Science.gov

Sample records for rapid cluster survey

  1. Household disaster preparedness and information sources: Rapid cluster survey after a storm in New South Wales, Australia

    PubMed Central

    Cretikos, Michelle; Eastwood, Keith; Dalton, Craig; Merritt, Tony; Tuyl, Frank; Winn, Linda; Durrheim, David

    2008-01-01

    Background A storm-related disaster in New South Wales, Australia in June 2007 caused infrastructure damage, interrupted essential services, and presented major public health risks. We investigated household disaster preparedness and information sources used before and during the disaster. Methods Rapid cluster survey of 320 randomly selected households in Newcastle and Lake Macquarie, New South Wales, Australia. Results 227 households (71%) responded to the survey. By the day before the storm, 48% (95%CI 40–57%) of households were aware of a storm warning, principally through television (67%; 58–75%) and radio (57%; 49–66%) announcements. Storm preparations were made by 42% (28–56%) of these households. Storm information sources included: radio (78%; 68–88%); family, friends, colleagues and neighbours (50%; 40–60%); and television (41%; 30–52%). Radio was considered more useful than television (62%; 51–73% vs. 29%; 18–40%), even in households where electricity supply was uninterrupted (52%; 31–73% vs. 41%; 20–63%). Only 23% (16–30%) of households were aware that the local government-operated radio network has a designated communication role during disasters. A battery-operated household radio and appropriate batteries were available in 42% (34–50%) of households, while only 23% (16–29%) had all of: a torch, battery-operated radio, appropriate batteries, mobile phone, emergency contact list and first aid equipment. Conclusion Broadcast media are important information sources immediately before and during disasters. Health services should promote awareness of broadcast networks' disaster role, especially the role of radio, and encourage general household disaster preparedness. A rapid cluster survey conducted shortly after a natural disaster provided practical, robust information for disaster planning. PMID:18533010

  2. SACS: Spitzer Archival Cluster Survey

    NASA Astrophysics Data System (ADS)

    Stern, Daniel

    Emerging from the cosmic web, galaxy clusters are the most massive gravitationally bound structures in the universe. Thought to have begun their assembly at z > 2, clusters provide insights into the growth of large-scale structure as well as the physics that drives galaxy evolution. Understanding how and when the most massive galaxies assemble their stellar mass, stop forming stars, and acquire their observed morphologies in these environments remain outstanding questions. The redshift range 1.3 < z < 2 is a key epoch in this respect: elliptical galaxies start to become the dominant population in cluster cores, and star formation in spiral galaxies is being quenched. Until recently, however, this redshift range was essentially unreachable with available instrumentation, with clusters at these redshifts exceedingly challenging to identify from either ground-based optical/nearinfrared imaging or from X-ray surveys. Mid-infrared (MIR) imaging with the IRAC camera on board of the Spitzer Space Telescope has changed the landscape. High-redshift clusters are easily identified in the MIR due to a combination of the unique colors of distant galaxies and a negative k-correction in the 3-5 μm range which makes such galaxies bright. Even 90-sec observations with Spitzer/IRAC, a depth which essentially all extragalactic observations in the archive achieve, is sufficient to robustly detect overdensities of L* galaxies out to z~2. Here we request funding to embark on a ambitious scientific program, the “SACS: Spitzer Archival Cluster Survey”, a comprehensive search for the most distant galaxy clusters in all Spitzer/IRAC extragalactic pointings available in the archive. With the SACS we aim to discover ~2000 of 1.3 < z < 2.5 clusters, thus provide the ultimate catalog for high-redshift MIR selected clusters: a lasting legacy for Spitzer. The study we propose will increase by more than a factor of 10 the number of high-redshift clusters discovered by all previous surveys

  3. RELICS: Reionization Lensing Cluster Survey

    NASA Astrophysics Data System (ADS)

    Coe, Dan A.; RELICS Team

    2017-01-01

    Hubble and Spitzer imaging programs observing galaxy cluster lenses have delivered some of the highest redshift galaxy candidates to date (z ~ 9 - 11, or 540 - 410 Myr after the Big Bang). These magnified galaxies are intrinsically faint, and thus more representative of the sources believed to be primarily responsible for reionization. Magnified galaxies are also observed brightly enough to be prime targets for detailed follow-up study with current and future observatories, including JWST. Building on the successes of CLASH and the Frontier Fields, we have begun RELICS, the Reionization Lensing Cluster Survey. By observing 41 massive clusters for the first time at infrared wavelengths, RELICS will deliver more of the best and brightest high-redshift candidates to the community in time for the November 2017 JWST GO Cycle 1 call for proposals. I will present our early results. I will also discuss prospects for JWST to follow-up known candidates and discover new galaxies at even higher redshifts (z > 11). The discovery efficiency gains from lensing will be even more pronounced at z > 11 if luminosity function faint end slopes are steeper than alpha ~ -2, as suggested by current models and observational extrapolations.

  4. PHAT Stellar Cluster Survey. II. Andromeda Project Cluster Catalog

    NASA Astrophysics Data System (ADS)

    Johnson, L. Clifton; Seth, Anil C.; Dalcanton, Julianne J.; Wallace, Matthew L.; Simpson, Robert J.; Lintott, Chris J.; Kapadia, Amit; Skillman, Evan D.; Caldwell, Nelson; Fouesneau, Morgan; Weisz, Daniel R.; Williams, Benjamin F.; Beerman, Lori C.; Gouliermis, Dimitrios A.; Sarajedini, Ata

    2015-04-01

    We construct a stellar cluster catalog for the Panchromatic Hubble Andromeda Treasury (PHAT) survey using image classifications collected from the Andromeda Project citizen science website. We identify 2753 clusters and 2270 background galaxies within ˜0.5 deg2 of PHAT imaging searched, or ˜400 kpc2 in deprojected area at the distance of the Andromeda Galaxy (M31). These identifications result from 1.82 million classifications of ˜20,000 individual images (totaling ˜7 gigapixels) by tens of thousands of volunteers. We show that our crowd-sourced approach, which collects >80 classifications per image, provides a robust, repeatable method of cluster identification. The high spatial resolution Hubble Space Telescope images resolve individual stars in each cluster and are instrumental in the factor of ˜6 increase in the number of clusters known within the survey footprint. We measure integrated photometry in six filter passbands, ranging from the near-UV to the near-IR. PHAT clusters span a range of ˜8 magnitudes in F475W (g-band) luminosity, equivalent to ˜4 decades in cluster mass. We perform catalog completeness analysis using >3000 synthetic cluster simulations to determine robust detection limits and demonstrate that the catalog is 50% complete down to ˜500 {{M}⊙ } for ages <100 Myr. We include catalogs of clusters, background galaxies, remaining unselected candidates, and synthetic cluster simulations, making all information publicly available to the community. The catalog published here serves as the definitive base data product for PHAT cluster science, providing a census of star clusters in an {{L}\\star } spiral galaxy with unmatched sensitivity and quality.

  5. The Swift AGN and Cluster Survey

    NASA Astrophysics Data System (ADS)

    Danae Griffin, Rhiannon; Dai, Xinyu; Kochanek, Christopher S.; Bregman, Joel N.; Nugent, Jenna

    2016-01-01

    The Swift active galactic nucleus (AGN) and Cluster Survey (SACS) uses 125 deg^2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding X-ray bursts to provide a medium depth (4 × 10^-15 erg cm^-2 s^-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present the first two papers in a series of publications for SACS. In the first paper, we introduce our method and catalog of 22,563 point sources and 442 extended sources. We examine the number counts of the AGN and galaxy cluster populations. SACS provides excellent constraints on the AGN number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. The depth and areal coverage of SACS is well suited for galaxy cluster surveys outside the local universe, reaching z ˜ 1 for massive clusters. In the second paper, we use Sloan Digital Sky Survey (SDSS) DR8 data to study the 203 extended SACS sources that are located within the SDSS footprint. We search for galaxy over-densities in 3-D space using SDSS galaxies and their photometric redshifts near the Swift galaxy cluster candidates. We find 103 Swift clusters with a > 3σ over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, X-ray luminosity and red sequences. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≤ 0.3 and 80% complete for z ≤ 0.4, consistent with the survey depth of SDSS. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 2 and 1 matches in optical, X-ray and SZ catalogs, respectively, so the majority of these

  6. Time-Resolved Surveys of Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Eyer, Laurent; Eggenberger, Patrick; Greco, Claudia; Saesen, Sophie; Anderson, Richard I.; Mowlavi, Nami

    We describe the information that can be gained when a survey is done multi-epoch, and its particular impact in open cluster research. We first explain the irreplaceable information that multi-epoch observations are giving within astrometry, photometry and spectroscopy. Then we give three examples of results on open clusters from multi-epoch surveys, namely, the distance to the Pleiades, the angular momentum evolution of low mass stars and asteroseismology. Finally we mention several very large surveys, which are ongoing or planned for the future, Gaia, JASMINE, LSST, and VVV.

  7. Systematics in Connecting Cluster Surveys and Cosmology

    NASA Astrophysics Data System (ADS)

    Mohr, J. J.; Hoffman, M. B.; Bialek, J. J.; Evrard, A. E.

    2000-10-01

    Large cluster surveys which extend to intermediate and high redshift are powerful cosmological probes. Survey yields per solid angle depend on (i) the volume per solid angle as a function of redshift, (ii) the evolution of cluster number density with redshift, and (iii) the virial mass of the minimally detectable cluster as a function of redshift. The first two of these dependences are well understood theoretically for a wide range of cosmological parameters; however, the third dependence is more problematic, because it requires an understanding of the evolution of the relationship between the cluster virial mass and cluster observables like the X-ray emission weighted temperature, X-ray luminosity and Sunyaev-Zel'dovich effect (SZE) decrement. We use hydrodynamical simulations of cluster formation to examine the effects of preheating-- the entropy increase in intergalactic gas before cluster formation-- on X-ray and SZE cluster survey yields. The source of this preheating is presumably galaxy formation, and evidence supporting preheating (or perhaps some other physics) lies in the steepness of the local X-ray luminosity-temperature, intracluster medium mass-temperature and X-ray isophotal size-temperature relations. We tune the preheating level to reproduce these local cluster scaling relations. We use these simulations to estimate the impact of preheating on the accuracy of cosmological parameters inferred from X-ray and SZE cluster surveys. Finally, we discuss future observations which can further constrain preheating models, and we discuss analyses which are less sensitive to biases from unknown aspects of preheating. JJM is supported by Chandra Fellowship grant PF8-1003, awarded through the Chandra Science Center. AEE acknowledges support from NSF AST-9803199 and NASA NAG5-8458.

  8. Using cluster analysis to explore survey data.

    PubMed

    Spencer, Llinos; Roberts, Gwerfyl; Irvine, Fiona; Jones, Peter; Baker, Colin

    2007-01-01

    Llinos Haf Spencer reports on the use of the cluster analysis statistical technique in nursing research and uses data from the Welsh Language Awareness in Healthcare Provision in Wales survey as an exemplar She concludes that cluster analysis is a valuable tool to tease out patterns in data that are not initially evident in bivariate analyses and thus should be considered as a viable option for nursing research.

  9. Cluster cosmology with next-generation surveys.

    NASA Astrophysics Data System (ADS)

    Ascaso, B.

    2017-03-01

    The advent of next-generation surveys will provide a large number of cluster detections that will serve the basis for constraining cos mological parameters using cluster counts. The main two observational ingredients needed are the cluster selection function and the calibration of the mass-observable relation. In this talk, we present the methodology designed to obtain robust predictions of both ingredients based on realistic cosmological simulations mimicking the following next-generation surveys: J-PAS, LSST and Euclid. We display recent results on the selection functions for these mentioned surveys together with others coming from other next-generation surveys such as eROSITA, ACTpol and SPTpol. We notice that the optical and IR surveys will reach the lowest masses between 0.3surveys and introduce very preliminary results.

  10. ChaMP Serendipitous Galaxy Cluster Survey

    SciTech Connect

    Barkhouse, Wayne A.; Green, P.J.; Vikhlinin, A.; Kim, D.-W.; Perley, D.; Cameron, R.; Silverman, J.; Mossman, A.; Burenin, R.; Jannuzi, B.T.; Kim, M.; Smith, M.G.; Smith, R.C.; Tananbaum, H.; Wilkes, B.J.; /Harvard-Smithsonian Ctr. Astrophys. /UC, Berkeley, Astron. Dept. /SLAC /Garching, Max Planck Inst., MPE /Moscow, Space Res. Inst. /NOAO, Tucson /Cerro-Tololo InterAmerican Obs.

    2006-04-03

    We present a survey of serendipitous extended X-ray sources and optical cluster candidates from the Chandra Multi-wavelength Project (ChaMP). Our main goal is to make an unbiased comparison of X-ray and optical cluster detection methods. In 130 archival Chandra pointings covering 13 square degrees, we use a wavelet decomposition technique to detect 55 extended sources, of which 6 are nearby single galaxies. Our X-ray cluster catalog reaches a typical flux limit of about {approx} 10{sup -14} erg s{sup -1} cm{sup -2}, with a median cluster core radius of 21''. For 56 of the 130 X-ray fields, we use the ChaMP's deep NOAO/4m MOSAIC g', r', and i' imaging to independently detect cluster candidates using a Voronoi tessellation and percolation (VTP) method. Red-sequence filtering decreases the galaxy fore/background contamination and provides photometric redshifts to z {approx} 0.7. From the overlapping 6.1 square degree X-ray/optical imaging, we find 115 optical clusters (of which 11% are in the X-ray catalog) and 28 X-ray clusters (of which 46% are in the optical VTP catalog). The median redshift of the 13 X-ray/optical clusters is 0.41, and their median X-ray luminosity (0.5-2 keV) is L{sub X} = (2.65 {+-} 0.19) x 10{sup 43} ergs s{sup -1}. The clusters in our sample that are only detected in our optical data are poorer on average ({approx} 4{sigma}) than the X-ray/optically matched clusters, which may partially explain the difference in the detection fractions.

  11. The ACS Virgo Cluster Survey. I. Introduction to the Survey

    NASA Astrophysics Data System (ADS)

    Côté, Patrick; Blakeslee, John P.; Ferrarese, Laura; Jordán, Andrés; Mei, Simona; Merritt, David; Milosavljević, Miloš; Peng, Eric W.; Tonry, John L.; West, Michael J.

    2004-07-01

    The Virgo Cluster is the dominant mass concentration in the Local Supercluster and the largest collection of elliptical and lenticular galaxies in the nearby universe. In this paper, we present an introduction to the ACS Virgo Cluster Survey: a program to image, in the F475W and F850LP bandpasses (~Sloan g and z), 100 early-type galaxies in the Virgo Cluster using the Advanced Camera for Surveys on the Hubble Space Telescope. We describe the selection of the program galaxies and their ensemble properties, the choice of filters, the field placement and orientation, the limiting magnitudes of the survey, coordinated parallel observations of 100 ``intergalactic'' fields with WFPC2, and supporting ground-based spectroscopic observations of the program galaxies. In terms of depth, spatial resolution, sample size, and homogeneity, this represents the most comprehensive imaging survey to date of early-type galaxies in a cluster environment. We briefly describe the main scientific goals of the survey, which include the measurement of luminosities, metallicities, ages, and structural parameters for the many thousands of globular clusters associated with these galaxies, a high-resolution isophotal analysis of galaxies spanning a factor of ~450 in luminosity and sharing a common environment, the measurement of accurate distances for the full sample of galaxies using the method of surface brightness fluctuations, and a determination of the three-dimensional structure of Virgo itself. ID="FN1"> 1Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  12. The Herschel Virgo Cluster Survey - XVI. A cluster inventory

    NASA Astrophysics Data System (ADS)

    Davies, J. I.; Bianchi, S.; Baes, M.; Bendo, G. J.; Clemens, M.; De Looze, I.; di Serego Alighieri, S.; Fritz, J.; Fuller, C.; Pappalardo, C.; Hughes, T. M.; Madden, S.; Smith, M. W. L.; Verstappen, J.; Vlahakis, C.

    2014-03-01

    Herschel far-infrared (FIR) observations are used to construct Virgo cluster galaxy luminosity functions and to show that the cluster lacks the very bright and the numerous faint sources detected in field galaxy surveys. The FIR spectral energy distributions are fitted to obtain dust masses and temperatures and the dust mass function. The cluster is overdense in dust by about a factor of 100 compared to the field. The same emissivity (β)-temperature relation applies for different galaxies as that found for different regions of M31. We use optical and H I data to show that Virgo is overdense in stars and atomic gas by about a factor of 100 and 20, respectively. Metallicity values are used to measure the mass of metals in the gas phase. The mean metallicity is ˜0.7 solar, and ˜50 per cent of the metals are in the dust. For the cluster as a whole, the mass density of stars in galaxies is eight times that of the gas and the gas mass density is 130 times that of the metals. We use our data to consider the chemical evolution of the individual galaxies, inferring that the measured variations in the effective yield are due to galaxies having different ages, being affected to varying degrees by gas loss. Four galaxy scaling relations are considered: mass-metallicity, mass-velocity, mass-star formation rate and mass-radius - we suggest that initial galaxy mass is the prime driver of a galaxy's ultimate destiny. Finally, we use X-ray observations and galaxy dynamics to assess the dark and baryonic matter content compared to the cosmological model.

  13. EVIDENCE FOR RAPID REDSHIFT EVOLUTION OF STRONG CLUSTER COOLING FLOWS

    SciTech Connect

    Samuele, R.; McNamara, B. R.; Vikhlinin, A.; Mullis, C. R.

    2011-04-10

    We present equivalent widths of the [O II]{lambda}3727 and H{alpha} nebular emission lines for 77 brightest cluster galaxies (BCGs) selected from the 160 Square Degree ROSAT X-ray survey. We find no [O II]{lambda}3727 or H{alpha} emission stronger than -15 A or -5 A, respectively, in any BCG. The corresponding emission-line luminosities lie below L {approx} 6 x 10{sup 40} erg s{sup -1}, which is a factor of 30 below that of NGC 1275 in the Perseus Cluster. A comparison to the detection frequency of nebular emission in BCGs at z {approx}< 0.35 drawn from the Brightest Cluster Survey indicates that we should have detected roughly one dozen emission-line galaxies, assuming that the two surveys are selecting similar clusters in the X-ray luminosity range 10{sup 42} erg s{sup -1} to 5 x 10{sup 44} erg s{sup -1}. The absence of luminous nebular emission (i.e., Perseus-like systems) in our sample is consistent with an increase in the number density of strong cooling flow (cooling core) clusters between z = 0.5 and today. The decline in their numbers at higher redshift could be due to cluster mergers and heating by active galactic nuclei.

  14. Rapid Self-Assembly of Uranyl Polyhedra into Crown Clusters

    SciTech Connect

    Sigmon, Ginger E.; Burns, Peter C.

    2011-06-22

    Clusters built from 32 uranyl peroxide polyhedra self-assemble and crystallize within 15 min after combining uranyl nitrate, ammonium hydroxide, and hydrogen peroxide in aqueous solution under ambient conditions. These novel crown-shaped clusters are remarkable in that they form so quickly, have extraordinarily low aqueous solubility, form with at least two distinct peroxide to hydroxyl ratios, and form in very high yield. The clusters, which have outer diameters of 23 Å, topologically consist of eight pentagons and four hexagons. Their rapid formation and low solubility in aqueous systems may be useful properties at various stages in an advanced nuclear energy system.

  15. Cluster Position Angle Alignments in the CLASH Survey

    NASA Astrophysics Data System (ADS)

    McIntosh, Melissa; de Propris, Roberto; West, Michael

    2016-01-01

    There exists strong evidence for nearby brightest cluster galaxies (BCGs) to exhibit preferential orientation with respect to their surroundings. Primarily, we see these bright member galaxies aligning themselves with the cluster's principal axis. We have examined the orientations of the 25 CLASH Survey galaxy clusters to see whether this tendency for BCGs to share the same major axis orientation as their host cluster extends to galaxy clusters at redshifts up to 0.9. We find evidence of preferential orientations existing in clusters at these redshifts. The significance of this finding for theories of the formation of clusters are discussed. Supported by NSF Grant #1358980 and the MA Space Grant Consortium.

  16. The BMW Deep X-Ray Cluster Survey

    NASA Astrophysics Data System (ADS)

    Guzzo, Luigi; Moretti, Alberto; Campana, Sergio; Covino, Stefano; Dell'Antonio, Ian; Lazzati, Davide; Longhetti, Marcella; Molinari, Emilio; Panzera, Maria Rosa; Tagliaferri, Gianpiero

    We briely describe the main features and first results of the BMW survey of serendipitous X-ray clusters, based on the still unexploited ROSAT-HRI archival observations. The sky coverage, surface density and first deep CCD images of the candidates indicate that this sample can represent an excellent complement to the existing PSPC deep cluster surveys.

  17. Distant Compact Clusters of Galaxies from the BMW survey

    NASA Astrophysics Data System (ADS)

    Dell'Antonio, Ian; Guzzo, Luigi; Longhetti, Marcella; Moretti, Alberto; Campana, Sergio; Lazzati, Davide; Panzera, Mariarosa; Tagliaferri, Gianpiero

    2002-02-01

    We propose to use SQIID to identify high-redshift clusters of galaxies from the BMW, an X-ray selected sample of serendipitously detected extended sources from the ROSAT HRI archive. The BMW survey is unique because of the superior angular resolution of the HRI. In fact, this is the only modern sample of distant clusters available that is not based on the low-resolution PSPC. Using 4m optical imaging, we have already identified several high-redshift clusters, two of which have z> 0.8, thus confirming the ability of the survey to peer efficiently into the z~ 1 regime, where only a handful of X-ray clusters are known. To test the evolution of the cluster abundance, we must increase the number of clusters known in this redshift regime. The BMW survey provides us with the only current opportunity to study compact clusters missing in all PSPC surveys. Because z~ 1 ellipticals have very red colors, K-band imaging is the most effective way of identifying these clusters. With SQIID, we also can obtain redshift estimates via the J-K red sequence. We propose near-IR imaging in J,H,K of 30 highest-z cluster candidates from the BMW survey, as indicated by their small size and low flux. This will allow efficient use of 8-meter spectroscopy to follow up the high-end tail of the redshift distribution.

  18. Hierarchical modeling of cluster size in wildlife surveys

    USGS Publications Warehouse

    Royle, J. Andrew

    2008-01-01

    Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).

  19. The BMW Deep X-ray Cluster Survey

    NASA Astrophysics Data System (ADS)

    Moretti, A.; Guzzo, L.; Campana, S.; Covino, S.; Lazzati, D.; Longhetti, M.; Molinari, E.; Panzera, M. R.; Tagliaferri, G.; dell'Antonio, I.

    We describe the main features of the BMW survey of serendipitous X-ray clusters, based on the still unexploited ROSAT-HRI archival observations. The sky coverage, surface density and first deep optical CCD images of the candidates indicate that this sample can represent an excellent complement to the existing PSPC deep cluster surveys and will provide us with a fully independent probe of the evolution of the cluster abundance, in addition to significantly increasing the number of clusters known at z>0.6.

  20. New Star Clusters Discovered in the GLIMPSE Survey

    NASA Astrophysics Data System (ADS)

    Mercer, E. P.; Clemens, D. P.; Meade, M. R.; Babler, B. L.; Indebetouw, R.; Whitney, B. A.; Watson, C.; Wolfire, M. G.; Wolff, M. J.; Bania, T. M.; Benjamin, R. A.; Cohen, M.; Dickey, J. M.; Jackson, J. M.; Kobulnicky, H. A.; Mathis, J. S.; Stauffer, J. R.; Stolovy, S. R.; Uzpen, B.; Churchwell, E. B.

    2005-12-01

    A systematic and automated search of the extensive GLIMPSE mid-infrared survey data of the inner Galaxy was carried out to uncover new star clusters. This search has yielded 59 new clusters. Using our automated search algorithm, these clusters were identified as significant localized overdensities in the GLIMPSE point-source catalog (GLMC) and archive (GLMA). Subsequent visual inspection of the GLIMPSE image mosaics confirmed the existence of these clusters plus an additional 33 heavily embedded clusters missed by our detection algorithm, for a total of 92 newly discovered clusters. These previously uncataloged clusters range in type from heavily embedded to fully exposed clusters. More than half of the clusters have memberships exceeding 35 stars, and nearly all the clusters have diameters of 3' or less. The Galactic latitude distribution of the clusters reveals that the majority are concentrated toward the Galactic midplane. There is an asymmetry in the number of clusters located above and below the midplane, with more clusters detected below the midplane. We also observe an asymmetry in the number of clusters detected in the northern and southern halves of the Galaxy, with more than twice as many clusters detected in the south.

  1. The APM Galaxy Survey - V. Catalogues of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Dalton, G. B.; Maddox, S. J.; Sutherland, W. J.; Efstathiou, G.

    1997-08-01

    We describe the construction of catalogues of galaxy clusters from the APM Galaxy survey using an automated algorithm based on Abell-like selection criteria. We investigate the effects of varying several parameters in our selection algorithm, including the magnitude range and radius from the cluster centre used to estimate the cluster richnesses. We quantify the accuracy of the photometric distance estimates by comparing them with measured redshifts, and we investigate the stability and completeness of the resulting catalogues. We find that the angular correlation functions for different cluster catalogues are in good agreement with one another, and are also consistent with the observed amplitude of the spatial correlation function of rich clusters.

  2. LENSING NOISE IN MILLIMETER-WAVE GALAXY CLUSTER SURVEYS

    SciTech Connect

    Hezaveh, Yashar; Vanderlinde, Keith; Holder, Gilbert; De Haan, Tijmen

    2013-08-01

    We study the effects of gravitational lensing by galaxy clusters of the background of dusty star-forming galaxies (DSFGs) and the cosmic microwave background (CMB), and examine the implications for Sunyaev-Zel'dovich-based (SZ) galaxy cluster surveys. At the locations of galaxy clusters, gravitational lensing modifies the probability distribution of the background flux of the DSFGs as well as the CMB. We find that, in the case of a single-frequency 150 GHz survey, lensing of DSFGs leads both to a slight increase ({approx}10%) in detected cluster number counts (due to a {approx}50% increase in the variance of the DSFG background, and hence an increased Eddington bias) and a rare (occurring in {approx}2% of clusters) 'filling-in' of SZ cluster signals by bright strongly lensed background sources. Lensing of the CMB leads to a {approx}55% reduction in CMB power at the location of massive galaxy clusters in a spatially matched single-frequency filter, leading to a net decrease in detected cluster number counts. We find that the increase in DSFG power and decrease in CMB power due to lensing at cluster locations largely cancel, such that the net effect on cluster number counts for current SZ surveys is subdominant to Poisson errors.

  3. A modified cluster-sampling method for post-disaster rapid assessment of needs.

    PubMed Central

    Malilay, J.; Flanders, W. D.; Brogan, D.

    1996-01-01

    The cluster-sampling method can be used to conduct rapid assessment of health and other needs in communities affected by natural disasters. It is modelled on WHO's Expanded Programme on Immunization method of estimating immunization coverage, but has been modified to provide (1) estimates of the population remaining in an area, and (2) estimates of the number of people in the post-disaster area with specific needs. This approach differs from that used previously in other disasters where rapid needs assessments only estimated the proportion of the population with specific needs. We propose a modified n x k survey design to estimate the remaining population, severity of damage, the proportion and number of people with specific needs, the number of damaged or destroyed and remaining housing units, and the changes in these estimates over a period of time as part of the survey. PMID:8823962

  4. Searching for galaxy clusters in the Kilo-Degree Survey

    NASA Astrophysics Data System (ADS)

    Radovich, M.; Puddu, E.; Bellagamba, F.; Roncarelli, M.; Moscardini, L.; Bardelli, S.; Grado, A.; Getman, F.; Maturi, M.; Huang, Z.; Napolitano, N.; McFarland, J.; Valentijn, E.; Bilicki, M.

    2017-02-01

    Aims: In this paper, we present the tools used to search for galaxy clusters in the Kilo Degree Survey (KiDS), and our first results. Methods: The cluster detection is based on an implementation of the optimal filtering technique that enables us to identify clusters as over-densities in the distribution of galaxies using their positions on the sky, magnitudes, and photometric redshifts. The contamination and completeness of the cluster catalog are derived using mock catalogs based on the data themselves. The optimal signal to noise threshold for the cluster detection is obtained by randomizing the galaxy positions and selecting the value that produces a contamination of less than 20%. Starting from a subset of clusters detected with high significance at low redshifts, we shift them to higher redshifts to estimate the completeness as a function of redshift: the average completeness is 85%. An estimate of the mass of the clusters is derived using the richness as a proxy. Results: We obtained 1858 candidate clusters with redshift 0 Survey (SDSS)-based cluster catalogs shows that we match more than 50% of the clusters (77% in the case of the redMaPPer catalog). We also cross-matched our cluster catalog with the Abell clusters, and clusters found by XMM and in the Planck-SZ survey; however, only a small number of them lie inside the KiDS area currently available. The catalog is available at http://kids.strw.leidenuniv.nl/DR2 and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A107

  5. A Survey on Clustering Routing Protocols in Wireless Sensor Networks

    PubMed Central

    Liu, Xuxun

    2012-01-01

    The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) in a wide range of applications and it has become a hot research area. Based on network structure, routing protocols in WSNs can be divided into two categories: flat routing and hierarchical or clustering routing. Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs. In this paper, we present a comprehensive and fine grained survey on clustering routing protocols proposed in the literature for WSNs. We outline the advantages and objectives of clustering for WSNs, and develop a novel taxonomy of WSN clustering routing methods based on complete and detailed clustering attributes. In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics. Finally, we summarize and conclude the paper with some future directions. PMID:23112649

  6. The WARPS survey for faint clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Jones, L. R.; Scharf, C. A.; Perlman, E.; Ebeling, H.; Wegner, G.; Malkan, M.

    1996-01-01

    The wide angle Rosat pointed survey (WARPS) of clusters is based on the Rosat position sensitive proportional counter (PSPC) archive of pointed observations. It includes extended X-ray sources and point-like X-ray sources with non-stellar optical counterparts. It was designed to minimize the selection effects while covering a large area of the sky. The purposes of the survey were to measure the low luminosity, high redshift, X-ray luminosity function of clusters and groups and to investigate cluster morphologies and unusual systems.

  7. A NEW DISTANT MILKY WAY GLOBULAR CLUSTER IN THE PAN-STARRS1 3π SURVEY

    SciTech Connect

    Laevens, Benjamin P. M.; Martin, Nicolas F.; Sesar, Branimir; Rix, Hans-Walter; Schlafly, Edward F.; Bernard, Edouard J.; Ferguson, Annette M. N.; Slater, Colin T.; Bell, Eric F.; Burgett, William S.; Chambers, Kenneth C.; Denneau, Larry; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Morgan, Jeffrey S.; Sweeney, William E.; Draper, Peter W.; Metcalfe, Nigel; Price, Paul A.; and others

    2014-05-01

    We present a new satellite in the outer halo of the Galaxy, the first Milky Way satellite found in the stacked photometric catalog of the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1) Survey. From follow-up photometry obtained with WFI on the MPG/ESO 2.2 m telescope, we argue that the object, located at a heliocentric distance of 145 ± 17 kpc, is the most distant Milky Way globular cluster yet known. With a total magnitude of M{sub V} = –4.3 ± 0.2 and a half-light radius of 20 ± 2 pc, it shares the properties of extended globular clusters found in the outer halo of our Galaxy and the Andromeda galaxy. The discovery of this distant cluster shows that the full spatial extent of the Milky Way globular cluster system has not yet been fully explored.

  8. Rapid topography mapping of scalar fields: Large molecular clusters

    NASA Astrophysics Data System (ADS)

    Yeole, Sachin D.; López, Rafael; Gadre, Shridhar R.

    2012-08-01

    An efficient and rapid algorithm for topography mapping of scalar fields, molecular electron density (MED) and molecular electrostatic potential (MESP) is presented. The highlight of the work is the use of fast function evaluation by Deformed-atoms-in-molecules (DAM) method. The DAM method provides very rapid as well as sufficiently accurate function and gradient evaluation. For mapping the topography of large systems, the molecular tailoring approach (MTA) is invoked. This new code is tested out for mapping the MED and MESP critical points (CP's) of small systems. It is further applied to large molecular clusters viz. (H2O)25, (C6H6)8 and also to a unit cell of valine crystal at MP2/6-31+G(d) level of theory. The completeness of the topography is checked by extensive search as well as applying the Poincaré-Hopf relation. The results obtained show that the DAM method in combination with MTA provides a rapid and efficient route for mapping the topography of large molecular systems.

  9. High-Redshift Clusters form NVSS: The TexOx Cluster (TOC) Survey

    SciTech Connect

    Croft, S; Rawlings, S; Hill, G J

    2003-02-11

    The TexOx Cluster (TOC) Survey uses overdensities of radiosources in the NVSS to trace clusters of galaxies. The links between radiosources and rich environments make this a powerful way to find clusters which may potentially be overlooked by other selection techniques. By including constraints from optical surveys, TOC is an extremely efficient way to find clusters at high redshift. One such field, TOC J0233.3+3021, contains at least one galaxy cluster (at z {approx} 1.4) and has been detected using the Sunyaev-Zel'dovich (SZ) effect. Even in targeted deep optical observations, however, distinguishing the cluster galaxies from the background is difficult, especially given the tendency of TOC to select fields containing multiple structures at different redshifts.

  10. Early Results from Swift AGN and Cluster Survey

    NASA Astrophysics Data System (ADS)

    Dai, Xinyu; Griffin, Rhiannon; Nugent, Jenna; Kochanek, Christopher S.; Bregman, Joel N.

    2016-04-01

    The Swift AGN and Cluster Survey (SACS) uses 125 deg^2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding gamma-ray bursts to provide a medium depth (4 × 10^-15 erg cm^-2 s^-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present the first two papers in a series of publications for SACS. In the first paper, we introduce our method and catalog of 22,563 point sources and 442 extended sources. SACS provides excellent constraints on the AGN and cluster number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. The depth and areal coverage of SACS is well suited for galaxy cluster surveys outside the local universe, reaching z > 1 for massive clusters. In the second paper, we use SDSS DR8 data to study the 203 extended SACS sources that are located within the SDSS footprint. We search for galaxy over-densities in 3-D space using SDSS galaxies and their photometric redshifts near the Swift galaxy cluster candidates. We find 103 Swift clusters with a > 3σ over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, X-ray luminosity and red sequences. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≤ 0.3 and 80% complete for z ≤ 0.4, consistent with the survey depth of SDSS. These analysis results suggest that our Swift cluster selection algorithm presented in our first paper has yielded a statistically well-defined cluster sample for further studying cluster evolution and cosmology. In the end, we will discuss our ongoing optical identification of z>0.5 cluster

  11. A Survey For Embedded Clusters in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Romita, Krista; Lada, Elizabeth A.; Cioni, Maria-Rosa

    2016-01-01

    In the Milky Way, the majority of stars form in embedded clusters (Lada & Lada 2003), which makes them a fundamental unit of star formation. Despite their importance, our knowledge of cluster formation remains primitive. For example, we don't have a clear idea of how varying physical environments affects the cluster formation process. In order to address this, we have begun a comprehensive, systematic search for embedded stellar clusters in the Large Magellanic Cloud (LMC) using near-infrared data from the VISTA Magellanic Clouds Survey (Cioni et al. 2011). To date, we have searched 46% of the molecular clouds in the MAGMA CO Survey (Wong et al. 2011). We have identified 125 embedded cluster candidates. This is approximately double the number of embedded clusters that have been identified within ~2.5 kpc of the Sun (Lada & Lada 2003). We have determined sizes, luminosities, and masses for these embedded clusters and calculated the star formation rates (SFRs) of the LMC molecular clouds containing clusters, and finally compared the LMC and Milky Way embedded cluster properties and SFRs. Our preliminary results indicate the LMC embedded clusters are larger, more luminous and more massive than the embedded clusters in the local Milky Way. However, even though the overall cluster properties differ in these two environments, the SFRs of the molecular clouds in both environments are consistent with the SFR scaling law from Lada et al. (2012). This consistency may indicate that while the details of embedded cluster formation may vary between environments, the overall star formation process within molecular clouds may be universal.

  12. Massive open star clusters using the VVV survey. V. Young clusters with an OB stellar population

    NASA Astrophysics Data System (ADS)

    Ramírez Alegría, S.; Borissova, J.; Chené, A.-N.; Bonatto, C.; Kurtev, R.; Amigo, P.; Kuhn, M.; Gromadzki, M.; Carballo-Bello, J. A.

    2016-04-01

    Context. The ESO public survey VISTA Variables in the Vía Láctea (VVV) has contributed with deep multi-epoch photometry of the Galactic bulge and the adjacent part of the disk over 526 sq. deg. More than a hundred cluster candidates have been reported thanks to this survey. Aims: We present the fifth article in a series of papers focused on young and massive clusters discovered in the VVV survey. In this paper, we present the physical characterization of five clusters with a spectroscopically confirmed OB-type stellar population. Methods: To characterize the clusters, we used near-infrared photometry (J, H, and KS) from the VVV survey and near-infrared K-band spectroscopy from ISAAC at VLT, following the methodology presented in the previous articles of the series. Results: All clusters in our sample are very young (ages between 1-20 Myr), and their total mass are between (1.07+0.40-0.30)×102 M⊙ and (4.17+4.15-2.08)×103 M⊙. We observed a relation between the clusters total mass Mecl and the mass of their most massive stellar member mmax, for clusters with an age <10 Myr. Based on observations taken within the ESO VISTA Public Survey VVV (programme ID 179.B-2002), and with ISAAC/VLT (programme 087.D-0341(A)).

  13. Strong Lens Models for Massive Galaxy Clusters in the Reionization Lensing Cluster Survey

    NASA Astrophysics Data System (ADS)

    Cerny, Catherine; Sharon, Keren; Coe, Dan A.; Paterno-Mahler, Rachel; Jones, Christine; Czakon, Nicole G.; Umetsu, Keiichi; Stark, Daniel; Bradley, Larry D.; Trenti, Michele; Johnson, Traci; Bradac, Marusa; Dawson, William; Rodney, Steven A.; Strolger, Louis-Gregory; RELICS Team

    2017-01-01

    We present strong lensing models for five galaxy clusters from the Planck SZ cluster catalog as a part of the Reionization Lensing Cluster Survey (RELICS), a program that seeks to constrain the galaxy luminosity function past z~9 by conducting a wide field survey of massive galaxy clusters with HST (GO-14096, PI: Coe). The strong gravitational lensing effects of these clusters significantly magnify background galaxies, which enhances our ability to discover the large numbers of high redshift galaxies at z~9-12 needed to create a representative sample. We use strong lensing models for these clusters to study their mass distribution and magnification, which allows us to quantify the lensing effect on the background galaxies. These models can then be utilized in the RELICS survey in order to identify high redshift galaxy candidates that may be lensed by the clusters. The intrinsic properties of these galaxy candidates can be derived by removing the lensing effect as predicted by our models, which will meet the science goals of the RELICS survey. We use HST WFC3 and ACS imaging to create lensing models for the clusters RXC J0142.9+4438, ACO-2537, ACO-2163, RXCJ2211.7-0349, and ACT-CLJ0102-49151.

