soil was taken, acid-leached and processed with similar preconcentration chemistry. The MDA using this approach was ~0.03 pCi/g (1.1 mBq/g)/, which is less than the 0.05-0.10 pCi/g {sup 90}Sr levels found in soil as a result of global fallout. The chemical yields observed for the Japanese soil samples was typically 75-80% and the laboratory control sample (LCS) and matrix spike (MS) results looked very good for this work Individual QC results were well within the ± 25% acceptable range and the average of these results does not show significant bias. Additional data for a radiostrontium in soil method for 50 gram samples will also be presented, which appears to be a significant step forward based on looking at the current literature, with higher chemical yields for even larger sample aliquots and lower MDA. Hou et al surveyed a wide range of separation methods for Pu in waters and environmental solid samples. While there are many actinide methods in the scientific literature, few would be considered rapid due to the tedious and time-consuming steps involved. For actinide analyses in soil, a new rapid method for the determination of actinide isotopes in soil samples using both alpha spectrometry and inductively-coupled plasma mass spectrometry was employed. The new rapid soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using these two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates were used to reduce analytical time. Challenges associated with the mineral content in the volcanic soil will be discussed. Air filter samples were reported within twenty-four (24) hours of receipt using rapid techniques published previously. The rapid reporting of high quality analytical data arranged through the U.S. Department of Energy Consequence Management Home Team was critical to allow the government of Japan to readily evaluate radiological impacts from the nuclear reactor incident to both personnel and the environment. SRNL employed unique rapid methods capability for radionuclides to support Japan that can also be applied to environmental, bioassay and waste management samples. New rapid radiochemical techniques for radionuclides in soil and other environmental matrices as well as some of the unique challenges associated with this work will be presented that can be used for application to environmental monitoring, environmental remediation, decommissioning and decontamination activities.« less
Validating a faster method for reconstitution of Crotalidae Polyvalent Immune Fab (ovine).
Gerring, David; King, Thomas R; Branton, Richard
2013-07-01
Reconstitution of CroFab(®) (Crotalidae Polyvalent Immune Fab [ovine]) lyophilized drug product was previously performed using 10 mL sterile water for injection followed by up to 36 min of gentle swirling of the vial. CroFab has been clinically demonstrated to be most effective when administered within 6 h of snake envenomation, and improved clinical outcomes are correlated with quicker timing of administration. An alternate reconstitution method was devised, using 18 mL 0.9% saline with manual inversion, with the goal of shortening reconstitution time while maintaining a high quality, efficacious product. An analytical study was designed to compare the physicochemical properties of 3 separate batches of CroFab when reconstituted using the standard procedure (10 mL WFI with gentle swirling) and a modified rapid procedure using 18 mL 0.9% saline and manual inversion. The physical and chemical characteristics of the same 3 batches were assessed using various analytic methodologies associated with routine quality control release testing. In addition further analytical methodologies were applied in order to elucidate possible structural changes that may be induced by the changed reconstitution procedure. Batches A, B, and C required mean reconstitution times of 25 min 51 s using the label method and 3 min 07 s (a 88.0% mean decrease) using the modified method. Physicochemical characteristics (color and clarity, pH, purity, protein content, potency) were found to be highly comparable. Characterization assays (dynamic light scattering, analytical ultracentrifugation, LC-MS, SDS-PAGE and circular dichroism spectroscopy were also all found to be comparable between methods. When comparing CroFab batches that were reconstituted using the labeled and modified methods, the physicochemical and biological (potency) characteristics of CroFab were not significantly changed when challenged by the various standard analytical methodologies applied in routine quality control analysis. Additionally, no changes in the CroFab molecule regarding degradation, aggregation, purity, structure, or mass were observed. The analyses performed validated the use of the more rapid reconstitution method using 18 mL 0.9% saline in order to allow a significantly reduced time to administration of CroFab to patients in need. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lawton, Zachary E.; Traub, Angelica; Fatigante, William L.; Mancias, Jose; O'Leary, Adam E.; Hall, Seth E.; Wieland, Jamie R.; Oberacher, Herbert; Gizzi, Michael C.; Mulligan, Christopher C.
2017-06-01
Forensic evidentiary backlogs are indicative of the growing need for cost-effective, high-throughput instrumental methods. One such emerging technology that shows high promise in meeting this demand while also allowing on-site forensic investigation is portable mass spectrometric (MS) instrumentation, particularly that which enables the coupling to ambient ionization techniques. While the benefits of rapid, on-site screening of contraband can be anticipated, the inherent legal implications of field-collected data necessitates that the analytical performance of technology employed be commensurate with accepted techniques. To this end, comprehensive analytical validation studies are required before broad incorporation by forensic practitioners can be considered, and are the focus of this work. Pertinent performance characteristics such as throughput, selectivity, accuracy/precision, method robustness, and ruggedness have been investigated. Reliability in the form of false positive/negative response rates is also assessed, examining the effect of variables such as user training and experience level. To provide flexibility toward broad chemical evidence analysis, a suite of rapidly-interchangeable ion sources has been developed and characterized through the analysis of common illicit chemicals and emerging threats like substituted phenethylamines. [Figure not available: see fulltext.
A rapid method for estimation of Pu-isotopes in urine samples using high volume centrifuge.
Kumar, Ranjeet; Rao, D D; Dubla, Rupali; Yadav, J R
2017-07-01
The conventional radio-analytical technique used for estimation of Pu-isotopes in urine samples involves anion exchange/TEVA column separation followed by alpha spectrometry. This sequence of analysis consumes nearly 3-4 days for completion. Many a times excreta analysis results are required urgently, particularly under repeat and incidental/emergency situations. Therefore, there is need to reduce the analysis time for the estimation of Pu-isotopes in bioassay samples. This paper gives the details of standardization of a rapid method for estimation of Pu-isotopes in urine samples using multi-purpose centrifuge, TEVA resin followed by alpha spectrometry. The rapid method involves oxidation of urine samples, co-precipitation of plutonium along with calcium phosphate followed by sample preparation using high volume centrifuge and separation of Pu using TEVA resin. Pu-fraction was electrodeposited and activity estimated using 236 Pu tracer recovery by alpha spectrometry. Ten routine urine samples of radiation workers were analyzed and consistent radiochemical tracer recovery was obtained in the range 47-88% with a mean and standard deviation of 64.4% and 11.3% respectively. With this newly standardized technique, the whole analytical procedure is completed within 9h (one working day hour). Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantitative PCR for genetic markers of human fecal pollution
Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantification approach. We report the development of quantitative PCR assays for enumeration of two recently described hum...
A pipette-based calibration system for fast-scan cyclic voltammetry with fast response times.
Ramsson, Eric S
2016-01-01
Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that utilizes the oxidation and/or reduction of an analyte of interest to infer rapid changes in concentrations. In order to calibrate the resulting oxidative or reductive current, known concentrations of an analyte must be introduced under controlled settings. Here, I describe a simple and cost-effective method, using a Petri dish and pipettes, for the calibration of carbon fiber microelectrodes (CFMs) using FSCV.
Zeng, Shanshan; Wang, Lu; Chen, Teng; Wang, Yuefei; Mo, Huanbiao; Qu, Haibin
2012-07-06
The paper presents a novel strategy to identify analytical markers of traditional Chinese medicine preparation (TCMP) rapidly via direct analysis in real time mass spectrometry (DART-MS). A commonly used TCMP, Danshen injection, was employed as a model. The optimal analysis conditions were achieved by measuring the contribution of various experimental parameters to the mass spectra. Salvianolic acids and saccharides were simultaneously determined within a single 1-min DART-MS run. Furthermore, spectra of Danshen injections supplied by five manufacturers were processed with principal component analysis (PCA). Obvious clustering was observed in the PCA score plot, and candidate markers were recognized from the contribution plots of PCA. The suitability of potential markers was then confirmed by contrasting with the results of traditional analysis methods. Using this strategy, fructose, glucose, sucrose, protocatechuic aldehyde and salvianolic acid A were rapidly identified as the markers of Danshen injections. The combination of DART-MS with PCA provides a reliable approach to the identification of analytical markers for quality control of TCMP. Copyright © 2012 Elsevier B.V. All rights reserved.
Recent advances in immunosensor for narcotic drug detection
Gandhi, Sonu; Suman, Pankaj; Kumar, Ashok; Sharma, Prince; Capalash, Neena; Suri, C. Raman
2015-01-01
Introduction: Immunosensor for illicit drugs have gained immense interest and have found several applications for drug abuse monitoring. This technology has offered a low cost detection of narcotics; thereby, providing a confirmatory platform to compliment the existing analytical methods. Methods: In this minireview, we define the basic concept of transducer for immunosensor development that utilizes antibodies and low molecular mass hapten (opiate) molecules. Results: This article emphasizes on recent advances in immunoanalytical techniques for monitoring of opiate drugs. Our results demonstrate that high quality antibodies can be used for immunosensor development against target analyte with greater sensitivity, specificity and precision than other available analytical methods. Conclusion: In this review we highlight the fundamentals of different transducer technologies and its applications for immunosensor development currently being developed in our laboratory using rapid screening via immunochromatographic kit, label free optical detection via enzyme, fluorescence, gold nanoparticles and carbon nanotubes based immunosensing for sensitive and specific monitoring of opiates. PMID:26929925
Oliveira, Carolina Dizioli Rodrigues; Okai, Guilherme Gonçalves; da Costa, José Luiz; de Almeida, Rafael Menck; Oliveira-Silva, Diogo; Yonamine, Mauricio
2012-07-01
Ayahuasca is a psychoactive plant beverage originally used by indigenous people throughout the Amazon Basin, long before its modern use by syncretic religious groups established in Brazil, the USA and European countries. The objective of this study was to develop a method for quantification of dimethyltryptamine and β-carbolines in human plasma samples. The analytes were extracted by means of C18 cartridges and injected into LC-MS/MS, operated in positive ion mode and multiple reaction monitoring. The LOQs obtained for all analytes were below 0.5 ng/ml. By using the weighted least squares linear regression, the accuracy of the analytical method was improved at the lower end of the calibration curve (from 0.5 to 100 ng/ml; r(2)> 0.98). The method proved to be simple, rapid and useful to estimate administered doses for further pharmacological and toxicological investigations of ayahuasca exposure.
Immunoanalysis Methods for the Detection of Dioxins and Related Chemicals
Tian, Wenjing; Xie, Heidi Qunhui; Fu, Hualing; Pei, Xinhui; Zhao, Bin
2012-01-01
With the development of biotechnology, approaches based on antibodies, such as enzyme-linked immunosorbent assay (ELISA), active aryl hydrocarbon immunoassay (Ah-I) and other multi-analyte immunoassays, have been utilized as alternatives to the conventional techniques based on gas chromatography and mass spectroscopy for the analysis of dioxin and dioxin-like compounds in environmental and biological samples. These screening methods have been verified as rapid, simple and cost-effective. This paper provides an overview on the development and application of antibody-based approaches, such as ELISA, Ah-I, and multi-analyte immunoassays, covering the sample extraction and cleanup, antigen design, antibody preparation and immunoanalysis. However, in order to meet the requirements for on-site fast detection and relative quantification of dioxins in the environment, further optimization is needed to make these immuno-analytical methods more sensitive and easy to use. PMID:23443395
Lee, Iris S L; Boyce, Mary C; Breadmore, Michael C
2011-07-15
A simple and rapid capillary zone electrophoresis method to quantitatively determine the phenolic acid contents in brassica vegetables is described. Phenolic compounds were extracted from broccoli, broccolini, Brussels sprouts, cabbage and cauliflower and the main hydroxycinnamic acids (sinapic, ferulic, p-coumaric and caffeic acids) were isolated by solid phase extraction with C18 cartridges. Using an optimised method, the four analytes were separated in less than 7min in a 50μm×60cm capillary with a 15mM borate buffer (pH=9.13) and a separation voltage of 30kV at 30°C. A linear relationship was observed for the method (r=0.9997-0.9999) with detection limits ranging from 1.1 to 2.3mg/kg of vegetables for the analytes. This method demonstrated good reproducibility with coefficients of variation of less than 5% for peak area and less than 1% for migration time (n=7). The method was successfully applied to quantitatively determine the phenolic acid contents in a range of brassica vegetables and the results were in good agreement when compared to those from high performance liquid chromatography analysis. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stefanović, S.; Đorđevic, V.; Jelušić, V.
2017-09-01
The aim of this paper is to verify the performance characteristics and fitness for purpose of rapid and simple QuEChERS-based LC-MS/MS method for determination of acrylamide in potato chips and coffee. LC-MS/MS is by far the most suitable analytical technique for acrylamide measurements given its inherent sensitivity and selectivity, as well as capability of analyzing underivatized molecule. Acrylamide in roasted coffee and potato chips wasextracted with water:acetonitrile mixture using NaCl and MgSO4. Cleanup was carried out with MgSO4 and PSA. Obtained results were satisfactory. Recoveries were in the range of 85-112%, interlaboratory reproducibility (Cv) was 5.8-7.6% and linearity (R2) was in the range of 0.995-0.999. LoQ was 35 μg kg-1 for coffee and 20 μg kg-1 for potato chips. Performance characteristic of the method are compliant with criteria for analytical methods validation. Presented method for quantitative determination of acrylamide in roasted coffee and potato chips is fit for purposes of self-control in food industry as well as regulatory controls carried out by the governmental agencies.
NASA Astrophysics Data System (ADS)
Qu, Jianan Y.; Suria, David; Wilson, Brian C.
1998-05-01
The primary goal of these studies was to demonstrate that NIR Raman spectroscopy is feasible as a rapid and reagentless analytic method for clinical diagnostics. Raman spectra were collected on human serum and urine samples using a 785 nm excitation laser and a single-stage holographic spectrometer. A partial east squares method was used to predict the analyte concentrations of interest. The actual concentrations were determined by a standard clinical chemistry. The prediction accuracy of total protein, albumin, triglyceride and glucose in human sera ranged from 1.5 percent to 5 percent which is greatly acceptable for clinical diagnostics. The concentration measurements of acetaminophen, ethanol and codeine inhuman urine have demonstrated the potential of NIR Raman technology in screening of therapeutic drugs and substances of abuse.
Liu, Min; Zhang, Chunsun; Liu, Feifei
2015-09-03
In this work, we first introduce the fabrication of microfluidic cloth-based analytical devices (μCADs) using a wax screen-printing approach that is suitable for simple, inexpensive, rapid, low-energy-consumption and high-throughput preparation of cloth-based analytical devices. We have carried out a detailed study on the wax screen-printing of μCADs and have obtained some interesting results. Firstly, an analytical model is established for the spreading of molten wax in cloth. Secondly, a new wax screen-printing process has been proposed for fabricating μCADs, where the melting of wax into the cloth is much faster (∼5 s) and the heating temperature is much lower (75 °C). Thirdly, the experimental results show that the patterning effects of the proposed wax screen-printing method depend to a certain extent on types of screens, wax melting temperatures and melting time. Under optimized conditions, the minimum printing width of hydrophobic wax barrier and hydrophilic channel is 100 μm and 1.9 mm, respectively. Importantly, the developed analytical model is also well validated by these experiments. Fourthly, the μCADs fabricated by the presented wax screen-printing method are used to perform a proof-of-concept assay of glucose or protein in artificial urine with rapid high-throughput detection taking place on a 48-chamber cloth-based device and being performed by a visual readout. Overall, the developed cloth-based wax screen-printing and arrayed μCADs should provide a new research direction in the development of advanced sensor arrays for detection of a series of analytes relevant to many diverse applications. Copyright © 2015 Elsevier B.V. All rights reserved.
A microanalytical method for the determination of dihydroquercetin in wood
Richard W. Hemingway; W.E. Hillis
1969-01-01
Dihydroquercetin (3,5,7,3',4'-pentahydroxyflavanone) is a major constituent of the alcohol soluble materials in the wood of Larch species and the wood and bark of Douglas-fir. A sensitive analytical method is needed to enable rapid assessment of amounts of dihydroquercetin (DHQ) when processing commercial materials and for studies of biochemical aspects of...
Della Pelle, Flavio; Compagnone, Dario
2018-02-04
Polyphenolic compounds (PCs) have received exceptional attention at the end of the past millennium and as much at the beginning of the new one. Undoubtedly, these compounds in foodstuffs provide added value for their well-known health benefits, for their technological role and also marketing. Many efforts have been made to provide simple, effective and user friendly analytical methods for the determination and antioxidant capacity (AOC) evaluation of food polyphenols. In a parallel track, over the last twenty years, nanomaterials (NMs) have made their entry in the analytical chemistry domain; NMs have, in fact, opened new paths for the development of analytical methods with the common aim to improve analytical performance and sustainability, becoming new tools in quality assurance of food and beverages. The aim of this review is to provide information on the most recent developments of new NMs-based tools and strategies for total polyphenols (TP) determination and AOC evaluation in food. In this review optical, electrochemical and bioelectrochemical approaches have been reviewed. The use of nanoparticles, quantum dots, carbon nanomaterials and hybrid materials for the detection of polyphenols is the main subject of the works reported. However, particular attention has been paid to the success of the application in real samples, in addition to the NMs. In particular, the discussion has been focused on methods/devices presenting, in the opinion of the authors, clear advancement in the fields, in terms of simplicity, rapidity and usability. This review aims to demonstrate how the NM-based approaches represent valid alternatives to classical methods for polyphenols analysis, and are mature to be integrated for the rapid quality assessment of food quality in lab or directly in the field.
2018-01-01
Polyphenolic compounds (PCs) have received exceptional attention at the end of the past millennium and as much at the beginning of the new one. Undoubtedly, these compounds in foodstuffs provide added value for their well-known health benefits, for their technological role and also marketing. Many efforts have been made to provide simple, effective and user friendly analytical methods for the determination and antioxidant capacity (AOC) evaluation of food polyphenols. In a parallel track, over the last twenty years, nanomaterials (NMs) have made their entry in the analytical chemistry domain; NMs have, in fact, opened new paths for the development of analytical methods with the common aim to improve analytical performance and sustainability, becoming new tools in quality assurance of food and beverages. The aim of this review is to provide information on the most recent developments of new NMs-based tools and strategies for total polyphenols (TP) determination and AOC evaluation in food. In this review optical, electrochemical and bioelectrochemical approaches have been reviewed. The use of nanoparticles, quantum dots, carbon nanomaterials and hybrid materials for the detection of polyphenols is the main subject of the works reported. However, particular attention has been paid to the success of the application in real samples, in addition to the NMs. In particular, the discussion has been focused on methods/devices presenting, in the opinion of the authors, clear advancement in the fields, in terms of simplicity, rapidity and usability. This review aims to demonstrate how the NM-based approaches represent valid alternatives to classical methods for polyphenols analysis, and are mature to be integrated for the rapid quality assessment of food quality in lab or directly in the field. PMID:29401719
Fair, Justin D.; Bailey, William F.; Felty, Robert A.; Gifford, Amy E.; Shultes, Benjamin; Volles, Leslie H.
2010-01-01
Development of a robust reliable technique that permits for the rapid quantitation of volatile organic chemicals is an important first step to remediation associated with vapor intrusion. This paper describes the development of an analytical method that allows for the rapid and precise identification and quantitation of halogenated and nonhalogenated contaminants commonly found within the ppbv level at sites where vapor intrusion is a concern. PMID:20885969
Lei, Kin Fong; Yang, Shih-I; Tsai, Shiao-Wen; Hsu, Hsiao-Ting
2015-03-01
Efficient diagnosis is very important for the prevention and treatment of diseases. Rapid disease screening in ambulatory environment is one of the most pressing needs for disease control. Despite there are many methods to detect the results of immunoassays, quantitative measurement for rapid disease screening is still a great challenge for point-of-care applications. In this study, a fabrication method for depositing carbon nanotube bundles has been successfully developed for realization of functional paper-based microfluidic sensing device. Quantitative detection of label-free immunoassay, i.e., biotin-avidin binding interaction, was demonstrated by direct measurement of the current change of the biosensor after single application of the target analyte. Sensitivity of 0.33 μA/ng mL(-1) and minimal detectable analyte concentration of 25 ng/mL were achieved. The time necessary for the detection was 500 s which is a large reduction compared with the conventional immunoassay. Such paper-based biosensor has the benefits of portability, fast response, simple operation, and low cost and has the potential for the development of rapid disease screening devices. Copyright © 2014 Elsevier B.V. All rights reserved.
Yan, Binjun; Chen, Teng; Xu, Zhilin; Qu, Haibin
2014-06-01
The concept of quality by design (QbD) is widely applied in the process development of pharmaceuticals. However, the additional cost and time have caused some resistance about QbD implementation. To show a possible solution, this work proposed a rapid process development method, which used direct analysis in real time mass spectrometry (DART-MS) as a process analytical technology (PAT) tool for studying the chromatographic process of Ginkgo biloba L., as an example. The breakthrough curves were fast determined by DART-MS at-line. A high correlation coefficient of 0.9520 was found between the concentrations of ginkgolide A determined by DART-MS and HPLC. Based on the PAT tool, the impacts of process parameters on the adsorption capacity were discovered rapidly, which showed a decreased adsorption capacity with the increase of the flow rate. This work has shown the feasibility and advantages of integrating PAT into QbD implementation for rapid process development. Copyright © 2014 Elsevier B.V. All rights reserved.
-Omic and Electronic Health Records Big Data Analytics for Precision Medicine
Wu, Po-Yen; Cheng, Chih-Wen; Kaddi, Chanchala D.; Venugopalan, Janani; Hoffman, Ryan; Wang, May D.
2017-01-01
Objective Rapid advances of high-throughput technologies and wide adoption of electronic health records (EHRs) have led to fast accumulation of -omic and EHR data. These voluminous complex data contain abundant information for precision medicine, and big data analytics can extract such knowledge to improve the quality of health care. Methods In this article, we present -omic and EHR data characteristics, associated challenges, and data analytics including data pre-processing, mining, and modeling. Results To demonstrate how big data analytics enables precision medicine, we provide two case studies, including identifying disease biomarkers from multi-omic data and incorporating -omic information into EHR. Conclusion Big data analytics is able to address –omic and EHR data challenges for paradigm shift towards precision medicine. Significance Big data analytics makes sense of –omic and EHR data to improve healthcare outcome. It has long lasting societal impact. PMID:27740470
VanderMolen, Karen M.; Cech, Nadja B.; Paine, Mary F.
2013-01-01
Introduction Grapefruit juice can increase or decrease the systemic exposure of myriad oral medications, leading to untoward effects or reduced efficacy. Furanocoumarins in grapefruit juice have been established as inhibitors of cytochrome P450 3A (CYP3A)-mediated metabolism and P-glycoprotein (P-gp)-mediated efflux, while flavonoids have been implicated as inhibitors of organic anion transporting polypeptide (OATP)-mediated absorptive uptake in the intestine. The potential for drug interactions with a food product necessitates an understanding of the expected concentrations of a suite of structurally diverse and potentially bioactive compounds. Objective Develop methods for the rapid quantitation of two furanocoumarins (bergamottin and 6′,7′-dihydroxybergamottin) and four flavonoids (naringin, naringenin, narirutin, and hesperidin) in five grapefruit juice products using ultra performance liquid chromatography (UPLC). Methodology Grapefruit juice products were extracted with ethyl acetate; the concentrated extract was analyzed by UPLC using acetonitrile:water gradients and a C18 column. Analytes were detected using a photodiode array detector, set at 250 nm (furanocoumarins) and 310 nm (flavonoids). Intraday and interday precision and accuracy and limits of detection and quantitation were determined. Results Rapid (<5.0 min) UPLC methods were developed to measure the aforementioned furanocoumarins and flavonoids. R2 values for the calibration curves of all analytes were >0.999. Considerable between-juice variation in the concentrations of these compounds was observed, and the quantities measured were in agreement with the concentrations published in HPLC studies. Conclusion These analytical methods provide an expedient means to quantitate key furanocoumarins and flavonoids in grapefruit juice and other foods used in dietary substance-drug interaction studies. PMID:23780830
Vandermolen, Karen M; Cech, Nadja B; Paine, Mary F; Oberlies, Nicholas H
2013-01-01
Grapefruit juice can increase or decrease the systemic exposure of myriad oral medications, leading to untoward effects or reduced efficacy. Furanocoumarins in grapefruit juice have been established as inhibitors of cytochrome P450 3A (CYP3A)-mediated metabolism and P-glycoprotein (P-gp)-mediated efflux, while flavonoids have been implicated as inhibitors of organic anion transporting polypeptide (OATP)-mediated absorptive uptake in the intestine. The potential for drug interactions with a food product necessitates an understanding of the expected concentrations of a suite of structurally diverse and potentially bioactive compounds. Develop methods for the rapid quantitation of two furanocoumarins (bergamottin and 6',7'-dihydroxybergamottin) and four flavonoids (naringin, naringenin, narirutin and hesperidin) in five grapefruit juice products using ultra-performance liquid chromatography (UPLC). Grapefruit juice products were extracted with ethyl acetate; the concentrated extract was analysed by UPLC using acetonitrile:water gradients and a C18 -column. Analytes were detected using a photodiode array detector, set at 250 nm (furanocoumarins) and 310 nm (flavonoids). Intraday and interday precision and accuracy and limits of detection and quantitation were determined. Rapid (< 5.0 min) UPLC methods were developed to measure the aforementioned furanocoumarins and flavonoids. R(2) values for the calibration curves of all analytes were >0.999. Considerable between-juice variation in the concentrations of these compounds was observed, and the quantities measured were in agreement with the concentrations published in HPLC studies. These analytical methods provide an expedient means to quantitate key furanocoumarins and flavonoids in grapefruit juice and other foods used in dietary substance-drug interaction studies. Copyright © 2013 John Wiley & Sons, Ltd.
Peer, Cody J; Shakleya, Diaa M; Younis, Islam R; Kraner, James C; Callery, Patrick S
2007-10-01
A rapid mass spectrometric method was developed for the identification of fentanyl and its major hepatic metabolite norfentanyl in postmortem urine of six drug-overdose victims involving fentanyl use. To reduce matrix effects or ion suppression, sample preparation consisted of centrifugation and solid-phase extraction. Deuterium-labeled internal standards ((2)H(5)-fentanyl and (2)H(5)-norfentanyl) were used to compensate for instrument variation in signal, analyte recovery during sample preparation, and ion suppression. Structural information for fentanyl and norfentanyl were collected using mass spectrometry (MS) with electrospray ionization (ESI) operated in the positive ion mode. Fentanyl (m/z 337) was found in each of the six overdose cases by the appearance of the MS-MS daughter ion on both an ion trap and a triple-quadrupole MS resulting from the fragmentation pathway of fentanyl (m/z 337 --> 188). Norfentanyl was detected in all six cases by the appearance of the MH(+) ion, m/z 233, with a single-quadrupole MS and confirmed in an ion trap MS. Ion suppression, as determined by the comparison of ion intensities from spiked samples in water with postmortem urine from the cases, ranged from 18% to 98% in three ESI sources. The use of stable isotope-labeled internal standards obviates sample preparation because ratios of analyte/internal standard remain constant in the presence of extensive matrix effects. This MS method provided sufficient sensitivity and selectivity for the rapid identification of fentanyl and norfentanyl in urine at levels >/= 10 ng/mL without prior analyte resolution by chromatography and with a total analysis time of less than 1 h.
Strano-Rossi, Sabina; Molaioni, Francesco; Rossi, Francesca; Botrè, Francesco
2005-01-01
This paper describes a rapid gas chromatographic/mass spectrometric (GC/MS) screening method for the detection of drugs of abuse and/or their metabolites in urine. Synthetic stimulants, opiates, cocaine metabolites, cannabinoids--and specifically the acid metabolite of tetrahydrocannabinol (THC-COOH)--can be simultaneously extracted by a single liquid/liquid separation step, at alkaline pH, and assayed as trimethylsilyl derivatives by GC/MS in SIM (selected ion monitoring) mode. All the analytes show a good linearity (R2 > 0.99 for most of the considered substances) in the range 25-1000 ng/mL, with a good reproducibility of both the retention times (CV% <0.7) and the relative abundances of the characteristic diagnostic ions (CV% <13). The limit of detection (LOD) of the method is 25 ng/mL of target compound in human urine for most of the substances investigated, 3 ng/mL for THC-COOH, and 10 ng/mL for norbuprenorphine. Validation of the method allows its application to different fields of forensic analytical toxicology, including antidoping analysis.
Applications of computer algebra to distributed parameter systems
NASA Technical Reports Server (NTRS)
Storch, Joel A.
1993-01-01
In the analysis of vibrations of continuous elastic systems, one often encounters complicated transcendental equations with roots directly related to the system's natural frequencies. Typically, these equations contain system parameters whose values must be specified before a numerical solution can be obtained. The present paper presents a method whereby the fundamental frequency can be obtained in analytical form to any desired degree of accuracy. The method is based upon truncation of rapidly converging series involving inverse powers of the system natural frequencies. A straightforward method to developing these series and summing them in closed form is presented. It is demonstrated how Computer Algebra can be exploited to perform the intricate analytical procedures which otherwise would render the technique difficult to apply in practice. We illustrate the method by developing two analytical approximations to the fundamental frequency of a vibrating cantilever carrying a rigid tip body. The results are compared to the numerical solution of the exact (transcendental) frequency equation over a range of system parameters.
Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan
2016-01-01
Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.
Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan
2016-01-01
Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations. PMID:27031232
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cong, Yongzheng; Rausch, Sarah J.; Geng, Tao
2014-10-27
Here we show that a closed pneumatic microvalve on a PDMS chip can serve as a semipermeable membrane under an applied potential, enabling current to pass through while blocking the passage of charged analytes. Enrichment of both anionic and cationic species has been demonstrated, and concentration factors of ~70 have been achieved in just 8 s. Once analytes are concentrated, the valve is briefly opened and the sample is hydrodynamically injected onto an integrated microchip or capillary electrophoresis (CE) column. In contrast to existing preconcentration approaches, the membrane-based method described here enables both rapid analyte concentration as well as highmore » resolution separations.« less
Batta, N; Pilli, N R; Derangula, V R; Vurimindi, H B; Damaramadugu, R; Yejella, R P
2015-03-01
The authors proposed a simple, rapid and sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) assay method for the simultaneous determination of saxagliptin and its active metabolite 5-hydroxy saxagliptin in human plasma. The developed method was fully validated as per the US FDA guidelines. The method utilized stable labeled isotopes saxagliptin-15 N d2 (IS1) and 5-hydroxy saxagliptin-15 N-d2 (IS2) as internal standards for the quantification of saxagliptin and 5-hydroxy saxagliptin, respectively. Analytes and the internal standards were extracted from human plasma by a single step solid-phase extraction technique without drying, evaporation and reconstitution steps. The optimized mobile phase was composed of 0.1% acetic acid in 5 mM ammonium acetate and acetonitrile (30:70, v/v) and delivered at a flow rate of 0.85 mL/min. The method exhibits the linear calibration range of 0.05-100 ng/mL for both the analytes. The precision and accuracy results for both the analytes were well within the acceptance limits. The different stability experiments conducted in aqueous samples and in matrix samples are meeting the acceptance criteria. The chromatographic run time was set at 1.8 min; hence more than 400 samples can be analyzed in a single day. © Georg Thieme Verlag KG Stuttgart · New York.
Method and means for dynamic measurement of rates of adsorption from solutions
Slomka, Bogdan J.; Buttermore, William H.
1992-05-05
A method and apparatus for dynamic measurement of rates of absorption from solutions. The method has the advantage of avoiding the use of solvent normally used to establish a baseline. The method involves pre-evacuating the adsorbent contained in an adsorbent cell and thereafter rapidly contacting the adsorbent with analytical solution, all without prior exposure of adsorbent to pure solvent. The result is a sharp characteristic adsorption line.
Liu, Shao-Ying; Huang, Xi-Hui; Wang, Xiao-Fang; Jin, Quan; Zhu, Guo-Nian
2014-05-01
This study developed an improved analytical method for the simultaneous quantification of 13 quinolones in cosmetics by ultra high performance liquid chromatography combined with ESI triple quadrupole MS/MS under the multiple reaction monitoring mode. The analytes were extracted and purified by using an SPE cartridge. The limits of quantification ranged from 0.03 to 3.02 μg/kg. The precision for determining the quinolones was <19.39%. The proposed method was successfully developed for the determination of quinolones in real cosmetic samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent Progresses in Nanobiosensing for Food Safety Analysis
Yang, Tao; Huang, Huifen; Zhu, Fang; Lin, Qinlu; Zhang, Lin; Liu, Junwen
2016-01-01
With increasing adulteration, food safety analysis has become an important research field. Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective detection strategies necessary for food safety analysis. This review summarizes various function types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014–present) progress in the design and development of nanobiosensing for the detection of food contaminants including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are sub-classified according to various recognition methods of each analyte. The existing shortcomings and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues are also discussed briefly. PMID:27447636
Quantification of astaxanthin in shrimp waste hydrolysate by HPLC.
López-Cervantes, J; Sánchez-Machado, D I; Gutiérrez-Coronado, M A; Ríos-Vázquez, N J
2006-10-01
In the present study, a simple and rapid reversed-phase HPLC method for the determination of astaxanthin in shrimp waste hydrolysate has been developed and validated. The analytical procedure involves the direct extraction of astaxanthin from the lipid fraction with methanol. The analytical column, SS Exil ODS, was operated at 25C. The mobile phase consisted of a mixture of water:methanol:dichloromethane:acetonitrile (4.5:28:22:45.5 v/v/v/v) at a flow rate of 1.0 mL/min. Detection and identification were performed using a photodiode array detector (lambda(detection) = 476 nm). The proposed HPLC method showed adequate linearity, repeatability and accuracy.
Recent Progresses in Nanobiosensing for Food Safety Analysis.
Yang, Tao; Huang, Huifen; Zhu, Fang; Lin, Qinlu; Zhang, Lin; Liu, Junwen
2016-07-19
With increasing adulteration, food safety analysis has become an important research field. Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective detection strategies necessary for food safety analysis. This review summarizes various function types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014-present) progress in the design and development of nanobiosensing for the detection of food contaminants including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are sub-classified according to various recognition methods of each analyte. The existing shortcomings and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues are also discussed briefly.
Rapid determination of minoxidil in human plasma using ion-pair HPLC.
Zarghi, A; Shafaati, A; Foroutan, S M; Khoddam, A
2004-10-29
A rapid, simple and sensitive ion-pair high-performance liquid chromatography (HPLC) method has been developed for quantification of minoxidil in plasma. The assay enables the measurement of minoxidil for therapeutic drug monitoring with a minimum detectable limit of 0.5 ng ml(-1). The method involves simple, one-step extraction procedure and analytical recovery was complete. The separation was performed on an analytical 150 x 4.6 mm i.d. microbondapak C18 column. The wavelength was set at 281 nm. The mobile phase was a mixture of 0.01 M sodium dihydrogen phosphate buffer and acetonitrile (60:40, v/v) containing 2.5 mM sodium dodecyl sulphate adjusted to pH 3.5 at a flow rate of 1 ml/min. The column temperature was set at 50 degrees C. The calibration curve was linear over the concentration range 2-100 ng ml(-1). The coefficients of variation for inter-day and intra-day assay were found to be less than 8%.
Bozzolino, Cristina; Leporati, Marta; Gani, Federica; Ferrero, Cinzia; Vincenti, Marco
2018-02-20
A fast analytical method for the simultaneous detection of 24 β 2 -agonists in human urine was developed and validated. The method covers the therapeutic drugs most commonly administered, but also potentially abused β 2 -agonists. The procedure is based on enzymatic deconjugation with β-glucuronidase followed by SPE clean up using mixed-phase cartridges with both ion-exchange and lipophilic properties. Instrumental analysis conducted by UHPLC-MS/MS allowed high peak resolution and rapid chromatographic separation, with reduced time and costs. The method was fully validated according ISO 17025:2005 principles. The following parameters were determined for each analyte: specificity, selectivity, linearity, limit of detection, limit of quantification, precision, accuracy, matrix effect, recovery and carry-over. The method was tested on real samples obtained from patients subjected to clinical treatment under chronic or acute therapy with either formoterol, indacaterol, salbutamol, or salmeterol. The drugs were administered using pressurized metered dose inhalers. All β 2 -agonists administered to the patients were detected in the real samples. The method proved adequate to accurately measure the concentration of these analytes in the real samples. The observed analytical data are discussed with reference to the administered dose and the duration of the therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Lomond, Jasmine S; Tong, Anthony Z
2011-01-01
Analysis of dissolved methane, ethylene, acetylene, and ethane in water is crucial in evaluating anaerobic activity and investigating the sources of hydrocarbon contamination in aquatic environments. A rapid chromatographic method based on phase equilibrium between water and its headspace is developed for these analytes. The new method requires minimal sample preparation and no special apparatus except those associated with gas chromatography. Instead of Henry's Law used in similar previous studies, partition coefficients are used for the first time to calculate concentrations of dissolved hydrocarbon gases, which considerably simplifies the calculation involved. Partition coefficients are determined to be 128, 27.9, 1.28, and 96.3 at 30°C for methane, ethylene, acetylene, and ethane, respectively. It was discovered that the volume ratio of gas-to-liquid phase is critical to the accuracy of the measurements. The method performance can be readily improved by reducing the volume ratio of the two phases. Method validation shows less than 6% variation in accuracy and precision except at low levels of methane where interferences occur in ambient air. Method detection limits are determined to be in the low ng/L range for all analytes. The performance of the method is further tested using environmental samples collected from various sites in Nova Scotia.
Deng, Chunhui; Li, Ning; Zhang, Xiangmin
2004-01-01
The purpose of this study was to develop a simple, rapid and sensitive analytical method for determination of amino acids in neonatal blood samples. The developed method involves the employment of derivatization and a solid-phase microextraction (SPME) technique together with gas chromatography/mass spectrometry (GC/MS). Amino acids in blood samples were derivatized by a mixture of isobutyl chloroformate, methanol and pyridine, and the N(O,S)-alkoxycarbonyl alkyl esters thus formed were headspace extracted by a SPME fiber. Finally, the extracted analytes on the fiber were desorbed and detected by GC/MS in electron impact (EI) mode. L-Valine, L-leucine, L-isoleucine, L-phenylanaline and L-tyrosine in blood samples were quantitatively analyzed by measurement of the corresponding N(O,S)-alkoxycarbonyl alkyl esters using an external standard method. SPME conditions were optimized, and the method was validated. The method was applied to diagnosis of neonatal phenylkenuria (PKU) and maple syrup urine disease (MSUD) by the analyses of five amino acids in blood samples. The results showed that the proposed method is a potentially powerful tool for simultaneous screening for neonatal PKU and MSUD. Copyright (c) 2004 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
An analytical method was developed using ultra performance liquid chromatography-triple quadrupole-tandem mass spectrometry (UPLC-TQ-MS/MS) to simultaneously analyze 14 sulfonamides (SA) in six minutes. Despite the rapidity of the assay the system was properly re-equilibrated in this time. No carryo...
Hammouda, Mohammed E. A.; Abu El-Enin, Mohamed A.; El-Sherbiny, Dina T.; El-Wasseef, Dalia R.; El-Ashry, Saadia M.
2013-01-01
A rapid HPLC procedure using a microemulsion as an eluent was developed and validated for analytical quality control of antihyperlipidemic mixture containing simvastatin (SIM) and ezetimibe (EZT) in their pharmaceutical preparations. The separation was performed on a column packed with cyano bonded stationary phase adopting UV detection at 238 nm using a flow rate of 1 mL/min. The optimized microemulsion mobile phase consisted of 0.2 M sodium dodecyl sulphate, 1% octanol, 10% n-propanol, and 0.3% triethylamine in 0.02 M phosphoric acid at pH 5.0. The developed method was validated in terms of specificity, linearity, lower limit of quantification (LOQ), lower limit of detection (LOD), precision, and accuracy. The proposed method is rapid (8.5 min), reproducible (RSD < 2.0%) and achieves satisfactory resolution between SIM and EZT (resolution factor = 2.57). The mean recoveries of the analytes in pharmaceutical preparations were in agreement with those obtained from a reference method, as revealed by statistical analysis of the obtained results using Student's t-test and the variance ratio F-test. PMID:24282651
Andrade, Ana Flávia B; Mamo, Samuel Kasahun; Gonzalez-Rodriguez, Jose
2017-02-07
The NBOMe derivatives are phenethylamines derived from the 2C class of hallucinogens. Only a few human pharmacologic studies have been conducted on these drugs, and several cases of intoxication and deaths have been reported. Presently, NBOMe are not a part of the routine drugs-of-abuse screening procedure for many police forces, and there are no rapid immunoassay screening tests that can detect the presence of those compounds. In this Article, the voltammetric behavior of 25B NBOMe and 25I NBOMe were investigated and their electroanalytical characteristics determined for the first time. A novel, fast, and sensitive screening method for the identification of the two most common NBOMes (25B-NBOMe and 25I-NBOMe) in real samples is reported. The method uses the electrochemical oxidation of these molecules to produce an analytical signal that can be related to the NBOMe concentration with an average lower limit of quantitation of 0.01 mg/mL for both of them. The method is selective enough to identify the two compounds individually, even given the great similarity in their structure.
Vikingsson, Svante; Strömqvist, Malin; Svedberg, Anna; Hansson, Johan; Höiom, Veronica; Gréen, Henrik
2016-08-01
A novel, rapid and sensitive liquid chromatography tandem-mass spectrometry method for quantification of vemurafenib in human plasma, that also for the first time allows for metabolite semi-quantification, was developed and validated to support clinical trials and therapeutic drug monitoring. Vemurafenib was analysed by precipitation with methanol followed by a 1.9 min isocratic liquid chromatography tandem masspectrometry analysis using an Acquity BEH C18 column with methanol and formic acid using isotope labelled internal standards. Analytes were detected in multireaction monitoring mode on a Xevo TQ. Semi-quantification of vemurafenib metabolites was performed using the same analytical system and sample preparation with gradient elution. The vemurafenib method was successfully validated in the range 0.5-100 μg/mL according to international guidelines. The metabolite method was partially validated owing to the lack of commercially available reference materials. For the first time concentration levels at steady state for melanoma patients treated with vemurafenib is presented. The low abundance of vemurafenib metabolites suggests that they lack clinical significance. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Liu, Ye; Kannegulla, Akash; Wu, Bo; Cheng, Li-Jing
2018-05-15
Spherical fullerene (C 60 ) can quench the fluorescence of a quantum dot (QD) through energy transfer and charge transfer processes, with the quenching efficiency regulated by the number of proximate C 60 on each QD. With the quenching property and its small size compared with other nanoparticle-based quenchers, it is advantageous to group a QD reporter and multiple C 60 -labeled oligonucleotide probes to construct a molecular beacon (MB) probe for sensitive, robust nucleic acid detection. We demonstrated a rapid, high-sensitivity DNA detection method using the nanosensors composed of QD-C 60 based MBs carried by magnetic nanoparticles (MNPs). The assay was accelerated by first dispersing the nanosensors in analytes for highly efficient DNA capture resulting from short-distance 3-dimensional diffusion of targets to the sensor surface and then concentrating the nanosensors to a substrate by magnetic force to amplify the fluorescence signal for target quantification. The enhanced mass transport enabled a rapid detection (< 10 min) with a small sample volume (1-10 µl). The high signal-to-noise ratio produced by the QD-C 60 pairs and magnetic concentration yielded a detection limit of 100 fM (~106 target DNA copies for a 10 µl analyte). The rapid, sensitive, label-free detection method will benefit the applications in point-of-care molecular diagnostic technologies.
2016-01-01
Multivariate calibration (MVC) and near-infrared (NIR) spectroscopy have demonstrated potential for rapid analysis of melamine in various dairy products. However, the practical application of ordinary MVC can be largely restricted because the prediction of a new sample from an uncalibrated batch would be subject to a significant bias due to matrix effect. In this study, the feasibility of using NIR spectroscopy and the standard addition (SA) net analyte signal (NAS) method (SANAS) for rapid quantification of melamine in different brands/types of milk powders was investigated. In SANAS, the NAS vector of melamine in an unknown sample as well as in a series of samples added with melamine standards was calculated and then the Euclidean norms of series standards were used to build a straightforward univariate regression model. The analysis results of 10 different brands/types of milk powders with melamine levels 0~0.12% (w/w) indicate that SANAS obtained accurate results with the root mean squared error of prediction (RMSEP) values ranging from 0.0012 to 0.0029. An additional advantage of NAS is to visualize and control the possible unwanted variations during standard addition. The proposed method will provide a practically useful tool for rapid and nondestructive quantification of melamine in different brands/types of milk powders. PMID:27525154
Liew, Deborah; Linge, Kathryn L; Joll, Cynthia A; Heitz, Anna; Charrois, Jeffrey W A
2012-06-08
Simultaneous quantitation of 6 halonitromethanes (HNMs) and 5 haloacetamides (HAAms) was achieved with a simplified liquid-liquid extraction (LLE) method, followed by gas chromatography-mass spectrometry. Stability tests showed that brominated tri-HNMs immediately degraded in the presence of ascorbic acid, sodium sulphite and sodium borohydride, and also reduced in samples treated with ammonium chloride, or with no preservation. Both ammonium chloride and ascorbic acid were suitable for the preservation of HAAms. Ammonium chloride was most suitable for preserving both HNMs and HAAms, although it is recommended that samples be analysed as soon as possible after collection. While groundwater samples exhibited a greater analytical bias compared to other waters, the good recoveries (>90%) of most analytes in tap water suggest that the method is very appropriate for determining these analytes in treated drinking waters. Application of the method to water from three drinking water treatment plants in Western Australia indicating N-DBP formation did occur, with increased detections after chlorination. The method is recommended for low-cost, rapid screening of both HNMs and HAAms in drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.
Zaromb, Solomon
2004-07-13
Air is sampled at a rate in excess of 100 L/min, preferably at 200-300 L/min, so as to collect therefrom a substantial fraction, i.e., at least 20%, preferably 60-100%, of airborne particulates. A substance of interest (analyte), such as lead, is rapidly solubilized from the the collected particulates into a sample of liquid extractant, and the concentration of the analyte in the extractant sample is determined. The high-rate air sampling and particulate collection may be effected with a high-throughput filter cartridge or with a recently developed portable high-throughput liquid-absorption air sampler. Rapid solubilization of lead is achieved by a liquid extractant comprising 0.1-1 M of acetic acid or acetate, preferably at a pH of 5 or less and preferably with inclusion of 1-10% of hydrogen peroxide. Rapid determination of the lead content in the liquid extractant may be effected with a colorimetric or an electroanalytical analyzer.
Ion mobility analysis of lipoproteins
Benner, W Henry [Danville, CA; Krauss, Ronald M [Berkeley, CA; Blanche, Patricia J [Berkeley, CA
2007-08-21
A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.
Aerosol preparation of intact lipoproteins
Benner, W Henry [Danville, CA; Krauss, Ronald M [Berkeley, CA; Blanche, Patricia J [Berkeley, CA
2012-01-17
A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.
NASA Astrophysics Data System (ADS)
Hartmann, Alexander K.; Weigt, Martin
2005-10-01
A concise, comprehensive introduction to the topic of statistical physics of combinatorial optimization, bringing together theoretical concepts and algorithms from computer science with analytical methods from physics. The result bridges the gap between statistical physics and combinatorial optimization, investigating problems taken from theoretical computing, such as the vertex-cover problem, with the concepts and methods of theoretical physics. The authors cover rapid developments and analytical methods that are both extremely complex and spread by word-of-mouth, providing all the necessary basics in required detail. Throughout, the algorithms are shown with examples and calculations, while the proofs are given in a way suitable for graduate students, post-docs, and researchers. Ideal for newcomers to this young, multidisciplinary field.
Protocol for Detection of Yersinia pestis in Environmental ...
Methods Report This is the first ever open-access and detailed protocol available to all government departments and agencies, and their contractors to detect Yersinia pestis, the pathogen that causes plague, from multiple environmental sample types including water. Each analytical method includes sample processing procedure for each sample type in a step-by-step manner. It includes real-time PCR, traditional microbiological culture, and the Rapid Viability PCR (RV-PCR) analytical methods. For large volume water samples it also includes an ultra-filtration-based sample concentration procedure. Because of such a non-restrictive availability of this protocol to all government departments and agencies, and their contractors, the nation will now have increased laboratory capacity to analyze large number of samples during a wide-area plague incident.
Relationship between Grades Earned and Time in Online Courses
ERIC Educational Resources Information Center
Carver, Lin B.; Mukherjee, Keya; Lucio, Robert
2017-01-01
Online education is rapidly becoming a significant method of course delivery in higher education. Consequently, instructors analyze student performance in an attempt to better scaffold student learning. Learning analytics can provide insight into online students' course behaviors. Archival data from 167 graduate level education students enrolled…
Until recently, lake physical habitat assessment has been an underemployed tool for assessing lake and reservoir ecological condition. We outline and evaluate a rapid field sampling and analytical approach for quantifying near-shore physical habitat. We quantified the repeatabil...
U.S. Supreme Court rulings have created uncertainty regarding federal Clean Water Act (CWA) authority over certain waters, including ephemeral and intermittent streams, and established new data and analytical requirements for determining whether a water body is covered under the ...
Nelson, Kjell E.; Foley, Jennifer O.; Yager, Paul
2008-01-01
We describe a novel microfluidic immunoassay method based on the diffusion of a small molecule analyte into a parallel-flowing stream containing cognate antibody. This interdiffusion results in a steady-state gradient of antibody binding site occupancy transverse to convective flow. In contrast to the diffusion immunoassay (Hatch et al. Nature Biotechnology,19:461−465 (2001)), this antibody occupancy gradient is interrogated by a sensor surface coated with a functional analog of the analyte. Antibodies with at least one unoccupied binding site may specifically bind to this functionalized surface, leading to a quantifiable change in surface coverage by the antibody. SPR imaging is used to probe the spatial distribution of antibody binding to the surface and, therefore, the outcome of the assay. We show that the pattern of antibody binding to the SPR sensing surface correlates with the concentration of a model analyte (phenytoin) in the sample stream. Using an inexpensive disposable microfluidic device, we demonstrate assays for phenytoin ranging in concentration from 75 to 1000 nM in phosphate buffer. At a total volumetric flow rate of 90 nL/sec, the assays are complete within 10 minutes. Inclusion of an additional flow stream on the side of the antibody stream opposite to that of the sample enables simultaneous calibration of the assay. This assay method is suitable for rapid quantitative detection of low-molecular weight analytes for point-of-care diagnostic instrumentation. PMID:17437332
Eboigbodin, Kevin; Filén, Sanna; Ojalehto, Tuomas; Brummer, Mirko; Elf, Sonja; Pousi, Kirsi; Hoser, Mark
2016-06-01
Rapid and accurate diagnosis of influenza viruses plays an important role in infection control, as well as in preventing the misuse of antibiotics. Isothermal nucleic acid amplification methods offer significant advantages over the polymerase chain reaction (PCR), since they are more rapid and do not require the sophisticated instruments needed for thermal cycling. We previously described a novel isothermal nucleic acid amplification method, 'Strand Invasion Based Amplification' (SIBA®), with high analytical sensitivity and specificity, for the detection of DNA. In this study, we describe the development of a variant of the SIBA method, namely, reverse transcription SIBA (RT-SIBA), for the rapid detection of viral RNA targets. The RT-SIBA method includes a reverse transcriptase enzyme that allows one-step reverse transcription of RNA to complementary DNA (cDNA) and simultaneous amplification and detection of the cDNA by SIBA under isothermal reaction conditions. The RT-SIBA method was found to be more sensitive than PCR for the detection of influenza A and B and could detect 100 copies of influenza RNA within 15 min. The development of RT-SIBA will enable rapid and accurate diagnosis of viral RNA targets within point-of-care or central laboratory settings.
Soleh, Muhammad Tarmizi; Foo, Jared Yong Yang; Bailey, Ulla-Maja; Tan, Nikki Yi; Wan, Yunxia; Cooper-White, Justin; Schulz, Benjamin Luke; Punyadeera, Chamindie
2014-01-01
The measurements of plasma natriuretic peptides (NT-proBNP, proBNP and BNP) are used to diagnose heart failure but these are expensive to produce. We describe a rapid, cheap and facile production of proteins for immunoassays of heart failure. DNA encoding N-terminally His-tagged NT-proBNP and proBNP were cloned into the pJexpress404 vector. ProBNP and NT-proBNP peptides were expressed in Escherichia coli, purified and refolded in vitro. The analytical performance of these peptides were comparable with commercial analytes (NT-proBNP EC50 for the recombinant is 2.6 ng/ml and for the commercial material is 5.3 ng/ml) and the EC50 for recombinant and commercial proBNP, are 3.6 and 5.7 ng/ml respectively). Total yield of purified refolded NT-proBNP peptide was 1.75 mg/l and proBNP was 0.088 mg/l. This approach may also be useful in expressing other protein analytes for immunoassay applications. To develop a cost effective protein expression method in E. coli to obtain high yields of NT-proBNP (1.75 mg/l) and proBNP (0.088 mg/l) peptides for immunoassay use.
Fuller, Daniel; Buote, Richard; Stanley, Kevin
2017-11-01
The volume and velocity of data are growing rapidly and big data analytics are being applied to these data in many fields. Population and public health researchers may be unfamiliar with the terminology and statistical methods used in big data. This creates a barrier to the application of big data analytics. The purpose of this glossary is to define terms used in big data and big data analytics and to contextualise these terms. We define the five Vs of big data and provide definitions and distinctions for data mining, machine learning and deep learning, among other terms. We provide key distinctions between big data and statistical analysis methods applied to big data. We contextualise the glossary by providing examples where big data analysis methods have been applied to population and public health research problems and provide brief guidance on how to learn big data analysis methods. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Method and means for dynamic measurement of rates of adsorption from solutions
Slomka, B.J.; Buttermore, W.H.
1992-05-05
A method and apparatus are described for the dynamic measurement of rates of absorption from solutions. The method has the advantage of avoiding the use of solvent normally used to establish a baseline. The method involves pre-evacuating the adsorbent contained in an adsorbent cell and thereafter rapidly contacting the adsorbent with analytical solution, all without prior exposure of adsorbent to pure solvent. The result is a sharp characteristic adsorption line. 5 figs.
Rapid and continuous analyte processing in droplet microfluidic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strey, Helmut; Kimmerling, Robert; Bakowski, Tomasz
The compositions and methods described herein are designed to introduce functionalized microparticles into droplets that can be manipulated in microfluidic devices by fields, including electric (dielectrophoretic) or magnetic fields, and extracted by splitting a droplet to separate the portion of the droplet that contains the majority of the microparticles from the part that is largely devoid of the microparticles. Within the device, channels are variously configured at Y- or T junctions that facilitate continuous, serial isolation and dilution of analytes in solution. The devices can be limited in the sense that they can be designed to output purified analytes thatmore » are then further analyzed in separate machines or they can include additional channels through which purified analytes can be further processed and analyzed.« less
Scalable Predictive Analysis in Critically Ill Patients Using a Visual Open Data Analysis Platform
Poucke, Sven Van; Zhang, Zhongheng; Schmitz, Martin; Vukicevic, Milan; Laenen, Margot Vander; Celi, Leo Anthony; Deyne, Cathy De
2016-01-01
With the accumulation of large amounts of health related data, predictive analytics could stimulate the transformation of reactive medicine towards Predictive, Preventive and Personalized (PPPM) Medicine, ultimately affecting both cost and quality of care. However, high-dimensionality and high-complexity of the data involved, prevents data-driven methods from easy translation into clinically relevant models. Additionally, the application of cutting edge predictive methods and data manipulation require substantial programming skills, limiting its direct exploitation by medical domain experts. This leaves a gap between potential and actual data usage. In this study, the authors address this problem by focusing on open, visual environments, suited to be applied by the medical community. Moreover, we review code free applications of big data technologies. As a showcase, a framework was developed for the meaningful use of data from critical care patients by integrating the MIMIC-II database in a data mining environment (RapidMiner) supporting scalable predictive analytics using visual tools (RapidMiner’s Radoop extension). Guided by the CRoss-Industry Standard Process for Data Mining (CRISP-DM), the ETL process (Extract, Transform, Load) was initiated by retrieving data from the MIMIC-II tables of interest. As use case, correlation of platelet count and ICU survival was quantitatively assessed. Using visual tools for ETL on Hadoop and predictive modeling in RapidMiner, we developed robust processes for automatic building, parameter optimization and evaluation of various predictive models, under different feature selection schemes. Because these processes can be easily adopted in other projects, this environment is attractive for scalable predictive analytics in health research. PMID:26731286
Scalable Predictive Analysis in Critically Ill Patients Using a Visual Open Data Analysis Platform.