  14. Galaxy Clusters and Properties in the CFHTLS/VIPERS Survey

    NASA Astrophysics Data System (ADS)

    Gallego Gallego, Sofia Carolina; Murphy, David; Hyazinth Puzia, Thomas

    2015-08-01

    We present our analysis of clusters in the CFHTLS Wide fields using a red-sequence based cluster finding code. The deep five-band photometry and panoramic coverage permits detection of galaxy clusters between z=0 and z~1 over 132 square degrees. We present a cluster catalogue and optical richness estimates as mass proxies, derived cluster properties from a novel template-fitting analysis and cluster redshift measurements utilizing data from the VLT/VIPERS spectroscopic survey.We complement our analysis with studies of mock cluster catalogues generated from N-body simulation lightcones featuring semi-analytic prescriptions of galaxy formation. These provide us with an insight into the performance of the cluster-finding technique, uncertainties in the derived properties of the detected cluster populations and an important comparison of the popular “lambda” optical richness estimator to known dark matter halo properties.This study serves as the perfect precursor to LSST-depth cluster science, providing an important input into how models describe the evolution of clusters and their members as a function of redshift and mass, and the role high-density environments play in galaxy evolution over half the Hubble time.

  15. KMOS Clusters and VIRIAL GTO Surveys

    NASA Astrophysics Data System (ADS)

    Wilman, D.; Bender, R.; Davies, R. L.; Mendel, J. T.; Chan, J.; Beifiori, A.; Houghton, R.; Saglia, R.; Schreiber, N. Förster; Wuyts, S.; van Dokkum, P.; Cappellari, M.; Stott, J.; Smith, R.; Fossati, M.; Kulkarni, S.; Seitz, S.; Fabricius, M.; Sharples, R.; Brammer, G.; Nelson, E.; Momcheva, I.; Wegner, M.; Lewis, I.

    2015-02-01

    We present the KMOS (K-band Multi-Object Spectrograph) Cluster and VIRIAL (VLT IR IFU Absorption Line) Guaranteed Time Observation (GTO) programs. KMOS provides 24 arms each feeding an integral field unit (14×14 spaxels of 0.2'' pixels) for IZ, YJ, H and K band near infrared (NIR) medium resolution spectroscopy (R ~ 3500). Targets are selected from a 7.2' diameter patrol field. Ultra-deep spectroscopy of ~ 80 early-type cluster galaxies (~ 20hr on source) and ~ 200 (~ 10hr on source) early-type field galaxies at 1 < z < 2 will dramatically improve the situation at z > 1 for which measurements of stellar velocity dispersions and absorption indices are limited to a few, often relatively young passively evolving galaxies (e.g. Bezanson 2013). In ESO Periods P92 and P93, 15 nights worth of data has been collected for KMOS-Clusters and 6 nights for VIRIAL: this will be supplemented with more data in upcoming semesters. All galaxies have multiband HST imaging including existing or upcoming WFC3 IR imaging, providing stellar mass maps and sizes. Combined with our dispersion measurements, this will allow us to examine the fundamental plane and the dynamical mass of a large sample of z > 1 galaxies for the first time, for both cluster and field galaxies.

  16. Rapid acoustic survey for biodiversity appraisal.

    PubMed

    Sueur, Jérôme; Pavoine, Sandrine; Hamerlynck, Olivier; Duvail, Stéphanie

    2008-01-01

    Biodiversity assessment remains one of the most difficult challenges encountered by ecologists and conservation biologists. This task is becoming even more urgent with the current increase of habitat loss. Many methods-from rapid biodiversity assessments (RBA) to all-taxa biodiversity inventories (ATBI)-have been developed for decades to estimate local species richness. However, these methods are costly and invasive. Several animals-birds, mammals, amphibians, fishes and arthropods-produce sounds when moving, communicating or sensing their environment. Here we propose a new concept and method to describe biodiversity. We suggest to forego species or morphospecies identification used by ATBI and RBA respectively but rather to tackle the problem at another evolutionary unit, the community level. We also propose that a part of diversity can be estimated and compared through a rapid acoustic analysis of the sound produced by animal communities. We produced alpha and beta diversity indexes that we first tested with 540 simulated acoustic communities. The alpha index, which measures acoustic entropy, shows a logarithmic correlation with the number of species within the acoustic community. The beta index, which estimates both temporal and spectral dissimilarities, is linearly linked to the number of unshared species between acoustic communities. We then applied both indexes to two closely spaced Tanzanian dry lowland coastal forests. Indexes reveal for this small sample a lower acoustic diversity for the most disturbed forest and acoustic dissimilarities between the two forests suggest that degradation could have significantly decreased and modified community composition. Our results demonstrate for the first time that an indicator of biological diversity can be reliably obtained in a non-invasive way and with a limited sampling effort. This new approach may facilitate the appraisal of animal diversity at large spatial and temporal scales.

  17. The Swift AGN and Cluster Survey. II. Cluster Confirmation with SDSS Data

    NASA Astrophysics Data System (ADS)

    Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S.; Bregman, Joel N.

    2016-01-01

    We study 203 (of 442) Swift AGN and Cluster Survey extended X-ray sources located in the SDSS DR8 footprint to search for galaxy over-densities in three-dimensional space using SDSS galaxy photometric redshifts and positions near the Swift cluster candidates. We find 104 Swift clusters with a >3σ galaxy over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmation as galaxy clusters. We present a series of cluster properties including the redshift, brightest cluster galaxy (BCG) magnitude, BCG-to-X-ray center offset, optical richness, and X-ray luminosity. We also detect red sequences in ˜85% of the 104 confirmed clusters. The X-ray luminosity and optical richness for the SDSS confirmed Swift clusters are correlated and follow previously established relations. The distribution of the separations between the X-ray centroids and the most likely BCG is also consistent with expectation. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≲ 0.3 and is still 80% complete up to z ≃ 0.4, consistent with the SDSS survey depth. These analysis results suggest that our Swift cluster selection algorithm has yielded a statistically well-defined cluster sample for further study of cluster evolution and cosmology. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 23, and 1 matches in optical, X-ray, and Sunyaev-Zel’dovich catalogs, respectively, and so the majority of these clusters are new detections.

  18. THE SWIFT AGN AND CLUSTER SURVEY. II. CLUSTER CONFIRMATION WITH SDSS DATA

    SciTech Connect

    Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S.; Bregman, Joel N. E-mail: xdai@ou.edu E-mail: jbregman@umich.edu

    2016-01-15

    We study 203 (of 442) Swift AGN and Cluster Survey extended X-ray sources located in the SDSS DR8 footprint to search for galaxy over-densities in three-dimensional space using SDSS galaxy photometric redshifts and positions near the Swift cluster candidates. We find 104 Swift clusters with a >3σ galaxy over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmation as galaxy clusters. We present a series of cluster properties including the redshift, brightest cluster galaxy (BCG) magnitude, BCG-to-X-ray center offset, optical richness, and X-ray luminosity. We also detect red sequences in ∼85% of the 104 confirmed clusters. The X-ray luminosity and optical richness for the SDSS confirmed Swift clusters are correlated and follow previously established relations. The distribution of the separations between the X-ray centroids and the most likely BCG is also consistent with expectation. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≲ 0.3 and is still 80% complete up to z ≃ 0.4, consistent with the SDSS survey depth. These analysis results suggest that our Swift cluster selection algorithm has yielded a statistically well-defined cluster sample for further study of cluster evolution and cosmology. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 23, and 1 matches in optical, X-ray, and Sunyaev–Zel’dovich catalogs, respectively, and so the majority of these clusters are new detections.

  19. The 3XMM/SDSS Stripe 82 Galaxy Cluster Survey. I. Cluster catalogue and discovery of two merging cluster candidates

    NASA Astrophysics Data System (ADS)

    Takey, A.; Durret, F.; Mahmoud, E.; Ali, G. B.

    2016-10-01

    We present a galaxy cluster survey based on XMM-Newton observations that are located in Stripe 82 of the Sloan Digital Sky Survey (SDSS). The survey covers an area of 11.25 deg2. The X-ray cluster candidates were selected as serendipitously extended detected sources from the third XMM-Newton serendipitous source catalogue (3XMM-DR5). A cross-correlation of the candidate list that comprises 94 objects with recently published X-ray and optically selected cluster catalogues provided optical confirmations and redshift estimates for about half of the candidate sample. We present a catalogue of X-ray cluster candidates previously known in X-ray and/or optical bands from the matched catalogues or NED. The catalogue consists of 54 systems with redshift measurements in the range of 0.05-1.19 with a median of 0.36. Of these, 45 clusters have spectroscopic confirmations as stated in the matched catalogues. We spectroscopically confirmed another 6 clusters from the available spectroscopic redshifts in the SDSS-DR12. The cluster catalogue includes 17 newly X-ray discovered clusters, while the remainder were detected in previous XMM-Newton and/or ROSAT cluster surveys. Based on the available redshifts and fluxes given in the 3XMM-DR5 catalogue, we estimated the X-ray luminosities and masses for the cluster sample. We also present the list of the remaining X-ray cluster candidates (40 objects) that have no redshift information yet in the literature. Of these candidates, 25 sources are considered as distant cluster candidates beyond a redshift of 0.6. We also searched for galaxy cluster mergers in our cluster sample and found two strong candidates for newly discovered cluster mergers at redshifts of 0.11 and 0.26. The X-ray and optical properties of these systems are presented. Tables A.1, C.1, and C.2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A32

  20. The C4 clustering algorithm: Clusters of galaxies in the Sloan Digital Sky Survey

    SciTech Connect

    Miller, Christopher J.; Nichol, Robert; Reichart, Dan; Wechsler, Risa H.; Evrard, August; Annis, James; McKay, Timothy; Bahcall, Neta; Bernardi, Mariangela; Boehringer, Hans; Connolly, Andrew; Goto, Tomo; Kniazev, Alexie; Lamb, Donald; Postman, Marc; Schneider, Donald; Sheth, Ravi; Voges, Wolfgang; /Cerro-Tololo InterAmerican Obs. /Portsmouth U., ICG /North Carolina U. /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI /Michigan U. /Fermilab /Princeton U. Observ. /Garching, Max Planck Inst., MPE /Pittsburgh U. /Tokyo U., ICRR /Baltimore, Space Telescope Sci. /Penn State U. /Chicago U. /Stavropol, Astrophys. Observ. /Heidelberg, Max Planck Inst. Astron. /INI, SAO

    2005-03-01

    We present the ''C4 Cluster Catalog'', a new sample of 748 clusters of galaxies identified in the spectroscopic sample of the Second Data Release (DR2) of the Sloan Digital Sky Survey (SDSS). The C4 cluster-finding algorithm identifies clusters as overdensities in a seven-dimensional position and color space, thus minimizing projection effects that have plagued previous optical cluster selection. The present C4 catalog covers {approx}2600 square degrees of sky and ranges in redshift from z = 0.02 to z = 0.17. The mean cluster membership is 36 galaxies (with redshifts) brighter than r = 17.7, but the catalog includes a range of systems, from groups containing 10 members to massive clusters with over 200 cluster members with redshifts. The catalog provides a large number of measured cluster properties including sky location, mean redshift, galaxy membership, summed r-band optical luminosity (L{sub r}), velocity dispersion, as well as quantitative measures of substructure and the surrounding large-scale environment. We use new, multi-color mock SDSS galaxy catalogs, empirically constructed from the {Lambda}CDM Hubble Volume (HV) Sky Survey output, to investigate the sensitivity of the C4 catalog to the various algorithm parameters (detection threshold, choice of passbands and search aperture), as well as to quantify the purity and completeness of the C4 cluster catalog. These mock catalogs indicate that the C4 catalog is {approx_equal}90% complete and 95% pure above M{sub 200} = 1 x 10{sup 14} h{sup -1}M{sub {circle_dot}} and within 0.03 {le} z {le} 0.12. Using the SDSS DR2 data, we show that the C4 algorithm finds 98% of X-ray identified clusters and 90% of Abell clusters within 0.03 {le} z {le} 0.12. Using the mock galaxy catalogs and the full HV dark matter simulations, we show that the L{sub r} of a cluster is a more robust estimator of the halo mass (M{sub 200}) than the galaxy line-of-sight velocity dispersion or the richness of the cluster. However, if we

  1. Hα star formation rates of z > 1 galaxy clusters in the IRAC shallow cluster survey

    SciTech Connect

    Zeimann, Gregory R.; Stanford, S. A.; Brodwin, Mark; Gonzalez, Anthony H.; Mancone, Conor; Snyder, Gregory F.; Stern, Daniel; Eisenhardt, Peter; Dey, Arjun; Moustakas, John

    2013-12-20

    We present Hubble Space Telescope near-IR spectroscopy for 18 galaxy clusters at 1.0 Cluster Survey. We use Wide Field Camera 3 grism data to spectroscopically identify Hα emitters in both the cores of galaxy clusters as well as in field galaxies. We find a large cluster-to-cluster scatter in the star formation rates within a projected radius of 500 kpc, and many of our clusters (∼60%) have significant levels of star formation within a projected radius of 200 kpc. A stacking analysis reveals that dust reddening in these star-forming galaxies is positively correlated with stellar mass and may be higher in the field than the cluster at a fixed stellar mass. This may indicate a lower amount of gas in star-forming cluster galaxies than in the field population. Also, Hα equivalent widths of star-forming galaxies in the cluster environment are still suppressed below the level of the field. This suppression is most significant for lower mass galaxies (log M {sub *} < 10.0 M {sub ☉}). We therefore conclude that environmental effects are still important at 1.0 clusters with log M {sub *} ≲ 10.0 M {sub ☉}.

  2. The Herschel Virgo Cluster Survey. I. Luminosity function

    NASA Astrophysics Data System (ADS)

    Davies, J. I.; Baes, M.; Bendo, G. J.; Bianchi, S.; Bomans, D. J.; Boselli, A.; Clemens, M.; Corbelli, E.; Cortese, L.; Dariush, A.; De Looze, I.; di Serego Alighieri, S.; Fadda, D.; Fritz, J.; Garcia-Appadoo, D. A.; Gavazzi, G.; Giovanardi, C.; Grossi, M.; Hughes, T. M.; Hunt, L. K.; Jones, A. P.; Madden, S.; Pierini, D.; Pohlen, M.; Sabatini, S.; Smith, M. W. L.; Verstappen, J.; Vlahakis, C.; Xilouris, E. M.; Zibetti, S.

    2010-07-01

    We describe the Herschel Virgo Cluster Survey (HeViCS) and the first data obtained as part of the science demonstration phase (SDP). The data cover a central 4×4 sq deg region of the cluster. We use SPIRE and PACS photometry data to produce 100, 160, 250, 350 and 500 μm luminosity functions (LFs) for optically bright galaxies that are selected at 500 μm and detected in all bands. We compare these LFs with those previously derived using IRAS, BLAST and Herschel-ATLAS data. The Virgo cluster LFs do not have the large numbers of faint galaxies or examples of very luminous galaxies seen previously in surveys covering less dense environments. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. The XMM Cluster Survey: testing chameleon gravity using the profiles of clusters

    NASA Astrophysics Data System (ADS)

    Wilcox, Harry; Bacon, David; Nichol, Robert C.; Rooney, Philip J.; Terukina, Ayumu; Romer, A. Kathy; Koyama, Kazuya; Zhao, Gong-Bo; Hood, Ross; Mann, Robert G.; Hilton, Matt; Manolopoulou, Maria; Sahlén, Martin; Collins, Chris A.; Liddle, Andrew R.; Mayers, Julian A.; Mehrtens, Nicola; Miller, Christopher J.; Stott, John P.; Viana, Pedro T. P.

    2015-09-01

    The chameleon gravity model postulates the existence of a scalar field that couples with matter to mediate a fifth force. If it exists, this fifth force would influence the hot X-ray emitting gas filling the potential wells of galaxy clusters. However, it would not influence the clusters weak lensing signal. Therefore, by comparing X-ray and weak lensing profiles, one can place upper limits on the strength of a fifth force. This technique has been attempted before using a single, nearby cluster (Coma, z = 0.02). Here we apply the technique to the stacked profiles of 58 clusters at higher redshifts (0.1 < z < 1.2), including 12 new to the literature, using X-ray data from the XMM Cluster Survey and weak lensing data from the Canada-France-Hawaii-Telescope Lensing Survey. Using a multiparameter Markov chain Monte Carlo analysis, we constrain the two chameleon gravity parameters (β and φ∞). Our fits are consistent with general relativity, not requiring a fifth force. In the special case of f(R) gravity (where β = √{1/6}), we set an upper limit on the background field amplitude today of |fR0| < 6 × 10-5 (95 per cent CL). This is one of the strongest constraints to date on |fR0| on cosmological scales. We hope to improve this constraint in future by extending the study to hundreds of clusters using data from the Dark Energy Survey.

  4. The richness dependence of galaxy cluster correlations: results from a redshift survey of rich APM clusters

    NASA Astrophysics Data System (ADS)

    Croft, R. A. C.; Dalton, G. B.; Efstathiou, G.; Sutherland, W. J.; Maddox, S. J.

    1997-10-01

    We analyse the spatial clustering properties of a new catalogue of very rich galaxy clusters with newly measured redshifts selected from the APM Galaxy Survey. These clusters are of comparable richness and space density to Abell richness class≯1 clusters, but selected using an objective algorithm from a catalogue demonstrably free of artificial inhomogeneities. Evaluation of the two-point correlation function xi_cc(r) for the full sample and for richer subsamples reveals that the correlation amplitude is consistent with that measured for lower richness APM clusters and X-ray selected clusters. We apply a maximum likelihood estimator to find the best-fitting slope and amplitude of a power-law fit to xi_cc(r), and to estimate the correlation length r_0 [the value of r at which xi_cc(r) is equal to unity]. For clusters with a mean space density of 1.6x10^-6 h^3 Mpc^-3 (equivalent to the space density of Abell richness≯2 clusters), we find r_0=21.3^+11.1_-9.3 h^-1 Mpc (95 per cent confidence limits). This is consistent with the weak richness dependence of xi_cc(r) expected in Gaussian models of structure formation. In particular, the amplitude of xi_cc(r) at all richnesses matches that of xi_cc(r) for clusters selected in N-body simulations of a low-density cold dark matter model.

  5. THE STELLAR MASS GROWTH OF BRIGHTEST CLUSTER GALAXIES IN THE IRAC SHALLOW CLUSTER SURVEY

    SciTech Connect

    Lin, Yen-Ting; Brodwin, Mark; Gonzalez, Anthony H.; Bode, Paul; Eisenhardt, Peter R. M.; Stanford, S. A.; Vikhlinin, Alexey

    2013-07-01

    The details of the stellar mass assembly of brightest cluster galaxies (BCGs) remain an unresolved problem in galaxy formation. We have developed a novel approach that allows us to construct a sample of clusters that form an evolutionary sequence, and have applied it to the Spitzer IRAC Shallow Cluster Survey (ISCS) to examine the evolution of BCGs in progenitors of present-day clusters with mass of (2.5-4.5) Multiplication-Sign 10{sup 14} M{sub Sun }. We follow the cluster mass growth history extracted from a high resolution cosmological simulation, and then use an empirical method that infers the cluster mass based on the ranking of cluster luminosity to select high-z clusters of appropriate mass from ISCS to be progenitors of the given set of z = 0 clusters. We find that, between z = 1.5 and 0.5, the BCGs have grown in stellar mass by a factor of 2.3, which is well-matched by the predictions from a state-of-the-art semi-analytic model. Below z = 0.5 we see hints of differences in behavior between the model and observation.

  6. Survey of Young Stellar Clusters in the North Hemisphere

    NASA Astrophysics Data System (ADS)

    Costado, M. T.; Alfaro, E. J.; Delgado, A. A.; Djupvik, A. A.; Michel, R.

    2017-03-01

    Five years ago, the Stellar Systems Group of the IAA began an observational programme of young stellar clusters containing massive stars, whose main objective is the characterization of their stellar population using optical (UBV RI + Hα) and NIR (JHK) photometry. With these data, we can obtain the physical parameters of the clusters and determine the mass function of the cluster members, their spatial distribution by mass range, as well as a census of populations at different masses and evolutionary states for two distinct environments: a) isolated clusters, and b) clusters contained within a larger star-forming region. So far, we have observed around 40 clusters, which are at different stages of analysis. The optical data were secured from the 1.5m telescope at Sierra Nevada Observatory (OSN), while the NIR data were taken using the Nordic Optical Telescope (NOT) at Roque de los Muchachos Observatory. The last year, we began the optical observations of the survey with a larger field of view (13' size) at the 0.9m telescope (OSN). The analysis of the set of standard stars observed along the whole project enabled us to determine a reliable estimation of the atmospheric extinction as well as to analyze the stability of the photometric transformations at OSN to calibrate the data. In this poster, we present the results of the calibration analysis and the preliminary study for a subsample of the clusters.

  7. Environmental Field Surveys, EMF Rapid Program, Engineering Project No.3

    SciTech Connect

    Enertech Consultants

    1996-04-01

    The EMF Research and Public Information Dissemination Program (RAPID) includes several engineering research in the area of exposure assessment and source characterization. RAPID engineering project No. 3: ''Environmental Field Surveys'' was performed to obtain information on the levels and characteristics of different environments, for which only limited data were available, especially in comparison to magnetic field data for the residential environment and for electric utility facilities, such as power lines and substations. This project was also to provide information on the contribution of various field sources in the surveyed environments. Magnetic field surveys were performed at four sites for each of five environments: schools, hospitals, office buildings, machine shops, and grocery stores. Of the twenty sites surveyed, 11 were located in the San Francisco Bay Area and 9 in Massachusetts. The surveys used a protocol based on magnetic field measurements and observation of activity patterns, designed to provide estimates of magnetic field exposure by type of people and by type of sources. The magnetic field surveys conducted by this project produced a large amount of data which will form a part of the EMF measurement database Field and exposure data were obtained separately for ''area exposure'' and ''at exposure points''. An exposure point is a location where persons engage in fixed, site specific activities near a local source that creates a significant increase in the area field. The area field is produced by ''area sources'', whose location and field distribution is in general not related to the location of the people in the area.

  8. The ACS Fornax Cluster Survey. XII. Diffuse Star Clusters in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Liu, Yiqing; Peng, Eric W.; Lim, Sungsoon; Jordán, Andrés; Blakeslee, John; Côté, Patrick; Ferrarese, Laura; Pattarakijwanich, Petchara

    2016-10-01

    Diffuse star clusters (DSCs) are old and dynamically hot stellar systems that have lower surface brightness and more extended morphology than globular clusters (GCs). Using the images from Hubble Space Telescope (HST)/ACS Fornax Cluster Survey, we find that 12 out of 43 early-type galaxies (ETGs) in the Fornax Cluster host significant numbers of DSCs. Together with literature data from the HST/ACS Virgo Cluster Survey, where 18 out of 100 ETGs were found to host DSCs, we systematically study the relationship of DSCs with GCs and their host galaxy environment. Two DSC hosts are post-merger galaxies, with most of the other hosts either having low mass or showing clear disk components. We find that while the number ratio of DSCs to GCs is nearly constant in massive galaxies, the DSC-to-GC ratio becomes systematically higher in lower-mass hosts. This suggests that DSCs may be more efficient at forming (or surviving) in low-density environments. DSC hosts are not special either in their position in the cluster or in the galactic color-magnitude diagram. Why some disk and low-mass galaxies host DSCs while others do not is still a puzzle, however. The mean ages of DSC hosts and nonhosts are similar at similar masses, implying that formation efficiency rather than survival is the reason behind different DSC number fractions in ETGs.

  9. A SURVEY FOR PLANETARY NEBULAE IN M31 GLOBULAR CLUSTERS

    SciTech Connect

    Jacoby, George H.; De Marco, Orsola; Lee, Myung Gyoon; Herrmann, Kimberly A.; Hwang, Ho Seong; Davies, James E.; Kaplan, Evan E-mail: rbc@astro.psu.edu E-mail: mglee@astrog.snu.ac.kr E-mail: hhwang@cfa.harvard.edu E-mail: evanskaplan@gmail.com

    2013-05-20

    We report the results of an [O III] {lambda}5007 spectroscopic survey for planetary nebulae (PNe) located within the star clusters of M31. By examining R {approx} 5000 spectra taken with the WIYN+Hydra spectrograph, we identify 3 PN candidates in a sample of 274 likely globular clusters, 2 candidates in objects which may be globular clusters, and 5 candidates in a set of 85 younger systems. The possible PNe are all faint, between {approx}2.5 and {approx}6.8 mag down the PN luminosity function, and, partly as a consequence of our selection criteria, have high excitation, with [O III] {lambda}5007 to H{beta} ratios ranging from 2 to {approx}> 12. We discuss the individual candidates, their likelihood of cluster membership, and the possibility that they were formed via binary interactions within the clusters. Our data are consistent with the suggestion that PN formation within globular clusters correlates with binary encounter frequency, though, due to the small numbers and large uncertainties in the candidate list, this study does not provide sufficient evidence to confirm the hypothesis.

  10. Clustering and community detection in directed networks: A survey

    NASA Astrophysics Data System (ADS)

    Malliaros, Fragkiskos D.; Vazirgiannis, Michalis

    2013-12-01

    Networks (or graphs) appear as dominant structures in diverse domains, including sociology, biology, neuroscience and computer science. In most of the aforementioned cases graphs are directed - in the sense that there is directionality on the edges, making the semantics of the edges nonsymmetric as the source node transmits some property to the target one but not vice versa. An interesting feature that real networks present is the clustering or community structure property, under which the graph topology is organized into modules commonly called communities or clusters. The essence here is that nodes of the same community are highly similar while on the contrary, nodes across communities present low similarity. Revealing the underlying community structure of directed complex networks has become a crucial and interdisciplinary topic with a plethora of relevant application domains. Therefore, naturally there is a recent wealth of research production in the area of mining directed graphs - with clustering being the primary method sought and the primary tool for community detection and evaluation. The goal of this paper is to offer an in-depth comparative review of the methods presented so far for clustering directed networks along with the relevant necessary methodological background and also related applications. The survey commences by offering a concise review of the fundamental concepts and methodological base on which graph clustering algorithms capitalize on. Then we present the relevant work along two orthogonal classifications. The first one is mostly concerned with the methodological principles of the clustering algorithms, while the second one approaches the methods from the viewpoint regarding the properties of a good cluster in a directed network. Further, we present methods and metrics for evaluating graph clustering results, demonstrate interesting application domains and provide promising future research directions.

  11. The XMM Cluster Survey: the halo occupation number of BOSS galaxies in X-ray clusters

    NASA Astrophysics Data System (ADS)

    Mehrtens, Nicola; Romer, A. Kathy; Nichol, Robert C.; Collins, Chris A.; Sahlén, Martin; Rooney, Philip J.; Mayers, Julian A.; Bermeo-Hernandez, A.; Bristow, Martyn; Capozzi, Diego; Christodoulou, L.; Comparat, Johan; Hilton, Matt; Hoyle, Ben; Kay, Scott T.; Liddle, Andrew R.; Mann, Robert G.; Masters, Karen; Miller, Christopher J.; Parejko, John K.; Prada, Francisco; Ross, Ashley J.; Schneider, Donald P.; Stott, John P.; Streblyanska, Alina; Viana, Pedro T. P.; White, Martin; Wilcox, Harry; Zehavi, Idit

    2016-12-01

    We present a direct measurement of the mean halo occupation distribution (HOD) of galaxies taken from the eleventh data release (DR11) of the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey (BOSS). The HOD of BOSS low-redshift (LOWZ: 0.2 < z < 0.4) and Constant-Mass (CMASS: 0.43 < z < 0.7) galaxies is inferred via their association with the dark matter haloes of 174 X-ray-selected galaxy clusters drawn from the XMM Cluster Survey (XCS). Halo masses are determined for each galaxy cluster based on X-ray temperature measurements, and range between log10(M180/M⊙) = 13 and 15. Our directly measured HODs are consistent with the HOD-model fits inferred via the galaxy-clustering analyses of Parejko et al. for the BOSS LOWZ sample and White et al. for the BOSS CMASS sample. Under the simplifying assumption that the other parameters that describe the HOD hold the values measured by these authors, we have determined a best-fitting alpha-index of 0.91 ± 0.08 and 1.27^{+0.03}_{-0.04} for the CMASS and LOWZ HOD, respectively. These alpha-index values are consistent with those measured by White et al. and Parejko et al. In summary, our study provides independent support for the HOD models assumed during the development of the BOSS mock-galaxy catalogues that have subsequently been used to derive BOSS cosmological constraints.

  12. RCSLenS: The Red Cluster Sequence Lensing Survey

    NASA Astrophysics Data System (ADS)

    Hildebrandt, H.; Choi, A.; Heymans, C.; Blake, C.; Erben, T.; Miller, L.; Nakajima, R.; van Waerbeke, L.; Viola, M.; Buddendiek, A.; Harnois-Déraps, J.; Hojjati, A.; Joachimi, B.; Joudaki, S.; Kitching, T. D.; Wolf, C.; Gwyn, S.; Johnson, N.; Kuijken, K.; Sheikhbahaee, Z.; Tudorica, A.; Yee, H. K. C.

    2016-11-01

    We present the Red Cluster Sequence Lensing Survey (RCSLenS), an application of the methods developed for the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) to the ˜785 deg2, multi-band imaging data of the Red-sequence Cluster Survey 2. This project represents the largest public, sub-arcsecond seeing, multi-band survey to date that is suited for weak gravitational lensing measurements. With a careful assessment of systematic errors in shape measurements and photometric redshifts, we extend the use of this data set to allow cross-correlation analyses between weak lensing observables and other data sets. We describe the imaging data, the data reduction, masking, multi-colour photometry, photometric redshifts, shape measurements, tests for systematic errors, and a blinding scheme to allow for more objective measurements. In total, we analyse 761 pointings with r-band coverage, which constitutes our lensing sample. Residual large-scale B-mode systematics prevent the use of this shear catalogue for cosmic shear science. The effective number density of lensing sources over an unmasked area of 571.7 deg2 and down to a magnitude limit of r ˜ 24.5 is 8.1 galaxies per arcmin2 (weighted: 5.5 arcmin-2) distributed over 14 patches on the sky. Photometric redshifts based on four-band griz data are available for 513 pointings covering an unmasked area of 383.5 deg2. We present weak lensing mass reconstructions of some example clusters as well as the full survey representing the largest areas that have been mapped in this way. All our data products are publicly available through Canadian Astronomy Data Centre at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/rcslens/query.html in a format very similar to the CFHTLenS data release.

  13. The Richness Dependence of Galaxy Cluster Correlations: Results From A Redshift Survey Of Rich APM Clusters

    NASA Technical Reports Server (NTRS)

    Croft, R. A. C.; Dalton, G. B.; Efstathiou, G.; Sutherland, W. J.; Maddox, S. J.

    1997-01-01

    We analyze the spatial clustering properties of a new catalog of very rich galaxy clusters selected from the APM Galaxy Survey. These clusters are of comparable richness and space density to Abell Richness Class greater than or equal to 1 clusters, but selected using an objective algorithm from a catalog demonstrably free of artificial inhomogeneities. Evaluation of the two-point correlation function xi(sub cc)(r) for the full sample and for richer subsamples reveals that the correlation amplitude is consistent with that measured for lower richness APM clusters and X-ray selected clusters. We apply a maximum likelihood estimator to find the best fitting slope and amplitude of a power law fit to x(sub cc)(r), and to estimate the correlation length r(sub 0) (the value of r at which xi(sub cc)(r) is equal to unity). For clusters with a mean space density of 1.6 x 10(exp -6) h(exp 3) MpC(exp -3) (equivalent to the space density of Abell Richness greater than or equal to 2 clusters), we find r(sub 0) = 21.3(+11.1/-9.3) h(exp -1) Mpc (95% confidence limits). This is consistent with the weak richness dependence of xi(sub cc)(r) expected in Gaussian models of structure formation. In particular, the amplitude of xi(sub cc)(r) at all richnesses matches that of xi(sub cc)(r) for clusters selected in N-Body simulations of a low density Cold Dark Matter model.

  14. The X-ray luminosity functions of Abell clusters from the Einstein Cluster Survey

    NASA Technical Reports Server (NTRS)

    Burg, R.; Giacconi, R.; Forman, W.; Jones, C.

    1994-01-01

    We have derived the present epoch X-ray luminosity function of northern Abell clusters using luminosities from the Einstein Cluster Survey. The sample is sufficiently large that we can determine the luminosity function for each richness class separately with sufficient precision to study and compare the different luminosity functions. We find that, within each richness class, the range of X-ray luminosity is quite large and spans nearly a factor of 25. Characterizing the luminosity function for each richness class with a Schechter function, we find that the characteristic X-ray luminosity, L(sub *), scales with richness class as (L(sub *) varies as N(sub*)(exp gamma), where N(sub *) is the corrected, mean number of galaxies in a richness class, and the best-fitting exponent is gamma = 1.3 +/- 0.4. Finally, our analysis suggests that there is a lower limit to the X-ray luminosity of clusters which is determined by the integrated emission of the cluster member galaxies, and this also scales with richness class. The present sample forms a baseline for testing cosmological evolution of Abell-like clusters when an appropriate high-redshift cluster sample becomes available.

  15. The XMM Cluster Survey: A Massive Galaxy Cluster at z = 1.45

    SciTech Connect

    Stanford, S A; Romer, A K; Sabirli, K; Davidson, M; Hilton, M; Viana, P P; Collins, C A; Kay, S T; Liddle, A R; Mann, R G; Miller, C J; Nichol, R C; West, M J; Conselice, C J; Spinrad, H; Stern, D; Bundy, K

    2006-05-24

    We report the discovery of XMMXCS J2215.9-1738, a massive galaxy cluster at z = 1.45, which was found in the XMM Cluster Survey. The cluster candidate was initially identified as an extended X-ray source in archival XMM data. Optical spectroscopy shows that 6 galaxies within a {approx}60 arcsec diameter region lie at z = 1.45 {+-} 0.01. Model fits to the X-ray spectra of the extended emission yield kT = 7.4{sub -1.8}{sup +2.7} keV (90% confidence); if there is an undetected central X-ray point source then kT = 6.5{sub -1.8}{sup +2.6} keV. The bolometric X-ray luminosity is L{sub x} = 4.4{sub -0.6}{sup +0.8} x 10{sup 44} ergs s{sup -1} over a 2 Mpc radial region. The measured T{sub x}, which is the highest for any known cluster at z > 1, suggests that this cluster is relatively massive for such a high redshift. The redshift of XMMXCS J2215.9-1738 is the highest currently known for a spectroscopically-confirmed cluster of galaxies.

  16. Clusters of Galaxies in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Nichol, Robert C.

    I review here past and present research on clusters and groups of galaxies within the Sloan Digital Sky Survey (SDSS). I begin with a short review of the SDSS and efforts to find clusters of galaxies using both the photometric and spectroscopic SDSS data. In particular, I discuss the C4 algorithm, which is designed to search for clusters and groups within a seven-dimensional (7-D) data space, i.e., simultaneous clustering in both color and space. The C4 catalog has a well-quantified selection function based on mock SDSS galaxy catalogs constructed from the Hubble Volume simulation. These simulations indicate that the C4 catalog is >90% complete, with <10% contamination, for halos of M200 >1014 Modot at z<0.14. Furthermore, the observed summed r-band luminosity of C4 clusters is linearly related to M200, with <30% scatter at any given halo mass. I also briefly review the selection and observation of luminous red galaxies and demonstrate that these galaxies have a similar clustering strength as clusters and groups of galaxies. I outline a new collaboration planning to obtain redshifts for 10,000 luminous red galaxies at 0.4 clusters and groups of galaxies in the study of galaxy properties as a function of environment. In particular, I discuss the ``star formation rate-density'' and ``morphology-radius'' relations for the SDSS and note that both of these relationships have a critical density (or ``break'') at a projected local galaxy density of ˜1 h75-2 {Mpc-2 (or between 1 to 2 virial radii). One possible physical mechanism to explain this observed critical density is the stripping of warm gas from the halos of infalling spiral galaxies, thus leading to a slow strangulation of star formation in these galaxies. This scenario is consistent with the recent discovery (within the SDSS) of an excess of ``passive'' or ``anemic'' spiral galaxies located

  17. A Snapshot Survey of The Most Massive Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Ebeling, Harald

    2007-07-01

    We propose the continuation of our highly successful SNAPshot survey of a sample of 125 very X-ray luminous clusters in the redshift range 0.3-0.7. As demonstrated by the 25 snapshots obtained so far in Cycle14 and Cycle15 these systems frequently exhibit strong gravitational lensing as well as spectacular examples of violent galaxy interactions. The proposed observations will provide important constraints on the cluster mass distributions, the physical nature of galaxy-galaxy and galaxy-gas interactions in cluster cores, and a set of optically bright, lensed galaxies for further 8-10m spectroscopy. All of our primary science goals require only the detection and characterisation of high-surface-brightness features and are thus achievable even at the reduced sensitivity of WFPC2. Because of their high redshift and thus compact angular scale our target clusters are less adversely affected by the smaller field of view of WFPC2 than more nearby systems. Acknowledging the broad community interest in this sample we waive our data rights for these observations. Due to a clerical error at STScI our approved Cycle15 SNAP program was barred from execution for 3 months and only 6 observations have been performed to date - reinstating this SNAP at Cycle16 priority is of paramount importance to reach meaningful statistics.

  18. Super Star Clusters in Luminous Infrared Galaxies: the SUNBIRD Survey

    NASA Astrophysics Data System (ADS)

    Väisänen, P.; Randriamanakoto, Z.; Escala, A.; Kankare, E.; Kniazev, A.; Kotilainen, J. K.; Mattila, S.; Ramphul, R.; Ryder, S.; Tekola, A.

    2014-09-01

    We summarize recent results from an Adaptive Optics (AO) imaging survey of 40 Luminous IR Galaxies (LIRGs). We have constructed the first statistically significant sample of Luminosity Functions (LFs) of Super Star Clusters (SSCs) in the near-IR, and find evidence that the LF slopes in LIRGs are shallower than in more quiescent spiral galaxies. Distance and blending effects were investigated in detail paving the way for SSC studies further out than done previously. We have also correlated the luminosities of the brightest clusters with the star formation rates of the hosts and find that the characteristics of the relation suggest an underlying physical driver rather than solely a size-of-sample effect. Finally we present early results of using SSC age and mass properties to trace the histories of the target LIRG systems.

  19. Sunyaev Zel'dovich galaxy cluster wide surveys for cosmology

    NASA Astrophysics Data System (ADS)

    Juin, J.-B.; Pires, S.; Yvon, D.; Refregier, A.; Yeche, C.; Moudden, Y.; Anthoine, S.; Pierpaoli, E.

    The observation of galaxy cluster population in milimeter wavelength through their Sunyaev Zel'dovich signal, both at low and high redshifts will provide the large sample needed to perform statistical studies of both intra-cluster physics and cosmology allowing a better understanding of universe dark-components: dark- matter density and dark-energy equation of state. Starting now, Olimpo, South Pole Telescope, Planck-HFI, APEX-SZ and Atacama Cosmology Telescope are world- class instruments dedicated to perform such surveys. After the technological challenge overcomed by state-of-art telescopes and bolometer camera, achievement of milimeter wide surveys need dedicated alogrithms to extract the SZ signal of galaxy cluster from foregrounds and backgrounds contaminants. This difficulty arise complex selection effects that have to be understood properly to allow optimal constraints calculation on physical models. Presented results are a summary of both articles: Pires et al. 2006 and Juin et al. 2007 published in Astronomy and Astrophics. In the first paper we present an efficient detection pipeline to extract SZ signal of galaxy clusters from multi-band millimeter maps. The pipeline core is an Independant Component Analysis algorithm that will isolate SZ signal from other physical contaminants (CMB anisotropies, galactic dust and SCUBA-like point sources) considered as statistically independant physical signals. While ICA algorithm is able to efficiently separate SZ signal from the mixture of physical signals, noise still remains in the SZ recovered map implying the necessity of a denoising step after the ICA. We used different classical filters (gaussian, wiener) and a state-of-art non-linear multi-scale entropy filtering, ME-FDR, with false-detection rate automatized threshold choice in each scale. This non-linear filtering showed to be an efficient method to avoid false detections of point sources that could have succeed the ICA selection and show up in the

  20. The Herschel Virgo Cluster Survey - XII. FIR properties of optically selected Virgo cluster galaxies

    NASA Astrophysics Data System (ADS)

    Auld, R.; Bianchi, S.; Smith, M. W. L.; Davies, J. I.; Bendo, G. J.; di Serego, S. Alighieri; Cortese, L.; Baes, M.; Bomans, D. J.; Boquien, M.; Boselli, A.; Ciesla, L.; Clemens, M.; Corbelli, E.; De Looze, I.; Fritz, J.; Gavazzi, G.; Pappalardo, C.; Grossi, M.; Hunt, L. K.; Madden, S.; Magrini, L.; Pohlen, M.; Verstappen, J.; Vlahakis, C.; Xilouris, E. M.; Zibetti, S.

    2013-01-01

    The Herschel Virgo Cluster Survey (HeViCS) is the deepest, confusion-limited survey of the Virgo Cluster at far-infrared (FIR) wavelengths. The entire survey at full depth covers ˜55 deg2 in five bands (100-500 μm), encompassing the areas around the central dominant elliptical galaxies (M87, M86 and M49) and extends as far as the NW cloud, the W cloud and the Southern extension. The survey extends beyond this region with lower sensitivity so that the total area covered is 84 deg2. In this paper we describe the data, the data acquisition techniques and present the detection rates of the optically selected Virgo Cluster Catalogue (VCC). We detect 254 (34 per cent) of 750 VCC galaxies found within the survey boundary in at least one band and 171 galaxies are detected in all five bands. For the remainder of the galaxies we have measured strict upper limits for their FIR emission. The population of detected galaxies contains early as well as late types although the latter dominate the detection statistics. We have modelled 168 galaxies, showing no evidence of a strong synchrotron component in their FIR spectra, using a single-temperature modified blackbody spectrum with a fixed emissivity index (β = 2). A study of the χ2 distribution indicates that this model is not appropriate in all cases, and this is supported by the FIR colours which indicate a spread in β = 1-2. Statistical comparison of the dust mass and temperature distributions from 140 galaxies with χ2d.o.f. = 3 < 7.8 (95 per cent confidence level) shows that late types have typically colder, more massive dust reservoirs; the early-type dust masses have a mean of log[/M⊙] = 6.3 ± 0.3, while for late types log[/M⊙] = 7.1 ± 0.1. The late-type dust temperatures have a mean of = 19.4 ± 0.2 K, while for the early types, = 21.1 ± 0.8 K. Late-type galaxies in the cluster exhibit slightly lower dust masses than those in the field, but the cluster environment seems to have little effect on

  1. The dynamics of z ~ 1 clusters of galaxies from the GCLASS survey

    NASA Astrophysics Data System (ADS)

    Biviano, A.; van der Burg, R. F. J.; Muzzin, A.; Sartoris, B.; Wilson, G.; Yee, H. K. C.

    2016-10-01

    Context. The dynamics of clusters of galaxies and its evolution provide information on their formation and growth, on the nature of dark matter and on the evolution of the baryonic components. Poor observational constraints exist so far on the dynamics of clusters at redshift z > 0.8. Aims: We aim to constrain the internal dynamics of clusters of galaxies at redshift z ~ 1, namely their mass profile M(r), velocity anisotropy profile β(r), and pseudo-phase-space density profiles Q(r) and Qr(r), obtained from the ratio between the mass density profile and the third power of the (total and, respectively, radial) velocity dispersion profiles of cluster galaxies. Methods: We used the spectroscopic and photometric data-set of 10 clusters at 0.87 < z < 1.34 from the Gemini Cluster Astrophysics Spectroscopic Survey (GCLASS). We determined the individual cluster masses from their velocity dispersions, then stack the clusters in projected phase-space. We investigated the internal dynamics of this stack cluster, using the spatial and velocity distribution of its member galaxies. We determined the stack cluster M(r) using the MAMPOSSt method, and its β(r) by direct inversion of the Jeans equation. The procedures used to determine the two aforementioned profiles also allowed us to determine Q(r) and Qr(r). Results: Several M(r) models are statistically acceptable for the stack cluster (Burkert, Einasto, Hernquist, NFW). The stack cluster total mass concentration, c ≡ r200/r-2 = 4.0-0.6+1.0, is in agreement with theoretical expectations. The total mass distribution is less concentrated than both the cluster stellar-mass and the cluster galaxies distributions. The stack cluster β(r) indicates that galaxy orbits are isotropic near the cluster center and become increasingly radially elongated with increasing cluster-centric distance. Passive and star-forming galaxies have similar β(r). The observed β(r) is similar to that of dark matter particles in simulated cosmological

  2. The Herschel Virgo Cluster Survey - VIII. The Bright Galaxy Sample

    NASA Astrophysics Data System (ADS)

    Davies, J. I.; Bianchi, S.; Cortese, L.; Auld, R.; Baes, M.; Bendo, G. J.; Boselli, A.; Ciesla, L.; Clemens, M.; Corbelli, E.; De Looze, I.; di Serego Alighieri, S.; Fritz, J.; Gavazzi, G.; Pappalardo, C.; Grossi, M.; Hunt, L. K.; Madden, S.; Magrini, L.; Pohlen, M.; Smith, M. W. L.; Verstappen, J.; Vlahakis, C.

    2012-02-01

    We describe the Herschel Virgo Cluster Survey and the first data that cover the complete survey area (four 4 × 4 deg2 regions). We use these data to measure and compare the global far-infrared properties of 78 optically bright galaxies that are selected at 500 μm and detected in all five far-infrared bands. We show that our measurements and calibration are broadly consistent with previous data obtained by the IRAS, ISO, Spitzer and Planck. We use SPIRE and PACS photometry data to produce 100-, 160-, 250-, 350- and 500-μm cluster luminosity distributions. These luminosity distributions are not power laws, but 'peaked', with small numbers of both faint and bright galaxies. We measure a cluster 100-500 μm far-infrared luminosity density of 1.6(7.0) ± 0.2 × 109 L⊙ Mpc-3. This compares to a cluster 0.4-2.5 μm optical luminosity density of 5.0(20.0) × 109 L⊙ Mpc-3, some 3.2(2.9) times larger than the far-infrared. A 'typical' photon originates from an optical depth of 0.4 ± 0.1. Most of our sample galaxies are well fitted by a single modified blackbody (β= 2), leading to a mean dust mass of log MDust= 7.31 M⊙ and temperature of 20.0 K. We also derive both stellar and atomic hydrogen masses from which we calculate mean values for the star-to-gas (atomic) and gas (atomic)-to-dust mass ratios of 15.1 and 58.2, respectively. Using our derived dust, atomic gas and stellar masses, we estimate cluster mass densities of 8.6(27.8) × 106, 4.6(13.9) × 108 and 7.8(29.7) × 109 M⊙ Mpc-3 for dust, atomic gas and stars, respectively. These values are higher than those derived for field galaxies by factors of 39(126), 6(18) and 34(129), respectively. In the above, the luminosity/mass densities are given using the whole sample with the values in brackets using just those galaxies that lie between 17 and 23 Mpc. We provide a data table of flux densities in all the Herschel bands for all 78 bright Virgo Cluster galaxies. Herschel is an ESA space observatory with science

  3. The next generation Virgo cluster survey. VIII. The spatial distribution of globular clusters in the Virgo cluster

    SciTech Connect

    Durrell, Patrick R.; Accetta, Katharine; Côté, Patrick; Blakeslee, John P.; Ferrarese, Laura; McConnachie, Alan; Gwyn, Stephen; Peng, Eric W.; Zhang, Hongxin; Mihos, J. Christopher; Puzia, Thomas H.; Jordán, Andrés; Lançon, Ariane; Liu, Chengze; Cuillandre, Jean-Charles; Boissier, Samuel; Boselli, Alessandro; Courteau, Stéphane; Duc, Pierre-Alain; and others

    2014-10-20

    We report on a large-scale study of the distribution of globular clusters (GCs) throughout the Virgo cluster, based on photometry from the Next Generation Virgo Cluster Survey (NGVS), a large imaging survey covering Virgo's primary subclusters (Virgo A = M87 and Virgo B = M49) out to their virial radii. Using the g{sub o}{sup ′}, (g' – i') {sub o} color-magnitude diagram of unresolved and marginally resolved sources within the NGVS, we have constructed two-dimensional maps of the (irregular) GC distribution over 100 deg{sup 2} to a depth of g{sub o}{sup ′} = 24. We present the clearest evidence to date showing the difference in concentration between red and blue GCs over the full extent of the cluster, where the red (more metal-rich) GCs are largely located around the massive early-type galaxies in Virgo, while the blue (metal-poor) GCs have a much more extended spatial distribution with significant populations still present beyond 83' (∼215 kpc) along the major axes of both M49 and M87. A comparison of our GC maps to the diffuse light in the outermost regions of M49 and M87 show remarkable agreement in the shape, ellipticity, and boxiness of both luminous systems. We also find evidence for spatial enhancements of GCs surrounding M87 that may be indicative of recent interactions or an ongoing merger history. We compare the GC map to that of the locations of Virgo galaxies and the X-ray intracluster gas, and find generally good agreement between these various baryonic structures. We calculate the Virgo cluster contains a total population of N {sub GC} = 67, 300 ± 14, 400, of which 35% are located in M87 and M49 alone. For the first time, we compute a cluster-wide specific frequency S {sub N,} {sub CL} = 2.8 ± 0.7, after correcting for Virgo's diffuse light. We also find a GC-to-baryonic mass fraction ε {sub b} = 5.7 ± 1.1 × 10{sup –4} and a GC-to-total cluster mass formation efficiency ε {sub t} = 2.9 ± 0.5 × 10{sup –5}, the latter values

  4. A Survey of Localized Star Clusters in NGC 1427A

    NASA Astrophysics Data System (ADS)

    Weaver, John R.; Gregg, Michael

    2016-01-01

    It is well established that galactic clusters provide dynamic environments in which to examine galaxy evolution. The starbursting dwarf irregular NGC 1427A presents an interesting case as it is being pulled into the nearby Fornax cluster at supersonic speeds, producing a visibly exceptional star formation rate and notably blue colors. It has been suggested that the highly deformed structure of NGC 1427A is due to ram pressure stripping as a result of interacting with a super-heated ICM provided by several nearby elliptical galaxies. The gas density profile of its leading edge is similar to a "bow-shock", containing several dozen super-star clusters (SSCs) and thousands of smaller star forming clusters. It is clearly evident that the properties of NGC 1427A change rapidly over relatively short distances. Using dithered HST/ACS images in Sloan equivalent g' r' i' z' and Hα filters, we present a morphological and photometric study of NGC 1427A using a novel approach in which stellar properties are measured from sources grouped within localized regions. Apertures are fitted for ~5000 sources at 4σ using a filter-combined master image. Four characteristic regions are chosen to study stellar properties, selected interactively through DS9. We then introduce COMET, a specially-designed source catalog handler for producing graphical figures of each region, cropping both spatially and photometrically. These are then batch-reviewed and analyzed using synthetic isochrones corresponding of each region. Hα bright sources are indicated to illustrate the significance of SSCs. Secondary analysis is carried out using smoothed color maps of source-subtracted diffuse light, yielding penetrative mapping of underlying stellar populations. We show for the first time how the dynamical stellar populations of NGC 1427A differ as a function of position across the surface of the galaxy, ultimately furthering our understanding of cluster interactions and the evolution of irregular galaxies

  5. THE IMACS CLUSTER BUILDING SURVEY. I. DESCRIPTION OF THE SURVEY AND ANALYSIS METHODS

    SciTech Connect

    Oemler, Augustus Jr.; Dressler, Alan; Kelson, Daniel; Villanueva, Edward; Gladders, Michael G.; Rigby, Jane R.; Bai Lei; Fritz, Jacopo; Rieke, George; Poggianti, Bianca M.; Vulcani, Benedetta

    2013-06-10

    The IMACS Cluster Building Survey uses the wide field spectroscopic capabilities of the IMACS spectrograph on the 6.5 m Baade Telescope to survey the large-scale environment surrounding rich intermediate-redshift clusters of galaxies. The goal is to understand the processes which may be transforming star-forming field galaxies into quiescent cluster members as groups and individual galaxies fall into the cluster from the surrounding supercluster. This first paper describes the survey: the data taking and reduction methods. We provide new calibrations of star formation rates (SFRs) derived from optical and infrared spectroscopy and photometry. We demonstrate that there is a tight relation between the observed SFR per unit B luminosity, and the ratio of the extinctions of the stellar continuum and the optical emission lines. With this, we can obtain accurate extinction-corrected colors of galaxies. Using these colors as well as other spectral measures, we determine new criteria for the existence of ongoing and recent starbursts in galaxies.

  6. The IMACS Cluster Building Survey. I. Description of the Survey and Analysis Methods

    NASA Technical Reports Server (NTRS)

    Oemler Jr., Augustus; Dressler, Alan; Gladders, Michael G.; Rigby, Jane R.; Bai, Lei; Kelson, Daniel; Villanueva, Edward; Fritz, Jacopo; Rieke, George; Poggianti, Bianca M.; Vulcani, Benedetta

    2013-01-01

    The IMACS Cluster Building Survey uses the wide field spectroscopic capabilities of the IMACS spectrograph on the 6.5 m Baade Telescope to survey the large-scale environment surrounding rich intermediate-redshift clusters of galaxies. The goal is to understand the processes which may be transforming star-forming field galaxies into quiescent cluster members as groups and individual galaxies fall into the cluster from the surrounding supercluster. This first paper describes the survey: the data taking and reduction methods. We provide new calibrations of star formation rates (SFRs) derived from optical and infrared spectroscopy and photometry. We demonstrate that there is a tight relation between the observed SFR per unit B luminosity, and the ratio of the extinctions of the stellar continuum and the optical emission lines.With this, we can obtain accurate extinction-corrected colors of galaxies. Using these colors as well as other spectral measures, we determine new criteria for the existence of ongoing and recent starbursts in galaxies.

  7. The Herschel Virgo Cluster Survey. XVIII. Star-forming dwarf galaxies in a cluster environment

    NASA Astrophysics Data System (ADS)

    Grossi, M.; Hunt, L. K.; Madden, S. C.; Hughes, T. M.; Auld, R.; Baes, M.; Bendo, G. J.; Bianchi, S.; Bizzocchi, L.; Boquien, M.; Boselli, A.; Clemens, M.; Corbelli, E.; Cortese, L.; Davies, J.; De Looze, I.; di Serego Alighieri, S.; Fritz, J.; Pappalardo, C.; Pierini, D.; Rémy-Ruyer, A.; Smith, M. W. L.; Verstappen, J.; Viaene, S.; Vlahakis, C.

    2015-02-01

    To assess the effects of the cluster environment on the different components of the interstellar medium, we analyse the far-infrared (FIR) and submillimetre (submm) properties of a sample of star-forming dwarf galaxies detected by the Herschel Virgo Cluster Survey (HeViCS). We determine dust masses and dust temperatures by fitting a modified black body function to the spectral energy distributions (SEDs). Stellar and gas masses, star formation rates (SFRs), and metallicities are obtained from the analysis of a set of ancillary data. Dust is detected in 49 out of a total 140 optically identified dwarfs covered by the HeViCS field; considering only dwarfs brighter than mB = 18 mag, this gives a detection rate of 43%. After evaluating different emissivity indices, we find that the FIR-submm SEDs are best-fit by β = 1.5, with a median dust temperature Td = 22.4 K. Assuming β = 1.5, 67% of the 23 galaxies detected in all five Herschel bands show emission at 500 μm in excess of the modified black-body model. The fraction of galaxies with a submillimetre excess decreases for lower values of β, while a similarly high fraction (54%) is found if a β-free SED modelling is applied. The excess is inversely correlated with SFR and stellar masses. To study the variations in the global properties of our sample that come from environmental effects, we compare the Virgo dwarfs to other Herschel surveys,such as the Key Insights into Nearby Galaxies: Far-Infrared Survey with Herschel (KINGFISH), the Dwarf Galaxy Survey (DGS), and the HeViCS Bright Galaxy Catalogue (BGC). We explore the relations between stellar mass and Hi fraction, specific star formation rate, dust fraction, gas-to-dust ratio over a wide range of stellar masses (from 107 to 1011 M⊙) for both dwarfs and spirals. Highly Hi-deficient Virgo dwarf galaxies are mostly characterised by quenched star formation activity and lower dust fractions giving hints for dust stripping in cluster dwarfs. However, to explain the

  8. THE IMACS CLUSTER BUILDING SURVEY. II. SPECTRAL EVOLUTION OF GALAXIES IN THE EPOCH OF CLUSTER ASSEMBLY

    SciTech Connect

    Dressler, Alan; Oemler, Augustus Jr.; Poggianti, Bianca M.; Vulcani, Benedetta; Gladders, Michael D.; Abramson, Louis

    2013-06-10

    The IMACS Cluster Building Survey (ICBS) provides spectra of {approx}2200 galaxies 0.31 < z < 0.54 in five rich clusters (R {approx}< 5 Mpc) and the field. Infalling, dynamically cold groups with tens of members account for approximately half of the supercluster population, contributing to a growth in cluster mass of {approx}100% by the present day. The ICBS spectra distinguish non-star-forming (PAS) and poststarburst (PSB) from star-forming galaxies-continuously star-forming (CSF) or starbursts (SBH or SBO), identified by anomalously strong H{delta} absorption or [O II] emission. For the infalling cluster groups and similar field groups, we find a correlation between PAS+PSB fraction and group mass, indicating substantial ''preprocessing'' through quenching mechanisms that can turn star-forming galaxies into passive galaxies without the unique environment of rich clusters. SBH + SBO starburst galaxies are common, and they maintain an approximately constant ratio (SBH+SBO)/CSF Almost-Equal-To 25% in all environments-from field, to groups, to rich clusters. Similarly, while PSB galaxies strongly favor denser environments, PSB/PAS Almost-Equal-To 10%-20% for all environments. This result, and their timescale {tau} {approx} 500 Myr, indicates that starbursts are not signatures of a quenching mechanism that produces the majority of passive galaxies. We suggest instead that starbursts and poststarbursts signal minor mergers and accretions, in star-forming and passive galaxies, respectively, and that the principal mechanisms for producing passive systems are (1) early major mergers, for elliptical galaxies, and (2) later, less violent processes-such as starvation and tidal stripping, for S0 galaxies.

  9. The swift UVOT stars survey. I. Methods and test clusters

    SciTech Connect

    Siegel, Michael H.; Porterfield, Blair L.; Linevsky, Jacquelyn S.; Bond, Howard E.; Hoversten, Erik A.; Berrier, Joshua L.; Gronwall, Caryl A.; Holland, Stephen T.; Breeveld, Alice A.; Brown, Peter J. E-mail: blp14@psu.edu E-mail: caryl@astro.psu.edu E-mail: aab@mssl.ucl.ac.uk

    2014-12-01

    We describe the motivations and background of a large survey of nearby stellar populations using the Ultraviolet Optical Telescope (UVOT) on board the Swift Gamma-Ray Burst Mission. UVOT, with its wide field, near-UV sensitivity, and 2.″3 spatial resolution, is uniquely suited to studying nearby stellar populations and providing insight into the near-UV properties of hot stars and the contribution of those stars to the integrated light of more distant stellar populations. We review the state of UV stellar photometry, outline the survey, and address problems specific to wide- and crowded-field UVOT photometry. We present color–magnitude diagrams of the nearby open clusters M67, NGC 188, and NGC 2539, and the globular cluster M79. We demonstrate that UVOT can easily discern the young- and intermediate-age main sequences, blue stragglers, and hot white dwarfs, producing results consistent with previous studies. We also find that it characterizes the blue horizontal branch of M79 and easily identifies a known post-asymptotic giant branch star.

  10. Clustering Properties of Radio Sources in the FIRST Survey

    NASA Astrophysics Data System (ADS)

    Magliocchetti, M.; Maddox, S. J.; Lahav, O.; Wall, J. V.

    We investigate the large-scale clustering of radio sources in the FIRST 1.4 GHz survey by analysing the distribution function (Counts in Cells) of this sample. We select a reliable galaxy sample from the the FIRST catalogue, paying particular attention to the problem of how to define single radio sources from the multiple components listed in the FIRST catalogue. We also consider the incompleteness of the catalogue. We estimate angular two-point correlation function w(theta), the variance, Psi_2, and skewness, Psi_3, of the distribution for the galaxy subsample. Both w(theta) and Psi_2 show power-law behaviour with an amplitude corresponding a spatial correlation length of r_0 ~10 h^{-1} Mpc. We detect significant skewness in the distribution, and find that it is related to the variance through the relation Psi_3 = S_3(Psi_2)alpha with alpha = 1.9 +- 0.1 consistent with the non-linear growth of perturbations from primordial Gaussian initial conditions. We show that the amplitude of clustering (corresponding to a spatial correlation length of r_0 ~10 h^{-1} Mpc) and skewness are consistent with realistic models of galaxy clustering.

  11. A New Galaxy Cluster Survey For The Northern Sky

    NASA Astrophysics Data System (ADS)

    Gal, R. R.; et al.

    We present a new galaxy cluster catalog constructed from the Digitized Second Palomar Observatory Sky Survey. Our objectively defined catalog covers the entire Northern sky at |b|>30°, and contains nearly 20,000 cluster candidates with photometric redshifts and richnesses. Extensive simulations are used to establish contamination rates and our selection function. We also present some initial work on cluster mass estimation directly from our plate photometry. bibitem Borgani, S., Girardi, M., Carlberg, R. G., Yee, H. K. C., & Ellingson, E. 1999, apj, 527, 561 bibitem Djorgovski, S. G., Odewahn, S. C., Gal, R. R., Brunner, R., de Carvalho, R. R., Longo, G. & Scaramella, R. 1999, American Astronomical Society Meeting, 194, 0414 bibitem Gal, R. R., de Carvalho, R. R., Odewahn, S. C., Djorgovski, S. G., Mahabal, A., Brunner, R. J. & Lopes, P. 2003, AJ, in press bibitem Kim, R. S. J. 2001, Ph.D. Thesis, Princeton bibitem Paolillo, M., Andreon, S., Longo, G., Puddu, E., Gal, R. R., Scaramella, R., Djorgovski, S. G., & de Carvalho, R. 2001, aa, 367, 59 bibitem Postman, M., Lauer, T. R., Oegerle, W., & Donahue, M. 2002, apj, 579, 93 bibitem Struble, M. F. & Rood, H. J. 1999, apjs, 125, 35

  12. The OCCASO Survey: Open Clusters Chemical Abundances from Spanish Observatories

    NASA Astrophysics Data System (ADS)

    Casamiquela, L.; Carrera, R.; Jordi, C.; Balaguer-Núñez, L.

    2014-07-01

    Stellar clusters are crucial in the study of a variety of topics including the star formation process, stellar nucleosynthesis and evolution, dynamical interaction among stars, or the assembly and evolution of galaxies. In particular, Open Clusters (OCs) have been widely used to constrain the formation and evolution of the Milky Way disc. They provide information about the chemical patterns and the existence of radial and vertical gradients or an age-metallicity relation. However, all these investigations are hampered by the fact that only a small fraction of clusters have been studied homogeneously. Galactic surveys performed from the ground such as the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the Gaia-ESO Survey (GES), or the GALactic Archaeology with HERMES (GALAH) include OCs among their targets. OCs are also sampled from the space by the Gaia and Kepler missions. The OCCASO goal is to derive abundances for more than 20 chemical species in at least 6 Red Clump stars in ˜30 Northern hemisphere OCs. In order to ensure the reliability of the derived chemical abundances, these are derived using different analysis techniques similar to what is being performed by GES. One of the OCCASO requirements is the homogeneity between instruments, methods and model atmospheres used, and in the same scale than the GES-UVES abundances. For this reason we are performing different tests checking internal and external consistency. Derived stellar atmosphere parameters and Fe abundances will be published in the first data release scheduled for the first semester of 2015. The online pdf of the poster with first results is available at https://gaia.ub.edu/Twiki/pub/GREATITNFC/ProgramFinalconference/poster_OCCASO.pdf.

  13. A faint galaxy redshift survey behind massive clusters

    SciTech Connect

    Frye, Brenda Louise

    1999-05-01

    This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. The gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of ~20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.

  14. The 2-degree Field Lensing Survey: design and clustering measurements

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Amon, Alexandra; Childress, Michael; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Hinton, Samuel R.; Janssens, Steven; Johnson, Andrew; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; Parkinson, David; Poole, Gregory B.; Wolf, Christian

    2016-11-01

    We present the 2-degree Field Lensing Survey (2dFLenS), a new galaxy redshift survey performed at the Anglo-Australian Telescope. 2dFLenS is the first wide-area spectroscopic survey specifically targeting the area mapped by deep-imaging gravitational lensing fields, in this case the Kilo-Degree Survey. 2dFLenS obtained 70 079 redshifts in the range z < 0.9 over an area of 731 deg2, and is designed to extend the data sets available for testing gravitational physics and promote the development of relevant algorithms for joint imaging and spectroscopic analysis. The redshift sample consists first of 40 531 Luminous Red Galaxies (LRGs), which enable analyses of galaxy-galaxy lensing, redshift-space distortion, and the overlapping source redshift distribution by cross-correlation. An additional 28 269 redshifts form a magnitude-limited (r < 19.5) nearly complete subsample, allowing direct source classification and photometric-redshift calibration. In this paper, we describe the motivation, target selection, spectroscopic observations, and clustering analysis of 2dFLenS. We use power spectrum multipole measurements to fit the redshift-space distortion parameter of the LRG sample in two redshift ranges 0.15 < z < 0.43 and 0.43 < z < 0.7 as β = 0.49 ± 0.15 and β = 0.26 ± 0.09, respectively. These values are consistent with those obtained from LRGs in the Baryon Oscillation Spectroscopic Survey. 2dFLenS data products will be released via our website http://2dflens.swin.edu.au.

  15. MEASURING THE ULTIMATE HALO MASS OF GALAXY CLUSTERS: REDSHIFTS AND MASS PROFILES FROM THE HECTOSPEC CLUSTER SURVEY (HeCS)

    SciTech Connect

    Rines, Kenneth; Geller, Margaret J.; Kurtz, Michael J.; Diaferio, Antonaldo E-mail: diaferio@ph.unito.it

    2013-04-10

    The infall regions of galaxy clusters represent the largest gravitationally bound structures in a {Lambda}CDM universe. Measuring cluster mass profiles into the infall regions provides an estimate of the ultimate mass of these halos. We use the caustic technique to measure cluster mass profiles from galaxy redshifts obtained with the Hectospec Cluster Survey (HeCS), an extensive spectroscopic survey of galaxy clusters with MMT/Hectospec. We survey 58 clusters selected by X-ray flux at 0.1 < z < 0.3. The survey includes 22,680 unique MMT/Hectospec redshifts for individual galaxies; 10,145 of these galaxies are cluster members. For each cluster, we acquired high signal-to-noise spectra for {approx}200 cluster members and a comparable number of foreground/background galaxies. The cluster members trace out infall patterns around the clusters. The members define a very narrow red sequence. We demonstrate that the determination of velocity dispersion is insensitive to the inclusion of bluer members (a small fraction of the cluster population). We apply the caustic technique to define membership and estimate the mass profiles to large radii. The ultimate halo mass of clusters (the mass that remains bound in the far future of a {Lambda}CDM universe) is on average (1.99 {+-} 0.11)M{sub 200}, a new observational cosmological test in essential agreement with simulations. Summed profiles binned in M{sub 200} and in L{sub X} demonstrate that the predicted Navarro-Frenk-White form of the density profile is a remarkably good representation of the data in agreement with weak lensing results extending to large radius. The concentration of these summed profiles is also consistent with theoretical predictions.

  16. An updated survey of globular clusters in M 31. II. Newly discovered bright and remote clusters

    NASA Astrophysics Data System (ADS)

    Galleti, S.; Bellazzini, M.; Federici, L.; Buzzoni, A.; Fusi Pecci, F.

    2007-08-01

    Aims:We present the first results of a large spectroscopic survey of candidate globular clusters located in the extreme outskirts of the nearby M 31 galaxy. The survey is aimed at ascertaining the nature of the selected candidates to increase the sample of confirmed M 31 clusters lying more that 2° away from the center of the galaxy. Methods: We obtained low resolution spectra (λ/Δλ ≃ 800-1300) of 48 targets selected from the Extended Source Catalogue of 2MASS, as in Galleti et al. (2005, A&A, 436, 535). The observed candidates have been robustly classified according to their radial velocity and by verifying their extended/point-source nature from ground-based optical images. We have also obtained a spectrum and a radial velocity estimate for the remote M 31 globular discovered by Martin et al. (2006b, MNRAS, 371, 1983). Results: Among the 48 observed candidates clusters we found: 35 background galaxies, 8 foreground Galactic stars, and 5 genuine remote globular clusters. One of them has been already identified independently by Mackey et al. (2007, ApJ, 655, L85), their GC1; the other four are completely new discoveries: B516, B517, B518, B519. The newly discovered clusters lie at projected distance 40 kpc ≲ R_p≲ 100 kpc from the center of M 31, and have absolute integrated magnitude -9.5 ≲ MV ≲ -7.5. For all the observed clusters we have measured the strongest Lick indices and we have obtained spectroscopic metallicity estimates. Mackey-GC1, Martin-GC1, B517 and B518 have spectra typical of old and metal poor globular clusters ([Fe/H] ≲ -1.3); B519 appears old but quite metal-rich ([Fe/H]~≃ -0.5); B516 presents very strong Balmer absorption lines: if this is indeed a cluster it should have a relatively young age (likely < 2 Gyr). Conclusions: The present analysis nearly doubles the number of M 31 globulars at R_p≥ 40 kpc. At odds with the Milky Way, M 31 appears to have a significant population of very bright globular clusters in its extreme

  17. The Next Generation Virgo Cluster Survey. IV. NGC 4216: A Bombarded Spiral in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Paudel, Sanjaya; Duc, Pierre-Alain; Côté, Patrick; Cuillandre, Jean-Charles; Ferrarese, Laura; Ferriere, Etienne; Gwyn, Stephen D. J.; Mihos, J. Christopher; Vollmer, Bernd; Balogh, Michael L.; Carlberg, Ray G.; Boissier, Samuel; Boselli, Alessandro; Durrell, Patrick R.; Emsellem, Eric; MacArthur, Lauren A.; Mei, Simona; Michel-Dansac, Leo; van Driel, Wim

    2013-04-01

    The final stages of mass assembly of present-day massive galaxies are expected to occur through the accretion of multiple satellites. Cosmological simulations thus predict a high frequency of stellar streams resulting from this mass accretion around the massive galaxies in the Local Volume. Such tidal streams are difficult to observe, especially in dense cluster environments, where they are readily destroyed. We present an investigation into the origins of a series of interlaced narrow filamentary stellar structures, loops and plumes in the vicinity of the Virgo Cluster, edge-on spiral galaxy, NGC 4216 that were previously identified by the Blackbird telescope. Using the deeper, higher-resolution, and precisely calibrated optical CFHT/MegaCam images obtained as part of the Next Generation Virgo Cluster Survey (NGVS), we confirm the previously identified features and identify a few additional structures. The NGVS data allowed us to make a physical study of these low surface brightness features and investigate their origin. The likely progenitors of the structures were identified as either already cataloged Virgo Cluster Catalog dwarfs or newly discovered satellites caught in the act of being destroyed. They have the same g - i color index and likely contain similar stellar populations. The alignment of three dwarfs along an apparently single stream is intriguing, and we cannot totally exclude that these are second-generation dwarf galaxies being born inside the filament from the debris of an original dwarf. The observed complex structures, including in particular a stream apparently emanating from a satellite of a satellite, point to a high rate of ongoing dwarf destruction/accretion in the region of the Virgo Cluster where NGC 4216 is located. We discuss the age of the interactions and whether they occurred in a group that is just falling into the cluster and shows signs of the so-called pre-processing before it gets affected by the cluster environment, or in a

  18. Galaxy clustering with photometric surveys using PDF redshift information

    NASA Astrophysics Data System (ADS)

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; Brunner, R. J.; Thaler, J.

    2016-06-01

    Photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colours, that are obtained through multiband imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths are Δz = 0.1, the use of the entire PDF reduces the typical measurement bias from 5 per cent, when using single point estimates, to 3 per cent.

  19. Galaxy clustering with photometric surveys using PDF redshift information

    DOE PAGES

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; ...

    2016-03-28

    Here, photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colors, that are obtained through multi-band imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths aremore » $$\\Delta z=0.1$$, the use of the entire PDF reduces the typical measurement bias from 5%, when using single point estimates, to 3%.« less

  20. Tidal flares and rates from an archival cluster survey

    NASA Astrophysics Data System (ADS)

    Maksym, W. P.

    2012-12-01

    Tidal disruption flares (TDFs) are potent indicators of the co-evolution of galaxies and the massive black holes (MBHs) which they host in their nuclei, both in terms of the individual black holes revealed by tidal flares and in terms of the overall disruption rate. We examine key concerns regarding the disruption rate from an observational perspective. We also present the findings to date of an archival survey of galaxy clusters using X-ray variability selection and multi-wavelength follow-up. We present a disruption rate that is consistent with other observational and theoretical findings to date, as well as two noteworthy X-ray flares which we attribute to tidal disruption events.

  1. Galaxy clustering with photometric surveys using PDF redshift information

    SciTech Connect

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; Brunner, R. J.; Thaler, J.

    2016-03-28

    Here, photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colors, that are obtained through multi-band imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths are $\\Delta z=0.1$, the use of the entire PDF reduces the typical measurement bias from 5%, when using single point estimates, to 3%.

  2. The Herschel Virgo Cluster Survey . VII. Dust in cluster dwarf elliptical galaxies

    NASA Astrophysics Data System (ADS)

    De Looze, I.; Baes, M.; Zibetti, S.; Fritz, J.; Cortese, L.; Davies, J. I.; Verstappen, J.; Bendo, G. J.; Bianchi, S.; Clemens, M.; Bomans, D. J.; Boselli, A.; Corbelli, E.; Dariush, A.; di Serego Alighieri, S.; Fadda, D.; Garcia-Appadoo, D. A.; Gavazzi, G.; Giovanardi, C.; Grossi, M.; Hughes, T. M.; Hunt, L. K.; Jones, A. P.; Madden, S.; Pierini, D.; Pohlen, M.; Sabatini, S.; Smith, M. W. L.; Vlahakis, C.; Xilouris, E. M.

    2010-07-01

    We use the science demonstration phase data of the Herschel Virgo Cluster Survey to search for dust emission of early-type dwarf galaxies in the central regions of the Virgo cluster as an alternative way of identifying the interstellar medium. We present the first possible far-infrared detection of cluster early-type dwarf galaxies: VCC 781 and VCC 951 are detected at the 10σ level in the SPIRE 250 μm image. Both detected galaxies have dust masses of the order of 105 M_⊙ and average dust temperatures ≈20 K. The detection rate (less than 1%) is quite high compared to the 1.7% detection rate for Hi emission, considering that dwarfs in the central regions are more Hi deficient. We conclude that the removal of interstellar dust from dwarf galaxies resulting from ram pressure stripping, harassment, or tidal effects must be as efficient as the removal of interstellar gas. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. The Role of Environment in Shaping Galaxy Evolution at High Redshift: Insights from the SpARCS Cluster Survey

    NASA Astrophysics Data System (ADS)

    Wilson, Gillian

    2015-08-01

    Between z = 2 and z = 1, the main progenitors of present-day massive clusters undergo rapid collapse, and cluster members transform from active star-forming to quiescent galaxies. The SpARCS survey is one of the largest surveys designed to detect clusters of galaxies at z> 1, and has discovered hundreds of Spitzer IR-selected clusters.I will present results from GCLASS, a 25-night Gemini/GMOS spectroscopic follow-up survey of ten of the most massive SpARCS clusters at z~1, and explain what we are learning about quenching and stellar mass assembly of galaxies in these, the densest of environments, relative to the field population. I will explain how predictions and observations of the stellar mass growth of Brightest Cluster Galaxies, previously controversially divergent, are now coming into agreement, and discuss the evidence for the relative importance of mergers versus in-situ star formation in driving this stellar mass growth as a function of redshift.I will also present a sample of newly-confirmed clusters at z~2 for which we have HST spectroscopy and imaging, and have been targeting with Keck/MOSFIRE. I will conclude by discussing GOGREEN and DEEPDRILL, two new large surveys approved by Gemini & Spitzer, designed to study the effects of environment at lower stellar mass and at higher redshift, respectively. Collectively, these powerful new surveys are beginning to allow us to place constraints on the location and timescale of quenching and, in concert with both hydro-simulations and semi-analytic models, identify the complex role of environment in shaping galaxy evolution over cosmic time.