Van Poucke, Sven; Zhang, Zhongheng; Schmitz, Martin; Vukicevic, Milan; Laenen, Margot Vander; Celi, Leo Anthony; De Deyne, Cathy
2016-01-01
With the accumulation of large amounts of health related data, predictive analytics could stimulate the transformation of reactive medicine towards Predictive, Preventive and Personalized (PPPM) Medicine, ultimately affecting both cost and quality of care. However, high-dimensionality and high-complexity of the data involved, prevents data-driven methods from easy translation into clinically relevant models. Additionally, the application of cutting edge predictive methods and data manipulation require substantial programming skills, limiting its direct exploitation by medical domain experts. This leaves a gap between potential and actual data usage. In this study, the authors address this problem by focusing on open, visual environments, suited to be applied by the medical community. Moreover, we review code free applications of big data technologies. As a showcase, a framework was developed for the meaningful use of data from critical care patients by integrating the MIMIC-II database in a data mining environment (RapidMiner) supporting scalable predictive analytics using visual tools (RapidMiner's Radoop extension). Guided by the CRoss-Industry Standard Process for Data Mining (CRISP-DM), the ETL process (Extract, Transform, Load) was initiated by retrieving data from the MIMIC-II tables of interest. As use case, correlation of platelet count and ICU survival was quantitatively assessed. Using visual tools for ETL on Hadoop and predictive modeling in RapidMiner, we developed robust processes for automatic building, parameter optimization and evaluation of various predictive models, under different feature selection schemes. Because these processes can be easily adopted in other projects, this environment is attractive for scalable predictive analytics in health research.
Whelan, Michelle; Kinsella, Brian; Furey, Ambrose; Moloney, Mary; Cantwell, Helen; Lehotay, Steven J; Danaher, Martin
2010-07-02
A new UHPLC-MS/MS (ultra high performance liquid chromatography coupled to tandem mass spectrometry) method was developed and validated to detect 38 anthelmintic drug residues, consisting of benzimidazoles, avermectins and flukicides. A modified QuEChERS-type extraction method was developed with an added concentration step to detect most of the analytes at <1 microg kg(-1) levels in milk. Anthelmintic residues were extracted into acetonitrile using magnesium sulphate and sodium chloride to induce liquid-liquid partitioning followed by dispersive solid phase extraction for cleanup. The extract was concentrated into dimethyl sulphoxide, which was used as a keeper to ensure analytes remain in solution. Using rapid polarity switching in electrospray ionisation, a single injection was capable of detecting both positively and negatively charged ions in a 13 min run time. The method was validated at two levels: the unapproved use level and at the maximum residue level (MRL) according to Commission Decision (CD) 2002/657/EC criteria. The decision limit (CCalpha) of the method was in the range of 0.14-1.9 and 11-123 microg kg(-1) for drugs validated at unapproved and MRL levels, respectively. The performance of the method was successfully verified for benzimidazoles and levamisole by participating in a proficiency study.
Liu, Yue; Hu, Jia; Li, Yan; Li, Xiao-Shuang; Wang, Zhong-Liang
2016-10-01
A novel method with high sensitivity for the rapid determination of chrysin, apigenin and luteolin in environment water samples was developed by double-pumps controlled on-line solid-phase extraction (SPE) coupled with high-performance liquid chromatography (HPLC). In the developed technique, metal organic framework MIL-101 was synthesized and applied as a sorbent for SPE. The as-synthesized MIL-101 was characterized by scanning electron microscope, X-ray diffraction spectrometry, thermal gravimetric analysis and micropore physisorption analysis. The MIL-101 behaved as a fast kinetics in the adsorption of chrysin, apigenin and luteolin. On-line SPE of chrysin, apigenin and luteolin was processed by loading a sample solution at a flow rate of 1.0 mL/min for 10 min. The extracted analytes were subsequently eluted into a ZORBAX Bonus-RP analytical column (25 cm long × 4.6 mm i.d.) for HPLC separation under isocratic condition with a mobile phase (MeOH: ACN: 0.02 M H 3 PO 4 = 35:35:30) at a flow rate of 1.0 mL/min. Experimental conditions, including ionic strength, sample pH, sample loading rates, sample loading time and desorption analytes time, were further optimized to obtain efficient preconcentration and high-precision determination of the analytes mentioned above. The method achieved the merits of simplicity, rapidity, sensitivity, wide linear range and high sample throughput. The possible mechanism for the adsorption of flavonoids on MIL-101 was proposed. The developed method has been applied to determine trace chrysin, apigenin and luteolin in a variety of environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Arghavani-Beydokhti, Somayeh; Rajabi, Maryam; Asghari, Alireza
2017-07-01
A novel, efficient, rapid, simple, sensitive, selective, and environmentally friendly method termed magnetic dispersive micro solid-phase extraction combined with supramolecular solvent-based microextraction (Mdμ-SPE-SSME) followed by high-performance liquid chromatography (HPLC) with UV detection is introduced for the simultaneous microextraction of cholesterol-lowering drugs in complicated matrices. In the first microextraction procedure, using layered double hydroxide (LDH)-coated Fe 3 O 4 magnetic nanoparticles, an efficient sample cleanup is simply and rapidly provided without the need for time-consuming centrifugation and elution steps. In the first step, desorption of the target analytes is easily performed through dissolution of the LDH-coated magnetic nanoparticles containing the target analytes in an acidic solution. In the next step, an emulsification microextraction method based on a supramolecular solvent is used for excellent preconcentration, ultimately resulting in an appropriate determination of the target analytes in real samples. Under the optimal experimental conditions, the Mdμ-SPE-SSME-HPLC-UV detection procedure provides good linearity in the ranges of 1.0-1500 ng mL -1 , 1.5-2000 ng mL -1 , and 2.0-2000 ng mL -1 with coefficients of determination of 0.995 or less, low limits of detection (0.3, 0.5, and 0.5 ng mL -1 ), and good extraction repeatabilities (relative standard deviations below 7.8%, n = 5) in deionized water for rosuvastatin, atorvastatin, and gemfibrozil, respectively. Finally, the proposed method is successfully applied for the determination of the target analytes in complicated matrices. Graphical Abstract Mdμ-SPE-SSME procedure.
Beloglazova, N V; Goryacheva, I Yu; Rusanova, T Yu; Yurasov, N A; Galve, R; Marco, M-P; De Saeger, S
2010-07-05
A new rapid method which allows simultaneous one step detection of two analytes of different nature (2,4,6,-trichlorophenol (TCP) and ochratoxin A (OTA)) in red wine was developed. It was based on a column test with three separate immunolayers: two test layers and one control layer. Each layer consisted of sepharose gel with immobilized anti-OTA (OTA test layer), anti-TCP (TCP test layer) or anti-HRP (control layer) antibodies. Analytes bind to the antibodies in the corresponding test layer while sample flows through the column. Then a mixture of OTA-HRP and TCP-HRP in appropriate dilutions was used, followed by the application of chromogenic substrate. Colour development of the test layer occurred when the corresponding analyte was absent in the sample. HRP-conjugates bound to anti-HRP antibody in the control layer independently of presence or absence of analytes and a blue colour developed in the control layer. Cut-off values for both analytes were 2 microg L(-1). The described method was applied to the simultaneous detection of TCP and OTA in wine samples. To screen the analytes in red wine samples, clean-up columns were used for sample pre-treatment in combination with the test column. Results were confirmed by chromatographic methods. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Kershaw, David S.; Prasad, Manoj K.; Beason, J. Douglas
1986-01-01
The Klein-Nishina differential cross section averaged over a relativistic Maxwellian electron distribution is analytically reduced to a single integral, which can then be rapidly evaluated in a variety of ways. A particularly fast method for numerically computing this single integral is presented. This is, to the authors' knowledge, the first correct computation of the Compton scattering kernel.
Narukawa, Tomohiro; Chiba, Koichi; Sinaviwat, Savarin; Feldmann, Jörg
2017-01-06
A new rapid monitoring method by means of high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) following the heat-assisted extraction was developed for measurement of total inorganic arsenic species in rice flour. As(III) and As(V) eluted at the same retention time and completely separated from organoarsenic species by an isocratic elution program on a reversed phase column. Therefore, neither ambiguous oxidation of arsenite to arsenate nor the integration of two peaks were necessary to determine directly the target analyte inorganic arsenic. Rapid injection allowed measuring 3 replicates within 6min and this combined with a quantitative extraction of all arsenic species from rice flour by a 15min HNO 3 -H 2 O 2 extraction makes this the fastest laboratory based method for inorganic arsenic in rice flour. Copyright © 2016 Elsevier B.V. All rights reserved.
Lake shore and littoral habitat structure: a field survey method and its precision
Until recently, lake physical habitat assessment has been and underemployed tool for assessing lake and reservoir ecological condition. Herein, we outline and evaluate a rapid (2 persons: 1.5-3.5 h) field sampling and analytical approach for quantifying near-shore physical habit...
Multiplex screening of persistent organic pollutants in fish using spectrally encoded microspheres
USDA-ARS?s Scientific Manuscript database
Persistent organic pollutants (POPs) are food contaminants of global public health concern and known to be carcinogenic and endocrine disruptors. Their monitoring is essential and an easy-to-use, rapid and affordable multi-analyte screening method with simplified sample preparation can be a valuable...
USDA-ARS?s Scientific Manuscript database
A multiresidue analytical method using a modification of the “quick, easy, cheap, effective, rugged, and safe” (QuEChERS) sample preparation approach combined with liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis was established and validated for the rapid determination of 69 pesti...
USDA-ARS?s Scientific Manuscript database
A rapid luminescence method was developed to screen residues of enrofloxacin (ENRO) and its metabolite, ciprofloxacin (CIPRO), in swine liver. Target analytes were extracted in acetonitrile-2.5% trifluoroacetic acid-NaCl, cleaned up by dispersive liquid-liquid microextraction (DLLME), and finally de...
Suba, Dávid; Urbányi, Zoltán; Salgó, András
2016-10-01
Capillary electrophoresis techniques are widely used in the analytical biotechnology. Different electrophoretic techniques are very adequate tools to monitor size-and charge heterogenities of protein drugs. Method descriptions and development studies of capillary zone electrophoresis (CZE) have been described in literature. Most of them are performed based on the classical one-factor-at-time (OFAT) approach. In this study a very simple method development approach is described for capillary zone electrophoresis: a "two-phase-four-step" approach is introduced which allows a rapid, iterative method development process and can be a good platform for CZE method. In every step the current analytical target profile and an appropriate control strategy were established to monitor the current stage of development. A very good platform was established to investigate intact and digested protein samples. Commercially available monoclonal antibody was chosen as model protein for the method development study. The CZE method was qualificated after the development process and the results were presented. The analytical system stability was represented by the calculated RSD% value of area percentage and migration time of the selected peaks (<0.8% and <5%) during the intermediate precision investigation. Copyright © 2016 Elsevier B.V. All rights reserved.
Separation of negatively charged carbohydrates by capillary electrophoresis.
Linhardt, R J; Pervin, A
1996-01-12
Capillary electrophoresis (CE) has recently emerged as a highly promising technique consuming an extremely small amount of sample and capable of the rapid, high-resolution separation, characterization, and quantitation of analytes. CE has been used for the separation of biopolymers, including acidic carbohydrates. Since CE is basically an analytical method for ions, acidic carbohydrates that give anions in weakly acid, neutral, or alkaline media are often the direct objects of this method. The scope of this review is limited to the use of CE for the analysis of carbohydrates containing carboxylate, sulfate, and phosphate groups as well as neutral carbohydrates that have been derivatized to incorporate strongly acidic functionality, such as sulfonate groups.
Big Data and Analytics in Healthcare.
Tan, S S-L; Gao, G; Koch, S
2015-01-01
This editorial is part of the Focus Theme of Methods of Information in Medicine on "Big Data and Analytics in Healthcare". The amount of data being generated in the healthcare industry is growing at a rapid rate. This has generated immense interest in leveraging the availability of healthcare data (and "big data") to improve health outcomes and reduce costs. However, the nature of healthcare data, and especially big data, presents unique challenges in processing and analyzing big data in healthcare. This Focus Theme aims to disseminate some novel approaches to address these challenges. More specifically, approaches ranging from efficient methods of processing large clinical data to predictive models that could generate better predictions from healthcare data are presented.
Biosensors for hepatitis B virus detection.
Yao, Chun-Yan; Fu, Wei-Ling
2014-09-21
A biosensor is an analytical device used for the detection of analytes, which combines a biological component with a physicochemical detector. Recently, an increasing number of biosensors have been used in clinical research, for example, the blood glucose biosensor. This review focuses on the current state of biosensor research with respect to efficient, specific and rapid detection of hepatitis B virus (HBV). The biosensors developed based on different techniques, including optical methods (e.g., surface plasmon resonance), acoustic wave technologies (e.g., quartz crystal microbalance), electrochemistry (amperometry, voltammetry and impedance) and novel nanotechnology, are also discussed.
Huang, Xin; Zhai, Congcong; You, Qimin; Chen, Hongjun
2014-07-01
The requirement to monitor the presence of genetically modified organisms (GMO) in a variety of marked products has generated an increasing demand for reliable, rapid, and time and cost-effective analytical methods. Here we report an on-site method for rapid detection of cauliflower mosaic virus promoter (CaMV 35S), a common element present in most GMO, using cross-priming amplification (CPA) technology. Detection was achieved using a DNA-based contamination-proof strip biosensor. The limit of detection was 30 copies for the pBI121 plasmid containing the CaMV 35S gene. The certified reference sample of GM maize line MON810 was detectable even at the low relative mass concentration of 0.05%. The developed CPA method had high specificity for the CaMV 35S gene, as compared with other GM lines not containing this gene and non-GM products. The method was further validated using nine real-world samples, and the results were confirmed by real-time PCR analysis. Because of its simplicity, rapidity, and high sensitivity, this method of detecting the CaMV 35S gene has great commercial prospects for rapid GMO screening of high-consumption food and agriculture products.
Biswas, A K; Tandon, S; Beura, C K
2016-06-01
The aim of this study was to develop a simple, specific and rapid analytical method for accurate identification of calpain and calpastatin from chicken blood and muscle samples. The method is based on liquid-liquid extraction technique followed by casein Zymography detection. The target compounds were extracted from blood and meat samples by tris buffer, and purified and separated on anion exchange chromatography. It has been observed that buffer (pH 6.7) containing 50 mM tris-base appears to be excellent extractant as activity of analytes was maximum for all samples. The concentrations of μ-, m-calpain and calpastatin detected in the extracts of blood, breast and thigh samples were 0.28-0.55, 1.91-2.05 and 1.38-1.52 Unit/g, respectively. For robustness, the analytical method was applied to determine the activity of calpains (μ and m) in eighty postmortem muscle samples. It has been observed that μ-calpain activity in breast and thigh muscles declined very rapidly at 48 h and 24 h, respectively while activity of m-calpain remained stable. Shear force values were also declined with the increase of post-mortem aging showing the presence of ample tenderness of breast and thigh muscles. Finally, it is concluded that the method standardized for the detection of calpain and calpastatin has the potential to be applied to identify post-mortem aging of chicken meat samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Safouhi, Hassan; Hoggan, Philip
2003-01-01
This review on molecular integrals for large electronic systems (MILES) places the problem of analytical integration over exponential-type orbitals (ETOs) in a historical context. After reference to the pioneering work, particularly by Barnett, Shavitt and Yoshimine, it focuses on recent progress towards rapid and accurate analytic solutions of MILES over ETOs. Software such as the hydrogenlike wavefunction package Alchemy by Yoshimine and collaborators is described. The review focuses on convergence acceleration of these highly oscillatory integrals and in particular it highlights suitable nonlinear transformations. Work by Levin and Sidi is described and applied to MILES. A step by step description of progress in the use of nonlinear transformation methods to obtain efficient codes is provided. The recent approach developed by Safouhi is also presented. The current state of the art in this field is summarized to show that ab initio analytical work over ETOs is now a viable option.
Analytical performances of the Diazyme ADA assay on the Cobas® 6000 system.
Delacour, Hervé; Sauvanet, Christophe; Ceppa, Franck; Burnat, Pascal
2010-12-01
To evaluate the analytical performance of the Diazyme ADA assay on the Cobas® 6000 system for pleural fluid samples analysis. Imprecision, linearity, calibration curve stability, interference, and correlation studies were completed. The Diazyme ADA assay demonstrated excellent precision (CV<4%) over the analytical measurement range (0.5-117 U/L). Bilirubin above 50 μmol/L and haemoglobin above 177 μmol/L interfered with the test, inducing a negative and a positive interference respectively. The Diazyme ADA assay correlated well with the Giusti method (r(2)=0.93) but exhibited a negative bias (~ -30%). The Diazyme ADA assay on the Cobas® 6000 system represents a rapid, accurate, precise and reliable method for determination of ADA activity in pleural fluid samples. Copyright © 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Norambuena, Luis; Gras, Nuri; Contreras, Sergio
2013-08-15
A simple and rapid method for the detection and extraction of oxolinic acid, flumequine, florfenicol and oxytetracycline from marine sediments was developed and validated. The analytes were extracted from the marine sediment using a solution of oxalic acid diluted in methanol with sonication before detection by HPLC using a diode-array detector (florfenicol and oxytetracycline) and fluorescence (oxolinic acid and flumequine). The quantification limits (QL) were 100 ng/g for oxytetracycline and florfenicol and 5 ng/g for oxolinic acid and flumequine. The coefficients of variation of the repeatability and intermediate precision were less than 10% in all of the analytes. The calibration curves were linear between 50 and 500 ng/ml for oxytetracycline and florfenicol and 1 and 20 ng/ml for oxolinic acid and flumequine. The recuperation rate for the analytes was above 86%. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dieckmann, Ralf; Hammerl, Jens Andre; Hahmann, Hartmut; Wicke, Amal; Kleta, Sylvia; Dabrowski, Piotr Wojciech; Nitsche, Andreas; Stämmler, Maren; Al Dahouk, Sascha; Lasch, Peter
2016-06-23
Microbiological monitoring of consumer products and the efficiency of early warning systems and outbreak investigations depend on the rapid identification and strain characterisation of pathogens posing risks to the health and safety of consumers. This study evaluates the potential of three rapid analytical techniques for identification and subtyping of bacterial isolates obtained from a liquid hand soap product, which has been recalled and reported through the EU RAPEX system due to its severe bacterial contamination. Ten isolates recovered from two bottles of the product were identified as Klebsiella oxytoca and subtyped using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI TOF MS), near-infrared Fourier transform (NIR FT) Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Comparison of the classification results obtained by these phenotype-based techniques with outcomes of the DNA-based methods pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST) and single nucleotide polymorphism (SNP) analysis of whole-genome sequencing (WGS) data revealed a high level of concordance. In conclusion, a set of analytical techniques might be useful for rapid, reliable and cost-effective microbial typing to ensure safe consumer products and allow source tracking.
Visvanathan, Rizliya; Jayathilake, Chathuni; Liyanage, Ruvini
2016-11-15
For the first time, a reliable, simple, rapid and high-throughput analytical method for the detection and quantification of α-amylase inhibitory activity using the glucose assay kit was developed. The new method facilitates rapid screening of a large number of samples, reduces labor, time and reagents and is also suitable for kinetic studies. This method is based on the reaction of maltose with glucose oxidase (GOD) and the development of a red quinone. The test is done in microtitre plates with a total volume of 260μL and an assay time of 40min including the pre-incubation steps. The new method is tested for linearity, sensitivity, precision, reproducibility and applicability. The new method is also compared with the most commonly used 3,5-dinitrosalicylic acid (DNSA) method for determining α-amylase activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Method of assessing a lipid-related health risk based on ion mobility analysis of lipoproteins
Benner, W. Henry; Krauss, Ronald M.; Blanche, Patricia J.
2010-12-14
A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.
Ultrasound-Assisted Extraction of Stilbenes from Grape Canes.
Piñeiro, Zulema; Marrufo-Curtido, Almudena; Serrano, Maria Jose; Palma, Miguel
2016-06-16
An analytical ultrasound-assisted extraction (UAE) method has been optimized and validated for the rapid extraction of stilbenes from grape canes. The influence of sample pre-treatment (oven or freeze-drying) and several extraction variables (solvent, sample-solvent ratio and extraction time between others) on the extraction process were analyzed. The new method allowed the main stilbenes in grape canes to be extracted in just 10 min, with an extraction temperature of 75 °C and 60% ethanol in water as the extraction solvent. Validation of the extraction method was based on analytical properties. The resulting RSDs (n = 5) for interday/intraday precision were less than 10%. Furthermore, the method was successfully applied in the analysis of 20 different grape cane samples. The result showed that grape cane byproducts are potentially sources of bioactive compounds of interest for pharmaceutical and food industries.
NASA Technical Reports Server (NTRS)
Mickey, F. E.; Mcewan, A. J.; Ewing, E. G.; Huyler, W. C., Jr.; Khajeh-Nouri, B.
1970-01-01
An analysis was conducted with the objective of upgrading and improving the loads, stress, and performance prediction methods for Apollo spacecraft parachutes. The subjects considered were: (1) methods for a new theoretical approach to the parachute opening process, (2) new experimental-analytical techniques to improve the measurement of pressures, stresses, and strains in inflight parachutes, and (3) a numerical method for analyzing the dynamical behavior of rapidly loaded pilot chute risers.
NASA Astrophysics Data System (ADS)
Miller, Steven
1998-03-01
A generic stochastic method is presented that rapidly evaluates numerical bulk flux solutions to the one-dimensional integrodifferential radiative transport equation, for coherent irradiance of optically anisotropic suspensions of nonspheroidal bioparticles, such as blood. As Fermat rays or geodesics enter the suspension, they evolve into a bundle of random paths or trajectories due to scattering by the suspended bioparticles. Overall, this can be interpreted as a bundle of Markov trajectories traced out by a "gas" of Brownian-like point photons being scattered and absorbed by the homogeneous distribution of uncorrelated cells in suspension. By considering the cumulative vectorial intersections of a statistical bundle of random trajectories through sets of interior data planes in the space containing the medium, the effective equivalent information content and behavior of the (generally unknown) analytical flux solutions of the radiative transfer equation rapidly emerges. The fluxes match the analytical diffuse flux solutions in the diffusion limit, which verifies the accuracy of the algorithm. The method is not constrained by the diffusion limit and gives correct solutions for conditions where diffuse solutions are not viable. Unlike conventional Monte Carlo and numerical techniques adapted from neutron transport or nuclear reactor problems that compute scalar quantities, this vectorial technique is fast, easily implemented, adaptable, and viable for a wide class of biophotonic scenarios. By comparison, other analytical or numerical techniques generally become unwieldy, lack viability, or are more difficult to utilize and adapt. Illustrative calculations are presented for blood medias at monochromatic wavelengths in the visible spectrum.
Surface enhanced Raman spectroscopy based nanoparticle assays for rapid, point-of-care diagnostics
NASA Astrophysics Data System (ADS)
Driscoll, Ashley J.
Nucleotide and immunoassays are important tools for disease diagnostics. Many of the current laboratory-based analytical diagnostic techniques require multiple assay steps and long incubation times before results are acquired. In the development of bioassays designed for detecting the emergence and spread of diseases in point-of-care (POC) and remote settings, more rapid and portable analytical methods are necessary. Nanoparticles provide simple and reproducible synthetic methods for the preparation of substrates that can be applied in colloidal assays, providing gains in kinetics due to miniaturization and plasmonic substrates for surface enhanced spectroscopies. Specifically, surface enhanced Raman spectroscopy (SERS) is finding broad application as a signal transduction method in immunological and nucleotide assays due to the production of narrow spectral peaks from the scattering molecules and the potential for simultaneous multiple analyte detection. The application of SERS to a no-wash, magnetic capture assay for the detection of West Nile Virus Envelope and Rift Valley Fever Virus N antigens is described. The platform utilizes colloid based capture of the target antigen in solution, magnetic collection of the immunocomplexes and acquisition of SERS spectra by a handheld Raman spectrometer. The reagents for a core-shell nanoparticle, SERS based assay designed for the capture of target microRNA implicated in acute myocardial infarction are also characterized. Several new, small molecule Raman scatterers are introduced and used to analyze the enhancing properties of the synthesized gold coated-magnetic nanoparticles. Nucleotide and immunoassay platforms have shown improvements in speed and analyte capture through the miniaturization of the capture surface and particle-based capture systems can provide a route to further surface miniaturization. A reaction-diffusion model of the colloidal assay platform is presented to understand the interplay of system parameters such as particle diameter, initial analyte concentration and dissociation constants. The projected sensitivities over a broad range of assay conditions are examined and the governing regime of particle systems reported. The results provide metrics in the design of more robust analytics that are of particular interest for POC diagnostics.
Zang, Qingce; Gao, Yang; Huang, Luojiao; He, Jiuming; Lin, Sheng; Jin, Hongtao; Zhang, Ruiping; Abliz, Zeper
2018-03-01
With the rapid development and wide application of traditional Chinese medicine injection (TCMI), a number of adverse events of some TCMIs have incessantly been reported and have drawn broad attention in recent years. Establishing effective and practical analytical methods for safety evaluation and quality control of TCMI can help to improve the safety of TCMIs in clinical applications. In this study, a sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method has been developed and validated for the quantitative determination of potentially harmful substance 5,5'-oxydimethylenebis (2-furfural, OMBF) in TCMI samples. Chromatographic separation was performed on a C18 reversed-phase column (150 mm × 2.1 mm, 5 µm) by gradient elution, using methanol-water containing 0.1% formic acid as mobile phase at the flow rate of 0.3 mL/min. MS/MS detection was performed on a triple quadrupole mass spectrometer with positive electrospray ionization in the multiple reaction-monitoring mode. The method was sensitive with a limit of quantification of 0.3 ng/mL and linear over the range of 0.3-30 ng/mL ( r =0.9998). Intra- and inter-day precision for analyte was <9.52% RSD with recoveries in the range 88.0-109.67% at three concentration levels. The validated method was successfully applied to quantitatively determine the compound OMBF in TCMIs and glucose injections. Our study indicates that this method is simple, sensitive, practicable and reliable, and could be applied for safety evaluation and quality control of TCMIs and glucose injections.
Juck, Gregory; Gonzalez, Verapaz; Allen, Ann-Christine Olsson; Sutzko, Meredith; Seward, Kody; Muldoon, Mark T
2018-04-27
The Romer Labs RapidChek ® Listeria monocytogenes test system (Performance Tested Method ℠ 011805) was validated against the U.S. Department of Agriculture-Food Safety and Inspection Service Microbiology Laboratory Guidebook (USDA-FSIS/MLG), U.S. Food and Drug Association Bacteriological Analytical Manual (FDA/BAM), and AOAC Official Methods of Analysis ℠ (AOAC/OMA) cultural reference methods for the detection of L. monocytogenes on selected foods including hot dogs, frozen cooked breaded chicken, frozen cooked shrimp, cured ham, and ice cream, and environmental surfaces including stainless steel and plastic in an unpaired study design. The RapidChek method uses a proprietary enrichment media system, a 44-48 h enrichment at 30 ± 1°C, and detects L. monocytogenes on an immunochromatographic lateral flow device within 10 min. Different L. monocytogenes strains were used to spike each of the matrixes. Samples were confirmed based on the reference method confirmations and an alternate confirmation method. A total of 140 low-level spiked samples were tested by the RapidChek method after enrichment for 44-48 h in parallel with the cultural reference method. There were 88 RapidChek presumptive positives. One of the presumptive positives was not confirmed culturally. Additionally, one of the culturally confirmed samples did not exhibit a presumptive positive. No difference between the alternate confirmation method and reference confirmation method was observed. The respective cultural reference methods (USDA-FSIS/MLG, FDA/BAM, and AOAC/OMA) produced a total of 63 confirmed positive results. Nonspiked samples from all foods were reported as negative for L. monocytogenes by all methods. Probability of detection analysis demonstrated no significant differences in the number of positive samples detected by the RapidChek method and the respective cultural reference method.
Ionic liquids: solvents and sorbents in sample preparation.
Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L
2018-01-01
The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Determining the risk of cardiovascular disease using ion mobility of lipoproteins
Benner, W. Henry; Krauss, Ronald M.; Blanche, Patricia J.
2010-05-11
A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.
Apparatus for rapid measurement of aerosol bulk chemical composition
Lee, Yin-Nan E.; Weber, Rodney J.
2003-01-01
An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.
Yang, Guosheng; Zheng, Jian; Tagami, Keiko; Uchida, Shigeo
2013-11-15
In this work, we report a rapid and highly sensitive analytical method for the determination of tellurium in soil and plant samples using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS). Soil and plant samples were digested using Aqua regia. After appropriate dilution, Te in soil and plant samples was directly analyzed without any separation and preconcentration. This simple sample preparation approach avoided to a maximum extent any contamination and loss of Te prior to the analysis. The developed analytical method was validated by the analysis of soil/sediment and plant reference materials. Satisfactory detection limits of 0.17 ng g(-1) for soil and 0.02 ng g(-1) for plant samples were achieved, which meant that the developed method was applicable to studying the soil-to-plant transfer factor of Te. Our work represents for the first time that data on the soil-to-plant transfer factor of Te were obtained for Japanese samples which can be used for the estimation of internal radiation dose of radioactive tellurium due to the Fukushima Daiichi Nuclear Power Plant accident. Copyright © 2013 Elsevier B.V. All rights reserved.
Durán, Gema M; Contento, Ana M; Ríos, Ángel
2013-11-01
Based on the highly sensitive fluorescence change of water-soluble CdSe/ZnS core-shell quantum dots (QD) by paraquat herbicide, a simple, rapid and reproducible methodology was developed to selectively determine paraquat (PQ) in water samples. The methodology enabled the use of simple pretreatment procedure based on the simple water solubilization of CdSe/ZnS QDs with hydrophilic heterobifunctional thiol ligands, such as 3-mercaptopropionic acid (3-MPA), using microwave irradiation. The resulting water-soluble QDs exhibit a strong fluorescence emission at 596 nm with a high and reproducible photostability. The proposed analytical method thus satisfies the need for a simple, sensible and rapid methodology to determine residues of paraquat in water samples, as required by the increasingly strict regulations for health protection introduced in recent years. The sensitivity of the method, expressed as detection limits, was as low as 3.0 ng L(-1). The lineal range was between 10-5×10(3) ng L(-1). RSD values in the range of 71-102% were obtained. The analytical applicability of proposed method was demonstrated by analyzing water samples from different procedence. Copyright © 2013 Elsevier B.V. All rights reserved.
Precise determination of N-acetylcysteine in pharmaceuticals by microchip electrophoresis.
Rudašová, Marína; Masár, Marián
2016-01-01
A novel microchip electrophoresis method for the rapid and high-precision determination of N-acetylcysteine, a pharmaceutically active ingredient, in mucolytics has been developed. Isotachophoresis separations were carried out at pH 6.0 on a microchip with conductivity detection. The methods of external calibration and internal standard were used to evaluate the results. The internal standard method effectively eliminated variations in various working parameters, mainly run-to-run fluctuations of an injected volume. The repeatability and accuracy of N-acetylcysteine determination in all mucolytic preparations tested (Solmucol 90 and 200, and ACC Long 600) were more than satisfactory with the relative standard deviation and relative error values <0.7 and <1.9%, respectively. A recovery range of 99-101% of N-acetylcysteine in the analyzed pharmaceuticals predetermines the proposed method for accurate analysis as well. This work, in general, indicates analytical possibilities of microchip isotachophoresis for the quantitative analysis of simplified samples such as pharmaceuticals that contain the analyte(s) at relatively high concentrations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Ting-Ting; Ma, Yu-Gang; Zhang, Chun-Jian; Zhang, Zheng-Qiao
2018-03-01
The proton-proton momentum correlation function from different rapidity regions is systematically investigated for the Au + Au collisions at different impact parameters and different energies from 400 A MeV to 1500 A MeV in the framework of the isospin-dependent quantum molecular dynamics model complemented by the Lednický-Lyuboshitz analytical method. In particular, the in-medium nucleon-nucleon cross-section dependence of the correlation function is brought into focus, while the impact parameter and energy dependence of the momentum correlation function are also explored. The sizes of the emission source are extracted by fitting the momentum correlation functions using the Gaussian source method. We find that the in-medium nucleon-nucleon cross section obviously influences the proton-proton momentum correlation function, which is from the whole-rapidity or projectile or target rapidity region at smaller impact parameters, but there is no effect on the mid-rapidity proton-proton momentum correlation function, which indicates that the emission mechanism differs between projectile or target rapidity and mid-rapidity protons.
Sreemany, Arpita; Bera, Melinda Kumar; Sarkar, Anindya
2017-12-30
The elaborate sampling and analytical protocol associated with conventional dual-inlet isotope ratio mass spectrometry has long hindered high-resolution climate studies from biogenic accretionary carbonates. Laser-based on-line systems, in comparison, produce rapid data, but suffer from unresolvable matrix effects. It is, therefore, necessary to resolve these matrix effects to take advantage of the automated laser-based method. Two marine bivalve shells (one aragonite and one calcite) and one fish otolith (aragonite) were first analysed using a CO 2 laser ablation system attached to a continuous flow isotope ratio mass spectrometer under different experimental conditions (different laser power, sample untreated vs vacuum roasted). The shells and the otolith were then micro-drilled and the isotopic compositions of the powders were measured in a dual-inlet isotope ratio mass spectrometer following the conventional acid digestion method. The vacuum-roasted samples (both aragonite and calcite) produced mean isotopic ratios (with a reproducibility of ±0.2 ‰ for both δ 18 O and δ 13 C values) almost identical to the values obtained using the conventional acid digestion method. As the isotopic ratio of the acid digested samples fall within the analytical precision (±0.2 ‰) of the laser ablation system, this suggests the usefulness of the method for studying the biogenic accretionary carbonate matrix. When using laser-based continuous flow isotope ratio mass spectrometry for the high-resolution isotopic measurements of biogenic carbonates, the employment of a vacuum-roasting step will reduce the matrix effect. This method will be of immense help to geologists and sclerochronologists in exploring short-term changes in climatic parameters (e.g. seasonality) in geological times. Copyright © 2017 John Wiley & Sons, Ltd.
Analysis of Environmental Contamination resulting from ...
Catastrophic incidents can generate a large number of samples with analytically diverse types including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface residue. Such samples may arise not only from contamination from the incident but also from the multitude of activities surrounding the response to the incident, including decontamination. This document summarizes a range of activities to help build laboratory capability in preparation for analysis following a catastrophic incident, including selection and development of fit-for-purpose analytical methods for chemical, biological, and radiological contaminants. Fit-for-purpose methods are those which have been selected to meet project specific data quality objectives. For example, methods could be fit for screening contamination in the early phases of investigation of contamination incidents because they are rapid and easily implemented, but those same methods may not be fit for the purpose of remediating the environment to safe levels when a more sensitive method is required. While the exact data quality objectives defining fitness-for-purpose can vary with each incident, a governing principle of the method selection and development process for environmental remediation and recovery is based on achieving high throughput while maintaining high quality analytical results. This paper illu
NASA Astrophysics Data System (ADS)
Krishnan, Karthik; Reddy, Kasireddy V.; Ajani, Bhavya; Yalavarthy, Phaneendra K.
2017-02-01
CT and MR perfusion weighted imaging (PWI) enable quantification of perfusion parameters in stroke studies. These parameters are calculated from the residual impulse response function (IRF) based on a physiological model for tissue perfusion. The standard approach for estimating the IRF is deconvolution using oscillatory-limited singular value decomposition (oSVD) or Frequency Domain Deconvolution (FDD). FDD is widely recognized as the fastest approach currently available for deconvolution of CT Perfusion/MR PWI. In this work, three faster methods are proposed. The first is a direct (model based) crude approximation to the final perfusion quantities (Blood flow, Blood volume, Mean Transit Time and Delay) using the Welch-Satterthwaite approximation for gamma fitted concentration time curves (CTC). The second method is a fast accurate deconvolution method, we call Analytical Fourier Filtering (AFF). The third is another fast accurate deconvolution technique using Showalter's method, we call Analytical Showalter's Spectral Filtering (ASSF). Through systematic evaluation on phantom and clinical data, the proposed methods are shown to be computationally more than twice as fast as FDD. The two deconvolution based methods, AFF and ASSF, are also shown to be quantitatively accurate compared to FDD and oSVD.
Rapid Method for Sodium Hydroxide Fusion of Concrete and ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
$ANBA; a rapid, combined data acquisition and correction program for the SEMQ electron microprobe
McGee, James J.
1983-01-01
$ANBA is a program developed for rapid data acquisition and correction on an automated SEMQ electron microprobe. The program provides increased analytical speed and reduced disk read/write operations compared with the manufacturer's software, resulting in a doubling of analytical throughput. In addition, the program provides enhanced analytical features such as averaging, rapid and compact data storage, and on-line plotting. The program is described with design philosophy, flow charts, variable names, a complete program listing, and system requirements. A complete operating example and notes to assist in running the program are included.
Cao, Xiaoqin; Li, Xiaofei; Li, Jian; Niu, Yunhui; Shi, Lu; Fang, Zhenfeng; Zhang, Tao; Ding, Hong
2018-01-15
A sensitive and reliable multi-mycotoxin-based method was developed to identify and quantify several carcinogenic mycotoxins in human blood and urine, as well as edible animal tissues, including muscle and liver tissue from swine and chickens, using liquid chromatography-tandem mass spectrometry (LC-MS/MS). For the toxicokinetic studies with individual mycotoxins, highly sensitive analyte-specific LC-MS/MS methods were developed for rat plasma and urine. Sample purification consisted of a rapid 'dilute and shoot' approach in urine samples, a simple 'dilute, evaporate and shoot' approach in plasma samples and a 'QuEChERS' procedure in edible animal tissues. The multi-mycotoxin and analyte-specific methods were validated in-house: The limits of detection (LOD) for the multi-mycotoxin and analyte-specific methods ranged from 0.02 to 0.41 μg/kg (μg/L) and 0.01 to 0.19 μg/L, respectively, and limits of quantification (LOQ) between 0.10 to 1.02 μg/kg (μg/L) and 0.09 to 0.47 μg/L, respectively. Apparent recoveries of the samples spiked with 0.25 to 4 μg/kg (μg/L) ranged from 60.1% to 109.8% with relative standard deviations below 15%. The methods were successfully applied to real samples. To the best of our knowledge, this is the first study carried out using a small group of patients from the Chinese population with hepatocellular carcinoma to assess their exposure to carcinogenic mycotoxins using biomarkers. Finally, the multi-mycotoxin method is a useful analytical method for assessing exposure to mycotoxins edible in animal tissues. The analyte-specific methods could be useful during toxicokinetic and toxicological studies. Copyright © 2017. Published by Elsevier B.V.
Foreman, W.T.; Zaugg, S.D.; Falres, L.M.; Werner, M.G.; Leiker, T.J.; Rogerson, P.F.
1992-01-01
Analytical interferences were observed during the determination of organic compounds in groundwater samples preserved with mercuric chloride. The nature of the interference was different depending on the analytical isolation technique employed. (1) Water samples extracted with dichloromethane by continuous liquid-liquid extraction (CLLE) and analyzed by gas chromatography/mass spectrometry revealed a broad HgCl2 'peak' eluting over a 3-5-min span which interfered with the determination of coeluting organic analytes. Substitution of CLLE for separatory funnel extraction in EPA method 508 also resulted in analytical interferences from the use of HgCl2 preservative. (2) Mercuric chloride was purged, along with organic contaminants, during closed-loop stripping (CLS) of groundwater samples and absorbed onto the activated charcoal trap. Competitive sorption of the HgCl2 by the trap appeared to contribute to the observed poor recoveries for spiked organic contaminants. The HgCl2 was not displaced from the charcoal with the dichloromethane elution solvent and required strong nitric acid to achieve rapid, complete displacement. Similar competitive sorption mechanisms might also occur in other purge and trap methods when this preservative is used.
Location of Biomarkers and Reagents within Agarose Beads of a Programmable Bio-nano-chip
Jokerst, Jesse V.; Chou, Jie; Camp, James P.; Wong, Jorge; Lennart, Alexis; Pollard, Amanda A.; Floriano, Pierre N.; Christodoulides, Nicolaos; Simmons, Glennon W.; Zhou, Yanjie; Ali, Mehnaaz F.
2012-01-01
The slow development of cost-effective medical microdevices with strong analytical performance characteristics is due to a lack of selective and efficient analyte capture and signaling. The recently developed programmable bio-nano-chip (PBNC) is a flexible detection device with analytical behavior rivaling established macroscopic methods. The PBNC system employs ≈300 μm-diameter bead sensors composed of agarose “nanonets” that populate a microelectromechanical support structure with integrated microfluidic elements. The beads are an efficient and selective protein-capture medium suitable for the analysis of complex fluid samples. Microscopy and computational studies probe the 3D interior of the beads. The relative contributions that the capture and detection of moieties, analyte size, and bead porosity make to signal distribution and intensity are reported. Agarose pore sizes ranging from 45 to 620 nm are examined and those near 140 nm provide optimal transport characteristics for rapid (<15 min) tests. The system exhibits efficient (99.5%) detection of bead-bound analyte along with low (≈2%) nonspecific immobilization of the detection probe for carcinoembryonic antigen assay. Furthermore, the role analyte dimensions play in signal distribution is explored, and enhanced methods for assay building that consider the unique features of biomarker size are offered. PMID:21290601
Kaufmann, A; Maden, K; Leisser, W; Matera, M; Gude, T
2005-11-01
Inorganic polyphosphates (di-, tri- and higher polyphosphates) can be used to treat fish, fish fillets and shrimps in order to improve their water-binding capacity. The practical relevance of this treatment is a significant gain of weight caused by the retention/uptake of water and natural juice into the fish tissues. This practice is legal; however, the use of phosphates has to be declared. The routine control testing of fish for the presence of polyphosphates, produced some results that were difficult to explain. One of the two analytical methods used determined low diphosphate concentrations in a number of untreated samples, while the other ion chromatography (IC) method did not detect them. This initiated a number of investigations: results showed that polyphosphates in fish and shrimps tissue undergo a rapid enzymatic degradation, producing the ubiquitous orthophosphate. This led to the conclusion that sensitive analytical methods are required in order to detect previous polyphosphate treatment of a sample. The polyphosphate concentrations detected by one of the analytical methods could not be explained by the degradation of endogenous high-energy nucleotides like ATP into diphosphate, but by a coeluting compound. Further investigations by LC-MS-MS proved that the substance responsible for the observed peak was inosine monophsosphate (IMP) and not as thought the inorganic diphosphate. The method producing the false-positive result was modified and both methods were ultimately able to detect polyphosphates well separated from natural nucleotides. Polyphosphates could no longer be detected (<0.5 mg kg-1) after modification of the analytical methodology. The relevance of these findings lies in the fact that similar analytical methods are employed in various control laboratories, which might lead to false interpretation of measurements.
Driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deploy...
USDA-ARS?s Scientific Manuscript database
Immunoassay for low molecular weight food contaminants, such as pesticides, veterinary drugs, and mycotoxins is now a well-established technique which meets the demands for a rapid, reliable, and cost-effective analytical method. However, due to limited understanding of the fundamental aspects of i...
USDA-ARS?s Scientific Manuscript database
Consumption of edible oils derived from conventional crop plants is increasing because they are generally regarded as more healthy alternatives to animal based fats and oils. More recently there has been increased interest in the use of alternative specialty plant-derived oils, including those from...
Wu, Wenjie; Zhang, Yuan; Wu, Hanqiu; Zhou, Weie; Cheng, Yan; Li, Hongna; Zhang, Chuanbin; Li, Lulu; Huang, Ying; Zhang, Feng
2017-07-01
Isoflavones are natural substances that exhibit hormone-like pharmacological activities. The separation of isoflavones remains an analytical challenge because of their similar structures. We show that ultra-high performance supercritical fluid chromatography can be an appropriate tool to achieve the fast separation of 12 common dietary isoflavones. Among the five tested columns the Torus DEA column was found to be the most effective column for the separation of these isoflavones. The impact of individual parameters on the retention time and separation factor was evaluated. These parameters were optimized to develop a simple, rapid, and green method for the separation of the 12 target analytes. It only took 12.91 min using gradient elution with methanol as an organic modifier and formic acid as an additive. These isoflavones were determined with limit of quantitation ranging from 0.10 to 0.50 μg/mL, which was sufficient for reliable determination of various matrixes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Ning; Su, Ming; Liang, Shuxuan; Sun, Hanwen
2016-05-15
A rapid and effective method for effective separation and rapid simultaneous determination of six bioactive anthraquinones by capillary zone electrophoresis was developed. An accelerated solvent extraction procedure was used for the extraction of anthraquinones from slimming tea. Under the optimized conditions, the effective separation of six anthraquinones was achieved within 8 min. Good linearity was achieved, with a correlation coefficient (r) of ⩾ 0.999. The limit of detection ranged from 0.33 to 1.40 μg mL(-1). The intra- and inter-day relative standard deviation (RSD) of the six analytes was in the range of 2.3-3.9% and 3.2-4.9%, respectively. The average recovery of the six analytes from real tea samples was in the range of 86.15-98.30% with the RSD of 1.04-4.99%. The developed and validated method has speediness, high sensitivity, recovery and precision, and can be applied for the quality control of slimming tea. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hughes, Rachel R; Scown, David; Lenehan, Claire E
2015-01-01
Plant extracts containing high levels of antioxidants are desirable due to their reported health benefits. Most techniques capable of determining the antioxidant activity of plant extracts are unsuitable for rapid at-line analysis as they require extensive sample preparation and/or long analysis times. Therefore, analytical techniques capable of real-time or pseudo real-time at-line monitoring of plant extractions, and determination of extraction endpoints, would be useful to manufacturers of antioxidant-rich plant extracts. To develop a reliable method for the rapid at-line extraction monitoring of antioxidants in plant extracts. Calendula officinalis extracts were prepared from dried flowers and analysed for antioxidant activity using sequential injection analysis (SIA) with chemiluminescence (CL) detection. The intensity of CL emission from the reaction of acidic potassium permanganate with antioxidants within the extract was used as the analytical signal. The SIA-CL method was applied to monitor the extraction of C. officinalis over the course of a batch extraction to determine the extraction endpoint. Results were compared with those from ultra high performance liquid chromatography (UHPLC). Pseudo real-time, at-line monitoring showed the level of antioxidants in a batch extract of Calendula officinalis plateaued after 100 min of extraction. These results correlated well with those of an offline UHPLC study. SIA-CL was found to be a suitable method for pseudo real-time monitoring of plant extractions and determination of extraction endpoints with respect to antioxidant concentrations. The method was applied at-line in the manufacturing industry. Copyright © 2015 John Wiley & Sons, Ltd.
Emerson, Rachel M.
2015-01-01
Abstract Inorganic compounds in biomass, often referred to as ash, are known to be problematic in the thermochemical conversion of biomass to bio-oil or syngas and, ultimately, hydrocarbon fuels because they negatively influence reaction pathways, contribute to fouling and corrosion, poison catalysts, and impact waste streams. The most common ash-analysis methods, such as inductively coupled plasma-optical emission spectrometry/mass spectrometry (ICP-OES/MS), require considerable time and expensive reagents. Laser-induced breakdown spectroscopy (LIBS) is emerging as a technique for rapid analysis of the inorganic constituents in a wide range of biomass materials. This study compares analytical results using LIBS data to results obtained from three separate ICP-OES/MS methods for 12 samples, including six standard reference materials. Analyzed elements include aluminum, calcium, iron, magnesium, manganese, phosphorus, potassium, sodium, and silicon, and results show that concentrations can be measured with an uncertainty of approximately 100 parts per million using univariate calibration models and relatively few calibration samples. These results indicate that the accuracy of LIBS is comparable to that of ICP-OES methods and indicate that some acid-digestion methods for ICP-OES may not be reliable for Na and Al. These results also demonstrate that germanium can be used as an internal standard to improve the reliability and accuracy of measuring many elements of interest, and that LIBS can be used for rapid determination of total ash in biomass samples. Key benefits of LIBS include little sample preparation, no reagent consumption, and the generation of meaningful analytical data instantaneously. PMID:26733765
Xu, Xiuli; Zhao, Haixiang; Li, Li; Liu, Hanxia; Ren, Heling; Zhong, Weike
2012-03-01
A gas chromatography-mass spectrometry (GC-MS) method was developed for the determination of 40 pesticides in fruits. The effects of adding analyte protectants were evaluated for compensating matrix effects and the impacts on the quantitative results. A new combination of analyte protectants - Polyethylene Glycol 400 (PEG 400) and olive oil combination, which can be dissolved in acetone, was used for the quantitative analysis. The pesticides were extracted from fruit samples with acetonitrile and the extracts were cleaned up using micro-solid phase extraction. A GC-MS method in selective ion monitoring (SIM) mode coupled with large volume injection was finally developed. Using the newly developed analyte protectant combination of PEG 400 and olive oil, a good linearity was obtained in the range of 1 - 200 microg/L with coefficients better than 0.99, and the detection limits were between 0.1 - 3.0 microg/L. The mean recoveries of the pesticides were 75% - 119% with the relative standard deviation values less than 16.6% except for dimethoate. The performance of the analyte protectants was compared with matrix-matched standards calibration curves in terms of quantitative accuracy. The results showed that the method of adding analyte protectants can replace the matrix-matched standard calibration, and can also reduce the sample pretreatment. When the devel- oped method was used for the analysis of apple, peache, orange, banana, grape and other fruit samples, a good matrix compensation effect was achieved, and thus effectively reduced the bad effects of the water-soluble agents to the gas chromatographic column.
NASA Astrophysics Data System (ADS)
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
Rapid structural analysis of nanomaterials in aqueous solutions
NASA Astrophysics Data System (ADS)
Ryuzaki, Sou; Tsutsui, Makusu; He, Yuhui; Yokota, Kazumichi; Arima, Akihide; Morikawa, Takanori; Taniguchi, Masateru; Kawai, Tomoji
2017-04-01
Rapid structural analysis of nanoscale matter in a liquid environment represents innovative technologies that reveal the identities and functions of biologically important molecules. However, there is currently no method with high spatio-temporal resolution that can scan individual particles in solutions to gain structural information. Here we report the development of a nanopore platform realizing quantitative structural analysis for suspended nanomaterials in solutions with a high z-axis and xy-plane spatial resolution of 35.8 ± 1.1 and 12 nm, respectively. We used a low thickness-to-diameter aspect ratio pore architecture for achieving cross sectional areas of analyte (i.e. tomograms). Combining this with multiphysics simulation methods to translate ionic current data into tomograms, we demonstrated rapid structural analysis of single polystyrene (Pst) beads and single dumbbell-like Pst beads in aqueous solutions.
Farajzadeh, Mir Ali; Mohebbi, Ali
2018-01-12
In this study, for the first time, a magnetic dispersive solid phase extraction method using an easy-accessible, cheap, and efficient magnetic sorbent (toner powder) combined with dispersive liquid-liquid microextraction has been developed for the extraction and preconcentration of some widely used pesticides (diazinon, ametryn, chlorpyrifos, penconazole, oxadiazon, diniconazole, and fenazaquin) from fruit juices prior to their determination by gas chromatography-flame ionization detection. In this method, the magnetic sorbent is mixed with an appropriate dispersive solvent (methanol-water, 80:20, v/v) and then injected into an aqueous sample containing the analytes. By this action the analytes are rapidly adsorbed on the sorbent by binding to its carbon. The sorbent particles are isolated from the aqueous solution in the presence of an external magnetic field. Then an appropriate organic solvent (acetone) is used to desorb the analytes from the sorbent. Finally, the obtained supernatant is mixed with an extraction solvent and injected into deionized water in order to achieve high enrichment factors and sensitivity. Several significant factors affecting the performance of the introduced method were investigated and optimized. Under the optimum experimental conditions, the extraction recoveries of the proposed method for the selected analytes ranged from 49-75%. The relative standard deviations were ≤7% for intra- (n = 6) and inter-day (n = 4) precisions at a concentration of 10 μg L -1 of each analyte. The limits of detection were in the range of 0.15-0.36 μg L -1 . Finally, the applicability of the proposed method was evaluated by analysis of the selected analytes in some fruit juices. Copyright © 2017 Elsevier B.V. All rights reserved.
Dönmez, Ozlem Aksu; Aşçi, Bürge; Bozdoğan, Abdürrezzak; Sungur, Sidika
2011-02-15
A simple and rapid analytical procedure was proposed for the determination of chromatographic peaks by means of partial least squares multivariate calibration (PLS) of high-performance liquid chromatography with diode array detection (HPLC-DAD). The method is exemplified with analysis of quaternary mixtures of potassium guaiacolsulfonate (PG), guaifenesin (GU), diphenhydramine HCI (DP) and carbetapentane citrate (CP) in syrup preparations. In this method, the area does not need to be directly measured and predictions are more accurate. Though the chromatographic and spectral peaks of the analytes were heavily overlapped and interferents coeluted with the compounds studied, good recoveries of analytes could be obtained with HPLC-DAD coupled with PLS calibration. This method was tested by analyzing the synthetic mixture of PG, GU, DP and CP. As a comparison method, a classsical HPLC method was used. The proposed methods were applied to syrups samples containing four drugs and the obtained results were statistically compared with each other. Finally, the main advantage of HPLC-PLS method over the classical HPLC method tried to emphasized as the using of simple mobile phase, shorter analysis time and no use of internal standard and gradient elution. Copyright © 2010 Elsevier B.V. All rights reserved.
Progress and challenges associated with halal authentication of consumer packaged goods.
Premanandh, Jagadeesan; Bin Salem, Samara
2017-11-01
Abusive business practices are increasingly evident in consumer packaged goods. Although consumers have the right to protect themselves against such practices, rapid urbanization and industrialization result in greater distances between producers and consumers, raising serious concerns on the supply chain. The operational complexities surrounding halal authentication pose serious challenges on the integrity of consumer packaged goods. This article attempts to address the progress and challenges associated with halal authentication. Advancement and concerns on the application of new, rapid analytical methods for halal authentication are discussed. The significance of zero tolerance policy in consumer packaged foods and its impact on analytical testing are presented. The role of halal assurance systems and their challenges are also considered. In conclusion, consensus on the establishment of one standard approach coupled with a sound traceability system and constant monitoring would certainly improve and ensure halalness of consumer packaged goods. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Predicting adverse hemodynamic events in critically ill patients.
Yoon, Joo H; Pinsky, Michael R
2018-06-01
The art of predicting future hemodynamic instability in the critically ill has rapidly become a science with the advent of advanced analytical processed based on computer-driven machine learning techniques. How these methods have progressed beyond severity scoring systems to interface with decision-support is summarized. Data mining of large multidimensional clinical time-series databases using a variety of machine learning tools has led to our ability to identify alert artifact and filter it from bedside alarms, display real-time risk stratification at the bedside to aid in clinical decision-making and predict the subsequent development of cardiorespiratory insufficiency hours before these events occur. This fast evolving filed is primarily limited by linkage of high-quality granular to physiologic rationale across heterogeneous clinical care domains. Using advanced analytic tools to glean knowledge from clinical data streams is rapidly becoming a reality whose clinical impact potential is great.
Engineered Antibodies for Monitoring of Polynuclear Aromatic Hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander E. Karu Ph.D; Victoria A. Roberts Ph.D.; Qing X. Li, Ph.D.