  4. Deriving physical parameters of M31 star clusters using the PHAT survey .

    NASA Astrophysics Data System (ADS)

    de Meulenaer, P.; Vansevičius, V.

    This work presents the derivation of the physical parameters of 1287 M31 star clusters using the catalog of the Panchromatic Hubble Andromeda Treasury survey. The star cluster parameters are derived using a large grid of star cluster models, generated with stochastically populated IMF, that are compared to the integrated broad-band WFC3+ACS photometry of the observed clusters. We derive the age, mass, and extinction of the sample of M31 star clusters with fixed solar metallicity. For clusters older than 1 Gyr, we also derive the metallicity. For globular clusters, we show that the metallicity derived is in good agreement with the metallicity previously derived using spectroscopy in literature.

  5. A catalog of clusters to z ≤ 1 from the Oxford Dartmouth Thirty Degree Survey

    NASA Astrophysics Data System (ADS)

    Hammell, Molly C.

    2004-06-01

    A sample of 46 previously unidentified, intermediate- to high-redshift, near-infrared (NIR)-selected galaxy clusters have been discovered in the Andromeda catalog of the Oxford Dartmouth Thirty Degree Survey (ODTS). These clusters vary from low- to high-redshift in distance, 0.1 < z < 0.8, and span galaxy count ranges from poor to rich clusters, richnesses of 10 < NAbell < 100. The clusters were selected from a contiguous field of 1.5 square degrees, imaged in 5 optical passbands, U, B, V, R, i', and one NIR passband, K. Two algorithms were developed to select the clusters from this multi-color dataset, the ODT Friends (ODTF) and the Brightest-color (BC). The ODTF method adapts the classical friends-of- friends method for use with photometric redshifts. The BC technique takes advantage of previous observations that clusters tend to be dominated by a large early-type galaxy, and that nearly all of the early-type galaxies in the cluster occupy a small space in color-magnitude diagrams. Extensive simulations with artificial galaxies have been performed to test how well these algorithms select clusters as a function of cluster richness and redshift. The ODTF method successfully recovers a larger fraction of the artificial clusters at higher redshift and lower richness class than the BC method, but this method also suffers from a larger number of false cluster identifications than the BC method. After correcting for the selection function and false detection rate of our algorithms, the abundances of ODTS clusters were compared to cluster counts found in other comparable surveys and to the abundance of clusters predicted by models of cluster formation. The ODT cluster number densities are very similar to other comparable surveys. The ODT cluster mass function is consistent with other surveys, and all of these surveys are broadly consistent with a range of cosmological models.

  6. An updated survey of globular clusters in M 31. I. Classification and radial velocity for 76 candidate clusters

    NASA Astrophysics Data System (ADS)

    Galleti, S.; Federici, L.; Bellazzini, M.; Buzzoni, A.; Fusi Pecci, F.

    2006-09-01

    Aims.We present the first results of a large spectroscopic survey of globular clusters and candidate globular clusters in the nearby M 31 galaxy. The survey is aimed at the classification of known candidate M 31 clusters and at the study of their kinematic properties. Methods: .We obtained low-resolution spectroscopy (λ/Δλ ≃ 800-1300) for 133 targets, including 76 yet-to-be-confirmed candidate clusters (i.e. with no previous spectroscopic information), 55 already-confirmed genuine M 31 clusters, and 2 uncertain candidates. Our observations allowed a reliable estimate of the target radial velocity, within a typical accuracy of ~± 20 km s-1. The observed candidates have been robustly classified according to their radial velocity and shape parameters that allowed us to confidently discriminate between point sources and extended objects even from low-spatial-resolution imagery. Results: .In our set of 76 candidate clusters we found: 42 newly-confirmed bona-fide M 31 clusters, 12 background galaxies, 17 foreground Galactic stars, 2 Hii regions belonging to M 31 and 3 unclassified (possibly M 31 clusters or foreground stars) objects. The classification of a few other candidates not included in our survey has been also reassessed on various observational bases. All the sources of radial velocity estimates for M 31 known globular clusters available in the literature have been compared and checked, and a homogeneous general list has been obtained for 349 confirmed clusters with radial velocity. Conclusions: .Our results suggest that a significant number of genuine clusters (≳100) is still hidden among the plethora of known candidates proposed by various authors. Hence our knowledge of the globular cluster system of the M 31 galaxy is still far from complete even in terms of simple membership.

  7. The Herschel Virgo Cluster Survey - XIV. Transition-type dwarf galaxies in the Virgo cluster

    NASA Astrophysics Data System (ADS)

    De Looze, Ilse; Baes, Maarten; Boselli, Alessandro; Cortese, Luca; Fritz, Jacopo; Auld, Robbie; Bendo, George J.; Bianchi, Simone; Boquien, Médéric; Clemens, Marcel; Ciesla, Laure; Davies, Jonathan; di Serego Alighieri, Sperello; Grossi, Marco; Jones, Anthony; Madden, Suzanne C.; Pappalardo, Ciro; Pierini, Daniele; Smith, Matthew W. L.; Verstappen, Joris; Vlahakis, Catherine; Zibetti, Stefano

    2013-12-01

    We use dust scaling relations to investigate the hypothesis that Virgo cluster transition-type dwarfs are infalling star-forming field galaxies, which is argued based on their optical features (e.g. discs, spiral arms and bars) and kinematic properties similar to late-type galaxies. After their infall, environmental effects gradually transform them into early-type galaxies through the removal of their interstellar medium and quenching of all star formation activity. In this paper, we aim to verify whether this hypothesis holds using far-infrared diagnostics based on Herschel observations of the Virgo cluster taken as part of the Herschel Virgo Cluster Survey. We select transition-type objects in the nearest cluster, Virgo, based on spectral diagnostics indicative for their residual or ongoing star formation. We detect dust (Md ˜ 105-6 M⊙) in 36 per cent of the transition-type dwarfs located on the high end of the stellar mass distribution. This suggests that the dust reservoirs present in non-detections fall just below the Herschel detection limit (≲1.1 × 105 M⊙). Dust scaling relations support the hypothesis of a transformation between infalling late-type galaxies to quiescent low-mass spheroids governed by environmental effects, with dust-to-stellar mass fractions for transition-type dwarfs in between values characteristic for late-type objects and the lower dust fractions observed in early-type galaxies. Several transition-type dwarfs demonstrate blue central cores, hinting at the radially outside-in removal of gas and quenching of star formation activity. The fact that dust is also confined to the inner regions suggests that metals are stripped in the outer regions along with the gas. In the scenario of most dust being stripped from the galaxy along with the gas, we argue that the ejected metals by transition-type dwarfs significantly contribute to the enrichment of the intracluster medium over the lifetime of the Virgo cluster. The accretion of gas

  8. Investigating Faculty Familiarity with Assessment Terminology by Applying Cluster Analysis to Interpret Survey Data

    ERIC Educational Resources Information Center

    Raker, Jeffrey R.; Holme, Thomas A.

    2014-01-01

    A cluster analysis was conducted with a set of survey data on chemistry faculty familiarity with 13 assessment terms. Cluster groupings suggest a high, middle, and low overall familiarity with the terminology and an independent high and low familiarity with terms related to fundamental statistics. The six resultant clusters were found to be…

  9. The Herschel Virgo Cluster Survey. XV. Planck submillimetre sources in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Baes, M.; Herranz, D.; Bianchi, S.; Ciesla, L.; Clemens, M.; De Zotti, G.; Allaert, F.; Auld, R.; Bendo, G. J.; Boquien, M.; Boselli, A.; Clements, D. L.; Cortese, L.; Davies, J. I.; De Looze, I.; di Serego Alighieri, S.; Fritz, J.; Gentile, G.; González-Nuevo, J.; Hughes, T.; Smith, M. W. L.; Verstappen, J.; Viaene, S.; Vlahakis, C.

    2014-02-01

    We cross-correlate the Planck Catalogue of Compact Sources (PCCS) with the fully sampled 84 deg2Herschel Virgo Cluster Survey (HeViCS) fields. We search for and identify the 857 and 545 GHz PCCS sources in the HeViCS fields by studying their FIR/submm and optical counterparts. We find 84 and 48 compact Planck sources in the HeViCS fields at 857 and 545 GHz, respectively. Almost all sources correspond to individual bright Virgo Cluster galaxies. The vast majority of the Planck detected galaxies are late-type spirals, with the Sc class dominating the numbers, while early-type galaxies are virtually absent from the sample, especially at 545 GHz. We compare the HeViCS SPIRE flux densities for the detected galaxies with the four different PCCS flux density estimators and find an excellent correlation with the aperture photometry flux densities, even at the highest flux density levels. We find only seven PCCS sources in the HeViCS fields without a nearby galaxy as obvious counterpart, and conclude that all of these are dominated by Galactic cirrus features or are spurious detections. No Planck sources in the HeViCS fields seem to be associated to high-redshift proto-clusters of dusty galaxies or strongly lensed submm sources. Finally, our study is the first empirical confirmation of the simulation-based estimated completeness of the PCCS, and provides a strong support of the internal PCCS validation procedure. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Tables 1 and 2 are available in electronic form at http://www.aanda.org

  10. IS THE TWO MICRON ALL SKY SURVEY CLUSTERING DIPOLE CONVERGENT?

    SciTech Connect

    Bilicki, Maciej; Chodorowski, Michal; Jarrett, Thomas; Mamon, Gary A.

    2011-11-01

    There is a long-standing controversy about the convergence of the dipole moment of the galaxy angular distribution (the so-called clustering dipole). Is the dipole convergent at all, and if so, what is the scale of the convergence? We study the growth of the clustering dipole of galaxies as a function of the limiting flux of the sample from the Two Micron All Sky Survey (2MASS). Contrary to some earlier claims, we find that the dipole does not converge before the completeness limit of the 2MASS Extended Source Catalog, i.e., up to 13.5 mag in the near-infrared K{sub s} band (equivalent to an effective distance of 300 Mpc h{sup -1}). We compare the observed growth of the dipole with the theoretically expected, conditional one (i.e., given the velocity of the Local Group relative to the cosmic microwave background), for the {Lambda}CDM power spectrum and cosmological parameters constrained by the Wilkinson Microwave Anisotropy Probe. The observed growth turns out to be within 1{sigma} confidence level of its theoretical counterpart once the proper observational window of the 2MASS flux-limited catalog is included. For a contrast, if the adopted window is a top hat, then the predicted dipole grows significantly faster and converges (within the errors) to its final value for a distance of about 300 Mpc h{sup -1}. By comparing the observational windows, we show that for a given flux limit and a corresponding distance limit, the 2MASS flux-weighted window passes less large-scale signal than the top-hat one. We conclude that the growth of the 2MASS dipole for effective distances greater than 200 Mpc h{sup -1} is only apparent. On the other hand, for a distance of 80 Mpc h{sup -1} (mean depth of the 2MASS Redshift Survey) and the {Lambda}CDM power spectrum, the true dipole is expected to reach only {approx}80% of its final value. Eventually, since for the window function of 2MASS the predicted growth is consistent with the observed one, we can compare the two to evaluate

  11. An X-Ray Survey of the Open Cluster NGC 6475 (M7) with ROSAT

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.; Stauffer, John R.; Caillault, J.-P.; Balachandran, Suchitra; Stern, Robert A.; Randich, Sofia

    1995-01-01

    A ROSAT x-ray survey, with complimentary optical photometry, of the open cluster NGC 6475 has enabled the detection of approx. 50 late-F to K0 and approx. 70 K/M dwarf new candidate members, providing the first reliable detection of low-mass stars in this low. galactic latitude, 220 Myr old cluster. The x-ray observations reported here have a typical limiting sensitivity of L(sub x) approx. equal to 10(exp 29) erg/s. The detection frequency of early type cluster members is consistent with the hypothesis that the x-ray emitting early type stars are binary systems with an unseen, low-mass secondary producing the x rays. The ratio between x-ray and bolometric luminosity among NGC 6475 members saturates at a spectral-type/color which is intermediate between that in much younger and in much older clusters, consistent with rotational spindown of solar-type stars upon their arrival on the ZAMS. The upper envelope of x-ray luminosity as a function of spectral type is comparable to that of the Pleiades, with the observed spread in x-ray luminosity among low-mass members being likely due to the presence of binaries and relatively rapid rotators. However, the list of x-ray selected candidate members is likely biased against low-mass, slowly rotating single stars. While some preliminary spectroscopic information is given in an appendix, further spectroscopic observations of the new candidate members will aid in interpreting the coronal activity among solar-type NGC 6475 members and their relation to similar stars in older and younger open clusters.

  12. Reducing systematic error in weak lensing cluster surveys

    SciTech Connect

    Utsumi, Yousuke; Miyazaki, Satoshi; Hamana, Takashi; Geller, Margaret J.; Kurtz, Michael J.; Fabricant, Daniel G.; Dell'Antonio, Ian P.; Oguri, Masamune

    2014-05-10

    Weak lensing provides an important route toward collecting samples of clusters of galaxies selected by mass. Subtle systematic errors in image reduction can compromise the power of this technique. We use the B-mode signal to quantify this systematic error and to test methods for reducing this error. We show that two procedures are efficient in suppressing systematic error in the B-mode: (1) refinement of the mosaic CCD warping procedure to conform to absolute celestial coordinates and (2) truncation of the smoothing procedure on a scale of 10'. Application of these procedures reduces the systematic error to 20% of its original amplitude. We provide an analytic expression for the distribution of the highest peaks in noise maps that can be used to estimate the fraction of false peaks in the weak-lensing κ-signal-to-noise ratio (S/N) maps as a function of the detection threshold. Based on this analysis, we select a threshold S/N = 4.56 for identifying an uncontaminated set of weak-lensing peaks in two test fields covering a total area of ∼3 deg{sup 2}. Taken together these fields contain seven peaks above the threshold. Among these, six are probable systems of galaxies and one is a superposition. We confirm the reliability of these peaks with dense redshift surveys, X-ray, and imaging observations. The systematic error reduction procedures we apply are general and can be applied to future large-area weak-lensing surveys. Our high-peak analysis suggests that with an S/N threshold of 4.5, there should be only 2.7 spurious weak-lensing peaks even in an area of 1000 deg{sup 2}, where we expect ∼2000 peaks based on our Subaru fields.

  13. PHAT STELLAR CLUSTER SURVEY. I. YEAR 1 CATALOG AND INTEGRATED PHOTOMETRY

    SciTech Connect

    Johnson, L. Clifton; Dalcanton, Julianne J.; Fouesneau, Morgan; Hodge, Paul W.; Weisz, Daniel R.; Williams, Benjamin F.; Beerman, Lori C.; Seth, Anil C.; Caldwell, Nelson; Gouliermis, Dimitrios A.; Larsen, Soren S.; Olsen, Knut A. G.; San Roman, Izaskun; Sarajedini, Ata; Bianchi, Luciana; Dolphin, Andrew E.; Girardi, Leo; Guhathakurta, Puragra; Lang, Dustin; and others

    2012-06-20

    The Panchromatic Hubble Andromeda Treasury (PHAT) survey is an ongoing Hubble Space Telescope (HST) multi-cycle program to obtain high spatial resolution imaging of one-third of the M31 disk at ultraviolet through near-infrared wavelengths. In this paper, we present the first installment of the PHAT stellar cluster catalog. When completed, the PHAT cluster catalog will be among the largest and most comprehensive surveys of resolved star clusters in any galaxy. The exquisite spatial resolution achieved with HST has allowed us to identify hundreds of new clusters that were previously inaccessible with existing ground-based surveys. We identify 601 clusters in the Year 1 sample, representing more than a factor of four increase over previous catalogs within the current survey area (390 arcmin{sup 2}). This work presents results derived from the first {approx}25% of the survey data; we estimate that the final sample will include {approx}2500 clusters. For the Year 1 objects, we present a catalog with positions, radii, and six-band integrated photometry. Along with a general characterization of the cluster luminosities and colors, we discuss the cluster luminosity function, the cluster size distributions, and highlight a number of individually interesting clusters found in the Year 1 search.

  14. Isotropic Heating of Galaxy Cluster Cores via Rapidly Reorienting Active Galactic Nucleus Jets

    NASA Astrophysics Data System (ADS)

    Babul, Arif; Sharma, Prateek; Reynolds, Christopher S.

    2013-05-01

    Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P jet = 1044 - 45 erg s-1, typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.

  15. The CfA-Rosat Survey of Distant Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    McNamara, Brian

    1998-01-01

    We (Vikhlinin, McNamara, Forman, Jones, Hornstrup, Quintana) have completed a new survey of distant clusters of galaxies, which we use to to study cluster evolution over cosmological timescales. The clusters were identified as extended X-ray sources in 650 ROSAT PSPC images of high Galactic latitude fields. Our catalog of approximately 230 extended X-ray sources covers 160 square degrees on the sky. Ours is the largest of the several ROSAT serendipitous cluster surveys in progress (e.g. SHARC, Rosati, WARPS etc.). Using V,R,I imagery obtained at several observatories, we find that greater than 90% of the X-ray sources are associated with distant clusters of galaxies. We have obtained spectroscopic redshifts for nearly 80 clusters in our catalog, and we have measured photometric redshifts for the remaining clusters. Our sample contains more than 20 clusters at z > 0.5. I will discuss the logN-logS relationship for our clusters. Because our large survey area, we are able to confirm the evolution of the most luminous distant clusters first seen in the Einstein Extended Medium Sensitivity Survey. In addition, I will discuss the relationships between optical richness, core radius, and X-ray luminosity for distant, X-ray-selected clusters.

  16. THE EVOLUTION OF DUSTY STAR FORMATION IN GALAXY CLUSTERS TO z = 1: SPITZER INFRARED OBSERVATIONS OF THE FIRST RED-SEQUENCE CLUSTER SURVEY

    SciTech Connect

    Webb, T. M. A.; O'Donnell, D.; Coppin, Kristen; Faloon, Ashley; Geach, James E.; Noble, Allison; Yee, H. K. C.; Gilbank, David; Ellingson, Erica; Gladders, Mike; Muzzin, Adam; Wilson, Gillian; Yan, Renbin

    2013-10-01

    We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 < z < 1.0 and spanning an approximate range in mass of 10{sup 14-15} M {sub ☉}. We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 10{sup 11} M {sub ☉}, assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z){sup 5.1±1.9} over the range 0.3 < z < 1.0. These results are tied to the adoption of a single star forming galaxy template; the presence of active galactic nuclei, and an evolution in their relative contribution to the mid-IR galaxy emission, will alter the overall number counts per cluster and their rate of evolution. Under the star formation assumption we infer the approximate total star formation rate per unit cluster mass (ΣSFR/M {sub cluster}). The evolution is similar, with ΣSFR/M {sub cluster} ∼ (1 + z){sup 5.4±1.9}. We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M {sub cluster} (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/M{sub cluster}∼M{sub cluster}{sup -1.5±0.4}) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ∼5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR

  17. Using design effects from previous cluster surveys to guide sample size calculation in emergency settings.

    PubMed

    Kaiser, Reinhard; Woodruff, Bradley A; Bilukha, Oleg; Spiegel, Paul B; Salama, Peter

    2006-06-01

    A good estimate of the design effect is critical for calculating the most efficient sample size for cluster surveys. We reviewed the design effects for seven nutrition and health outcomes from nine population-based cluster surveys conducted in emergency settings. Most of the design effects for outcomes in children, and one-half of the design effects for crude mortality, were below two. A reassessment of mortality data from Kosovo and Badghis, Afghanistan revealed that, given the same number of clusters, changing sample size had a relatively small impact on the precision of the estimate of mortality. We concluded that, in most surveys, assuming a design effect of 1.5 for acute malnutrition in children and two or less for crude mortality would produce a more efficient sample size. In addition, enhancing the sample size in cluster surveys without increasing the number of clusters may not result in substantial improvements in precision.

  18. A Near-infrared Survey of the Rosette Complex: Clues of Early Cluster Evolution

    NASA Astrophysics Data System (ADS)

    Román-Zúñiga, Carlos G.; Lada, Elizabeth A.; Ferreira, Bruno

    2008-05-01

    The majority of stars in our galaxy are born in embedded clusters, which can be considered the fundamental units of star formation. We have recently surveyed the star forming content of the Rosette Complex using FLAMINGOS in order to investigate the properties of its embedded clusters. We discuss the results of our near-infrared imaging survey. In particular, we on the first evidence for the early evolution and expansion of the embedded clusters. In addition we present data suggesting a temporal sequence of cluster formation across the cloud and discuss the influence of the HII region on the star forming history of the Rosette.

  19. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Overview and Membership Methods

    NASA Astrophysics Data System (ADS)

    Donor, John; Frinchaboy, Peter M.; O'Connell, Julia; Cunha, Katia M. L.; Thompson, Benjamin A.; Melendez, Matthew; Shetrone, Matthew D.; Majewski, Steven R.; Zasowski, Gail; Allende-Prieto, Carlos; Pinsonneault, Marc H.; Roman-Lopes, Alexandre; Schultheis, Mathias; Stassun, Keivan G.; Apogee Team

    2017-01-01

    The Open Cluster Chemical Analysis and Mapping (OCCAM) survey aims to produce a comprehensive, uniform, infrared-based data set for hundreds of open clusters, and constrain key Galactic dynamical and chemical parameters using the SDSS/APOGEE survey. We present the sample and methods being used by the survey to determine membership for the few-star sampling for most clusters as observed by the SDSS/APOGEE. We present verification of the membership method using the DR13 sample, and show an extension of the method by incorporation of proper motion and parallax data from the ESA Gaia mission.This work is supported by an NSF AAG grant AST-1311835.

  20. Dynein Clusters into Lipid Microdomains on Phagosomes to Drive Rapid Transport toward Lysosomes

    PubMed Central

    Rai, Ashim; Pathak, Divya; Thakur, Shreyasi; Singh, Shampa; Dubey, Alok Kumar; Mallik, Roop

    2016-01-01

    Summary Diverse cellular processes are driven by motor proteins that are recruited to and generate force on lipid membranes. Surprisingly little is known about how membranes control the force from motors and how this may impact specific cellular functions. Here, we show that dynein motors physically cluster into microdomains on the membrane of a phagosome as it matures inside cells. Such geometrical reorganization allows many dyneins within a cluster to generate cooperative force on a single microtubule. This results in rapid directed transport of the phagosome toward microtubule minus ends, likely promoting phagolysosome fusion and pathogen degradation. We show that lipophosphoglycan, the major molecule implicated in immune evasion of Leishmania donovani, inhibits phagosome motion by disrupting the clustering and therefore the cooperative force generation of dynein. These findings appear relevant to several pathogens that prevent phagosome-lysosome fusion by targeting lipid microdomains on phagosomes. PMID:26853472

  1. A 1400-MHz survey of 1478 Abell clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Owen, F. N.; White, R. A.; Hilldrup, K. C.; Hanisch, R. J.

    1982-01-01

    Observations of 1478 Abell clusters of galaxies with the NRAO 91-m telescope at 1400 MHz are reported. The measured beam shape was deconvolved from the measured source Gaussian fits in order to estimate the source size and position angle. All detected sources within 0.5 corrected Abell cluster radii are listed, including the cluster number, richness class, distance class, magnitude of the tenth brightest galaxy, redshift estimate, corrected cluster radius in arcmin, right ascension and error, declination and error, total flux density and error, and angular structure for each source.

  2. Virtual Sky Surveys and Multi-wavelength Investigations of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Nord, Brian D.

    2010-12-01

    The advent of large and overlapping sky surveys brings promise of a new era in the study of galaxy clusters and dark energy. Clusters have been used for decades as faithful buoys of space-time, tracing cosmic evolution through their matter content and spatial distribution. High-fidelity tracking relies on a robust connection between observable cluster signatures and the underlying dark matter content, which is otherwise invisible. Until now, clusters have been mostly viewed through independent signals in distinct wavebands. The next era of cluster cosmology may be led by multi-variate, cross-waveband detections and analyses of clusters, where different facets of clusters can be cross-correlated to develop a more complete, unified picture of cluster populations. To these ends, in this dissertation, I perform multi-variate analyses of galaxy cluster populations and develop a simulated sky survey, with which to prepare for the next generation of multi-wavelength cluster observations. First, in a new multi-variate framework, I quantify the effects of observational biases on measures of the cluster distribution function and on cosmological constraints derived from X-ray cluster populations. I also demonstrate the indispensability of the multi-variate approach in measuring the evolution of X-ray galaxy clusters; without it, we find that the combination of scatter, intrinsic correlation and irrevocable survey flux limits substantially confuses any measure of redshift evolution. Next, I construct the Millennium Gas Simulation-Virtual Sky Survey (MGSVSS), a multi-wavelength mock sky derived from an N-body gas-dynamic simulation. The MGSVSS contains both sub-mm and optical wavelength sky signals to redshift, z = 1., in a 5 x 5deg2 field of view, with O (103) halos, O (104) optically selected clusters, and O (102) clusters selected via the Sunyaev-Zel'dovich (SZ) signature. The SZ sky also includes a minimal level of sky and instrumental noise, which nearly mimics that of

  3. Glass formation and cluster evolution in the rapidly solidified monatomic metallic liquid Ta under high pressure

    NASA Astrophysics Data System (ADS)

    Jiang, Dejun; Wen, Dadong; Tian, Zean; Liu, Rangsu

    2016-12-01

    Molecular dynamics (MD) simulations have been performed to examine the glass formation and cluster evolution during the rapid solidification of monatomic metallic liquid Ta under high pressure. The atomic structures in the systems are characterized by the radical distribution function (RDF), Honeycutt-Anderson (H-A) bond-type index method and cluster-type index method (CTIM). It is observed that the defective icosahedra play the critical role in the formation of Ta monatomic metallic glasses (MGs) rather than (12 0 12 0) perfect icosahedra, which have been identified as the basic local atomic units in many multi-component MGs. With the increase of pressure P, the fraction of icosahedral type clusters decreases remarkably in Ta MGs, while the fraction of bcc type clusters rises evidently. The evolution of vitrification degree (DSRO or DMRO) of the rapidly cooled metal Ta system further reveals that a higher pressure P is disadvantageous to the formation of Ta monatomic MGs. The weaker glass forming ability (GFA) of liquid metal Ta obtained under higher pressure P can be contributed to the decrease of DSRO or DMRO which is induced by increasing high pressure P to some extent.

  4. Global survey of star clusters in the Milky Way. IV. 63 new open clusters detected by proper motions

    NASA Astrophysics Data System (ADS)

    Scholz, R.-D.; Kharchenko, N. V.; Piskunov, A. E.; Röser, S.; Schilbach, E.

    2015-09-01

    Context. The global Milky Way Star Clusters (MWSC) survey provided new cluster membership lists and mean cluster parameters for nearly 80% of all previously known Galactic clusters. The MWSC data reduction pipeline involved the catalogue of positions and proper motions (PPMXL) on the International Celestial Reference System (ICRS) and near-infrared photometry from the Two Micron All Sky Survey (2MASS). Aims: In the first extension to the MWSC, photometric filters were applied to the 2MASS catalogue to find new cluster candidates that were subsequently confirmed or rejected by the MWSC pipeline. To further extend the MWSC census, particularly of nearby clusters, we aimed at discovering new clusters by conducting an almost global search in proper motion catalogues as a starting point. Methods: We first selected high-quality samples from the PPMXL and the Fourth US Naval Observatory CCD Astrograph Catalog (UCAC4) for comparison and verification of the proper motions. For 441 circular proper motion bins (radius 15 mas/yr) within ±50 mas/yr, the sky outside a thin Galactic plane zone (| b | < 5°) was binned in small areas ("sky pixels") of 0.25 × 0.25 deg2. Sky pixels with enhanced numbers of stars with a certain common proper motion in both catalogues were considered as cluster candidates. After visual inspection of the sky images, we built an automated procedure that combined these representations of the sky for neighbouring proper motion subsamples after a background correction. The 692 compact cluster candidates detected above a threshold that was equivalent to a minimum of 12 to 130 cluster stars in dependence on the Galactic latitude were then cross-checked with known star clusters and clusters of galaxies. New candidates served as input for the MWSC pipeline. Results: About half of our candidates overlapped with known clusters (46 globular and 68 open clusters in the Galaxy, about 150 known clusters of galaxies) or the Magellanic Clouds. About 10% of our

  5. A Survey on Node Clustering in Cognitive Radio Wireless Sensor Networks

    PubMed Central

    Joshi, Gyanendra Prasad; Kim, Sung Won

    2016-01-01

    Cognitive radio wireless sensor networks (CR-WSNs) have attracted a great deal of attention recently due to the emerging spectrum scarcity issue. This work attempts to provide a detailed analysis of the role of node clustering in CR-WSNs. We outline the objectives, requirements, and advantages of node clustering in CR-WSNs. We describe how a CR-WSN with node clustering differs from conventional wireless sensor networks, and we discuss its characteristics, architecture, and topologies. We survey the existing clustering algorithms and compare their objectives and features. We suggest how clustering issues and challenges can be handled. PMID:27626421

  6. A Survey on Node Clustering in Cognitive Radio Wireless Sensor Networks.

    PubMed

    Joshi, Gyanendra Prasad; Kim, Sung Won

    2016-09-10

    Cognitive radio wireless sensor networks (CR-WSNs) have attracted a great deal of attention recently due to the emerging spectrum scarcity issue. This work attempts to provide a detailed analysis of the role of node clustering in CR-WSNs. We outline the objectives, requirements, and advantages of node clustering in CR-WSNs. We describe how a CR-WSN with node clustering differs from conventional wireless sensor networks, and we discuss its characteristics, architecture, and topologies. We survey the existing clustering algorithms and compare their objectives and features. We suggest how clustering issues and challenges can be handled.

  7. A Survey of Popular R Packages for Cluster Analysis

    ERIC Educational Resources Information Center

    Flynt, Abby; Dean, Nema

    2016-01-01

    Cluster analysis is a set of statistical methods for discovering new group/class structure when exploring data sets. This article reviews the following popular libraries/commands in the R software language for applying different types of cluster analysis: from the stats library, the kmeans, and hclust functions; the mclust library; the poLCA…

  8. The Clustering Instability in Rapid Granular and Gas-Solid Flows

    NASA Astrophysics Data System (ADS)

    Fullmer, William D.; Hrenya, Christine M.

    2017-01-01

    Flows of solid particles are known to exhibit a clustering instability—dynamic microstructures characterized by a dense region of highly concentrated particles surrounded by a dilute region with relatively few particles—that has no counterpart in molecular fluids. Clustering is pervasive in rapid flows. Its presence impacts momentum, heat, and mass transfer, analogous to how turbulence affects single-phase flows. Yet predicting clustering is challenging, again analogous to the prediction of turbulent flows. In this review, we focus on three key areas: (a) state-of-the-art mathematical tools used to study clustering, with an emphasis on kinetic theory–based continuum models, which are critical to the prediction of the larger systems found in nature and industry, (b) mechanisms that give rise to clustering, most of which are explained via linear stability analyses of kinetic theory–based models, and (c) a critical review of validation studies of kinetic theory–based models to highlight the accuracies and limitations of such theories.

  9. Neutron Capture Elements in the Open Cluster Chemical Abundance & Mapping (OCCAM) Survey

    NASA Astrophysics Data System (ADS)

    O'Connell, Julia; Frinchaboy, Peter M.; Shetrone, Matthew D.; Hearty, Fred R.; Majewski, Steven R.; Zasowski, Gail; Sdss /Apogee-1, III

    2015-01-01

    The Open Cluster Chemical Abundance & Mapping (OCCAM) survey is a systematic survey of Galactic open clusters using data primarily from the SDSS-III/APOGEE-1 survey. The high-resolution (R=22,500), near-infrared (H-band) APOGEE-1 survey allows for cluster membership probability determination and analysis of light and iron-peak elements. Neutron capture elements, however, prove to be elusive in the IR region covered by APOGEE. In an effort to fully study detailed Galactic chemical evolution, we conducted a high resolution (R~60,000) spectroscopic abundance analysis of neutron capture elements for OCCAM clusters in the optical regime to complement the APOGEE results. We present results based on prominent resonance lines for Eu, La, Ba, and Ce in the ~5400-6750 AA range using data obtained at McDonald Observatory with the 2.1m Otto Struve telescope and Sandiford Echelle Spectrograph.

  10. CLUSTER LENSING PROFILES DERIVED FROM A REDSHIFT ENHANCEMENT OF MAGNIFIED BOSS-SURVEY GALAXIES

    SciTech Connect

    Coupon, Jean; Umetsu, Keiichi; Broadhurst, Tom

    2013-07-20

    We report the first detection of a redshift-depth enhancement of background galaxies magnified by foreground clusters. Using 300,000 BOSS survey galaxies with accurate spectroscopic redshifts, we measure their mean redshift depth behind four large samples of optically selected clusters from the Sloan Digital Sky Survey (SDSS) surveys, totaling 5000-15,000 clusters. A clear trend of increasing mean redshift toward the cluster centers is found, averaged over each of the four cluster samples. In addition, we find similar but noisier behavior for an independent X-ray sample of 158 clusters lying in the foreground of the current BOSS sky area. By adopting the mass-richness relationships appropriate for each survey, we compare our results with theoretical predictions for each of the four SDSS cluster catalogs. The radial form of this redshift enhancement is well fitted by a richness-to-mass weighted composite Navarro-Frenk-White profile with an effective mass ranging between M{sub 200} {approx} 1.4-1.8 Multiplication-Sign 10{sup 14} M{sub Sun} for the optically detected cluster samples, and M{sub 200} {approx} 5.0 Multiplication-Sign 10{sup 14} M{sub Sun} for the X-ray sample. This lensing detection helps to establish the credibility of these SDSS cluster surveys, and provides a normalization for their respective mass-richness relations. In the context of the upcoming bigBOSS, Subaru Prime Focus Spectrograph, and EUCLID-NISP spectroscopic surveys, this method represents an independent means of deriving the masses of cluster samples for examining the cosmological evolution, and provides a relatively clean consistency check of weak-lensing measurements, free from the systematic limitations of shear calibration.

  11. SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey

    DOE PAGES

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; ...

    2016-11-01

    Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal ofmore » these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.« less

  12. SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey

    SciTech Connect

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Carlstrom, J. E.; Chang, C. L.

    2016-11-01

    Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.

  13. SPT-GMOS: A Gemini/GMOS-South Spectroscopic Survey of Galaxy Clusters in the SPT-SZ Survey

    NASA Astrophysics Data System (ADS)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.

    2016-11-01

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O ii] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m ⋆). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.

  14. An Empirical Taxonomy of Youths' Fears: Cluster Analysis of the American Fear Survey Schedule

    ERIC Educational Resources Information Center

    Burnham, Joy J.; Schaefer, Barbara A.; Giesen, Judy

    2006-01-01

    Fears profiles among children and adolescents were explored using the Fear Survey Schedule for Children-American version (FSSC-AM; J.J. Burnham, 1995, 2005). Eight cluster profiles were identified via multistage Euclidean grouping and supported by homogeneity coefficients and replication. Four clusters reflected overall level of fears (i.e., very…

  15. An H-alpha survey of cluster spirals - Comparison of star formation in clusters and the field

    NASA Technical Reports Server (NTRS)

    Moss, C.; Whittle, M.

    1993-01-01

    In an objective prism survey of eight nearby Abell clusters, we have detected H-alpha emission from 77 out of a total of 201 CGCG spiral galaxies. We find that detection of H alpha emission is approximately independent of galaxy absolute magnitude, distance to the cluster center, and the presence of a bar. However, tidally distorted spirals are much more likely to be detected than undistorted spirals. Furthermore, there is a strong tendency for tidally distorted spirals to have compact nuclear emission rather than more extended disk-wide emission. When compared to field spirals, we find that late-type (Sc and Sc-Irr) cluster spirals have less H alpha emission, while early-type (Sa and Sab) cluster spirals can have significantly enhanced emission. The enhanced emission is most likely to be due to tidally induced star formation from galaxy-galaxy interactions.

  16. The INfrared Survey of Young Nebulous Clusters (IN-SYNC): Surveying the Dynamics and Star Formation Histories of Young Clusters with APOGEE

    NASA Astrophysics Data System (ADS)

    Covey, Kevin R.; Cottaar, Michiel; Foster, Jonathan B.; Da Rio, Nicola; Tan, Jonathan; Meyer, Michael; Nidever, David L.; Flaherty, Kevin M.; Arce, Hector G.; Rebull, Luisa M.; Chojnowski, S. Drew; Frinchaboy, Peter M.; Hearty, Fred R.; Majewski, Steven R.; Skrutskie, Michael F.; Stassun, Keivan; Wilson, John C.; Zasowski, Gail

    2015-01-01

    Young clusters are the most prolific sites of star formation in the Milky Way, but demographic studies indicate that relatively few of the Milky Way's stellar clusters persist as bound structures for 100 Myrs or longer. Uniform & precise measurements of the stellar populations and internal dynamics of these regions are difficult to obtain, however, particularly for extremely young clusters whose optical visibility is greatly hampered by their parental molecular cloud. The INfrared Survey of Young Nebulous Clusters (IN-SYNC), an SDSS-III ancillary science program, leverages the stability and multiplex capability of the APOGEE spectrograph to obtain high resolution spectra at near-infrared wavelengths, where photospheric emission is better able to penetrate the dusty shrouds that surround sites of active star formation. We summarize our recent measurements of the kinematics and stellar populations of IC 348 and NGC 1333, two young clusters in the Perseus Molecular Cloud, and of the members of the Orion Nebula Cluster (ONC) and L1641 filament in the Orion molecular complex. These measurements highlight the dynamically 'warm' environment within these young clusters, and suggest a range of stellar radii within these quasi-single-age populations. We close with a preview of plans for continuing this work as part of the APOGEE-2 science portfolio: self-consistent measurements of the kinematics and star formation histories for clusters spanning a range of initial conditions and ages will provide a opportunity to disentangle the mechanisms that drive the formation and dissolution of sites of active star formation.

  17. The snapshot Hubble U-band cluster survey (SHUCS). II. The star cluster population of NGC 2997

    SciTech Connect

    Ryon, J. E.; Gallagher, J. S. III; Adamo, A.; Bastian, N.; Smith, L. J.; Konstantopoulos, I. S.; Larsen, S.; Zackrisson, E.