2002-01-17
This project was undertaken to fill needs in ODE's human and ecosystem health effects research, site remediation, rapid emergency response, and regulatory compliance monitoring programs. Doe has greatly stimulated development and validation of antibody-based, rapid, field-portable detection systems for small hazardous compounds. These range from simple dipsticks, microplate enzyme-linked immunosorbent assays (ELISAs), and hand-held colorimeters, to ultrasensitive microfluidic reactors, fiber-optic sensors and microarrays that can identify multiple analytes from patterns of cross-reactivity. Unfortunately, the technology to produce antibodies with the most desirable properties did not keep pace. Lack of antibodies remains a limiting factor in production and practical use ofmore » such devices. The goals of our project were to determine the chemical and structural bases for the antibody-analyte binding interactions using advanced computational chemistry, and to use this information to create useful new binding properties through in vitro genetic engineering and combinatorial library methods.« less
Cong, Yongzheng; Katipamula, Shanta; Geng, Tao; Prost, Spencer A; Tang, Keqi; Kelly, Ryan T
2016-02-01
A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for zone electrophoresis using a single microvalve. The polydimethylsiloxane microchip comprises a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, serves as a nanochannel preconcentrator under an applied electric potential, enabling current to pass through while preventing bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected into the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ∼450 in 230 s. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high-resolution CE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chebrolu, Kranthi K; Yousef, Gad G; Park, Ryan; Tanimura, Yoshinori; Brown, Allan F
2015-09-15
A high-throughput, robust and reliable method for simultaneous analysis of five carotenoids, four chlorophylls and one tocopherol was developed for rapid screening large sample populations to facilitate molecular biology and plant breeding. Separation was achieved for 10 known analytes and four unknown carotenoids in a significantly reduced run time of 10min. Identity of the 10 analytes was confirmed by their UV-Vis absorption spectras. Quantification of tocopherol, carotenoids and chlorophylls was performed at 290nm, 460nm and 650nm respectively. In this report, two sub two micron particle core-shell columns, Kinetex from Phenomenex (1.7μm particle size, 12% carbon load) and Cortecs from Waters (1.6μm particle size, 6.6% carbon load) were investigated and their separation efficiencies were evaluated. The peak resolutions were >1.5 for all analytes except for chlorophyll-a' with Cortecs column. The ruggedness of this method was evaluated in two identical but separate instruments that produced CV<2 in peak retentions for nine out of 10 analytes separated. Copyright © 2015 Elsevier B.V. All rights reserved.
Nanomaterials-based biosensors for detection of microorganisms and microbial toxins.
Sutarlie, Laura; Ow, Sian Yang; Su, Xiaodi
2017-04-01
Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed. Five signal transducing methods that are less equipment intensive (colorimetric, fluorimetric, surface enhanced Raman scattering, electrochemical, and magnetic relaxometry methods) is described and compared for their sensory performance (in term oflimit of detection, dynamic range, and response time) for all analyte categories. In the end, the suitability of these five sensing principles for on-site or field applications is discussed. With a comprehensive coverage of nanomaterials, design principles, sensing principles, and assessment on the sensory performance and suitability for on-site application, this review offers valuable insight and perspective for designing suitable nanomaterials-based microorganism biosensors for a given application. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sireis, W; Rüster, B; Daiss, C; Hourfar, M K; Capalbo, G; Pfeiffer, H-U; Janetzko, K; Goebel, M; Kempf, V A J; Seifried, E; Schmidt, M
2011-10-01
The Paul-Ehrlich-Institute analysed all fatalities due to bacterial infections between 1997 and 2007. Thereafter, the platelet shelf life was reduced to a maximum of 4 days after blood donation because the majority of all cases of severe transfusion-transmitted bacterial infections occurred with day 5 platelets. The current study compares the analytical sensitivity and the diagnostic specificity of four rapid bacterial detection procedures. Nine transfusion-relevant bacterial strains were spiked in pooled platelets or apheresis platelets at a low concentration (10 CFU/bag). Samples were collected after day 3, day 4 and day 5 and investigated by four rapid bacterial detection methods (modified BacT/ALERT, Bactiflow, FACS method and 16s DNA PCR methods). Seven out of nine bacterial strains were adequately detected by BacT/ALERT, Bactiflow and PCR in apheresis platelets and pooled platelets after sample collection at day 3, day 4 and day 5. For three bacterial strains, analytical sensitivity was reduced for the FACS method. Two bacterial strains did not grow under the storage conditions in either pooled or apheresis platelets. A late sample collection on day 3, day 4 or day 5 after blood donation in combination with a rapid bacterial detection method offers a new opportunity to improve blood safety and reduce errors due to sampling., BacT/ALERT, Bactiflow or 16s ID-NAT are feasible for late bacterial screening in platelets may provide data which support the extension of platelet shelf life in Germany to 5 days. © 2011 The Author(s). Vox Sanguinis © 2011 International Society of Blood Transfusion.
Jackowetz, J N; Mira de Orduña, R
2013-08-15
Sulphur dioxide (SO2) is essential for the preservation of wines. The presence of SO2 binding compounds in musts and wines may limit sulphite efficacy leading to higher total SO2 additions, which may exceed SO2 limits permitted by law and pose health risks for sensitive individuals. An improved method for the quantification of significant wine SO2 binding compounds is presented that applies a novel sample treatment approach and rapid UHPLC separation. Glucose, galacturonic acid, alpha-ketoglutarate, pyruvate, acetoin and acetaldehyde were derivatised with 2,4-dinitrophenylhydrazine and separated using a solid core C18 phase by ultra high performance liquid chromatography. Addition of EDTA to samples prevented de novo acetaldehyde formation from ethanol oxidation. Optimised derivatisation duration enhanced reproducibility and allowed for glucose and galacturonic acid quantification. High glucose residues were found to interfere with the recovery of other SO2 binders, but practical SO2 concentrations and red wine pigments did not affect derivatisation efficiency. The calibration range, method accuracy, precision and limits of detection were found to be satisfactory for routine analysis of SO2 binders in wines. The current method represents a significant improvement in the comprehensive analysis of SO2 binding wine carbonyls. It allows for the quantification of major SO2 binders at practical analyte concentrations, and uses a simple sample treatment method that prevents treatment artifacts. Equipment utilisation could be reduced by rapid LC separation while maintaining analytical performance parameters. The improved method will be a valuable addition for the analysis of total SO2 binder pools in oenological samples. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Petronijević, R. B.; Velebit, B.; Baltić, T.
2017-09-01
Intentional modification of food or substitution of food ingredients with the aim of gaining profit is food fraud or economically motivated adulteration (EMA). EMA appeared in the food supply chain, and following the global expansion of the food market, has become a world-scale problem for the global economy. Food frauds have involved oils, milk and meat products, infant formula, honey, juices, spices, etc. New legislation was enacted in the last decade in order to fight EMA. Effective analytical methods for food fraud detection are few and still in development. The majority of the methods in common use today for EMA detection are time consuming and inappropriate for use on the production line or out of the laboratory. The next step in the evolution of analytical techniques to combat food fraud is development of fast, accurate methods applicable using portable or handheld devices. Spectrophotometric and spectroscopic methods combined with chemometric analysis, and perhaps in combination with other rapid physico-chemical techniques, could be the answer. This review discusses some analytical techniques based on spectrophotometry and spectroscopy, which are used to reveal food fraud and EMA.
1982-01-01
bromide is listed as a positive interference. Nitric oxide and nitrogen dioxide can be detected by using the Draeger nitrous fumes detector tube. A... fumes exhibit a delay from the time of exposure to the onset of symptoms. This time delay would not be conducive for a rapid field screening test. It...Dangerous when strongly heated, emits highly toxic fumes . THRESHOLD LIMIT VALUE: No information available PHYSIOLOGICAL EFFECTS: A. Intensely irritating to
Real-time subsecond voltammetric analysis of Pb in aqueous environmental samples.
Yang, Yuanyuan; Pathirathna, Pavithra; Siriwardhane, Thushani; McElmurry, Shawn P; Hashemi, Parastoo
2013-08-06
Lead (Pb) pollution is an important environmental and public health concern. Rapid Pb transport during stormwater runoff significantly impairs surface water quality. The ability to characterize and model Pb transport during these events is critical to mitigating its impact on the environment. However, Pb analysis is limited by the lack of analytical methods that can afford rapid, sensitive measurements in situ. While electrochemical methods have previously shown promise for rapid Pb analysis, they are currently limited in two ways. First, because of Pb's limited solubility, test solutions that are representative of environmental systems are not typically employed in laboratory characterizations. Second, concerns about traditional Hg electrode toxicity, stability, and low temporal resolution have dampened opportunities for in situ analyses with traditional electrochemical methods. In this paper, we describe two novel methodological advances that bypass these limitations. Using geochemical models, we first create an environmentally relevant test solution that can be used for electrochemical method development and characterization. Second, we develop a fast-scan cyclic voltammetry (FSCV) method for Pb detection on Hg-free carbon fiber microelectrodes. We assess the method's sensitivity and stability, taking into account Pb speciation, and utilize it to characterize rapid Pb fluctuations in real environmental samples. We thus present a novel real-time electrochemical tool for Pb analysis in both model and authentic environmental solutions.
Analysis of high-aspect-ratio jet-flap wings of arbitrary geometry
NASA Technical Reports Server (NTRS)
Lissaman, P. B. S.
1973-01-01
An analytical technique to compute the performance of an arbitrary jet-flapped wing is developed. The solution technique is based on the method of Maskell and Spence in which the well-known lifting-line approach is coupled with an auxiliary equation providing the extra function needed in jet-flap theory. The present method is generalized to handle straight, uncambered wings of arbitrary planform, twist, and blowing (including unsymmetrical cases). An analytical procedure is developed for continuous variations in the above geometric data with special functions to exactly treat discontinuities in any of the geometric and blowing data. A rational theory for the effect of finite wing thickness is introduced as well as simplified concepts of effective aspect ratio for rapid estimation of performance.
NASA Astrophysics Data System (ADS)
Djatmika, Rosalina; Ding, Wang-Hsien; Sulistyarti, Hermin
2018-01-01
A rapid determination of four parabens preservatives (methyl paraben, ethyl paraben, propyl paraben, and butyl paraben) in marketed seafood is presented. Analytes were extracted and purified using matrix solid-phase dispersion (MSPD) method, followed by Injection port acylation gas chromatography-mass spectrometry (GC-MS) with acetic anhydride reagent. In this method, acylation of parabens was performed by acetic anhydride at GC injection-port generating reduction of the time-consuming sample-processing steps, and the amount of toxic reagents and solvents. The parameters affecting this method such as injection port temperature, purge-off time and acylation (acetic anhydride) volume were studied. In addition, the MSPD influence factors (including the amount of dispersant and clean-up co-sorbent, as well as the volume of elution solvent) were also investigated. After MSPD method and Injection port acylation applied, good linearity of analytes was achieved. The limits of quantitation (LOQs) were 0.2 to 1.0 ng/g (dry weight). Compared with offline derivatization commonly performed, injection port acylation employs a rapid, simple, low-cost and environmental-friendly derivatization process. The optimized method has been successfully applied for the analysis of parabens in four kind of marketed seafood. Preliminary results showed that the total concentrations of four selected parabens ranged from 16.7 to 44.7 ng/g (dry weight).
2013-04-02
photometric particle counting instrument, DustTrak, to the established OSHA modified NIOSH P&CAM 304 method to determine correlation between the two...study compared the non-specific, rapid photometric particle counting instrument, DustTrak, to the established OSHA modified NIOSH P&CAM 304 method...mask confidence training (27) . This study will compare a direct reading, non-specific photometric particle count instrument (DustTrak TSI Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Y.A.; Chapman, D.M.; Hill, D.J.
2000-12-15
The dynamic rod worth measurement (DRWM) technique is a method of quickly validating the predicted bank worth of control rods and shutdown rods. The DRWM analytic method is based on three-dimensional, space-time kinetic simulations of the rapid rod movements. Its measurement data is processed with an advanced digital reactivity computer. DRWM has been used as the method of bank worth validation at numerous plant startups with excellent results. The process and methodology of DRWM are described, and the measurement results of using DRWM are presented.
Temova-Rakuša, Žane; Srečnik, Eva; Roškar, Robert
2017-09-01
A precise, accurate and rapid HPLC-UV method for simultaneous determination of fat-soluble vitamins (vitamin D3, E-acetate, K1, β-carotene, A-palmitate) and coenzyme Q10 was developed and validated according to ICH guidelines. Optimal chromatographic separation of the analytes in minimal analysis time (8 min) was achieved on a Luna C18 150 × 4.6 mm column using a mixture of acetonitrile, tetrahydrofuran and water (50:45:5, v/v/v). The described reversed phase HPLC method is the first published for quantification of these five fat-soluble vitamins and coenzyme Q10 within a single chromatographic run. The method was further applied for quantification of the analytes in selected liquid and solid dosage forms, registered as nutritional supplements and prescription medicines, which confirmed its suitability for routine analysis.
Bruno, C; Patin, F; Bocca, C; Nadal-Desbarats, L; Bonnier, F; Reynier, P; Emond, P; Vourc'h, P; Joseph-Delafont, K; Corcia, P; Andres, C R; Blasco, H
2018-01-30
Metabolomics is an emerging science based on diverse high throughput methods that are rapidly evolving to improve metabolic coverage of biological fluids and tissues. Technical progress has led researchers to combine several analytical methods without reporting the impact on metabolic coverage of such a strategy. The objective of our study was to develop and validate several analytical techniques (mass spectrometry coupled to gas or liquid chromatography and nuclear magnetic resonance) for the metabolomic analysis of small muscle samples and evaluate the impact of combining methods for more exhaustive metabolite covering. We evaluated the muscle metabolome from the same pool of mouse muscle samples after 2 metabolite extraction protocols. Four analytical methods were used: targeted flow injection analysis coupled with mass spectrometry (FIA-MS/MS), gas chromatography coupled with mass spectrometry (GC-MS), liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), and nuclear magnetic resonance (NMR) analysis. We evaluated the global variability of each compound i.e., analytical (from quality controls) and extraction variability (from muscle extracts). We determined the best extraction method and we reported the common and distinct metabolites identified based on the number and identity of the compounds detected with low analytical variability (variation coefficient<30%) for each method. Finally, we assessed the coverage of muscle metabolic pathways obtained. Methanol/chloroform/water and water/methanol were the best extraction solvent for muscle metabolome analysis by NMR and MS, respectively. We identified 38 metabolites by nuclear magnetic resonance, 37 by FIA-MS/MS, 18 by GC-MS, and 80 by LC-HRMS. The combination led us to identify a total of 132 metabolites with low variability partitioned into 58 metabolic pathways, such as amino acid, nitrogen, purine, and pyrimidine metabolism, and the citric acid cycle. This combination also showed that the contribution of GC-MS was low when used in combination with other mass spectrometry methods and nuclear magnetic resonance to explore muscle samples. This study reports the validation of several analytical methods, based on nuclear magnetic resonance and several mass spectrometry methods, to explore the muscle metabolome from a small amount of tissue, comparable to that obtained during a clinical trial. The combination of several techniques may be relevant for the exploration of muscle metabolism, with acceptable analytical variability and overlap between methods However, the difficult and time-consuming data pre-processing, processing, and statistical analysis steps do not justify systematically combining analytical methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Moorhouse, H L; Read, D S; McGowan, S; Wagner, M; Roberts, C; Armstrong, L K; Nicholls, D J E; Wickham, H D; Hutchins, M G; Bowes, M J
2018-05-15
Recent river studies have observed rapid phytoplankton dynamics, driven by diurnal cycling and short-term responses to storm events, highlighting the need to adopt new high-frequency characterisation methods to understand these complex ecological systems. This study utilised two such analytical methods; pigment analysis by high performance liquid chromatography (HPLC) and cell counting by flow cytometry (FCM), alongside traditional chlorophyll spectrophotometry and light microscopy screening, to characterise the major phytoplankton bloom of 2015 in the River Thames, UK. All analytical techniques observed a rapid increase in chlorophyll a concentration and cell abundances from March to early June, caused primarily by a diatom bloom. Light microscopy identified a shift from pennate to centric diatoms during this period. The initial diatom bloom coincided with increased HPLC peridinin concentrations, indicating the presence of dinoflagellates which were likely to be consuming the diatom population. The diatom bloom declined rapidly in early June, coinciding with a storm event. There were low chlorophyll a concentrations (by both HPLC and spectrophotometric methods) throughout July and August, implying low biomass and phytoplankton activity. However, FCM revealed high abundances of pico-chlorophytes and cyanobacteria through July and August, showing that phytoplankton communities remain active and abundant throughout the summer period. In combination, these techniques are able to simultaneously characterise a wider range of phytoplankton groups, with greater certainty, and provide improved understanding of phytoplankton functioning (e.g. production of UV inhibiting pigments by cyanobacteria in response to high light levels) and ecological status (through examination of pigment degradation products). Combined HPLC and FCM analyses offer rapid and cost-effective characterisation of phytoplankton communities at appropriate timescales. This will allow a more-targeted use of light microscopy to capture phytoplankton peaks or to investigate periods of rapid community succession. This will lead to greater system understanding of phytoplankton succession in response to biogeochemical drivers. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Wang, Yan-Bin; Hu, Yu-Zhong; Li, Wen-Le; Zhang, Wei-Song; Zhou, Feng; Luo, Zhi
2014-10-01
In the present paper, based on the fast evaluation technique of near infrared, a method to predict the yield of atmos- pheric and vacuum line was developed, combined with H/CAMS software. Firstly, the near-infrared (NIR) spectroscopy method for rapidly determining the true boiling point of crude oil was developed. With commercially available crude oil spectroscopy da- tabase and experiments test from Guangxi Petrochemical Company, calibration model was established and a topological method was used as the calibration. The model can be employed to predict the true boiling point of crude oil. Secondly, the true boiling point based on NIR rapid assay was converted to the side-cut product yield of atmospheric/vacuum distillation unit by H/CAMS software. The predicted yield and the actual yield of distillation product for naphtha, diesel, wax and residual oil were compared in a 7-month period. The result showed that the NIR rapid crude assay can predict the side-cut product yield accurately. The near infrared analytic method for predicting yield has the advantages of fast analysis, reliable results, and being easy to online operate, and it can provide elementary data for refinery planning optimization and crude oil blending.
Ng, Tsz-Tsun; So, Pui-Kin; Zheng, Bo; Yao, Zhong-Ping
2015-07-16
Authentication of edible oils is a long-term issue in food safety, and becomes particularly important with the emergence and wide spread of gutter oils in recent years. Due to the very high analytical demand and diversity of gutter oils, a high throughput analytical method and a versatile strategy for authentication of mixed edible oils and gutter oils are highly desirable. In this study, an improved matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method has been developed for direct analysis of edible oils. This method involved on-target sample loading, automatic data acquisition and simple data processing. MALDI-MS spectra with high quality and high reproducibility have been obtained using this method, and a preliminary spectral database of edible oils has been set up. The authenticity of an edible oil sample can be determined by comparing its MALDI-MS spectrum and principal component analysis (PCA) results with those of its labeled oil in the database. This method is simple and the whole process only takes several minutes for analysis of one oil sample. We demonstrated that the method was sensitive to change in oil compositions and can be used for measuring compositions of mixed oils. The capability of the method for determining mislabeling enables it for rapid screening of gutter oils since fraudulent mislabeling is a common feature of gutter oils. Copyright © 2015 Elsevier B.V. All rights reserved.
Macro elemental analysis of food samples by nuclear analytical technique
NASA Astrophysics Data System (ADS)
Syahfitri, W. Y. N.; Kurniawati, S.; Adventini, N.; Damastuti, E.; Lestiani, D. D.
2017-06-01
Energy-dispersive X-ray fluorescence (EDXRF) spectrometry is a non-destructive, rapid, multi elemental, accurate, and environment friendly analysis compared with other detection methods. Thus, EDXRF spectrometry is applicable for food inspection. The macro elements calcium and potassium constitute important nutrients required by the human body for optimal physiological functions. Therefore, the determination of Ca and K content in various foods needs to be done. The aim of this work is to demonstrate the applicability of EDXRF for food analysis. The analytical performance of non-destructive EDXRF was compared with other analytical techniques; neutron activation analysis and atomic absorption spectrometry. Comparison of methods performed as cross checking results of the analysis and to overcome the limitations of the three methods. Analysis results showed that Ca found in food using EDXRF and AAS were not significantly different with p-value 0.9687, whereas p-value of K between EDXRF and NAA is 0.6575. The correlation between those results was also examined. The Pearson correlations for Ca and K were 0.9871 and 0.9558, respectively. Method validation using SRM NIST 1548a Typical Diet was also applied. The results showed good agreement between methods; therefore EDXRF method can be used as an alternative method for the determination of Ca and K in food samples.
Advances in Assays and Analytical Approaches for Botulinum Toxin Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grate, Jay W.; Ozanich, Richard M.; Warner, Marvin G.
2010-08-04
Methods to detect botulinum toxin, the most poisonous substance known, are reviewed. Current assays are being developed with two main objectives in mind: 1) to obtain sufficiently low detection limits to replace the mouse bioassay with an in vitro assay, and 2) to develop rapid assays for screening purposes that are as sensitive as possible while requiring an hour or less to process the sample an obtain the result. This review emphasizes the diverse analytical approaches and devices that have been developed over the last decade, while also briefly reviewing representative older immunoassays to provide background and context.
Salazar, Carolina; Armenta, Jenny M; Shulaev, Vladimir
2012-07-06
In spite of the large arsenal of methodologies developed for amino acid assessment in complex matrices, their implementation in metabolomics studies involving wide-ranging mutant screening is hampered by their lack of high-throughput, sensitivity, reproducibility, and/or wide dynamic range. In response to the challenge of developing amino acid analysis methods that satisfy the criteria required for metabolomic studies, improved reverse-phase high-performance liquid chromatography-mass spectrometry (RPHPLC-MS) methods have been recently reported for large-scale screening of metabolic phenotypes. However, these methods focus on the direct analysis of underivatized amino acids and, therefore, problems associated with insufficient retention and resolution are observed due to the hydrophilic nature of amino acids. It is well known that derivatization methods render amino acids more amenable for reverse phase chromatographic analysis by introducing highly-hydrophobic tags in their carboxylic acid or amino functional group. Therefore, an analytical platform that combines the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) pre-column derivatization method with ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) is presented in this article. For numerous reasons typical amino acid derivatization methods would be inadequate for large scale metabolic projects. However, AQC derivatization is a simple, rapid and reproducible way of obtaining stable amino acid adducts amenable for UPLC-ESI-MS/MS and the applicability of the method for high-throughput metabolomic analysis in Arabidopsis thaliana is demonstrated in this study. Overall, the major advantages offered by this amino acid analysis method include high-throughput, enhanced sensitivity and selectivity; characteristics that showcase its utility for the rapid screening of the preselected plant metabolites without compromising the quality of the metabolic data. The presented method enabled thirty-eight metabolites (proteinogenic amino acids and related compounds) to be analyzed within 10 min with detection limits down to 1.02 × 10-11 M (i.e., atomole level on column), which represents an improved sensitivity of 1 to 5 orders of magnitude compared to existing methods. Our UPLC-ESI-MS/MS method is one of the seven analytical platforms used by the Arabidopsis Metabolomics Consortium. The amino acid dataset obtained by analysis of Arabidopsis T-DNA mutant stocks with our platform is captured and open to the public in the web portal PlantMetabolomics.org. The analytical platform herein described could find important applications in other studies where the rapid, high-throughput and sensitive assessment of low abundance amino acids in complex biosamples is necessary.
Salazar, Carolina; Armenta, Jenny M.; Shulaev, Vladimir
2012-01-01
In spite of the large arsenal of methodologies developed for amino acid assessment in complex matrices, their implementation in metabolomics studies involving wide-ranging mutant screening is hampered by their lack of high-throughput, sensitivity, reproducibility, and/or wide dynamic range. In response to the challenge of developing amino acid analysis methods that satisfy the criteria required for metabolomic studies, improved reverse-phase high-performance liquid chromatography-mass spectrometry (RPHPLC-MS) methods have been recently reported for large-scale screening of metabolic phenotypes. However, these methods focus on the direct analysis of underivatized amino acids and, therefore, problems associated with insufficient retention and resolution are observed due to the hydrophilic nature of amino acids. It is well known that derivatization methods render amino acids more amenable for reverse phase chromatographic analysis by introducing highly-hydrophobic tags in their carboxylic acid or amino functional group. Therefore, an analytical platform that combines the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) pre-column derivatization method with ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) is presented in this article. For numerous reasons typical amino acid derivatization methods would be inadequate for large scale metabolic projects. However, AQC derivatization is a simple, rapid and reproducible way of obtaining stable amino acid adducts amenable for UPLC-ESI-MS/MS and the applicability of the method for high-throughput metabolomic analysis in Arabidopsis thaliana is demonstrated in this study. Overall, the major advantages offered by this amino acid analysis method include high-throughput, enhanced sensitivity and selectivity; characteristics that showcase its utility for the rapid screening of the preselected plant metabolites without compromising the quality of the metabolic data. The presented method enabled thirty-eight metabolites (proteinogenic amino acids and related compounds) to be analyzed within 10 min with detection limits down to 1.02 × 10−11 M (i.e., atomole level on column), which represents an improved sensitivity of 1 to 5 orders of magnitude compared to existing methods. Our UPLC-ESI-MS/MS method is one of the seven analytical platforms used by the Arabidopsis Metabolomics Consortium. The amino acid dataset obtained by analysis of Arabidopsis T-DNA mutant stocks with our platform is captured and open to the public in the web portal PlantMetabolomics.org. The analytical platform herein described could find important applications in other studies where the rapid, high-throughput and sensitive assessment of low abundance amino acids in complex biosamples is necessary. PMID:24957640
Bogialli, Sara; Coradazzi, Cristina; Di Corcia, Antonio; Lagana, Aldo; Sergi, Manuel
2007-01-01
A rapid, specific, and sensitive procedure for determining residues of 4 widely used tetracycline antibiotics and 3 of their 4-epimers in cheese is presented. The method is based on the matrix solid-phase dispersion (MSPD) technique followed by liquid chromatography/tandem mass spectrometry (LC/MS/MS). After dispersing samples of mozzarella, asiago, parmigiano, gruyere, emmenthal, and camembert on sand, target compounds were eluted from the MSPD column by passing through it 6 mL water heated at 70 degrees C. After acidification and filtration, 200 microL of the aqueous extract was directly injected into the LC column. For analyte identification and quantification, MS data acquisition was performed in the multireaction monitoring mode, selecting 2 precursor ion-to-product ion transitions for each target compound. Hot water appeared to be an efficient extractant, because absolute recoveries were no lower than 78%. Using demeclocycline as a surrogate analyte, recoveries of analyte added to the 6 types of cheeses at the 30 ng/g level were 96-117%, with relative standard deviation (RSD) not higher than 9%. Statistical analysis of the mean recovery data showed that the extraction efficiency was not dependent on the type of cheese analyzed. This result indicates that this method could be applied to other cheese types not considered here. At the lowest concentration considered, i.e., 10 ng/g, the accuracy of the method ranged between 90 and 107%, with RSDs not larger than 12%. Based on a signal-to-noise ratio of 10, limits of quantitation were estimated to be 1-2 ng/g.
Zhang, Dan; Wang, Xiaolin; Liu, Man; Zhang, Lina; Deng, Ming; Liu, Huichen
2015-01-01
A rapid, sensitive and accurate ICP-MS method using alternate analyte-free matrix for calibration standards preparation and a rapid direct dilution procedure for sample preparation was developed and validated for the quantification of exogenous strontium (Sr) from the drug in human serum. Serum was prepared by direct dilution (1:29, v/v) in an acidic solution consisting of nitric acid (0.1%) and germanium (Ge) added as internal standard (IS), to obtain simple and high-throughput preparation procedure with minimized matrix effect, and good repeatability. ICP-MS analysis was performed using collision cell technology (CCT) mode. Alternate matrix method by using distilled water as an alternate analyte-free matrix for the preparation of calibration standards (CS) was used to avoid the influence of endogenous Sr in serum on the quantification. The method was validated in terms of selectivity, carry-over, matrix effects, lower limit of quantification (LLOQ), linearity, precision and accuracy, and stability. Instrumental linearity was verified in the range of 1.00-500ng/mL, corresponding to a concentration range of 0.0300-15.0μg/mL in 50μL sample of serum matrix and alternate matrix. Intra- and inter-day precision as relative standard deviation (RSD) were less than 8.0% and accuracy as relative error (RE) was within ±3.0%. The method allowed a high sample throughput, and was sensitive and accurate enough for a pilot bioequivalence study in healthy male Chinese subjects following single oral administration of two strontium ranelate formulations containing 2g strontium ranelate. Copyright © 2014 Elsevier GmbH. All rights reserved.
Naz, Saba; Sherazi, Sayed Tufail Hussain; Talpur, Farah N; Mahesar, Sarfaraz A; Kara, Huseyin
2012-01-01
A simple, rapid, economical, and environmentally friendly analytical method was developed for the quantitative assessment of free fatty acids (FFAs) present in deodorizer distillates and crude oils by single bounce-attenuated total reflectance-FTIR spectroscopy. Partial least squares was applied for the calibration model based on the peak region of the carbonyl group (C=O) from 1726 to 1664 cm(-1) associated with the FFAs. The proposed method totally avoided the use of organic solvents or costly standards and could be applied easily in the oil processing industry. The accuracy of the method was checked by comparison to a conventional standard American Oil Chemists' Society (AOCS) titrimetric procedure, which provided good correlation (R = 0.99980), with an SD of +/- 0.05%. Therefore, the proposed method could be used as an alternate to the AOCS titrimetric method for the quantitative determination of FFAs especially in deodorizer distillates.
Flow chemistry vs. flow analysis.
Trojanowicz, Marek
2016-01-01
The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Minimum impulse three-body trajectories.
NASA Technical Reports Server (NTRS)
D'Amario, L.; Edelbaum, T. N.
1973-01-01
A rapid and accurate method of calculating optimal impulsive transfers in the restricted problem of three bodies has been developed. The technique combines a multi-conic method of trajectory integration with primer vector theory and an accelerated gradient method of trajectory optimization. A unique feature is that the state transition matrix and the primer vector are found analytical without additional integrations or differentiations. The method has been applied to the determination of optimal two and three impulse transfers between the L2 libration point and circular orbits about both the earth and the moon.
Analytical Techniques and Pharmacokinetics of Gastrodia elata Blume and Its Constituents.
Wu, Jinyi; Wu, Bingchu; Tang, Chunlan; Zhao, Jinshun
2017-07-08
Gastrodia elata Blume ( G. elata ), commonly called Tianma in Chinese, is an important and notable traditional Chinese medicine (TCM), which has been used in China as an anticonvulsant, analgesic, sedative, anti-asthma, anti-immune drug since ancient times. The aim of this review is to provide an overview of the abundant efforts of scientists in developing analytical techniques and performing pharmacokinetic studies of G. elata and its constituents, including sample pretreatment methods, analytical techniques, absorption, distribution, metabolism, excretion (ADME) and influence factors to its pharmacokinetics. Based on the reported pharmacokinetic property data of G. elata and its constituents, it is hoped that more studies will focus on the development of rapid and sensitive analytical techniques, discovering new therapeutic uses and understanding the specific in vivo mechanisms of action of G. elata and its constituents from the pharmacokinetic viewpoint in the near future. The present review discusses analytical techniques and pharmacokinetics of G. elata and its constituents reported from 1985 onwards.
2013-01-01
Influenza virus-like particle vaccines are one of the most promising ways to respond to the threat of future influenza pandemics. VLPs are composed of viral antigens but lack nucleic acids making them non-infectious which limit the risk of recombination with wild-type strains. By taking advantage of the advancements in cell culture technologies, the process from strain identification to manufacturing has the potential to be completed rapidly and easily at large scales. After closely reviewing the current research done on influenza VLPs, it is evident that the development of quantification methods has been consistently overlooked. VLP quantification at all stages of the production process has been left to rely on current influenza quantification methods (i.e. Hemagglutination assay (HA), Single Radial Immunodiffusion assay (SRID), NA enzymatic activity assays, Western blot, Electron Microscopy). These are analytical methods developed decades ago for influenza virions and final bulk influenza vaccines. Although these methods are time-consuming and cumbersome they have been sufficient for the characterization of final purified material. Nevertheless, these analytical methods are impractical for in-line process monitoring because VLP concentration in crude samples generally falls out of the range of detection for these methods. This consequently impedes the development of robust influenza-VLP production and purification processes. Thus, development of functional process analytical techniques, applicable at every stage during production, that are compatible with different production platforms is in great need to assess, optimize and exploit the full potential of novel manufacturing platforms. PMID:23642219
Rapid determination of 210Po in water samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.
2013-08-02
A new rapid method for the determination of 210Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that can be used for emergency response or routine water analyses. If a radiological dispersive device (RDD) event or a radiological attack associated with drinking water supplies occurs, there will be an urgent need for rapid analyses of water samples, including drinking water, ground water and other water effluents. Current analytical methods for the assay of 210Po in water samples have typically involved spontaneous auto-deposition of 210Po onto silver or other metal disks followed by counting by alphamore » spectrometry. The auto-deposition times range from 90 minutes to 24 hours or more, at times with yields that may be less than desirable. If sample interferences are present, decreased yields and degraded alpha spectrums can occur due to unpredictable thickening in the deposited layer. Separation methods have focused on the use of Sr Resin, often in combination with 210Pb analysis. A new rapid method for 210Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that utilizes a rapid calcium phosphate co-precipitation method, separation using DGA Resin (N,N,N,N-tetraoctyldiglycolamide extractant-coated resin, Eichrom Technologies or Triskem-International), followed by rapid microprecipitation of 210Po using bismuth phosphate for counting by alpha spectrometry. This new method can be performed quickly with excellent removal of interferences, high chemical yields and very good alpha peak resolution, eliminating any potential problems with the alpha source preparation for emergency or routine samples. A rapid sequential separation method to separate 210Po and actinide isotopes was also developed. This new approach, rapid separation with DGA Resin plus microprecipitation for alpha source preparation, is a significant advance in radiochemistry for the rapid determination of 210Po.« less
USDA-ARS?s Scientific Manuscript database
In this study, a multi-residue analytical method using QuEChERS extraction and dispersive solid-phase extraction (d-SPE) cleanup followed by high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) was developed for rapid determination of 60 pesticide residues in whole crayfish a...
The Alchemy of "Costing Out" an Adequate Education
ERIC Educational Resources Information Center
Hanushek, Eric A.
2006-01-01
In response to the rapid rise in court cases related to the adequacy of school funding, a variety of alternative methods have been developed to provide an analytical base about the necessary expenditure on schools. These approaches have been titled to give an aura of a thoughtful and solid scientific basis: the professional judgment model, the…
Wang, Zhe; Wu, Caisheng; Wang, Gangli; Zhang, Qingsheng; Zhang, Jinlan
2015-03-01
The detection, confirmation, and quantification of multiple illegal adulterants in health foods and herbal medicines by using a single analytical method are a challenge. This paper reports on a new strategy to meet this challenge by employing high-performance liquid chromatography coupled with high-resolution mass spectrometry and a mass spectral tree similarity filter technique. This analytical method can rapidly collect high-resolution, high-accuracy, optionally multistage mass data for compounds in samples. After a preliminary screening by retention time and high-resolution mass spectral data, known illegal adulterants can be detected. The mass spectral tree similarity filter technique has been applied to rapidly confirm these adulterants and simultaneously discover unknown ones. By using full-scan mass spectra as stem and data-dependent subsequent stage mass spectra to form branches, mass spectrometry data from detected compounds are converted into mass spectral trees. The known or unknown illegal adulterants in the samples are confirmed or discovered based on the similarity between their mass spectral trees and those of the references in a library, and they are finally quantified against standard curves. This new strategy has been tested by using 50 samples, and the illegal adulterants were rapidly and effectively detected, confirmed and quantified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bradie, Johanna; Gianoli, Claudio; He, Jianjun; Lo Curto, Alberto; Stehouwer, Peter; Veldhuis, Marcel; Welschmeyer, Nick; Younan, Lawrence; Zaake, André; Bailey, Sarah
2018-03-01
Non-indigenous species seriously threaten native biodiversity. To reduce establishments, the International Maritime Organization established the Convention for the Control and Management of Ships' Ballast Water and Sediments which limits organism concentrations at discharge under regulation D-2. Most ships will comply by using on-board treatment systems to disinfect their ballast water. Port state control officers will need simple, rapid methods to detect compliance. Appropriate monitoring methods may be dependent on treatment type, since different treatments will affect organisms by a variety of mechanisms. Many indicative tools have been developed, but must be examined to ensure the measured variable is an appropriate signal for the response of the organisms to the applied treatment. We assessed the abilities of multiple analytic tools to rapidly detect the effects of a ballast water treatment system based on UV disinfection. All devices detected a large decrease in the concentrations of vital organisms ≥ 50 μm and organisms < 10 μm (mean 82.7-99.7% decrease across devices), but results were more variable for the ≥ 10 to < 50 μm size class (mean 9.0-99.9% decrease across devices). Results confirm the necessity to choose tools capable of detecting the damage inflicted on living organisms, as examined herein for UV-C treatment systems.
Abdulmawjood, Amir; Grabowski, Nils; Fohler, Svenja; Kittler, Sophie; Nagengast, Helga; Klein, Guenter
2014-01-01
Animal species identification is one of the primary duties of official food control. Since ostrich meat is difficult to be differentiated macroscopically from beef, therefore new analytical methods are needed. To enforce labeling regulations for the authentication of ostrich meat, it might be of importance to develop and evaluate a rapid and reliable assay. In the present study, a loop-mediated isothermal amplification (LAMP) assay based on the cytochrome b gene of the mitochondrial DNA of the species Struthio camelus was developed. The LAMP assay was used in combination with a real-time fluorometer. The developed system allowed the detection of 0.01% ostrich meat products. In parallel, a direct swab method without nucleic acid extraction using the HYPLEX LPTV buffer was also evaluated. This rapid processing method allowed detection of ostrich meat without major incubation steps. In summary, the LAMP assay had excellent sensitivity and specificity for detecting ostrich meat and could provide a sampling-to-result identification-time of 15 to 20 minutes. PMID:24963709
Chen, Shuo; Chang, Quanying; Yin, Kai; He, Qunying; Deng, Yongxiu; Chen, Bo; Liu, Chengbin; Wang, Ying; Wang, Liping
2017-06-14
In this study, a paper spray ionization mass spectrometric (PS-MS) method was developed for the rapid in situ screening and simultaneous quantitative analysis of bisphenol A and its analogues, i.e., bisphenol S, bisphenol F, and bisphenol AF, in food packaging products. At the optimal PS-MS conditions, the calibration curves of bisphenols in the range of 1-100 μg/mL were linear. The correlation coefficients were higher than 0.998, and the LODs of the target compounds were 0.1-0.3 μg/mL. After a simple treatment by dichloromethane on the surface, the samples were analyzed by PS-MS in situ for rapid screening without a traditional sample pretreatment procedure, such as powdering, extraction, and enrichment steps. The analytical time of the PS-MS method was less than 1 min. In comparison with conventional HPLC-MS/MS, it was demonstrated that PS-MS was a more effective high-throughput screening and quantitative analysis method.
Noyes, Pamela D.; Lema, Sean C.; Roberts, Simon C.; Cooper, Ellen M.
2014-01-01
Thyroid hormones are critical regulators of normal development and physiological functioning in all vertebrates. Radioimmunoassay (RIA) approaches have been the method of choice for measuring circulating levels of thyroid hormones in vertebrates. While sensitive, RIA-based approaches only allow for a single analyte measurement per assay, can lack concordance across platforms and laboratories, and can be prone to analytical interferences especially when used with fish plasma. Ongoing advances in liquid chromatography tandem mass spectrometry (LC/MS/MS) have led to substantial decreases in detection limits for thyroid hormones and other biomolecules in complex matrices, including human plasma. Despite these advances, current analytical approaches do not allow for the measurement of native thyroid hormone in teleost fish plasma by mass spectrometry and continue to rely on immunoassay. In this study, we developed a new method that allows for the rapid extraction and simultaneous measurement of total T4 (TT4) and total T3 (TT3) in low volumes (50 μL) of fish plasma by LC/MS/MS. Methods were optimized initially in plasma from rainbow trout (Oncorhynchus mykiss) and applied to plasma from other teleost fishes, including fathead minnows (Pimephales promelas), mummichogs (Fundulus heteroclitus), sockeye salmon (Oncorhynchus nerka), and coho salmon (Oncorhynchus kisutch). Validation of method performance with T4- and T3-spiked rainbow trout plasma at 2 and 4 ng/mL produced mean recoveries ranging from 82 to 95 % and 97 to 105 %, respectively. Recovery of 13C12-T4 internal standard in plasma extractions was: 99±1.8 % in rainbow trout, 85±11 % in fathead minnow, 73±5.0 % in mummichog, 73±1.7 % in sockeye salmon, and 80±8.4 % in coho salmon. While absolute levels of thyroid hormones measured in identical plasma samples by LC/MS/MS and RIA varied depending on the assay used, T4/T3 ratios were generally consistent across both techniques. Less variability was measured among samples subjected to LC/MS/MS suggesting a more precise estimate of thyroid hormone homeostasis in the species targeted. Overall, a sensitive and reproducible method was established that takes advantage of LC/MS/MS techniques to rapidly measure TT4 and TT3 with negligible interferences in low volumes of plasma across a variety of teleost fishes. PMID:24343452
Farajzadeh, Mir Ali; Bamorowat, Mahdi; Mogaddam, Mohammad Reza Afshar
2016-11-01
An efficient, reliable, sensitive, rapid, and green analytical method for the extraction and determination of neonicotinoid insecticides in aqueous samples has been developed using ionic liquid phase microextraction coupled with high performance liquid chromatography-diode array detector. In this method, a few microliters of 1-hexyl-3-methylimidazolium hexafluorophosphate (as an extractant) is added onto a ringer tablet and it is transferred into a conical test tube containing aqueous phase of the analytes. By manually shaking, the ringer tablet is dissolved and the extractant is released into the aqueous phase as very tiny droplets to provide a cloudy solution. After centrifuging the extracted analytes into ionic liquid are collected at the bottom of a conical test tube. Under the optimum extraction conditions, the method showed low limits of detection and quantification between 0.12 and 0.33 and 0.41 and 1.11ngmL(-1), respectively. Extraction recoveries and enrichment factors were from 66% to 84% and 655% to 843%, respectively. Finally different aqueous samples were successfully analyzed using the proposed method. Copyright © 2016 Elsevier B.V. All rights reserved.
Rong, Lili; Wu, Xiaohu; Xu, Jun; Dong, Fengshou; Liu, Xingang; Pan, Xinglu; Du, Pengqiang; Wei, Dongmei; Zheng, Yongquan
2018-02-01
We have developed a rapid, multi-compound analytical method for measuring residues of the pesticides thiamethoxam and its metabolite, clothianidin; fipronil and its three metabolites, fipronil sulfone, fipronil sulfide, and fipronil desulfinyl; and pyraclostrobin in unprocessed foods (rice, corn, cucumbers, tomatoes, apples, and bananas) by ultra-performance liquid chromatography coupled to tandem mass spectrometry. Acetonitrile was used as the extraction solvent, and an octadecylsilane-dispersive SPE was used to clean up the analytes, which were then separated through a UPLC HSS T3 column connected to a tandem mass spectrometer via an electrospray ionisation source. The linearity of this method for the target analytes was excellent (R 2 ≥0.990) in the concentration range of 5-1000 μg kg -1 . The average recoveries of the seven compounds at concentrations of 10, 100, and 1000 μg kg -1 from six spiked matrix samples ranged from 73.6 to 110.6%, all with RSD values of ≤19.7%. The limit of quantification was 10 μg kg -1 . The method validated the effectiveness of the method for routine monitoring the residue of these pesticides and their metabolites in foods.
Zhan, Jia; Zhong, Ying-ying; Yu, Xue-jun; Peng, Jin-feng; Chen, Shubing; Yin, Ju-yi; Zhang, Jia-Jie; Zhu, Yan
2013-06-01
A rapid, simple and generic analytical method which was able to simultaneously determine 220 undesirable chemical residues in infant formula had been developed. The method comprised of extraction with acetonitrile, clean-up by low temperature and water precipitation, and analysis by ultra performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI-MS-MS) using multiple reaction monitoring (MRM) mode. Most fat materials in acetonitrile extract were eliminated by low temperature clean-up. The water precipitation, providing a necessary and supplementary cleanup, could avoid losses of hydrophobic analytes (avermectins, ionophores). Average recoveries for spiked infant formula were in the range from 57% to 147% with associated RSD values between 1% and 28%. For over 80% of the analytes, the recoveries were between 70% and 120% with RSD values in the range of 1-15%. The limits of quantification (LOQs) were from 0.01 to 5 μg/kg, which were usually sufficient to verify the compliance of products with legal tolerances. Application of this method in routine monitoring programs would imply a drastic reduction of both effort and time. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chen, Ligang; Jin, Haiyan; Xu, Haoyan; Sun, Lei; Yu, Aimin; Zhang, Hanqi; Ding, Lan
2009-05-27
A rapid technique based on microwave-assisted extraction (MAE) coupled online with derivatization, restricted access material cleanup, and high-performance liquid chromatography (HPLC) was developed for the determination of formaldehyde in aquatic products. Formaldehyde was first extracted with water under the action of microwaves and then directly introduced into a derivatization reservoir containing 2,4-dinitrophenylhydrazine (DNPH). The formaldehyde-DNPH derivative (100 μL) was loaded into a restricted access material (RAM) precolumn for online cleanup. Subsequently, the analyte was transferred from the precolumn to an analytical column and determined by UV absorption spectrum at 352 nm. The limit of detection (LOD) was 0.27 mg kg(-1). The intraday and interday precisions expressed as RSDs were 3.5% and 5.0%, respectively. This method was applied to determine the presence of formaldehyde in various aquatic products. The results were in agreement with those obtained by the state standard method (steam-distillation and offline HPLC analysis) used in China and higher than those obtained by the online ultrasound-assisted extraction (UAE) method. The recoveries obtained by analyzing 11 spiked aquatic products were in the range of 70.0%-105.0%. The online technique was demonstrated to be rapid with little consumption of samples and reagents.
Hubbard, K Elaine; Wells, Amy; Owens, Thandranese S; Tagen, Michael; Fraga, Charles H; Stewart, Clinton F
2010-06-01
A method to rapidly measure dopamine (DA), dihydroxyindolphenylacetic acid, homovanillic acid, serotonin (5-HT) and 5-hydroxyindoleacetic acid concentrations in cerebrospinal fluid (CSF) has not yet been reported. A rapid, sensitive, and specific HPLC method was therefore developed using electrochemical detection. CSF was mixed with an antioxidant solution prior to freezing to prevent neurotransmitter degradation. Separation of the five analytes was obtained on an ESA MD-150 x 3.2 mm column with a flow rate of 0.37 mL/min and an acetonitrile-aqueous (5 : 95, v/v) mobile phase with 75 mM monobasic sodium phosphate buffer, 0.5 mM EDTA, 0.81 mM sodium octylsulfonate and 5% tetrahydrofuran. The optimal electrical potential settings were: guard cell +325 mV, E1 -100 mV and E2 +300 mV. Within-day and between-day precisions were <10% for all analytes and accuracies ranged from 91.0 to 106.7%. DA, 5-HT, and their metabolites were stable in CSF with antioxidant solution at 4 degrees C for 8 h in the autoinjector. This method was used to measure neurotransmitters in CSF obtained from children enrolled on an institutional medulloblastoma treatment protocol. Copyright 2009 John Wiley & Sons, Ltd.
Guo, Xiangyu; Bai, Hua; Lv, Yueguang; Xi, Guangcheng; Li, Junfang; Ma, Xiaoxiao; Ren, Yue; Ouyang, Zheng; Ma, Qiang
2018-04-01
Rapid, on-site analysis was achieved through significantly simplified operation procedures for a wide variety of toy samples (crayon, temporary tattoo sticker, finger paint, modeling clay, and bubble solution) using a miniature mass spectrometry system with ambient ionization capability. The labor-intensive analytical protocols involving sample workup and chemical separation, traditionally required for MS-based analysis, were replaced by direct sampling analysis using ambient ionization methods. A Mini β ion trap miniature mass spectrometer was coupled with versatile ambient ionization methods, e.g. paper spray, extraction spray and slug-flow microextraction nanoESI for direct identification of prohibited colorants, carcinogenic primary aromatic amines, allergenic fragrances, preservatives and plasticizers from raw toy samples. The use of paper substrates coated with Co 3 O 4 nanoparticles allowed a great increase in sensitivity for paper spray. Limits of detection as low as 5μgkg -1 were obtained for target analytes. The methods being developed based on the integration of ambient ionization with miniature mass spectrometer represent alternatives to current in-lab MS analysis operation, and would enable fast, outside-the-lab screening of toy products to ensure children's safety and health. Copyright © 2017 Elsevier B.V. All rights reserved.
Xu, Xiaoming; Gupta, Abhay; Sayeed, Vilayat A; Khan, Mansoor A
2013-05-01
Various adverse events including esophagus irritations have been reported with the use of alendronate tablets, likely attributed to the rapid tablet disintegration in the mouth or esophagus. Accordingly, the disintegration of six alendronate tablet drug products was studied using a newly developed testing device equipped with in-line sensors, in addition to the official compendial procedure for measuring the disintegration time. The in-line sensors were used to monitor the particle count and solution pH change to assess the onset and duration of disintegration. A relatively large variation was observed in the disintegration time of the tested drug products using the compendial method. The data collected using the in-line sensors suggested that all tested drug products exhibited almost instantaneous onset of disintegration, under 2 s, and a sharp drop in solution pH. The drop in pH was slower for tablets with slower disintegration. The in-house prepared alendronate test tablets also showed similar trends suggesting rapid solubilization of the drug contributed to the fast tablet disintegration. This research highlights the usefulness of the newly developed in-line analytical method in combination with the compendial method in providing a better understanding of the disintegration and the accompanying drug solubilization processes for fast disintegrating tablet drug products. Copyright © 2013 Wiley Periodicals, Inc.
Quantitative analysis of Sudan dye adulteration in paprika powder using FTIR spectroscopy.
Lohumi, Santosh; Joshi, Ritu; Kandpal, Lalit Mohan; Lee, Hoonsoo; Kim, Moon S; Cho, Hyunjeong; Mo, Changyeun; Seo, Young-Wook; Rahman, Anisur; Cho, Byoung-Kwan
2017-05-01
As adulteration of foodstuffs with Sudan dye, especially paprika- and chilli-containing products, has been reported with some frequency, this issue has become one focal point for addressing food safety. FTIR spectroscopy has been used extensively as an analytical method for quality control and safety determination for food products. Thus, the use of FTIR spectroscopy for rapid determination of Sudan dye in paprika powder was investigated in this study. A net analyte signal (NAS)-based methodology, named HLA/GO (hybrid linear analysis in the literature), was applied to FTIR spectral data to predict Sudan dye concentration. The calibration and validation sets were designed to evaluate the performance of the multivariate method. The obtained results had a high determination coefficient (R 2 ) of 0.98 and low root mean square error (RMSE) of 0.026% for the calibration set, and an R 2 of 0.97 and RMSE of 0.05% for the validation set. The model was further validated using a second validation set and through the figures of merit, such as sensitivity, selectivity, and limits of detection and quantification. The proposed technique of FTIR combined with HLA/GO is rapid, simple and low cost, making this approach advantageous when compared with the main alternative methods based on liquid chromatography (LC) techniques.
High temperature polymer degradation: Rapid IR flow-through method for volatile quantification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giron, Nicholas H.; Celina, Mathew C.
Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less
High temperature polymer degradation: Rapid IR flow-through method for volatile quantification
Giron, Nicholas H.; Celina, Mathew C.
2017-05-19
Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less
Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges.
Yin, Zekun; Lan, Haidong; Tan, Guangming; Lu, Mian; Vasilakos, Athanasios V; Liu, Weiguo
2017-01-01
The last decade has witnessed an explosion in the amount of available biological sequence data, due to the rapid progress of high-throughput sequencing projects. However, the biological data amount is becoming so great that traditional data analysis platforms and methods can no longer meet the need to rapidly perform data analysis tasks in life sciences. As a result, both biologists and computer scientists are facing the challenge of gaining a profound insight into the deepest biological functions from big biological data. This in turn requires massive computational resources. Therefore, high performance computing (HPC) platforms are highly needed as well as efficient and scalable algorithms that can take advantage of these platforms. In this paper, we survey the state-of-the-art HPC platforms for big biological data analytics. We first list the characteristics of big biological data and popular computing platforms. Then we provide a taxonomy of different biological data analysis applications and a survey of the way they have been mapped onto various computing platforms. After that, we present a case study to compare the efficiency of different computing platforms for handling the classical biological sequence alignment problem. At last we discuss the open issues in big biological data analytics.
A mass spectrometry primer for mass spectrometry imaging
Rubakhin, Stanislav S.; Sweedler, Jonathan V.
2011-01-01
Mass spectrometry imaging (MSI), a rapidly growing subfield of chemical imaging, employs mass spectrometry (MS) technologies to create single- and multi-dimensional localization maps for a variety of atoms and molecules. Complimentary to other imaging approaches, MSI provides high chemical specificity and broad analyte coverage. This powerful analytical toolset is capable of measuring the distribution of many classes of inorganics, metabolites, proteins and pharmaceuticals in chemically and structurally complex biological specimens in vivo, in vitro, and in situ. The MSI approaches highlighted in this Methods in Molecular Biology volume provide flexibility of detection, characterization, and identification of multiple known and unknown analytes. The goal of this chapter is to introduce investigators who may be unfamiliar with MS to the basic principles of the mass spectrometric approaches as used in MSI. In addition to guidelines for choosing the most suitable MSI method for specific investigations, cross-references are provided to the chapters in this volume that describe the appropriate experimental protocols. PMID:20680583
Nanometrology and its perspectives in environmental research.
Kim, Hyun-A; Seo, Jung-Kwan; Kim, Taksoo; Lee, Byung-Tae
2014-01-01
Rapid increase in engineered nanoparticles (ENPs) in many goods has raised significant concern about their environmental safety. Proper methodologies are therefore needed to conduct toxicity and exposure assessment of nanoparticles in the environment. This study reviews several analytical techniques for nanoparticles and summarizes their principles, advantages and disadvantages, reviews the state of the art, and offers the perspectives of nanometrology in relation to ENP studies. Nanometrology is divided into five techniques with regard to the instrumental principle: microscopy, light scattering, spectroscopy, separation, and single particle inductively coupled plasma-mass spectrometry. Each analytical method has its own drawbacks, such as detection limit, ability to quantify or qualify ENPs, and matrix effects. More than two different analytical methods should be used to better characterize ENPs. In characterizing ENPs, the researchers should understand the nanometrology and its demerits, as well as its merits, to properly interpret their experimental results. Challenges lie in the nanometrology and pretreatment of ENPs from various matrices; in the extraction without dissolution or aggregation, and concentration of ENPs to satisfy the instrumental detection limit.
Fast analytical scatter estimation using graphics processing units.
Ingleby, Harry; Lippuner, Jonas; Rickey, Daniel W; Li, Yue; Elbakri, Idris
2015-01-01
To develop a fast patient-specific analytical estimator of first-order Compton and Rayleigh scatter in cone-beam computed tomography, implemented using graphics processing units. The authors developed an analytical estimator for first-order Compton and Rayleigh scatter in a cone-beam computed tomography geometry. The estimator was coded using NVIDIA's CUDA environment for execution on an NVIDIA graphics processing unit. Performance of the analytical estimator was validated by comparison with high-count Monte Carlo simulations for two different numerical phantoms. Monoenergetic analytical simulations were compared with monoenergetic and polyenergetic Monte Carlo simulations. Analytical and Monte Carlo scatter estimates were compared both qualitatively, from visual inspection of images and profiles, and quantitatively, using a scaled root-mean-square difference metric. Reconstruction of simulated cone-beam projection data of an anthropomorphic breast phantom illustrated the potential of this method as a component of a scatter correction algorithm. The monoenergetic analytical and Monte Carlo scatter estimates showed very good agreement. The monoenergetic analytical estimates showed good agreement for Compton single scatter and reasonable agreement for Rayleigh single scatter when compared with polyenergetic Monte Carlo estimates. For a voxelized phantom with dimensions 128 × 128 × 128 voxels and a detector with 256 × 256 pixels, the analytical estimator required 669 seconds for a single projection, using a single NVIDIA 9800 GX2 video card. Accounting for first order scatter in cone-beam image reconstruction improves the contrast to noise ratio of the reconstructed images. The analytical scatter estimator, implemented using graphics processing units, provides rapid and accurate estimates of single scatter and with further acceleration and a method to account for multiple scatter may be useful for practical scatter correction schemes.
Pérez-Rodríguez, Michael; Pellerano, Roberto Gerardo; Pezza, Leonardo; Pezza, Helena Redigolo
2018-05-15
Tetracyclines are widely used for both the treatment and prevention of diseases in animals as well as for the promotion of rapid animal growth and weight gain. This practice may result in trace amounts of these drugs in products of animal origin, such as milk and eggs, posing serious risks to human health. The presence of tetracycline residues in foods can lead to the transmission of antibiotic-resistant pathogenic bacteria through the food chain. In order to ensure food safety and avoid exposure to these substances, national and international regulatory agencies have established tolerance levels for authorized veterinary drugs, including tetracycline antimicrobials. In view of that, numerous sensitive and specific methods have been developed for the quantification of these compounds in different food matrices. One will note, however, that the determination of trace residues in foods such as milk and eggs often requires extensive sample extraction and preparation prior to conducting instrumental analysis. Sample pretreatment is usually the most complicated step in the analytical process and covers both cleaning and pre-concentration. Optimal sample preparation can reduce analysis time and sources of error, enhance sensitivity, apart from enabling unequivocal identification, confirmation and quantification of target analytes. The development and implementation of more environmentally friendly analytical procedures, which involve the use of less hazardous solvents and smaller sample sizes compared to traditional methods, is a rapidly increasing trend in analytical chemistry. This review seeks to provide an updated overview of the main trends in sample preparation for the determination of tetracycline residues in foodstuffs. The applicability of several extraction and clean-up techniques employed in the analysis of foodstuffs, especially milk and egg samples, is also thoroughly discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Eckard, Anahita D; Dupont, David R; Young, Johnie K
2018-01-01
N -lined glycosylation is one of the critical quality attributes (CQA) for biotherapeutics impacting the safety and activity of drug product. Changes in pattern and level of glycosylation can significantly alter the intrinsic properties of the product and, therefore, have to be monitored throughout its lifecycle. Therefore fast, precise, and unbiased N -glycan mapping assay is desired. To ensure these qualities, using analytical methods that evaluate completeness of deglycosylation is necessary. For quantification of deglycosylation yield, methods such as reduced liquid chromatography-mass spectrometry (LC-MS) and reduced capillary gel electrophoresis (CGE) have been commonly used. Here we present development of two additional methods to evaluate deglycosylation yield: one based on LC using reverse phase (RP) column and one based on reduced sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE gel) with offline software (GelAnalyzer). With the advent of rapid deglycosylation workflows in the market for N -glycan profiling replacing overnight incubation, we have aimed to quantify the level of deglycosylation in a selected rapid deglycosylation workflow. Our results have shown well resolved peaks of glycosylated and deglycosylated protein species with RP-LC method allowing simple quantification of deglycosylation yield of protein with high confidence. Additionally a good correlation, ≥0.94, was found between deglycosylation yields estimated by RP-LC method and that of reduced SDS-PAGE gel method with offline software. Evaluation of rapid deglycosylation protocol from GlycanAssure™ HyPerformance assay kit performed on fetuin and RNase B has shown complete deglycosylation within the recommended protocol time when evaluated with these techniques. Using this kit, N -glycans from NIST mAb were prepared in 1.4 hr and analyzed by hydrophilic interaction chromatography (HILIC) ultrahigh performance LC (UHPLC) equipped with a fluorescence detector (FLD). 37 peaks were resolved with good resolution. Excellent sample preparation repeatability was found with relative standard deviation (RSD) of <5% for peaks with >0.5% relative area.
Heat Transfer Analysis of Thermal Protection Structures for Hypersonic Vehicles
NASA Astrophysics Data System (ADS)
Zhou, Chen; Wang, Zhijin; Hou, Tianjiao
2017-11-01
This research aims to develop an analytical approach to study the heat transfer problem of thermal protection systems (TPS) for hypersonic vehicles. Laplace transform and integral method are used to describe the temperature distribution through the TPS subject to aerodynamic heating during flight. Time-dependent incident heat flux is also taken into account. Two different cases with heat flux and radiation boundary conditions are studied and discussed. The results are compared with those obtained by finite element analyses and show a good agreement. Although temperature profiles of such problems can be readily accessed via numerical simulations, analytical solutions give a greater insight into the physical essence of the heat transfer problem. Furthermore, with the analytical approach, rapid thermal analyses and even thermal optimization can be achieved during the preliminary TPS design.
2013-01-01
Background Shen-Fu decoction is a traditional Chinese medicine prescription with a 3:2 ratio of Radix Ginseng and Fuzi (Radix Aconiti lateralis praeparata). Ginsenosides and alkaloids are considered to be the main active components of Shen-Fu decoction. However, no analytical methods have been used to quantitatively analyse both components in Shen-Fu decoction simultaneously. Results We successfully developed a rapid resolution liquid chromatography coupled with tandem mass spectrometry (RRLC-MS/MS) method for the simultaneous analysis of seven ginsenosides and three aconitum alkaloids in Shen-Fu decoction, the decoction of Radix ginseng and Fuzi (Radix Aconiti lateralis praeparata). Chromatogrpahic separation by RPLC was achieved using a reversed-phase column and a water/acetonitrile mobile phase, containing 0.05% formic acid and using a gradient system. The method was optimized to allow for simultaneous analysis of all analytes in 11minutes without the need for baseline resolution of the components. Furthermore, the separation demonstrated good linearity (r > 0.9882), repeatability (RSD < 7.01%), intra- and inter-day precisions (RSD < 5.06%) and high yields of recovery (91.13-111.97%) for ten major constituents, namely ginsenoside-Re, Rg1, Rb1, Rc, Rb2, Rd, Rf, aconitine, hypacoitine and mesaconitine. Conclusions The developed method could be used as a rapid and reliable approach for assessment of the quantity of the major constituents in Shen-Fu decoction. PMID:24107599
Matsuta, Shuntaro; Nakanishi, Keiko; Miki, Akihiro; Zaitsu, Kei; Shima, Noriaki; Kamata, Tooru; Nishioka, Hiroshi; Katagi, Munehiro; Tatsuno, Michiaki; Tsuboi, Kento; Tsuchihashi, Hitoshi; Suzuki, Koichi
2013-10-10
A rapid and convenient extraction method has been developed for the determination of various drugs and metabolites of forensic interest in blood by modifying the dispersive solid-phase extraction method "QuEChERS". The following 13 analytes with various chemical properties were used for the method development and its validation: amphetamine, methamphetamine, zolpidem, the carboxylate-form major metabolite of zolpidem M-1, flunitrazepam, 7-aminoflunitrazepam, phenobarbital, triazolam, α-hydroxytriazolam, brotizolam, α-hydroxybrotizolam, chlorpromazine, and promethazine. The modification of the QuEChERS method includes the use of relatively large amounts of inorganic salts in order to coagulate blood, which allows easy isolation of the organic extract phase. A combination of 100 mg anhydrous magnesium sulfate as a dehydrating agent, 50mg sodium chloride as a salting-out agent, and 500 μL acetonitrile containing 0.2% acetic acid as the organic solvent provided the optimum conditions for processing a 100 μL whole blood sample. The recoveries of the analytes spiked into whole blood at 0.5 μg/mL ranged between 59% and 93%. Although the addition of the graphitized carbon Envi-carb for cleanup decreased the recoveries of zolpidem and its carboxylate-form metabolite M-1, it was very effective in avoiding interferences by cholesterol. The present method can provide a rapid, effective, user-friendly, and relatively hygienic method for the simultaneous extraction of a wide range of drugs and metabolites in whole blood specimens. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Napolitano, José G.; Gödecke, Tanja; Lankin, David C.; Jaki, Birgit U.; McAlpine, James B.; Chen, Shao-Nong; Pauli, Guido F.
2013-01-01
The development of analytical methods for parallel characterization of multiple phytoconstituents is essential to advance the quality control of herbal products. While chemical standardization is commonly carried out by targeted analysis using gas or liquid chromatography-based methods, more universal approaches based on quantitative 1H NMR (qHNMR) measurements are being used increasingly in the multi-targeted assessment of these complex mixtures. The present study describes the development of a 1D qHNMR-based method for simultaneous identification and quantification of green tea constituents. This approach utilizes computer-assisted 1H iterative Full Spin Analysis (HiFSA) and enables rapid profiling of seven catechins in commercial green tea extracts. The qHNMR results were cross-validated against quantitative profiles obtained with an orthogonal LC-MS/MS method. The relative strengths and weaknesses of both approaches are discussed, with special emphasis on the role of identical reference standards in qualitative and quantitative analyses. PMID:23870106
Thomas, Jason M; Chakraborty, Banani; Sen, Dipankar; Yu, Hua-Zhong
2012-08-22
A general approach is described for the de novo design and construction of aptamer-based electrochemical biosensors, for potentially any analyte of interest (ranging from small ligands to biological macromolecules). As a demonstration of the approach, we report the rapid development of a made-to-order electronic sensor for a newly reported early biomarker for lung cancer (CTAP III/NAP2). The steps include the in vitro selection and characterization of DNA aptamer sequences, design and biochemical testing of wholly DNA sensor constructs, and translation to a functional electrode-bound sensor format. The working principle of this distinct class of electronic biosensors is the enhancement of DNA-mediated charge transport in response to analyte binding. We first verify such analyte-responsive charge transport switching in solution, using biochemical methods; successful sensor variants were then immobilized on gold electrodes. We show that using these sensor-modified electrodes, CTAP III/NAP2 can be detected with both high specificity and sensitivity (K(d) ~1 nM) through a direct electrochemical reading. To investigate the underlying basis of analyte binding-induced conductivity switching, we carried out Förster Resonance Energy Transfer (FRET) experiments. The FRET data establish that analyte binding-induced conductivity switching in these sensors results from very subtle structural/conformational changes, rather than large scale, global folding events. The implications of this finding are discussed with respect to possible charge transport switching mechanisms in electrode-bound sensors. Overall, the approach we describe here represents a unique design principle for aptamer-based electrochemical sensors; its application should enable rapid, on-demand access to a class of portable biosensors that offer robust, inexpensive, and operationally simplified alternatives to conventional antibody-based immunoassays.
Apparatus for rapid measurement of aerosol bulk chemical composition
Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas
2006-04-18
An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.
Hu, J-Y; Deng, Z-B; Qin, D-M
2009-12-01
JS-118 is a diacylhydrazines-type insect growth regulator used extensively in China now. An analytical method for residues determination of JS-118 in cabbage and soil samples by high performance liquid chromatography with DAD detection was established and optimized. Primary secondary amine solid phase extraction cartridge was used for sample preparation. Mean recoveries for the analyte ranged from 96.6% to 107.0% with CV value less than 4.7%. The limit of quantification is 0.01 mg/kg. Direct confirmation of JS-118 residues in samples was realized by high performance liquid chromatography-mass spectrometry. The proposed method is simple, rapid and reliable to perform and could be utilized for monitoring of pesticides residues.
Advances in spatial epidemiology and geographic information systems.
Kirby, Russell S; Delmelle, Eric; Eberth, Jan M
2017-01-01
The field of spatial epidemiology has evolved rapidly in the past 2 decades. This study serves as a brief introduction to spatial epidemiology and the use of geographic information systems in applied research in epidemiology. We highlight technical developments and highlight opportunities to apply spatial analytic methods in epidemiologic research, focusing on methodologies involving geocoding, distance estimation, residential mobility, record linkage and data integration, spatial and spatio-temporal clustering, small area estimation, and Bayesian applications to disease mapping. The articles included in this issue incorporate many of these methods into their study designs and analytical frameworks. It is our hope that these studies will spur further development and utilization of spatial analysis and geographic information systems in epidemiologic research. Copyright © 2016 Elsevier Inc. All rights reserved.
Rapid Analysis of Copper Ore in Pre-Smelter Head Flow Slurry by Portable X-ray Fluorescence.
Burnett, Brandon J; Lawrence, Neil J; Abourahma, Jehad N; Walker, Edward B
2016-05-01
Copper laden ore is often concentrated using flotation. Before the head flow slurry can be smelted, it is important to know the concentration of copper and contaminants. The concentration of copper and other elements fluctuate significantly in the head flow, often requiring modification of the concentrations in the slurry prior to smelting. A rapid, real-time analytical method is needed to support on-site optimization of the smelter feedstock. A portable, handheld X-ray fluorescence spectrometer was utilized to determine the copper concentration in a head flow suspension at the slurry origin. The method requires only seconds and is reliable for copper concentrations of 2.0-25%, typically encountered in such slurries. © The Author(s) 2016.
Database recovery using redundant disk arrays
NASA Technical Reports Server (NTRS)
Mourad, Antoine N.; Fuchs, W. K.; Saab, Daniel G.
1992-01-01
Redundant disk arrays provide a way for achieving rapid recovery from media failures with a relatively low storage cost for large scale database systems requiring high availability. In this paper a method is proposed for using redundant disk arrays to support rapid-recovery from system crashes and transaction aborts in addition to their role in providing media failure recovery. A twin page scheme is used to store the parity information in the array so that the time for transaction commit processing is not degraded. Using an analytical model, it is shown that the proposed method achieves a significant increase in the throughput of database systems using redundant disk arrays by reducing the number of recovery operations needed to maintain the consistency of the database.
Recovery issues in databases using redundant disk arrays
NASA Technical Reports Server (NTRS)
Mourad, Antoine N.; Fuchs, W. K.; Saab, Daniel G.
1993-01-01
Redundant disk arrays provide a way for achieving rapid recovery from media failures with a relatively low storage cost for large scale database systems requiring high availability. In this paper we propose a method for using redundant disk arrays to support rapid recovery from system crashes and transaction aborts in addition to their role in providing media failure recovery. A twin page scheme is used to store the parity information in the array so that the time for transaction commit processing is not degraded. Using an analytical model, we show that the proposed method achieves a significant increase in the throughput of database systems using redundant disk arrays by reducing the number of recovery operations needed to maintain the consistency of the database.
Performance evaluation of redundant disk array support for transaction recovery
NASA Technical Reports Server (NTRS)
Mourad, Antoine N.; Fuchs, W. Kent; Saab, Daniel G.
1991-01-01
Redundant disk arrays provide a way of achieving rapid recovery from media failures with a relatively low storage cost for large scale data systems requiring high availability. Here, we propose a method for using redundant disk arrays to support rapid recovery from system crashes and transaction aborts in addition to their role in providing media failure recovery. A twin page scheme is used to store the parity information in the array so that the time for transaction commit processing is not degraded. Using an analytical model, we show that the proposed method achieves a significant increase in the throughput of database systems using redundant disk arrays by reducing the number of recovery operations needed to maintain the consistency of the database.
Karimi, H; Ghaedi, M; Shokrollahi, A; Rajabi, H R; Soylak, M; Karami, B
2008-02-28
A simple, selective and rapid flotation method for the separation-preconcentration of trace amounts of cobalt, nickel, iron and copper ions using phenyl 2-pyridyl ketone oxime (PPKO) has been developed prior to their flame atomic absorption spectrometric determinations. The influence of pH, amount of PPKO as collector, type and amount of eluting agent, type and amount of surfactant as floating agent and ionic strength was evaluated on the recoveries of analytes. The influences of the concomitant ions on the recoveries of the analyte ions were also examined. The enrichment factor was 93. The detection limits based on 3 sigma for Cu, Ni, Co and Fe were 0.7, 0.7, 0.8, and 0.7 ng mL(-1), respectively. The method has been successfully applied for determination of trace amounts of ions in various real samples.
Jordan, Gregor; Onami, Ichio; Heinrich, Julia; Staack, Roland F
2017-11-01
Assessment of active drug exposure of biologics may be crucial for drug development. Typically, ligand-binding assay methods are used to provide free/active drug concentrations. To what extent hybrid LC-MS/MS procedures enable correct 'active' drug quantification is currently under consideration. Experimental & results: The relevance of appropriate extraction condition was evaluated by a hybrid target capture immuno-affinity LC-MS/MS method using total and free/active quality controls (QCs). The rapid extraction (10 min) provided correct results, whereas overnight incubation resulted in significant overestimation of the free/active drug (monclonal antibody) concentration. Conventional total QCs were inappropriate to determine optimal method conditions in contrast to free/active QCs. The 'free/active analyte QC concept' enables development of appropriate extraction conditions for correct active drug quantification by hybrid LC-MS/MS.
Insausti, Matías; Fernández Band, Beatriz S
2015-04-05
A highly sensitive spectrofluorimetric method has been developed for the determination of 2-ethylhexyl nitrate in diesel fuel. Usually, this compound is used as an additive in order to improve cetane number. The analytical method consists in building the chemometric model as a first step. Then, it is possible to quantify the analyte with only recording a single excitation-emission fluorescence spectrum (EEF), whose data are introduced in the chemometric model above mentioned. Another important characteristic of this method is that the fuel sample was used without any pre-treatment for EEF. This work provides an interest improvement to fluorescence techniques using the rapid and easily applicable EEF approach to analyze such complex matrices. Exploding EEF was the key to a successful determination, obtaining a detection limit of 0.00434% (v/v) and a limit of quantification of 0.01446% (v/v). Copyright © 2015 Elsevier B.V. All rights reserved.
Procedure for rapid determination of nickel, cobalt, and chromium in airborne particulate samples
NASA Technical Reports Server (NTRS)
Davis, W. F.; Graab, J. W.
1972-01-01
A rapid, selective procedure for the determination of 1 to 20 micrograms of nickel, chromium, and cobalt in airborne particulates is described. The method utilizes the combined techniques of low temperature ashing and atomic absorption spectroscopy. The airborne particulates are collected on analytical filter paper. The filter papers are ashed, and the residues are dissolved in hydrochloric acid. Nickel, chromium, and cobalt are determined directly with good precision and accuracy by means of atomic absorption. The effects of flame type, burner height, slit width, and lamp current on the atomic absorption measurements are reported.
NASA Astrophysics Data System (ADS)
Nikiforov, M. P.; Reukov, V. V.; Thompson, G. L.; Vertegel, A. A.; Guo, S.; Kalinin, S. V.; Jesse, S.
2009-10-01
Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.
ERIC Educational Resources Information Center
Homem, Vera; Alves, Arminda; Santos, Lu´cia
2014-01-01
A laboratory application with a strong component in analytical chemistry was designed for undergraduate students, in order to introduce a current problem in the environmental science field, the water contamination by antibiotics. Therefore, a simple and rapid method based on direct injection and high performance liquid chromatography-tandem mass…
Snow, Mathew S.; Morrison, Samuel S.; Clark, Sue B.; ...
2017-03-21
In this study, environmental 237Np analyses are challenged by low 237Np concentrations and lack of an available yield tracer; we report a rapid, inexpensive 237Np analytical approach employing the short lived 239Np (t1/2 = 2.3 days) as a chemical yield tracer followed by 237Np quantification using inductively coupled plasma-mass spectrometry. 239Np tracer is obtained via separation from a 243Am stock solution and standardized using gamma spectrometry immediately prior to sample processing. Rapid digestions using a commercial, 900 W "Walmart" microwave and Parr microwave vessels result in 99.8 ± 0.1% digestion yields, while chromatographic separations enable Np/U separation factors on themore » order of 10 6 and total Np yields of 95 ± 4% (2σ). Application of this method to legacy soil samples surrounding a radioactive disposal facility (the Subsurface Disposal Area at Idaho National Laboratory) reveal the presence of low level 237Np contamination within 600 m of this site, with maximum 237Np concentrations on the order of 10 3 times greater than nuclear weapons testing fallout levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Mathew S.; Morrison, Samuel S.; Clark, Sue B.
2017-06-01
Environmental 237Np analyses are challenged by low 237Np concentrations and lack of an available yield tracer; we report a rapid, inexpensive 237Np analytical approach employing the short lived 239Np (t1/2 = 2.3 days) as a chemical yield tracer followed by 237Np quantification using inductively coupled plasma-mass spectrometry. 239Np tracer is obtained via separation from a 243Am stock solution and standardized using gamma spectrometry immediately prior to sample processing. Rapid digestions using a commercial, 900 watt “Walmart” microwave and Parr microwave vessels result in 99.8 ± 0.1% digestion yields, while chromatographic separations enable Np/U separation factors on the order of 106more » and total Np yields of 95 ± 4% (2σ). Application of this method to legacy soil samples surrounding a radioactive disposal facility (the Subsurface Disposal Area at Idaho National Laboratory) reveal the presence of low level 237Np contamination within 600 meters of this site, with maximum 237Np concentrations on the order of 103 times greater than nuclear weapons testing fallout levels.« less
Snow, Mathew S; Morrison, Samuel S; Clark, Sue B; Olson, John E; Watrous, Matthew G
2017-06-01
Environmental 237 Np analyses are challenged by low 237 Np concentrations and lack of an available yield tracer; we report a rapid, inexpensive 237 Np analytical approach employing the short lived 239 Np (t 1/2 = 2.3 days) as a chemical yield tracer followed by 237 Np quantification using inductively coupled plasma-mass spectrometry. 239 Np tracer is obtained via separation from a 243 Am stock solution and standardized using gamma spectrometry immediately prior to sample processing. Rapid digestions using a commercial, 900 W "Walmart" microwave and Parr microwave vessels result in 99.8 ± 0.1% digestion yields, while chromatographic separations enable Np/U separation factors on the order of 10 6 and total Np yields of 95 ± 4% (2σ). Application of this method to legacy soil samples surrounding a radioactive disposal facility (the Subsurface Disposal Area at Idaho National Laboratory) reveal the presence of low level 237 Np contamination within 600 m of this site, with maximum 237 Np concentrations on the order of 10 3 times greater than nuclear weapons testing fallout levels. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cruz, Cristina D; Win, Jessicah K; Chantarachoti, Jiraporn; Mutukumira, Anthony N; Fletcher, Graham C
2012-02-15
The standard Bacteriological Analytical Manual (BAM) protocol for detecting Listeria in food and on environmental surfaces takes about 96 h. Some studies indicate that rapid methods, which produce results within 48 h, may be as sensitive and accurate as the culture protocol. As they only give presence/absence results, it can be difficult to compare the accuracy of results generated. We used the Most Probable Number (MPN) technique to evaluate the performance and detection limits of six rapid kits for detecting Listeria in seafood and on an environmental surface compared with the standard protocol. Three seafood products and an environmental surface were inoculated with similar known cell concentrations of Listeria and analyzed according to the manufacturers' instructions. The MPN was estimated using the MPN-BAM spreadsheet. For the seafood products no differences were observed among the rapid kits and efficiency was similar to the BAM method. On the environmental surface the BAM protocol had a higher recovery rate (sensitivity) than any of the rapid kits tested. Clearview™, Reveal®, TECRA® and VIDAS® LDUO detected the cells but only at high concentrations (>10(2) CFU/10 cm(2)). Two kits (VIP™ and Petrifilm™) failed to detect 10(4) CFU/10 cm(2). The MPN method was a useful tool for comparing the results generated by these presence/absence test kits. There remains a need to develop a rapid and sensitive method for detecting Listeria in environmental samples that performs as well as the BAM protocol, since none of the rapid tests used in this study achieved a satisfactory result. Copyright © 2011 Elsevier B.V. All rights reserved.
Hetrick, Evan M; Kramer, Timothy T; Risley, Donald S
2017-03-17
Based on a column-screening exercise, a column ranking system was developed for sample mixtures containing any combination of 26 sugar and sugar alcohol analytes using 16 polar stationary phases in the HILIC mode with acetonitrile/water or acetone/water mobile phases. Each analyte was evaluated on the HILIC columns with gradient elution and the subsequent chromatography data was compiled into a statistical software package where any subset of the analytes can be selected and the columns are then ranked by the greatest separation. Since these analytes lack chromophores, aerosol-based detectors, including an evaporative light scattering detector (ELSD) and a charged aerosol detector (CAD) were employed for qualitative and quantitative detection. Example qualitative applications are provided to illustrate the practicality and efficiency of this HILIC column ranking. Furthermore, the design-space approach was used as a starting point for a quantitative method for the trace analysis of glucose in trehalose samples in a complex matrix. Knowledge gained from evaluating the design-space led to rapid development of a capable method as demonstrated through validation of the following parameters: specificity, accuracy, precision, linearity, limit of quantitation, limit of detection, and range. Copyright © 2017 Elsevier B.V. All rights reserved.
Noubarani, Maryam; Keyhanfar, Fariborz; Motevalian, Manijeh; Mahmoudian, Masoud
2010-01-01
To develop a simple and rapid HPLC method for measuring of four proton-pump inhibitors (PPIs), omeprazole (OPZ), pantoprazole (PPZ), lansoprazole (LPZ) and rabeprazole (RPZ) concentrations in human plasma. Following a single step liquid-liquid extraction analytes along with an internal standard (IS) were separated using an isocratic mobile phase of phosphate buffer (10 mM)/acetonitrile (53/47, v/v adjusted pH to 7.3 with triethylamine) at flow rate of 1 mL/min on reverse phase TRACER EXCEL 120 ODS-A column at room temperature. Total analytical run time for selected PPIs was 10 min. The assays exhibited good linearity (r(2)>0.99) over the studied range of 20 to 2500 ng/mL for OPZ, 20 to 4000 ng/mL for PPZ, 20 to 3000 ng/mL for LPZ and 20 to 1500 ng/mL for RPZ. The recovery of method was equal or greater than 80% and lower limit of quantification (LLOQ) was 20 ng/mL for four PPIs. Coefficient of variation and error at all of the intra-day and inter-day assessment were less than 9.2% for all compounds. The results indicated that this method is a simple, rapid, precise and accurate assay for determination of four PPIs concentrations in human plasma. This validated method is sensitive and reproducible enough to be used in pharmacokinetic studies and also is time- and cost-benefit when selected PPIs are desired to be analyzed.
Bacteriophage-based nanoprobes for rapid bacteria separation
NASA Astrophysics Data System (ADS)
Chen, Juhong; Duncan, Bradley; Wang, Ziyuan; Wang, Li-Sheng; Rotello, Vincent M.; Nugen, Sam R.
2015-10-01
The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes.The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03779d
Rapid computation of directional wellbore drawdown in a confined aquifer via Poisson resummation
NASA Astrophysics Data System (ADS)
Blumenthal, Benjamin J.; Zhan, Hongbin
2016-08-01
We have derived a rapidly computed analytical solution for drawdown caused by a partially or fully penetrating directional wellbore (vertical, horizontal, or slant) via Green's function method. The mathematical model assumes an anisotropic, homogeneous, confined, box-shaped aquifer. Any dimension of the box can have one of six possible boundary conditions: 1) both sides no-flux; 2) one side no-flux - one side constant-head; 3) both sides constant-head; 4) one side no-flux; 5) one side constant-head; 6) free boundary conditions. The solution has been optimized for rapid computation via Poisson Resummation, derivation of convergence rates, and numerical optimization of integration techniques. Upon application of the Poisson Resummation method, we were able to derive two sets of solutions with inverse convergence rates, namely an early-time rapidly convergent series (solution-A) and a late-time rapidly convergent series (solution-B). From this work we were able to link Green's function method (solution-B) back to image well theory (solution-A). We then derived an equation defining when the convergence rate between solution-A and solution-B is the same, which we termed the switch time. Utilizing the more rapidly convergent solution at the appropriate time, we obtained rapid convergence at all times. We have also shown that one may simplify each of the three infinite series for the three-dimensional solution to 11 terms and still maintain a maximum relative error of less than 10-14.
Development of a double-antibody sandwich ELISA for rapid detection of Bacillus Cereus in food
Zhu, Longjiao; He, Jing; Cao, Xiaohan; Huang, Kunlun; Luo, Yunbo; Xu, Wentao
2016-01-01
Bacillus cereus is increasingly recognized as one of the major causes of food poisoning in the industrialized world. In this paper, we describe a sensitive double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) that was developed for rapid detection of B. cereus in food to minimize the risk of contamination. The polyclonal antibody (pAb) and monoclonal antibodies (mAbs) specific to B. cereus were generated from rabbit antiserum and mouse ascites, respectively, using the octanoic acid/saturated ammonium sulfate precipitation method and protein A-sepharose columns. IgG-isotype mAbs were specially developed to undergo a novel peripheral multiple sites immunization for rapid gain of hybridomas and a subtractive screen was used to eliminate cross reactivity with closely related species such as Bacillus thuringiensis, B. subtilis, B. licheniformis and B. perfringens. The linear detection range of the method was approximately 1 × 104–2.8 × 106 cells/mL with a detection limit (LOD) of 0.9 × 103 cells/mL. The assay was able to detect B. cereus when the samples were prepared in meat with various pathogens. The newly developed analytical method provides a rapid method to sensitively detect B. cereus in food specimens. PMID:26976753
Analytical Fuselage and Wing Weight Estimation of Transport Aircraft
NASA Technical Reports Server (NTRS)
Chambers, Mark C.; Ardema, Mark D.; Patron, Anthony P.; Hahn, Andrew S.; Miura, Hirokazu; Moore, Mark D.
1996-01-01
A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft, and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT has traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight. Using statistical analysis techniques, relations between the load-bearing fuselage and wing weights calculated by PDCYL and corresponding actual weights were determined.
Chen, Yi-Ting; Wang, Fu-Shing; Li, Zhendong; Li, Liang; Ling, Yong-Chien
2012-07-29
Phthalocyanines (PCs), an important class of chemicals widely used in many industrial sectors, are macrocyclic compounds possessing a heteroaromatic π-electron system with optical properties influenced by chemical structures and impurities or by-products introduced during the synthesis process. Analytical tools allowing for rapid monitoring of the synthesis processes are of significance for the development of new PCs with improved performance in many application areas. In this work, we report a matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOFMS) method for rapid and convenient monitoring of PC synthesis reactions. For this class of compounds, intact molecular ions could be detected by MALDI using retinoic acid as matrix. It was shown that relative quantification results of two PC compounds could be generated by MALDI MS. This method was applied to monitor the bromination reactions of nickel- and copper-containing PCs. It was demonstrated that, compared to the traditional UV-visible method, the MALDI MS method offers the advantage of higher sensitivity while providing chemical species and relative quantification information on the reactants and products, which are crucial to process monitoring. Copyright © 2012 Elsevier B.V. All rights reserved.
1986-05-01
the presence of NOL 130 6 Determination of moisture content of dextrinated lead azide 14 containing known amounts of water, by the Karl Fisher method...maLhiod, extraction mode 8 Determinatiov) of moisture content of special purpose and 16 dextrinated lead atide, containing known amounts of water by the...water in special purpose and dextrinated lead azides were determined by the method described in the experimen- tal section of this report, data shown
Rapid-estimation method for assessing scour at highway bridges
Holnbeck, Stephen R.
1998-01-01
A method was developed by the U.S. Geological Survey for rapid estimation of scour at highway bridges using limited site data and analytical procedures to estimate pier, abutment, and contraction scour depths. The basis for the method was a procedure recommended by the Federal Highway Administration for conducting detailed scour investigations, commonly referred to as the Level 2 method. Using pier, abutment, and contraction scour results obtained from Level 2 investigations at 122 sites in 10 States, envelope curves and graphical relations were developed that enable determination of scour-depth estimates at most bridge sites in a matter of a few hours. Rather than using complex hydraulic variables, surrogate variables more easily obtained in the field were related to calculated scour-depth data from Level 2 studies. The method was tested by having several experienced individuals apply the method in the field, and results were compared among the individuals and with previous detailed analyses performed for the sites. Results indicated that the variability in predicted scour depth among individuals applying the method generally was within an acceptable range, and that conservatively greater scour depths generally were obtained by the rapid-estimation method compared to the Level 2 method. The rapid-estimation method is considered most applicable for conducting limited-detail scour assessments and as a screening tool to determine those bridge sites that may require more detailed analysis. The method is designed to be applied only by a qualified professional possessing knowledge and experience in the fields of bridge scour, hydraulics, and flood hydrology, and having specific expertise with the Level 2 method.
Pérez-Lozano, P; García-Montoya, E; Orriols, A; Miñarro, M; Ticó, J R; Suñé-Negre, J M
2005-10-04
A new HPLC-RP method has been developed and validated for the simultaneous determination of benzocaine, two preservatives (propylparaben (nipasol) and benzyl alcohol) and degradation products of benzocaine in a semisolid pharmaceutical dosage form (benzocaine gel). The method uses a Nucleosil 120 C18 column and gradient elution. The mobile phase consisted of a mixture of methanol and glacial acetic acid (10%, v/v) at different proportion according to a time-schedule programme, pumped at a flow rate of 2.0 ml min(-1). The DAD detector was set at 258 nm. The validation study was carried out fulfilling the ICH guidelines in order to prove that the new analytical method, meets the reliability characteristics, and these characteristics showed the capacity of analytical method to keep, throughout the time, the fundamental criteria for validation: selectivity, linearity, precision, accuracy and sensitivity. The method was applied during the quality control of benzocaine gel in order to quantify the drug (benzocaine), preservatives and degraded products and proved to be suitable for rapid and reliable quality control method.
Qu, Jing; Hu, You-cai; Li, Jian-bei; Wang, Ying-hong; Zhang, Jin-lan; Abliz, Zeper; Yu, Shi-shan; Liu, Yun-bao
2008-01-01
A combination of electrospray ionization tandem mass spectrometry with high-performance liquid chromatography (HPLC/ESI-MSn), and hyphenation of liquid chromatography to nuclear magnetic resonance spectroscopy (HPLC/NMR), have been extensively utilized for on-line analysis of natural products, analyzing metabolite and drug impurity. In our last paper, we reported an on-line analytical method for structural identification of trace alkaloids in the same class. However, the structural types of the constituents in plants were various, such as flavanoids, terpenoids and steroids. It is important to establish an effective analytical method for on-line structural identification of constituents with molecular diversity in extracts of plants. So, in the present study, the fragmentation patterns of some isolated stilbenes, phloroglucinols and flavanoids from Lysidice rhodostegia were investigated by ESI-MSn. Their fragmentation rules and UV characteristics are summarized, and the relationship between the spectral characteristics, rules and the structures is described. According to the fragmentation rules, NMR and UV spectral characteristics, 24 constituents of different types in the fractions from L. brevicalyx of the same genus were structurally characterized on the basis of HPLC/HRMS, HPLC-UV/ESI-MSn, HPLC/1H NMR and HPLC/1H-1H COSY rapidly. Of these, six (10, 13, 14, 16, 17 and 23) are new compounds and all of them are reported from L. brevicalyx for the first time. The aim is to develop an effective analytical method for on-line structural identification of natural products with molecular diversity in plants, and to guide the rapid and direct isolation of novel compounds by chemical screening.
Huang, Yun-Qing; You, Jing-Qing; Zhang, Junsheng; Sun, Wenjian; Ding, Li; Feng, Yu-Qi
2011-10-14
We developed a convenient method by coupling frontal elution paper chromatography with desorption corona beam ionization mass spectrometry (DCBI-MS) for rapid determination of chlorphenamine added in herbal medicines or dietary supplements. In this method, the ethanol extract of the herbal products was spotted directly onto an isosceles triangular filter paper sheet, and then the paper sheet was developed under strong elution condition with the sample zone migrating at the solvent front. The analyte was finally condensed at the V-shaped tip which could then be placed under the visible plasma beam of DCBI for ionization. The overall procedure took less than 5 min. The frontal elution paper chromatography on a triangular plate used in this work improved the signal intensity of chlorphenamine by 30-fold due to the analyte condensing at the tip and the reduction of the background suppression. Furthermore, the paper sheet also functioned as a filter in the analysis of solid or powder samples, which can increase the analytical throughput by omitting the step of centrifugation. The proposed method in current study was successfully applied in the determination of chlorphenamine in herbal medicines. Chlorphenamine was detected in four of the twelve types of herbal medicines examined in this study. The limit of detection was 200 ng/mL (2.0 ng absolute) in full-scan positive-ion mode and the linear range was from 5.0 μg/mL to 50 μg/mL with satisfactory linear coefficient (R(2) (the square of the correlation coefficient)=0.895). Good reproducibility was achieved with relative standard deviations (RSDs) less than 15.0% and the recoveries of chlorphenamine ranged from 84.3 to 90.6%. Copyright © 2011 Elsevier B.V. All rights reserved.
Le, Laetitia Minh Maï; Kégl, Balázs; Gramfort, Alexandre; Marini, Camille; Nguyen, David; Cherti, Mehdi; Tfaili, Sana; Tfayli, Ali; Baillet-Guffroy, Arlette; Prognon, Patrice; Chaminade, Pierre; Caudron, Eric
2018-07-01
The use of monoclonal antibodies (mAbs) constitutes one of the most important strategies to treat patients suffering from cancers such as hematological malignancies and solid tumors. These antibodies are prescribed by the physician and prepared by hospital pharmacists. An analytical control enables the quality of the preparations to be ensured. The aim of this study was to explore the development of a rapid analytical method for quality control. The method used four mAbs (Infliximab, Bevacizumab, Rituximab and Ramucirumab) at various concentrations and was based on recording Raman data and coupling them to a traditional chemometric and machine learning approach for data analysis. Compared to conventional linear approach, prediction errors are reduced with a data-driven approach using statistical machine learning methods. In the latter, preprocessing and predictive models are jointly optimized. An additional original aspect of the work involved on submitting the problem to a collaborative data challenge platform called Rapid Analytics and Model Prototyping (RAMP). This allowed using solutions from about 300 data scientists in collaborative work. Using machine learning, the prediction of the four mAbs samples was considerably improved. The best predictive model showed a combined error of 2.4% versus 14.6% using linear approach. The concentration and classification errors were 5.8% and 0.7%, only three spectra were misclassified over the 429 spectra of the test set. This large improvement obtained with machine learning techniques was uniform for all molecules but maximal for Bevacizumab with an 88.3% reduction on combined errors (2.1% versus 17.9%). Copyright © 2018 Elsevier B.V. All rights reserved.
Toxin Detection by Surface Plasmon Resonance
Hodnik, Vesna; Anderluh, Gregor
2009-01-01
Significant efforts have been invested in the past years for the development of analytical methods for fast toxin detection in food and water. Immunochemical methods like ELISA, spectroscopy and chromatography are the most used in toxin detection. Different methods have been linked, e.g. liquid chromatography and mass spectrometry (LC-MS), in order to detect as low concentrations as possible. Surface plasmon resonance (SPR) is one of the new biophysical methods which enables rapid toxin detection. Moreover, this method was already included in portable sensors for on-site determinations. In this paper we describe some of the most common methods for toxin detection, with an emphasis on SPR. PMID:22573957
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cong, Yongzheng; Katipamula, Shanta; Geng, Tao
2016-02-01
A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for electrophoresis using a single microvalve. The PDMS microchip consists of a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, can serve as a preconcentrator under an applied electric potential, enabling current to pass through while blocking bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected intomore » the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ~450 in 230 s. The performance of the platform was validated by the online preconcentration, injection and electrophoretic separation of fluorescently labeled peptides. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high resolution capillary electrophoresis.« less
Lamparczyk, H; Chmielewska, A; Konieczna, L; Plenis, A; Zarzycki, P K
2001-12-01
A rapid and sensitive reversed-phase high performance liquid chromatographic method has been developed for the determination of metoclopramide in serum. The assay was performed after single extraction with ethyl ether using methyl parahydroxybenzoate as internal standard. Chromatographic separations were performed on C(18) stationary phase with a mobile phase composed of methanol-phosphate buffer pH 3 (30:70 v/v). Analytes were detected electrochemically. The quantification limit for metoclopramide in serum was 2 ng mL(-1). Linearity of the method was confirmed in the range of 5-120 ng mL(-1) (correlation coefficient 0.9998). Within-day relative standard deviations (RSDs) ranged from 0.3 to 5.5% and between-day RSDs from 0.8 to 6.0%. The analytical method was successfully applied for the determination of pharmacokinetic parameters after ingestion of 10 mg dose of metoclopramide. Studies were performed on 18 healthy volunteers of both sexes. Copyright 2001 John Wiley & Sons, Ltd.
Monakhova, Yulia B; Mushtakova, Svetlana P
2017-05-01
A fast and reliable spectroscopic method for multicomponent quantitative analysis of targeted compounds with overlapping signals in complex mixtures has been established. The innovative analytical approach is based on the preliminary chemometric extraction of qualitative and quantitative information from UV-vis and IR spectral profiles of a calibration system using independent component analysis (ICA). Using this quantitative model and ICA resolution results of spectral profiling of "unknown" model mixtures, the absolute analyte concentrations in multicomponent mixtures and authentic samples were then calculated without reference solutions. Good recoveries generally between 95% and 105% were obtained. The method can be applied to any spectroscopic data that obey the Beer-Lambert-Bouguer law. The proposed method was tested on analysis of vitamins and caffeine in energy drinks and aromatic hydrocarbons in motor fuel with 10% error. The results demonstrated that the proposed method is a promising tool for rapid simultaneous multicomponent analysis in the case of spectral overlap and the absence/inaccessibility of reference materials.
Species-specific detection of processed animal proteins in feed by Raman spectroscopy.
Mandrile, Luisa; Amato, Giuseppina; Marchis, Daniela; Martra, Gianmario; Rossi, Andrea Mario
2017-08-15
The existing European Regulation (EC n° 51/2013) prohibits the use of animals meals in feedstuffs in order to prevent Bovine Spongiform Encephalopathy infection and diffusion, however the legislation is rapidly moving towards a partial lifting of the "feed ban" and the competent control organisms are urged to develop suitable analytical methods able to avoid food safety incidents related to animal origin products. The limitations of the official methods (i.e. light microscopy and Polymerase Chain Reaction) suggest exploring new analytic ways to get reliable results in a short time. The combination of spectroscopic techniques with optical microscopy allows the development of an individual particle method able to meet both selectivity and sensitivity requirements (0.1%w/w). A spectroscopic method based on Fourier Transform micro-Raman spectroscopy coupled with Discriminant Analysis is here presented. This approach could be very useful for in-situ applications, such as customs inspections, since it drastically reduces time and costs of analysis. Copyright © 2017. Published by Elsevier Ltd.
Applications of Optical Microcavity Resonators in Analytical Chemistry
Wade, James H.; Bailey, Ryan C.
2018-01-01
Optical resonator sensors are an emerging class of analytical technologies that use recirculating light confined within a microcavity to sensitively measure the surrounding environment. Bolstered by advances in microfabrication, these devices can be configured for a wide variety of chemical or biomolecular sensing applications. The review begins with a brief description of optical resonator sensor operation followed by discussions regarding sensor design, including different geometries, choices of material systems, methods of sensor interrogation, and new approaches to sensor operation. Throughout, key recent developments are highlighted, including advancements in biosensing and other applications of optical sensors. Alternative sensing mechanisms and hybrid sensing devices are then discussed in terms of their potential for more sensitive and rapid analyses. Brief concluding statements offer our perspective on the future of optical microcavity sensors and their promise as versatile detection elements within analytical chemistry. PMID:27049629
Alternatives to current flow cytometry data analysis for clinical and research studies.
Gondhalekar, Carmen; Rajwa, Bartek; Patsekin, Valery; Ragheb, Kathy; Sturgis, Jennifer; Robinson, J Paul
2018-02-01
Flow cytometry has well-established methods for data analysis based on traditional data collection techniques. These techniques typically involved manual insertion of tube samples into an instrument that, historically, could only measure 1-3 colors. The field has since evolved to incorporate new technologies for faster and highly automated sample preparation and data collection. For example, the use of microwell plates on benchtop instruments is now a standard on virtually every new instrument, and so users can easily accumulate multiple data sets quickly. Further, because the user must carefully define the layout of the plate, this information is already defined when considering the analytical process, expanding the opportunities for automated analysis. Advances in multi-parametric data collection, as demonstrated by the development of hyperspectral flow-cytometry, 20-40 color polychromatic flow cytometry, and mass cytometry (CyTOF), are game-changing. As data and assay complexity increase, so too does the complexity of data analysis. Complex data analysis is already a challenge to traditional flow cytometry software. New methods for reviewing large and complex data sets can provide rapid insight into processes difficult to define without more advanced analytical tools. In settings such as clinical labs where rapid and accurate data analysis is a priority, rapid, efficient and intuitive software is needed. This paper outlines opportunities for analysis of complex data sets using examples of multiplexed bead-based assays, drug screens and cell cycle analysis - any of which could become integrated into the clinical environment. Copyright © 2017. Published by Elsevier Inc.
Qu, Jun; Chen, Wei; Luo, Guoan; Wang, Yiming; Xiao, Shengyuan; Ling, Zhihua; Chen, Guoqiang
2002-01-01
Determination of amino acids in a complex matrix without derivatization is advantageous, however, difficulties are found in both the detection and the separation of those compounds. In this study, a rapid and reliable LC-MS-MS method for the quantitation of underivatized amino acids in exocellular media was established. Injections were made directly after centrifugation of the samples, without further preparation. The separation of seven underivatized amino acids was achieved on a reversed-phase C18 column with pentadecafluorooctanoic acid as a volatile ion-pair reagent, and the specific detection of most amino acids was achieved by MS-MS of the specific transitions [M + H]+-->[M + H - 46]+. The calibration curves of all analytes were linear over the range of 1.0-1000 microg ml(-1) and the detection limits ranged from 0.1 to 5 ng ml(-1), with an injection volume of 20 microl. The inter-day and intra-day precisions ranged from 2.6 to 5.7% and 4.8 to 8.2%, respectively; the mean recoveries of the seven analytes were 81-104%, 91-107% and 93-101% respectively at the spiked level of 10, 40 and 200 microg ml(-1). A large number of fermentation samples were analysed using this method. The technique is simple, rapid, selective and sensitive, and shows potential for the high-throughput quantitation of amino acids from other biological matrices.
Furuki, Kenichiro; Toyo'oka, Toshimasa; Yamaguchi, Hideto
2017-08-15
Mecasermin is used to treat elevated blood sugar as well as growth-hormone-resistant Laron-type dwarfism. Mecasermin isolated from inclusion bodies in extracts of E. coli must be refolded to acquire sufficient activity. However, there is no rapid analytical method for monitoring refolding during the purification process. We prepared mecasermin drug product, in-process samples during the oxidation of mecasermin, forced-reduced mecasermin, and aerially oxidized mecasermin after forced reduction. Desalted mecasermin samples were analyzed using MALDI-ISD. The peak intensity ratio of product to precursor ion was determined. The charge-state distribution (CSD) of mecasermin ions was evaluated using ESI-MS coupled with SEC-mode HPLC. The drift time and collision cross-sectional area (CCS) of mecasermin ions were evaluated using ESI-IMS-MS coupled with SEC-mode HPLC. MALDI-ISD data, CSD values determined using ESI-MS, and the CCS acquired using ESI-IMS-MS revealed the relationship between the folded and unfolded proteoforms of forced-reduced mecasermin and aerially oxidized mecasermin with the free-SH:protein ratio of mecasermin drug product. The CCS area, which is determined using ESI-IMS-MS, provided proteoform information through rapid monitoring (<2 min) of in-process samples during the manufacture of mecasermin. ESI-IMS-MS coupled with SEC-mode HPLC is a rapid and robust method for analyzing the free-SH:protein ratio of mecasermin that allows proteoform changes to be evaluated and monitored during the oxidation of mecasermin. ESI-IMS-MS is applicable as a process analytical technology tool for identifying the "critical quality attributes" and implementing "quality by design" for manufacturing mecasermin. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jeong
The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (i.e. morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method ismore » a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these solute trapping models are not rigorously verified due to the difficulty in experimentally measuring under rapid growth conditions. Moreover, since these solute trapping models include kinetic parameters which are difficult to directly measure from experiments, application of the solute trapping models or the associated analytic rapid solidification model is limited. These theoretical models for steady state rapid solidification which incorporate the solute trapping models do not describe the interdependency of solute diffusion, interface kinetics, and alloy thermodynamics. The phase-field approach allows calculating, spontaneously, the non-equilibrium growth effects of alloys and the associated time-dependent growth dynamics, without making the assumptions that solute partitioning is an explicit function of velocity, as is the current convention. In the research described here, by utilizing the phase-field model in the thin-interface limit, incorporating the anti-trapping current term, more quantitatively valid interface kinetics and solute diffusion across the interface are calculated. In order to sufficiently resolve the physical length scales (i.e. interface thickness and diffusion boundary length), grid spacings are continually adjusted in calculations. The full trajectories of transient planar growth dynamics under rapid directional solidification conditions with different pulling velocities are described. As a validation of a model, the predicted steady state conditions are consistent with the analytic approach for rapid growth. It was confirmed that rapid interface dynamics exhibits the abrupt acceleration of the planar front when the effect of the non-equilibrium solute partitioning at the interface becomes signi ficant. This is consistent with the previous linear stability analysis for the non-equilibrium interface dynamics. With an appropriate growth condition, the continuous oscillation dynamics was able to be simulated using continually adjusting grid spacings. This oscillatory dynamics including instantaneous jump of interface velocities are consistent with a previous phenomenological model by and a numerical investigation, which may cause the formation of banded structures. Additionally, the selection of the steady state growth dynamics in the highly undercooled melt is demonstrated. The transition of the growth morphology, interface velocity selection, and solute trapping phenomenon with increasing melt supersaturations was described by the phase-field simulation. The tip selection for the dendritic growth was consistent with Ivantsov's function, and the non-equilibrium chemical partitioning behavior shows good qualitative agreement with the Aziz's solute trapping model even though the model parameter(V D) remains as an arbitrary constant. This work is able to show the possibility of comprehensive description of rapid alloy growth over the entire time-dependent non-equilibrium phenomenon.« less
An analysis code for the Rapid Engineering Estimation of Momentum and Energy Losses (REMEL)
NASA Technical Reports Server (NTRS)
Dechant, Lawrence J.
1994-01-01
Nonideal behavior has traditionally been modeled by defining efficiency (a comparison between actual and isentropic processes), and subsequent specification by empirical or heuristic methods. With the increasing complexity of aeropropulsion system designs, the reliability of these more traditional methods is uncertain. Computational fluid dynamics (CFD) and experimental methods can provide this information but are expensive in terms of human resources, cost, and time. This report discusses an alternative to empirical and CFD methods by applying classical analytical techniques and a simplified flow model to provide rapid engineering estimates of these losses based on steady, quasi-one-dimensional governing equations including viscous and heat transfer terms (estimated by Reynold's analogy). A preliminary verification of REMEL has been compared with full Navier-Stokes (FNS) and CFD boundary layer computations for several high-speed inlet and forebody designs. Current methods compare quite well with more complex method results and solutions compare very well with simple degenerate and asymptotic results such as Fanno flow, isentropic variable area flow, and a newly developed, combined variable area duct with friction flow solution. These solution comparisons may offer an alternative to transitional and CFD-intense methods for the rapid estimation of viscous and heat transfer losses in aeropropulsion systems.
Quantitative analysis of boeravinones in the roots of Boerhaavia Diffusa by UPLC/PDA.
Bairwa, Khemraj; Srivastava, Amit; Jachak, Sanjay Madhukar
2014-01-01
Boerhaavia diffusa is a perennial herb belonging to Nyctaginaceae. Various classes of chemical constituents such as phenolics (boeravinones), terpenoids and organic acids have been reported in B. diffusa roots. As boeravinones have been proposed as putative active constituents for the anti-cancer, spasmolytic and anti-inflammatory activities exhibited by B. diffusa extracts, it is worthwhile developing and validating an ultra-performance liquid chromatography (UPLC) method for analysis of boeravinones in B. diffusa roots. To develop and validate a simple, accurate, robust and rapid UPLC analytical method for quality control of B. diffusa roots. Samples for analysis were prepared by refluxing powdered root material with methanol for 2 h. The extracts were concentrated, dried and stored at -20°C until their use. A UPLC with photodiode array (PDA) method was developed and validated for the quantification of boeravinones in the roots of B. diffusa. The separation of boeravinones was achieved using a BEH Shield C18 -column (2.1 × 100 mm, 1.7 µm) with gradient elution of methanol and water (0.1% acetic acid), at a flow rate of 0.4 mL/min and detection was carried out at λmax 273 nm. The UPLC method developed showed good linearity (r(2) ≥ 0.9999), accuracy and precision. The UPLC method developed provided a selective, sensitive and rapid analytical method for the quantification of boeravinones in B. diffusa roots. All the validation parameters were found to be within the permissible limits as per International Conference on Harmonisation guidelines. Copyright © 2014 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.
A new rapid fusion method for the determination of plutonium in large rice samples has been developed at the Savannah River National Laboratory (Aiken, SC, USA) that can be used to determine very low levels of plutonium isotopes in rice. The recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid, reliable radiochemical analyses for radionuclides in environmental and food samples. Public concern regarding foods, particularly foods such as rice in Japan, highlights the need for analytical techniques that will allow very large sample aliquots of rice to be used for analysis so thatmore » very low levels of plutonium isotopes may be detected. The new method to determine plutonium isotopes in large rice samples utilizes a furnace ashing step, a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a column separation process with TEVA Resin cartridges. The method can be applied to rice sample aliquots as large as 5 kg. Plutonium isotopes can be determined using alpha spectrometry or inductively-coupled plasma mass spectrometry (ICP-MS). The method showed high chemical recoveries and effective removal of interferences. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory plutonium particles are effectively digested. The MDA for a 5 kg rice sample using alpha spectrometry is 7E-5 mBq g{sup -1}. The method can easily be adapted for use by ICP-MS to allow detection of plutonium isotopic ratios.« less
Yebra, M Carmen
2012-01-01
A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5-30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2-4.6%) and a sample throughput of ca. 25 samples h(-1) were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4-25.61 μg g(-1) for iron, 5.74-18.30 μg g(-1) for manganese, and 33.27-57.90 μg g(-1) for zinc in soluble solid food samples and 3.75-9.90 μg g(-1) for iron, 0.47-5.05 μg g(-1) for manganese, and 1.55-15.12 μg g(-1) for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors.
Advances in aptamer screening and small molecule aptasensors.
Kim, Yeon Seok; Gu, Man Bock
2014-01-01
It has been 20 years since aptamer and SELEX (systematic evolution of ligands by exponential enrichment) were described independently by Andrew Ellington and Larry Gold. Based on the great advantages of aptamers, there have been numerous isolated aptamers for various targets that have actively been applied as therapeutic and analytical tools. Over 2,000 papers related to aptamers or SELEX have been published, attesting to their wide usefulness and the applicability of aptamers. SELEX methods have been modified or re-created over the years to enable aptamer isolation with higher affinity and selectivity in more labor- and time-efficient manners, including automation. Initially, most of the studies about aptamers have focused on the protein targets, which have physiological functions in the body, and their applications as therapeutic agents or receptors for diagnostics. However, aptamers for small molecules such as organic or inorganic compounds, drugs, antibiotics, or metabolites have not been studied sufficiently, despite the ever-increasing need for rapid and simple analytical methods for various chemical targets in the fields of medical diagnostics, environmental monitoring, food safety, and national defense against targets including chemical warfare. This review focuses on not only recent advances in aptamer screening methods but also its analytical application for small molecules.
Challa, Shruthi; Potumarthi, Ravichandra
2013-01-01
Process analytical technology (PAT) is used to monitor and control critical process parameters in raw materials and in-process products to maintain the critical quality attributes and build quality into the product. Process analytical technology can be successfully implemented in pharmaceutical and biopharmaceutical industries not only to impart quality into the products but also to prevent out-of-specifications and improve the productivity. PAT implementation eliminates the drawbacks of traditional methods which involves excessive sampling and facilitates rapid testing through direct sampling without any destruction of sample. However, to successfully adapt PAT tools into pharmaceutical and biopharmaceutical environment, thorough understanding of the process is needed along with mathematical and statistical tools to analyze large multidimensional spectral data generated by PAT tools. Chemometrics is a chemical discipline which incorporates both statistical and mathematical methods to obtain and analyze relevant information from PAT spectral tools. Applications of commonly used PAT tools in combination with appropriate chemometric method along with their advantages and working principle are discussed. Finally, systematic application of PAT tools in biopharmaceutical environment to control critical process parameters for achieving product quality is diagrammatically represented.
Coordinates of features on the Galilean satellites
NASA Technical Reports Server (NTRS)
Davies, M. E.; Katayama, F. Y.