    2014-08-01

    We study the star cluster population of NGC 2997, a giant spiral galaxy located at 9.5 Mpc and targeted by the Snapshot Hubble U-band Cluster Survey (SHUCS). Combining our U-band imaging from SHUCS with archival BVI imaging from the Hubble Space Telescope, we select a high confidence sample of clusters in the circumnuclear ring and disk through a combination of automatic detection procedures and visual inspection. The cluster luminosity functions in all four filters can be approximated by power laws with indices of –1.7 to –2.3. Some deviations from pure power-law shape are observed, hinting at the presence of a high-mass truncation in the cluster mass function. However, upon inspection of the cluster mass function, we find it is consistent with a pure power law of index –2.2 ± 0.2 despite a slight bend at ∼2.5 × 10{sup 4} M {sub ☉}. No statistically significant truncation is observed. From the cluster age distributions, we find a low rate of disruption (ζ ∼ –0.1) in both the disk and circumnuclear ring. Finally, we estimate the cluster formation efficiency (Γ) over the last 100 Myr in each region, finding 7% ± 2% for the disk, 12% ± 4% for the circumnuclear ring, and 10% ± 3% for the entire UBVI footprint. This study highlights the need for wide-field UBVI coverage of galaxies to study cluster populations in detail, though a small sample of clusters can provide significant insight into the characteristics of the population.

  18. The ACS Survey of Galactic Globular Clusters. VIII. Effects of Environment on Globular Cluster Global Mass Functions

    NASA Astrophysics Data System (ADS)

    Paust, Nathaniel E. Q.; Reid, I. Neill; Piotto, Giampaolo; Aparicio, Antonio; Anderson, Jay; Sarajedini, Ata; Bedin, Luigi R.; Chaboyer, Brian; Dotter, Aaron; Hempel, Maren; Majewski, Steven; Marín-Franch, A.; Milone, Antonino; Rosenberg, Alfred; Siegel, Michael

    2010-02-01

    We have used observations obtained as part of the Hubble Space Telescope/ACS Survey of Galactic Globular Clusters to construct global present-day mass functions for 17 globular clusters utilizing multi-mass King models to extrapolate from our observations to the global cluster behavior. The global present-day mass functions for these clusters are well matched by power laws from the turnoff, ≈0.8 M sun, to 0.2-0.3 M sun on the lower main sequence. The slopes of those power-law fits, α, have been correlated with an extensive set of intrinsic and extrinsic cluster properties to investigate which parameters may influence the form of the present-day mass function. We do not confirm previous suggestions of correlations between α and either metallicity or Galactic location. However, we do find a strong statistical correlation with the related parameters central surface brightness, μ V , and inferred central density, ρ0. The correlation is such that clusters with denser cores (stronger binding energy) tend to have steeper mass functions (a higher proportion of low-mass stars), suggesting that dynamical evolution due to external interactions may have played a key role in determining α. Thus, the present-day mass function may owe more to nurture than to nature. Detailed modeling of external dynamical effects is therefore a requisite for determining the initial mass function for Galactic globular clusters.

  19. THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. VIII. EFFECTS OF ENVIRONMENT ON GLOBULAR CLUSTER GLOBAL MASS FUNCTIONS

    SciTech Connect

    Paust, Nathaniel E. Q.; Reid, I. Neill; Anderson, Jay E-mail: inr@stsci.edu

    2010-02-15

    We have used observations obtained as part of the Hubble Space Telescope/ACS Survey of Galactic Globular Clusters to construct global present-day mass functions for 17 globular clusters utilizing multi-mass King models to extrapolate from our observations to the global cluster behavior. The global present-day mass functions for these clusters are well matched by power laws from the turnoff, {approx}0.8 M {sub sun}, to 0.2-0.3 M {sub sun} on the lower main sequence. The slopes of those power-law fits, {alpha}, have been correlated with an extensive set of intrinsic and extrinsic cluster properties to investigate which parameters may influence the form of the present-day mass function. We do not confirm previous suggestions of correlations between {alpha} and either metallicity or Galactic location. However, we do find a strong statistical correlation with the related parameters central surface brightness, {mu} {sub V}, and inferred central density, {rho}{sub 0}. The correlation is such that clusters with denser cores (stronger binding energy) tend to have steeper mass functions (a higher proportion of low-mass stars), suggesting that dynamical evolution due to external interactions may have played a key role in determining {alpha}. Thus, the present-day mass function may owe more to nurture than to nature. Detailed modeling of external dynamical effects is therefore a requisite for determining the initial mass function for Galactic globular clusters.

  20. Cool Core Bias in Sunyaev-Zel’dovich Galaxy Cluster Surveys

    DOE PAGES

    Lin, Henry W.; McDonald, Michael; Benson, Bradford; ...

    2015-03-18

    Sunyaev-Zeldovich (SZ) surveys find massive clusters of galaxies by measuring the inverse Compton scattering of cosmic microwave background off of intra-cluster gas. The cluster selection function from such surveys is expected to be nearly independent of redshift and cluster astrophysics. In this work, we estimate the effect on the observed SZ signal of centrally-peaked gas density profiles (cool cores) and radio emission from the brightest cluster galaxy (BCG) by creating mock observations of a sample of clusters that span the observed range of classical cooling rates and radio luminosities. For each cluster, we make simulated SZ observations by the Southmore » Pole Telescope and characterize the cluster selection function, but note that our results are broadly applicable to other SZ surveys. We find that the inclusion of a cool core can cause a change in the measured SPT significance of a cluster between 0.01%–10% at z > 0.3, increasing with cuspiness of the cool core and angular size on the sky of the cluster (i.e., decreasing redshift, increasing mass). We provide quantitative estimates of the bias in the SZ signal as a function of a gas density cuspiness parameter, redshift, mass, and the 1.4 GHz radio luminosity of the central AGN. Based on this work, we estimate that, for the Phoenix cluster (one of the strongest cool cores known), the presence of a cool core is biasing the SZ significance high by ~6%. The ubiquity of radio galaxies at the centers of cool core clusters will offset the cool core bias to varying degrees« less

  1. Cool Core Bias in Sunyaev-Zel’dovich Galaxy Cluster Surveys

    SciTech Connect

    Lin, Henry W.; McDonald, Michael; Benson, Bradford; Miller, Eric

    2015-03-18

    Sunyaev-Zeldovich (SZ) surveys find massive clusters of galaxies by measuring the inverse Compton scattering of cosmic microwave background off of intra-cluster gas. The cluster selection function from such surveys is expected to be nearly independent of redshift and cluster astrophysics. In this work, we estimate the effect on the observed SZ signal of centrally-peaked gas density profiles (cool cores) and radio emission from the brightest cluster galaxy (BCG) by creating mock observations of a sample of clusters that span the observed range of classical cooling rates and radio luminosities. For each cluster, we make simulated SZ observations by the South Pole Telescope and characterize the cluster selection function, but note that our results are broadly applicable to other SZ surveys. We find that the inclusion of a cool core can cause a change in the measured SPT significance of a cluster between 0.01%–10% at z > 0.3, increasing with cuspiness of the cool core and angular size on the sky of the cluster (i.e., decreasing redshift, increasing mass). We provide quantitative estimates of the bias in the SZ signal as a function of a gas density cuspiness parameter, redshift, mass, and the 1.4 GHz radio luminosity of the central AGN. Based on this work, we estimate that, for the Phoenix cluster (one of the strongest cool cores known), the presence of a cool core is biasing the SZ significance high by ~6%. The ubiquity of radio galaxies at the centers of cool core clusters will offset the cool core bias to varying degrees

  2. The XMM Cluster Survey: the interplay between the brightest cluster galaxy and the intracluster medium via AGN feedback

    NASA Astrophysics Data System (ADS)

    Stott, John P.; Hickox, Ryan C.; Edge, Alastair C.; Collins, Chris A.; Hilton, Matt; Harrison, Craig D.; Romer, A. Kathy; Rooney, Philip J.; Kay, Scott T.; Miller, Christopher J.; Sahlén, Martin; Lloyd-Davies, Ed J.; Mehrtens, Nicola; Hoyle, Ben; Liddle, Andrew R.; Viana, Pedro T. P.; McCarthy, Ian G.; Schaye, Joop; Booth, C. M.

    2012-05-01

    Using a sample of 123 X-ray clusters and groups drawn from the XMM Cluster Survey first data release, we investigate the interplay between the brightest cluster galaxy (BCG), its black hole and the intracluster/group medium (ICM). It appears that for groups and clusters with a BCG likely to host significant active galactic nuclei (AGN) feedback, gas cooling dominates in those with TX > 2 keV while AGN feedback dominates below. This may be understood through the subunity exponent found in the scaling relation we derive between the BCG mass and cluster mass over the halo mass range 1013 < M500 < 1015 M⊙ and the lack of correlation between radio luminosity and cluster mass, such that BCG AGN in groups can have relatively more energetic influence on the ICM. The LX-TX relation for systems with the most massive BCGs, or those with BCGs co-located with the peak of the ICM emission, is steeper than that for those with the least massive and most offset, which instead follows self-similarity. This is evidence that a combination of central gas cooling and powerful, well fuelled AGN causes the departure of the ICM from pure gravitational heating, with the steepened relation crossing self-similarity at TX= 2 keV. Importantly, regardless of their black hole mass, BCGs are more likely to host radio-loud AGN if they are in a massive cluster (TX≳ 2 keV) and again co-located with an effective fuel supply of dense, cooling gas. This demonstrates that the most massive black holes appear to know more about their host cluster than they do about their host galaxy. The results lead us to propose a physically motivated, empirical definition of 'cluster' and 'group', delineated at 2 keV.

  3. The Palomar-Las Campanas Observatory-NOAO (PLCON) Open Cluster Survey

    NASA Astrophysics Data System (ADS)

    Phelps, R. L.; Tollefson, J.; Reafsnyder, S.; Frinchaboy, P.; Craig, Aidan; Postlethwaite, J.; Marshall, T.

    2000-12-01

    The Palomar-Las Campanas Observatory-NOAO (PLCON) Open Cluster Survey is a long-term survey intended to provide CCD derived, VI color-magnitude diagrams for the majority of the Milky Way's open clusters, most of which have been poorly studied in the past, or never studied at all. From these data, systematic estimates of cluster reddenings, distances and ages can be derived using a limited number of telescopes, CCDs and filter sets. These data will be useful for systematic studies of Galactic structure in the disk, the properties of unique/interesting stars within clusters, stellar evolution theory, and a host of other timely astrophysical questions. This paper will report on recent results from the Survey. This work is supported, in part, by grants from the National Science Foundation and the California State University, Sacramento Research and Creative Activity Awards Program.

  4. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Optical Extension for Neutron Capture Elements

    NASA Astrophysics Data System (ADS)

    Melendez, Matthew; O'Connell, Julia; Frinchaboy, Peter M.; Donor, John; Cunha, Katia M. L.; Shetrone, Matthew D.; Majewski, Steven R.; Zasowski, Gail; Pinsonneault, Marc H.; Roman-Lopes, Alexandre; Stassun, Keivan G.; APOGEE Team

    2017-01-01

    The Open Cluster Chemical Abundance & Mapping (OCCAM) survey is a systematic survey of Galactic open clusters using data primarily from the SDSS-III/APOGEE-1 survey. However, neutron capture elements are very limited in the IR region covered by APOGEE. In an effort to fully study detailed Galactic chemical evolution, we are conducting a high resolution (R~60,000) spectroscopic abundance analysis of neutron capture elements for OCCAM clusters in the optical regime to complement the APOGEE results. As part of this effort, we present Ba II, La II, Ce II and Eu II results for a few open clusters without previous abundance measurements using data obtained at McDonald Observatory with the 2.1m Otto Struve telescope and Sandiford Echelle Spectrograph.This work is supported by an NSF AAG grant AST-1311835.

  5. EMBEDDED CLUSTERS IN THE LARGE MAGELLANIC CLOUD USING THE VISTA MAGELLANIC CLOUDS SURVEY

    SciTech Connect

    Romita, Krista; Lada, Elizabeth; Cioni, Maria-Rosa E-mail: elada@ufl.edu

    2016-04-10

    We present initial results of the first large-scale survey of embedded star clusters in molecular clouds in the Large Magellanic Cloud (LMC) using near-infrared imaging from the Visible and Infrared Survey Telescope for Astronomy Magellanic Clouds Survey. We explored a ∼1.65 deg{sup 2} area of the LMC, which contains the well-known star-forming region 30 Doradus as well as ∼14% of the galaxy’s CO clouds, and identified 67 embedded cluster candidates, 45 of which are newly discovered as clusters. We have determined the sizes, luminosities, and masses for these embedded clusters, examined the star formation rates (SFRs) of their corresponding molecular clouds, and made a comparison between the LMC and the Milky Way. Our preliminary results indicate that embedded clusters in the LMC are generally larger, more luminous, and more massive than those in the local Milky Way. We also find that the surface densities of both embedded clusters and molecular clouds is ∼3 times higher than in our local environment, the embedded cluster mass surface density is ∼40 times higher, the SFR is ∼20 times higher, and the star formation efficiency is ∼10 times higher. Despite these differences, the SFRs of the LMC molecular clouds are consistent with the SFR scaling law presented in Lada et al. This consistency indicates that while the conditions of embedded cluster formation may vary between environments, the overall process within molecular clouds may be universal.

  6. The Extended Medium Sensitivity Survey distant cluster sample - X-ray cosmological evolution

    SciTech Connect

    Gioia, I.M.; Henry, J.P.; Maccacaro, T.; Morris, S.L.; Stocke, J.T. CNR, Istituto di Radioastronomia, Bologna Hawaii Univ., Honolulu Osservatorio Astronomico, Bologna Mount Wilson and Las Campanas Observatories, Pasadena, CA Colorado Univ., Boulder )

    1990-06-01

    The X-ray luminosity function of clusters of galaxies is determined at different cosmic epochs using data from the Einstein Observatory Extended Medium Sensitivity Survey. The sample consists of 67 X-ray-selected clusters that have been grouped in three redshift shells. Evolution is detected in the X-ray properties of clusters. The present volume density of high-luminosity clusters is found to be greater than it was in the past. Given the still limited data set, this result should be regarded as preliminary. It can be interpreted as the consequence of either luminosity evolution or modest density evolution. 22 refs.

  7. Searching for Galaxy Clusters in the VST-KiDS Survey

    NASA Astrophysics Data System (ADS)

    Radovich, M.; Puddu, E.; Bellagamba, F.; Moscardini, L.; Roncarelli, M.; Getman, F.; Grado, A.

    We present the methods and first results of the search for galaxy clusters in the Kilo Degree Survey (KiDS). The adopted algorithm and the criterium for selecting the member galaxies are illustrated. Here we report the preliminary results obtained over a small area (7 deg2), and the comparison of our cluster candidates with those found in the RedMapper and SZ Planck catalogues; the analysis to a larger area (148 deg2) is currently in progress. By the KiDS cluster search, we expect to increase the completeness of the clusters catalogue to z = 0.6-0.7 compared to RedMapper.

  8. Characterising large-scale structure with the REFLEX II cluster survey

    NASA Astrophysics Data System (ADS)

    Chon, Gayoung

    2016-10-01

    We study the large-scale structure with superclusters from the REFLEX X-ray cluster survey together with cosmological N-body simulations. It is important to construct superclusters with criteria such that they are homogeneous in their properties. We lay out our theoretical concept considering future evolution of superclusters in their definition, and show that the X-ray luminosity and halo mass functions of clusters in superclusters are found to be top-heavy, different from those of clusters in the field. We also show a promising aspect of using superclusters to study the local cluster bias and mass scaling relation with simulations.

  9. Rapid Mapping Method Based on Free Blocks of Surveys

    NASA Astrophysics Data System (ADS)

    Yu, Xianwen; Wang, Huiqing; Wang, Jinling

    2016-06-01

    While producing large-scale larger than 1:2000 maps in cities or towns, the obstruction from buildings leads to difficult and heavy tasks of measuring mapping control points. In order to avoid measuring the mapping control points and shorten the time of fieldwork, in this paper, a quick mapping method is proposed. This method adjusts many free blocks of surveys together, and transforms the points from all free blocks of surveys into the same coordinate system. The entire surveying area is divided into many free blocks, and connection points are set on the boundaries between free blocks. An independent coordinate system of every free block is established via completely free station technology, and the coordinates of the connection points, detail points and control points in every free block in the corresponding independent coordinate systems are obtained based on poly-directional open traverses. Error equations are established based on connection points, which are determined together to obtain the transformation parameters. All points are transformed from the independent coordinate systems to a transitional coordinate system via the transformation parameters. Several control points are then measured by GPS in a geodetic coordinate system. All the points can then be transformed from the transitional coordinate system to the geodetic coordinate system. In this paper, the implementation process and mathematical formulas of the new method are presented in detail, and the formula to estimate the precision of surveys is given. An example has demonstrated that the precision of using the new method could meet large-scale mapping needs.

  10. MOCCA-SURVEY Database I: Is NGC 6535 a dark star cluster harbouring an IMBH?

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Bianchini, Paolo; de Vita, Ruggero; Giersz, Mirek; Hypki, Arkadiusz; Kamann, Sebastian

    2017-01-01

    We describe the dynamical evolution of a unique type of dark star cluster model in which the majority of the cluster mass at Hubble time is dominated by an intermediate-mass black hole (IMBH). We analysed results from about 2000 star cluster models (Survey Database I) simulated using the Monte Carlo code MOnte Carlo Cluster simulAtor and identified these dark star cluster models. Taking one of these models, we apply the method of simulating realistic `mock observations' by utilizing the Cluster simulatiOn Comparison with ObservAtions (COCOA) and Simulating Stellar Cluster Observation (SISCO) codes to obtain the photometric and kinematic observational properties of the dark star cluster model at 12 Gyr. We find that the perplexing Galactic globular cluster NGC 6535 closely matches the observational photometric and kinematic properties of the dark star cluster model presented in this paper. Based on our analysis and currently observed properties of NGC 6535, we suggest that this globular cluster could potentially harbour an IMBH. If it exists, the presence of this IMBH can be detected robustly with proposed kinematic observations of NGC 6535.

  11. THE ACS FORNAX CLUSTER SURVEY. VI. THE NUCLEI OF EARLY-TYPE GALAXIES IN THE FORNAX CLUSTER

    SciTech Connect

    Turner, Monica L.; Cote, Patrick; Ferrarese, Laura; Blakeslee, John P.; Jordan, Andres; Mei, Simona; Peng, Eric W.; West, Michael J.

    2012-11-15

    The Advanced Camera for Surveys (ACS) Fornax Cluster Survey is a Hubble Space Telescope program to image 43 early-type galaxies in the Fornax cluster, using the F475W and F850LP bandpasses of the ACS. We employ both one-dimensional and two-dimensional techniques to characterize the properties of the stellar nuclei in these galaxies, defined as the central 'luminosity excesses', relative to a Sersic model fitted to the underlying host. We find 72% {+-} 13% of our sample (31 galaxies) to be nucleated, with only three of the nuclei offset by more than 0.''5 from their galaxy photocenter, and with the majority of nuclei having colors bluer than their hosts. The nuclei are observed to be larger, and brighter, than typical Fornax globular clusters and to follow different structural scaling relations. A comparison of our results to those from the ACS Virgo Cluster Survey reveals striking similarities in the properties of the nuclei belonging to these different environments. We briefly review a variety of proposed formation models and conclude that, for the low-mass galaxies in our sample, the most important mechanism for nucleus growth is probably infall of star clusters through dynamical friction, while for higher mass galaxies, gas accretion triggered by mergers, accretions, and tidal torques is likely to dominate, with the relative importance of these two processes varying smoothly as a function of galaxy mass. Some intermediate-mass galaxies in our sample show a complexity in their inner structure that may be the signature of the 'hybrid nuclei' that arose through parallel formation channels.

  12. THE SWIFT X-RAY TELESCOPE CLUSTER SURVEY. III. CLUSTER CATALOG FROM 2005-2012 ARCHIVAL DATA

    SciTech Connect

    Liu, Teng; Wang, Jun-Xian; Tozzi, Paolo; Tundo, Elena; Moretti, Alberto; Rosati, Piero; Tagliaferri, Gianpiero; Campana, Sergio; Giavalisco, Mauro

    2015-02-01

    We present the Swift X-ray Cluster Survey (SWXCS) catalog obtained using archival data from the X-ray telescope (XRT) on board the Swift satellite acquired from 2005 February to 2012 November, extending the first release of the SWXCS. The catalog provides positions, soft fluxes, and, when possible, optical counterparts for a flux-limited sample of X-ray group and cluster candidates. We consider the fields with Galactic latitude |b| > 20° to avoid high H I column densities. We discard all of the observations targeted at groups or clusters of galaxies, as well as particular extragalactic fields not suitable to search for faint extended sources. We finally select ∼3000 useful fields covering a total solid angle of ∼400 deg{sup 2}. We identify extended source candidates in the soft-band (0.5-2 keV) images of these fields using the software EXSdetect, which is specifically calibrated for the XRT data. Extensive simulations are used to evaluate contamination and completeness as a function of the source signal, allowing us to minimize the number of spurious detections and to robustly assess the selection function. Our catalog includes 263 candidate galaxy clusters and groups down to a flux limit of 7 × 10{sup –15} erg cm{sup –2} s{sup –1} in the soft band, and the logN-logS is in very good agreement with previous deep X-ray surveys. The final list of sources is cross-correlated with published optical, X-ray, and Sunyaev-Zeldovich catalogs of clusters. We find that 137 sources have been previously identified as clusters in the literature in independent surveys, while 126 are new detections. Currently, we have collected redshift information for 158 sources (60% of the entire sample). Once the optical follow-up and the X-ray spectral analysis of the sources are complete, the SWXCS will provide a large and well-defined catalog of groups and clusters of galaxies to perform statistical studies of cluster properties and tests of cosmological models.

  13. The Swift X-Ray Telescope Cluster Survey. III. Cluster Catalog from 2005-2012 Archival Data

    NASA Astrophysics Data System (ADS)

    Liu, Teng; Tozzi, Paolo; Tundo, Elena; Moretti, Alberto; Rosati, Piero; Wang, Jun-Xian; Tagliaferri, Gianpiero; Campana, Sergio; Giavalisco, Mauro

    2015-02-01

    We present the Swift X-ray Cluster Survey (SWXCS) catalog obtained using archival data from the X-ray telescope (XRT) on board the Swift satellite acquired from 2005 February to 2012 November, extending the first release of the SWXCS. The catalog provides positions, soft fluxes, and, when possible, optical counterparts for a flux-limited sample of X-ray group and cluster candidates. We consider the fields with Galactic latitude |b| > 20° to avoid high H I column densities. We discard all of the observations targeted at groups or clusters of galaxies, as well as particular extragalactic fields not suitable to search for faint extended sources. We finally select ~3000 useful fields covering a total solid angle of ~400 deg2. We identify extended source candidates in the soft-band (0.5-2 keV) images of these fields using the software EXSdetect, which is specifically calibrated for the XRT data. Extensive simulations are used to evaluate contamination and completeness as a function of the source signal, allowing us to minimize the number of spurious detections and to robustly assess the selection function. Our catalog includes 263 candidate galaxy clusters and groups down to a flux limit of 7 × 10-15 erg cm-2 s-1 in the soft band, and the logN-logS is in very good agreement with previous deep X-ray surveys. The final list of sources is cross-correlated with published optical, X-ray, and Sunyaev-Zeldovich catalogs of clusters. We find that 137 sources have been previously identified as clusters in the literature in independent surveys, while 126 are new detections. Currently, we have collected redshift information for 158 sources (60% of the entire sample). Once the optical follow-up and the X-ray spectral analysis of the sources are complete, the SWXCS will provide a large and well-defined catalog of groups and clusters of galaxies to perform statistical studies of cluster properties and tests of cosmological models.

  14. MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Szkudlarek, Magdalena; Gondek-Rosińska, Dorota; Giersz, Mirek; Bulik, Tomasz

    2017-01-01

    In this first of a series of papers, we utilize results for around 2000 star cluster models simulated using the MOCCA code for star cluster evolution (Survey Database I) to determine the astrophysical properties and local merger rate densities for coalescing binary black holes (BBHs) originating from globular clusters (GCs). We extracted information for all coalescing BBHs that escape the cluster models and subsequently merge within a Hubble time along with BBHs that are retained in our GC models and merge inside the cluster via gravitational wave emission. By obtaining results from a substantial number of realistic star cluster models that cover different initial parameters, we have an extremely large statistical sample of BBHs with stellar mass and massive stellar BH (≲100 M⊙) components that merge within a Hubble time. Using these data, we estimate local merger rate densities for these BBHs originating from GCs to be at least 5.4 Gpc-3 yr-1.

  15. WINGS: a WIde-field Nearby Galaxy-cluster Survey. I. Optical imaging

    NASA Astrophysics Data System (ADS)

    Fasano, G.; Marmo, C.; Varela, J.; D'Onofrio, M.; Poggianti, B. M.; Moles, M.; Pignatelli, E.; Bettoni, D.; Kjærgaard, P.; Rizzi, L.; Couch, W. J.; Dressler, A.

    2006-01-01

    This is the first paper of a series that will present data and scientific results from the WINGS project, a wide-field, multiwavelength imaging and spectroscopic survey of galaxies in 77 nearby clusters. The sample was extracted from the ROSAT catalogs of X-Ray emitting clusters, with constraints on the redshift (0.04< z<0.07) and distance from the galactic plane ({\\vert}b{\\vert}≥ 20 deg). The global goal of the WINGS project is the systematic study of the local cosmic variance of the cluster population and of the properties of cluster galaxies as a function of cluster properties and local environment. This data collection will allow the definition of a local, "zero-point" reference against which to gauge the cosmic evolution when compared to more distant clusters. The core of the project consists of wide-field optical imaging of the selected clusters in the B and V bands. We have also completed a multi-fiber, medium-resolution spectroscopic survey for 51 of the clusters in the master sample. The imaging and spectroscopy data were collected using, respectively, the WFC@INT and WYFFOS@WHT in the northern hemisphere, and the WFI@MPG and 2dF@AAT in the southern hemisphere. In addition, a NIR (J, K) survey of ˜50 clusters and an Hα+U survey of some 10 clusters are presently ongoing with the WFCAM@UKIRT and WFC@INT, respectively, while a very-wide-field optical survey has also been programmed with OmegaCam@VST. In this paper we briefly outline the global objectives and the main characteristics of the WINGS project. Moreover, the observing strategy and the data reduction of the optical imaging survey (WINGS-OPT) are presented. We have achieved a photometric accuracy of ˜0.025 mag, reaching completeness to V˜ 23.5. Field size and resolution (FWHM) span the absolute intervals (1.6-2.7) Mpc and (0.7-1.7) kpc, respectively, depending on the redshift and on the seeing. This allows the planned studies to obtain a valuable description of the local properties of clusters

  16. THE MASSIVE AND DISTANT CLUSTERS OF WISE SURVEY. II. INITIAL SPECTROSCOPIC CONFIRMATION OF z ∼ 1 GALAXY CLUSTERS SELECTED FROM 10,000 deg{sup 2}

    SciTech Connect

    Stanford, S. A.; Gonzalez, Anthony H.; Gettings, Daniel P.; Brodwin, Mark; Eisenhardt, Peter R. M.; Stern, Daniel; Wylezalek, Dominika

    2014-08-01

    We present optical and infrared imaging and optical spectroscopy of galaxy clusters which were identified as part of an all-sky search for high-redshift galaxy clusters, the Massive and Distant Clusters of WISE Survey (MaDCoWS). The initial phase of MaDCoWS combined infrared data from the all-sky data release of the Wide-field Infrared Survey Explorer (WISE) with optical data from the Sloan Digital Sky Survey to select probable z ∼ 1 clusters of galaxies over an area of 10,000 deg{sup 2}. Our spectroscopy confirms 19 new clusters at 0.7 < z < 1.3, half of which are at z > 1, demonstrating the viability of using WISE to identify high-redshift galaxy clusters. The next phase of MaDCoWS will use the greater depth of the AllWISE data release to identify even higher redshift cluster candidates.

  17. Natural product proteomining, a quantitative proteomics platform, allows rapid discovery of biosynthetic gene clusters for different classes of natural products.

    PubMed

    Gubbens, Jacob; Zhu, Hua; Girard, Geneviève; Song, Lijiang; Florea, Bogdan I; Aston, Philip; Ichinose, Koji; Filippov, Dmitri V; Choi, Young H; Overkleeft, Herman S; Challis, Gregory L; van Wezel, Gilles P

    2014-06-19

    Information on gene clusters for natural product biosynthesis is accumulating rapidly because of the current boom of available genome sequencing data. However, linking a natural product to a specific gene cluster remains challenging. Here, we present a widely applicable strategy for the identification of gene clusters for specific natural products, which we name natural product proteomining. The method is based on using fluctuating growth conditions that ensure differential biosynthesis of the bioactivity of interest. Subsequent combination of metabolomics and quantitative proteomics establishes correlations between abundance of natural products and concomitant changes in the protein pool, which allows identification of the relevant biosynthetic gene cluster. We used this approach to elucidate gene clusters for different natural products in Bacillus and Streptomyces, including a novel juglomycin-type antibiotic. Natural product proteomining does not require prior knowledge of the gene cluster or secondary metabolite and therefore represents a general strategy for identification of all types of gene clusters.

  18. Spectroscopy of clusters in the ESO distant cluster survey (EDisCS). II.. Redshifts, velocity dispersions, and substructure for clusters in the last 15 fields

    NASA Astrophysics Data System (ADS)

    Milvang-Jensen, B.; Noll, S.; Halliday, C.; Poggianti, B. M.; Jablonka, P.; Aragón-Salamanca, A.; Saglia, R. P.; Nowak, N.; von der Linden, A.; De Lucia, G.; Pelló, R.; Moustakas, J.; Poirier, S.; Bamford, S. P.; Clowe, D. I.; Dalcanton, J. J.; Rudnick, G. H.; Simard, L.; White, S. D. M.; Zaritsky, D.

    2008-05-01

    Aims: We present spectroscopic observations of galaxies in 15 survey fields as part of the ESO Distant Cluster Survey (EDisCS). We determine the redshifts and velocity dispersions of the galaxy clusters located in these fields, and we test for possible substructure in the clusters. Methods: We obtained multi-object mask spectroscopy using the FORS2 instrument at the VLT. We reduced the data with particular attention to the sky subtraction. We implemented the method of Kelson for performing sky subtraction prior to any rebinning/interpolation of the data. From the measured galaxy redshifts, we determine cluster velocity dispersions using the biweight estimator and test for possible substructure in the clusters using the Dressler-Shectman test. Results: The method of subtracting the sky prior to any rebinning/interpolation of the data delivers photon-noise-limited results, whereas the traditional method of subtracting the sky after the data have been rebinned/interpolated results in substantially larger noise for spectra from tilted slits. Redshifts for individual galaxies are presented and redshifts and velocity dispersions are presented for 21 galaxy clusters. For the 9 clusters with at least 20 spectroscopically confirmed members, we present the statistical significance of the presence of substructure obtained from the Dressler-Shectman test, and substructure is detected in two of the clusters. Conclusions: Together with data from our previous paper, spectroscopy and spectroscopic velocity dispersions are now available for 26 EDisCS clusters with redshifts in the range 0.40-0.96 and velocity dispersions in the range 166 km s-1-1080 km s-1. Based on observations collected at the European Southern Observatory, Chile, as part of large programme 166.A-0162 (the ESO Distant Cluster Survey). Full Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/482/419

  19. Cosmology with wide-field SZ cluster surveys: selection and systematic effects

    NASA Astrophysics Data System (ADS)

    Juin, J. B.; Yvon, D.; Réfrégier, A.; Yèche, C.

    2007-04-01

    The cosmological potential of large-scale structure observations for cosmology have been extensively discussed in the litterature. In particular, it has recently been shown how Sunyaev-Zel'dovich (SZ) cluster surveys can be used to constrain dark energy parameters. In this paper, we study whether selection and systematics effects will limit future wide-field SZ surveys from achieving their cosmological potential. For this purpose, we use a sky simulation and an SZ-cluster detection software presented in Pires et al. (2006, A&A, 455, 741), using the future Olimpo survey as a concrete example. We show that the SZ-cluster selection function and contamination of SZ-cluster catalogues are more complex than is usually assumed. In particular, the simulated field-to-field detected cluster counts variance can be a factor 3 larger than the expected Poisson fluctuations. We also study the impact of missing redshift information and of the uncertainty of the scaling relations for low mass clusters. We quantify, through hypothesis tests, how near-future SZ experiments can be used to discriminate between different structure formation models. Using a maximum likelihood approach, we then study the impact of these systematics on the joint measurement of cosmological models and of cluster scaling relations.

  20. Indoleamine Hallucinogens in Cluster Headache: Results of the Clusterbusters Medication Use Survey.

    PubMed

    Schindler, Emmanuelle A D; Gottschalk, Christopher H; Weil, Marsha J; Shapiro, Robert E; Wright, Douglas A; Sewell, Richard Andrew

    2015-01-01

    Cluster headache is one of the most debilitating pain syndromes. A significant number of patients are refractory to conventional therapies. The Clusterbusters.org medication use survey sought to characterize the effects of both conventional and alternative medications used in cluster headache. Participants were recruited from cluster headache websites and headache clinics. The final analysis included responses from 496 participants. The survey was modeled after previously published surveys and was available online. Most responses were chosen from a list, though others were free-texted. Conventional abortive and preventative medications were identified and their efficacies agreed with those previously published. The indoleamine hallucinogens, psilocybin, lysergic acid diethylamide, and lysergic acid amide, were comparable to or more efficacious than most conventional medications. These agents were also perceived to shorten/abort a cluster period and bring chronic cluster headache into remission more so than conventional medications. Furthermore, infrequent and non-hallucinogenic doses were reported to be efficacious. Findings provide additional evidence that several indoleamine hallucinogens are rated as effective in treating cluster headache. These data reinforce the need for further investigation of the effects of these and related compounds in cluster headache under experimentally controlled settings.

  1. The OCCASO survey: presentation and radial velocities of 12 Milky Way open clusters

    NASA Astrophysics Data System (ADS)

    Casamiquela, L.; Carrera, R.; Jordi, C.; Balaguer-Núñez, L.; Pancino, E.; Hidalgo, S. L.; Martínez-Vázquez, C. E.; Murabito, S.; del Pino, A.; Aparicio, A.; Blanco-Cuaresma, S.; Gallart, C.

    2016-05-01

    Open clusters (OCs) are crucial for studying the formation and evolution of the Galactic disc. However, the lack of a large number of OCs analysed homogeneously hampers the investigations about chemical patterns and the existence of Galactocentric radial and vertical gradients, or an age-metallicity relation. To overcome this, we have designed the Open Cluster Chemical Abundances from Spanish Observatories (OCCASO) survey. We aim to provide homogeneous radial velocities, physical parameters and individual chemical abundances of six or more red clump stars for a sample of 25 old and intermediate-age OCs visible from the Northern hemisphere. To do so, we use high-resolution spectroscopic facilities (R ≥ 62 000) available at Spanish observatories. We present the motivation, design and current status of the survey, together with the first data release of radial velocities for 77 stars in 12 OCs, which represents about 50 per cent of the survey. We include clusters never studied with high-resolution spectroscopy before (NGC 1907, NGC 6991, NGC 7762), and clusters in common with other large spectroscopic surveys like the Gaia-ESO Survey (NGC 6705) and Apache Point Observatory Galactic Evolution Experiment (NGC 2682 and NGC 6819). We perform internal comparisons between instruments to evaluate and correct internal systematics of the results, and compare our radial velocities with previous determinations in the literature, when available. Finally, radial velocities for each cluster are used to perform a preliminary kinematic study in relation with the Galactic disc.

  2. Unsupervised segmentation of heel-strike IMU data using rapid cluster estimation of wavelet features.

    PubMed

    Yuwono, Mitchell; Su, Steven W; Moulton, Bruce D; Nguyen, Hung T

    2013-01-01

    When undertaking gait-analysis, one of the most important factors to consider is heel-strike (HS). Signals from a waist worn Inertial Measurement Unit (IMU) provides sufficient accelerometric and gyroscopic information for estimating gait parameter and identifying HS events. In this paper we propose a novel adaptive, unsupervised, and parameter-free identification method for detection of HS events during gait episodes. Our proposed method allows the device to learn and adapt to the profile of the user without the need of supervision. The algorithm is completely parameter-free and requires no prior fine tuning. Autocorrelation features (ACF) of both antero-posterior acceleration (aAP) and medio-lateral acceleration (aML) are used to determine cadence episodes. The Discrete Wavelet Transform (DWT) features of signal peaks during cadence are extracted and clustered using Swarm Rapid Centroid Estimation (Swarm RCE). Left HS (LHS), Right HS (RHS), and movement artifacts are clustered based on intra-cluster correlation. Initial pilot testing of the system on 8 subjects show promising results up to 84.3%±9.2% and 86.7%±6.9% average accuracy with 86.8%±9.2% and 88.9%±7.1% average precision for the segmentation of LHS and RHS respectively.

  3. The REFLEX II galaxy cluster survey: power spectrum analysis

    NASA Astrophysics Data System (ADS)

    Balaguera-Antolínez, A.; Sánchez, Ariel G.; Böhringer, H.; Collins, C.; Guzzo, L.; Phleps, S.

    2011-05-01

    We present the power spectrum of galaxy clusters measured from the new ROSAT-ESO Flux-Limited X-Ray (REFLEX II) galaxy cluster catalogue. This new sample extends the flux limit of the original REFLEX catalogue to 1.8 × 10-12 erg s-1 cm-2, yielding a total of 911 clusters with ≥94 per cent completeness in redshift follow-up. The analysis of the data is improved by creating a set of 100 REFLEX II-catalogue-like mock galaxy cluster catalogues built from a suite of large-volume Λ cold dark matter (ΛCDM) N-body simulations (L-BASICC II). The measured power spectrum is in agreement with the predictions from a ΛCDM cosmological model. The measurements show the expected increase in the amplitude of the power spectrum with increasing X-ray luminosity. On large scales, we show that the shape of the measured power spectrum is compatible with a scale-independent bias and provide a model for the amplitude that allows us to connect our measurements with a cosmological model. By implementing a luminosity-dependent power-spectrum estimator, we observe that the power spectrum measured from the REFLEX II sample is weakly affected by flux-selection effects. The shape of the measured power spectrum is compatible with a featureless power spectrum on scales k > 0.01 h Mpc-1 and hence no statistically significant signal of baryonic acoustic oscillations can be detected. We show that the measured REFLEX II power spectrum displays signatures of non-linear evolution.