1980-01-01
The coordinate systems of each of the Galilean satellites are defined and coordinates of features seen in the Voyager pictures of these satellites are presented. The control nets of the satellites were computed by means of single block analytical triangulations. The normal equations were solved by the conjugate iterative method which is convenient and which converges rapidly as the initial estimates of the parameters are very good.
Rapid Equipping Force (REF) Analytical Support
2007-06-01
document contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 44...interface and performs actions via Excel formulae, ActiveX controls, and VBA code. – Plan to provide both simple and complex weighting and scoring methods...Requirements Quad Chart. –Solution Set Information Worksheet: A spreadsheet containing detailed information concerning every potential solution considered
Xiping Wang; James P. Wacker; Robert J. Ross; Brian K. Brashaw; Robert Vatalaro
2005-01-01
This paper describes an effort to develop a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the natural frequency of single-span timber bridges in the laboratory and field. An analytical model based on simple beam theory was proposed to represent the relationship...
Scalable Rapidly Deployable Convex Optimization for Data Analytics
SOCPs , SDPs, exponential cone programs, and power cone programs. CVXPY supports basic methods for distributed optimization, on...multiple heterogenous platforms. We have also done basic research in various application areas , using CVXPY , to demonstrate its usefulness. See attached report for publication information....Over the period of the contract we have developed the full stack for wide use of convex optimization, in machine learning and many other areas .
NASA Technical Reports Server (NTRS)
Hu, Shoufeng; Nairn, John A.
1992-01-01
An analytical method for calculating thermally-induced residual stresses in laminated plates is applied to cross-ply PEEK laminates. We considered three cooling procedures: slow cooling (uniform temperature distribution); convective and radiative cooling; and rapid cooling by quenching (constant surface temperature). Some of the calculated stresses are of sufficient magnitude to effect failure properties such as matrix microcracking.
ERIC Educational Resources Information Center
Naviglio, Daniele; Montesano, Domenico; Gallo, Monica
2015-01-01
Two experimental techniques of solid-liquid extraction are compared relating to the lab-scale production of lemon liqueur, most commonly named "limoncello"; the first is the official method of maceration for the solid-liquid extraction of analytes and is widely used to extract active ingredients from a great variety of natural products;…
Application of artificial intelligence to impulsive orbital transfers
NASA Technical Reports Server (NTRS)
Burns, Rowland E.
1987-01-01
A generalized technique for the numerical solution of any given class of problems is presented. The technique requires the analytic (or numerical) solution of every applicable equation for all variables that appear in the problem. Conditional blocks are employed to rapidly expand the set of known variables from a minimum of input. The method is illustrated via the use of the Hohmann transfer problem from orbital mechanics.
Nie, Jinfang; Liang, Yuanzhi; Zhang, Yun; Le, Shangwang; Li, Dunnan; Zhang, Songbai
2013-01-21
In this paper, we report a simple, low-cost method for rapid, highly reproductive fabrication of paper-based microfluidics by using a commercially available, minitype CO(2) laser cutting/engraving machine. This method involves only one operation of cutting a piece of paper by laser according to a predesigned pattern. The hollow microstructures formed in the paper are used as the 'hydrophobic barriers' to define the hydrophilic flowing paths. A typical paper device on a 4 cm × 4 cm piece of paper can be fabricated within ∼7-20 s; it is ready for use once the cutting process is finished. The main fabrication parameters such as the applied current and cutting rate of the laser were optimized. The fabrication resolution and multiplexed analytical capability of the hollow microstructure-patterned paper were also characterized.
Ma, Qiang; Bai, Hua; Li, Wentao; Wang, Chao; Li, Xinshi; Cooks, R Graham; Ouyang, Zheng
2016-03-17
Significantly simplified work flows were developed for rapid analysis of various types of cosmetic and foodstuff samples by employing a miniature mass spectrometry system and ambient ionization methods. A desktop Mini 12 ion trap mass spectrometer was coupled with paper spray ionization, extraction spray ionization and slug-flow microextraction for direct analysis of Sudan Reds, parabens, antibiotics, steroids, bisphenol and plasticizer from raw samples with complex matrices. Limits of detection as low as 5 μg/kg were obtained for target analytes. On-line derivatization was also implemented for analysis of steroid in cosmetics. The developed methods provide potential analytical possibility for outside-the-lab screening of cosmetics and foodstuff products for the presence of illegal substances. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Zhiyong; Zhao, Dishun; Xu, Baoyun
2013-01-01
A simple and rapid method is described for the analysis of glyoxal and related substances by high-performance liquid chromatography with a refractive index detector. The following chromatographic conditions were adopted: Aminex HPX-87H column, mobile phase consisting of 0.01N H2SO4, flow rate of 0.8 mL/min and temperature of 65°C. The application of the analytical technique developed in this study demonstrated that the aqueous reaction mixture produced by the oxidation of acetaldehyde with HNO3 was composed of glyoxal, acetaldehyde, acetic acid, formic acid, glyoxylic acid, oxalic acid, butanedione and glycolic acid. The method was validated by evaluating analytical parameters such as linearity, limits of detection and quantification, precision, recovery and robustness. The proposed methodology was successfully applied to the production of glyoxal.
Morinaga, Osamu
2018-01-01
The scientific evaluation of crude drugs and kampo medicines (KMs) was demonstrated using the eastern blotting method with monoclonal antibodies (MAbs) against bioactive natural compounds. Scutellariae radix is one of the most important crude drugs used in KMs. Part of its pharmaceutical properties is due to the flavone glycoside baicalin (BI). A quantitative analysis method based on eastern blotting was developed for BI using an anti-BI MAb. A rapid, simple, sensitive, specific analytical system was subsequently established for BI with the eastern blotting technique using dot-blot and chemiluminescent methods. This system was useful as a high-throughput analytical method for the determination of BI in KMs as well as HPLC and enzyme-linked immunosorbent assay systems. Furthermore, an eastern blotting method was applied to the biological metabolic study of glycyrrhizic acid (GL), the major active constituent of licorice, for investigation of metabolites of GL such as 3-monoglucuronyl-glycyrrhetinic acid (3MGA) because licorice causes pseudoaldosteronism as a side effect. This approach may make it possible to determine the pathogenic agents of licorice-induced pseudoaldosteronism.
Determination of microbial phenolic acids in human faeces by UPLC-ESI-TQ MS.
Sánchez-Patán, Fernando; Monagas, María; Moreno-Arribas, M Victoria; Bartolomé, Begoña
2011-03-23
The aim of the present work was to develop a reproducible, sensitive, and rapid UPLC-ESI-TQ MS analytical method for determination of microbial phenolic acids and other related compounds in faeces. A total of 47 phenolic compounds including hydroxyphenylpropionic, hydroxyphenylacetic, hydroxycinnamic, hydroxybenzoic, and hydroxymandelic acids and simple phenols were considered. To prepare an optimum pool standard solution, analytes were classified in 5 different groups with different starting concentrations according to their MS response. The developed UPLC method allowed a high resolution of the pool standard solution within an 18 min injection run time. The LOD of phenolic compounds ranged from 0.001 to 0.107 μg/mL and LOQ from 0.003 to 0.233 μg/mL. The method precision met acceptance criteria (<15% RSD) for all analytes, and accuracy was >80%. The method was applied to faecal samples collected before and after the intake of a flavan-3-ol supplement by a healthy volunteer. Both external and internal calibration methods were considered for quantification purposes, using 4-hydroxybenzoic-2,3,4,5-d4 acid as internal standard. For most analytes and samples, the level of microbial phenolic acids did not differ by using one or another calibration method. The results revealed an increase in protocatechuic, syringic, benzoic, p-coumaric, phenylpropionic, 3-hydroxyphenylacetic, and 3-hydroxyphenylpropionic acids, although differences due to the intake were only significant for the latter compound. In conclusion, the UPLC-DAD-ESI-TQ MS method developed is suitable for targeted analysis of microbial-derived phenolic metabolites in faecal samples from human intervention or in vitro fermentation studies, which requires high sensitivity and throughput.
Elsohaby, Ibrahim; McClure, J Trenton; Riley, Christopher B; Bryanton, Janet; Bigsby, Kathryn; Shaw, R Anthony
2018-02-20
Attenuated total reflectance infrared (ATR-IR) spectroscopy is a simple, rapid and cost-effective method for the analysis of serum. However, the complex nature of serum remains a limiting factor to the reliability of this method. We investigated the benefits of coupling the centrifugal ultrafiltration with ATR-IR spectroscopy for quantification of human serum IgA concentration. Human serum samples (n = 196) were analyzed for IgA using an immunoturbidimetric assay. ATR-IR spectra were acquired for whole serum samples and for the retentate (residue) reconstituted with saline following 300 kDa centrifugal ultrafiltration. IR-based analytical methods were developed for each of the two spectroscopic datasets, and the accuracy of each of the two methods compared. Analytical methods were based upon partial least squares regression (PLSR) calibration models - one with 5-PLS factors (for whole serum) and the second with 9-PLS factors (for the reconstituted retentate). Comparison of the two sets of IR-based analytical results to reference IgA values revealed improvements in the Pearson correlation coefficient (from 0.66 to 0.76), and the root mean squared error of prediction in IR-based IgA concentrations (from 102 to 79 mg/dL) for the ultrafiltration retentate-based method as compared to the method built upon whole serum spectra. Depleting human serum low molecular weight proteins using a 300 kDa centrifugal filter thus enhances the accuracy IgA quantification by ATR-IR spectroscopy. Further evaluation and optimization of this general approach may ultimately lead to routine analysis of a range of high molecular-weight analytical targets that are otherwise unsuitable for IR-based analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
TECRA Unique test for rapid detection of Salmonella in food: collaborative study.
Hughes, D; Dailianis, A E; Hill, L; McIntyre, D A; Anderson, A
2001-01-01
The TECRA Unique Salmonella test uses the principle of immunoenrichment to allow rapid detection of Salmonellae in food. A collaborative study was conducted to compare the TECRA Salmonella Unique test with the reference culture method given in the U.S. Food and Drug Administration's Bacteriological Analytical Manual. Three food types (milk powder, pepper, and soy flour) were analyzed in Australia and 2 food types (milk chocolate and dried egg) were analyzed in the United States. Forty-one collaborators participated in the study. For each of the 5 foods at each of the 3 levels, a comparison showed no significant differences (p > or = 0.05) in the proportion of positive test samples for Unique and that for the reference method using the Chi-square test for independence with continuity correction.
NASA Astrophysics Data System (ADS)
Huang, Zufang; Sun, Yan; Wang, Jing; Du, Shengrong; Li, Yongzeng; Lin, Juqiang; Feng, Shangyuan; Lei, Jinping; Lin, Hongxin; Chen, Rong; Zeng, Haishan
2013-12-01
In this study, a rapid and simple method which combines drop coating deposition and Raman spectroscopy (DCDR) was developed to characterize the dry embryo culture media (ECM) droplet. We demonstrated that Raman spectra obtained from the droplet edge presented useful and characteristic signatures for protein and amino acids assessment. Using a different analytical method, scanning electron microscopy coupled with energy dispersive X-ray analysis, we further confirmed that Na, K, and Cl were mainly detected in the central area of the dry ECM droplet while sulphur, an indicative of the presence of macromolecules such as proteins, was mainly found at the periphery of the droplet. In addition, to reduce sample preparation time, different temperatures for drying the droplets were tested. The results showed that drying temperature at 50°C can effectively reduce the sample preparation time to 6 min (as compared to 50 min for drying at room temperature, ˜25°C) without inducing thermal damage to the proteins. This work demonstrated that DCDR has potential for rapid and reliable metabolomic profiling of ECM in clinical applications.
A rapid analytical method for predicting the oxygen demand of wastewater.
Fogelman, Shoshana; Zhao, Huijun; Blumenstein, Michael
2006-11-01
In this study, an investigation was undertaken to determine whether the predictive accuracy of an indirect, multiwavelength spectroscopic technique for rapidly determining oxygen demand (OD) values is affected by the use of unfiltered and turbid samples, as well as by the use of absorbance values measured below 200 nm. The rapid OD technique was developed that uses UV-Vis spectroscopy and artificial neural networks (ANNs) to indirectly determine chemical oxygen demand (COD) levels. It was found that the most accurate results were obtained when a spectral range of 190-350 nm was provided as data input to the ANN, and when using unfiltered samples below a turbidity range of 150 NTU. This is because high correlations of above 0.90 were obtained with the data using the standard COD method. This indicates that samples can be measured directly without the additional need for preprocessing by filtering. Samples with turbidity values higher than 150 NTU were found to produce poor correlations with the standard COD method, which made them unsuitable for accurate, real-time, on-line monitoring of OD levels.
Liu, Hongcheng; Lin, Xin; Lin, Tao; Zhang, Yulong; Luo, Yinglan; Li, Qiwan
2016-09-01
A simple, accurate, and highly sensitive analytical method was developed in this study for the determination of nine β-agonists in milk. In this method, a new magnetic adsorbent of molecularly imprinted polymers/magnetic nanoparticles prepared by simple physical blending was adopted, which enabled magnetic solid-phase extraction. Thus, the resultant material can be separated from the solvent rapidly and conveniently by a magnet. Two kinds of molecularly imprinted polymer/magnetic nanoparticles materials were fabricated, and the characteristics of materials such as the ratio, pH, amount, desorption, and regeneration were investigated. The analytes were quantified by ultra high performance liquid chromatography coupled to an electrospray ionization tandem mass spectrometer operating in multiple reaction monitoring modes. The detection limit of the method was 0.003-0.3 μg/L, and the detection capability was 0.01-0.3 μg/L. The recoveries of these compounds were 65.7-114% at three spiked levels. Reproducibility represented by relative standard deviation was 11.2% or less. The method was successfully applied to the screening of real samples obtained from local markets and confirmation of the suspected target analytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose
Ferreiro-González, Marta; Barbero, Gerardo F.; Palma, Miguel; Ayuso, Jesús; Álvarez, José A.; Barroso, Carmelo G.
2016-01-01
Arsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose) has been developed for the analysis of Ignitable Liquid Residues (ILRs). The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 °C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA) were applied to the MS data (45–200 m/z) to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin) were used to ignite different substrates (wood, cotton, cork, paper and paperboard). A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses. PMID:27187407
Hammack, Thomas S; Valentin-Bon, Iris E; Jacobson, Andrew P; Andrews, Wallace H
2004-05-01
Soak and rinse methods were compared for the recovery of Salmonella from whole cantaloupes. Cantaloupes were surface inoculated with Salmonella cell suspensions and stored for 4 days at 2 to 6 degrees C. Cantaloupes were placed in sterile plastic bags with a nonselective preenrichment broth at a 1:1.5 cantaloupe weight-to-broth volume ratio. The cantaloupe broths were shaken for 5 min at 100 rpm after which 25-ml aliquots (rinse) were removed from the bags. The 25-ml rinses were preenriched in 225-ml portions of the same uninoculated broth type at 35 degrees C for 24 h (rinse method). The remaining cantaloupe broths were incubated at 35 degrees C for 24 h (soak method). The preenrichment broths used were buffered peptone water (BPW), modified BPW, lactose (LAC) broth, and Universal Preenrichment (UP) broth. The Bacteriological Analytical Manual Salmonella culture method was compared with the following rapid methods: the TECRA Unique Salmonella method, the VIDAS ICS/SLM method, and the VIDAS SLM method. The soak method detected significantly more Salmonella-positive cantaloupes (P < 0.05) than did the rinse method: 367 Salmonella-positive cantaloupes of 540 test cantaloupes by the soak method and 24 Salmonella-positive cantaloupes of 540 test cantaloupes by the rinse method. Overall, BPW, LAC, and UP broths were equivalent for the recovery of Salmonella from cantaloupes. Both the VIDAS ICS/SLM and TECRA Unique Salmonella methods detected significantly fewer Salmonella-positive cantaloupes than did the culture method: the VIDAS ICS/SLM method detected 23 of 50 Salmonella-positive cantaloupes (60 tested) and the TECRA Unique Salmonella method detected 16 of 29 Salmonella-positive cantaloupes (60 tested). The VIDAS SLM and culture methods were equivalent: both methods detected 37 of 37 Salmonella-positive cantaloupes (60 tested).
Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores.
Cecchini, Michael P; Wiener, Aeneas; Turek, Vladimir A; Chon, Hyangh; Lee, Sangyeop; Ivanov, Aleksandar P; McComb, David W; Choo, Jaebum; Albrecht, Tim; Maier, Stefan A; Edel, Joshua B
2013-10-09
Nanopore sensors embedded within thin dielectric membranes have been gaining significant interest due to their single molecule sensitivity and compatibility of detecting a large range of analytes, from DNA and proteins, to small molecules and particles. Building on this concept we utilize a metallic Au solid-state membrane to translocate and rapidly detect single Au nanoparticles (NPs) functionalized with 589 dye molecules using surface-enhanced resonance Raman spectroscopy (SERRS). We show that, due to the plasmonic coupling between the Au metallic nanopore surface and the NP, signal intensities are enhanced when probing analyte molecules bound to the NP surface. Although not single molecule, this nanopore sensing scheme benefits from the ability of SERRS to provide rich vibrational information on the analyte, improving on current nanopore-based electrical and optical detection techniques. We show that the full vibrational spectrum of the analyte can be detected with ultrahigh spectral sensitivity and a rapid temporal resolution of 880 μs.
Smartphone-based portable wireless optical system for the detection of target analytes.
Gautam, Shreedhar; Batule, Bhagwan S; Kim, Hyo Yong; Park, Ki Soo; Park, Hyun Gyu
2017-02-01
Rapid and accurate on-site wireless measurement of hazardous molecules or biomarkers is one of the biggest challenges in nanobiotechnology. A novel smartphone-based Portable and Wireless Optical System (PAWS) for rapid, quantitative, and on-site analysis of target analytes is described. As a proof-of-concept, we employed gold nanoparticles (GNP) and an enzyme, horse radish peroxidase (HRP), to generate colorimetric signals in response to two model target molecules, melamine and hydrogen peroxide, respectively. The colorimetric signal produced by the presence of the target molecules is converted to an electrical signal by the inbuilt electronic circuit of the device. The converted electrical signal is then measured wirelessly via multimeter in the smartphone which processes the data and displays the results, including the concentration of analytes and its significance. This handheld device has great potential as a programmable and miniaturized platform to achieve rapid and on-site detection of various analytes in a point-of-care testing (POCT) manner. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Panetta, Robert J; Jahren, A Hope
2011-05-30
Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is increasingly applied to food and metabolic studies for stable isotope analysis (δ(13) C), with the quantification of analyte concentration often obtained via a second alternative method. We describe a rapid direct transesterification of triacylglycerides (TAGs) for fatty acid methyl ester (FAME) analysis by GC-C-IRMS demonstrating robust simultaneous quantification of amount of analyte (mean r(2) =0.99, accuracy ±2% for 37 FAMEs) and δ(13) C (±0.13‰) in a single analytical run. The maximum FAME yield and optimal δ(13) C values are obtained by derivatizing with 10% (v/v) acetyl chloride in methanol for 1 h, while lower levels of acetyl chloride and shorter reaction times skewed the δ(13) C values by as much as 0.80‰. A Bland-Altman evaluation of the GC-C-IRMS measurements resulted in excellent agreement for pure oils (±0.08‰) and oils extracted from French fries (±0.49‰), demonstrating reliable simultaneous quantification of FAME concentration and δ(13) C values. Thus, we conclude that for studies requiring both the quantification of analyte and δ(13) C data, such as authentication or metabolic flux studies, GC-C-IRMS can be used as the sole analytical method. Copyright © 2011 John Wiley & Sons, Ltd.
Srivastava, Abhishek; Waterhouse, David; Ardrey, Alison; Ward, Stephen A
2012-11-01
A highly sensitive and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed to measure the levels of the antitubercular drug rifampicin (RIF) in human plasma and cerebrospinal fluid (CSF). The analyte and internal standard (IS) were isolated from plasma and CSF by a simple organic solvent based precipitation of proteins followed by centrifugation. Detection was carried out by electrospray positive ionization mass spectrometry in the multiple-reaction monitoring (MRM) mode. The assay was linear in the concentration range 25-6400 ng/mL with intra- and inter-day precision of <7% and <8%, respectively. The validated method was applied to the study of RIF pharmacokinetics in human CSF and plasma over 25 h period after a 10 mg/kg oral dose. Copyright © 2012 Elsevier B.V. All rights reserved.
A rapid method for optimization of the rocket propulsion system for single-stage-to-orbit vehicles
NASA Technical Reports Server (NTRS)
Eldred, C. H.; Gordon, S. V.
1976-01-01
A rapid analytical method for the optimization of rocket propulsion systems is presented for a vertical take-off, horizontal landing, single-stage-to-orbit launch vehicle. This method utilizes trade-offs between propulsion characteristics affecting flight performance and engine system mass. The performance results from a point-mass trajectory optimization program are combined with a linearized sizing program to establish vehicle sizing trends caused by propulsion system variations. The linearized sizing technique was developed for the class of vehicle systems studied herein. The specific examples treated are the optimization of nozzle expansion ratio and lift-off thrust-to-weight ratio to achieve either minimum gross mass or minimum dry mass. Assumed propulsion system characteristics are high chamber pressure, liquid oxygen and liquid hydrogen propellants, conventional bell nozzles, and the same fixed nozzle expansion ratio for all engines on a vehicle.
Geyer, Pierre M; Hulme, Matthew C; Irving, Joseph P B; Thompson, Paul D; Ashton, Ryan N; Lee, Robert J; Johnson, Lucy; Marron, Jack; Banks, Craig E; Sutcliffe, Oliver B
2016-11-01
The prevalence of new psychoactive substances (NPSs) in forensic casework has increased prominently in recent years. This has given rise to significant legal and analytical challenges in the identification of these substances. The requirement for validated, robust and rapid testing methodologies for these compounds is obvious. This study details the analysis of 13 synthesised diphenidine derivatives encountered in casework using presumptive testing, thin layer chromatography and gas chromatography-mass spectrometry (GC-MS). Specifically, the validated GC-MS method provides, for the first time, both a general screening method and quantification of the active components for seized solid samples, both in their pure form and in the presence of common adulterants. Graphical Abstract Chemical synthesis and forensic analysis of 13 diphenidine-derived new psychoactive substance(s).
Wu, Cuiqin; Yuan, Dongxing; Liu, Baomin
2006-12-01
An analytical method involving anion exchange high performance liquid chromatographic determination of vitellogenin (Vtg) in fish plasma after postcolumn fluorescence derivatization with o-phthalaldehyde (OPA) was developed. The retention time of Vtg was about 11 min. The reagent variables for derivatization were optimized. The fluorophore was excited at 335 nm and detected at 435 nm. A calibration curve was established ranging from 0.13 to 11.28 microg. The determination limit of Vtg was found to be as low as 0.13 microg. The spiked recovery was 93.6% and interassay variability was less than 4%. The method developed was used to determine Vtg in fish plasma obtained from red sea bream (Pagrosomus major), black porgy (Sparus macrocephalus) and skew band grunt (Hapalogenys nitens), without complicated sample pretreatment. The results confirmed that the method showed advantages of being simple, rapid, reproducible and sensitive.
NASA Astrophysics Data System (ADS)
Rim, Jung H.
Accurate and fast determination of the activity of radionuclides in a sample is critical for nuclear forensics and emergency response. Radioanalytical techniques are well established for radionuclides measurement, however, they are slow and labor intensive, requiring extensive radiochemical separations and purification prior to analysis. With these limitations of current methods, there is great interest for a new technique to rapidly process samples. This dissertation describes a new analyte extraction medium called Polymer Ligand Film (PLF) developed to rapidly extract radionuclides. Polymer Ligand Film is a polymer medium with ligands incorporated in its matrix that selectively and rapidly extract analytes from a solution. The main focus of the new technique is to shorten and simplify the procedure necessary to chemically isolate radionuclides for determination by alpha spectrometry or beta counting. Five different ligands were tested for plutonium extraction: bis(2-ethylhexyl) methanediphosphonic acid (H2DEH[MDP]), di(2-ethyl hexyl) phosphoric acid (HDEHP), trialkyl methylammonium chloride (Aliquat-336), 4,4'(5')-di-t-butylcyclohexano 18-crown-6 (DtBuCH18C6), and 2-ethylhexyl 2-ethylhexylphosphonic acid (HEH[EHP]). The ligands that were effective for plutonium extraction further studied for uranium extraction. The plutonium recovery by PLFs has shown dependency on nitric acid concentration and ligand to total mass ratio. H2DEH[MDP] PLFs performed best with 1:10 and 1:20 ratio PLFs. 50.44% and 47.61% of plutonium were extracted on the surface of PLFs with 1M nitric acid for 1:10 and 1:20 PLF, respectively. HDEHP PLF provided the best combination of alpha spectroscopy resolution and plutonium recovery with 1:5 PLF when used with 0.1M nitric acid. The overall analyte recovery was lower than electrodeposited samples, which typically has recovery above 80%. However, PLF is designed to be a rapid field deployable screening technique and consistency is more important than recovery. PLFs were also tested using blind quality control samples and the activities were accurately measured. It is important to point out that PLFs were consistently susceptible to analytes penetrating and depositing below the surface. The internal radiation within the body of PLF is mostly contained and did not cause excessive self-attenuation and peak broadening in alpha spectroscopy. The analyte penetration issue was beneficial in the destructive analysis. H2DEH[MDP] PLF was tested with environmental samples to fully understand the capabilities and limitations of the PLF in relevant environments. The extraction system was very effective in extracting plutonium from environmental water collected from Mortandad Canyon at Los Alamos National Laboratory with minimal sample processing. Soil samples were tougher to process than the water samples. Analytes were first leached from the soil matrixes using nitric acid before processing with PLF. This approach had a limitation in extracting plutonium using PLF. The soil samples from Mortandad Canyon, which are about 1% iron by weight, were effectively processed with the PLF system. Even with certain limitations of the PLF extraction system, this technique was able to considerably decrease the sample analysis time. The entire environmental sample was analyzed within one to two days. The decrease in time can be attributed to the fact that PLF is replacing column chromatography and electrodeposition with a single step for preparing alpha spectrometry samples. The two-step process of column chromatography and electrodeposition takes a couple days to a week to complete depending on the sample. The decrease in time and the simplified procedure make this technique a unique solution for application to nuclear forensics and emergency response. A large number of samples can be quickly analyzed and selective samples can be further analyzed with more sensitive techniques based on the initial data. The deployment of a PLF system as a screening method will greatly reduce a total analysis time required to gain meaningful isotopic data for the nuclear forensics application. (Abstract shortened by UMI.)
Lin, Shan-Yang; Wang, Shun-Li
2012-04-01
The solid-state chemistry of drugs has seen growing importance in the pharmaceutical industry for the development of useful API (active pharmaceutical ingredients) of drugs and stable dosage forms. The stability of drugs in various solid dosage forms is an important issue because solid dosage forms are the most common pharmaceutical formulation in clinical use. In solid-state stability studies of drugs, an ideal accelerated method must not only be selected by different complicated methods, but must also detect the formation of degraded product. In this review article, an analytical technique combining differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy simulates the accelerated stability test, and simultaneously detects the decomposed products in real time. The pharmaceutical dipeptides aspartame hemihydrate, lisinopril dihydrate, and enalapril maleate either with or without Eudragit E were used as testing examples. This one-step simultaneous DSC-FTIR technique for real-time detection of diketopiperazine (DKP) directly evidenced the dehydration process and DKP formation as an impurity common in pharmaceutical dipeptides. DKP formation in various dipeptides determined by different analytical methods had been collected and compiled. Although many analytical methods have been applied, the combined DSC-FTIR technique is an easy and fast analytical method which not only can simulate the accelerated drug stability testing but also at the same time enable to explore phase transformation as well as degradation due to thermal-related reactions. This technique offers quick and proper interpretations. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Berkov, D. V.; Gorn, N. L.
2018-06-01
In this paper we present a simple and effective numerical method which allows a fast Fourier transformation-based evaluation of stress generated by dislocations with arbitrary directions and Burgers vectors if the (site-dependent) dislocation density is known. Our method allows the evaluation of the dislocation stress using a rectangular grid with shape-anisotropic discretization cells without employing higher multipole moments of the dislocation interaction coefficients. Using the proposed method, we first simulate the stress created by relatively simple non-homogeneous distributions of vertical edge and so-called ‘mixed’ dislocations in a disk-shaped sample, which is necessary to understand the dislocation behavior in more complicated systems. The main part of our research is devoted to the stress distribution in polycrystalline layers with the dislocation density rapidly varying with the distance to the layer bottom. Considering GaN as a typical example of such systems, we investigate dislocation-induced stress for edge and mixed dislocations, having random orientations of Burgers vectors among crystal grains. We show that the rapid decay of the dislocation density leads to many highly non-trivial features of the stress distributions in such layers and study in detail the dependence of these features on the average grain size. Finally we develop an analytical approach which allows us to predict the evolution of the stress variance with the grain size and compare analytical predictions with numerical results.
Joo, Kyung-Mi; Han, Ji Yeon; Son, Eui Dong; Nam, Gae-Won; Chung, Han Young; Jeong, Hye-Jin; Cho, Jun-Cheol; Lim, Kyung-Min
2012-05-15
A rapid, sensitive and specific hydrophilic interaction liquid chromatography coupled to tandem mass spectrometric (HILIC-MS/MS) method for the simultaneous determination of pyroglutamic acid, cis- and trans-urocanic acid in human skin stratum corneum (SC) were developed and validated. This method was carried out without derivatization or addition of ion-pair additives in mobile phase. The analytes were extracted by PBS buffer solution and analyzed using an electrospray positive ionization mass spectrometry in the multiple reaction monitoring (MRM) mode. Chromatographic separation was performed on an AQUITY UPLC amide column using gradient elution with the mobile phase of water and acetonitrile. The standard curves were linear over the concentration range of 1.0-250 ng/mL with a correlation coefficient higher than 0.999 with an LLOQ of 0.5 ng/mL. The lower limits of detection (LLOD) of these analytes were lower than 0.2 ng/mL. The intra- and inter-day precisions were measured to be below 7.7% and accuracies were within the range of 94.3-102.6%. The validated method was successfully applied to determine the level of pyroglutamic acid and cis-/trans-urocanic acid in the SC samples from forearm and forehead region of 19 human volunteers. Copyright © 2012 Elsevier B.V. All rights reserved.
Rahman, Md Musfiqur; Park, Jong-Hyouk; Abd El-Aty, A M; Choi, Jeong-Heui; Yang, Angel; Park, Ki Hun; Nashir Uddin Al Mahmud, Md; Im, Geon-Jae; Shim, Jae-Han
2013-01-15
A new analytical method was developed for dinotefuran and its metabolites, MNG, UF, and DN, in melon using high-performance liquid chromatography (HPLC) coupled with an ultraviolet detector (UVD). Due to shorter wavelength, lower sensitivity to UV detection, and high water miscibility of some metabolites, QuEChERs acetate-buffered version was modified for extraction and purification. Mobile phases with different ion pairing or ionisation agents were tested in different reverse phase columns, and ammonium bicarbonate buffer was found as the best choice to increase the sensitivity of target analytes to the UV detector. After failure of dispersive SPE clean-up with primary secondary amine, different solid phase extraction cartridges (SPE) were used to check the protecting capability of analytes against matrix interference. Finally, samples were extracted with a simple and rapid method using acetonitrile and salts, and purified through C(18)SPE. The method was validated at two spiking levels (three replicates for each) in the matrix. Good recoveries were observed for all of the analytes and ranged between 70.6% and 93.5%, with relative standard deviations of less than 10%. Calibration curves were linear over the calibration ranges for all the analytes with r(2)≥ 0.998. Limits of detection ranged from 0.02 to 0.05 mg kg(-1), whereas limits of quantitation ranged from 0.06 to 0.16 mg kg(-1) for dinotefuran and its metabolites. The method was successfully applied to real samples, where dinotefuran and UF residues were found in the field-incurred melon samples. Residues were confirmed via LC-tandem mass spectrometry (LC-MS/MS) in positive-ion electrospray ionisation (ESI(+)) mode. Copyright © 2012 Elsevier Ltd. All rights reserved.
Singhal, Puran; Gaur, Ashwani; Gautam, Anirudh; Varshney, Brijesh; Paliwal, Jyoti; Batra, Vijay
2007-11-01
A simple, sensitive and rapid liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for quantification of piperaquine, an antimalarial drug, in human plasma using its structural analogue, piperazine bis chloroquinoline as internal standard (IS). The method involved a simple protein precipitation with methanol followed by rapid isocratic elution of analytes with 10mM ammonium acetate buffer/methanol/formic acid/ammonia solution (25/75/0.2/0.15, v/v) on Chromolith SpeedROD RP-18e reversed phase chromatographic column and quantification by mass spectrometry in the multiple reaction monitoring mode (MRM). The precursor to product ion transitions of m/z 535.3-->288.2 and m/z 409.1-->205.2 were used to measure the analyte and the IS, respectively. The assay exhibited a linear dynamic range of 1.0-250.2 ng/mL for piperaquine in plasma. The limit of detection (LOD) and lower limit of quantification (LLOQ) in plasma were 0.2 and 1.0 ng/mL, respectively. Acceptable precision and accuracy (+/-20% deviation for LLOQ standard and +/-15% deviation for other standards from the respective nominal concentration) were obtained for concentrations over the standard curve ranges. A run time of 2.5 min for a sample made it possible to achieve a throughput of more than 400 plasma samples analyzed per day. The validated method was successfully applied to analyze human plasma samples from phase-1 clinical studies. The mean pharmacokinetic parameters of piperaquine following 1000 mg oral dose: observed maximum plasma concentration (Cmax), time to maximum plasma concentration (Tmax) and elimination half-life (T1/2) were 46.1 ng/mL, 3.8h and 13 days, respectively.
Planning for Low End Analytics Disruptions in Business School Curricula
ERIC Educational Resources Information Center
Rienzo, Thomas; Chen, Kuanchin
2018-01-01
Analytics is getting a great deal of attention in both industrial and academic venues. Organizations of all types are becoming more serious about transforming data from a variety of sources into insight, and analytics is the key to that transformation. Academic institutions are rapidly responding to the demand for analytics talent, with hundreds…
Naksen, Warangkana; Prapamontol, Tippawan; Mangklabruks, Ampica; Chantara, Somporn; Thavornyutikarn, Prasak; Robson, Mark G.; Ryan, P. Barry; Barr, Dana Boyd; Panuwet, Parinya
2016-01-01
Organophosphate (OP) pesticides are widely used for crop protection in many countries including Thailand. Aside from causing environmental contamination, they affect human health especially by over-stimulating of the neurotransmission system. OP pesticides, as with other non-persistent pesticides, degrade quickly in the environment as well as are metabolized quite rapidly in humans. Assessing human exposures to these compounds requires analytical methods that are sensitive, robust, and most importantly, suitable for specific laboratory settings. The aim of this study was to develop and validate an analytical method for measuring 11 OP pesticide residues in human plasma and breast milk. Analytes in both plasma and breast milk samples were extracted with acetone and methylene chloride, cleaned-up using aminopropyl solid phase extraction cartridges, and analyzed by gas chromatography with flame photometric detection. The optimized method exhibited good linearity, with the coefficients of determination of 0.996–0.999 and <7% error about the slope. Extraction recoveries from spiked plasma and breast milk samples at low and medium concentrations (0.8–5.0 and 1.6–10 ng mL−1, respectively) ranged from 59.4 % (ethion) to 94.0 % (chlorpyrifos). Intra-batch and inter-batch precisions ranged from 2.3–18.9% and 5.8–19.5%, respectively. Method detection limits of plasma and breast milk ranged from 0.18–1.36 and 0.09–2.66 ng mL−1, respectively. We analyzed 63 plasma and 30 breastmilk samples collected from farmworkers in Chiang Mai Province to determine the suitability of this method for occupational exposure assessment. Of the 11 pesticides measured, seven were detected in plasma samples and five were detected in breast milk samples. Mass spectrometry was used to confirm results. Overall, this method is rapid and reliable. It offers the laboratories with limited access to mass spectrometry a capacity to investigate levels OP pesticides in plasma and breastmilk in those occupationally exposed for health risk assessment. PMID:27232054
Rapid analytical methods for on-site triage for traumatic brain injury.
North, Stella H; Shriver-Lake, Lisa C; Taitt, Chris R; Ligler, Frances S
2012-01-01
Traumatic brain injury (TBI) results from an event that causes rapid acceleration and deceleration of the brain or penetration of the skull with an object. Responses to stimuli and questions, loss of consciousness, and altered behavior are symptoms currently used to justify brain imaging for diagnosis and therapeutic guidance. Tests based on such symptoms are susceptible to false-positive and false-negative results due to stress, fatigue, and medications. Biochemical markers of neuronal damage and the physiological response to that damage are being identified. Biosensors capable of rapid measurement of such markers in the circulation offer a solution for on-site triage, as long as three criteria are met: (a) Recognition reagents can be identified that are sufficiently sensitive and specific, (b) the biosensor can provide quantitative assessment of multiple markers rapidly and simultaneously, and (c) both the sensor and reagents are designed for use outside the laboratory.
Rapid Analytical Methods for On-Site Triage for Traumatic Brain Injury
NASA Astrophysics Data System (ADS)
North, Stella H.; Shriver-Lake, Lisa C.; Taitt, Chris R.; Ligler, Frances S.
2012-07-01
Traumatic brain injury (TBI) results from an event that causes rapid acceleration and deceleration of the brain or penetration of the skull with an object. Responses to stimuli and questions, loss of consciousness, and altered behavior are symptoms currently used to justify brain imaging for diagnosis and therapeutic guidance. Tests based on such symptoms are susceptible to false-positive and false-negative results due to stress, fatigue, and medications. Biochemical markers of neuronal damage and the physiological response to that damage are being identified. Biosensors capable of rapid measurement of such markers in the circulation offer a solution for on-site triage, as long as three criteria are met: (a) Recognition reagents can be identified that are sufficiently sensitive and specific, (b) the biosensor can provide quantitative assessment of multiple markers rapidly and simultaneously, and (c) both the sensor and reagents are designed for use outside the laboratory.
Hammouda, Mohammed E A; Abu El-Enin, Mohamed A; El-Sherbiny, Dina T; El-Wasseef, Dalia R; El-Ashry, Saadia M
2015-01-01
A rapid high-performance liquid chromatography procedure for analytical quality control of mixture containing enalapril maleate (ENM) and hydrochlorothiazide (HCT) in their pharmaceutical preparations was developed using a microemulsion as an eluent. The separation was performed on a column packed with cyano-bonded stationary phase adopting UV detection at 210 nm using a flow rate of 1 mL/min. The optimized microemulsion mobile phase consisted of 0.2 M sodium dodecyl sulfate, 1% octanol, 10% n-propanol and 0.3% triethylamine in 0.02 M phosphoric acid, and pH was adjusted at 3.5. The proposed method was found to be linear over the concentration ranges 1-100 and 0.05-5 μg/mL for ENM and HCT, respectively with a correlation coefficient of 0.9999 for both drugs. The developed method was validated in terms of specificity, linearity, lower limit of quantification, lower limit of detection, precision and accuracy. The proposed method is rapid (5 min), reproducible (relative standard deviation <2.0%) and achieves a satisfactory resolution between ENM and HCT (resolution factor = 3.62). The mean recoveries of the analytes in tablets were in agreement with those obtained from a comparison method, as revealed by statistical analysis of the obtained results using Student's t-test and the variance ratio F-test. © The Author [2014]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces
Wang, Chenglong; Xu, Fei; Hsu, Ming-Chen; Krishnamurthy, Adarsh
2017-01-01
Computational fluid dynamics (CFD) simulations of flow over complex objects have been performed traditionally using fluid-domain meshes that conform to the shape of the object. However, creating shape conforming meshes for complicated geometries like automobiles require extensive geometry preprocessing. This process is usually tedious and requires modifying the geometry, including specialized operations such as defeaturing and filling of small gaps. Hsu et al. (2016) developed a novel immersogeometric fluid-flow method that does not require the generation of a boundary-fitted mesh for the fluid domain. However, their method used the NURBS parameterization of the surfaces for generating the surface quadrature points to enforce the boundary conditions, which required the B-rep model to be converted completely to NURBS before analysis can be performed. This conversion usually leads to poorly parameterized NURBS surfaces and can lead to poorly trimmed or missing surface features. In addition, converting simple geometries such as cylinders to NURBS imposes a performance penalty since these geometries have to be dealt with as rational splines. As a result, the geometry has to be inspected again after conversion to ensure analysis compatibility and can increase the computational cost. In this work, we have extended the immersogeometric method to generate surface quadrature points directly using analytic surfaces. We have developed quadrature rules for all four kinds of analytic surfaces: planes, cones, spheres, and toroids. We have also developed methods for performing adaptive quadrature on trimmed analytic surfaces. Since analytic surfaces have frequently been used for constructing solid models, this method is also faster to generate quadrature points on real-world geometries than using only NURBS surfaces. To assess the accuracy of the proposed method, we perform simulations of a benchmark problem of flow over a torpedo shape made of analytic surfaces and compare those to immersogeometric simulations of the same model with NURBS surfaces. We also compare the results of our immersogeometric method with those obtained using boundary-fitted CFD of a tessellated torpedo shape, and quantities of interest such as drag coefficient are in good agreement. Finally, we demonstrate the effectiveness of our immersogeometric method for high-fidelity industrial scale simulations by performing an aerodynamic analysis of a truck that has a large percentage of analytic surfaces. Using analytic surfaces over NURBS avoids unnecessary surface type conversion and significantly reduces model-preprocessing time, while providing the same accuracy for the aerodynamic quantities of interest. PMID:29051678
Kominkova, Marketa; Heger, Zbynek; Zitka, Ondrej; Kynicky, Jindrich; Pohanka, Miroslav; Beklova, Miroslava; Adam, Vojtech; Kizek, Rene
2014-01-01
Platinum-based cytostatics, such as cisplatin, carboplatin or oxaliplatin are widely used agents in the treatment of various types of tumors. Large amounts of these drugs are excreted through the urine of patients into wastewaters in unmetabolised forms. This phenomenon leads to increased amounts of platinum ions in the water environment. The impacts of these pollutants on the water ecosystem are not sufficiently investigated as well as their content in water sources. In order to facilitate the detection of various types of platinum, we have developed a new, rapid, screening flow injection analysis method with electrochemical detection (FIA-ED). Our method, based on monitoring of the changes in electrochemical behavior of analytes, maintained by various pH buffers (Britton-Robinson and phosphate buffer) and potential changes (1,000, 1,100 and 1,200 mV) offers rapid and cheap selective determination of platinum-based cytostatics and platinum chlorides, which can also be present as contaminants in water environments. PMID:24499878
Busenberg, Eurybiades; Plummer, Niel
2010-01-01
A rapid headspace method for the simultaneous laboratory determination of intentionally introduced hydrologic tracers, sulfur hexafluoride (SF6), trifluoromethyl sulfur pentafluoride (SF5CF3), Halon 1211 (CF2ClBr), and other halocarbons in water and gases is described. The high sensitivity of the procedure allows for introduction of minimal tracer mass (a few grams) into hydrologic systems with a large dynamic range of analytical detection (dilutions to 1:108). Analysis times by gas chromatography with electron capture detector are less than 1 min for SF6; about 2 min for SF6 and SF5CF3; and 4 min for SF6, SF5CF3, and Halon 1211. Many samples can be rapidly collected, preserved in stoppered septum bottles, and analyzed at a later time in the laboratory. Examples are provided showing the effectiveness of the gas tracer test studies in varied hydrogeological settings.
NASA Astrophysics Data System (ADS)
Busenberg, Eurybiades; Plummer, L. Niel
2010-11-01
A rapid headspace method for the simultaneous laboratory determination of intentionally introduced hydrologic tracers, sulfur hexafluoride (SF6), trifluoromethyl sulfur pentafluoride (SF5CF3), Halon 1211 (CF2ClBr), and other halocarbons in water and gases is described. The high sensitivity of the procedure allows for introduction of minimal tracer mass (a few grams) into hydrologic systems with a large dynamic range of analytical detection (dilutions to 1:108). Analysis times by gas chromatography with electron capture detector are less than 1 min for SF6; about 2 min for SF6 and SF5CF3; and 4 min for SF6, SF5CF3, and Halon 1211. Many samples can be rapidly collected, preserved in stoppered septum bottles, and analyzed at a later time in the laboratory. Examples are provided showing the effectiveness of the gas tracer test studies in varied hydrogeological settings.
Validation of a Rapid Bacteria Endospore Enumeration System for Planetary Protection Application
NASA Astrophysics Data System (ADS)
Chen, Fei; Kern, Roger; Kazarians, Gayane; Venkateswaran, Kasthuri
NASA monitors spacecraft surfaces to assure that the presence of bacterial endospores meets strict criteria at launch, to minimize the risk of inadvertent contamination of the surface of Mars. Currently, the only approved method for enumerating the spores is a culture based assay that requires three days to produce results. In order to meet the demanding schedules of spacecraft assembly, a more rapid spore detection assay is being considered as an alternate method to the NASA standard culture-based assay. The Millipore Rapid Microbiology Detection System (RMDS) has been used successfully for rapid bioburden enumeration in the pharmaceutical and food industries. The RMDS is rapid and simple, shows high sensitivity (to 1 colony forming unit [CFU]/sample), and correlates well with traditional culture-based methods. It combines membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and image analysis based on photon detection with a Charge Coupled Device (CCD) camera. In this study, we have optimized the assay conditions and evaluated the use of the RMDS as a rapid spore detection tool for NASA applications. In order to select for spores, the samples were subjected to a heat shock step before proceeding with the RMDS incubation protocol. Seven species of Bacillus (nine strains) that have been repeatedly isolated from clean room environments were assayed. All strains were detected by the RMDS in 5 hours and these assay times were repeatedly demonstrated along with low image background noise. Validation experiments to compare the Rapid Sore Assay (RSA) and NASA standard assay (NSA) were also performed. The evaluation criteria were modeled after the FDA Guideline of Process Validation, and Analytical Test Methods. This body of research demonstrates that the Rapid Spore Assay (RSA) is quick, and of equivalent sensitivity to the NASA standard assay, potentially reducing the assay time for bacterial endospores from over 72 hours to less than 8 hours. Accordingly, JPL has produced a report recommending that NASA adopt the RSA method as a suitable alternative to the NASA standard assay.
Towards Personalized Medicine: Leveraging Patient Similarity and Drug Similarity Analytics
Zhang, Ping; Wang, Fei; Hu, Jianying; Sorrentino, Robert
2014-01-01
The rapid adoption of electronic health records (EHR) provides a comprehensive source for exploratory and predictive analytic to support clinical decision-making. In this paper, we investigate how to utilize EHR to tailor treatments to individual patients based on their likelihood to respond to a therapy. We construct a heterogeneous graph which includes two domains (patients and drugs) and encodes three relationships (patient similarity, drug similarity, and patient-drug prior associations). We describe a novel approach for performing a label propagation procedure to spread the label information representing the effectiveness of different drugs for different patients over this heterogeneous graph. The proposed method has been applied on a real-world EHR dataset to help identify personalized treatments for hypercholesterolemia. The experimental results demonstrate the effectiveness of the approach and suggest that the combination of appropriate patient similarity and drug similarity analytics could lead to actionable insights for personalized medicine. Particularly, by leveraging drug similarity in combination with patient similarity, our method could perform well even on new or rarely used drugs for which there are few records of known past performance. PMID:25717413
VAST Challenge 2016: Streaming Visual Analytics
2016-10-25
understand rapidly evolving situations. To support such tasks, visual analytics solutions must move well beyond systems that simply provide real-time...received. Mini-Challenge 1: Design Challenge Mini-Challenge 1 focused on systems to support security and operational analytics at the Euybia...Challenge 1 was to solicit novel approaches for streaming visual analytics that push the boundaries for what constitutes a visual analytics system , and to
Veigure, Rūta; Aro, Rudolf; Metsvaht, Tuuli; Standing, Joseph F; Lutsar, Irja; Herodes, Koit; Kipper, Karin
2017-05-01
In intensive care units, the precise administration of sedatives and analgesics is crucial in order to avoid under- or over sedation and for appropriate pain control. Both can be harmful to the patient, causing side effects or pain and suffering. This is especially important in the case of pediatric patients, and dose-response relationships require studies using pharmacokinetic-pharmacodynamic modeling. The aim of this work was to develop and validate a rapid ultra-high performance liquid chromatographic-tandem mass spectrometric method for the analysis of three common sedative and analgesic agents: morphine, clonidine and midazolam, and their metabolites (morphine-3-glucuronide, morphine-6-glucuronide and 1'-hydroxymidazolam) in blood plasma at trace level concentrations. Low concentrations and low sampling volumes may be expected in pediatric patients; we report the lowest limit of quantification for all analytes as 0.05ng/mL using only 100μL of blood plasma. The analytes were separated chromatographically using the C18 column with the weak ion-pairing additive 1,1,1,3,3,3-hexafluoro-2-propanol and methanol. The method was fully validated and a matrix matched calibration range of 0.05-250ng/mL was attained for all analytes In addition, between-day accuracy for all analytes remained within 93-108%, and precision remained within 1.5-9.6% for all analytes at all concentration levels over the calibration range. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Good quantification practices of flavours and fragrances by mass spectrometry.
Begnaud, Frédéric; Chaintreau, Alain
2016-10-28
Over the past 15 years, chromatographic techniques with mass spectrometric detection have been increasingly used to monitor the rapidly expanded list of regulated flavour and fragrance ingredients. This trend entails a need for good quantification practices suitable for complex media, especially for multi-analytes. In this article, we present experimental precautions needed to perform the analyses and ways to process the data according to the most recent approaches. This notably includes the identification of analytes during their quantification and method validation, when applied to real matrices, based on accuracy profiles. A brief survey of application studies based on such practices is given.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Authors.
EARL: Exoplanet Analytic Reflected Lightcurves package
NASA Astrophysics Data System (ADS)
Haggard, Hal M.; Cowan, Nicolas B.
2018-05-01
EARL (Exoplanet Analytic Reflected Lightcurves) computes the analytic form of a reflected lightcurve, given a spherical harmonic decomposition of the planet albedo map and the viewing and orbital geometries. The EARL Mathematica notebook allows rapid computation of reflected lightcurves, thus making lightcurve numerical experiments accessible.
Weldegebreal, Blen; Redi-Abshiro, Mesfin; Chandravanshi, Bhagwan Singh
2017-12-05
This study was conducted to develop fast and cost effective methods for the determination of caffeine in green coffee beans. In the present work direct determination of caffeine in aqueous solution of green coffee bean was performed using FT-IR-ATR and fluorescence spectrophotometry. Caffeine was also directly determined in dimethylformamide solution using NIR spectroscopy with univariate calibration technique. The percentage of caffeine for the same sample of green coffee beans was determined using the three newly developed methods. The caffeine content of the green coffee beans was found to be 1.52 ± 0.09 (% w/w) using FT-IR-ATR, 1.50 ± 0.14 (% w/w) using NIR and 1.50 ± 0.05 (% w/w) using fluorescence spectroscopy. The means of the three methods were compared by applying one way analysis of variance and at p = 0.05 significance level the means were not significantly different. The percentage of caffeine in the same sample of green coffee bean was also determined by using the literature reported UV/Vis spectrophotometric method for comparison and found to be 1.40 ± 0.02 (% w/w). New simple, rapid and inexpensive methods were developed for direct determination of caffeine content in aqueous solution of green coffee beans using FT-IR-ATR and fluorescence spectrophotometries. NIR spectrophotometry can also be used as alternative choice of caffeine determination using reduced amount of organic solvent (dimethylformamide) and univariate calibration technique. These analytical methods may therefore, be recommended for the rapid, simple, safe and cost effective determination of caffeine in green coffee beans.
Khan, Wahid; Kumar, Neeraj
2011-06-01
Paromomycin (PM) is an aminoglycoside antibiotic, first isolated in the 1950s, and approved in 2006 for treatment of visceral leishmaniasis. Although isolated six decades back, sufficient information essential for development of pharmaceutical formulation is not available for PM. The purpose of this paper was to determine thermal stability and development of new analytical method for formulation development of PM. PM was characterized by thermoanalytical (DSC, TGA, and HSM) and by spectroscopic (FTIR) techniques and these techniques were used to establish thermal stability of PM after heating PM at 100, 110, 120, and 130 °C for 24 h. Biological activity of these heated samples was also determined by microbiological assay. Subsequently, a simple, rapid and sensitive RP-HPLC method for quantitative determination of PM was developed using pre-column derivatization with 9-fluorenylmethyl chloroformate. The developed method was applied to estimate PM quantitatively in two parenteral dosage forms. PM was successfully characterized by various stated techniques. These techniques indicated stability of PM for heating up to 120 °C for 24 h, but when heated at 130 °C, PM is liable to degradation. This degradation is also observed in microbiological assay where PM lost ∼30% of its biological activity when heated at 130 °C for 24 h. New analytical method was developed for PM in the concentration range of 25-200 ng/ml with intra-day and inter-day variability of < 2%RSD. Characterization techniques were established and stability of PM was determined successfully. Developed analytical method was found sensitive, accurate, and precise for quantification of PM. Copyright © 2010 John Wiley & Sons, Ltd. Copyright © 2010 John Wiley & Sons, Ltd.
Lehotay, Steven J; Mastovska, Katerina; Lightfield, Alan R; Nuñez, Alberto; Dutko, Terry; Ng, Chilton; Bluhm, Louis
2013-10-25
A high-throughput qualitative screening and identification method for 9 aminoglycosides of regulatory interest has been developed, validated, and implemented for bovine kidney, liver, and muscle tissues. The method involves extraction at previously validated conditions, cleanup using disposable pipette extraction, and analysis by a 3 min ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. The drug analytes include neomycin, streptomycin, dihydrosptreptomycin, and spectinomycin, which have residue tolerances in bovine in the US, and kanamicin, gentamicin, apramycin, amikacin, and hygromycin, which do not have US tolerances established in bovine tissues. Tobramycin was used as an internal standard. An additional drug, paromomycin also was validated in the method, but it was dropped during implementation due to conversion of neomycin into paromomycin. Proposed fragmentation patterns for the monitored ions of each analyte were elucidated with the aid of high resolution MS using a quadrupole-time-of-flight instrument. Recoveries from spiking experiments at regulatory levels of concern showed that all analytes averaged 70-120% recoveries in all tissues, except hygromycin averaged 61% recovery. Lowest calibrated levels were as low as 0.005 μg/g in matrix extracts, which approximately corresponded to the limit of detection for screening purposes. Drug identifications at levels <0.05 μg/g were made in spiked and/or real samples for all analytes and tissues tested. Analyses of 60 samples from 20 slaughtered cattle previously screened positive for aminoglycosides showed that this method worked well in practice. The UHPLC-MS/MS method has several advantages compared to the previous microbial inhibition screening assay, especially for distinguishing individual drugs from a mixture and improving identification of gentamicin in tissue samples. Published by Elsevier B.V.
Li, Austin C; Li, Yinghe; Guirguis, Micheal S; Caldwell, Robert G; Shou, Wilson Z
2007-01-04
A new analytical method is described here for the quantitation of anti-inflammatory drug cyclosporin A (CyA) in monkey and rat plasma. The method used tetrahydrofuran (THF)-water mobile phases to elute the analyte and internal standard, cyclosporin C (CyC). The gradient mobile phase program successfully eluted CyA into a sharp peak and therefore improved resolution between the analyte and possible interfering materials compared with previously reported analytical approaches, where CyA was eluted as a broad peak due to the rapid conversion between different conformers. The sharp peak resulted from this method facilitated the quantitative calculation as multiple smoothing and large number of bunching factors were not necessary. The chromatography in the new method was performed at 30 degrees C instead of 65-70 degrees C as reported previously. Other advantages of the method included simple and fast sample extraction-protein precipitation, direct injection of the extraction supernatant to column for analysis, and elimination of evaporation and reconstitution steps, which were needed in solid phase extraction or liquid-liquid extraction reported before. This method is amenable to high-throughput analysis with a total chromatographic run time of 3 min. This approach has been verified as sensitive, linear (0.977-4000 ng/mL), accurate and precise for the quantitation of CyA in monkey and rat plasma. However, compared with the usage of conventional mobile phases, the only drawback of this approach was the reduced detection response from the mass spectrometer that was possibly caused by poor desolvation in the ionization source. This is the first report to demonstrate the advantages of using THF-water mobile phases to elute CyA in liquid chromatography.
Du, Yuanqi; Xia, Ling; Xiao, Xiaohua; Li, Gongke; Chen, Xiaoguang
2018-06-15
Nowadays, the safety of cosmetics is a widespread concern. Amines are common cosmetic additives. Some of them such as amino acids are beneficial. Another kind of amines, however, ε-aminocaproic acid (EACA) is prohibited to add into cosmetics for its adverse reactions. In this study, a simple, rapid, sensitive and eco-friendly one-step ultrasonic-assisted extraction and derivatization (UAE-D) method was developed for determination of EACA and amino acids in cosmetics by coupling with high-performance liquid chromatography (HPLC). By using this sample preparation method, extraction and derivatization of EACA and amino acids were finished in one step in ultrasound field. During this procedure, 4-fluoro-7-nitrobenzofurazan (NBD-F)was applied as derivatization reagent. The extraction conditions including the amount of NBD-F, extraction and derivatization temperature, the ultrasonic vibration time and pH value of the aqueous phase were evaluated. Meanwhile, the extraction mechanism was investigated. Under optimized conditions, the method detection limits were 0.086-0.15 μg/L, and method quantitation limits were 0.29-0.47 μg/L with RSDs less than 3.7% (n = 3). The recoveries of EACA and amino acids obtained from cosmetic samples were in range from 76.9% to 122.3%. Amino acids were found in all selected samples and quantified in range from 1.9 ± 0.9 to 677.2 ± 17.9 μg/kg. And EACA was found and quantified with the contents of 1284.3 ± 22.1 μg/kg in a toner sample. This UAE-D-HPLC method shortened and simplified the sample pretreatment as well as enhanced the sensitivity of analytical method. In our record, only 10 min was needed for the total sample preparation process. And the method detection limits were two orders of magnitude less than literature reports. Furthermore, we reduced the consumption of solvent and minimized the usage of organic solvents, which made our method moving towards green analytical chemistry. In brief, our UAE-D-HPLC method is a simple, rapid, sensitive and eco-friendly analytical method for the determination of EACA and amino acids in cosmetics. Copyright © 2018 Elsevier B.V. All rights reserved.
Gerace, E; Salomone, A; Abbadessa, G; Racca, S; Vincenti, M
2012-02-01
A fast screening protocol was developed for the simultaneous determination of nine anti-estrogenic agents (aminoglutethimide, anastrozole, clomiphene, drostanolone, formestane, letrozole, mesterolone, tamoxifen, testolactone) plus five of their metabolites in human urine. After an enzymatic hydrolysis, these compounds can be extracted simultaneously from urine with a simple liquid-liquid extraction at alkaline conditions. The analytes were subsequently analyzed by fast-gas chromatography/mass spectrometry (fast-GC/MS) after derivatization. The use of a short column, high-flow carrier gas velocity and fast temperature ramping produced an efficient separation of all analytes in about 4 min, allowing a processing rate of 10 samples/h. The present analytical method was validated according to UNI EN ISO/IEC 17025 guidelines for qualitative methods. The range of investigated parameters included the limit of detection, selectivity, linearity, repeatability, robustness and extraction efficiency. High MS-sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. Therefore, the performances of the method are comparable to the ones obtainable from traditional GC/MS analysis. The method was successfully tested on real samples arising from clinical treatments of hospitalized patients and could profitably be used for clinical studies on anti-estrogenic drug administration.
Gerace, E.; Salomone, A.; Abbadessa, G.; Racca, S.; Vincenti, M.
2011-01-01
A fast screening protocol was developed for the simultaneous determination of nine anti-estrogenic agents (aminoglutethimide, anastrozole, clomiphene, drostanolone, formestane, letrozole, mesterolone, tamoxifen, testolactone) plus five of their metabolites in human urine. After an enzymatic hydrolysis, these compounds can be extracted simultaneously from urine with a simple liquid–liquid extraction at alkaline conditions. The analytes were subsequently analyzed by fast-gas chromatography/mass spectrometry (fast-GC/MS) after derivatization. The use of a short column, high-flow carrier gas velocity and fast temperature ramping produced an efficient separation of all analytes in about 4 min, allowing a processing rate of 10 samples/h. The present analytical method was validated according to UNI EN ISO/IEC 17025 guidelines for qualitative methods. The range of investigated parameters included the limit of detection, selectivity, linearity, repeatability, robustness and extraction efficiency. High MS-sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. Therefore, the performances of the method are comparable to the ones obtainable from traditional GC/MS analysis. The method was successfully tested on real samples arising from clinical treatments of hospitalized patients and could profitably be used for clinical studies on anti-estrogenic drug administration. PMID:29403714
A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples.
Feo, M L; Eljarrat, E; Barceló, D
2010-04-09
A simple, efficient and environmentally friendly analytical methodology is proposed for extracting and preconcentrating pyrethroids from water samples prior to gas chromatography-negative ion chemical ionization mass spectrometry (GC-NCI-MS) analysis. Fourteen pyrethroids were selected for this work: bifenthrin, cyfluthrin, lambda-cyhalothrin, cypermethrin, deltamethrin, esfenvalerate, fenvalerate, fenpropathrin, tau-fluvalinate, permethrin, phenothrin, resmethrin, tetramethrin and tralomethrin. The method is based on ultrasound-assisted emulsification-extraction (UAEE) of a water-immiscible solvent in an aqueous medium. Chloroform was used as extraction solvent in the UAEE technique. Target analytes were quantitatively extracted achieving an enrichment factor of 200 when 20 mL aliquot of pure water spiked with pyrethroid standards was extracted. The method was also evaluated with tap water and river water samples. Method detection limits (MDLs) ranged from 0.03 to 35.8 ng L(-1) with RSDs values < or =3-25% (n=5). The coefficients of estimation of the calibration curves obtained following the proposed methodology were > or =0.998. Recovery values were in the range of 45-106%, showing satisfactory robustness of the method for analyzing pyrethroids in water samples. The proposed methodology was applied for the analysis of river water samples. Cypermethrin was detected at concentration levels ranging from 4.94 to 30.5 ng L(-1). Copyright 2010 Elsevier B.V. All rights reserved.
Cho, Il-Hoon; Ku, Seockmo
2017-09-30
The development of novel and high-tech solutions for rapid, accurate, and non-laborious microbial detection methods is imperative to improve the global food supply. Such solutions have begun to address the need for microbial detection that is faster and more sensitive than existing methodologies (e.g., classic culture enrichment methods). Multiple reviews report the technical functions and structures of conventional microbial detection tools. These tools, used to detect pathogens in food and food homogenates, were designed via qualitative analysis methods. The inherent disadvantage of these analytical methods is the necessity for specimen preparation, which is a time-consuming process. While some literature describes the challenges and opportunities to overcome the technical issues related to food industry legal guidelines, there is a lack of reviews of the current trials to overcome technological limitations related to sample preparation and microbial detection via nano and micro technologies. In this review, we primarily explore current analytical technologies, including metallic and magnetic nanomaterials, optics, electrochemistry, and spectroscopy. These techniques rely on the early detection of pathogens via enhanced analytical sensitivity and specificity. In order to introduce the potential combination and comparative analysis of various advanced methods, we also reference a novel sample preparation protocol that uses microbial concentration and recovery technologies. This technology has the potential to expedite the pre-enrichment step that precedes the detection process.
Peer, Cody J; Spencer, Shawn D; VanDenBerg, Dustin A H; Pacanowski, Michael A; Horenstein, Richard B; Figg, William D
2012-01-01
A sensitive, selective, and rapid ultra-high performance liquid chromatography-tandem mass spectrometry (uHPLC-MS/MS) was developed for the simultaneous quantification of clopidogrel (Plavix(®)) and its derivatized active metabolite (CAMD) in human plasma. Derivatization of the active metabolite in blood with 2-bromo-3'-methoxy acetophenone (MPB) immediately after collection ensured metabolite stability during sample handling and storage. Following addition of ticlopidine as an internal standard and simple protein precipitation, the analytes were separated on a Waters Acquity UPLC™ sub-2 μm-C(18) column via gradient elution before detection on a triple-quadrupole MS with multiple-reaction-monitoring via electrospray ionization. The method was validated across the clinically relevant concentration range of 0.01-50 ng/mL for parent clopidogrel and 0.1-150 ng/mL (r(2)=0.99) for CAMD, with a fast run time of 1.5 min to support pharmacokinetic studies using 75, 150, or 300 mg oral doses of clopidogrel. The analytical method measured concentrations of clopidogrel and CAMD with accuracy (%DEV) <±12% and precision (%CV) of <±6%. The method was successfully applied to measure the plasma concentrations of clopidogrel and CAMD in three subjects administered single oral doses of 75, 150, and 300 mg clopidogrel. It was further demonstrated that the derivatizing agent (MPB) does not affect clopidogrel levels, thus from one aliquot of blood drawn clinically, this method can simultaneously quantify both clopidogrel and CAMD with sensitivity in the picogram per mL range. Published by Elsevier B.V.
Peer, Cody J.; Spencer, Shawn D.; VanDenBerg, Dustin A. H.; Pacanowski, Michael A.; Horenstein, Richard B.; Figg, William D.
2011-01-01
A sensitive, selective, and rapid ultra-high performance liquid chromatography-tandem mass spectrometry (uHPLC-MS/MS) was developed for the simultaneous quantification of clopidogrel (Plavix®) and its derivatized active metabolite (CAMD) in human plasma. Derivatization of the active metabolite in blood with 2-bromo-3’-methoxy acetophenone (MPB) immediately after collection ensured metabolite stability during sample handling and storage. Following addition of ticlopidine as an internal standard and simple protein precipitation, the analytes were separated on a Waters Acquity UPLC™ sub-2µm-C18 column via gradient elution before detection on a triple-quadrupole MS with multiple-reaction-monitoring via electrospray ionization. The method was validated across the clinically-relevant concentration range of 0.01–50 ng/mL for parent clopidogrel and 0.1–150 ng/mL (r2= 0.99) for CAMD, with a fast run time of 1.5 min to support pharmacokinetic studies using 75, 150, or 300 mg oral doses of clopidogrel. The analytical method measured concentrations of clopidogrel and CAMD with accuracy (%DEV) < ±12% and precision (%CV) of < ±6%. The method was successfully applied to measure the plasma concentrations of clopidogrel and CAMD in three subjects administered single oral doses of 75, 150, and 300 mg clopidogrel. It was further demonstrated that the derivatizing agent (MPB) does not affect clopidogrel levels, thus from one aliquot of blood drawn clinically, this method can simultaneously quantify both clopidogrel and CAMD with sensitivity in the picogram per mL range. PMID:22169056
Chen, Xiaoyan; Huang, Jia; Kong, Zhang; Zhong, Dafang
2005-03-25
A rapid and sensitive method for the simultaneous determination of paracetamol and guaifenesin in human plasma was developed and validated, using high-performance liquid chromatographic separation with tandem mass spectrometric detection. After extracted from plasma samples by diethyl ether-dichloromethane (3:2, v/v), the analytes and internal standard osalmide were chromatographed on a C18 column. Detection was performed on a triple quadrupole tandem mass spectrometer by selected reaction monitoring (SRM) mode via atmospheric pressure chemical ionization (APCI). The method was linear in the concentration range of 0.05-20.0 microg/ml for paracetamol and 5.0-2000.0 ng/ml for guaifenesin. The intra- and inter-day precision was within 14% for both paracetamol and guaifenesin. The assay accuracy was within +/-2.4% for the analytes. This is the first assay method described for the simultaneous determination of paracetamol and guaifenesin in plasma using one chromatographic run. The method was successfully employed in a pharmacokinetic study after an oral administration of a multicomponent formulation, containing 650 mg paracetamol, 200 mg guaifenesin, 60 mg pseudoephedrine and 20 mg dextrorphan.
Runes, H B; Jenkins, J J; Field, J A
1999-08-01
Triadimefon, a fungicide, and ethofumesate, an herbicide, are commonly applied to turfgrass in the Pacific Northwest, resulting in foliar residues. A simple and rapid method was developed to determine triadimefon and ethofumesate concentrations from dislodgeable foliar residues on turfgrass. Turfgrass samples were washed, and wash water containing surfactant (a 0.126% solution) was collected for residue analysis. This analytical method utilizes a 25 mm C(8) Empore disk and in-vial elution to quantitatively determine triadimefon and ethofumesate in 170 mL aqueous samples. The analytes were eluted by placing the disk in a 2 mL autosampler vial with 980 microL of ethyl acetate and 20 microL of 2-chlorolepidine, the internal standard, for analysis by GC/MS. The method quantitation limits are 0.29 microg/L for ethofumesate and 0.59 microg/L for triadimefon. The method detection limits are 0.047 microg/L and 0.29 microg/L for ethofumesate and triadimefon, respectively. Concentrations of triadimefon and ethofumesate from dislodgeable foliar residues from a field study are reported.
Transverse vibrations of non-uniform beams. [combined finite element and Rayleigh-Ritz methods
NASA Technical Reports Server (NTRS)
Klein, L.
1974-01-01
The free vibrations of elastic beams with nonuniform characteristics are investigated theoretically by a new method. The new method is seen to combine the advantages of a finite element approach and of a Rayleigh-Ritz analysis. Comparison with the known analytical results for uniform beams shows good convergence of the method for natural frequencies and modes. For internal shear forces and bending moments, the rate of convergence is less rapid. Results from experiments conducted with a cantilevered helicopter blade with strong nonuniformities and also from alternative theoretical methods, indicate that the theory adequately predicts natural frequencies and mode shapes. General guidelines for efficient use of the method are presented.
Business Analytics in Practice and in Education: A Competency-Based Perspective
ERIC Educational Resources Information Center
Mamonov, Stanislav; Misra, Ram; Jain, Rashmi
2015-01-01
Business analytics is a fast-growing area in practice. The rapid growth of business analytics in practice in the recent years is mirrored by a corresponding fast evolution of new educational programs. While more than 130 graduate and undergraduate degree programs in business analytics have been launched in the past 5 years, no commonly accepted…
[Recent Development of Atomic Spectrometry in China].
Xiao, Yuan-fang; Wang, Xiao-hua; Hang, Wei
2015-09-01
As an important part of modern analytical techniques, atomic spectrometry occupies a decisive status in the whole analytical field. The development of atomic spectrometry also reflects the continuous reform and innovation of analytical techniques. In the past fifteen years, atomic spectrometry has experienced rapid development and been applied widely in many fields in China. This review has witnessed its development and remarkable achievements. It contains several directions of atomic spectrometry, including atomic emission spectrometry (AES), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray fluorescence spectrometry (XRF), and atomic mass spectrometry (AMS). Emphasis is put on the innovation of the detection methods and their applications in related fields, including environmental samples, biological samples, food and beverage, and geological materials, etc. There is also a brief introduction to the hyphenated techniques utilized in atomic spectrometry. Finally, the prospects of atomic spectrometry in China have been forecasted.
Desorption atmospheric pressure photoionization.
Haapala, Markus; Pól, Jaroslav; Saarela, Ville; Arvola, Ville; Kotiaho, Tapio; Ketola, Raimo A; Franssila, Sami; Kauppila, Tiina J; Kostiainen, Risto
2007-10-15
An ambient ionization technique for mass spectrometry, desorption atmospheric pressure photoionization (DAPPI), is presented, and its application to the rapid analysis of compounds of various polarities on surfaces is demonstrated. The DAPPI technique relies on a heated nebulizer microchip delivering a heated jet of vaporized solvent, e.g., toluene, and a photoionization lamp emitting 10-eV photons. The solvent jet is directed toward sample spots on a surface, causing the desorption of analytes from the surface. The photons emitted by the lamp ionize the analytes, which are then directed into the mass spectrometer. The limits of detection obtained with DAPPI were in the range of 56-670 fmol. Also, the direct analysis of pharmaceuticals from a tablet surface was successfully demonstrated. A comparison of the performance of DAPPI with that of the popular desorption electrospray ionization method was done with four standard compounds. DAPPI was shown to be equally or more sensitive especially in the case of less polar analytes.
A Widely Applicable Silver Sol for TLC Detection with Rich and Stable SERS Features.
Zhu, Qingxia; Li, Hao; Lu, Feng; Chai, Yifeng; Yuan, Yongfang
2016-12-01
Thin-layer chromatography (TLC) coupled with surface-enhanced Raman spectroscopy (SERS) has gained tremendous popularity in the study of various complex systems. However, the detection of hydrophobic analytes is difficult, and the specificity still needs to be improved. In this study, a SERS-active non-aqueous silver sol which could activate the analytes to produce rich and stable spectral features was rapidly synthesized. Then, the optimized silver nanoparticles (AgNPs)-DMF sol was employed for TLC-SERS detection of hydrophobic (and also hydrophilic) analytes. SERS performance of this sol was superior to that of traditional Lee-Meisel AgNPs due to its high specificity, acceptable stability, and wide applicability. The non-aqueous AgNPs would be suitable for the TLC-SERS method, which shows great promise for applications in food safety assurance, environmental monitoring, medical diagnoses, and many other fields.
A Widely Applicable Silver Sol for TLC Detection with Rich and Stable SERS Features
NASA Astrophysics Data System (ADS)
Zhu, Qingxia; Li, Hao; Lu, Feng; Chai, Yifeng; Yuan, Yongfang
2016-04-01
Thin-layer chromatography (TLC) coupled with surface-enhanced Raman spectroscopy (SERS) has gained tremendous popularity in the study of various complex systems. However, the detection of hydrophobic analytes is difficult, and the specificity still needs to be improved. In this study, a SERS-active non-aqueous silver sol which could activate the analytes to produce rich and stable spectral features was rapidly synthesized. Then, the optimized silver nanoparticles (AgNPs)-DMF sol was employed for TLC-SERS detection of hydrophobic (and also hydrophilic) analytes. SERS performance of this sol was superior to that of traditional Lee-Meisel AgNPs due to its high specificity, acceptable stability, and wide applicability. The non-aqueous AgNPs would be suitable for the TLC-SERS method, which shows great promise for applications in food safety assurance, environmental monitoring, medical diagnoses, and many other fields.
RapidIO as a multi-purpose interconnect
NASA Astrophysics Data System (ADS)
Baymani, Simaolhoda; Alexopoulos, Konstantinos; Valat, Sébastien
2017-10-01
RapidIO (http://rapidio.org/) technology is a packet-switched high-performance fabric, which has been under active development since 1997. Originally meant to be a front side bus, it developed into a system level interconnect which is today used in all 4G/LTE base stations world wide. RapidIO is often used in embedded systems that require high reliability, low latency and scalability in a heterogeneous environment - features that are highly interesting for several use cases, such as data analytics and data acquisition (DAQ) networks. We will present the results of evaluating RapidIO in a data analytics environment, from setup to benchmark. Specifically, we will share the experience of running ROOT and Hadoop on top of RapidIO. To demonstrate the multi-purpose characteristics of RapidIO, we will also present the results of investigating RapidIO as a technology for high-speed DAQ networks using a generic multi-protocol event-building emulation tool. In addition we will present lessons learned from implementing native ports of CERN applications to RapidIO.
Liu, Xuemei; Gu, Zhixin; Guo, Yuan; Liu, Jingjing; Ma, Ming; Chen, Bo; Wang, Liping
2017-04-15
Paper spray-mass spectrometry (PS-MS) is a rapid, solvent-efficient, and high-throughput analytical method for analyzing complex samples. In this study, a PS-MS method was developed to obtain MS profiles of Aurantii Fructus Immaturus (aka Zhishi in Chinese) in positive and negative ion modes. In combination with multivariate analyses, including principal component analysis and cluster analysis, the PS-MS profiles of 25 batches of Zhishi were discriminated in 25 batches of Citri Reticulatae Pericarpium Viride (aka Qingpi in Chinese; an adulterant of Zhishi). Moreover, a rapid quantitative analysis of synephrine, a prescriptive quality control component of Zhishi listed in the Chinese Pharmacopoeia, was conducted with PS-MS using synephrine-d2 as an internal standard (IS). The linearity range was 1.68-16.8μg/mL (R 2 =0.9985), the limit of quantitation was 0.5μg/mL. Relative standard deviations in the intra- and inter-day precision of the MS were 4.87 and 4.90%, respectively. Compared with HPLC results, there was no significant difference in the quantitation of synephrine. This study demonstrated that the PS-MS method is useful for the rapid discrimination and quality control of Zhishi samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Validation Study of Rapid Assays of Bioburden, Endotoxins and Other Contamination.
Shintani, Hideharu
2016-01-01
Microbial testing performed in support of pharmaceutical and biopharmaceutical production falls into three main categories: detection (qualitative), enumeration (quantitative), and characterization/identification. Traditional microbiological methods are listed in the compendia and discussed by using the conventional growth-based techniques, which are labor intensive and time consuming. In general, such tests require several days of incubation for microbial contamination (bioburden) to be detected, and therefore management seldom is able to take proactive corrective measures. In addition, microbial growth is limited by the growth medium used and incubation conditions, thus impacting testing sensitivity, accuracy, and reproducibility. For more than 20 years various technology platforms for rapid microbiological methods (RMM) have been developed, and many have been readily adopted by the food industry and clinical microbiology laboratories. Their use would certainly offer drug companies faster test turnaround times to accommodate the aggressive deadlines for manufacturing processes and product release. Some rapid methods also offer the possibility for real-time microbial analyses, enabling management to respond to microbial contamination events in a more timely fashion, and can provide cost savings and higher efficiencies in quality control testing laboratories. Despite the many proven business and quality benefits and the fact that the FDA's initiative to promote the use of process analytical technology (PAT) includes rapid microbial methods, pharmaceutical and biopharmaceutical industries have been somewhat slow to embrace alternative microbial methodologies for several reasons. The major reason is that the bioburden counts detected by the incubation method and rapid assay are greatly divergent. The use of rapid methods is a dynamic field in applied microbiology and one that has gained increased attention nationally and internationally over time. This topic has been extensively addressed at conferences and in published documents around the world. More recently, the use of alternative methods for control of the microbiological quality of pharmaceutical products and materials used in pharmaceutical production has been addressed by the compendia in an attempt to facilitate implementation of these technologies by pharmaceutical companies. The author presents some of the rapid method technologies under evaluation or in use by pharmaceutical microbiologists and the current status of the implementation of alternative microbial methods.
Yu, Hye-Weon; Jang, Am; Kim, Lan Hee; Kim, Sung-Jo; Kim, In S
2011-09-15
Due to the increased occurrence of cyanobacterial blooms and their toxins in drinking water sources, effective management based on a sensitive and rapid analytical method is in high demand for security of safe water sources and environmental human health. Here, a competitive fluorescence immunoassay of microcystin-LR (MCYST-LR) is developed in an attempt to improve the sensitivity, analysis time, and ease-of-manipulation of analysis. To serve this aim, a bead-based suspension assay was introduced based on two major sensing elements: an antibody-conjugated quantum dot (QD) detection probe and an antigen-immobilized magnetic bead (MB) competitor. The assay was composed of three steps: the competitive immunological reaction of QD detection probes against analytes and MB competitors, magnetic separation and washing, and the optical signal generation of QDs. The fluorescence intensity was found to be inversely proportional to the MCYST-LR concentration. Under optimized conditions, the proposed assay performed well for the identification and quantitative analysis of MCYST-LR (within 30 min in the range of 0.42-25 μg/L, with a limit of detection of 0.03 μg/L). It is thus expected that this enhanced assay can contribute both to the sensitive and rapid diagnosis of cyanotoxin risk in drinking water and effective management procedures.
Xiao, Ge; Saunders, David; Jones, Robert L.; Caldwell, Kathleen L.
2016-01-01
Quantification of 241Am in urine at low levels is important for assessment of individuals’ or populations’ accidental, environmental, or terrorism-related internal contamination, but no convenient, precise method has been established to rapidly determine these low levels. Here we report a new analytical method to measure 241Am as developed and validated at the Centers for Disease Control and Prevention (CDC) by means of the selective retention of Am from urine directly on DGA resin, followed by SF-ICP-MS detection. The method provides rapid results with a Limit of Detection (LOD) of 0.22 pg/L (0.028 Bq/L), which is lower than 1/3 of the C/P CDG for 241Am at 5 days post-exposure. The results obtained by this method closely agree with CDC values as measured by Liquid Scintillation Counting, and with National Institute of Standards Technology (NIST) Certified Reference Materials (CRM) target values. PMID:27375308
Xiao, Ge; Saunders, David; Jones, Robert L; Caldwell, Kathleen L
2016-07-01
Quantification of 241 Am in urine at low levels is important for assessment of individuals' or populations' accidental, environmental, or terrorism-related internal contamination, but no convenient, precise method has been established to rapidly determine these low levels. Here we report a new analytical method to measure 241 Am as developed and validated at the Centers for Disease Control and Prevention (CDC) by means of the selective retention of Am from urine directly on DGA resin, followed by SF-ICP-MS detection. The method provides rapid results with a Limit of Detection (LOD) of 0.22 pg/L (0.028 Bq/L), which is lower than 1/3 of the C/P CDG for 241 Am at 5 days post-exposure. The results obtained by this method closely agree with CDC values as measured by Liquid Scintillation Counting, and with National Institute of Standards Technology (NIST) Certified Reference Materials (CRM) target values.
Immunosensors using a quartz crystal microbalance
NASA Astrophysics Data System (ADS)
Kurosawa, Shigeru; Aizawa, Hidenobu; Tozuka, Mitsuhiro; Nakamura, Miki; Park, Jong-Won
2003-11-01
Better analytical technology has been demanded for accurate and rapid determination of trace amounts of chemical compounds, such as marker proteins for disease or endocrine disrupters like dioxin, which might be contained in blood, food and the environment. The study of immunosensors using a quartz crystal microbalance (QCM) has recently focused on conventional detection methods for the determination of chemical compounds together with the development of reagents and processes. This paper introduces the principle of the detection method of QCM immunosensors developed at AIST and its application to the detection of trace amounts of chemical compounds.
Magnuson, Matthew; Campisano, Romy; Griggs, John; Fitz-James, Schatzi; Hall, Kathy; Mapp, Latisha; Mullins, Marissa; Nichols, Tonya; Shah, Sanjiv; Silvestri, Erin; Smith, Terry; Willison, Stuart; Ernst, Hiba
2014-11-01
Catastrophic incidents can generate a large number of samples of analytically diverse types, including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface residue. Such samples may arise not only from contamination from the incident but also from the multitude of activities surrounding the response to the incident, including decontamination. This document summarizes a range of activities to help build laboratory capability in preparation for sample analysis following a catastrophic incident, including selection and development of fit-for-purpose analytical methods for chemical, biological, and radiological contaminants. Fit-for-purpose methods are those which have been selected to meet project specific data quality objectives. For example, methods could be fit for screening contamination in the early phases of investigation of contamination incidents because they are rapid and easily implemented, but those same methods may not be fit for the purpose of remediating the environment to acceptable levels when a more sensitive method is required. While the exact data quality objectives defining fitness-for-purpose can vary with each incident, a governing principle of the method selection and development process for environmental remediation and recovery is based on achieving high throughput while maintaining high quality analytical results. This paper illustrates the result of applying this principle, in the form of a compendium of analytical methods for contaminants of interest. The compendium is based on experience with actual incidents, where appropriate and available. This paper also discusses efforts aimed at adaptation of existing methods to increase fitness-for-purpose and development of innovative methods when necessary. The contaminants of interest are primarily those potentially released through catastrophes resulting from malicious activity. However, the same techniques discussed could also have application to catastrophes resulting from other incidents, such as natural disasters or industrial accidents. Further, the high sample throughput enabled by the techniques discussed could be employed for conventional environmental studies and compliance monitoring, potentially decreasing costs and/or increasing the quantity of data available to decision-makers. Published by Elsevier Ltd.
Sharma, Teenu; Khurana, Rajneet Kaur; Jain, Atul; Katare, O P; Singh, Bhupinder
2018-05-01
The current research work envisages an analytical quality by design-enabled development of a simple, rapid, sensitive, specific, robust and cost-effective stability-indicating reversed-phase high-performance liquid chromatographic method for determining stress-induced forced-degradation products of sorafenib tosylate (SFN). An Ishikawa fishbone diagram was constructed to embark upon analytical target profile and critical analytical attributes, i.e. peak area, theoretical plates, retention time and peak tailing. Factor screening using Taguchi orthogonal arrays and quality risk assessment studies carried out using failure mode effect analysis aided the selection of critical method parameters, i.e. mobile phase ratio and flow rate potentially affecting the chosen critical analytical attributes. Systematic optimization using response surface methodology of the chosen critical method parameters was carried out employing a two-factor-three-level-13-run, face-centered cubic design. A method operable design region was earmarked providing optimum method performance using numerical and graphical optimization. The optimum method employed a mobile phase composition consisting of acetonitrile and water (containing orthophosphoric acid, pH 4.1) at 65:35 v/v at a flow rate of 0.8 mL/min with UV detection at 265 nm using a C 18 column. Response surface methodology validation studies confirmed good efficiency and sensitivity of the developed method for analysis of SFN in mobile phase as well as in human plasma matrix. The forced degradation studies were conducted under different recommended stress conditions as per ICH Q1A (R2). Mass spectroscopy studies showed that SFN degrades in strongly acidic, alkaline and oxidative hydrolytic conditions at elevated temperature, while the drug was per se found to be photostable. Oxidative hydrolysis using 30% H 2 O 2 showed maximum degradation with products at retention times of 3.35, 3.65, 4.20 and 5.67 min. The absence of any significant change in the retention time of SFN and degradation products, formed under different stress conditions, ratified selectivity and specificity of the systematically developed method. Copyright © 2017 John Wiley & Sons, Ltd.
Rapid determination of tartaric acid in wines.
Bastos, Sandra S T; Tafulo, Paula A R; Queirós, Raquel B; Matos, Cristina D; Sales, M Goreti F
2009-08-01
A flow-spectrophotometric method is proposed for the routine determination of tartaric acid in wines. The reaction between tartaric acid and vanadate in acetic media is carried out in flowing conditions and the subsequent colored complex is monitored at 475 nm. The stability of the complex and the corresponding formation constant are presented. The effect of wavelength and pH was evaluated by batch experiments. The selected conditions were transposed to a flow-injection analytical system. Optimization of several flow parameters such as reactor lengths, flow-rate and injection volume was carried out. Using optimized conditions, a linear behavior was observed up to 1000 microg mL(-1) tartaric acid, with a molar extinction coefficient of 450 L mg(-1) cm(-1) and +/- 1 % repeatability. Sample throughput was 25 samples per hour. The flow-spectrophotometric method was satisfactorily applied to the quantification of TA in wines from different sources. Its accuracy was confirmed by statistical comparison to the conventional Rebelein procedure and to a certified analytical method carried out in a routine laboratory.
Baek, Soo Kyoung; Lee, Seung Seok; Park, Eun Jeon; Sohn, Dong Hwan; Lee, Hye Suk
2003-02-05
A rapid and sensitive column-switching semi-micro high-performance liquid chromatography method was developed for the direct analysis of tiropramide in human plasma. The plasma sample (100 microl) was directly injected onto Capcell Pak MF Ph-1 precolumn where deproteinization and analyte fractionation occurred. Tiropramide was then eluted into an enrichment column (Capcell Pak UG C(18)) using acetonitrile-potassium phosphate (pH 7.0, 50 mM) (12:88, v/v) and was analyzed on a semi-micro C(18) analytical column using acetonitrile-potassium phosphate (pH 7.0, 10 mM) (50:50, v/v). The method showed excellent sensitivity (limit of quantification 5 ng/ml), and good precision (C.V.
Analysis of the extracts of Isatis tinctoria by new analytical approaches of HPLC, MS and NMR.
Zhou, Jue; Qu, Fan
2011-01-01
The methods of extraction, separation and analysis of alkaloids and indole glucosinolates (GLs) ofIsatis tinctoria were reviewed. Different analytical approaches such as High-pressure Liquid Chromatography (HPLC), Liquid Chromatography with Electrospray Ionization Mass Spectrometry (LC/ESI/MS), Electrospray Ionization Time-Of-Flight Mass Spectrometry (ESI-TOF-MS), and Nuclear Magnetic Resonance (NMR) were used to validate and identity of these constituents. These methods provide rapid separation, identification and quantitative measurements of alkaloids and GLs of Isatis tinctoria. By connection with different detectors to HPLC such as PDA, ELSD, ESI- and APCI-MS in positive and negative ion modes, complicated compounds could be detected with at least two independent detection modes. The molecular formula can be derived in a second step of ESI-TOF-MS data. But for some constituents, UV and MS cannot provide sufficient structure identification. After peak purification, NMR by semi-preparative HPLC can be used as a complementary method.
Analysis of the neurotoxin anisatin in star anise by LC-MS/MS.
Mathon, Caroline; Bongard, Benjamin; Duret, Monique; Ortelli, Didier; Christen, Philippe; Bieri, Stefan
2013-01-01
The aim of this work was to develop an analytical method capable of determining the presence of anisatin in star anise. This neurotoxin may induce severe side effects such as epileptic convulsions. It is therefore of prime importance to have rapid and accurate analytical methods able to detect and quantify anisatin in samples that are purportedly edible star anise. The sample preparation combined an automated accelerated solvent extraction with a solid-supported liquid-liquid purification step on EXtrelut®. Samples were analysed on a porous graphitic carbon HPLC column and quantified by tandem mass spectrometry operating in the negative ionisation mode. The quantification range of anisatin was between 0.2 and 8 mg kg⁻¹. The applicability of this validated method was demonstrated by the analysis of several Illicium species and star anise samples purchased on the Swiss market. High levels of anisatin were measured in Illicium lanceolatum, I. majus and I. anisatum, which may cause health concerns if they are misidentified or mixed with edible Illicium verum.
Streby, Ashleigh; Mull, Bonnie J; Levy, Karen; Hill, Vincent R
2015-05-01
Naegleria fowleri is a thermophilic free-living ameba found in freshwater environments worldwide. It is the cause of a rare but potentially fatal disease in humans known as primary amebic meningoencephalitis. Established N. fowleri detection methods rely on conventional culture techniques and morphological examination followed by molecular testing. Multiple alternative real-time PCR assays have been published for rapid detection of Naegleria spp. and N. fowleri. Foursuch assays were evaluated for the detection of N. fowleri from surface water and sediment. The assays were compared for thermodynamic stability, analytical sensitivity and specificity, detection limits, humic acid inhibition effects, and performance with seeded environmental matrices. Twenty-one ameba isolates were included in the DNA panel used for analytical sensitivity and specificity analyses. N. fowleri genotypes I and III were used for method performance testing. Two of the real-time PCR assays were determined to yield similar performance data for specificity and sensitivity for detecting N. fowleri in environmental matrices.
Streby, Ashleigh; Mull, Bonnie J.; Levy, Karen
2015-01-01
Naegleria fowleri is a thermophilic free-living ameba found in freshwater environments worldwide. It is the cause of a rare but potentially fatal disease in humans known as primary amebic meningoencephalitis. Established N. fowleri detection methods rely on conventional culture techniques and morphological examination followed by molecular testing. Multiple alternative real-time PCR assays have been published for rapid detection of Naegleria spp. and N. fowleri. Four such assays were evaluated for the detection of N. fowleri from surface water and sediment. The assays were compared for thermodynamic stability, analytical sensitivity and specificity, detection limits, humic acid inhibition effects, and performance with seeded environmental matrices. Twenty-one ameba isolates were included in the DNA panel used for analytical sensitivity and specificity analyses. N. fowleri genotypes I and III were used for method performance testing. Two of the real-time PCR assays were determined to yield similar performance data for specificity and sensitivity for detecting N. fowleri in environmental matrices. PMID:25855343
NASA Astrophysics Data System (ADS)
Arqub, Omar Abu; El-Ajou, Ahmad; Momani, Shaher
2015-07-01
Building fractional mathematical models for specific phenomena and developing numerical or analytical solutions for these fractional mathematical models are crucial issues in mathematics, physics, and engineering. In this work, a new analytical technique for constructing and predicting solitary pattern solutions of time-fractional dispersive partial differential equations is proposed based on the generalized Taylor series formula and residual error function. The new approach provides solutions in the form of a rapidly convergent series with easily computable components using symbolic computation software. For method evaluation and validation, the proposed technique was applied to three different models and compared with some of the well-known methods. The resultant simulations clearly demonstrate the superiority and potentiality of the proposed technique in terms of the quality performance and accuracy of substructure preservation in the construct, as well as the prediction of solitary pattern solutions for time-fractional dispersive partial differential equations.
Ultrasonic guided waves in eccentric annular pipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu
2014-02-18
This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modesmore » in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection.« less
The sweet tooth of biopharmaceuticals: importance of recombinant protein glycosylation analysis.
Lingg, Nico; Zhang, Peiqing; Song, Zhiwei; Bardor, Muriel
2012-12-01
Biopharmaceuticals currently represent the fastest growing sector of the pharmaceutical industry, mainly driven by a rapid expansion in the manufacture of recombinant protein-based drugs. Glycosylation is the most prominent post-translational modification occurring on these protein drugs. It constitutes one of the critical quality attributes that requires thorough analysis for optimal efficacy and safety. This review examines the functional importance of glycosylation of recombinant protein drugs, illustrated using three examples of protein biopharmaceuticals: IgG antibodies, erythropoietin and glucocerebrosidase. Current analytical methods are reviewed as solutions for qualitative and quantitative measurements of glycosylation to monitor quality target product profiles of recombinant glycoprotein drugs. Finally, we propose a framework for designing the quality target product profile of recombinant glycoproteins and planning workflow for glycosylation analysis with the selection of available analytical methods and tools. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Shan; Ying, Guang-Guo; Zhao, Jian-Liang; Chen, Feng; Yang, Bin; Zhou, Li-Jun; Lai, Hua-Jie
2011-03-11
A sensitive rapid resolution liquid chromatography-tandem mass spectrometry (RRLC-MS/MS) method, combined with solid-phase extraction, ultrasonic extraction and silica gel cartridge cleanup, was developed for 28 steroids including 4 estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethynyl estradiol (EE2), diethylstilbestrol (DES)), 14 androgens (androsta-1,4-diene-3,17-dione (ADD), 17α-trenbolone, 17β-trenbolone, 4-androstene-3,17-dione, 19-nortestoserone, 17β-boldenone, 17α-boldenone, testosterone (T), epi-androsterone (EADR), methyltestosterone (MT), 4-hydroxy-androst-4-ene-17-dione (4-OHA), 5α-dihydrotestosterone (5α-DHT), androsterone (ADR), stanozolol (S)), 5 progestagens (progesterone (P), ethynyl testosterone (ET), 19-norethindrone, norgestrel, medroxyprogesterone (MP)), and 5 glucocorticoids (cortisol, cortisone, prednisone, prednisolone, dexamethasone) in surface water, wastewater and sludge samples. The recoveries of surface water, influents, effluents and sludge samples were 90.6-119.0% (except 5α-DHT was 143%), 44.0-200%, 60.7-123% and 62.6-138%, respectively. The method detection limits for the 28 analytes in surface water, influents, effluents and freeze-dried sludge samples were 0.01-0.24 ng/L, 0.02-1.44 ng/L, 0.01-0.49 ng/L and 0.08-2.06 ng/g, respectively. This method was applied in the determination of the residual steroidal hormones in two surface water of Danshui River, 12 wastewater and 8 sludge samples from two wastewater treatment plants (Meihu and Huiyang WWTPs) in Guangdong (China). Ten analytes were detected in surface water samples with concentrations ranging between 0.4 ng/L (17β-boldenone) and 55.3 ng/L (5α-DHT); twenty analytes in the wastewater samples with concentrations ranging between 0.3 ng/L (P) and 621 ng/L (5α-DHT); and 12 analytes in the sludge samples with concentrations ranging between 1.6 ng/g (E1) and 372 ng/g (EADR). Copyright © 2011 Elsevier B.V. All rights reserved.
Validated flow-injection method for rapid aluminium determination in anti-perspirants.
López-Gonzálvez, A; Ruiz, M A; Barbas, C
2008-09-29
A flow-injection (FI) method for the rapid determination of aluminium in anti-perspirants has been developed. The method is based on the spectrophotometric detection at 535nm of the complex formed between Al ions and the chromogenic reagent eriochrome cyanine R. Both the batch and FI methods were validated by checking the parameters included in the ISO-3543-1 regulation. Variables involved in the FI method were optimized by using appropriate statistical tools. The method does not exhibit interference from other substances present in anti-perspirants and it shows a high precision with a R.S.D. value (n=6) of 0.9%. Moreover, the accuracy of the method was evaluated by comparison with a back complexometric titration method, which is currently used for routine analysis in pharmaceutical laboratories. The Student's t-test showed that the results obtained by both methods were not significantly different for a significance level of 95%. A response time of 12s and a sample analysis time, by performing triplicate injections, of 60s were achieved. The analytical figures of merit make the method highly appropriate to substitute the time-consuming complexometric method for this kind of analysis.
Camino-Sánchez, F J; Zafra-Gómez, A; Oliver-Rodríguez, B; Ballesteros, O; Navalón, A; Crovetto, G; Vílchez, J L
2010-11-01
A rapid, simple and sensitive multi-residue method was developed and validated for the simultaneous quantification and confirmation of 69 pesticides in fruit and vegetables using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted following the quick, easy, cheap, effective, rugged and safe method known as QuEChERS. Mass spectrometric conditions were individually optimised for each analyte in order to achieve maximum sensitivity in multiple reaction monitoring (MRM) mode. Using the developed chromatographic conditions, 69 pesticides can be separated in less than 17 min. Two selected reaction monitoring (SRM) assays were used for each pesticide to obtain simultaneous quantification and identification in one run. With this method in SRM mode, more than 150 pesticides can be analysed and quantified, but their confirmation is not possible in all cases according to the European regulations on pesticide residues. Nine common representative matrices (zucchini, melon, cucumber, watermelon, tomato, garlic, eggplant, lettuce and pepper) were selected to investigate the effect of different matrices on recovery and precision. Mean recoveries ranged from 70% to 120%, with relative standard deviations (RSDs) lower than 20% for all the pesticides. The proposed method was applied to the analysis of more than 2000 vegetable samples from the extensive greenhouse cultivation in the province of Almeria, Spain, during one year. The methodology combines the advantages of both QuEChERS and LC-MS/MS producing a very rapid, sensitive, accurate and reliable procedure that can be applied in routine analytical laboratories. The method was validated and accredited according to UNE-EN-ISO/IEC 17025:2005 international standard (accreditation number 278/LE1027).
NASA Astrophysics Data System (ADS)
Yoon, Seung-Chul; Park, Bosoon; Lawrence, Kurt C.
2017-05-01
Various types of optical imaging techniques measuring light reflectivity and scattering can detect microbial colonies of foodborne pathogens on agar plates. Until recently, these techniques were developed to provide solutions for hypothesis-driven studies, which focused on developing tools and batch/offline machine learning methods with well defined sets of data. These have relatively high accuracy and rapid response time because the tools and methods are often optimized for the collected data. However, they often need to be retrained or recalibrated when new untrained data and/or features are added. A big-data driven technique is more suitable for online learning of new/ambiguous samples and for mining unknown or hidden features. Although big data research in hyperspectral imaging is emerging in remote sensing and many tools and methods have been developed so far in many other applications such as bioinformatics, the tools and methods still need to be evaluated and adjusted in applications where the conventional batch machine learning algorithms were dominant. The primary objective of this study is to evaluate appropriate big data analytic tools and methods for online learning and mining of foodborne pathogens on agar plates. After the tools and methods are successfully identified, they will be applied to rapidly search big color and hyperspectral image data of microbial colonies collected over the past 5 years in house and find the most probable colony or a group of colonies in the collected big data. The meta-data, such as collection time and any unstructured data (e.g. comments), will also be analyzed and presented with output results. The expected results will be novel, big data-driven technology to correctly detect and recognize microbial colonies of various foodborne pathogens on agar plates.
Xian, Yanping; Wu, Yuluan; Dong, Hao; Guo, Xindong; Wang, Bin; Wang, Li
2017-09-29
The present work presents a novel and rapid analytical method for the simultaneous analysis of bisphenol A (BPA), bisphenol B (BPB), bisphenol F (BPF) and bisphenol S (BPS) in edible oil based on dispersive micro solid phase extraction (DMSPE) for the first time followed by isotope dilution-ultra high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The edible oil sample was dispersed by n-hexane and extracted with ammoniated methanol-water solution. Then the target analytes were dispersedly absorbed using the polymer anion exchange (PAX) as the sorbent and eluted by acidic methanol. After that, four bisphenols were separated on a C18 column by gradient elution with methanol and 0.05% ammonium hydroxide in water as mobile phase, detected by MS/MS under multiple reactions monitoring (MRM) mode and quantified by internal standard method. The PAX amounts, adsorption time, concentrations of formic acid in the elution solvent and volume of elution solvent for the DMSPE technique were optimized. The limit of detection and quantitation (LOD and LOQ), matrix effect, recovery and precision of the developed method were investigated. Results indicated that BPS and the rest three bisphenols displayed excellent linearity in the concentration ranges of 0.1-50μg/L and 0.5-250μg/L, respectively, with correlation coefficients (R 2 ) all larger than 0.998. Achieved MLODs (S/N=3) varied between 0.1-0.4μg/kg for all bisphenols. The mean recoveries at three spiked levels in edible oil were in the range of 87.3-108%. Intra-day precision (n=6) and inter-day precision (n=5) were <9% and <11%, respectively. This method is of rapid-and-simple pretreatment, accurate and sensitive, and suitable for the simultaneous determination of bisphenols in edible oil. Copyright © 2017. Published by Elsevier B.V.
Schmidt, Kathrin S; Mankertz, Joachim
2018-06-01
A sensitive and robust LC-MS/MS method allowing the rapid screening and confirmation of selective androgen receptor modulators in bovine urine was developed and successfully validated according to Commission Decision 2002/657/EC, chapter 3.1.3 'alternative validation', by applying a matrix-comprehensive in-house validation concept. The confirmation of the analytes in the validation samples was achieved both on the basis of the MRM ion ratios as laid down in Commission Decision 2002/657/EC and by comparison of their enhanced product ion (EPI) spectra with a reference mass spectral library by making use of the QTRAP technology. Here, in addition to the MRM survey scan, EPI spectra were generated in a data-dependent way according to an information-dependent acquisition criterion. Moreover, stability studies of the analytes in solution and in matrix according to an isochronous approach proved the stability of the analytes in solution and in matrix for at least the duration of the validation study. To identify factors that have a significant influence on the test method in routine analysis, a factorial effect analysis was performed. To this end, factors considered to be relevant for the method in routine analysis (e.g. operator, storage duration of the extracts before measurement, different cartridge lots and different hydrolysis conditions) were systematically varied on two levels. The examination of the extent to which these factors influence the measurement results of the individual analytes showed that none of the validation factors exerts a significant influence on the measurement results.
Yang, Clayton S C; Jin, Feng; Swaminathan, Siva R; Patel, Sita; Ramer, Evan D; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Samuels, Alan C
2017-10-30
This is the first report of a simultaneous ultraviolet/visible/NIR and longwave infrared laser-induced breakdown spectroscopy (UVN + LWIR LIBS) measurement. In our attempt to study the feasibility of combining the newly developed rapid LWIR LIBS linear array detection system to existing rapid analytical techniques for a wide range of chemical analysis applications, two different solid pharmaceutical tablets, Tylenol arthritis pain and Bufferin, were studied using both a recently designed simultaneous UVN + LWIR LIBS detection system and a fast AOTF NIR (1200 to 2200 nm) spectrometer. Every simultaneous UVN + LWIR LIBS emission spectrum in this work was initiated by one single laser pulse-induced micro-plasma in the ambient air atmosphere. Distinct atomic and molecular LIBS emission signatures of the target compounds measured simultaneously in UVN (200 to 1100 nm) and LWIR (5.6 to 10 µm) spectral regions are readily detected and identified without the need to employ complex data processing. In depth profiling studies of these two pharmaceutical tablets without any sample preparation, one can easily monitor the transition of the dominant LWIR emission signatures from coating ingredients gradually to the pharmaceutical ingredients underneath the coating. The observed LWIR LIBS emission signatures provide complementary molecular information to the UVN LIBS signatures, thus adding robustness to identification procedures. LIBS techniques are more surface specific while NIR spectroscopy has the capability to probe more bulk materials with its greater penetration depth. Both UVN + LWIR LIBS and NIR absorption spectroscopy have shown the capabilities of acquiring useful target analyte spectral signatures in comparable short time scales. The addition of a rapid LWIR spectroscopic probe to these widely used optical analytical methods, such as NIR spectroscopy and UVN LIBS, may greatly enhance the capability and accuracy of the combined system for a comprehensive analysis.
Yebra, M. Carmen
2012-01-01
A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5–30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2–4.6%) and a sample throughput of ca. 25 samples h–1 were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4–25.61 μg g−1 for iron, 5.74–18.30 μg g−1 for manganese, and 33.27–57.90 μg g−1 for zinc in soluble solid food samples and 3.75–9.90 μg g−1 for iron, 0.47–5.05 μg g−1 for manganese, and 1.55–15.12 μg g−1 for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors. PMID:22567553
Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R
2014-05-27
A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.
Andersson, Maria; Stephanson, Nikolai; Ohman, Inger; Terzuoli, Tommy; Lindh, Jonatan D; Beck, Olof
2014-04-01
Opiates comprise a class of abused drugs that is of primary interest in clinical and forensic urine drug testing. Determination of heroin, codeine, or a multi-drug ingestion is complicated since both heroin and codeine can lead to urinary excretion of free and conjugated morphine. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) offers advantage over gas chromatography-mass spectrometry by simplifying sample preparation but increases the number of analytes. A method based on direct injection of five-fold diluted urine for confirmation of morphine, morphine-3-glucuronide, morphine-6-glucuronide, codeine, codeine-6-glucuronide and 6-acetylmorphine was validated using LC-MS/MS in positive electrospray mode monitoring two transitions using selected reaction monitoring. The method was applied for the analysis of 3155 unknown urine samples which were positive for opiates in immunochemical screening. A linear response was observed for all compounds in the calibration curves covering more than three orders of magnitude. Cut off was set to 2 ng/ml for 6-acetylmorphine and 150 ng/ml for the other analytes. 6-Acetylmorphine was found to be effective (sensitivity 82%) in detecting samples as heroin intake. Morphine-3-glucuronide and codeine-6-glucuronide was the predominant components of total morphine and codeine, 84% and 93%, respectively. The authors have validated a robust LC-MS/MS method for rapid qualitative and quantitative analysis of opiates in urine. 6-Acetylmorphine has been demonstrated as a sensitive and important parameter for a heroin intake. A possible interpretation strategy to conclude the source of detected analytes was proposed. The method might be further developed by reducing the number of analytes to morphine-3-glucuronide, codeine-6-glucuronide and 6-acetylmorphine without compromising test performance. Copyright © 2013 John Wiley & Sons, Ltd.
Rapid Detection of Transition Metals in Welding Fumes Using Paper-Based Analytical Devices
Volckens, John
2014-01-01
Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite the hazards associated with particulate metals, personal exposures for at-risk workers are rarely assessed due to the cost and effort associated with monitoring. As a result, routine exposure assessments are performed for only a small fraction of the exposed workforce. The objective of this research was to evaluate a relatively new technology, microfluidic paper-based analytical devices (µPADs), for measuring the metals content in welding fumes. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid-extractable Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES analysis; the two methods gave statistically similar results in >80% of the samples analyzed. Analytical costs for the µPAD technique were ~50 times lower than market-rate costs with ICP-OES. Further, the µPAD method was capable of providing same-day results (as opposed several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a viable, yet inexpensive alternative to traditional analytic methods for transition metals in welding fume PM. These sensors have potential to enable substantially higher levels of hazard surveillance for a given resource cost, especially in resource-limited environments. PMID:24515892
Rapid detection of transition metals in welding fumes using paper-based analytical devices.
Cate, David M; Nanthasurasak, Pavisara; Riwkulkajorn, Pornpak; L'Orange, Christian; Henry, Charles S; Volckens, John
2014-05-01
Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite the hazards associated with particulate metals, personal exposures for at-risk workers are rarely assessed due to the cost and effort associated with monitoring. As a result, routine exposure assessments are performed for only a small fraction of the exposed workforce. The objective of this research was to evaluate a relatively new technology, microfluidic paper-based analytical devices (µPADs), for measuring the metals content in welding fumes. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid-extractable Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES analysis; the two methods gave statistically similar results in >80% of the samples analyzed. Analytical costs for the µPAD technique were ~50 times lower than market-rate costs with ICP-OES. Further, the µPAD method was capable of providing same-day results (as opposed several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a viable, yet inexpensive alternative to traditional analytic methods for transition metals in welding fume PM. These sensors have potential to enable substantially higher levels of hazard surveillance for a given resource cost, especially in resource-limited environments.
Plössl, Florian; Giera, Martin; Bracher, Franz
2006-11-24
A convenient analytical method for the simultaneous determination of more than 40 pharmaceuticals belonging to various therapeutic categories in whole blood has been developed. Exemplarily, the method was fully validated for eight different pharmaceuticals. The procedure entails addition of acetonitrile, magnesium sulfate and sodium chloride to a small amount of blood, then the mixture is shaken intensively and centrifuged for phase separation. An aliquot of the organic layer is cleaned up by dispersive solid-phase extraction employing bulk sorbents as well as magnesium sulfate for the removal of residual water. This method was based on the QuEChERS approach developed for pesticide residue analysis in food. Gas chromatography/ion trap mass spectrometry (GC/MS) with electron (EI) and chemical (CI) ionisation was then used for qualitative and quantitative determination of the pharmaceuticals. The dispersive SPE with PSA (sorbent functionalized with primary and secondary amines) was found more suitable than aminopropyl and a styrene-divinylbenzene sorbent for sample clean-up before drug level determination in whole blood and plasma, as it was found that most of endogenous matrix components were removed and the analytes were isolated from spiked samples with recoveries above 80%. Variation coefficients of the repeatability typically smaller than 10% have been achieved for a wide range of the investigated substances. The used analytical conditions allowed to separate successively a variety of drugs and poisons with the typical limit of detection at <20 ng mL(-1) levels using 1 microL injection of equivalent blood sample in whole blood. The method is simple, rapid, cheap and very effective for therapeutic drug monitoring and forensic chemistry.
An Accelerated Analytical Process for the Development of STR Profiles for Casework Samples.
Laurin, Nancy; Frégeau, Chantal J
2015-07-01
Significant efforts are being devoted to the development of methods enabling rapid generation of short tandem repeat (STR) profiles in order to reduce turnaround times for the delivery of human identification results from biological evidence. Some of the proposed solutions are still costly and low throughput. This study describes the optimization of an analytical process enabling the generation of complete STR profiles (single-source or mixed profiles) for human identification in approximately 5 h. This accelerated process uses currently available reagents and standard laboratory equipment. It includes a 30-min lysis step, a 27-min DNA extraction using the Promega Maxwell(®) 16 System, DNA quantification in <1 h using the Qiagen Investigator(®) Quantiplex HYres kit, fast amplification (<26 min) of the loci included in AmpFℓSTR(®) Identifiler(®), and analysis of the profiles on the 3500-series Genetic Analyzer. This combination of fast individual steps produces high-quality profiling results and offers a cost-effective alternative approach to rapid DNA analysis. © 2015 American Academy of Forensic Sciences.
NASA Technical Reports Server (NTRS)
Arena, Matteo P.; Porter, Marc D.; Fritz, James S.