  4. Optimal Cluster Mill Pass Scheduling With an Accurate and Rapid New Strip Crown Model

    NASA Astrophysics Data System (ADS)

    Malik, Arif S.; Grandhi, Ramana V.; Zipf, Mark E.

    2007-05-01

    Besides the requirement to roll coiled sheet at high levels of productivity, the optimal pass scheduling of cluster-type reversing cold mills presents the added challenge of assigning mill parameters that facilitate the best possible strip flatness. The pressures of intense global competition, and the requirements for increasingly thinner, higher quality specialty sheet products that are more difficult to roll, continue to force metal producers to commission innovative flatness-control technologies. This means that during the on-line computerized set-up of rolling mills, the mathematical model should not only determine the minimum total number of passes and maximum rolling speed, it should simultaneously optimize the pass-schedule so that desired flatness is assured, either by manual or automated means. In many cases today, however, on-line prediction of strip crown and corresponding flatness for the complex cluster-type rolling mills is typically addressed either by trial and error, by approximate deflection models for equivalent vertical roll-stacks, or by non-physical pattern recognition style models. The abundance of the aforementioned methods is largely due to the complexity of cluster-type mill configurations and the lack of deflection models with sufficient accuracy and speed for on-line use. Without adequate assignment of the pass-schedule set-up parameters, it may be difficult or impossible to achieve the required strip flatness. In this paper, we demonstrate optimization of cluster mill pass-schedules using a new accurate and rapid strip crown model. This pass-schedule optimization includes computations of the predicted strip thickness profile to validate mathematical constraints. In contrast to many of the existing methods for on-line prediction of strip crown and flatness on cluster mills, the demonstrated method requires minimal prior tuning and no extensive training with collected mill data. To rapidly and accurately solve the multi-contact problem

  5. THE XMM CLUSTER SURVEY: THE STELLAR MASS ASSEMBLY OF FOSSIL GALAXIES

    SciTech Connect

    Harrison, Craig D.; Miller, Christopher J.; Richards, Joseph W.; Deadman, Paul-James; Lloyd-Davies, E. J.; Kathy Romer, A.; Mehrtens, Nicola; Liddle, Andrew R.; Hoyle, Ben; Hilton, Matt; Stott, John P.; Capozzi, Diego; Collins, Chris A.; Sahlen, Martin; Stanford, S. Adam; Viana, Pedro T. P.

    2012-06-10

    This paper presents both the result of a search for fossil systems (FSs) within the XMM Cluster Survey and the Sloan Digital Sky Survey and the results of a study of the stellar mass assembly and stellar populations of their fossil galaxies. In total, 17 groups and clusters are identified at z < 0.25 with large magnitude gaps between the first and fourth brightest galaxies. All the information necessary to classify these systems as fossils is provided. For both groups and clusters, the total and fractional luminosity of the brightest galaxy is positively correlated with the magnitude gap. The brightest galaxies in FSs (called fossil galaxies) have stellar populations and star formation histories which are similar to normal brightest cluster galaxies (BCGs). However, at fixed group/cluster mass, the stellar masses of the fossil galaxies are larger compared to normal BCGs, a fact that holds true over a wide range of group/cluster masses. Moreover, the fossil galaxies are found to contain a significant fraction of the total optical luminosity of the group/cluster within 0.5 R{sub 200}, as much as 85%, compared to the non-fossils, which can have as little as 10%. Our results suggest that FSs formed early and in the highest density regions of the universe and that fossil galaxies represent the end products of galaxy mergers in groups and clusters.

  6. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. VIII. Preliminary Public Catalog Release

    NASA Astrophysics Data System (ADS)

    Soto, M.; Bellini, A.; Anderson, J.; Piotto, G.; Bedin, L. R.; van der Marel, R. P.; Milone, A. P.; Brown, T. M.; Cool, A. M.; King, I. R.; Sarajedini, A.; Granata, V.; Cassisi, S.; Aparicio, A.; Hidalgo, S.; Ortolani, S.; Nardiello, D.

    2017-01-01

    The Hubble Space Telescope (HST) UV Legacy Survey of Galactic Globular Clusters (GO-13297) has been specifically designed to complement the existing F606W and F814W observations of the Advanced Camera for Surveys (ACS) Globular Cluster Survey (GO-10775) by observing the most accessible 47 of the previous survey’s 65 clusters in three WFC3/UVIS filters F275W, F336W, and F438W. The new survey also adds super-solar metallicity open cluster NGC 6791 to increase the metallicity diversity. The combined survey provides a homogeneous 5-band data set that can be used to pursue a broad range of scientific investigations. In particular, the chosen UV filters allow the identification of multiple stellar populations by targeting the regions of the spectrum that are sensitive to abundance variations in C, N, and O. In order to provide the community with uniform preliminary catalogs, we have devised an automated procedure that performs high-quality photometry on the new UV observations (along with similar observations of seven other programs in the archive). This procedure finds and measures the potential sources on each individual exposure using library point-spread functions and cross-correlates these observations with the original ACS-Survey catalog. The catalog of 57 clusters we publish here will be useful to identify stars in the different stellar populations, in particular for spectroscopic follow-up. Eventually, we will construct a more sophisticated catalog and artificial-star tests based on an optimal reduction of the UV survey data, but the catalogs presented here give the community the chance to make early use of this HST Treasury survey.

  7. STAR FORMATION AND UV COLORS OF THE BRIGHTEST CLUSTER GALAXIES IN THE REPRESENTATIVE XMM-NEWTON CLUSTER STRUCTURE SURVEY

    SciTech Connect

    Donahue, Megan; Bruch, Seth; Wang, Emily; Voit, G. Mark; Hicks, Amalia K.; Haarsma, Deborah B.; Croston, Judith H.; Pratt, Gabriel W.; O'Connell, Robert W.

    2010-06-01

    We present UV broadband photometry and optical emission-line measurements for a sample of 32 brightest cluster galaxies (BCGs) in clusters of the Representative XMM-Newton Cluster Structure Survey (REXCESS) with z = 0.06-0.18. The REXCESS clusters, chosen to study scaling relations in clusters of galaxies, have X-ray measurements of high quality. The trends of star formation and BCG colors with BCG and host properties can be investigated with this sample. The UV photometry comes from the XMM-Newton Optical Monitor, supplemented by existing archival Galaxy Evolution Explorer photometry. We detected H{alpha} and forbidden line emission in seven (22%) of these BCGs, in optical spectra obtained using the Southern Astrophysical Research Goodman spectrograph. All of these emission-line BCGs occupy clusters classified as cool cores (CCs) based on the central cooling time in the cluster core, for an emission-line incidence rate of 70% for BCGs in REXCESS CC clusters. Significant correlations between the H{alpha} equivalent widths, excess UV production in the BCG, and the presence of dense, X-ray bright intracluster gas with a short cooling time are seen, including the fact that all of the H{alpha} emitters inhabit systems with short central cooling times and high central intracluster medium densities. Estimates of the star formation rates based on H{alpha} and UV excesses are consistent with each other in these seven systems, ranging from 0.1to8 solar masses per year. The incidence of emission-line BCGs in the REXCESS sample is intermediate, somewhat lower than in other X-ray-selected samples ({approx}35%), and somewhat higher than but statistically consistent with optically selected, slightly lower redshift BCG samples ({approx}10%-15%). The UV-optical colors (UVW1 - R {approx}4.7 {+-} 0.3) of REXCESS BCGs without strong optical emission lines are consistent with those predicted from templates and observations of ellipticals dominated by old stellar populations. We see no

  8. IRAC Snapshot Imaging of Massive-Cluster Gravitational Lenses Observed by the Herschel Lensing Survey

    NASA Astrophysics Data System (ADS)

    Egami, Eiichi; Rawle, Timothy; Cava, Antonio; Clement, Benjamin; Dessauges-Zavadsky, Miroslava; Ebeling, Harald; Kneib, Jean-Paul; Perez-Gonzalez, Pablo; Richard, Johan; Rujopakarn, Wiphu; Schaerer, Daniel; Walth, Gregory

    2015-10-01

    Using the Herschel Space Observatory, our team has been conducting a large survey of the fields of massive galaxy clusters, 'The Herschel Lensing Survey (HLS)' (PI: Egami; 419 hours). The main scientific goal is to penetrate the confusion limit of Herschel by taking advantage of the strong gravitational lensing power of these massive clusters and study the population of low-luminosity and/or high-redshift dusty star-forming galaxies that are beyond the reach of field Herschel surveys. In the course of this survey, we have obtained deep PACS (100/160 um) and SPIRE (250/350/500 um) images for 54 clusters (HLS-deep) as well as shallower (but nearly confusion-limited) SPIRE images for 527 clusters (HLS-snapshot). The goal of this proposal is to obtain shallow (500 sec/band) 3.6/4.5 um images of 266 cluster fields that have been observed by the HLS-snapshot survey but do not have any corresponding IRAC data. The HLS-snapshot SPIRE images are deep enough to detect a large number of sources in the target cluster fields, many of which are distant star-forming galaxies lensed by the foreground clusters, and the large sample size of HLS-snapshot promises a great potential for making exciting discoveries. Yet, these Herschel images would be of limited use if we could not identify the counterparts of the Herschel sources accurately and efficiently. The proposed IRAC snapshot program will greatly enhance the utility of these Herschel data, and will feed powerful gound observing facilities like ALMA and NOEMA with interesting targets to follow up.

  9. The Herschel Fornax Cluster Survey - I. The bright galaxy sample

    NASA Astrophysics Data System (ADS)

    Davies, J. I.; Bianchi, S.; Baes, M.; Boselli, A.; Ciesla, L.; Clemens, M.; Davis, T. A.; De Looze, I.; di Serego Alighieri, S.; Fuller, C.; Fritz, J.; Hunt, L. K.; Serra, P.; Smith, M. W. L.; Verstappen, J.; Vlahakis, C.; Xilouris, E. M.; Bomans, D.; Hughes, T.; Garcia-Appadoo, D.; Madden, S.

    2013-01-01

    We present Herschel Space Telescope observations of the nearby Fornax cluster at 100, 160, 250, 350 and 500 μm with a spatial resolution of 7-36 arcsec (10 arcsec ≈ 1 kpc at dFornax = 17.9 Mpc). We define a sample of 11 bright galaxies, selected at 500 μm, that can be directly compared with our past work on the Virgo cluster. We check and compare our results with previous observations made by IRAS and Planck, finding good agreement. The far-infrared luminosity density is higher, by about a factor of 3, in Fornax compared to Virgo, consistent with the higher number density of galaxies. The 100 μm (42.5-122.5 μm) luminosity is two orders of magnitude larger in Fornax than in the local field as measured by IRAS. We calculate stellar (L0.4-2.5) and far-infrared (L100-500) luminosities for each galaxy and use these to estimate a mean optical depth of τ = 0.4 ± 0.1 - the same value as we previously found for Virgo cluster galaxies. For 10 of the 11 galaxies (NGC 1399 excepted), we fit a modified blackbody curve (β = 2.0) to our observed flux densities to derive dust masses and temperatures of 106.54-8.35 M⊙ and T =14.6-24.2 K, respectively, values comparable to those found for Virgo. The derived stars-to-gas(atomic) and gas(atomic)-to-dust ratios vary from 1.1-67.6 to 9.8-436.5, respectively, again broadly consistent with values for Virgo. Fornax is a mass overdensity in stars and dust of about 120 when compared to the local field (30 for Virgo). Fornax and Virgo are both a factor of 6 lower overdensities in gas(atomic) than in stars and dust indicating loss of gas, but not dust and stars, in the cluster environment. We consider in more detail two of the sample galaxies. As the brightest source in either Fornax or Virgo, NGC 1365 is also detected by Planck. The Planck data fit the PACS/SPIRE spectral energy distribution out to 1382 μm with no evidence of other sources of emission (`spinning dust', free-free, synchrotron). At the opposite end of the scale, NGC

  10. TOO LITTLE, TOO LATE: HOW THE TIDAL EVOLUTION OF HOT JUPITERS AFFECTS TRANSIT SURVEYS OF CLUSTERS

    SciTech Connect

    Debes, John H.; Jackson, Brian

    2010-11-10

    The tidal evolution of hot Jupiters may change the efficiency of transit surveys of stellar clusters. The orbital decay that hot Jupiters suffer may result in their destruction, leaving fewer transiting planets in older clusters. We calculate the impact tidal evolution has for different assumed stellar populations, including that of 47 Tuc, a globular cluster that was the focus of an intense Hubble Space Telescope search for transits. We find that in older clusters, one expects to detect fewer transiting planets by a factor of 2 for surveys sensitive to Jupiter-like planets in orbits out to 0.5 AU, and up to a factor of 25 for surveys sensitive to Jupiter-like planets in orbits out to 0.08 AU. Additionally, tidal evolution affects the distribution of transiting planets as a function of the semimajor axis, producing larger orbital period gaps for transiting planets as the age of the cluster increases. Tidal evolution can explain the lack of detected exoplanets in 47 Tuc without invoking other mechanisms. Four open clusters residing within the Kepler fields of view have ages that span 0.4-8 Gyr-if Kepler can observe a significant number of planets in these clusters, it will provide key tests for our tidal evolution hypothesis. Finally, our results suggest that observers wishing to discover transiting planets in clusters must have sufficient accuracy to detect lower mass planets, search larger numbers of cluster members, or have longer observation windows to be confident that a significant number of transits will occur for a population of stars.

  11. Too Little, Too Late: How the Tidal Evolution of Hot Jupiters Affects Transit Surveys of Clusters

    NASA Technical Reports Server (NTRS)

    Debes, John H.; Jackson, Brian

    2010-01-01

    The tidal evolution of hot Jupiters may change the efficiency of transit surveys of stellar clusters. The orbital decay that hot Jupiters suffer may result in their destruction, leaving fewer transiting planets in older clusters. We calculate the impact tidal evolution has for different assumed stellar populations, including that of 47 Tuc, a globular cluster that was the focus of an intense HST search for transits. We find that in older clusters one expects to detect fewer transiting planets by a factor of two for surveys sensitive to Jupiter-like planets in orbits out to 0.5 AU, and up to a factor of 25 for surveys sensitive to Jupiter-like planets in orbits out to 0.08 AU. Additionally, tidal evolution affects the distribution of transiting planets as a function of semi-major axis, producing larger orbital period gaps for transiting planets as the age of the cluster increases. Tidal evolution can explain the lack of detected exoplanets in 47 Tuc without invoking other mechanisms. Four open clusters residing within the Kepler fields of view have ages that span 0.4-8 Gyr-if Kepler can observe a significant number of planets in these clusters, it will provide key tests for our tidal evolution hypothesis. Finally, our results suggest that observers wishing to discover transiting planets in clusters must have sufficient accuracy to detect lower mass planets, search larger numbers of cluster members, or have longer observation windows to be confident that a significant number of transits will occur for a population of stars.

  12. Galaxy Clusters to z <= 1 from the Oxford Dartmouth Thirty Degree Survey

    NASA Astrophysics Data System (ADS)

    Hammell, Molly; Wegner, Gary; Moustakas, Leonidas; Allen, Paul; Dalton, Gavin; Olding, Edward

    2003-05-01

    The properties of galaxy clusters in the local universe have been fairly well determined in the past few decades, and wide field surveys in the near infrared are converging on a statistically significant sample of high redshift clusters. These catalogs may soon allow discrimination between the competing models of galaxy formation and evolution [1]. The Oxford-Dartmouth Thirty Degree Survey (ODT) will span four widely separated 3° × 3° fields, to B < 26 in UBVRi'Z with an extension in the near-infrared to K < 19. With more than half of the survey completed, this deep, wide-area, multi-color dataset has yielded a large sample of K-selected clusters to probe the formation and evolution history of galaxies in dense environments. An exploration of cluster color-magnitude slopes and intercepts [2], luminosity functions [3], and morphological distributions [4, 5] should constrain the relative dominance of star formation rates and merger events on cluster galaxy evolution. Here, we present our cluster-finding method and preliminary results.

  13. The Gaia-ESO Survey: Kinematics of seven Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Lardo, C.; Pancino, E.; Bellazzini, M.; Bragaglia, A.; Donati, P.; Gilmore, G.; Randich, S.; Feltzing, S.; Jeffries, R. D.; Vallenari, A.; Alfaro, E. J.; Allende Prieto, C.; Flaccomio, E.; Koposov, S. E.; Recio-Blanco, A.; Bergemann, M.; Carraro, G.; Costado, M. T.; Damiani, F.; Hourihane, A.; Jofré, P.; de Laverny, P.; Marconi, G.; Masseron, T.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.

    2015-01-01

    The Gaia-ESO survey is a large public spectroscopic survey aimed at investigating the origin and formation history of our Galaxy by collecting spectroscopy of representative samples (about 105 Milky Way stars) of all Galactic stellar populations, in the field and in clusters. The survey uses globular clusters as intra- and inter-survey calibrators, deriving stellar atmospheric parameters and abundances of a significant number of stars in clusters, along with radial velocity determinations. We used precise radial velocities of a large number of stars in seven globular clusters (NGC 1851, NGC 2808, NGC 4372, NGC 4833, NGC 5927, NGC 6752, and NGC 7078) to validate pipeline results and to preliminarily investigate the cluster internal kinematics. Radial velocity measurements were extracted from FLAMES/GIRAFFE spectra processed by the survey pipeline as part of the second internal data release of data products to ESO. We complemented our sample with ESO archival data obtained with different instrument configurations. Reliable radial velocity measurements for 1513 bona fide cluster star members were obtained in total. We measured systemic rotation, estimated central velocity dispersions, and present velocity dispersion profiles of all the selected clusters, providing the first velocity dispersion curve and the first estimate of the central velocitydispersion for the cluster NGC 5927. Finally, we explore the possible link between cluster kinematics and other physical parameters. The analysis we present here demonstrates that Gaia-ESO survey data are sufficiently accurate to be used in studies of kinematics of stellar systems and stellar populations in the Milky Way. Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A115Based on data products from observations made with ESO telescopes at the La Silla Paranal Observatory under programme 188.B-3002 (the

  14. Neutron Capture Elements in the Open Cluster Chemical Abundance & Mapping (OCCAM) Survey

    NASA Astrophysics Data System (ADS)

    O'Connell, Julia; Frinchaboy, Peter M.; Shetrone, Matthew D.; Majewski, Steven R.; Zasowski, Gail; Hearty, Fred R.

    2016-01-01

    The Open Cluster Chemical Abundance & Mapping (OCCAM) survey is a systematic survey of Galactic open clusters using data primarily from the SDSS-III/APOGEE-1 survey. The high-resolution (R=22,500), near-infrared (H-band) APOGEE-1 survey allows for cluster membership probability determination and analysis of light and iron-peak elements. Neutron capture elements, however, prove to be elusive in the IR region covered by APOGEE. In an effort to fully study detailed Galactic chemical evolution, we conducted a high resolution (R~60,000) spectroscopic abundance analysis of neutron capture elements for OCCAM clusters in the optical regime to complement the APOGEE results. We present results for ten open clusters using data obtained at McDonald Observatory with the 2.1m Otto Struve telescope and Sandiford Echelle Spectrograph. We see abundance trends for Ba II, La II and Eu II that are consistent with Galactic abundance patterns for these elements. Ce II appears to be slightly enhanced in all program stars with a median value of ~0.1 dex and a spread of 0.5 dex for the entire sample.

  15. A DEEP, WIDE-FIELD H{alpha} SURVEY OF NEARBY CLUSTERS OF GALAXIES: DATA

    SciTech Connect

    Sakai, Shoko; Kennicutt, Robert C. Jr.; Moss, Chris

    2012-04-01

    We present the results of a wide-field H{alpha} imaging survey of eight nearby (z = 0.02-0.03) Abell clusters. We have measured H{alpha} fluxes and equivalent widths for 465 galaxies, of which 360 are new detections. The survey was designed to obtain complete emission-line-selected inventories of star-forming galaxies in the inner regions of these clusters, extending to star formation rates below 0.1 M{sub Sun} yr{sup -1}. This paper describes the observations, data processing, and source identification procedures, and presents an H{alpha} and R-band catalog of detected cluster members and other candidates. Future papers in the series will use these data to study the completeness of spectroscopically based star formation surveys, and to quantify the effects of cluster environment on the present-day populations of star-forming galaxies. The data will also provide a valuable foundation for imaging surveys of redshifted H{alpha} emission in more distant clusters.

  16. SPATIAL ANISOTROPY OF GALAXY KINEMATICS IN SLOAN DIGITAL SKY SURVEY GALAXY CLUSTERS

    SciTech Connect

    Skielboe, Andreas; Wojtak, Radoslaw; Pedersen, Kristian; Rozo, Eduardo; Rykoff, Eli S.

    2012-10-10

    Measurements of galaxy cluster kinematics are important in understanding the dynamical state and evolution of clusters of galaxies, as well as constraining cosmological models. While it is well established that clusters exhibit non-spherical geometries, evident in the distribution of galaxies on the sky, azimuthal variations of galaxy kinematics within clusters have yet to be observed. Here we measure the azimuthal dependence of the line-of-sight velocity dispersion profile in a stacked sample of 1743 galaxy clusters from the Sloan Digital Sky Survey (SDSS). The clusters are drawn from the SDSS DR8 redMaPPer catalog. We find that the line-of-sight velocity dispersion of galaxies lying along the major axis of the central galaxy is larger than those that lie along the minor axis. This is the first observational detection of anisotropic kinematics of galaxies in clusters. We show that the result is consistent with predictions from numerical simulations. Furthermore, we find that the degree of projected anisotropy is strongly dependent on the line-of-sight orientation of the galaxy cluster, opening new possibilities for assessing systematics in optical cluster finding.

  17. Prospects for clustering and lensing measurements with forthcoming intensity mapping and optical surveys

    NASA Astrophysics Data System (ADS)

    Pourtsidou, A.; Bacon, D.; Crittenden, R.; Metcalf, R. B.

    2016-06-01

    We explore the potential of using intensity mapping surveys (MeerKAT, SKA) and optical galaxy surveys (DES, LSST) to detect H I clustering and weak gravitational lensing of 21 cm emission in auto- and cross-correlation. Our forecasts show that high-precision measurements of the clustering and lensing signals can be made in the near future using the intensity mapping technique. Such studies can be used to test the intensity mapping method, and constrain parameters such as the H I density Ω _{H I}, the H I bias b_{H I} and the galaxy-H I correlation coefficient r_{H I-g}.

  18. A SUBMILLIMETER ARRAY SURVEY OF PROTOPLANETARY DISKS IN THE ORION NEBULA CLUSTER

    SciTech Connect

    Mann, Rita K.; Williams, Jonathan P. E-mail: jpw@ifa.hawaii.ed

    2010-12-10

    We present the full results of our three-year-long Submillimeter Array (SMA) survey of protoplanetary disks in the Orion Nebula Cluster. We imaged 23 fields at 880 {mu}m and 2 fields at 1330 {mu}m, covering an area of {approx}6.5 arcmin{sup 2} and containing 67 disks. We detected 42 disks with fluxes between 6 and 135 mJy and at rms noise levels between 0.6 and 5.3 mJy beam{sup -1}. Thermal dust emission above any free-free component was measured in 40 of the 42 detections, and the inferred disk masses range from 0.003 to 0.07 M{sub sun}. We find that disks located within 0.3 pc of {theta}{sup 1} Ori C have a truncated mass distribution, while disks located beyond 0.3 pc have masses more comparable to those found in low-mass star-forming regions. The disk mass distribution in Orion has a distance dependence, with a derived relationship max(M{sub disk}) = 0.046 M{sub sun}(d/0.3 pc){sup 0.33} for the maximum disk masses. We found evidence of grain growth in disk 197-427, the only disk detected at both 880 {mu}m and 1330 {mu}m with the SMA. Despite the rapid erosion of the outer parts of the Orion disks by photoevaporation, the potential for planet formation remains high in this massive star-forming region, with {approx}18% of the surveyed disks having masses {>=}0.01 M{sub sun} within 60 AU.

  19. The Herschel Virgo Cluster Survey . II. Truncated dust disks in H I-deficient spirals

    NASA Astrophysics Data System (ADS)

    Cortese, L.; Davies, J. I.; Pohlen, M.; Baes, M.; Bendo, G. J.; Bianchi, S.; Boselli, A.; De Looze, I.; Fritz, J.; Verstappen, J.; Bomans, D. J.; Clemens, M.; Corbelli, E.; Dariush, A.; di Serego Alighieri, S.; Fadda, D.; Garcia-Appadoo, D. A.; Gavazzi, G.; Giovanardi, C.; Grossi, M.; Hughes, T. M.; Hunt, L. K.; Jones, A. P.; Madden, S.; Pierini, D.; Sabatini, S.; Smith, M. W. L.; Vlahakis, C.; Xilouris, E. M.; Zibetti, S.

    2010-07-01

    By combining Herschel-SPIRE observations obtained as part of the Herschel Virgo Cluster Survey with 21 cm Hi data from the literature, we investigate the role of the cluster environment on the dust content of Virgo spiral galaxies. We show for the first time that the extent of the dust disk is significantly reduced in Hi-deficient galaxies, following remarkably well the observed “truncation” of the Hi disk. The ratio of the submillimetre-to-optical diameter correlates with the Hi-deficiency, suggesting that the cluster environment is able to strip dust as well as gas. These results provide important insights not only into the evolution of cluster galaxies but also into the metal enrichment of the intra-cluster medium. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  20. The JCMT Gould Belt Survey: Dense Core Clusters in Orion B

    NASA Astrophysics Data System (ADS)

    Kirk, H.; Johnstone, D.; Di Francesco, J.; Lane, J.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Hatchell, J.; Jenness, T.; Mottram, J. C.; Nutter, D.; Pattle, K.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Hogerheijde, M. R.; Ward-Thompson, D.; The JCMT Gould Belt Survey Team

    2016-04-01

    The James Clerk Maxwell Telescope Gould Belt Legacy Survey obtained SCUBA-2 observations of dense cores within three sub-regions of Orion B: LDN 1622, NGC 2023/2024, and NGC 2068/2071, all of which contain clusters of cores. We present an analysis of the clustering properties of these cores, including the two-point correlation function and Cartwright’s Q parameter. We identify individual clusters of dense cores across all three regions using a minimal spanning tree technique, and find that in each cluster, the most massive cores tend to be centrally located. We also apply the independent M-Σ technique and find a strong correlation between core mass and the local surface density of cores. These two lines of evidence jointly suggest that some amount of mass segregation in clusters has happened already at the dense core stage.

  1. VizieR Online Data Catalog: Galaxy clusters from the APM galaxy survey (Dalton+ 1997)

    NASA Astrophysics Data System (ADS)

    Dalton, G. B.; Maddox, S. J.; Sutherland, W. J.; Efstahiou, G.

    1997-10-01

    We describe the construction of catalogues of galaxy clusters from the APM Galaxy survey using an automated algorithm based on Abell-like selection criteria. We investigate the effects of varying several parameters in our selection algorithm, including the magnitude range and radius from the cluster centre used to estimate the cluster richnesses. We quantify the accuracy of the photometric distance estimates by comparing them with measured redshifts, and we investigate the stability and completeness of the resulting catalogues. We find that the angular correlation functions for different cluster catalogues are in good agreement with one another, and are also consistent with the observed amplitude of the spatial correlation function of rich clusters. (1 data file).

  2. The VMC survey. XI. Radial stellar population gradients in the galactic globular cluster 47 Tucanae

    SciTech Connect

    Li, Chengyuan; De Grijs, Richard; Deng, Licai; Rubele, Stefano; Girardi, Leo; Gullieuszik, Marco; Wang, Chuchu; Bekki, Kenji; For, Bi-Qing; Cioni, Maria-Rosa L.; Clementini, Gisella; Emerson, Jim; Groenewegen, Martin A. T.; Guandalini, Roald; Marconi, Marcella; Ripepi, Vincenzo; Piatti, Andrés E.; Van Loon, Jacco Th. E-mail: grijs@pku.edu.cn

    2014-07-20

    We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, K{sub s} survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ∼0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.

  3. X-ray survey of galaxy clusters in the SDSS Stripe 82 region

    NASA Astrophysics Data System (ADS)

    Durret, Florence; Takey, Ali

    2016-07-01

    We conducted a survey of galaxy clusters detected from XMM-Newton observations covering an area of 11.25 deg^2 in the Stripe 82 region of the Sloan Digital Sky Survey (SDSS). We found 94 X-ray cluster candidates from the third XMM-Newton serendipitous source catalogue (3XMM-DR5) and correlated this list with recently published X-ray and optically selected cluster catalogues to obtain optical confirmations and redshifts (between 0.05 and 1.19, with a median of 0.36) for 54 galaxy groups/clusters. Of these, 17 are newly X-ray discovered clusters and 45 systems with spectroscopic confirmations. Among the remaining candidates, 25 sources are distant cluster candidates (beyond a redshift of 0.6). We will present preliminary results on the X-ray and optical properties of these clusters: luminosities and temperatures of the X-ray gas, and optical properties of the galaxies (morphology, luminosity functions).

  4. The Gaia-ESO Survey: the inner disk, intermediate-age open cluster Trumpler 23

    NASA Astrophysics Data System (ADS)

    Overbeek, J. C.; Friel, E. D.; Donati, P.; Smiljanic, R.; Jacobson, H. R.; Hatzidimitriou, D.; Held, E. V.; Magrini, L.; Bragaglia, A.; Randich, S.; Vallenari, A.; Cantat-Gaudin, T.; Tautvaišienė, G.; Jiménez-Esteban, F.; Frasca, A.; Geisler, D.; Villanova, S.; Tang, B.; Muñoz, C.; Marconi, G.; Carraro, G.; San Roman, I.; Drazdauskas, A.; Ženovienė, R.; Gilmore, G.; Jeffries, R. D.; Flaccomio, E.; Pancino, E.; Bayo, A.; Costado, M. T.; Damiani, F.; Jofré, P.; Monaco, L.; Prisinzano, L.; Sousa, S. G.; Zaggia, S.

    2017-02-01

    Context. Trumpler 23 is a moderately populated, intermediate-age open cluster within the solar circle at a RGC 6 kpc. It is in a crowded field very close to the Galactic plane and the color-magnitude diagram shows significant field contamination and possible differential reddening; it is a relatively understudied cluster for these reasons, but its location makes it a key object for determining Galactic abundance distributions. Aims: New data from the Gaia-ESO Survey enable the first ever radial velocity and spectroscopic metallicity measurements for this cluster. We aim to use velocities to isolate cluster members, providing more leverage for determining cluster parameters. Methods: Gaia-ESO Survey data for 167 potential members have yielded radial velocity measurements, which were used to determine the systemic velocity of the cluster and membership of individual stars. Atmospheric parameters were also used as a check on membership when available. Literature photometry was used to re-determine cluster parameters based on radial velocity member stars only; theoretical isochrones are fit in the V, V-I diagram. Cluster abundance measurements of ten radial-velocity member stars with high-resolution spectroscopy are presented for 24 elements. These abundances have been compared to local disk stars, and where possible placed within the context of literature gradient studies. Results: We find Trumpler 23 to have an age of 0.80 ± 0.10 Gyr, significant differential reddening with an estimated mean cluster E(V-I) of 1.02, and an apparent distance modulus of 14.15 ± 0.20. We find an average cluster metallicity of [Fe/H] = 0.14 ± 0.03 dex, a solar [α/Fe] abundance, and notably subsolar [s-process/Fe] abundances.

  5. Source clustering in the Hi-GAL survey determined using a minimum spanning tree method

    NASA Astrophysics Data System (ADS)

    Beuret, M.; Billot, N.; Cambrésy, L.; Eden, D. J.; Elia, D.; Molinari, S.; Pezzuto, S.; Schisano, E.

    2017-01-01

    Aims: The aims are to investigate the clustering of the far-infrared sources from the Herschel infrared Galactic Plane Survey (Hi-GAL) in the Galactic longitude range of -71 to 67 deg. These clumps, and their spatial distribution, are an imprint of the original conditions within a molecular cloud. This will produce a catalogue of over-densities. Methods: The minimum spanning tree (MST) method was used to identify the over-densities in two dimensions. The catalogue was further refined by folding in heliocentric distances, resulting in more reliable over-densities, which are cluster candidates. Results: We found 1633 over-densities with more than ten members. Of these, 496 are defined as cluster candidates because of the reliability of the distances, with a further 1137 potential cluster candidates. The spatial distributions of the cluster candidates are different in the first and fourth quadrants, with all clusters following the spiral structure of the Milky Way. The cluster candidates are fractal. The clump mass functions of the clustered and isolated are statistically indistinguishable from each other and are consistent with Kroupa's initial mass function. Hi-GAL is a key-project of the Herschel Space Observatory survey (Pilbratt et al. 2010) and uses the PACS (Poglitsch et al. 2010) and SPIRE (Griffin et al. 2010) cameras in parallel mode.The catalogues of cluster candidates and potential clusters are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A114

  6. Mining the UKIDSS Galactic Plane Survey: star formation and embedded clusters

    NASA Astrophysics Data System (ADS)

    Solin, O.; Ukkonen, E.; Haikala, L.

    2012-06-01

    Context. Data mining techniques must be developed and applied to analyse the large public data bases containing hundreds to thousands of millions entries. Aims: We develop methods for locating previously unknown stellar clusters from the UKIDSS Galactic Plane Survey (GPS) catalogue data. Methods: The cluster candidates are computationally searched from pre-filtered catalogue data using a method that fits a mixture model of Gaussian densities and background noise using the expectation maximization algorithm. The catalogue data contains a significant number of false sources clustered around bright stars. A large fraction of these artefacts were automatically filtered out before or during the cluster search. The UKIDSS data reduction pipeline tends to classify marginally resolved stellar pairs and objects seen against variable surface brightness as extended objects (or "galaxies" in the archive parlance). 10% or 66 × 106 of the sources in the UKIDSS GPS catalogue brighter than 17m in the K band are classified as "galaxies". Young embedded clusters create variable NIR surface brightness because the gas/dust clouds in which they were formed scatters the light from the cluster members. Such clusters appear therefore as clusters of "galaxies" in the catalogue and can be found using only a subset of the catalogue data. The detected "galaxy clusters" were finally screened visually to eliminate the remaining false detections due to data artefacts. Besides the embedded clusters the search also located locations of non clustered embedded star formation. Results: The search covered an area of 1302 deg2 and 137 previously unknown cluster candidates and 30 previously unknown sites of star formation were found. Appendices A-C are available in electronic form at http://www.anda.org

  7. Real-Time Patient Survey Data During Routine Clinical Activities for Rapid-Cycle Quality Improvement

    PubMed Central

    Jones, Robert E

    2015-01-01

    Background Surveying patients is increasingly important for evaluating and improving health care delivery, but practical survey strategies during routine care activities have not been available. Objective We examined the feasibility of conducting routine patient surveys in a primary care clinic using commercially available technology (Web-based survey creation, deployment on tablet computers, cloud-based management of survey data) to expedite and enhance several steps in data collection and management for rapid quality improvement cycles. Methods We used a Web-based data management tool (survey creation, deployment on tablet computers, real-time data accumulation and display of survey results) to conduct four patient surveys during routine clinic sessions over a one-month period. Each survey consisted of three questions and focused on a specific patient care domain (dental care, waiting room experience, care access/continuity, Internet connectivity). Results Of the 727 available patients during clinic survey days, 316 patients (43.4%) attempted the survey, and 293 (40.3%) completed the survey. For the four 3-question surveys, the average time per survey was overall 40.4 seconds, with a range of 5.4 to 20.3 seconds for individual questions. Yes/No questions took less time than multiple choice questions (average 9.6 seconds versus 14.0). Average response time showed no clear pattern by order of questions or by proctor strategy, but monotonically increased with number of words in the question (<20 words, 21-30 words, >30 words)—8.0, 11.8, 16.8, seconds, respectively. Conclusions This technology-enabled data management system helped capture patient opinions, accelerate turnaround of survey data, with minimal impact on a busy primary care clinic. This new model of patient survey data management is feasible and sustainable in a busy office setting, supports and engages clinicians in the quality improvement process, and harmonizes with the vision of a learning health

  8. VizieR Online Data Catalog: GALEX Ultraviolet Virgo Cluster Survey (GUViCS) (Boselli+, 2011)

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Boissier, S.; Heinis, S.; Cortese, L.; Ilbert, O.; Hughes, T.; Cucciati, O.; Davies, J.; Ferrarese, L.; Giovanelli, R.; Haynes, M. P.; Baes, M.; Balkowski, C.; Brosch, N.; Chapman, S. C.; Charmandaris, V.; Clemens, M. S.; Dariush, A.; De Looze, I.; di Serego Alighieri, S.; Duc, P.-A.; Durrell, P. R.; Emsellem, E.; Erben, T.; Fritz, J.; Garcia-Appadoo, D. A.; Gavazzi, G.; Grossi, M.; Jordan, A.; Hess, K. M.; Huertas-Company, M.; Hunt, L. K.; Kent, B. R.; Lambas, D. G.; Lancon, A.; MacArthur, L. A.; Madden, S. C.; Magrini, L.; Mei, S.; Momjian, E.; Olowin, R. P.; Papastergis, E.; Smith, M. W. L.; Solanes, J. M.; Spector, O.; Spekkens, K.; Taylor, J. E.; Valotto, C.; van Driel, W.; Verstappen, J.; Vlahakis, C.; Vollmer, B.; Xilouris, E. M.

    2011-08-01

    The GALEX Ultraviolet Virgo Cluster Survey (GUViCS) is a complete blind survey of the Virgo cluster covering ~40 sq. deg in the far UV (FUV, λeff=1539Å, Δλ=442Å) and ~120 sq. deg in the near UV (NUV, λeff=2316Å, Δλ=1060Å). The goal of the survey is to study the ultraviolet (UV) properties of galaxies in a rich cluster environment, spanning a wide luminosity range from giants to dwarfs, and regardless of prior knowledge of their star formation activity. The UV data will be combined with those in other bands (optical: NGVS; far-infrared - submm: HeViCS; HI: ALFALFA) and with our multizone chemo-spectrophotometric models of galaxy evolution to make a complete and exhaustive study of the effects of the environment on the evolution of galaxies in high density regions. We present here the scientific objectives of the survey, describing the observing strategy and briefly discussing different data reduction techniques. Using UV data already in-hand for the central 12 sq. deg we determine the FUV and NUV luminosity functions of the Virgo cluster core for all cluster members and separately for early- and late-type galaxies and compare it to the one obtained in the field and other nearby clusters (Coma, A1367). This analysis shows that the FUV and NUV luminosity functions of the core of the Virgo clusters are flatter (alpha~-1.1) than those determined in Coma and A1367. We discuss the possible origin of this difference. (1 data file).