2002-01-01
A new, rapid methodology for trace analysis using solid-phase extraction is described. The two-step methodology is based on the concentration of an analyte onto a membrane disk and on the determination by diffuse reflectance spectroscopy of the amount of analyte extracted on the disk surface. This method, which is adaptable to a wide range of analytes, has been used for monitoring ppm levels of iodine and iodide in spacecraft water. Iodine is used as a biocide in spacecraft water. For these determinations, a water sample is passed through a membrane disk by means of a 10-mL syringe that is attached to a disk holder assembly. The disk, which is a polystyrene-divinylbenzene composite, is impregnated with poly(vinylpyrrolidone) (PVP), which exhaustively concentrates iodine as a yellow iodine-PVP complex. The amount of concentrated iodine is then determined in only 2 s by using a hand-held diffuse reflectance spectrometer by comparing the result with a calibration curve based on the Kubelka-Munk function. The same general procedure can be used to determine iodide levels after its facile and exhaustive oxidation to iodine by peroxymonosulfate (i.e., Oxone reagent). For samples containing both analytes, a two-step procedure can be used in which the iodide concentration is calculated from the difference in iodine levels before and after treatment of the sample with peroxymonosulfate. With this methodology, iodine and iodide levels in the 0.1-5.0 ppm range can be determined with a total workup time of approximately 60 s with a RSD of approximately 6%.
Janiszewski, J; Schneider, P; Hoffmaster, K; Swyden, M; Wells, D; Fouda, H
1997-01-01
The development and application of membrane solid phase extraction (SPE) in 96-well microtiter plate format is described for the automated analysis of drugs in biological fluids. The small bed volume of the membrane allows elution of the analyte in a very small solvent volume, permitting direct HPLC injection and negating the need for the time consuming solvent evaporation step. A programmable liquid handling station (Quadra 96) was modified to automate all SPE steps. To avoid drying of the SPE bed and to enhance the analytical precision a novel protocol for performing the condition, load and wash steps in rapid succession was utilized. A block of 96 samples can now be extracted in 10 min., about 30 times faster than manual solvent extraction or single cartridge SPE methods. This processing speed complements the high-throughput speed of contemporary high performance liquid chromatography mass spectrometry (HPLC/MS) analysis. The quantitative analysis of a test analyte (Ziprasidone) in plasma demonstrates the utility and throughput of membrane SPE in combination with HPLC/MS. The results obtained with the current automated procedure compare favorably with those obtained using solvent and traditional solid phase extraction methods. The method has been used for the analysis of numerous drug prototypes in biological fluids to support drug discovery efforts.
Zeng, Dongping; Shen, Xiangguang; He, Limin; Ding, Huanzhong; Tang, Youzhi; Sun, Yongxue; Fang, Binghu; Zeng, Zhenling
2012-06-01
A rapid liquid chromatography tandem mass spectrometric method was developed for the simultaneous determination of mequindox and its five metabolites (2-isoethanol mequindox, 2-isoethanol 1-desoxymequindox, 1-desoxymequindox, 1,4-bisdesoxymequindox, and 2-isoethanol bisdesoxymequindox) in porcine muscle, liver, and kidney, fulfilling confirmation criteria with two transitions for each compound with acceptable relative ion intensities. The method involved acid hydrolysis, purification by solid-phase extraction, and subsequent analysis with liquid chromatography tandem mass spectrometry using electrospray ionization operated in positive polarity with a total run time of 15 min. The decision limit values of five analytes in porcine tissues ranged from 0.6 to 2.9 μg/kg, and the detection capability values ranged from 1.2 to 5.7 μg/kg. The results of the inter-day study, which was performed by fortifying porcine muscle (2, 4, and 8 μg/kg), liver, and kidney (10, 20, and 40 μg/kg) samples on three separate days, showed that the accuracy of the method for the various analytes ranged between 75.3 and 107.2% with relative standard deviation less than 12% for each analyte. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unlocking Proteomic Heterogeneity in Complex Diseases through Visual Analytics
Bhavnani, Suresh K.; Dang, Bryant; Bellala, Gowtham; Divekar, Rohit; Visweswaran, Shyam; Brasier, Allan; Kurosky, Alex
2015-01-01
Despite years of preclinical development, biological interventions designed to treat complex diseases like asthma often fail in phase III clinical trials. These failures suggest that current methods to analyze biomedical data might be missing critical aspects of biological complexity such as the assumption that cases and controls come from homogeneous distributions. Here we discuss why and how methods from the rapidly evolving field of visual analytics can help translational teams (consisting of biologists, clinicians, and bioinformaticians) to address the challenge of modeling and inferring heterogeneity in the proteomic and phenotypic profiles of patients with complex diseases. Because a primary goal of visual analytics is to amplify the cognitive capacities of humans for detecting patterns in complex data, we begin with an overview of the cognitive foundations for the field of visual analytics. Next, we organize the primary ways in which a specific form of visual analytics called networks have been used to model and infer biological mechanisms, which help to identify the properties of networks that are particularly useful for the discovery and analysis of proteomic heterogeneity in complex diseases. We describe one such approach called subject-protein networks, and demonstrate its application on two proteomic datasets. This demonstration provides insights to help translational teams overcome theoretical, practical, and pedagogical hurdles for the widespread use of subject-protein networks for analyzing molecular heterogeneities, with the translational goal of designing biomarker-based clinical trials, and accelerating the development of personalized approaches to medicine. PMID:25684269
Elkhoudary, Mahmoud M; Abdel Salam, Randa A; Hadad, Ghada M
2014-09-15
Metronidazole (MNZ) is a widely used antibacterial and amoebicide drug. Therefore, it is important to develop a rapid and specific analytical method for the determination of MNZ in mixture with Spiramycin (SPY), Diloxanide (DIX) and Cliquinol (CLQ) in pharmaceutical preparations. This work describes simple, sensitive and reliable six multivariate calibration methods, namely linear and nonlinear artificial neural networks preceded by genetic algorithm (GA-ANN) and principle component analysis (PCA-ANN) as well as partial least squares (PLS) either alone or preceded by genetic algorithm (GA-PLS) for UV spectrophotometric determination of MNZ, SPY, DIX and CLQ in pharmaceutical preparations with no interference of pharmaceutical additives. The results manifest the problem of nonlinearity and how models like ANN can handle it. Analytical performance of these methods was statistically validated with respect to linearity, accuracy, precision and specificity. The developed methods indicate the ability of the previously mentioned multivariate calibration models to handle and solve UV spectra of the four components' mixtures using easy and widely used UV spectrophotometer. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Morales-Muñoz, S.; Luque-García, J. L.; Luque de Castro, M. D.
2003-01-01
Acidified and pressurized hot water is proposed for the continuous leaching of Cd and Pb from plants prior to determination by electrothermal atomic absorption spectrometry. Beech leaves (a certified reference material—CRM 100—where the analytes were not certified) were used for optimizing the method by a multivariate approach. The samples (0.5 g) were subjected to dynamic extraction with water modified with 1% v/v HNO 3 at 250 °C as leachant. A kinetics study was performed in order to know the pattern of the extraction process. The method was validated with a CRM (olive leaves, 062 from the BCR) where the analytes had been certified. The agreement between the certified values and those found using the proposed method demonstrates its usefulness. The repeatability and within-laboratory reproducibility were 3.7 and 2.3% for Cd and 1.04% and 6.3% for Pb, respectively. The precision of the method, together with its efficiency, rapidity, and environmental acceptability, makes it a good alternative for the determination of trace metals in plant material.
Chylewska, Agnieszka; Ogryzek, M; Makowski, Mariusz
2017-10-23
New analytical and molecular methods for microorganisms are being developed on various features of identification i.e. selectivity, specificity, sensitivity, rapidity and discrimination of the viable cell. The presented review was established following the current trends in improved pathogens separation and detection methods and their subsequent use in medical diagnosis. This contribution also focuses on the development of analytical and biological methods in the analysis of microorganisms, with special attention paid to bio-samples containing microbes (blood, urine, lymph, wastewater). First, the paper discusses microbes characterization, their structure, surface, properties, size and then it describes pivotal points in the bacteria, viruses and fungi separation procedure obtained by researchers in the last 30 years. According to the above, detection techniques can be classified into three categories, which were, in our opinion, examined and modified most intensively during this period: electrophoretic, nucleic-acid-based, and immunological methods. The review covers also the progress, limitations and challenges of these approaches and emphasizes the advantages of new separative techniques in selective fractionating of microorganisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Moliner-Martínez, Y; Herráez-Hernández, R; Campíns-Falcó, P
2007-09-14
A new microscale method is presented for the determination of ammonium and primary short-chain aliphatic amines (methylamine, ethylamine, propylamine, n-butylamine and n-pentylamine) in water. The assay uses precolumn derivatization with the reagent o-phthaldialdehyde (OPA) in combination with the thiol N-acetyl-L-cysteine (NAC), and capillary liquid chromatography with UV detection at 330 nm. The described method is very simple and rapid as no preconcentration of the analytes is necessary, and the volume of sample required is only 0.1 mL. Under the proposed conditions good linearity has been obtained up to a concentration of the analytes of 10.0 mgL(-1), the limits of detection being of 8-50 microgL(-1). No matrix effect was found, and recoveries between 97 and 110% were obtained. The precision of the method was good, and the achieved variation coefficients were below 12%. The reliability of the proposed approach has been tested by analyzing a microsample of fogwater collected from leaf surfaces.
Analytical methods for determination of mycotoxins: An update (2009-2014).
Turner, Nicholas W; Bramhmbhatt, Heli; Szabo-Vezse, Monika; Poma, Alessandro; Coker, Raymond; Piletsky, Sergey A
2015-12-11
Mycotoxins are a problematic and toxic group of small organic molecules that are produced as secondary metabolites by several fungal species that colonise crops. They lead to contamination at both the field and postharvest stages of food production with a considerable range of foodstuffs affected, from coffee and cereals, to dried fruit and spices. With wide ranging structural diversity of mycotoxins, severe toxic effects caused by these molecules and their high chemical stability the requirement for robust and effective detection methods is clear. This paper builds on our previous review and summarises the most recent advances in this field, in the years 2009-2014 inclusive. This review summarises traditional methods such as chromatographic and immunochemical techniques, as well as newer approaches such as biosensors, and optical techniques which are becoming more prevalent. A section on sampling and sample treatment has been prepared to highlight the importance of this step in the analytical methods. We close with a look at emerging technologies that will bring effective and rapid analysis out of the laboratory and into the field. Copyright © 2015 Elsevier B.V. All rights reserved.
Solvent signal suppression for high-resolution MAS-DNP
NASA Astrophysics Data System (ADS)
Lee, Daniel; Chaudhari, Sachin R.; De Paëpe, Gaël
2017-05-01
Dynamic nuclear polarization (DNP) has become a powerful tool to substantially increase the sensitivity of high-field magic angle spinning (MAS) solid-state NMR experiments. The addition of dissolved hyperpolarizing agents usually results in the presence of solvent signals that can overlap and obscure those of interest from the analyte. Here, two methods are proposed to suppress DNP solvent signals: a Forced Echo Dephasing experiment (FEDex) and TRAnsfer of Populations in DOuble Resonance Echo Dephasing (TRAPDORED) NMR. These methods reintroduce a heteronuclear dipolar interaction that is specific to the solvent, thereby forcing a dephasing of recoupled solvent spins and leaving acquired NMR spectra free of associated resonance overlap with the analyte. The potency of these methods is demonstrated on sample types common to MAS-DNP experiments, namely a frozen solution (of L-proline) and a powdered solid (progesterone), both containing deuterated glycerol as a DNP solvent. The proposed methods are efficient, simple to implement, compatible with other NMR experiments, and extendable past spectral editing for just DNP solvents. The sensitivity gains from MAS-DNP in conjunction with FEDex or TRAPDORED then permits rapid and uninterrupted sample analysis.
NASA Astrophysics Data System (ADS)
Elkhoudary, Mahmoud M.; Abdel Salam, Randa A.; Hadad, Ghada M.
2014-09-01
Metronidazole (MNZ) is a widely used antibacterial and amoebicide drug. Therefore, it is important to develop a rapid and specific analytical method for the determination of MNZ in mixture with Spiramycin (SPY), Diloxanide (DIX) and Cliquinol (CLQ) in pharmaceutical preparations. This work describes simple, sensitive and reliable six multivariate calibration methods, namely linear and nonlinear artificial neural networks preceded by genetic algorithm (GA-ANN) and principle component analysis (PCA-ANN) as well as partial least squares (PLS) either alone or preceded by genetic algorithm (GA-PLS) for UV spectrophotometric determination of MNZ, SPY, DIX and CLQ in pharmaceutical preparations with no interference of pharmaceutical additives. The results manifest the problem of nonlinearity and how models like ANN can handle it. Analytical performance of these methods was statistically validated with respect to linearity, accuracy, precision and specificity. The developed methods indicate the ability of the previously mentioned multivariate calibration models to handle and solve UV spectra of the four components’ mixtures using easy and widely used UV spectrophotometer.
El-Masry, Amal A; Hammouda, Mohammed E A; El-Wasseef, Dalia R; El-Ashry, Saadia M
2018-02-15
Two simple, sensitive, rapid, validated and cost effective spectroscopic methods were established for quantification of antihistaminic drug azelastine (AZL) in bulk powder as well as in pharmaceutical dosage forms. In the first method (A) the absorbance difference between acidic and basic solutions was measured at 228nm, whereas in the second investigated method (B) the binary complex formed between AZL and Eosin Y in acetate buffer solution (pH3) was measured at 550nm. Different criteria that have critical influence on the intensity of absorption were deeply studied and optimized so as to achieve the highest absorption. The proposed methods obeyed Beer ' s low in the concentration range of (2.0-20.0μg·mL -1 ) and (0.5-15.0μg·mL -1 ) with % recovery±S.D. of (99.84±0.87), (100.02±0.78) for methods (A) and (B), respectively. Furthermore, the proposed methods were easily applied for quality control of pharmaceutical preparations without any conflict with its co-formulated additives, and the analytical results were compatible with those obtained by the comparison one with no significant difference as insured by student's t-test and the variance ratio F-test. Validation of the proposed methods was performed according the ICH guidelines in terms of linearity, limit of quantification, limit of detection, accuracy, precision and specificity, where the analytical results were persuasive. Copyright © 2017 Elsevier B.V. All rights reserved.
Ji, Bin; Zhuo, Limeng; Yang, Bin; Wang, Yang; Li, Lin; Yu, Miao; Zhao, Yunli; Yu, Zhiguo
2017-04-15
Rapid, sensitive, selective and accurate UPLC-MS/MS method was developed and fully validated for simultaneous determination of cinnamaldehyde, cinnamic acid, 2-methoxy cinnamic acid, glycyrrhizic acid, glycyrrhetinic acid, liquiritigenin and isoliquiritin in rat plasma after oral administration of Guizhi-gancao decoction. Plasma samples were processed with a simple protein precipitation technique using acetonitrile, followed by chromatographic separation using a Thermo Hypersil GOLD C 18 column. A 11.0min linear gradient elution was used at a flow rate of 0.2mL/min with a mobile phase of 0.1% acetic acid containing 0.2mM ammonium acetate in water and acetonitrile. The analytes and internal standard, schisandrin, were detected using both positive and negative ion electrospray ionization in multiple reaction monitoring mode. The developed method was validated for intra-day and inter-day accuracy and precision whose values fell in the acceptable limits. Matrix effect was found to be minimal. Recovery efficiency of all the analytes was found to be >60%. Stability results showed that the analytes were stable at all the conditions. This validated method was successfully used to study the pharmacokinetics of multiple compounds in rat plasma after oral administration of Guizhi-gancao decoction. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Xinchun; Chen, Zuanguang; Yang, Fan; Pan, Jianbin; Li, Yinbao
2013-05-01
L-3,4-dihydroxyphenylalanine (L-DOPA) is a well-recognized therapeutic compound to Parkinson's disease. Tyrosine is a precursor for the biosynthesis of L-DOPA, both of which are widely found in traditional medicinal material, Mucuna pruriens. In this paper, we described a validated novel analytical method based on microchip capillary electrophoresis with pulsed electrochemical detection for the simultaneous measurement of L-DOPA and tyrosine in M. pruriens. This protocol adopted end-channel amperometric detection using platinum disk electrode on a homemade glass/polydimethylsiloxane electrophoresis microchip. The background buffer consisted of 10 mM borate (pH 9.5) and 0.02 mM cetyltrimethylammonium bromide, which can produce an effective resolution for the two analytes. In the optimal condition, sufficient electrophoretic separation and sensitive detection for the target analytes can be realized within 60 s. Both tyrosine and L-DOPA yielded linear response in the concentration range of 5.0-400 μM (R(2) > 0.99), and the LOD were 0.79 and 1.1 μM, respectively. The accuracy and precision of the established method were favorable. The present method shows several merits such as facile apparatus, high speed, low cost and minimal pollution, and provides a means for the pharmacologically active ingredients assay in M. pruriens. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reconstruction of sound source signal by analytical passive TR in the environment with airflow
NASA Astrophysics Data System (ADS)
Wei, Long; Li, Min; Yang, Debin; Niu, Feng; Zeng, Wu
2017-03-01
In the acoustic design of air vehicles, the time-domain signals of noise sources on the surface of air vehicles can serve as data support to reveal the noise source generation mechanism, analyze acoustic fatigue, and take measures for noise insulation and reduction. To rapidly reconstruct the time-domain sound source signals in an environment with flow, a method combining the analytical passive time reversal mirror (AP-TR) with a shear flow correction is proposed. In this method, the negative influence of flow on sound wave propagation is suppressed by the shear flow correction, obtaining the corrected acoustic propagation time delay and path. Those corrected time delay and path together with the microphone array signals are then submitted to the AP-TR, reconstructing more accurate sound source signals in the environment with airflow. As an analytical method, AP-TR offers a supplementary way in 3D space to reconstruct the signal of sound source in the environment with airflow instead of the numerical TR. Experiments on the reconstruction of the sound source signals of a pair of loud speakers are conducted in an anechoic wind tunnel with subsonic airflow to validate the effectiveness and priorities of the proposed method. Moreover the comparison by theorem and experiment result between the AP-TR and the time-domain beamforming in reconstructing the sound source signal is also discussed.
Capriotti, Anna Laura; Cavaliere, Chiara; Piovesana, Susy; Samperi, Roberto; Laganà, Aldo
2012-12-14
A QuEChERS (Quick Easy Cheap Effective Rugged Safe)-like extraction method was developed for the simultaneous analysis of veterinary drugs and mycotoxins in hen eggs by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray (ESI) source. Various classes of antimicrobials (tetracyclines, ionophores, coccidiostats, penicillins, cephalosporins, fluoroquinolones, sulfonamides) and mycotoxins (enniatins, beauvericin, ochratoxins, aflatoxins) were considered for the development of this method. Particular attention was devoted to extraction optimization: different solvents (acetone, acetonitrile and methanol), different pH values and different sample to extracting volume ratios were tested and evaluated in terms of recovery, relative standard deviation (RSD) and ESI signal suppression due to matrix effect. Chromatographic and mass spectrometric conditions were optimized to obtain the best instrumental performances for most of the analytes. Quantitative analysis was performed by means of matrix-matched calibration, in a range that varied depending on the analyte and its established maximum limit, when there was one. Recoveries at 100 μg kg(-1) spiking level were >62% (3
2013-04-01
and grouped using the least significant difference method. All analyses were conducted using SAS® analytical software ( Cary , North Carolina), at a p...Leafy pondweed 11 0* 0* - Potamogeton illinoensis Illinois pondweed 17 3* 0* - Potamogeton praelongus Whitestem pondweed 0 0 0 Potamogeton...Potamogeton foliosus Leafy pondweed 8 58* 31* + Potamogeton illinoensis Illinois pondweed 16 8 14 Potamogeton praelongus Whitestem pondweed 5 5 0
Chen, Jia; Cheng, Xian-Long; Wei, Feng; Zhang, Qian-Qian; Li, Ming-Hua; Ma, Shuang-Cheng
2015-01-01
Simultaneous identification of donkey-hide gelatin and bovine-hide gelatin in deer-horn glue was established by rapid-resolution liquid chromatography-triple quadrupole mass spectrometry. Water containing 1% NH4HCO3 was used for sample dissolution and trypsin was used for hydrolysis of the gelatins. After separation by a SB-C18 reversed-phase analytical column, collagen marker peptides were detected by mass spectrometry in positive electrospray ionization mode with multiple reaction monitoring. The method was specific, precise and reliable, and suitable for detection of adulterants derived from donkey-hide gelatin and bovine-hide gelatin in deer-horn glue. PMID:26504613
Frauen, M; Steinhart, H; Rapp, C; Hintze, U
2001-07-01
A simple, rapid and reproducible method for identification and quantification of iodopropynyl butylcarbamate (IPBC) in different cosmetic formulations is presented. The determination was carried out using a high-performance liquid chromatography (HPLC) procedure on a reversed phase column coupled to a single quadrupole mass spectrometer (MS) via an electrospray ionization (ESI) interface. Detection was performed in the positive selected ion-monitoring mode. In methanol/water extracts from different cosmetic formulations a detection limit between 50 and 100 ng/g could be achieved. A routine analytical procedure could be set up with good quantification reliability (relative standard deviation between 0.9 and 2.9%).
Xu, Mingzhen; Ni, Yang; Li, Shihong; Du, Juan; Li, Huqun; Zhou, Ying; Li, Weiyong; Chen, Hui
2016-08-01
A simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was firstly developed and validated for simultaneous determination of netupitant and palonosetron in human plasma using ibrutinib as the internal standard (IS). Following liquid-liquid extraction, the compounds were eluted isocratically on a Phenomenex C18 column (50mm×2.0mm, 3μm) with the mobile phase consisting of acetonitrile and 10mM ammonium acetate buffer (pH 9.0) (89:11, v/v) at the flow rate of 0.3mL/min. The monitored ion transitions were m/z 579.5→522.4 for netupitant, m/z 297.3→110.2 for palonosetron and m/z 441.2→138.1 for IS. Chromatographic run time was 2.5min per injection, which made it possible to analyze more than 300 of samples per day. The assay exhibited a linear dynamic range of 5-1000ng/mL for netupitant and 0.02-10ng/mL for palonosetron in plasma. The values for both within- and between-day precision and accuracy were well within the generally accepted criteria for analytical methods (<15%). Selectivity, linearity, lower limit of quantification (LLOQ), accuracy, precision, stability, matrix effect, recovery and carry-over effect were evaluated for all analytes. The method is simple, rapid, and has been applied successfully to a pharmacokinetic study of netupitant and palonosetron in healthy volunteers. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhao, Qin; Wei, Fang; Xiao, Neng; Yu, Qiong-Wei; Yuan, Bi-Feng; Feng, Yu-Qi
2012-06-01
In the present work, we developed a novel dispersive microextraction technique by combining the advantages of liquid-phase microextraction (LPME) and magnetic solid-phase extraction (MSPE). In this method, trace amount of water directly absorbed on bare Fe₃O₄ to form water-coated Fe₃O₄ (W-Fe₃O₄) and rapid extraction can be achieved while W-Fe₃O₄ dispersed in the sample solution. The analyte adsorbed W-Fe₃O₄ can be easily collected and isolated from sample solution by application of a magnet. It was worth noting that in the proposed method water was used as extractant and Fe₃O₄ served as the supporter and retriever of water. The performance of the method was evaluated by extraction of 3-monochloropropane-1,2-diol (3-MCPD) from edible oils. The extracted 3-MCPD was then derived by a silylanization reagent (1-trimethylsilylimidazole) before gas chromatography-mass spectrometry (GC-MS) analysis. Several parameters that affected the extraction and derivatization efficiency were investigated. Our results showed that the limit of detection for 3-MCPD was 1.1 ng/g. The recoveries in spiked oil samples were in the range of 70.0-104.9% with the RSDs less than 5.6% (intra-day) and 6.4% (inter-day). Taken together, the simple, rapid and cost-effective method developed in current study, offers a potential application for the extraction and preconcentration of hydrophilic analytes from complex fatty samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Wijemanne, Nimanthi; Soysa, Preethi; Wijesundara, Sulochana; Perera, Hemamali
2018-01-01
Uric acid and hypoxanthine are produced in the catabolism of purine. Abnormal urinary levels of these products are associated with many diseases and therefore it is necessary to have a simple and rapid method to detect them. Hence, we report a simple reverse phase high performance liquid chromatography (HPLC/UV) technique, developed and validated for simultaneous analysis of uric acid, hypoxanthine, and creatinine in human urine. Urine was diluted appropriately and eluted with C-18 column 100 mm × 4.6 mm with a C-18 precolumn 25 mm × 4.6 mm in series. Potassium phosphate buffer (20 mM, pH 7.25) at a flow rate of 0.40 mL/min was employed as the solvent and peaks were detected at 235 nm. Tyrosine was used as the internal standard. The experimental conditions offered a good separation of analytes without interference of endogenous substances. The calibration curves were linear for all test compounds with a regression coefficient, r 2 > 0.99. Uric acid, creatinine, tyrosine, and hypoxanthine were eluted at 5.2, 6.1, 7.2, and 8.3 min, respectively. Intraday and interday variability were less than 4.6% for all the analytes investigated and the recovery ranged from 98 to 102%. The proposed HPLC procedure is a simple, rapid, and low cost method with high accuracy with minimum use of organic solvents. This method was successfully applied for the determination of creatinine, hypoxanthine, and uric acid in human urine.
Wang, Min; Guo, Dehua; Ding, Zhuoping; Yao, Jinting; Li, Fengge; Su, Min
2012-07-01
A rapid qualitative and quantitative analytical method was developed for the simultaneous determination of 14 heterocyclic aromatic amines (HAAs) in wine by liquid chromatography-ion trap-time of flight tandem mass spectrometry (LC-IT-TOF MS). HAAs were extracted from the samples by ethyl acetate under alkaline condition. The quantitation was carried out using internal standard method. The separation of HAAs was carried out based on Phenomenex Kinetex C18 100A column (100 mm x 2.1 mm, 2.6 microm), with a gradient elution of acetonitrile and 30 mmol/L ammonium formate at a flow rate of 0.4 mL/min. The analytes were detected under positive-ion electrospray ionization mode. The results showed that the linear ranges of the 14 HAAs were 1-500 microg/L with limits of detection (signal/noise = 3) of 0.33-1.77 microg/L. The average recoveries of all the compounds spiked in wine samples at three levels of 10, 50, 100 microg/L were in the ranges of 71.6%-96.4%, 72.9%-101.9%, 74.5%-103.3%, with the corresponding relative standard deviations (RSDs, n = 6) of 2.9%-7.9%, 1.7%-5.3%, 1.8%-4.8%, respectively. The established method is simple, rapid, accurate, and has wide linear range and high sensitivity. It can be applied to the simultaneous analysis of the HAAs in wine.
Wang, Pei; Sun, Jianbo; Gao, Enze; Zhao, Yunli; Qu, Wei; Yu, Zhiguo
2013-06-01
A rapid and selective ultra high performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous determination of four major ingredients in Cortex Dictamni extract, including limonin, dictamnine, obacunone and fraxinellone in rats plasma. Nimodipine was used as the internal standard. Following extraction by methyl tert-butyl ether, the analytes were separated on a Thermo Syncronis C18 column by a gradient elution within a runtime of 9min. The mobile phase consisted of A (methanol) and B (2mmol/L ammonium acetate in water). The detection was accomplished by using positive ion electrospray ionization in multiple reaction monitoring mode. The method was linear for all analytes over investigated range with all correlation coefficients greater than 0.998. The lower limits of quantification were 9.18ng/mL for limonin, 12.0ng/mL for dictamnine, 16.05ng/mL for obacunone and 4.59ng/mL for fraxinellone. The intra- and inter-day precision (RSD%) was within 10% and the accuracy (RE%) ranged from -12.9% to 9.7%. This rapid and sensitive method was fully validated and successfully applied to the pharmacokinetic study of limonin, dictamnine, obacunone and fraxinellone in the rat plasma after oral administration of Cortex Dictamni extract. Copyright © 2013 Elsevier B.V. All rights reserved.
Lin, An-Jun; Yang, Tao; Jiang, Shao-Yong
2014-04-15
Previous studies have indicated that prior chemical purification of samples, although complex and time-consuming, is essential in obtaining precise and accurate results for sulfur isotope ratios using multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). In this study, we introduce a new, rapid and precise MC-ICP-MS method for sulfur isotope determination from water samples without chemical purification. The analytical work was performed on an MC-ICP-MS instrument with medium mass resolution (m/Δm ~ 3000). Standard-sample bracketing (SSB) was used to correct samples throughout the analytical sessions. Reference materials included an Alfa-S (ammonium sulfate) standard solution, ammonium sulfate provided by the lab of the authors and fresh seawater from the South China Sea. A range of matrix-matched Alfa-S standard solutions and ammonium sulfate solutions was used to investigate the matrix (salinity) effect (matrix was added in the form of NaCl). A seawater sample was used to confirm the reliability of the method. Using matrix-matched (salinity-matched) Alfa-S as the working standard, the measured δ(34)S value of AS (-6.73 ± 0.09‰) was consistent with the reference value (-6.78 ± 0.07‰) within the uncertainty, suggesting that this method could be recommended for the measurement of water samples without prior chemical purification. The δ(34)S value determination for the unpurified seawater also yielded excellent results (21.03 ± 0.18‰) that are consistent with the reference value (20.99‰), thus confirming the feasibility of the technique. The data and the results indicate that it is feasible to use MC-ICP-MS and matrix-matched working standards to measure the sulfur isotopic compositions of water samples directly without chemical purification. In comparison with the existing MC-ICP-MS techniques, the new method is better for directly measuring δ(34)S values in water samples with complex matrices; therefore, it can significantly accelerate analytical turnover. Copyright © 2014 John Wiley & Sons, Ltd.
Wilson, Christina R; Mulligan, Christopher C; Strueh, Kurt D; Stevenson, Gregory W; Hooser, Stephen B
2014-05-01
Desorption electrospray ionization mass spectrometry (DESI-MS) is an emerging analytical technique that permits the rapid and direct analysis of biological or environmental samples under ambient conditions. Highlighting the versatility of this technique, DESI-MS has been used for the rapid detection of illicit drugs, chemical warfare agents, agricultural chemicals, and pharmaceuticals from a variety of sample matrices. In diagnostic veterinary toxicology, analyzing samples using traditional analytical instrumentation typically includes extensive sample extraction procedures, which can be time consuming and labor intensive. Therefore, efforts to expedite sample analyses are a constant goal for diagnostic toxicology laboratories. In the current report, DESI-MS was used to directly analyze stomach contents from a dog exposed to the organophosphate insecticide terbufos. The total DESI-MS analysis time required to confirm the presence of terbufos and diagnose organophosphate poisoning in this case was approximately 5 min. This highlights the potential of this analytical technique in the field of veterinary toxicology for the rapid diagnosis and detection of toxicants in biological samples. © 2014 The Author(s).
NASA Astrophysics Data System (ADS)
Ranamukhaarachchi, Sahan A.; Padeste, Celestino; Häfeli, Urs O.; Stoeber, Boris; Cadarso, Victor J.
2018-02-01
A hollow metallic microneedle is integrated with microfluidics and photonic components to form a microneedle-optofluidic biosensor suitable for therapeutic drug monitoring (TDM) in biological fluids, like interstitial fluid, that can be collected in a painless and minimally-invasive manner. The microneedle inner lumen surface is bio-functionalized to trap and bind target analytes on-site in a sample volume as small as 0.6 nl, and houses an enzyme-linked assay on its 0.06 mm2 wall. The optofluidic components are designed to rapidly quantify target analytes present in the sample and collected in the microneedle using a simple and sensitive absorbance scheme. This contribution describes how the biosensor components were optimized to detect in vitro streptavidin-horseradish peroxidase (Sav-HRP) as a model analyte over a large detection range (0-7.21 µM) and a very low limit of detection (60.2 nM). This biosensor utilizes the lowest analyte volume reported for TDM with microneedle technology, and presents significant avenues to improve current TDM methods for patients, by potentially eliminating blood draws for several drug candidates.
Signal Enhancement in HPLC/Micro-Coil NMR Using Automated Column Trapping
Djukovic, Danijel; Liu, Shuhui; Henry, Ian; Tobias, Brian; Raftery, Daniel
2008-01-01
A new HPLC-NMR system is described that performs analytical separation, pre-concentration, and NMR spectroscopy in rapid succession. The central component of our method is the online pre-concentration sequence that improves the match between post-column analyte peak volume and the micro-coil NMR detection volume. Separated samples are collected on to a C18 guard column with a mobile phase composed of 90% D2O/10% acetonitrile-D3, and back-flashed to the NMR micro-coil probe with 90% acetonitrile-D3/10% D2O. In order to assess the performance of our unit, we separated a standard mixture of 1 mM ibuprofen, naproxen, and phenylbutazone using a commercially available C18 analytical column. The S/N measurements from the NMR acquisitions indicated that we achieved signal enhancement factors up to 10.4 (±1.2)-fold. Furthermore, we observed that pre-concentration factors increased as the injected amount of analyte decreased. The highest concentration enrichment of 14.7 (±2.2)-fold was attained injecting 100 μL solution of 0.2 mM (~4 μg) ibuprofen. PMID:17037915
Rapid extraction and assay of uranium from environmental surface samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Christopher A.; Chouyyok, Wilaiwan; Speakman, Robert J.
Extraction methods enabling faster removal and concentration of uranium compounds for improved trace and low-level assay are demonstrated for standard surface sampling material in support of nuclear safeguards efforts, health monitoring, and other nuclear analysis applications. A key problem with the existing surface sampling swipes is the requirement for complete digestion of sample and sampling matrix. This is a time-consuming and labour-intensive process that limits laboratory throughput, elevates costs, and increases background levels. Various extraction methods are explored for their potential to quickly and efficiently remove different chemical forms of uranium from standard surface sampling material. A combination of carbonatemore » and peroxide solutions is shown to give the most rapid and complete form of uranyl compound extraction and dissolution. This rapid extraction process is demonstrated to be compatible with standard inductive coupled plasma mass spectrometry methods for uranium isotopic assay as well as screening techniques such as x-ray fluorescence. The general approach described has application beyond uranium to other analytes of nuclear forensic interest (e.g., rare earth elements and plutonium) as well as heavy metals for environmental and industrial hygiene monitoring.« less
A method for rapid quantitative assessment of biofilms with biomolecular staining and image analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larimer, Curtis J.; Winder, Eric M.; Jeters, Robert T.
Here, the accumulation of bacteria in surface attached biofilms, or biofouling, can be detrimental to human health, dental hygiene, and many industrial processes. A critical need in identifying and preventing the deleterious effects of biofilms is the ability to observe and quantify their development. Analytical methods capable of assessing early stage fouling are cumbersome or lab-confined, subjective, and qualitative. Herein, a novel photographic method is described that uses biomolecular staining and image analysis to enhance contrast of early stage biofouling. A robust algorithm was developed to objectively and quantitatively measure surface accumulation of Pseudomonas putida from photographs and results weremore » compared to independent measurements of cell density. Results from image analysis quantified biofilm growth intensity accurately and with approximately the same precision of the more laborious cell counting method. This simple method for early stage biofilm detection enables quantifiable measurement of surface fouling and is flexible enough to be applied from the laboratory to the field. Broad spectrum staining highlights fouling biomass, photography quickly captures a large area of interest, and image analysis rapidly quantifies fouling in the image.« less
A method for rapid quantitative assessment of biofilms with biomolecular staining and image analysis
Larimer, Curtis J.; Winder, Eric M.; Jeters, Robert T.; ...
2015-12-07
Here, the accumulation of bacteria in surface attached biofilms, or biofouling, can be detrimental to human health, dental hygiene, and many industrial processes. A critical need in identifying and preventing the deleterious effects of biofilms is the ability to observe and quantify their development. Analytical methods capable of assessing early stage fouling are cumbersome or lab-confined, subjective, and qualitative. Herein, a novel photographic method is described that uses biomolecular staining and image analysis to enhance contrast of early stage biofouling. A robust algorithm was developed to objectively and quantitatively measure surface accumulation of Pseudomonas putida from photographs and results weremore » compared to independent measurements of cell density. Results from image analysis quantified biofilm growth intensity accurately and with approximately the same precision of the more laborious cell counting method. This simple method for early stage biofilm detection enables quantifiable measurement of surface fouling and is flexible enough to be applied from the laboratory to the field. Broad spectrum staining highlights fouling biomass, photography quickly captures a large area of interest, and image analysis rapidly quantifies fouling in the image.« less
Zhu, Qing-Xia; Cao, Yong-Bing; Cao, Ying-Ying; Lu, Feng
2014-04-01
A novel facile method for on-site detection of antipertensive chemicals (e. g. nicardipine hydrochloride, doxazosin mesylate, propranolol hydrochloride, and hydrochlorothiazide) adulterated in traditional Chinese medicine for hypertension using thin layer chromatography (TLC) combined with surface enhanced Raman spectroscopy (SERS) was reported in the present paper. Analytes and pharmaceutical matrices was separated by TLC, then SERS method was used to complete qualitative identification of trace substances on TLC plate. By optimizing colloidal silver concentration and developing solvent, as well as exploring the optimal limits of detection (LOD), the initially established TLC-SERS method was used to detect real hypertension Chinese pharmaceuticals. The results showed that this method had good specificity for the four chemicals and high sensitivity with a limit of detection as lower as to 0.005 microg. Finally, two of the ten antipertensive drugs were detected to be adulterated with chemicals. This simple and fast method can realize rapid detection of chemicals illegally for doping in antipertensive Chinese pharmaceuticals, and would have good prospects in on-site detection of chemicals for doping in Chinese pharmaceuticals.
Tantishaiyakul, V; Poeaknapo, C; Sribun, P; Sirisuppanon, K
1998-06-01
A rapid, simple and direct assay procedure based on first-derivative spectrophotometry, using a zero-crossing and peak-to-base measurement at 234 and 324 nm, respectively, has been developed for the specific determination of dextromethorphan HBr and bromhexine HCl in tablets. Calibration graphs were linear with the correlation coefficients of 0.9999 for both analytes. The limit of detections were 0.033 and 0.103 microgram ml-1 for dextromethorphan HBr and bromhexine HCl, respectively. A HPLC method has been developed as the reference method. The results obtained by the first-derivative spectrophotometry were in good agreement with those found by the HPLC method.
Blade loss transient dynamic analysis of turbomachinery
NASA Technical Reports Server (NTRS)
Stallone, M. J.; Gallardo, V.; Storace, A. F.; Bach, L. J.; Black, G.; Gaffney, E. F.
1982-01-01
This paper reports on work completed to develop an analytical method for predicting the transient non-linear response of a complete aircraft engine system due to the loss of a fan blade, and to validate the analysis by comparing the results against actual blade loss test data. The solution, which is based on the component element method, accounts for rotor-to-casing rubs, high damping and rapid deceleration rates associated with the blade loss event. A comparison of test results and predicted response show good agreement except for an initial overshoot spike not observed in test. The method is effective for analysis of large systems.
Yu, Kate; Di, Li; Kerns, Edward; Li, Susan Q; Alden, Peter; Plumb, Robert S
2007-01-01
We report in this paper an ultra-performance liquid chromatography/tandem mass spectrometric (UPLC(R)/MS/MS) method utilizing an ESI-APCI multimode ionization source to quantify structurally diverse analytes. Eight commercial drugs were used as test compounds. Each LC injection was completed in 1 min using a UPLC system coupled with MS/MS multiple reaction monitoring (MRM) detection. Results from three separate sets of experiments are reported. In the first set of experiments, the eight test compounds were analyzed as a single mixture. The mass spectrometer was switching rapidly among four ionization modes (ESI+, ESI-, APCI-, and APCI+) during an LC run. Approximately 8-10 data points were collected across each LC peak. This was insufficient for a quantitative analysis. In the second set of experiments, four compounds were analyzed as a single mixture. The mass spectrometer was switching rapidly among four ionization modes during an LC run. Approximately 15 data points were obtained for each LC peak. Quantification results were obtained with a limit of detection (LOD) as low as 0.01 ng/mL. For the third set of experiments, the eight test compounds were analyzed as a batch. During each LC injection, a single compound was analyzed. The mass spectrometer was detecting at a particular ionization mode during each LC injection. More than 20 data points were obtained for each LC peak. Quantification results were also obtained. This single-compound analytical method was applied to a microsomal stability test. Compared with a typical HPLC method currently used for the microsomal stability test, the injection-to-injection cycle time was reduced to 1.5 min (UPLC method) from 3.5 min (HPLC method). The microsome stability results were comparable with those obtained by traditional HPLC/MS/MS.
Pandey, Renu; Chandra, Preeti; Srivastava, Mukesh; Mishra, D K; Kumar, Brijesh
2015-01-01
Ocimum sanctum L., with phenolic acids, flavonoids, propenyl phenols and terpenoids as active pharmacological constituents, is a popular medicinal herb and is present as an ingredient in many herbal formulations. Therefore, development of a reliable analytical method for simultaneous determination of the pharmacologically active constituents of O. sanctum is of high importance. To develop and validate a new, rapid, sensitive and selective UPLC-ESI/MS/MS method for simultaneous determination of 23 bioactive markers including phenolic acids, flavonoids, propenyl phenol and terpenoid in the leaf extract and marketed herbal formulations of O. sanctum. An UPLC-ESI/MS/MS method using negative electrospray ionisation (ESI) in multiple-reaction-monitoring (MRM) mode was used for simultaneous determination. Chromatographic separation was achieved on an Acquity UPLC BEH C18 -column using a gradient elution with 0.1% formic acid in water and 0.1% formic acid in acetonitrile. Principal component analysis (PCA) was applied to correlate and discriminate eight geographical collections of O. sanctum based on quantitative data of the analytes. The developed method was validated as per International Conference on Harmonization guidelines and found to be accurate, with overall recovery in the range 95.09-104.84% (RSD ≤ 1.85%), precise (RSD ≤ 1.98%) and linear (r(2) ≥ 0.9971) over the concentration range of 0.5-1000 ng/mL. Ursolic acid was found to be the most abundant marker in all the samples investigated, except for the marketed tablet. The method established is simple, rapid and sensitive, hence it can be reliably utilised for the quality control of O. sanctum and derived herbal formulations. Copyright © 2015 John Wiley & Sons, Ltd.
A shipboard comparison of analytic methods for ballast water compliance monitoring
NASA Astrophysics Data System (ADS)
Bradie, Johanna; Broeg, Katja; Gianoli, Claudio; He, Jianjun; Heitmüller, Susanne; Curto, Alberto Lo; Nakata, Akiko; Rolke, Manfred; Schillak, Lothar; Stehouwer, Peter; Vanden Byllaardt, Julie; Veldhuis, Marcel; Welschmeyer, Nick; Younan, Lawrence; Zaake, André; Bailey, Sarah
2018-03-01
Promising approaches for indicative analysis of ballast water samples have been developed that require study in the field to examine their utility for determining compliance with the International Convention for the Control and Management of Ships' Ballast Water and Sediments. To address this gap, a voyage was undertaken on board the RV Meteor, sailing the North Atlantic Ocean from Mindelo (Cape Verde) to Hamburg (Germany) during June 4-15, 2015. Trials were conducted on local sea water taken up by the ship's ballast system at multiple locations along the trip, including open ocean, North Sea, and coastal water, to evaluate a number of analytic methods that measure the numeric concentration or biomass of viable organisms according to two size categories (≥ 50 μm in minimum dimension: 7 techniques, ≥ 10 μm and < 50 μm: 9 techniques). Water samples were analyzed in parallel to determine whether results were similar between methods and whether rapid, indicative methods offer comparable results to standard, time- and labor-intensive detailed methods (e.g. microscopy) and high-end scientific approaches (e.g. flow cytometry). Several promising indicative methods were identified that showed high correlation with microscopy, but allow much quicker processing and require less expert knowledge. This study is the first to concurrently use a large number of analytic tools to examine a variety of ballast water samples on board an operational ship in the field. Results are useful to identify the merits of each method and can serve as a basis for further improvement and development of tools and methodologies for ballast water compliance monitoring.
Microemulsification: an approach for analytical determinations.
Lima, Renato S; Shiroma, Leandro Y; Teixeira, Alvaro V N C; de Toledo, José R; do Couto, Bruno C; de Carvalho, Rogério M; Carrilho, Emanuel; Kubota, Lauro T; Gobbi, Angelo L
2014-09-16
We address a novel method for analytical determinations that combines simplicity, rapidity, low consumption of chemicals, and portability with high analytical performance taking into account parameters such as precision, linearity, robustness, and accuracy. This approach relies on the effect of the analyte content over the Gibbs free energy of dispersions, affecting the thermodynamic stabilization of emulsions or Winsor systems to form microemulsions (MEs). Such phenomenon was expressed by the minimum volume fraction of amphiphile required to form microemulsion (Φ(ME)), which was the analytical signal of the method. Thus, the measurements can be taken by visually monitoring the transition of the dispersions from cloudy to transparent during the microemulsification, like a titration. It bypasses the employment of electric energy. The performed studies were: phase behavior, droplet dimension by dynamic light scattering, analytical curve, and robustness tests. The reliability of the method was evaluated by determining water in ethanol fuels and monoethylene glycol in complex samples of liquefied natural gas. The dispersions were composed of water-chlorobenzene (water analysis) and water-oleic acid (monoethylene glycol analysis) with ethanol as the hydrotrope phase. The mean hydrodynamic diameter values for the nanostructures in the droplet-based water-chlorobenzene MEs were in the range of 1 to 11 nm. The procedures of microemulsification were conducted by adding ethanol to water-oleic acid (W-O) mixtures with the aid of micropipette and shaking. The Φ(ME) measurements were performed in a thermostatic water bath at 23 °C by direct observation that is based on the visual analyses of the media. The experiments to determine water demonstrated that the analytical performance depends on the composition of ME. It shows flexibility in the developed method. The linear range was fairly broad with limits of linearity up to 70.00% water in ethanol. For monoethylene glycol in water, in turn, the linear range was observed throughout the volume fraction of analyte. The best limits of detection were 0.32% v/v water to ethanol and 0.30% v/v monoethylene glycol to water. Furthermore, the accuracy was highly satisfactory. The natural gas samples provided by the Petrobras exhibited color, particulate material, high ionic strength, and diverse compounds as metals, carboxylic acids, and anions. These samples had a conductivity of up to 2630 μS cm(-1); the conductivity of pure monoethylene glycol was only 0.30 μS cm(-1). Despite such downsides, the method allowed accurate measures bypassing steps such as extraction, preconcentration, and dilution of the sample. In addition, the levels of robustness were promising. This parameter was evaluated by investigating the effect of (i) deviations in volumetric preparation of the dispersions and (ii) changes in temperature over the analyte contents recorded by the method.
Mass spectrometry imaging for visualizing organic analytes in food.
Handberg, Eric; Chingin, Konstantin; Wang, Nannan; Dai, Ximo; Chen, Huanwen
2015-01-01
The demand for rapid chemical imaging of food products steadily increases. Mass spectrometry (MS) is featured by excellent molecular specificity of analysis and is, therefore, a very attractive method for chemical profiling. MS for food imaging has increased significantly over the past decade, aided by the emergence of various ambient ionization techniques that allow direct and rapid analysis in ambient environment. In this article, the current status of food imaging with MSI is reviewed. The described approaches include matrix-assisted laser desorption/ionization (MALDI), but emphasize desorption atmospheric pressure photoionization (DAPPI), electrospray-assisted laser desorption/ionization (ELDI), probe electrospray ionization (PESI), surface desorption atmospheric pressure chemical ionization (SDAPCI), and laser ablation flowing atmospheric pressure afterglow (LA-FAPA). The methods are compared with regard to spatial resolution; analysis speed and time; limit of detection; and technical aspects. The performance of each method is illustrated with the description of a related application. Specific requirements in food imaging are discussed. © 2014 Wiley Periodicals, Inc.
Qi, Ping; Lin, Zhihao; Li, Jiaxu; Wang, ChengLong; Meng, WeiWei; Hong, Hong; Zhang, Xuewu
2014-12-01
In this work, a simple, rapid and sensitive analytical method for the determination of rhodamine B in chili-containing foodstuffs is described. The dye is extracted from samples with methanol and analysed without further cleanup procedure by high-performance liquid chromatography (HPLC) coupled to fluorescence detection (FLD). The influence of matrix fluorescent compounds (capsaicin and dihydrocapsaicin) on the analysis was overcome by the optimisation of mobile-phase composition. The limit of determination (LOD) and limit of quantification (LOQ) were 3.7 and 10 μg/kg, respectively. Validation data show a good repeatability and within-lab reproducibility with relative standard deviations <10%. The overall recoveries are in the range of 98-103% in chili powder and in the range of 87-100% in chili oil depending on the concentration of rhodamine B in foodstuffs. This method is suitable for the routine analysis of rhodamine B due to its sensitivity, simplicity, reasonable time and cost. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cozzolino, D.; Degner, S.; Eglinton, J.
2014-01-01
Starch is the major component of cereal grains and starchy foods, and changes in its biophysical and biochemical properties (e.g., amylose, amylopectin, pasting, gelatinization, viscosity) will have a direct effect on its end use properties (e.g., bread, malt, polymers). The use of rapid and non-destructive methods to study and monitor starch properties, such as gelatinization, retrogradation, water absorption in cereals and starchy foods, is of great interest in order to improve and assess their quality. In recent years, near infrared reflectance (NIR) and mid infrared (MIR) spectroscopy have been explored to predict several quality parameters, such as those generated by instrumental methods commonly used in routine analysis like the rapid visco analyser (RVA) or viscometers. In this review, applications of both NIR and MIR spectroscopy to measure and monitor starch biochemical (amylose, amylopectin, starch) and biophysical properties (e.g., pasting properties) will be presented and discussed. PMID:28234340
Fang, Ching; Chung, Yu-Lin; Liu, Ju-Tsung; Lin, Cheng-Huang
2002-02-18
Because of the increasing use of 3,4-methylenedioxymethamphetamine (3,4-MDMA), a rapid and sensitive analytical technique is required for its detection and determination. Using nonaqueous capillary electrophoresis/fluorescence spectroscopy (NACE/FS) detection, it is possible to determine this drug at the level 0.5 ppm without any pre-treatment in less than 5 min. After liquid-liquid extraction, the sample can be condensed and a detection limit of 3,4-MDMA in urine of 50 ppb (S/N = 3) can be achieved. The precision of the method was evaluated by measuring the repeatability and intermediate precision of migration time and the corrected peak height by comparison with a 3,4-MDMA-D5 internal standard. With the conventional GC/MS method, it is necessary to derivatize the 3,4-MDMA before injection and the GC migration time also is in excess of 20 min. Therefore, NACE/FS represents a good complementary method to GC/MS for use in forensic analysis.
Direct ultrasonic agitation for rapid extraction of organic matter from airborne particulate.
Lee, S C; Zou, S C; Ho, K F; Chan, L Y
2001-01-02
Direct ultrasonic extraction (DUE) is proposed as simple and rapid sample pretreatment method. This new approach is applied to the extraction of particulate organic matter (POM) from airborne particulate by using dichloromethane (DCM) or DCM/methanol (90/10, v/v) as extractant. The analytical determination was carried out by weighing the extractable POM on an electrobalance. Total recovery for POM could be obtained when the sample was extracted three times with 25-50 mL extractant each for about 5 min at 50 W ultrasonic power. In comparison with conventional Soxhlet extraction, less extraction time (total 15 min only) and solvent consumption (100 mL) were required by DUE. The efficiency of the DUE was similar or even higher than the routine Soxhlet method. Additionally, the new extractor is very simple and easy to use and can accelerate the extraction procedures of organic components from various solid samples.
NASA Astrophysics Data System (ADS)
Schulz, Hartwig; Quilitzsch, Rolf; Krüger, Hans
2003-12-01
The essential oils obtained from various chemotypes of thyme, origano and chamomile species were studied by ATR/FT-IR as well as NIR spectroscopy. Application of multivariate statistics (PCA, PLS) in conjunction with analytical reference data leads to very good IR and NIR calibration results. For the main essential oil components (e.g. carvacrol, thymol, γ-terpinene, α-bisabolol and β-farnesene) standard errors are in the range of the applied GC reference method. In most cases the multiple coefficients of determination ( R2) are >0.97. Using the IR fingerprint region (900-1400 cm -1) a qualitative discrimination of the individual chemotypes is possible already by visual judgement without to apply any chemometric algorithms.The described rapid and non-destructive methods can be applied in industry to control very easily purifying, blending and redistillation processes of the mentioned essential oils.
Valverde, Estefanía J; Cano, Irene; Castro, Dolores; Paley, Richard K; Borrego, Juan J
2017-03-01
Lymphocystis disease virus (LCDV) infections have been described in gilthead seabream (Sparus aurata L.) and Senegalese sole (Solea senegalensis, Kaup), two of the most important marine fish species in the Mediterranean aquaculture. In this study, a rapid, specific, and sensitive detection method for LCDV genotype VII based on loop-mediated isothermal amplification (LAMP) was developed. The LAMP assay, performed using an apparatus with real-time amplification monitoring, was able to specifically detect LCDV genotype VII from clinically positive samples in less than 12 min. In addition, the assay allowed the detection of LCDV in all asymptomatic carrier fish analysed, identified by qPCR, showing an analytical sensitivity of ten copies of viral DNA per reaction. The LCDV LAMP assay has proven to be a promising diagnostic method that can be used easily in fish farms to detect the presence and spread of this iridovirus.
NASA Astrophysics Data System (ADS)
Castiglione, Steven Louis
As scientific research trends towards trace levels and smaller architectures, the analytical chemist is often faced with the challenge of quantitating said species in a variety of matricies. The challenge is heightened when the analytes prove to be potentially toxic or possess physical or chemical properties that make traditional analytical methods problematic. In such cases, the successful development of an acceptable quantitative method plays a critical role in the ability to further develop the species under study. This is particularly true for pharmaceutical impurities and nanoparticles (NP). The first portion of the research focuses on the development of a part-per-billion level HPLC method for a substituted phenazine-class pharmaceutical impurity. The development of this method was required due to the need for a rapid methodology to quantitatively determine levels of a potentially toxic phenazine moiety in order to ensure patient safety. As the synthetic pathway for the active ingredient was continuously refined to produce progressively lower amounts of the phenazine impurity, the approach for increasingly sensitive quantitative methods was required. The approaches evolved across four discrete methods, each employing a unique scheme for analyte detection. All developed methods were evaluated with regards to accuracy, precision and linear adherence as well as ancillary benefits and detriments -- e.g., one method in this evolution demonstrated the ability to resolve and detect other species from the phenazine class. The second portion of the research focuses on the development of an HPLC method for the quantitative determination of NP size distributions. The current methodology for the determination of NP sizes employs tunneling electron microscopy (TEM), which requires sample drying without particle size alteration and which, in many cases, may prove infeasible due to cost or availability. The feasibility of an HPLC method for NP size characterizations evolved across three methods, each employing a different approach for size resolution. These methods were evaluated primarily for sensitivity, which proved to be a substantial hurdle to further development, but does not appear to deter future research efforts.