  9. An IUE survey of the Hyades star cluster

    NASA Technical Reports Server (NTRS)

    Zolcinski, M. C.; Kay, L.; Antiochos, S.; Stern, R.; Walker, A. B. C.

    1982-01-01

    To date 11 of the brightest X-Ray stars (F-K dwarfs) in the Hyades have been observed with the IUE satellite with the short wavelength spectrograph. The IUE results and the X-Ray observations from the Hyades survey with the Einstein Observatory were combined. The differential emission measure function was estimated for each of the 7 stars which showed evidence of emission lines. Constraints on stellar atmospheric parameters (chromospheric pressure, coronal temperature and filling factor were derived. The implications of these results in the context of loop models for the corona and transition region (TR) of these stars are discussed.

  10. The WARPS Survey - VIII. Evolution of the galaxy cluster X-ray Luminosity Function

    NASA Astrophysics Data System (ADS)

    Koens, L. A.; Maughan, B. J.; Jones, L. R.; Ebeling, H.; Horner, D. J.; Perlman, E. S.; Phillipps, S.; Scharf, C. A.

    2013-11-01

    We present measurements of the galaxy cluster X-ray Luminosity Function (XLF) from the Wide Angle ROSAT Pointed Survey (WARPS) and quantify its evolution. WARPS is a serendipitous survey of the central region of ROSAT pointed observations and was carried out in two phases (WARPS-I and WARPS-II). The results here are based on a final sample of 124 clusters, complete above a flux limit of 6.5 × 10-14 erg cm-2 s-1, with members out to redshift z ˜ 1.05, and a sky coverage of 70.9 deg2. We find significant evidence for negative evolution of the XLF, which complements the majority of X-ray cluster surveys. To quantify the suggested evolution, we perform a maximum likelihood analysis and conclude that the evolution is driven by a decreasing number density of high-luminosity clusters with redshift, while the bulk of the cluster population remains nearly unchanged out to redshift z ≈ 1.1, as expected in a low-density universe. The results are found to be insensitive to a variety of sources of systematic uncertainty that affect the measurement of the XLF and determination of the survey selection function. We perform a Bayesian analysis of the XLF to fully account for uncertainties in the local XLF on the measured evolution, and find that the detected evolution remains significant at the 95 per cent level. We observe a significant excess of clusters in the WARPS at 0.1 < z < 0.3 and LX ≈ 2 × 1043 erg s-1 compared with the reference low-redshift XLF, or our Bayesian fit to the WARPS data. We find that the excess cannot be explained by sample variance, or Eddington bias, and is unlikely to be due to problems with the survey selection function.

  11. Embedded Clusters in the Large Magellanic Cloud Using the VISTA Magellanic Clouds Survey

    NASA Astrophysics Data System (ADS)

    Romita, Krista; Lada, Elizabeth; Cioni, Maria-Rosa

    2016-04-01

    We present initial results of the first large-scale survey of embedded star clusters in molecular clouds in the Large Magellanic Cloud (LMC) using near-infrared imaging from the Visible and Infrared Survey Telescope for Astronomy Magellanic Clouds Survey. We explored a ∼1.65 deg2 area of the LMC, which contains the well-known star-forming region 30 Doradus as well as ∼14% of the galaxy’s CO clouds, and identified 67 embedded cluster candidates, 45 of which are newly discovered as clusters. We have determined the sizes, luminosities, and masses for these embedded clusters, examined the star formation rates (SFRs) of their corresponding molecular clouds, and made a comparison between the LMC and the Milky Way. Our preliminary results indicate that embedded clusters in the LMC are generally larger, more luminous, and more massive than those in the local Milky Way. We also find that the surface densities of both embedded clusters and molecular clouds is ∼3 times higher than in our local environment, the embedded cluster mass surface density is ∼40 times higher, the SFR is ∼20 times higher, and the star formation efficiency is ∼10 times higher. Despite these differences, the SFRs of the LMC molecular clouds are consistent with the SFR scaling law presented in Lada et al. This consistency indicates that while the conditions of embedded cluster formation may vary between environments, the overall process within molecular clouds may be universal. Based on observations made with VISTA at the Paranal Observatory under program ID 179.B-2003.

  12. Constraining galaxy cluster temperatures and redshifts with eROSITA survey data

    NASA Astrophysics Data System (ADS)

    Borm, K.; Reiprich, T. H.; Mohammed, I.; Lovisari, L.

    2014-07-01

    Context. The nature of dark energy is imprinted in the large-scale structure of the Universe and thus in the mass and redshift distribution of galaxy clusters. The upcoming eROSITA instrument will exploit this method of probing dark energy by detecting ~100 000 clusters of galaxies in X-rays. Aims: For a precise cosmological analysis the various galaxy cluster properties need to be measured with high precision and accuracy. To predict these characteristics of eROSITA galaxy clusters and to optimise optical follow-up observations, we estimate the precision and the accuracy with which eROSITA will be able to determine galaxy cluster temperatures and redshifts from X-ray spectra. Additionally, we present the total number of clusters for which these two properties will be available from the eROSITA survey directly. Methods: We simulate the spectra of galaxy clusters for a variety of different cluster masses and redshifts while taking into account the X-ray background as well as the instrumental response. An emission model is then fit to these spectra to recover the cluster temperature and redshift. The number of clusters with precise properties is then based on the convolution of the above fit results with the galaxy cluster mass function and an assumed eROSITA selection function. Results: During its four years of all-sky surveys, eROSITA will determine cluster temperatures with relative uncertainties of ΔT/T ≲ 10% at the 68%-confidence level for clusters up to redshifts of z ~ 0.16 which corresponds to ~1670 new clusters with precise properties. Redshift information itself will become available with a precision of Δz/ (1 + z) ≲ 10% for clusters up to z ~ 0.45. Additionally, we estimate how the number of clusters with precise properties increases with a deepening of the exposure. For the above clusters, the fraction of catastrophic failures in the fit is below 20% and in most cases it is even much smaller. Furthermore, the biases in the best-fit temperatures as

  13. Substructures in DAFT/FADA survey clusters based on XMM and optical data

    NASA Astrophysics Data System (ADS)

    Durret, F.; DAFT/FADA Team

    2014-07-01

    The DAFT/FADA survey was initiated to perform weak lensing tomography on a sample of 90 massive clusters in the redshift range [0.4,0.9] with HST imaging available. The complementary deep multiband imaging constitutes a high quality imaging data base for these clusters. In X-rays, we have analysed the XMM-Newton and/or Chandra data available for 32 clusters, and for 23 clusters we fit the X-ray emissivity with a beta-model and subtract it to search for substructures in the X-ray gas. This study was coupled with a dynamical analysis for the 18 clusters with at least 15 spectroscopic galaxy redshifts in the cluster range, based on a Serna & Gerbal (SG) analysis. We detected ten substructures in eight clusters by both methods (X-rays and SG). The percentage of mass included in substructures is found to be roughly constant with redshift, with values of 5-15%. Most of the substructures detected both in X-rays and with the SG method are found to be relatively recent infalls, probably at their first cluster pericenter approach.

  14. COMPARING DENSE GALAXY CLUSTER REDSHIFT SURVEYS WITH WEAK-LENSING MAPS

    SciTech Connect

    Hwang, Ho Seong; Geller, Margaret J.; Zahid, H. Jabran; Diaferio, Antonaldo; Rines, Kenneth J. E-mail: mgeller@cfa.harvard.edu E-mail: diaferio@ph.unito.it

    2014-12-20

    We use dense redshift surveys of nine galaxy clusters at z ∼ 0.2 to compare the galaxy distribution in each system with the projected matter distribution from weak lensing. By combining 2087 new MMT/Hectospec redshifts and the data in the literature, we construct spectroscopic samples within the region of weak-lensing maps of high (70%-89%) and uniform completeness. With these dense redshift surveys, we construct galaxy number density maps using several galaxy subsamples. The shape of the main cluster concentration in the weak-lensing maps is similar to the global morphology of the number density maps based on cluster members alone, mainly dominated by red members. We cross-correlate the galaxy number density maps with the weak-lensing maps. The cross-correlation signal when we include foreground and background galaxies at 0.5z {sub cl} < z < 2z {sub cl} is 10%-23% larger than for cluster members alone at the cluster virial radius. The excess can be as high as 30% depending on the cluster. Cross-correlating the galaxy number density and weak-lensing maps suggests that superimposed structures close to the cluster in redshift space contribute more significantly to the excess cross-correlation signal than unrelated large-scale structure along the line of sight. Interestingly, the weak-lensing mass profiles are not well constrained for the clusters with the largest cross-correlation signal excesses (>20% for A383, A689, and A750). The fractional excess in the cross-correlation signal including foreground and background structures could be a useful proxy for assessing the reliability of weak-lensing cluster mass estimates.

  15. Star Formation in the Dense Environment of Young Clusters: A FORCAST Imaging Survey

    NASA Astrophysics Data System (ADS)

    Mundy, Lee

    2012-10-01

    We propose a multi-wavelength FORCAST survey of 6-8 dense star-forming regions within 1kpc. This survey will image multiple fields in each target cluster with the 11, 19, 31 and 37 micron bands, including an estimated 100 young stellar objects (YSO) with bright mid-IR emission. The results will fill in YSO information for the cluster centers where previous studies based on Spitzer, WISE, and IRAS were saturated and/or suffered from source confusion. In addition, these observations will help fill the 10-40 micron gap in the spectral energy distributions of YSOs in these fields, and will help characterize the spatial extent of the 31 micron and 37micron emission. FORCAST's high spatial resolution will be an improvement by a factor of two over the Spitzer 24 micron images. The proposed survey will provide better statistics on bright young cluster stars which will help test current theories of clustered star formation: Turbulent Core Collapse and Competitive Accretion. Specifically, the data will improve our knowledge of the protostellar luminosity and temperature distributions in the dense regions of forming clusters, which constrain these models (Offner and Mckee 2011; Myers 2011). In addition, the extent of the 31 and 37 micron emission (unresolved compared to 5-10") will provide direct information on Competitive Accretion.

  16. Gravitational redshift of galaxies in clusters from the sloan digital sky survey and the Baryon Oscillation spectroscopic survey.

    PubMed

    Sadeh, Iftach; Feng, Low Lerh; Lahav, Ofer

    2015-02-20

    The gravitational redshift effect allows one to directly probe the gravitational potential in clusters of galaxies. Following up on Wojtak et al. [Nature (London) 477, 567 (2011)], we present a new measurement. We take advantage of new data from the tenth data release of the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. We compare the spectroscopic redshift of the brightest cluster galaxies (BCGs) with that of galaxies at the outskirts of clusters, using a sample with an average cluster mass of 1014M⊙. We find that these galaxies have an average relative redshift of -11  km/s compared with that of BCGs, with a standard deviation of +7 and -5  km/s. Our measurement is consistent with that of Wojtak et al. [Nature (London) 477, 567 (2011)]. However, our derived standard deviation is larger, as we take into account various systematic effects, beyond the size of the data set. The result is in good agreement with the predictions from general relativity.

  17. The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey

    SciTech Connect

    Bufanda, E.; Hollowood, D.; Jeltema, T. E.; Rykoff, E. S.; Rozo, E.; Martini, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Rooney, P.; Sanchez, E.; Santiago, B.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Walker, A. R.

    2016-12-13

    The correlation between active galactic nuclei (AGN) and environment provides important clues to AGN fueling and the relationship of black hole growth to galaxy evolution. In this paper, we analyze the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGN with L_X > 1043 ergs s-1 in non-central, host galaxies with luminosity greater than 0.5 L* from a total sample of 432 clusters in the redshift range of 0.1cluster members has a strong positive correlation with redshift such that the AGN fraction increases by a factor of ~8 from low to high redshift, and the fraction of cluster galaxies hosting AGN at high redshifts is greater than the low-redshift fraction at 3.6 sigma. In particular, the AGN fraction increases steeply at the highest redshifts in our sample at z>0.7. This result is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. However, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.

  18. The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Bufanda, E.; Hollowood, D.; Jeltema, T. E.; Rykoff, E. S.; Rozo, E.; Martini, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Rooney, P.; Sanchez, E.; Santiago, B.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Walker, A. R.; DES Collaboration

    2017-03-01

    The correlation between active galactic nuclei (AGNs) and environment provides important clues to AGN fuelling and the relationship of black hole growth to galaxy evolution. In this paper, we analyse the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray-detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGNs with LX > 1043 erg s-1 in non-central, host galaxies with luminosity greater than 0.5L* from a total sample of 432 clusters in the redshift range of 0.1 < z < 0.95. Analysis of the present sample reveals that the AGN fraction in red-sequence cluster members has a strong positive correlation with redshift such that the AGN fraction increases by a factor of ∼8 from low to high redshift, and the fraction of cluster galaxies hosting AGN at high redshifts is greater than the low-redshift fraction at 3.6σ. In particular, the AGN fraction increases steeply at the highest redshifts in our sample at z > 0.7. This result is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. However, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.

  19. Land-based lidar mapping: a new surveying technique to shed light on rapid topographic change

    USGS Publications Warehouse

    Collins, Brian D.; Kayen, Robert

    2006-01-01

    The rate of natural change in such dynamic environments as rivers and coastlines can sometimes overwhelm the monitoring capacity of conventional surveying methods. In response to this limitation, U.S. Geological Survey (USGS) scientists are pioneering new applications of light detection and ranging (lidar), a laser-based scanning technology that promises to greatly increase our ability to track rapid topographic changes and manage their impact on affected communities.

  20. The XMM-BCS galaxy cluster survey: I. The X-ray selected cluster catalog from the initial 6 deg$^2$

    SciTech Connect

    Suhada, R.; Song, J.; Bohringer, H.; Mohr, J.J.; Chon, G.; Finoguenov, A.; Fassbender, R.; Desai, S.; Armstrong, R.; Zenteno, A.; Barkhouse, W.A.; /North Dakota U. /Paris, Inst. Astrophys.

    2011-11-01

    The XMM-Newton - Blanco Cosmology Survey project (XMM-BCS) is a coordinated X-ray, optical and mid-infrared cluster survey in a field also covered by Sunyaev-Zel dovich effect (SZE) surveys by the South Pole Telescope and the Atacama Cosmology Telescope. The aim of the project is to study the cluster population in a 14 deg{sup 2} field (center: {alpha} {approx} 23:29:18.4, {delta} {approx} -54:40:33.6). The uniform multi-wavelength coverage will also allow us for the first time to comprehensively compare the selection function of the different cluster detection approaches in a single test field and perform a cross-calibration of cluster scaling relations. In this work, we present a catalog of 46 X-ray selected clusters from the initial 6 deg{sup 2} survey core.We describe the XMM-BCS source detection pipeline and derive physical properties of the clusters. We provide photometric redshift estimates derived from the BCS imaging data and spectroscopic redshift measurements for a low redshift subset of the clusters. The photometric redshift estimates are found to be unbiased and in good agreement with the spectroscopic values. Our multi-wavelength approach gives us a comprehensive look at the cluster and group population up to redshifts z {approx} 1. The median redshift of the sample is 0.47 and the median mass M{sub 500} {approx} 1 x 10{sup 14} M{sub {circle_dot}} ({approx} 2 keV). From the sample, we derive the cluster log N - log S using an approximation to the survey selection function and find it in good agreement with previous studies. We compare optical mass estimates from the Southern Cosmology Survey available for part of our cluster sample with our estimates derived from the X-ray luminosity. Weak lensing masses available for a subset of the cluster sample are in agreement with our estimates. Optical masses based on cluster richness and total optical luminosity are found to be significantly higher than the X-ray values. The present results illustrate the

  1. Observation of the Coma cluster of galaxies with ROSAT during the all-sky survey

    NASA Technical Reports Server (NTRS)

    Briel, U. G.; Henry, J. P.; Boehringer, H.

    1992-01-01

    The Coma cluster of galaxies was observed with the position sensitive proportional counter (PSPC) during the ROSAT all sky survey. We find evidence for substructure in this cluster. Diffuse X-ray emission is detected from the regions of the NGC 4839 and 4911 subgroups at 6 percent and 1 percent of the total cluster emission respectively. There may be emission associated with the NGC 4874 and 4889 subgroups as well. The NGC 4839 group appears to be in the process of merging with the cluster. These X-ray data show that at least some of the groups previously found in projection are in fact physical objects possessing potential wells deep enough to trap their own X-ray gas. Because of the unlimited field of view of the all sky survey and the low background of the PSPC, we were able to measure the azimuthally averaged surface brightness of Coma out to approximately 100 arcmin, twice as far as was previously possible. Given the validity of our mass models, these new X-ray data imply that within 5/h(50) Mpc the binding mass of the Coma cluster is 1.8 +/- 0.6 x 10 exp 15/h(50) solar mass, and the fraction of cluster mass contained in hot gas is 0.30 +/- 0.14h(50) exp -3/2. Furthermore, the binding mass is more centrally concentrated than is the X-ray gas.

  2. SUPERDENSE MASSIVE GALAXIES IN THE ESO DISTANT CLUSTER SURVEY (EDisCS)

    SciTech Connect

    Valentinuzzi, T.; D'onofrio, M.; Vulcani, B.; Poggianti, B. M.; Fritz, J.; Moretti, A.; Saglia, R. P.; Aragon-Salamanca, A.; Simard, L.; Sanchez-Blazquez, P.; Cava, A.; Couch, W. J.

    2010-09-20

    We find a significant number of massive and compact galaxies in clusters from the ESO Distant Clusters Survey (EDisCS) at 0.4 < z < 1. They have similar stellar masses, ages, sizes, and axial ratios to local z {approx} 0.04 compact galaxies in WIde field Nearby Galaxy clusters Survey (WINGS) clusters, and to z = 1.4-2 massive and passive galaxies found in the general field. If non-brightest cluster galaxies of all densities, morphologies, and spectral types are considered, the median size of EDisCS galaxies is only a factor 1.18 smaller than in WINGS. We show that for morphologically selected samples, the morphological evolution taking place in a significant fraction of galaxies during the last Gyr may introduce an apparent, spurious evolution of size with redshift, which is actually due to intrinsic differences in the selected samples. We conclude that the median mass-size relation of cluster galaxies does not evolve significantly from z {approx} 0.7 to z {approx} 0.04. In contrast, the masses and sizes of BCGs and galaxies with M {sub *}>4 x 10{sup 11} M {sub sun} have significantly increased by a factor of 2 and 4, respectively, confirming the results of a number of recent works on the subject. Our findings show that progenitor bias effects play an important role in the size-growth paradigm of massive and passive galaxies.

  3. Calibrating the Cluster Richness-Mass Relation for the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Hollowood, Devon Lawrence; Jeltema, Tesla E.; Rykoff, Eli S.; Rozo, Eduardo; Dark Energy Survey Collaboration

    2015-01-01

    The equation of state for dark energy can be strongly constrained by looking at the formation of galaxy clusters throughout the universe's history. This can be accomplished cheaply and efficiently by examining galaxy cluster richnesses in the optical regime and using these richnesses as proxies for galaxy cluster masses. In order to calibrate the richness-mass relation, I have examined 39 galaxy clusters found in both Dark Energy Survey science-verification data and in archival Chandra data. Using the this data, I have measured a number of X-ray mass proxies for each galaxy cluster and have compared these proxies with the richnesses measured by redMaPPer, a red-sequence cluster-finding algorithm. With more data, this comparison is expected to determine the scatter in the richness-mass relation and improve the Dark Energy Survey figure-of-merit by a factor of two. Funding for this project was provided by NASA through the Chandra X-ray Observatory program.

  4. Sloan Digital Sky Survey III photometric quasar clustering: Probing the initial conditions of the Universe

    SciTech Connect

    Ho, Shirley; Agarwal, Nishant; Myers, Adam D.; Lyons, Richard; Disbrow, Ashley; Seo, Hee -Jong; Ross, Ashley; Hirata, Christopher; Padmanabhan, Nikhil; O'Connell, Ross; Huff, Eric; Schlegel, David; Slosar, Anze; Weinberg, David; Strauss, Michael; Ross, Nicholas P.; Schneider, Donald P.; Bahcall, Neta; Brinkmann, J.; Palanque-Delabrouille, Nathalie; Yeche, Christophe

    2015-05-22

    Here, the Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z=0.5 and z=2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans 0~ 11,00 square degrees and probes a volume of 80 h–3 Gpc3. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimal quadratic estimator in four redshift slices with an accuracy of ~ 25% over a bin width of δl ~ 10–15 on scales corresponding to matter-radiation equality and larger (0ℓ ~ 2–3).

  5. Sloan Digital Sky Survey III photometric quasar clustering: Probing the initial conditions of the Universe

    DOE PAGES

    Ho, Shirley; Agarwal, Nishant; Myers, Adam D.; ...

    2015-05-22

    Here, the Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z=0.5 and z=2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans 0~ 11,00 square degrees and probes a volume of 80 h–3 Gpc3. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimal quadratic estimatormore » in four redshift slices with an accuracy of ~ 25% over a bin width of δl ~ 10–15 on scales corresponding to matter-radiation equality and larger (0ℓ ~ 2–3).« less

  6. XMM-Newton Observations of the DLS Shear-Selected Cluster Survey

    NASA Technical Reports Server (NTRS)

    DellAntonio, Ian

    2005-01-01

    The goal of this project continues to be to test the selection effects in cluster surveys by investigating the X-ray properties of the first shear-selected sample of galaxy clusters, the Deep Lens Survey (DLS). Because lensing signal is only sensitive to mass (albeit with projection effects), lensing signal can be used to select a sample that is independent of its X-ray properties. If a lensing-selected sample has very different X-ray properties from an X-ray selected sample, it would have important consequences for evolutionary studies based on existing cluster samples was aimed at refining the lensing-selected sample as part of this continuing study The grant supported a KPNO run to obtain data on another region of the sky to extend the cluster sample, and also the purchase of a disk array for archiving the optical mosaic data (Two terabytes worth) from which the lensing maps are derived As a result of the grant, we have extended the lensing cluster sample to another 4-square degree patch of the sky, adding another three clusters to our sample to be observed While the sample of X-ray observed clusters is too small to derive a firm conclusion yet, our preliminary finding is that the X-ray properties of the observed sample do not differ from those of X-ray selected surveys A paper discussing the first results has been published, and a second paper on the mass differences is still in preparation (with J Hughes as first author)

  7. The HST survey of Magellanic-Cloud clusters and of their stellar populations

    NASA Astrophysics Data System (ADS)

    Milone, A. P.

    2017-03-01

    A large number of intermediate-age (~1-2-Gyr old) globular clusters (GCs) in the Large and the Small Magellanic Cloud (MC) exhibit either bimodal or extended main-sequence (MS) turn off and dual red clump (RC). Moreover, recent papers have shown that the MS of the young clusters NGC 1844 and NGC 1856 is either broadened or split. These features of the color-magnitude diagram (CMD) are not consistent with a single isochrone and suggest that star clusters in MCs have experienced a prolonged star formation, in close analogy with Milky-Way GCs with multiple stellar populations. As an alternative, stellar rotation or interacting binaries can be responsible of the CMD morphology. In the following I will summarize the observational scenario and provide constraints on the nature of the complex CMD of young and intermediate-age MC clusters from our ongoing photometric survey with the Hubble Space Telescope (HST).

  8. The Wide-Field Nearby Galaxy-Cluster Survey (WINGS) and Its Extension OMEGAWINGS

    NASA Astrophysics Data System (ADS)

    Poggianti, B. M.; Fasano, G.; Bettoni, D.; Cava, A.; Couch, W.; D'Onofrio, M.; Dressler, A.; Fritz, J.; Kjaergaard, P.; Gullieuszik, M.; Moles, M.; Moretti, A.; Omizzolo, A.; Paccagnella, A.; Varela, J.; Vulcani, B.

    WINGS is a wide-field multi-wavelength survey of 76 X-ray selected clusters at low redshift. The WINGS database has been used for a variety of cluster and cluster galaxy studies, investigating galaxy star formation, morphologies, structure, stellar mass functions and other properties. We present the recent wider-field extension of WINGS, OMEGAWINGS, conducted with OmegaCAM@VST and AAOmega@AAT. We show two of our latest results regarding jellyfish galaxies and galaxy sizes. OMEGAWINGS has allowed the first systematic search of galaxies with signs of ongoing ram pressure stripping (jellyfishes), yielding a catalog of ˜ 240 galaxies in 41 clusters. We discuss the first results obtained from this sample and the prospects for integral field data. Finally, we summarize our results regarding the discovery of compact massive galaxies at low redshift, their properties, dependence on environment and the implications for the evolution of galaxy sizes from high- to low-z.

  9. THE SLOAN BRIGHT ARCS SURVEY: TEN STRONG GRAVITATIONAL LENSING CLUSTERS AND EVIDENCE OF OVERCONCENTRATION

    SciTech Connect

    Wiesner, Matthew P.; Lin, Huan; Allam, Sahar S.; Annis, James; Buckley-Geer, Elizabeth J.; Diehl, H. Thomas; Kubik, Donna; Kubo, Jeffrey M.; Tucker, Douglas

    2012-12-10

    We describe 10 strong lensing galaxy clusters of redshift 0.26 {<=} z {<=} 0.56 that were found in the Sloan Digital Sky Survey. We present measurements of richness (N{sub 200}), mass (M{sub 200}), and velocity dispersion for the clusters. We find that in order to use the mass-richness relation from Johnston et al., which was established at mean redshift of 0.25, it is necessary to scale measured richness values up by 1.47. Using this scaling, we find richness values for these clusters to be in the range of 22 {<=} N{sub 200} {<=} 317 and mass values to be in the range of 1 Multiplication-Sign 10{sup 14} h {sup -1} M{sub Sun} {<=} M{sub 200} {<=} 30 Multiplication-Sign 10{sup 14} h {sup -1} M{sub Sun }. We also present measurements of Einstein radius, mass, and velocity dispersion for the lensing systems. The Einstein radii ({theta}{sub E}) are all relatively small, with 5.''4 {<=} {theta}{sub E} {<=} 13''. Finally, we consider if there is evidence that our clusters are more concentrated than {Lambda}CDM would predict. We find that six of our clusters do not show evidence of overconcentration, while four of our clusters do. We note a correlation between overconcentration and mass, as the four clusters showing evidence of overconcentration are all lower-mass clusters. For the four lowest mass clusters the average value of the concentration parameter c{sub 200} is 11.6, while for the six higher-mass clusters the average value of c{sub 200} is 4.4. {Lambda}CDM would place c{sub 200} between 3.4 and 5.7.

  10. See Change: the Supernova Sample from the Supernova Cosmology Project High Redshift Cluster Supernova Survey

    NASA Astrophysics Data System (ADS)

    Hayden, Brian; Perlmutter, Saul; Boone, Kyle; Nordin, Jakob; Rubin, David; Lidman, Chris; Deustua, Susana E.; Fruchter, Andrew S.; Aldering, Greg Scott; Brodwin, Mark; Cunha, Carlos E.; Eisenhardt, Peter R.; Gonzalez, Anthony H.; Jee, James; Hildebrandt, Hendrik; Hoekstra, Henk; Santos, Joana; Stanford, S. Adam; Stern, Daniel; Fassbender, Rene; Richard, Johan; Rosati, Piero; Wechsler, Risa H.; Muzzin, Adam; Willis, Jon; Boehringer, Hans; Gladders, Michael; Goobar, Ariel; Amanullah, Rahman; Hook, Isobel; Huterer, Dragan; Huang, Xiaosheng; Kim, Alex G.; Kowalski, Marek; Linder, Eric; Pain, Reynald; Saunders, Clare; Suzuki, Nao; Barbary, Kyle H.; Rykoff, Eli S.; Meyers, Joshua; Spadafora, Anthony L.; Sofiatti, Caroline; Wilson, Gillian; Rozo, Eduardo; Hilton, Matt; Ruiz-Lapuente, Pilar; Luther, Kyle; Yen, Mike; Fagrelius, Parker; Dixon, Samantha; Williams, Steven

    2017-01-01

    The Supernova Cosmology Project has finished executing a large (174 orbits, cycles 22-23) Hubble Space Telescope program, which has measured ~30 type Ia Supernovae above z~1 in the highest-redshift, most massive galaxy clusters known to date. Our SN Ia sample closely matches our pre-survey predictions; this sample will improve the constraint by a factor of 3 on the Dark Energy equation of state above z~1, allowing an unprecedented probe of Dark Energy time variation. When combined with the improved cluster mass calibration from gravitational lensing provided by the deep WFC3-IR observations of the clusters, See Change will triple the Dark Energy Task Force Figure of Merit. With the primary observing campaign completed, we present the preliminary supernova sample and our path forward to the supernova cosmology results. We also compare the number of SNe Ia discovered in each cluster with our pre-survey expectations based on cluster mass and SFR estimates. Our extensive HST and ground-based campaign has already produced unique results; we have confirmed several of the highest redshift cluster members known to date, confirmed the redshift of one of the most massive galaxy clusters at z~1.2 expected across the entire sky, and characterized one of the most extreme starburst environments yet known in a z~1.7 cluster. We have also discovered a lensed SN Ia at z=2.22 magnified by a factor of ~2.7, which is the highest spectroscopic redshift SN Ia currently known.

  11. The Snapshot Hubble U-band Cluster Survey (SHUCS). I. Survey Description and First Application to the Mixed Star Cluster Population of NGC 4041

    NASA Astrophysics Data System (ADS)

    Konstantopoulos, I. S.; Smith, L. J.; Adamo, A.; Silva-Villa, E.; Gallagher, J. S.; Bastian, N.; Ryon, J. E.; Westmoquette, M. S.; Zackrisson, E.; Larsen, S. S.; Weisz, D. R.; Charlton, J. C.

    2013-05-01

    We present the Snapshot Hubble U-band Cluster Survey (SHUCS), a project aimed at characterizing the star cluster populations of 10 nearby galaxies (d < 23 Mpc, half within ≈12 Mpc) through new F336W (U-band equivalent) imaging from Wide Field Camera 3, and archival BVI-equivalent data with the Hubble Space Telescope. Completing the UBVI baseline reduces the age-extinction degeneracy of optical colors, thus enabling the measurement of reliable ages and masses for the thousands of clusters covered by our survey. The sample consists chiefly of face-on spiral galaxies at low inclination, in various degrees of isolation (isolated, in group, merging), and includes two active galactic nucleus hosts. This first paper outlines the survey itself, the observational datasets, the analysis methods, and presents a proof-of-concept study of the large-scale properties and star cluster population of NGC 4041, a massive SAbc galaxy at a distance of ≈23 Mpc, and part of a small grouping of six giant members. We resolve two structural components with distinct stellar populations, a morphology more akin to merging and interacting systems. We also find strong evidence of a truncated, Schechter-type mass function, and a similarly segmented luminosity function. These results indicate that binning must erase much of the substructure present in the mass and luminosity functions, and might account for the conflicting reports on the intrinsic shape of these functions in the literature. We also note a tidal feature in the outskirts of the galaxy in Galaxy Evolution Explorer UV imaging, and follow it up with a comprehensive multi-wavelength study of NGC 4041 and its parent group. We deduce a minor merger as a likely cause of its segmented structure and the observed pattern of a radially decreasing star formation rate. We propose that combining the study of star cluster populations with broadband metrics is not only advantageous, but often easily achievable thorough archival datasets. Based

  12. THE SNAPSHOT HUBBLE U-BAND CLUSTER SURVEY (SHUCS). I. SURVEY DESCRIPTION AND FIRST APPLICATION TO THE MIXED STAR CLUSTER POPULATION OF NGC 4041

    SciTech Connect

    Konstantopoulos, I. S.; Smith, L. J.; Adamo, A.; Silva-Villa, E.; Gallagher, J. S.; Ryon, J. E.; Bastian, N.; Westmoquette, M. S.; Zackrisson, E.; Larsen, S. S.; Charlton, J. C.

    2013-05-15

    We present the Snapshot Hubble U-band Cluster Survey (SHUCS), a project aimed at characterizing the star cluster populations of 10 nearby galaxies (d < 23 Mpc, half within Almost-Equal-To 12 Mpc) through new F336W (U-band equivalent) imaging from Wide Field Camera 3, and archival BVI-equivalent data with the Hubble Space Telescope. Completing the UBVI baseline reduces the age-extinction degeneracy of optical colors, thus enabling the measurement of reliable ages and masses for the thousands of clusters covered by our survey. The sample consists chiefly of face-on spiral galaxies at low inclination, in various degrees of isolation (isolated, in group, merging), and includes two active galactic nucleus hosts. This first paper outlines the survey itself, the observational datasets, the analysis methods, and presents a proof-of-concept study of the large-scale properties and star cluster population of NGC 4041, a massive SAbc galaxy at a distance of Almost-Equal-To 23 Mpc, and part of a small grouping of six giant members. We resolve two structural components with distinct stellar populations, a morphology more akin to merging and interacting systems. We also find strong evidence of a truncated, Schechter-type mass function, and a similarly segmented luminosity function. These results indicate that binning must erase much of the substructure present in the mass and luminosity functions, and might account for the conflicting reports on the intrinsic shape of these functions in the literature. We also note a tidal feature in the outskirts of the galaxy in Galaxy Evolution Explorer UV imaging, and follow it up with a comprehensive multi-wavelength study of NGC 4041 and its parent group. We deduce a minor merger as a likely cause of its segmented structure and the observed pattern of a radially decreasing star formation rate. We propose that combining the study of star cluster populations with broadband metrics is not only advantageous, but often easily achievable thorough

  13. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: anisotropic galaxy clustering in Fourier space

    NASA Astrophysics Data System (ADS)

    Beutler, Florian; Seo, Hee-Jong; Saito, Shun; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Gil-Marín, Héctor; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C.; Olmstead, Matthew D.; Percival, Will J.; Prada, Francisco; Sánchez, Ariel G.; Rodriguez-Torres, Sergio; Ross, Ashley J.; Ross, Nicholas P.; Schneider, Donald P.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana

    2017-04-01

    We investigate the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 sample, which consists of 1198 006 galaxies in the redshift range 0.2 < z < 0.75 and a sky coverage of 10 252 deg2. We analyse this data set in Fourier space, using the power-spectrum multipoles to measure redshift-space distortions simultaneously with the Alcock-Paczynski effect and the baryon acoustic oscillation scale. We include the power-spectrum monopole, quadrupole and hexadecapole in our analysis and compare our measurements with a perturbation-theory-based model, while properly accounting for the survey window function. To evaluate the reliability of our analysis pipeline, we participate in a mock challenge, which results in systematic uncertainties significantly smaller than the statistical uncertainties. While the high-redshift constraint on fσ8 at zeff = 0.61 indicates a small (∼1.4σ) deviation from the prediction of the Planck ΛCDM (Λ cold dark matter) model, the low-redshift constraint is in good agreement with Planck ΛCDM. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.

  14. The Next Generation Virgo Cluster Survey. XXII. Shell Feature Early-type Dwarf Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Paudel, Sanjaya; Smith, Rory; Duc, Pierre-Alain; Côté, Patrick; Cuillandre, Jean-Charles; Ferrarese, Laura; Blakeslee, John P.; Boselli, Alessandro; Cantiello, Michele; Gwyn, S. D. J.; Guhathakurta, Puragra; Mei, Simona; Mihos, J. Christopher; Peng, Eric W.; Powalka, Mathieu; Sánchez-Janssen, Rúben; Toloba, Elisa; Zhang, Hongxin

    2017-01-01

    The Next Generation Virgo Cluster Survey is a deep (with a 2σ detection limit μg = 29 mag arcsec‑2 in the g-band) optical panchromatic survey targeting the Virgo cluster from its core to virial radius, for a total areal coverage of 104 square degrees. As such, the survey is well suited for the study of galaxies’ outskirts, haloes, and low surface brightness features that arise from dynamical interactions within the cluster environment. We report the discovery of extremely faint (μg > 25 mag arcsec‑2) shells in three Virgo cluster early-type dwarf galaxies: VCC 1361, VCC 1447, and VCC 1668. Among them, VCC 1447 has an absolute magnitude Mg = ‑11.71 mag and is the least massive galaxy with a shell system discovered to date. We present a detailed study of these low surface brightness features. We detect between three and four shells in each of our galaxies. Within the uncertainties, we find no evidence of a color difference between the galaxy main body and shell features. The observed arcs of the shells are located up to several effective radii of the galaxies. We further explore the origin of these low surface brightness features with the help of idealized numerical simulations. We find that a near equal mass merger is best able to reproduce the main properties of the shells, including their quite symmetric appearance and their alignment along the major axis of the galaxy. The simulations provide support for a formation scenario in which a recent merger, between two near-equal mass, gas-free dwarf galaxies, forms the observed shell systems. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada–France–Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  15. The OPD photometric survey of open clusters II. robust determination of the fundamental parameters of 24 open clusters

    NASA Astrophysics Data System (ADS)

    Monteiro, H.; Dias, W. S.; Hickel, G. R.; Caetano, T. C.

    2017-02-01

    In the second paper of the series we continue the investigation of open cluster fundamental parameters using a robust global optimization method to fit model isochrones to photometric data. We present optical UBVRI CCD photometry (Johnsons-Cousins system) observations for 24 neglected open clusters, of which 14 have high quality data in the visible obtained for the first time, as a part of our ongoing survey being carried out in the 0.6 m telescope of the Pico dos Dias Observatory in Brazil. All objects were then analyzed with a global optimization tool developed by our group which estimates the membership likelihood of the observed stars and fits an isochrone from which a distance, age, reddening, total to selective extinction ratio RV (included in this work as a new free parameter) and metallicity are estimated. Based on those estimates and their associated errors we analyzed the status of each object as real clusters or not, finding that two are likely to be asterisms. We also identify important discrepancies between our results and previous ones obtained in the literature which were determined using 2MASS photometry.

  16. Global survey of star clusters in the Milky Way. V. Integrated JHKS magnitudes and luminosity functions

    NASA Astrophysics Data System (ADS)

    Kharchenko, N. V.; Piskunov, A. E.; Schilbach, E.; Röser, S.; Scholz, R.-D.