Tang, Weijuan; Sheng, Huaming; Kong, John Y; Yerabolu, Ravikiran; Zhu, Hanyu; Max, Joann; Zhang, Minli; Kenttämaa, Hilkka I
2016-06-30
The oxidation of sulfur atoms is an important biotransformation pathway for many sulfur-containing drugs. In order to rapidly identify the sulfone functionality in drug metabolites, a tandem mass spectrometric method based on ion-molecule reactions was developed. A phosphorus-containing reagent, trimethyl phosphite (TMP), was allowed to react with protonated analytes with various functionalities in a linear quadrupole ion trap mass spectrometer. The reaction products and reaction efficiencies were measured. Only protonated sulfone model compounds were found to react with TMP to form a characteristic [TMP adduct-MeOH] product ion. All other protonated compounds investigated, with functionalities such as sulfoxide, N-oxide, hydroxylamino, keto, carboxylic acid, and aliphatic and aromatic amino, only react with TMP via proton transfer and/or addition. The specificity of the reaction was further demonstrated by using a sulfoxide-containing anti-inflammatory drug, sulindac, as well as its metabolite sulindac sulfone. A method based on functional group-selective ion-molecule reactions in a linear quadrupole ion trap mass spectrometer has been demonstrated for the identification of the sulfone functionality in protonated analytes. A characteristic [TMP adduct-MeOH] product ion was only formed for the protonated sulfone analytes. The applicability of the TMP reagent in identifying sulfone functionalities in drug metabolites was also demonstrated. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Oh, Se Yeon
2018-05-01
Aroma is important in night-flowering species, as visually they can not be observed well. Thus, the analysis of the volatiles of evening-primrose is of great interest in biological fields and therapy. Furthermore, the analysis of volatiles demands rapid and simple procedure, because volatiles decompose. The aim of this study is to show the rapid monitoring of the volatiles of evening-primrose according to the flowering or closing by fast gas chromatography/surface acoustic wave GC/SAW. Moreover, calibration according to the sensor temperature of the GC/SAW was performed, achieving a high reproducibility and excellent sensitivity. GC/SAW is an effective analytical method that provides on-line measurements without pretreatment of sample. Headspace solid-phase micro-extraction coupled to gas chromatography mass spectrometry (HS-SPME-GC-MS) and dynamic headspace trapping and extraction with GC-MS were employed to confirm the identification of the volatiles of evening-primrose compared to GC/SAW. Linalool was found to be the dominant component, comprising 96.4-25.2% of the total amount, according to the opening or closing. Interestingly, the amount of indole also varied according to the opening or closing (3.0-0.0%) such as linalool. Also, while the sensitivity increased with the reduction in the sensor temperature of the GC/SAW, the reproducibility showed a tendency to decrease. The results showed that flower opening is related to the volatiles emission, which is pharmacological and plant defensive. GC/SAW can be a useful analytical method for the rapid monitoring of volatiles of evening-primrose according to the opening or closing as it provides second unit analysis, as well as simple, and aroma pattern recognition. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Lam, Nina Siu-Ngan; Qiu, Hong-Lie; Quattrochi, Dale A.; Emerson, Charles W.; Arnold, James E. (Technical Monitor)
2001-01-01
The rapid increase in digital data volumes from new and existing sensors necessitates the need for efficient analytical tools for extracting information. We developed an integrated software package called ICAMS (Image Characterization and Modeling System) to provide specialized spatial analytical functions for interpreting remote sensing data. This paper evaluates the three fractal dimension measurement methods: isarithm, variogram, and triangular prism, along with the spatial autocorrelation measurement methods Moran's I and Geary's C, that have been implemented in ICAMS. A modified triangular prism method was proposed and implemented. Results from analyzing 25 simulated surfaces having known fractal dimensions show that both the isarithm and triangular prism methods can accurately measure a range of fractal surfaces. The triangular prism method is most accurate at estimating the fractal dimension of higher spatial complexity, but it is sensitive to contrast stretching. The variogram method is a comparatively poor estimator for all of the surfaces, particularly those with higher fractal dimensions. Similar to the fractal techniques, the spatial autocorrelation techniques are found to be useful to measure complex images but not images with low dimensionality. These fractal measurement methods can be applied directly to unclassified images and could serve as a tool for change detection and data mining.
Saleh, Aljona; Stephanson, Niclas Nikolai; Granelli, Ingrid; Villén, Tomas; Beck, Olof
2012-11-15
In this study a rapid liquid chromatography-time-of-flight mass spectrometry method was developed, validated and applied in order to evaluate the potential of this technique for routine urine drug testing. Approximately 800 authentic patient samples were analyzed for amphetamines (amphetamine and methamphetamine), opiates (morphine, morphine-3-glucuronide, morphine-6-glucuronide, codeine and codeine-6-glucuronide) and buprenorphines (buprenorphine and buprenorphine-glucuronide) using immunochemical screening assays and mass spectrometry confirmation methods for comparison. The chromatographic application utilized a rapid gradient with high flow and a reversed phase column with 1.8 μm particles. Total analysis time was 4 min. The mass spectrometer operated with an electrospray interface in positive mode with a resolution power of >10,000 at m/z 956. The applied reporting limits were 100 ng/mL for amphetamines and opiates, and 5 ng/mL for buprenorphines, with lower limits of quantification were 2.8-41 ng/mL. Calibration curves showed a linear response with coefficients of correlation of 0.97-0.99. The intra- and interday imprecision in quantification at the reporting limits were <10% for all analytes but for buprenorphines <20%. Method validation data met performance criteria for a qualitative and quantitative method. The liquid chromatography-time-of-flight mass spectrometry method was found to be more selective than the immunochemical method by producing lower rates of false positives (0% for amphetamines and opiates; 3.2% for buprenorphines) and negatives (1.8% for amphetamines; 0.6% for opiates; 0% for buprenorphines). The overall agreement between the two screening methods was between 94.2 and 97.4%. Comparison of data with the confirmation (LC-MS) results for all individual 9 analytes showed that most deviating results were produced in samples with low levels of analytes. False negatives were mainly related to failure of detected peak to meet mass accuracy criteria (±20 mDa). False positives was related to presence of interfering peaks meeting mass accuracy and retention time criteria and occurred mainly at low levels. It is concluded that liquid chromatography-time-of-flight mass spectrometry has potential both as a complement and as replacement of immunochemical screening assays. Copyright © 2012 Elsevier B.V. All rights reserved.
Aptamer-Based Biosensors for Antibiotic Detection: A Review.
Mehlhorn, Asol; Rahimi, Parvaneh; Joseph, Yvonne
2018-06-11
Antibiotic resistance and, accordingly, their pollution because of uncontrolled usage has emerged as a serious problem in recent years. Hence, there is an increased demand to develop robust, easy, and sensitive methods for rapid evaluation of antibiotics and their residues. Among different analytical methods, the aptamer-based biosensors (aptasensors) have attracted considerable attention because of good selectivity, specificity, and sensitivity. This review gives an overview about recently-developed aptasensors for antibiotic detection. The use of various aptamer assays to determine different groups of antibiotics, like β-lactams, aminoglycosides, anthracyclines, chloramphenicol, (fluoro)quinolones, lincosamide, tetracyclines, and sulfonamides are presented in this paper.
Xiao, Fengjun; Li, Chengzhi; Sun, Jiangman; Zhang, Lianjie
2017-01-01
To study the rapid growth of research on organic photovoltaic (OPV) technology, development trends in the relevant research are analyzed based on CiteSpace software of text mining and visualization in scientific literature. By this analytical method, the outputs and cooperation of authors, the hot research topics, the vital references and the development trend of OPV are identified and visualized. Different from the traditional review articles by the experts on OPV, this work provides a new method of visualizing information about the development of the OPV technology research over the past decade quantitatively.
NASA Astrophysics Data System (ADS)
Xiao, Fengjun; Li, Chengzhi; Sun, Jiangman; Zhang, Lianjie
2017-09-01
To study the rapid growth of research on organic photovoltaic (OPV) technology, development trends in the relevant research are analyzed based on CiteSpace software of text mining and visualization in scientific literature. By this analytical method, the outputs and cooperation of authors, the hot research topics, the vital references and the development trend of OPV are identified and visualized. Different from the traditional review articles by the experts on OPV, this work provides a new method of visualizing information about the development of the OPV technology research over the past decade quantitatively.
Rebrošová, Katarína; Šiler, Martin; Samek, Ota; Růžička, Filip; Bernatová, Silvie; Ježek, Jan; Zemánek, Pavel; Holá, Veronika
2017-08-01
Raman spectroscopy is an analytical method with a broad range of applications across multiple scientific fields. We report on a possibility to differentiate between two important Gram-positive species commonly found in clinical material - Staphylococcus aureus and Staphylococcus epidermidis - using this rapid noninvasive technique. For this, we tested 87 strains, 41 of S. aureus and 46 of S. epidermidis, directly from colonies grown on a Mueller-Hinton agar plate using Raman spectroscopy. The method paves a way for separation of these two species even on high number of samples and therefore, it can be potentially used in clinical diagnostics.
Fernández, Elena; Vidal, Lorena; Iniesta, Jesús; Metters, Jonathan P; Banks, Craig E; Canals, Antonio
2014-03-01
A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid-liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett-Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L(-1) and 9 μg L(-1), respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L(-1)), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.
Peng, Zhangxiao; Zhang, Qian; Mao, Ziming; Wang, Jie; Liu, Chunying; Lin, Xuejing; Li, Xin; Ji, Weidan; Fan, Jianhui; Wang, Maorong; Su, Changqing
2017-11-15
Much evidence suggested that quantitative analysis of bile acids (BAs), lysophosphatidylcholines (LPCs), and polyunsaturated fatty acids (PUFAs) in biofluids may be very useful for diagnosis and prevention of hepatobiliary disease with a non-invasive manner. However, simultaneously fast analysis of these metabolites has been challenging for their huge differences of physicochemical properties and concentration levels in biofluids. In this study, we present a liquid chromatography-mass spectrometry method with a high throughput analytical cycle (10min) to fast and accurately quantify fifteen potential biomarkers (eight BAs, four LPCs and three PUFAs) of hepatobiliary disease. The accuracy for the fifteen analytes in plasma and urine matrices was 80.45%-118.99% and 84.55%-112.66%, respectively. The intra- and inter- precisions for the fifteen analytes in plasma and urine matrices were all less than 20% and the lower limit of quantification (LLOQ) of analytes is up to 0.0283-8.2172nmol/L. Therefore, this method is fast, sensitive and accurate for the quantitative analysis of BAs, LPCs and PUFAs in biofluids. Moreover, the stability and concentration differences of the analytes in plasma and serum were evaluated, and the results demonstrated that LPCs is stable, but PUFAs is very unstable in freeze and thaw cycles, and the concentrations of the analytes in serum were slightly higher than those in plasma. We suggested plasma may be a kind of better bio-sample than serum using for quantitative analysis of metabolites in blood, due to the characteristics of plasma are more close to blood than those of serum. Copyright © 2017 Elsevier B.V. All rights reserved.
Frazey, P A; Barkley, R M; Sievers, R E
1998-02-01
An analytical approach for the determination of chlorination and iodination disinfection byproducts based on solid-phase microextraction (SPME) was developed. Solid-phase microextraction presents a simple, rapid, sensitive, and solvent-free approach to sample preparation in which analytes in either air or water matrixes are extracted into the polymeric coating of an optical fiber. Analytes are subsequently thermally desorbed in the injection port of a gas chromatograph for separation, detection, and quantitation. Thermal degradation of iodoform was observed during desorption from a polyacrylate fiber in initial GC/MS and GC/ECD experiments. Experiments were designed to determine SPME conditions that would allow quantification without significant degradation of analytes. Isothermal and temperature-programmed thermal desorptions were evaluated for efficacy in transferring analytes with wide-ranging volatilities and thermal stabilities into chromatographic analysis columns. A temperature-programmed desorption (TPD) (120-200 degrees C at 5 degrees C/min with an on-column injection port or 150-200 degrees C at 25 degrees C/min with a split/splitless injection port) was able to efficiently remove analytes with wide-ranging volatilities without causing thermal degradation. The SPME-TPD method was linear over 2-3 orders of magnitude with an electron capture detector and detection limits were in the submicrogram per liter range. Precision and detection limits for selected trihalomethanes were comparable to those of EPA method 551. Extraction efficiencies were not affected by the presence of 10 mg/L soap, 15 mg/L sodium iodide, and 6000 mg/L sodium thiosulfate. The SPME-TPD technique was applied to the determination of iodination disinfection byproducts from individual precursor compounds using GC/MS and to the quantitation of iodoform at trace levels in a water recycle system using GC/ECD.
Electrochemical hydrogen sulfide biosensors.
Xu, Tailin; Scafa, Nikki; Xu, Li-Ping; Zhou, Shufeng; Abdullah Al-Ghanem, Khalid; Mahboob, Shahid; Fugetsu, Bunshi; Zhang, Xueji
2016-02-21
The measurement of sulfide, especially hydrogen sulfide, has held the attention of the analytical community due to its unique physiological and pathophysiological roles in biological systems. Electrochemical detection offers a rapid, highly sensitive, affordable, simple, and real-time technique to measure hydrogen sulfide concentration, which has been a well-documented and reliable method. This review details up-to-date research on the electrochemical detection of hydrogen sulfide (ion selective electrodes, polarographic hydrogen sulfide sensors, etc.) in biological samples for potential therapeutic use.
C.M. Hoover; K.A. Magrini; R.J. Evans
2002-01-01
This study was conducted to: (1) test the utility of a new and rapid analytical method, pyrolysis molecular beam mass spectrometry (py-MBMS), for the measurement and characterization of carbon in forest soils, and (2) examine the effects of natural disturbance on soil carbon dynamics. An additional objective was to test the ability of py-MBMS to distinguish recent from...
Du, Gang; Zhao, Haiyu; Song, Yuelin; Zhang, Qingwen; Wang, Yitao
2011-10-01
A high-performance liquid chromatography (HPLC) coupled with triple quadrupole mass spectrometry (MS/MS) method was developed for rapid determination of 13 isoflavones in Radix puerariae. A novel shell-type column, namely Kinetex core-shell C(18) column (50 mm×2.1 mm id, 2.6 μm), and gradient elution were used during the analysis. The chromatographic peaks of 13 investigated compounds were identified by comparing their retention time and MS data with the related reference compounds. Multiple-reaction monitoring (MRM) was employed for the quantitative analysis with negative ionization mode. All calibration curves showed good linearity (r(2)>0.9990) within test ranges. The LOD and LOQ were lower than 0.017 and 0.873 μg/mL on column, respectively. The intra- and inter-day precisions for 13 analytes were <1.17 and 2.17%, respectively, and the recoveries were 93.1-104.4%. The validated method was applied for quantitative analysis of 13 isoflavones in 7 species of Radix puerariae. The result demonstrated that HPLC-MS/MS system with Kinetex column could be a promising analytical tool for the determination of isoflavones in traditional Chinese medicines, which is helpful for comprehensive evaluation of quality of R. puerariae. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boyacı, Ezel; Bojko, Barbara; Reyes-Garcés, Nathaly; Poole, Justen J; Gómez-Ríos, Germán Augusto; Teixeira, Alexandre; Nicol, Beate; Pawliszyn, Janusz
2018-01-18
In vitro high-throughput non-depletive quantitation of chemicals in biofluids is of growing interest in many areas. Some of the challenges facing researchers include the limited volume of biofluids, rapid and high-throughput sampling requirements, and the lack of reliable methods. Coupled to the above, growing interest in the monitoring of kinetics and dynamics of miniaturized biosystems has spurred the demand for development of novel and revolutionary methodologies for analysis of biofluids. The applicability of solid-phase microextraction (SPME) is investigated as a potential technology to fulfill the aforementioned requirements. As analytes with sufficient diversity in their physicochemical features, nicotine, N,N-Diethyl-meta-toluamide, and diclofenac were selected as test compounds for the study. The objective was to develop methodologies that would allow repeated non-depletive sampling from 96-well plates, using 100 µL of sample. Initially, thin film-SPME was investigated. Results revealed substantial depletion and consequent disruption in the system. Therefore, new ultra-thin coated fibers were developed. The applicability of this device to the described sampling scenario was tested by determining the protein binding of the analytes. Results showed good agreement with rapid equilibrium dialysis. The presented method allows high-throughput analysis using small volumes, enabling fast reliable free and total concentration determinations without disruption of system equilibrium.
Simultaneous assay for plasmin and DNase using radiolabeled human fibroblasts on microcarriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boswell, G.S.; Dimitrijevich, S.D.; Gracy, R.W.
1989-10-01
A critical step in tissue and wound repair is the removal of eschar--accumulation of denatured cellular and extracellular macromolecules. Enzymatic debridement using a combination of plasmin (fibrinolysin) and DNase has been successfully utilized on a variety of types of wounds. Monitoring the activity of these enzymes by measuring the rate of fibrinolysis, or by viscometric changes due to DNA hydrolysis, is exceedingly cumbersome, time consuming, and, at best, only semiquantitative. Although spectrophotometric assays using synthetic substrates offer several advantages, they do not allow extrapolation of the data to the more complex natural substrates encountered in vivo. We have, therefore, developedmore » an in vitro radioisotopic assay for the simultaneous and quantitative measurement of the hydrolytic activity of both plasmin and DNase. Double labeled ((3H)thymidine, (14C)leucine) human dermal fibroblasts grown on microcarrier beads are utilized as sources of nucleic acid and protein substrates. The assay meets all the criteria of analytical validity, is sensitive and rapid, and is amenable to adaptation for analysis of other hydrolytic enzymes. The method offers a direct evaluation of the enzymatic debridement of wounds using actual human cellular substrates. Moreover, the microcarriers provide a greatly increased surface area for cell attachment and growth, are amenable to rapid separation from the cells by simple mechanical methods, and are ideally suited to analytical manipulations.« less
Microfluidic paper-based analytical device for particulate metals.
Mentele, Mallory M; Cunningham, Josephine; Koehler, Kirsten; Volckens, John; Henry, Charles S
2012-05-15
A microfluidic paper-based analytical device (μPAD) fabricated by wax printing was designed to assess occupational exposure to metal-containing aerosols. This method employs rapid digestion of particulate metals using microliters of acid added directly to a punch taken from an air sampling filter. Punches were then placed on a μPAD, and digested metals were transported to detection reservoirs upon addition of water. These reservoirs contained reagents for colorimetric detection of Fe, Cu, and Ni. Dried buffer components were used to set the optimal pH in each detection reservoir, while precomplexation agents were deposited in the channels between the sample and detection zones to minimize interferences from competing metals. Metal concentrations were quantified from color intensity images using a scanner in conjunction with image processing software. Reproducible, log-linear calibration curves were generated for each metal, with method detection limits ranging from 1.0 to 1.5 μg for each metal (i.e., total mass present on the μPAD). Finally, a standard incineration ash sample was aerosolized, collected on filters, and analyzed for the three metals of interest. Analysis of this collected aerosol sample using a μPAD showed good correlation with known amounts of the metals present in the sample. This technology can provide rapid assessment of particulate metal concentrations at or below current regulatory limits and at dramatically reduced cost.
Analytical Approaches to Verify Food Integrity: Needs and Challenges.
Stadler, Richard H; Tran, Lien-Anh; Cavin, Christophe; Zbinden, Pascal; Konings, Erik J M
2016-09-01
A brief overview of the main analytical approaches and practices to determine food authenticity is presented, addressing, as well, food supply chain and future requirements to more effectively mitigate food fraud. Food companies are introducing procedures and mechanisms that allow them to identify vulnerabilities in their food supply chain under the umbrella of a food fraud prevention management system. A key step and first line of defense is thorough supply chain mapping and full transparency, assessing the likelihood of fraudsters to penetrate the chain at any point. More vulnerable chains, such as those where ingredients and/or raw materials are purchased through traders or auctions, may require a higher degree of sampling, testing, and surveillance. Access to analytical tools is therefore pivotal, requiring continuous development and possibly sophistication in identifying chemical markers, data acquisition, and modeling. Significant progress in portable technologies is evident already today, for instance, as in the rapid testing now available at the agricultural level. In the near future, consumers may also have the ability to scan products in stores or at home to authenticate labels and food content. For food manufacturers, targeted analytical methods complemented by untargeted approaches are end control measures at the factory gate when the material is delivered. In essence, testing for food adulterants is an integral part of routine QC, ideally tailored to the risks in the individual markets and/or geographies or supply chains. The development of analytical methods is a first step in verifying the compliance and authenticity of food materials. A next, more challenging step is the successful establishment of global consensus reference methods as exemplified by the AOAC Stakeholder Panel on Infant Formula and Adult Nutritionals initiative, which can serve as an approach that could also be applied to methods for contaminants and adulterants in food. The food industry has taken these many challenges aboard, working closely with all stakeholders and continuously communicating on progress in a fully transparent manner.
Estelles-Lopez, Lucia; Ropodi, Athina; Pavlidis, Dimitris; Fotopoulou, Jenny; Gkousari, Christina; Peyrodie, Audrey; Panagou, Efstathios; Nychas, George-John; Mohareb, Fady
2017-09-01
Over the past decade, analytical approaches based on vibrational spectroscopy, hyperspectral/multispectral imagining and biomimetic sensors started gaining popularity as rapid and efficient methods for assessing food quality, safety and authentication; as a sensible alternative to the expensive and time-consuming conventional microbiological techniques. Due to the multi-dimensional nature of the data generated from such analyses, the output needs to be coupled with a suitable statistical approach or machine-learning algorithms before the results can be interpreted. Choosing the optimum pattern recognition or machine learning approach for a given analytical platform is often challenging and involves a comparative analysis between various algorithms in order to achieve the best possible prediction accuracy. In this work, "MeatReg", a web-based application is presented, able to automate the procedure of identifying the best machine learning method for comparing data from several analytical techniques, to predict the counts of microorganisms responsible of meat spoilage regardless of the packaging system applied. In particularly up to 7 regression methods were applied and these are ordinary least squares regression, stepwise linear regression, partial least square regression, principal component regression, support vector regression, random forest and k-nearest neighbours. MeatReg" was tested with minced beef samples stored under aerobic and modified atmosphere packaging and analysed with electronic nose, HPLC, FT-IR, GC-MS and Multispectral imaging instrument. Population of total viable count, lactic acid bacteria, pseudomonads, Enterobacteriaceae and B. thermosphacta, were predicted. As a result, recommendations of which analytical platforms are suitable to predict each type of bacteria and which machine learning methods to use in each case were obtained. The developed system is accessible via the link: www.sorfml.com. Copyright © 2017 Elsevier Ltd. All rights reserved.
Remane, Daniela; Grunwald, Soeren; Hoeke, Henrike; Mueller, Andrea; Roeder, Stefan; von Bergen, Martin; Wissenbach, Dirk K
2015-08-15
During the last decades exposure sciences and epidemiological studies attracts more attention to unravel the mechanisms for the development of chronic diseases. According to this an existing HPLC-DAD method for determination of creatinine in urine samples was expended for seven analytes and validated. Creatinine, uric acid, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid, and 2-methylhippuric acid were separated by gradient elution (formate buffer/methanol) using an Eclipse Plus C18 Rapid Resolution column (4.6mm×100mm). No interfering signals were detected in mobile phase. After injection of blank urine samples signals for the endogenous compounds but no interferences were detected. All analytes were linear in the selected calibration range and a non weighted calibration model was chosen. Bias, intra-day and inter-day precision for all analytes were below 20% for quality control (QC) low and below 10% for QC medium and high. The limits of quantification in mobile phase were in line with reported reference values but had to be adjusted in urine for homovanillic acid (45mg/L), niacinamide 58.5(mg/L), and indole-3-acetic acid (63mg/L). Comparison of creatinine data obtained by the existing method with those of the developed method showing differences from -120mg/L to +110mg/L with a mean of differences of 29.0mg/L for 50 authentic urine samples. Analyzing 50 authentic urine samples, uric acid, creatinine, hippuric acid, and 2-methylhippuric acid were detected in (nearly) all samples. However, homovanillic acid was detected in 40%, niacinamide in 4% and indole-3-acetic acid was never detected within the selected samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Paoloni, Angela; Alunni, Sabrina; Pelliccia, Alessandro; Pecorelli, Ivan
2016-01-01
A simple and straightforward method for simultaneous determination of residues of 13 pesticides in honey samples (acrinathrin, bifenthrin, bromopropylate, cyhalothrin-lambda, cypermethrin, chlorfenvinphos, chlorpyrifos, coumaphos, deltamethrin, fluvalinate-tau, malathion, permethrin and tetradifon) from different pesticide classes has been developed and validated. The analytical method provides dissolution of honey in water and an extraction of pesticide residues by n-Hexane followed by clean-up on a Florisil SPE column. The extract was evaporated and taken up by a solution of an injection internal standard (I-IS), ethion, and finally analyzed by capillary gas chromatography with electron capture detection (GC-µECD). Identification for qualitative purpose was conducted by gas chromatography with triple quadrupole mass spectrometer (GC-MS/MS). A matrix-matched calibration curve was performed for quantitative purposes by plotting the area ratio (analyte/I-IS) against concentration using a GC-µECD instrument. According to document No. SANCO/12571/2013, the method was validated by testing the following parameters: linearity, matrix effect, specificity, precision, trueness (bias) and measurement uncertainty. The analytical process was validated analyzing blank honey samples spiked at levels equal to and greater than 0.010 mg/kg (limit of quantification). All parameters were satisfactorily compared with the values established by document No. SANCO/12571/2013. The analytical performance was verified by participating in eight multi-residue proficiency tests organized by BIPEA, obtaining satisfactory z-scores in all 70 determinations. Measurement uncertainty was estimated according to the top-down approaches described in Appendix C of the SANCO document using the within-laboratory reproducibility relative standard deviation combined with laboratory bias using the proficiency test data.
Rapid multiplexed genotyping for hereditary thrombophilia by SELDI-TOF mass spectrometry.
Yang, Shangbin; Xu, Lihui; Wu, Haifeng M
2010-03-01
Approximately 50% of patients with venous thromboembolism also present with hereditary predisposition. The most common genetic factors are single nucleotide polymorphisms (SNPs) of factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T. Genotyping these SNPs helps clinicians to correctly diagnose the disease and properly manage patients. In this study, we report a novel method using surface-enhanced laser desorption and ionization time of flight mass spectrometry to rapidly genotype, in a multiplex fashion, 3 SNPs that predispose patients to thrombosis. First, patient DNA samples were subjected to polymerase chain reaction to amplify and extend the DNA products with masses corresponding to specific genotypes. Polymerase chain reaction products were then applied to Q10 anionic protein chips, undergoing on-chip sample enrichment and clean-up. Finally, the genotypes of the SNPs were determined by surface-enhanced laser desorption and ionization time of flight mass spectrometry. This method offers a rapid turnaround time of less than 5 hours from sample collection to result reporting. The analytical accuracy of each SNP genotyping result has been confirmed by DNA sequencing. In addition, the genotype results produced by this method were validated by comparing them with results obtained by the approved method in the clinical reference laboratory. This novel method is fast, accurate, and reproducible, and thus provides an excellent platform to promote personalized medicine in the management of clotting disorders.
Identification of Microorganisms by Modern Analytical Techniques.
Buszewski, Bogusław; Rogowska, Agnieszka; Pomastowski, Paweł; Złoch, Michał; Railean-Plugaru, Viorica
2017-11-01
Rapid detection and identification of microorganisms is a challenging and important aspect in a wide range of fields, from medical to industrial, affecting human lives. Unfortunately, classical methods of microorganism identification are based on time-consuming and labor-intensive approaches. Screening techniques require the rapid and cheap grouping of bacterial isolates; however, modern bioanalytics demand comprehensive bacterial studies at a molecular level. Modern approaches for the rapid identification of bacteria use molecular techniques, such as 16S ribosomal RNA gene sequencing based on polymerase chain reaction or electromigration, especially capillary zone electrophoresis and capillary isoelectric focusing. However, there are still several challenges with the analysis of microbial complexes using electromigration technology, such as uncontrolled aggregation and/or adhesion to the capillary surface. Thus, an approach using capillary electrophoresis of microbial aggregates with UV and matrix-assisted laser desorption ionization time-of-flight MS detection is presented.
Colby, Donn J; Trautmann, Lydie; Pinyakorn, Suteeraporn; Leyre, Louise; Pagliuzza, Amélie; Kroon, Eugène; Rolland, Morgane; Takata, Hiroshi; Buranapraditkun, Supranee; Intasan, Jintana; Chomchey, Nitiya; Muir, Roshell; Haddad, Elias K; Tovanabutra, Sodsai; Ubolyam, Sasiwimol; Bolton, Diane L; Fullmer, Brandie A; Gorelick, Robert J; Fox, Lawrence; Crowell, Trevor A; Trichavaroj, Rapee; O'Connell, Robert; Chomont, Nicolas; Kim, Jerome H; Michael, Nelson L; Robb, Merlin L; Phanuphak, Nittaya; Ananworanich, Jintanat
2018-06-11
Antiretroviral therapy during the earliest stage of acute HIV infection (Fiebig I) might minimize establishment of a latent HIV reservoir and thereby facilitate viremic control after analytical treatment interruption. We show that 8 participants, who initiated treatment during Fiebig I and were treated for a median of 2.8 years, all experienced rapid viral load rebound following analytical treatment interruption, indicating that additional strategies are required to control or eradicate HIV.
Desforges, Jean-Pierre; Eulaers, Igor; Periard, Luke; Sonne, Christian; Dietz, Rune; Letcher, Robert J
2017-06-01
In vitro investigations of the health impact of individual chemical compounds have traditionally been used in risk assessments. However, humans and wildlife are exposed to a plethora of potentially harmful chemicals, including organohalogen contaminants (OHCs). An alternative exposure approach to individual or simple mixtures of synthetic OHCs is to isolate the complex mixture present in free-ranging wildlife, often non-destructively sampled from lipid rich adipose. High concentration stock volumes required for in vitro investigations do, however, pose a great analytical challenge to extract sufficient amounts of complex OHC cocktails. Here we describe a novel method to easily, rapidly and efficiently extract an environmentally accumulated and therefore relevant contaminant cocktail from large (10-50 g) marine mammal blubber samples. We demonstrate that lipid freeze-filtration with acetonitrile removes up to 97% of blubber lipids, with minimal effect on the efficiency of OHC recovery. Sample extracts after freeze-filtration were further processed to remove residual trace lipids via high-pressure gel permeation chromatography and solid phase extraction. Average recoveries of OHCs from triplicate analysis of killer whale (Orcinus orca), polar bear (Ursus maritimus) and pilot whale (Globicephala spp.) blubber standard reference material (NIST SRM-1945) ranged from 68 to 80%, 54-92% and 58-145%, respectively, for 13 C-enriched internal standards of six polychlorinated biphenyl congeners, 16 organochlorine pesticides and four brominated flame retardants. This approach to rapidly generate OHC mixtures shows great potential for experimental exposures using complex contaminant mixtures, research or monitoring driven contaminant quantification in biological samples, as well as the untargeted identification of emerging contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bian, Xiao-Peng; Yang, Tao; Lin, An-Jun; Jiang, Shao-Yong
2015-01-01
We have developed a technique for the rapid, precise and accurate determination of sulfur isotopes (δ(34)S) by MC-ICP-MS applicable to a range of sulfur-bearing solutions of different sulfur content. The 10 ppm Alfa-S solution (ammonium sulfate solution, working standard of the lab of the authors) was used to bracket other Alfa-S solutions of different concentrations and the measured δ(34)SV-CDT values of Alfa-S solutions deviate from the reference value to varying degrees (concentration effect). The stability of concentration effect has been verified and a correction curve has been constructed based on Alfa-S solutions to correct measured δ(34)SV-CDT values. The curve has been applied to AS solutions (dissolved ammonium sulfate from the lab of the authors) and pore water samples successfully, validating the reliability of our analytical method. This method also enables us to measure the sulfur concentration simultaneously when analyzing the sulfur isotope composition. There is a strong linear correlation (R(2)>0.999) between the sulfur concentrations and the intensity ratios of samples and the standard. We have constructed a regression curve based on Alfa-S solutions and this curve has been successfully used to determine sulfur concentrations of AS solutions and pore water samples. The analytical technique presented here enable rapid, precise and accurate S isotope measurement for a wide range of sulfur-bearing solutions - in particular for pore water samples with complex matrix and varying sulfur concentrations. Also, simultaneous measurement of sulfur concentrations is available. Copyright © 2014 Elsevier B.V. All rights reserved.
2009-01-01
Background Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI) compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enrichment steps, which are onerous when multiple samples need to be analyzed. In contrast to aliphatic molecules, more polar substances containing free carboxyl groups such as some phytohormones are efficiently ionized by ESI and suitable for analysis by LC-MS/MS. Thus, the development of a method with which aliphatic and polar molecules -which their unmodified forms differ dramatically in their efficiencies of ionization by ESI- can be simultaneously detected with similar sensitivities would substantially simplify the analysis of complex biological matrices. Results A simple, rapid, specific and sensitive method for the simultaneous detection and quantification of free aliphatic molecules (e.g., free fatty acids (FFA)) and small polar molecules (e.g., jasmonic acid (JA), salicylic acid (SA)) containing free carboxyl groups by direct derivatization of leaf extracts with Picolinyl reagent followed by LC-MS/MS analysis is presented. The presence of the N atom in the esterified pyridine moiety allowed the efficient ionization of 25 compounds tested irrespective of their chemical structure. The method was validated by comparing the results obtained after analysis of Nicotiana attenuata leaf material with previously described analytical methods. Conclusion The method presented was used to detect 16 compounds in leaf extracts of N. attenuata plants. Importantly, the method can be adapted based on the specific analytes of interest with the only consideration that the molecules must contain at least one free carboxyl group. PMID:19939243
Visual Analytics in Public Safety: Example Capabilities for Example Government Agencies
2011-10-01
is not limited to: the Police Records Information Management Environment for British Columbia (PRIME-BC), the Police Reporting and Occurrence System...and filtering for rapid identification of relevant documents - Graphical environment for visual evidence marshaling - Interactive linking and...analytical reasoning facilitated by interactive visual interfaces and integration with computational analytics. Indeed, a wide variety of technologies
Wille, Klaas; Claessens, Michiel; Rappé, Karen; Monteyne, Els; Janssen, Colin R; De Brabander, Hubert F; Vanhaecke, Lynn
2011-12-23
The presence of both pharmaceuticals and pesticides in the aquatic environment has become a well-known environmental issue during the last decade. An increasing demand however still exists for sensitive and reliable monitoring tools for these rather polar contaminants in the marine environment. In recent years, the great potential of passive samplers or equilibrium based sampling techniques for evaluation of the fate of these contaminants has been shown in literature. Therefore, we developed a new analytical method for the quantification of a high number of pharmaceuticals and pesticides in passive sampling devices. The analytical procedure consisted of extraction using 1:1 methanol/acetonitrile followed by detection with ultra-high performance liquid chromatography coupled to high resolution and high mass accuracy Orbitrap mass spectrometry. Validation of the analytical method resulted in limits of quantification and recoveries ranging between 0.2 and 20 ng per sampler sheet and between 87.9 and 105.2%, respectively. Determination of the sampler-water partition coefficients of all compounds demonstrated that several pharmaceuticals and most pesticides exert a high affinity for the polydimethylsiloxane passive samplers. Finally, the developed analytical methods were used to measure the time-weighted average (TWA) concentrations of the targeted pollutants in passive samplers, deployed at eight stations in the Belgian coastal zone. Propranolol, carbamazepine and seven pesticides were found to be very abundant in the passive samplers. These obtained long-term and large-scale TWA concentrations will contribute in assessing the environmental and human health risk of these emerging pollutants. Copyright © 2011 Elsevier B.V. All rights reserved.
Transient Effects in Planar Solidification of Dilute Binary Alloys
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Volz, Martin P.
2008-01-01
The initial transient during planar solidification of dilute binary alloys is studied in the framework of the boundary integral method that leads to the non-linear Volterra integral governing equation. An analytical solution of this equation is obtained for the case of a constant growth rate which constitutes the well-known Tiller's formula for the solute transient. The more physically relevant, constant ramping down temperature case has been studied both numerically and analytically. In particular, an asymptotic analytical solution is obtained for the initial transient behavior. A numerical technique to solve the non-linear Volterra equation is developed and the solution is obtained for a family of the governing parameters. For the rapid solidification condition, growth rate spikes have been observed even for the infinite kinetics model. When recirculating fluid flow is included into the analysis, the spike feature is dramatically diminished. Finally, we have investigated planar solidification with a fluctuating temperature field as a possible mechanism for frequently observed solute trapping bands.
Analytical Tools to Improve Optimization Procedures for Lateral Flow Assays
Hsieh, Helen V.; Dantzler, Jeffrey L.; Weigl, Bernhard H.
2017-01-01
Immunochromatographic or lateral flow assays (LFAs) are inexpensive, easy to use, point-of-care medical diagnostic tests that are found in arenas ranging from a doctor’s office in Manhattan to a rural medical clinic in low resource settings. The simplicity in the LFA itself belies the complex task of optimization required to make the test sensitive, rapid and easy to use. Currently, the manufacturers develop LFAs by empirical optimization of material components (e.g., analytical membranes, conjugate pads and sample pads), biological reagents (e.g., antibodies, blocking reagents and buffers) and the design of delivery geometry. In this paper, we will review conventional optimization and then focus on the latter and outline analytical tools, such as dynamic light scattering and optical biosensors, as well as methods, such as microfluidic flow design and mechanistic models. We are applying these tools to find non-obvious optima of lateral flow assays for improved sensitivity, specificity and manufacturing robustness. PMID:28555034
Development and analytical performance evaluation of FREND-SAA and FREND-Hp
NASA Astrophysics Data System (ADS)
Choi, Eunha; Seong, Jihyun; Lee, Seiyoung; Han, Sunmi
2017-07-01
The FREND System is a portable cartridge reader, quantifying analytes by measuring laser-induced fluorescence in a single-use reagent cartridge. The objective of this study was to evaluate FREND-SAA and FREND-Hp assays. The FREND-SAA and Hp assays were standardized to the WHO and IFCC reference materials. Analytical performance studies of Precision, Linearity, Limits of Detections, Interferences, and Method Comparisons for both assays were performed according to the CLSI guidelines. Both assays demonstrated acceptable imprecision of %CV in three different levels of samples. The linearity of the assays was found to be acceptable (SAA 5 150 mg/L, Hp 30 400 mg/dL). The detection limits were 3.8 mg/L (SAA) and 10.2 mg/dL (Hp). No significant interference and no significant deviation from linearity was found in the both comparison studies. In conclusion, NanoEnTek's FREND-SAA and Hp assays represent rapid, accurate and convenient means to quantify SAA and Hp in human serum on FREND system.
Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Rezaee Aghdam, Samaneh; Nouri, Nina; Bamorrowat, Mahdi
2016-12-01
In the present study, an elevated temperature, dispersive, liquid-liquid microextraction/gas chromatography-flame ionization detection was investigated for the determination, pre-concentration, and extraction of six organophosphorus pesticides (malathion, phosalone, dichlorvos, diazinon, profenofos, and chlorpyrifos) residues in fruit juice and aqueous samples. A mixture of 1,2-dibromoethane (extraction solvent) and dimethyl sulfoxide (disperser solvent) was injected rapidly into the sample solution heated at an elevated temperature. Analytical parameters, including enrichment factors (1600-2075), linearity (r>0.994), limits of detection (0.82-2.72ngmL(-1)) and quantification (2.60-7.36ngmL(-1)), relative standard deviations (<7%) and extraction recoveries (64-83%), showed the high efficiency of the method developed for analysis of the target analytes. The proposed procedure was used effectively to analyse selected analytes in river water and fruit juice, and diazinon was found at ngmL(-1) concentrations in apple juice. Copyright © 2016 Elsevier Ltd. All rights reserved.
Asano, Hitoshi; Shiraishi, Yukihide
2015-07-09
This paper describes a paper-based microfluidic analytical device for iron assay using a photomask printed with a 3D printer for fabrication of hydrophilic and hydrophobic zones on the paper by photolithography. Several designed photomasks for patterning paper-based microfluidic analytical devices can be printed with a 3D printer easily, rapidly and inexpensively. A chromatography paper was impregnated with the octadecyltrichlorosilane n-hexane solution and hydrophobized. After the hydrophobic zone of the paper was exposed to the UV light through the photomask, the hydrophilic zone was generated. The smallest functional hydrophilic channel and hydrophobic barrier were ca. 500 μm and ca. 100 μm in width, respectively. The fabrication method has high stability, resolution and precision for hydrophilic channel and hydrophobic barrier. This test paper was applied to the analysis of iron in water samples using a colorimetry with phenanthroline. Copyright © 2015 Elsevier B.V. All rights reserved.
McDonald, Mark; Mannion, Celine; Rafter, Paul
2009-11-13
A rapid confirmatory multi-residue method for the analysis of tetracyclines, sulphonamides, trimethoprim and dapsone by UPLC-MS/MS is described. The method is able to quantify and confirm the following 19 compounds, oxytetracycline, tetracycline, chlortetracycline, doxycycline, sulfadiazine, sulfathiazole, sulfapyridine, trimethoprim, sulfamerazine, sulfamethizole, sulfamethazine, sulfamethoxypyridazine, sulfamonomethoxine, sulfachlorpyridazine, dapsone, sulfamethoxazole, sulfisoxazole, sulfaquinoxaline and sulfadimethoxine. Samples are extracted with 0.1M EDTA and acetonitrile, which is then evaporated under a stream of nitrogen and reconstituted in water. Following centrifugation and filtering, an aliquot is analysed by UPLC-MS/MS using positive electrospray ionisation and multiple reaction monitoring. The method is deemed rapid as all analytes are extracted by a single extraction technique, with no solid-phase extraction clean up required. Validation is according to Commission Decision 2002/657/EC and was carried out for bovine, porcine, ovine and poultry species. Specificity, recovery, repeatability, reproducibility, CCalpha and CCbeta data is presented.
Pierson, Stephen A; Trujillo-Rodríguez, María J; Anderson, Jared L
2018-05-29
An ionic-liquid-based in situ dispersive liquid-liquid microextraction method coupled to headspace gas chromatography and mass spectrometry was developed for the rapid analysis of ultraviolet filters. The chemical structures of five ionic liquids were specifically designed to incorporate various functional groups for the favorable extraction of the target analytes. Extraction parameters including ionic liquid mass, molar ratio of ionic liquid to metathesis reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. The effect of the headspace temperature and volume during the headspace sampling step was also evaluated to increase the sensitivity of the method. The optimized procedure is fast as it only required ∼7-10 min per extraction and allowed for multiple extractions to be performed simultaneously. In addition, the method exhibited high precision, good linearity, and low limits of detection for six ultraviolet filters in aqueous samples. The developed method was applied to both pool and lake water samples attaining acceptable relative recovery values. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ostrinskaya, Alla; Kunz, Roderick R; Clark, Michelle; Kingsborough, Richard P; Ong, Ta-Hsuan; Deneault, Sandra
2018-05-24
A flow-injection analysis tandem mass spectrometry (FIA MSMS) method was developed for rapid quantitative analysis of 10 different inorganic and organic explosives. Performance is optimized by tailoring the ionization method (APCI/ESI), de-clustering potentials, and collision energies for each specific analyte. In doing so, a single instrument can be used to detect urea nitrate, potassium chlorate, 2,4,6-trinitrotoluene, 2,4,6-trinitrophenylmethylnitramine, triacetone triperoxide, hexamethylene triperoxide diamine, pentaerythritol tetranitrate, 1,3,5-trinitroperhydro-1,3,5-triazine, nitroglycerin, and octohy-dro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine with sensitivities all in the picogram per milliliter range. In conclusion, FIA APCI/ESI MSMS is a fast (<1 min/sample), sensitive (~pg/mL LOQ), and precise (intraday RSD < 10%) method for trace explosive detection that can play an important role in criminal and attributional forensics, counterterrorism, and environmental protection areas, and has the potential to augment or replace several of the existing explosive detection methods. © 2018 American Academy of Forensic Sciences.
Salvatierra Virgen, Sara; Ceballos-Magaña, Silvia Guillermina; Salvatierra-Stamp, Vilma Del Carmen; Sumaya-Martínez, Maria Teresa; Martínez-Martínez, Francisco Javier; Muñiz-Valencia, Roberto
2017-12-01
In recent years, there has been an increased concern about the presence of toxic compounds derived from the Maillard reaction produced during food cooking at high temperatures. The main toxic compounds derived from this reaction are acrylamide and hydroxymethylfurfural (HMF). The majority of analytical methods require sample treatments using solvents which are highly polluting for the environment. The difficulty of quantifying HMF in complex fried food matrices encourages the development of new analytical methods. This paper provides a rapid, sensitive and environmentally-friendly analytical method for the quantification of HMF in corn chips using HPLC-DAD. Chromatographic separation resulted in a baseline separation for HMF in 3.7 min. Sample treatment for corn chip samples first involved a leaching process using water and afterwards a solid-phase extraction (SPE) using HLB-Oasis polymeric cartridges. Sample treatment optimisation was carried out by means of Box-Behnken fractional factorial design and Response Surface Methodolog y to examine the effects of four variables (sample weight, pH, sonication time and elution volume) on HMF extraction from corn chips. The SPE-HPLC-DAD method was validated. The limits of detection and quantification were 0.82 and 2.20 mg kg -1 , respectively. Method precision was evaluated in terms of repeatability and reproducibility as relative standard deviations (RSDs) using three concentration levels. For repeatability, RSD values were 6.9, 3.6 and 2.0%; and for reproducibility 18.8, 7.9 and 2.9%. For a ruggedness study the Yuden test was applied and the result demonstrated the method as robust. The method was successfully applied to different corn chip samples.
Analytical sensitivity of current best-in-class malaria rapid diagnostic tests.
Jimenez, Alfons; Rees-Channer, Roxanne R; Perera, Rushini; Gamboa, Dionicia; Chiodini, Peter L; González, Iveth J; Mayor, Alfredo; Ding, Xavier C
2017-03-24
Rapid diagnostic tests (RDTs) are today the most widely used method for malaria diagnosis and are recommended, alongside microscopy, for the confirmation of suspected cases before the administration of anti-malarial treatment. The diagnostic performance of RDTs, as compared to microscopy or PCR is well described but the actual analytical sensitivity of current best-in-class tests is poorly documented. This value is however a key performance indicator and a benchmark value needed to developed new RDTs of improved sensitivity. Thirteen RDTs detecting either the Plasmodium falciparum histidine rich protein 2 (HRP2) or the plasmodial lactate dehydrogenase (pLDH) antigens were selected from the best performing RDTs according to the WHO-FIND product testing programme. The analytical sensitivity of these products was evaluated using a range of reference materials including P. falciparum and Plasmodium vivax whole parasite samples as well as recombinant proteins. The best performing HRP2-based RDTs could detect all P. falciparum cultured samples at concentrations as low as 0.8 ng/mL of HRP2. The limit of detection of the best performing pLDH-based RDT specifically detecting P. vivax was 25 ng/mL of pLDH. The analytical sensitivity of P. vivax and Pan pLDH-based RDTs appears to vary considerably from product to product, and improvement of the limit-of-detection for P. vivax detecting RDTs is needed to match the performance of HRP2 and Pf pLDH-based RDTs for P. falciparum. Different assays using different reference materials produce different values for antigen concentration in a given specimen, highlighting the need to establish universal reference assays.
Song, Yuelin; Song, Qingqing; Li, Jun; Zheng, Jiao; Li, Chun; Zhang, Yuan; Zhang, Lingling; Jiang, Yong; Tu, Pengfei
2016-07-08
Direct analysis is of great importance to understand the real chemical profile of a given sample, notably biological materials, because either chemical degradation or diverse errors and uncertainties might be resulted from sophisticated protocols. In comparison with biofluids, it is still challenging for direct analysis of solid biological samples using high performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Herein, a new analytical platform was configured by online hyphenating pressurized liquid extraction (PLE), turbulent flow chromatography (TFC), and LC-MS/MS. A facile, but robust PLE module was constructed based on the phenomenon that noticeable back-pressure can be generated during rapid fluid passing through a narrow tube. TFC column that is advantageous at extracting low molecular analytes from rushing fluid was employed to link at the outlet of the PLE module to capture constituents-of-interest. An electronic 6-port/2-position valve was introduced between TFC column and LC-MS/MS to fragment each measurement into extraction and elution phases, whereas LC-MS/MS took the charge of analyte separation and monitoring. As a proof of concept, simultaneous determination of 24 endogenous substances including eighteen steroids, five eicosanoids, and one porphyrin in feces was carried out in this paper. Method validation assays demonstrated the analytical platform to be qualified for directly simultaneous measurement of diverse endogenous analytes in fecal matrices. Application of this integrated platform on homolog-focused profiling of feces is discussed in a companion paper. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhu, Zhiqiang; Han, Jing; Zhang, Yan; Zhou, Yafei; Xu, Ning; Zhang, Bo; Gu, Haiwei; Chen, Huanwen
2012-12-15
Desorption electrospray ionization (DESI) is the most popular ambient ionization technique for direct analysis of complex samples without sample pretreatment. However, for many applications, especially for trace analysis, it is of interest to improve the sensitivity of DESI-mass spectrometry (MS). In traditional DESI-MS, a mixture of methanol/water/acetic acid is usually used to generate the primary ions. In this article, dilute protein solutions were electrosprayed in the DESI method to create multiply charged primary ions for the desorption ionization of trace analytes on various surfaces (e.g., filter paper, glass, Al-foil) without any sample pretreatment. The analyte ions were then detected and structurally characterized using a LTQ XL mass spectrometer. Compared with the methanol/water/acetic acid (49:49:2, v/v/v) solution, protein solutions significantly increased the signal levels of non-volatile compounds such as benzoic acid, TNT, o-toluidine, peptide and insulin in either positive or negative ion detection mode. For all the analytes tested, the limits of detection (LODs) were reduced to about half of the original values which were obtained using traditional DESI. The results showed that the signal enhancement is highly correlated with the molecular weight of the proteins and the selected solid surfaces. The proposed DESI method is a universal strategy for rapid and sensitive detection of trace amounts of strongly bound and/or non-volatile analytes, including explosives, peptides, and proteins. The results indicate that the sensitivity of DESI can be further improved by selecting larger proteins and appropriate solid surfaces. Copyright © 2012 John Wiley & Sons, Ltd.
Materials and Methods for Streamlined Laboratory Analysis of Environmental Samples, FY 2016 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addleman, Raymond S.; Naes, Benjamin E.; McNamara, Bruce K.
The International Atomic Energy Agency (IAEA) relies upon laboratory analysis of environmental samples (typically referred to as “swipes”) collected during on-site inspections of safeguarded facilities to support the detection and deterrence of undeclared activities. Unfortunately, chemical processing and assay of the samples is slow and expensive. A rapid, effective, and simple extraction process and analysis method is needed to provide certified results with improved timeliness at reduced costs (principally in the form of reduced labor), while maintaining or improving sensitivity and efficacy. To address these safeguard needs the Pacific Northwest National Laboratory (PNNL) explored and demonstrated improved methods for environmentalmore » sample (ES) analysis. Improvements for both bulk and particle analysis were explored. To facilitate continuity and adoption, the new sampling materials and processing methods will be compatible with existing IAEA protocols for ES analysis. PNNL collaborated with Oak Ridge National Laboratory (ORNL), which performed independent validation of the new bulk analysis methods and compared performance to traditional IAEA’s Network of Analytical Laboratories (NWAL) protocol. ORNL efforts are reported separately. This report describes PNNL’s FY 2016 progress, which was focused on analytical application supporting environmental monitoring of uranium enrichment plants and nuclear fuel processing. In the future the technology could be applied to other safeguard applications and analytes related to fuel manufacturing, reprocessing, etc. PNNL’s FY 2016 efforts were broken into two tasks and a summary of progress, accomplishments and highlights are provided below. Principal progress and accomplishments on Task 1, Optimize Materials and Methods for ICP-MS Environmental Sample Analysis, are listed below. • Completed initial procedure for rapid uranium extraction from ES swipes based upon carbonate-peroxide chemistry (delivered to ORNL for evaluation). • Explored improvements to carbonate-peroxide rapid uranium extraction chemistry. • Evaluated new sampling materials and methods (in collaboration with ORNL). • Demonstrated successful ES extractions from standard and novel swipes for a wide range uranium compounds of interest including UO 2F 2 and UO 2(NO 3) 2, U 3O 8 and uranium ore concentrate. • Completed initial discussions with commercial suppliers of PTFE swipe materials. • Submitted one manuscript for publication. Two additional drafts are being prepared. Principal progress and accomplishments on Task 2, Optimize Materials and Methods for Direct SIMS Environmental Sample Analysis, are listed below. • Designed a SIMS swipe sample holder that retrofits into existing equipment and provides simple, effective, and rapid mounting of ES samples for direct assay while enabling automation and laboratory integration. • Identified preferred conductive sampling materials with better performance characteristics. • Ran samples on the new PNNL NWAL equivalent Cameca 1280 SIMS system. • Obtained excellent agreement between isotopic ratios for certified materials and direct SIMS assay of very low levels of LEU and HEU UO 2F 2 particles on carbon fiber sampling material. Sample activities range from 1 to 500 CPM (uranium mass on sample is dependent upon specific isotope ratio but is frequently in the subnanogram range). • Found that the presence of the UF molecular ions, as measured by SIMS, provides chemical information about the particle that is separate from the uranium isotopics and strongly suggests that those particles originated from an UF6 enrichment activity. • Submitted one manuscript for publication. Another manuscript is in preparation.« less
Wang, Yuanyuan; Li, Xiaowei; Zhang, Zhiwen; Ding, Shuangyang; Jiang, Haiyang; Li, Jiancheng; Shen, Jianzhong; Xia, Xi
2016-02-01
A sensitive, confirmatory ultra-high performance liquid chromatography-tandem mass spectrometric method was developed and validated to detect 23 veterinary drugs and metabolites (nitroimidazoles, benzimidazoles, and chloramphenicol components) in bovine milk. Compounds of interest were sequentially extracted from milk with acetonitrile and basified acetonitrile using sodium chloride to induce liquid-liquid partition. The extract was purified on a mixed mode solid-phase extraction cartridge. Using rapid polarity switching in electrospray ionization, a single injection was capable of detecting both positively and negatively charged analytes in a 9 min chromatography run time. Recoveries based on matrix-matched calibrations and isotope labeled internal standards for milk ranged from 51.7% to 101.8%. The detection limits and quantitation limits of the analytical method were found to be within the range of 2-20 ng/kg and 5-50 ng/kg, respectively. The recommended method is simple, specific, and reliable for the routine monitoring of nitroimidazoles, benzimidazoles, and chloramphenicol components in bovine milk samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Caballo, Carmen; Costi, Esther María; Sicilia, María Dolores; Rubio, Soledad
2012-09-15
Development of simple and rapid analytical methods for predicting supplemental feeding requirements in aquaculture is a need to reduce production costs. In this article, a supramolecular solvent (SUPRAS) made up of decanoic acid (DeA) assemblies was proposed to simplify sample treatment in the total and individual determination of carotenoids (red-pink pigments) in farmed salmonids. The analytes were quantitatively extracted in a single step that spends a few minutes using a small volume of SUPRAS (i.e. 800 μL) and directly determined in extracts without the interference from fats or other matrix components. The methods based on the combination of microextraction with SUPRAS and photometry or HPLC-UV/VIS spectroscopy were developed for the determination of total and individual carotenoids, respectively. The applicability of the methods was demonstrated by analysing non-fortified and fortified samples of farmed Atlantic salmons and rainbow trouts. Recoveries obtained by photometry and HPLC-UV/VIS spectroscopy were within the intervals 98-104% and 94-106%, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Liu, Xiaolu; Yang, Tao; Hu, Jiye
2013-01-01
A method has been developed and established for residue determination of benazolin-ethyl in soil and rape seed samples by gas chromatography with electron capture detection (GC-ECD). Limits of quantification of the method are 0.005 mg/kg for both soil and rape seed, which are sufficiently below the maximum residue limit, and the limit of detection is 0.0023 ng. The average recoveries of the analyte range from 85.89 to 105.84% with relative standard deviations (coefficient of variation) less than 5.53% at the three spike levels (0.005, 0.1 and 0.5 mg/kg). The half-life of benazolin-ethyl in soil from the experimental field is 4.62 days. The final residues of benazolin-ethyl in soil and rape seed samples are lower than 0.005 mg/kg at harvest time. Direct confirmation of the analyte in real samples is achieved by GC-mass spectrometry. It is demonstrated that the proposed method is simple, rapid and efficient, and reliable to detect benazolin-ethyl residues in soil and rape seed samples.
Criado-García, Laura; Garrido-Delgado, Rocío; Arce, Lourdes; Valcárcel, Miguel
2013-07-15
An UV-Ion Mobility Spectrometer is a simple, rapid, inexpensive instrument widely used in environmental analysis among other fields. The advantageous features of its underlying technology can be of great help towards developing reliable, economical methods for determining gaseous compounds from gaseous, liquid and solid samples. Developing an effective method using UV-Ion Mobility Spectrometry (UV-IMS) to determine volatile analytes entails using appropriate gaseous standards for calibrating the spectrometer. In this work, two home-made sample introduction systems (SISs) and a commercial gas generator were used to obtain such gaseous standards. The first home-made SIS used was a static head-space to measure compounds present in liquid samples and the other home-made system was an exponential dilution set-up to measure compounds present in gaseous samples. Gaseous compounds generated by each method were determined on-line by UV-IMS. Target analytes chosen for this comparative study were ethanol, acetone, benzene, toluene, ethylbenzene and xylene isomers. The different alternatives were acceptable in terms of sensitivity, precision and selectivity. Copyright © 2013 Elsevier B.V. All rights reserved.