    2016-01-01

    Aims: In this study we determine absolute integrated magnitudes in the J,H,KS passbands for Galactic star clusters from the Milky Way Star Clusters survey. In the wide solar neighbourhood, we derive the open cluster luminosity function (CLF) for different cluster ages. Methods: The integrated magnitudes are based on uniform cluster membership derived from the 2MAst catalogue (a merger of the PPMXL and 2MASS) and are computed by summing up the individual luminosities of the most reliable cluster members. We discuss two different techniques of constructing the CLF, a magnitude-limited and a distance-limited approach. Results: Absolute J,H,KS integrated magnitudes are obtained for 3061 open clusters, and 147 globular clusters. The integrated magnitudes and colours are accurate to about 0.8 and 0.2 mag, respectively. Based on the sample of open clusters we construct the general cluster luminosity function in the solar neighbourhood in the three passbands. In each passband the CLF shows a linear part covering a range of 6 to 7 mag at the bright end. The CLFs reach their maxima at an absolute magnitude of -2 mag, then drop by one order of magnitude. During cluster evolution, the CLF changes its slope within tight, but well-defined limits. The CLF of the youngest clusters has a steep slope of about 0.4 at bright magnitudes and a quasi-flat portion for faint clusters. For the oldest population, we find a flatter function with a slope of about 0.2. The CLFs at Galactocentric radii smaller than that of the solar circle differ from those in the direction of the Galactic anti-centre. The CLF in the inner area is flatter and the cluster surface density higher than the local one. In contrast, the CLF is somewhat steeper than the local one in the outer disk, and the surface density is lower. The corresponding catalogue of integrated magnitudes is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  17. The XXL Survey. II. The bright cluster sample: catalogue and luminosity function

    NASA Astrophysics Data System (ADS)

    Pacaud, F.; Clerc, N.; Giles, P. A.; Adami, C.; Sadibekova, T.; Pierre, M.; Maughan, B. J.; Lieu, M.; Le Fèvre, J. P.; Alis, S.; Altieri, B.; Ardila, F.; Baldry, I.; Benoist, C.; Birkinshaw, M.; Chiappetti, L.; Démoclès, J.; Eckert, D.; Evrard, A. E.; Faccioli, L.; Gastaldello, F.; Guennou, L.; Horellou, C.; Iovino, A.; Koulouridis, E.; Le Brun, V.; Lidman, C.; Liske, J.; Maurogordato, S.; Menanteau, F.; Owers, M.; Poggianti, B.; Pomarède, D.; Pompei, E.; Ponman, T. J.; Rapetti, D.; Reiprich, T. H.; Smith, G. P.; Tuffs, R.; Valageas, P.; Valtchanov, I.; Willis, J. P.; Ziparo, F.

    2016-06-01

    Context. The XXL Survey is the largest survey carried out by the XMM-Newton satellite and covers a total area of 50 square degrees distributed over two fields. It primarily aims at investigating the large-scale structures of the Universe using the distribution of galaxy clusters and active galactic nuclei as tracers of the matter distribution. The survey will ultimately uncover several hundreds of galaxy clusters out to a redshift of ~2 at a sensitivity of ~10-14 erg s-1 cm-2 in the [0.5-2] keV band. Aims: This article presents the XXL bright cluster sample, a subsample of 100 galaxy clusters selected from the full XXL catalogue by setting a lower limit of 3 × 10-14 erg s-1 cm-2 on the source flux within a 1' aperture. Methods: The selection function was estimated using a mixture of Monte Carlo simulations and analytical recipes that closely reproduce the source selection process. An extensive spectroscopic follow-up provided redshifts for 97 of the 100 clusters. We derived accurate X-ray parameters for all the sources. Scaling relations were self-consistently derived from the same sample in other publications of the series. On this basis, we study the number density, luminosity function, and spatial distribution of the sample. Results: The bright cluster sample consists of systems with masses between M500 = 7 × 1013 and 3 × 1014 M⊙, mostly located between z = 0.1 and 0.5. The observed sky density of clusters is slightly below the predictions from the WMAP9 model, and significantly below the prediction from the Planck 2015 cosmology. In general, within the current uncertainties of the cluster mass calibration, models with higher values of σ8 and/or ΩM appear more difficult to accommodate. We provide tight constraints on the cluster differential luminosity function and find no hint of evolution out to z ~ 1. We also find strong evidence for the presence of large-scale structures in the XXL bright cluster sample and identify five new superclusters. Based on

  18. Energetic particle sounding of the magnetopause: A contribution by Cluster/RAPID

    NASA Astrophysics Data System (ADS)

    Zong, Q.-G.; Fritz, T. A.; Spence, H.; Oksavik, K.; Pu, Z.-Y.; Korth, A.; Daly, P. W.

    2004-04-01

    In this paper we present new results using Cluster/Research with Adaptive Particle Imaging Detectors (RAPID) energetic particle observations to remotely sound the high-latitude magnetopause in three dimensions. We demonstrate that energetic particle flux variations in the vicinity of the magnetopause (inside the magnetosphere) are mainly modulated by the absorbing magnetopause during quiet geomagnetic conditions. Less than two gyro radii from an absorbing boundary a trapped particle distribution becomes nongyrotropic, as particles start to encounter the boundary. Knowing the magnetic field and the particle mass and energy, the direction and distance to the magnetopause can be derived by examining the azimuthal distribution of locally mirroring particles. Combining observations from three nearby spacecraft gives a three-dimensional, local picture of the magnetopause surface. We exploit anisotropic ion distributions to determine magnetopause distances, orientations, and structures in the interval from 1320 to 1420 UT on 14 January 2001 for the three Cluster spacecraft (Rumba, Samba, and Tango) located on the duskside (at ˜1700 MLT) high-latitude region. The results clearly illustrate that the magnetopause ion sounding technique as proposed by [1979], [1982], and [2000] can be used to remotely study the three-dimensional orientation and location of the magnetopause surface and the gradient variation of the plasma parameters. Intercomparison between energetic particle sounding distance and simultaneous plasma and magnetic field measurements suggests that solar wind plasma can penetrate more than ≈1000 km deeper than the trapping boundary. The fluxes of different ion species are proportional to the distance from the magnetopause, with a correlation coefficient of 0.7 to 0.8. The energetic proton flux gradient as a function of distance from the magnetosphere is about 100 particles cm-2 s-1 sr-1 per kilometer. In contrast, the solar wind plasma density is found to be

  19. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Galactic Neutron Capture Abundance Gradients

    NASA Astrophysics Data System (ADS)

    O'Connell, Julia; Frinchaboy, Peter M.; Shetrone, Matthew D.; Melendez, Matthew; Cunha, Katia M. L.; Majewski, Steven R.; Zasowski, Gail; APOGEE Team

    2017-01-01

    The evolution of elements, as a function or age, throughout the Milky Way disk provides a key constraint for galaxy evolution models. In an effort to provide these constraints, we have conducted an investigation into the r- and s- process elemental abundances for a large sample of open clusters as part of an optical follow-up to the SDSS-III/APOGEE-1 survey. Stars were identified as cluster members by the Open Cluster Chemical Abundance & Mapping (OCCAM) survey, which culls member candidates by radial velocity, metallicity, and proper motion from the observed APOGEE sample. To obtain data for neutron capture elements in these clusters, we conducted a long-term observing campaign covering three years (2013-2016) using the McDonald Observatory Otto Struve 2.1-m telescope and Sandiford Cass Echelle Spectrograph (R ~ 60,000). We present Galactic neutron-capture abundance gradients using 30+ clusters, within 6 kpc of the Sun, covering a range of ages from ~80 Myr to ~10 Gyr .

  20. WINGS: a WIde-field nearby Galaxy-cluster survey. III. Deep near-infrared photometry of 28 nearby clusters

    NASA Astrophysics Data System (ADS)

    Valentinuzzi, T.; Woods, D.; Fasano, G.; Riello, M.; D'Onofrio, M.; Varela, J.; Bettoni, D.; Cava, A.; Couch, W. J.; Dressler, A.; Fritz, J.; Moles, M.; Omizzolo, A.; Poggianti, B. M.; Kjærgaard, P.

    2009-07-01

    Context: This is the third paper in a series devoted to the WIde-field Nearby Galaxy-cluster Survey (WINGS). WINGS is a long-term project aimed at gathering wide-field, multiband imaging and spectroscopy of galaxies in a complete sample of 77 X-ray selected, nearby clusters (0.04clusters. Aims: This paper presents the near-infrared (J,K) photometric catalogs of 28 clusters of the WINGS sample and describes the procedures followed to construct them. Methods: The raw data has been reduced at CASU and special care has been devoted to the final coadding, drizzling technique, astrometric solution, and magnitude calibration for the WFCAM pipeline-processed data. We constructed the photometric catalogs based on the final calibrated, coadded mosaics (≈0.79 deg^2) in J (19 clusters) and K (27 clusters) bands. A customized interactive pipeline was used to clean the catalogs and to make mock images for photometric errors and completeness estimates. Results: We provide deep near-infrared photometric catalogs (90% complete in detection rate at total magnitudes J≈ 20.5, K≈ 19.4, and in classification rate at J≈19.5 and K≈ 18.5), giving positions, geometrical parameters, total and aperture magnitudes for all detected sources. For each field we classify the detected sources as stars, galaxies, and objects of “unknown” nature. Based on observations taken at the United Kingdom Infra-Red Telescope, operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the UK. J and K photometric catalogs are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/851

  1. The 2dF Galaxy Redshift Survey: luminosity dependence of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Norberg, Peder; Baugh, Carlton M.; Hawkins, Ed; Maddox, Steve; Peacock, John A.; Cole, Shaun; Frenk, Carlos S.; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Colless, Matthew; Collins, Chris; Couch, Warrick; Dalton, Gavin; De Propris, Roberto; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Glazebrook, Karl; Jackson, Carole; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Madgwick, Darren; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith

    2001-11-01

    We investigate the dependence of the strength of galaxy clustering on intrinsic luminosity using the Anglo-Australian two degree field galaxy redshift survey (2dFGRS). The 2dFGRS is over an order of magnitude larger than previous redshift surveys used to address this issue. We measure the projected two-point correlation function of galaxies in a series of volume-limited samples. The projected correlation function is free from any distortion of the clustering pattern induced by peculiar motions and is well described by a power law in pair separation over the range 0.1<(r/h-1Mpc)<10. The clustering of L*(MbJ-5log10h=-19.7) galaxies in real space is well-fitted by a correlation length r0=4.9+/-0.3h-1Mpc and power-law slope γ=1.71+/-0.06. The clustering amplitude increases slowly with absolute magnitude for galaxies fainter than M*, but rises more strongly at higher luminosities. At low luminosities, our results agree with measurements from the Southern Sky Redshift Survey 2 by Benoist et al. However, we find a weaker dependence of clustering strength on luminosity at the highest luminosities. The correlation function amplitude increases by a factor of 4.0 between MbJ-5log10h=-18 and -22.5, and the most luminous galaxies are 3.0 times more strongly clustered than L* galaxies. The power-law slope of the correlation function shows remarkably little variation for samples spanning a factor of 20 in luminosity. Our measurements are in very good agreement with the predictions of the hierarchical galaxy formation models of Benson et al.

  2. Apples to apples A2 - II. Cluster selection functions for next-generation surveys

    NASA Astrophysics Data System (ADS)

    Ascaso, B.; Mei, S.; Bartlett, J. G.; Benítez, N.

    2017-01-01

    We present the cluster selection function for three of the largest next-generation stage-IV surveys in the optical and infrared: Euclid-Optimistic, Euclid-Pessimistic and the Large Synoptic Survey Telescope (LSST). To simulate these surveys, we use the realistic mock catalogues introduced in the first paper of this series. We detected galaxy clusters using the Bayesian Cluster Finder in the mock catalogues. We then modelled and calibrated the total cluster stellar mass observable-theoretical mass (M^{*}_CL-M_h) relation using a power-law model, including a possible redshift evolution term. We find a moderate scatter of σ _{M^{*}_CL | M_h} of 0.124, 0.135 and 0.136 dex for Euclid-Optimistic, Euclid-Pessimistic and LSST, respectively, comparable to other work over more limited ranges of redshift. Moreover, the three data sets are consistent with negligible evolution with redshift, in agreement with observational and simulation results in the literature. We find that Euclid-Optimistic will be able to detect clusters with >80 per cent completeness and purity down to 8 × 1013 h-1 M⊙ up to z < 1. At higher redshifts, the same completeness and purity are obtained with the larger mass threshold of 2 × 1014 h-1 M⊙ up to z = 2. The Euclid-Pessimistic selection function has a similar shape with ˜10 per cent higher mass limit. LSST shows ˜5 per cent higher mass limit than Euclid-Optimistic up to z < 0.7 and increases afterwards, reaching a value of 2 × 1014 h-1 M⊙ at z = 1.4. Similar selection functions with only 80 per cent completeness threshold have also been computed. The complementarity of these results with selection functions for surveys in other bands is discussed.

  3. Spectroscopic Confirmation of a Massive Red-sequence Selected Galaxy Cluster at Z=1.34 in the SpARCS-South Cluster Survey

    NASA Technical Reports Server (NTRS)

    Wilson, Gillian; Demarco, Ricardo; Muzzin, Adam; Yee, H.K.C.; Lacy, Mark; Surace, Jason; Gilbank, David; Blindert, Kris; Hoekstra, Henk; Majumdar, Subhabrata; Gardner, Jonathan P; Gladders, Michael D.; Lonsdale, Carol

    2008-01-01

    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a z'-passband imaging survey, consisting of deep (z' approx. 24 AB) observations made from both hemispheres using the CFHT 3.6m and CTIO 4m telescopes. The survey was designed with the primary aim of detecting galaxy clusters at z > 1. In tandem with pre-existing 3.6 micron observations from the Spitzer Space Telescope SWIRE Legacy Survey, SpARCS detects clusters using an infrared adaptation of the two-filter red-sequence cluster technique. The total effective area of the SpARCS cluster survey is 41.9 sq deg. In this paper, we provide an overview of the 13.6 sq deg Southern CTIO/MOSAICII observations. The 28.3 sq deg Northern CFHT/MegaCam observations are summarized in a companion paper by Muzzin et al. (2008a). In this paper, we also report spectroscopic confirmation of SpARCS J003550-431224, a very rich galaxy cluster at z = 1.335, discovered in the ELAIS-S1 field. To date, this is the highest spectroscopically confirmed redshift for a galaxy cluster discovered using the red-sequence technique. Based on nine confirmed members, SpARCS J003550-431224 has a preliminary velocity dispersion of 1050+/-230 km/s. With its proven capability for efficient cluster detection, SpARCS is a demonstration that we have entered an era of large, homogeneously-selected z > 1 cluster surveys.

  4. GEMINI SPECTROSCOPIC SURVEY OF YOUNG STAR CLUSTERS IN MERGING/INTERACTING GALAXIES. IV. STEPHAN's QUINTET

    SciTech Connect

    Trancho, Gelys; Konstantopoulos, Iraklis S.; Mullan, Brendan; Charlton, Jane C.; Bastian, Nate; Fedotov, Konstantin; Gallagher, Sarah

    2012-04-01

    We present a spectroscopic survey of 21 young massive clusters and complexes and one tidal dwarf galaxy (TDG) candidate in Stephan's Quintet, an interacting compact group of galaxies. All of the selected targets lie outside the main galaxies of the system and are associated with tidal debris. We find clusters with ages between a few and 125 Myr and confirm the ages estimated through Hubble Space Telescope photometry by Fedotov et al., as well as their modeled interaction history of the Quintet. Many of the clusters are found to be relatively long-lived, given their spectrosopically derived ages, while their high masses suggest that they will likely evolve to eventually become intergalactic clusters. One cluster, T118, is particularly interesting, given its age ({approx}125 Myr), high mass ({approx}2 Multiplication-Sign 10{sup 6} M{sub Sun }), and position in the extreme outer end of the young tidal tail. This cluster appears to be quite extended (R{sub eff} {approx} 12-15 pc) compared to clusters observed in galaxy disks (R{sub eff} {approx} 3-4 pc), which confirms an effect we previously found in the tidal tails of NGC 3256, where clusters are similarly extended. We find that star and cluster formation can proceed at a continuous pace for at least {approx}150 Myr within the tidal debris of interacting galaxies. The spectrum of the TDG candidate is dominated by a young population ({approx}7 Myr), and, assuming a single age for the entire region, has a mass of at least 10{sup 6} M{sub Sun }.

  5. Cosmological constraints from galaxy clusters in the 2500 square-degree SPT-SZ survey

    DOE PAGES

    Haan, T. de; Benson, B. A.; Bleem, L. E.; ...

    2016-11-18

    Here, we present cosmological parameter constraints obtained from galaxy clusters identified by their Sunyaev–Zel’dovich effect signature in the 2500 square-degree South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We consider the 377 cluster candidates identified atmore » $$z\\gt 0.25$$ with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a spatially flat ΛCDM cosmology, we combine the cluster data with a prior on H (0) and find $${\\sigma }_{8}=0.784\\pm 0.039$$ and $${{\\rm{\\Omega }}}_{m}=0.289\\pm 0.042$$, with the parameter combination $${\\sigma }_{8}{({{\\rm{\\Omega }}}_{m}/0.27)}^{0.3}=0.797\\pm 0.031$$. These results are in good agreement with constraints from the cosmic microwave background (CMB) from SPT, WMAP, and Planck, as well as with constraints from other cluster data sets. We also consider several extensions to ΛCDM, including models in which the equation of state of dark energy w, the species-summed neutrino mass, and/or the effective number of relativistic species ($${N}_{\\mathrm{eff}}$$) are free parameters. When combined with constraints from the Planck CMB, H (0), baryon acoustic oscillation, and SNe, adding the SPT cluster data improves the w constraint by 14%, to $$w=-1.023\\pm 0.042$$.« less

  6. Cosmological constraints from galaxy clusters in the 2500 square-degree SPT-SZ survey

    SciTech Connect

    Haan, T. de; Benson, B. A.; Bleem, L. E.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Linden, A. von der; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.

    2016-11-18

    Here, we present cosmological parameter constraints obtained from galaxy clusters identified by their Sunyaev–Zel’dovich effect signature in the 2500 square-degree South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We consider the 377 cluster candidates identified at $z\\gt 0.25$ with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a spatially flat ΛCDM cosmology, we combine the cluster data with a prior on H (0) and find ${\\sigma }_{8}=0.784\\pm 0.039$ and ${{\\rm{\\Omega }}}_{m}=0.289\\pm 0.042$, with the parameter combination ${\\sigma }_{8}{({{\\rm{\\Omega }}}_{m}/0.27)}^{0.3}=0.797\\pm 0.031$. These results are in good agreement with constraints from the cosmic microwave background (CMB) from SPT, WMAP, and Planck, as well as with constraints from other cluster data sets. We also consider several extensions to ΛCDM, including models in which the equation of state of dark energy w, the species-summed neutrino mass, and/or the effective number of relativistic species (${N}_{\\mathrm{eff}}$) are free parameters. When combined with constraints from the Planck CMB, H (0), baryon acoustic oscillation, and SNe, adding the SPT cluster data improves the w constraint by 14%, to $w=-1.023\\pm 0.042$.

  7. Cosmological Constraints from Galaxy Clusters in the 2500 Square-degree SPT-SZ Survey

    NASA Astrophysics Data System (ADS)

    de Haan, T.; Benson, B. A.; Bleem, L. E.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.

    2016-11-01

    We present cosmological parameter constraints obtained from galaxy clusters identified by their Sunyaev-Zel’dovich effect signature in the 2500 square-degree South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We consider the 377 cluster candidates identified at z\\gt 0.25 with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a spatially flat ΛCDM cosmology, we combine the cluster data with a prior on H 0 and find {σ }8=0.784+/- 0.039 and {{{Ω }}}m=0.289+/- 0.042, with the parameter combination {σ }8{({{{Ω }}}m/0.27)}0.3=0.797+/- 0.031. These results are in good agreement with constraints from the cosmic microwave background (CMB) from SPT, WMAP, and Planck, as well as with constraints from other cluster data sets. We also consider several extensions to ΛCDM, including models in which the equation of state of dark energy w, the species-summed neutrino mass, and/or the effective number of relativistic species ({N}{eff}) are free parameters. When combined with constraints from the Planck CMB, H 0, baryon acoustic oscillation, and SNe, adding the SPT cluster data improves the w constraint by 14%, to w=-1.023+/- 0.042.

  8. Sunyaev-Zel'dovich cluster reconstruction in multiband bolometer camera surveys

    NASA Astrophysics Data System (ADS)

    Pires, S.; Juin, J. B.; Yvon, D.; Moudden, Y.; Anthoine, S.; Pierpaoli, E.

    2006-08-01

    We present a new method for the reconstruction of Sunyaev-Zel'dovich (SZ) galaxy clusters in future SZ-survey experiments using multiband bolometer cameras such as Olimpo, APEX, or Planck. Our goal is to optimise SZ-Cluster extraction from our observed noisy maps. None of the algorithms used in the detection chain is tuned using prior knowledge of the SZ-Cluster signal, or other astrophysical sources (Optical Spectrum, Noise Covariance Matrix, or covariance of SZ Cluster wavelet coefficients). First, a blind separation of the different astrophysical components that contribute to the observations is conducted using an Independent Component Analysis (ICA) method. This is a new application of ICA to multichannel astrophysical data analysis. Then, a recent non linear filtering technique in the wavelet domain, based on multiscale entropy and the False Discovery Rate (FDR) method, is used to detect and reconstruct the galaxy clusters. We use the Source Extractor software to identify the detected clusters. The proposed method was applied on realistic simulations of observations that we produced as mixtures of synthetic maps of the four brightest light sources in the range 143 GHz to 600 GHz namely the Sunyaev-Zel'dovich effect, the Cosmic Microwave Background (CMB) anisotropies, the extragalactic InfraRed point sources and the Galactic Dust Emission. We also implemented a simple model of optics and noise to account for instrumental effects. Assuming nominal performance for the near future SZ-survey Olimpo, our detection chain recovers 25% of the cluster of mass larger than 1014 M⊙, with 90% purity. Our results are compared with those obtained with published algorithms. This new method has a high global detection efficiency in the high-purity/low completeness region, being however a blind algorithm (i.e. without using any prior assumptions on the data to be extracted).

  9. Optical-SZE Scaling Relations for DES Optically Selected Clusters within the SPT-SZ Survey

    SciTech Connect

    Saro, A.; et al.

    2016-05-27

    We study the Sunyaev-Zel'dovich effect (SZE) signature in South Pole Telescope (SPT) data for an ensemble of 719 optically identified galaxy clusters selected from 124.6 deg$^2$ of the Dark Energy Survey (DES) science verification data, detecting a stacked SZE signal down to richness $\\lambda\\sim20$. The SZE signature is measured using matched-filtered maps of the 2500 deg$^2$ SPT-SZ survey at the positions of the DES clusters, and the degeneracy between SZE observable and matched-filter size is broken by adopting as priors SZE and optical mass-observable relations that are either calibrated using SPT selected clusters or through the Arnaud et al. (2010, A10) X-ray analysis. We measure the SPT signal to noise $\\zeta$-$\\lambda$, relation and two integrated Compton-$y$ $Y_\\textrm{500}$-$\\lambda$ relations for the DES-selected clusters and compare these to model expectations accounting for the SZE-optical center offset distribution. For clusters with $\\lambda > 80$, the two SPT calibrated scaling relations are consistent with the measurements, while for the A10-calibrated relation the measured SZE signal is smaller by a factor of $0.61 \\pm 0.12$ compared to the prediction. For clusters at $20 < \\lambda < 80$, the measured SZE signal is smaller by a factor of $\\sim$0.20-0.80 (between 2.3 and 10~$\\sigma$ significance) compared to the prediction, with the SPT calibrated scaling relations and larger $\\lambda$ clusters showing generally better agreement. We quantify the required corrections to achieve consistency, showing that there is a richness dependent bias that can be explained by some combination of contamination of the observables and biases in the estimated masses. We discuss possible physical effects, as contamination from line-of-sight projections or from point sources, larger offsets in the SZE-optical centering or larger scatter in the $\\lambda$-mass relation at lower richnesses.

  10. Rapid molecular diagnosis of the Mycobacterium tuberculosis Rangipo strain responsible for the largest recurring TB cluster in New Zealand.

    PubMed

    Mulholland, Claire V; Ruthe, Ali; Cursons, Ray T; Durrant, Robert; Karalus, Noel; Coley, Kathryn; Bower, James; Permina, Elizabeth; Coleman, Megan J; Roberts, Sally A; Arcus, Vickery L; Cook, Gregory M; Aung, Htin Lin

    2017-03-23

    Despite New Zealand being a low-tuberculosis (TB) burden country, there are disproportionately high rates of TB in particular populations. Here, we report a rapid molecular diagnosis of the Mycobacterium tuberculosis Rangipo strain responsible for the largest recurring TB cluster in New Zealand.

  11. OPEN CLUSTERS IN THE MILKY WAY OUTER DISK: NEWLY DISCOVERED AND UNSTUDIED CLUSTERS IN THE SPITZER GLIMPSE-360, CYG-X, AND SMOG SURVEYS

    SciTech Connect

    Zasowski, G.; Beaton, R. L.; Hamm, K. K.; Majewski, S. R.; Patterson, R. J.; Babler, B.; Churchwell, E.; Meade, M.; Whitney, B. A.; Benjamin, R. A.; Watson, C.

    2013-09-15

    Open stellar clusters are extremely valuable probes of Galactic structure, star formation, kinematics, and chemical abundance patterns. Near-infrared (NIR) data have enabled the detection of hundreds of clusters hidden from optical surveys, and mid-infrared (MIR) data are poised to offer an even clearer view into the most heavily obscured parts of the Milky Way. We use new MIR images from the Spitzer GLIMPSE-360, Cyg-X, and SMOG surveys to visually identify a large number of open cluster candidates in the outer disk of the Milky Way (65 Degree-Sign < l < 265 Degree-Sign ). Using NIR color-magnitude diagrams, stellar isochrones, and stellar reddening estimates, we derive cluster parameters (metallicity, distance, reddening) for those objects without previous identification and/or parameters in the literature. In total, we present coordinates and sizes of 20 previously unknown open cluster candidates; for 7 of these we also present metallicity, distance, and reddening values. In addition, we provide the first estimates of these values for nine clusters that had been previously cataloged. We compare our cluster sizes and other derived parameters to those in the open cluster catalog of Dias et al. and find strong similarities except for a higher mean reddening for our objects, which signifies our increased detection sensitivity in regions of high extinction. The results of this cluster search and analysis demonstrate the ability of MIR imaging and photometry to augment significantly the current census of open clusters in the Galaxy.

  12. New brown dwarfs in Upper Sco using UKIDSS Galactic Cluster Survey science verification data

    NASA Astrophysics Data System (ADS)

    Lodieu, N.; Hambly, N. C.; Jameson, R. F.; Hodgkin, S. T.; Carraro, G.; Kendall, T. R.

    2007-01-01

    We present first results from a deep (J = 18.7), wide-field (6.5deg2) infrared (ZY JHK) survey in the Upper Sco association conducted within the science verification phase of the United Kingdom Infrared Telescope Infrared Deep Sky Survey Galactic Cluster Survey (GCS). Cluster members define a sequence well separated from field stars in the (Z - J, Z) colour-magnitude diagram. We have selected a total of 164 candidates with J = 10.5-18.7 mag from the (Z - J, Z) and (Y - J, Y) diagrams. We further investigated the location of those candidates in the other colour-magnitude and colour-colour diagrams to weed out contaminants. The cross-correlation of the GCS catalogue with the Two-Micron All-Sky Survey data base confirms the membership of 116 photometric candidates down to 20 Jupiter masses as they lie within a 2σ circle centred on the association mean motion. The final list of cluster members contains 129 sources with masses between 0.3 and 0.007 Msolar. We extracted a dozen new low-mass brown dwarfs below 20 MJup, the limit of previous surveys in the region. Finally, we have derived the mass function in Upper Sco over the 0.3-0.01 Msolar mass range, best fit by a single segment with a slope of index α = 0.6 +/- 0.1, in agreement with previous determination in open clusters. Based on observations made with the United Kingdom Infrared Telescope, operated by the Joint Astronomy Centre on behalf of the UK Particle Physics and Astronomy Research Council. E-mail: nl41@star.le.ac.uk

  13. Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification.

    PubMed

    Zhang, Lisha; Huang, Ru; Liu, Weipeng; Liu, Hongxing; Zhou, Xiaoming; Xing, Da

    2016-12-15

    Foodborne pathogens pose a significant threat to human health worldwide. The identification of foodborne pathogens needs to be rapid, accurate and convenient. Here, we constructed a nanoparticle cluster (NPC) catalyzed signal amplification biosensor for foodborne pathogens visual detection. In this work, vancomycin (Van), a glycopeptide antibiotic for Gram-positive bacteria, was used as the first molecular recognition agent to capture Listeria monocytogenes (L. monocytogenes). Fe3O4 NPC modified aptamer, was used as the signal amplification nanoprobe, specifically recognize to the cell wall of L. monocytogenes. As vancomycin and aptamer recognize L. monocytogenes at different sites, the sandwich recognition showed satisfied specificity. Compared to individual Fe3O4 nanoparticle (NP), NPC exhibit collective effect-enhanced catalytic activity for the color reaction of chromogenic substrate. The change in absorbance or color could represent the concentration of target. Using the Fe3O4 NPC-based signal amplification method, L. monocytogenes whole cells could be directly assayed within a linear range of 5.4×10(3)-10(8) cfu/mL and a visual limit of detection of 5.4×10(3) cfu/mL. Fe3O4 NPC-based method was more sensitive than the Fe3O4 NP-based method. All these attractive characteristics of highly sensitivity, visual and labor-saving, make the biosensor possess a potential application for foodborne pathogenic bacteria detection.

  14. Investigation of open clusters based on IPHAS and APASS survey data

    NASA Astrophysics Data System (ADS)

    Dambis, A. K.; Glushkova, E. V.; Berdnikov, L. N.; Joshi, Y. C.; Pandey, A. K.

    2017-02-01

    We adapt the classical Q-method based on a reddening-free parameter constructed from three passband magnitudes to the filter set of Isaac Newton Telescope Photometric Hα Survey and combine it with the maximum-likelihood-based cluster parameter estimator by Naylor & Jeffries (2006) to determine the extinction, heliocentric distances, and ages of young open clusters using Hαri data. The method is also adapted for the case of significant variations of extinction across the cluster field. Our technique is validated by comparing the colour excesses, distances, and ages determined in this study with the most bona fide values reported for the 18 well-studied young open clusters in the past and a fairly good agreement is found between our extinction and distance estimates and earlier published results, although our age estimates are not very consistent with those published by other authors. We also show that individual extinction values can be determined rather accurately for stars with (r - i) > 0.1. Our results open up a prospect for determining a uniform set of parameters for northern clusters based on homogeneous photometric data, and for searching for new, hitherto undiscovered open clusters.

  15. Characterizing the properties of cluster precursors in the MALT90 survey

    NASA Astrophysics Data System (ADS)

    Contreras, Yanett; Rathborne, Jill M.; Guzman, Andres; Jackson, James; Whitaker, Scott; Sanhueza, Patricio; Foster, Jonathan

    2017-04-01

    In the Milky Way there are thousands of stellar clusters each harbouring from a hundred to a million stars. Although clusters are common, the initial conditions of cluster formation are still not well understood. To determine the processes involved in the formation and evolution of clusters it is key to determine the global properties of cluster-forming clumps in their earliest stages of evolution. Here, we present the physical properties of 1244 clumps identified from the MALT90 survey. Using the dust temperature of the clumps as a proxy for evolution we determined how the clump properties change at different evolutionary stages. We find that less-evolved clumps exhibiting dust temperatures lower than 20 K have higher densities and are more gravitationally bound than more-evolved clumps with higher dust temperatures. We also identified a sample of clumps in a very early stage of evolution, thus potential candidates for high-mass star-forming clumps. Only one clump in our sample has physical properties consistent with a young massive cluster progenitor, reinforcing the fact that massive protoclusters are very rare in the Galaxy.

  16. Surveying Galaxy Proto-clusters in Emission: A Large-scale Structure at z = 2.44 and the Outlook for HETDEX

    NASA Astrophysics Data System (ADS)

    Chiang, Yi-Kuan; Overzier, Roderik A.; Gebhardt, Karl; Finkelstein, Steven L.; Chiang, Chi-Ting; Hill, Gary J.; Blanc, Guillermo A.; Drory, Niv; Chonis, Taylor S.; Zeimann, Gregory R.; Hagen, Alex; Schneider, Donald P.; Jogee, Shardha; Ciardullo, Robin; Gronwall, Caryl

    2015-07-01

    Galaxy proto-clusters at z≳ 2 provide a direct probe of the rapid mass assembly and galaxy growth of present-day massive clusters. Because of the need for precise galaxy redshifts for density mapping and the prevalence of star formation before quenching, nearly all the proto-clusters known to date were confirmed by spectroscopy of galaxies with strong emission lines. Therefore, large emission-line galaxy surveys provide an efficient way to identify proto-clusters directly. Here we report the discovery of a large-scale structure at z = 2.44 in the Hobby Eberly Telescope Dark Energy Experiment (HETDEX) Pilot Survey. On a scale of a few tens of Mpc comoving, this structure shows a complex overdensity of Lyα emitters (LAE), which coincides with broadband selected galaxies in the COSMOS/UltraVISTA photometric and zCOSMOS spectroscopic catalogs, as well as overdensities of intergalactic gas revealed in the Lyα absorption maps of Lee et al. We construct mock LAE catalogs to predict the cosmic evolution of this structure. We find that such an overdensity should have already broken away from the Hubble flow, and part of the structure will collapse to form a galaxy cluster with {10}14.5+/- 0.4 {M}⊙ by z = 0. The structure contains a higher median stellar mass of broadband selected galaxies, a boost of extended Lyα nebulae, and a marginal excess of active galactic nuclei relative to the field, supporting a scenario of accelerated galaxy evolution in cluster progenitors. Based on the correlation between galaxy overdensity and the z = 0 descendant halo mass calibrated in the simulation, we predict that several hundred 1.9\\lt z\\lt 3.5 proto-clusters with z = 0 mass of \\gt {10}14.5 {M}⊙ will be discovered in the 8.5 Gpc3 of space surveyed by the HETDEX.

  17. Cosmology with the largest galaxy cluster surveys: going beyond Fisher matrix forecasts

    SciTech Connect

    Khedekar, Satej; Majumdar, Subhabrata E-mail: subha@tifr.res.in

    2013-02-01

    We make the first detailed MCMC likelihood study of cosmological constraints that are expected from some of the largest, ongoing and proposed, cluster surveys in different wave-bands and compare the estimates to the prevalent Fisher matrix forecasts. Mock catalogs of cluster counts expected from the surveys — eROSITA, WFXT, RCS2, DES and Planck, along with a mock dataset of follow-up mass calibrations are analyzed for this purpose. A fair agreement between MCMC and Fisher results is found only in the case of minimal models. However, for many cases, the marginalized constraints obtained from Fisher and MCMC methods can differ by factors of 30-100%. The discrepancy can be alarmingly large for a time dependent dark energy equation of state, w(a); the Fisher methods are seen to under-estimate the constraints by as much as a factor of 4-5. Typically, Fisher estimates become more and more inappropriate as we move away from ΛCDM, to a constant-w dark energy to varying-w dark energy cosmologies. Fisher analysis, also, predicts incorrect parameter degeneracies. There are noticeable offsets in the likelihood contours obtained from Fisher methods that is caused due to an asymmetry in the posterior likelihood distribution as seen through a MCMC analysis. From the point of mass-calibration uncertainties, a high value of unknown scatter about the mean mass-observable relation, and its redshift dependence, is seen to have large degeneracies with the cosmological parameters σ{sub 8} and w(a) and can degrade the cosmological constraints considerably. We find that the addition of mass-calibrated cluster datasets can improve dark energy and σ{sub 8} constraints by factors of 2-3 from what can be obtained from CMB+SNe+BAO only . Finally, we show that a joint analysis of datasets of two (or more) different cluster surveys would significantly tighten cosmological constraints from using clusters only. Since, details of future cluster surveys are still being planned, we emphasize

  18. X-ray selected galaxy clusters in the Pan-STARRS Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Edge, A. C.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Price, P. A.; Tonry, J. L.

    2013-06-01

    We present the results of a pilot study for the extended Massive Cluster Survey (eMACS), a comprehensive search for distant, X-ray luminous galaxy clusters at z > 0.5. Our pilot study applies the eMACS concept to the 71 deg2 area extended by the 10 fields of the Pan-STARRS1 (PS1) Medium Deep Survey (MDS). Candidate clusters are identified by visual inspection of PS1 images in the g, r, i and z bands in a 5 × 5 arcmin2 region around X-ray sources detected in the ROSAT All-Sky Survey (RASS). To test and optimize the eMACS X-ray selection criteria, our pilot study uses the largest possible RASS data base, i.e. all RASS sources listed in the Bright and Faint Source Catalogues (BSC and FSC) that fall within the MDS footprint. We apply no additional constraints regarding X-ray flux, spectral hardness ratio or photon statistics and lower the redshift threshold to z > 0.3 to extend the probed luminosity range to poorer systems. Scrutiny of PS1/MDS images for 41 BSC and 200 FSC sources combined with dedicated spectroscopic follow-up observations results in a sample of 11 clusters with estimated or spectroscopic redshifts of z > 0.3. In order to assess and quantify the degree of point source contamination of the observed RASS fluxes, we examine archival Chandra data obtained in targeted and serendipitous observations of six of the 11 clusters found. As expected, the diffuse emission from all six systems is contaminated by point sources to some degree, and for half of them active galactic nucleus emission dominates. X-ray follow-up observations will thus be crucial in order to establish robust cluster luminosities for eMACS clusters. Although the small number of distant X-ray luminous clusters in the MDS does not allow us to make firm predictions for the over 20 000 deg2 of extragalactic sky covered by eMACS, the identification of two extremely promising eMACS cluster candidates at z ≳ 0.6 (both yet to be observed with Chandra) in such a small solid angle is encouraging

  19. Star Formation in the Dense Environment of Young Clusters: A FORCAST Imaging Survey

    NASA Astrophysics Data System (ADS)

    Mundy, Lee

    2013-10-01

    [****This is a re-submission from a successful cycle 1 proposal, for which the observations have not yet taken place. We are following the advice from the SOFIA team and re-submitting this proposal, hoping we can still obtain the time on our sources and achieve our scientific goal.****] We propose a multi-wavelength FORCAST survey of 6-8 dense star-forming regions within 1kpc. This survey will image multiple fields in each target cluster with the 11, 19, 31 and 37 micron bands, including an estimated 100 young stellar objects (YSO) with bright mid-IR emission. The results will fill in YSO information for the cluster centers where previous studies based on Spitzer, WISE, and IRAS were saturated and/or suffered from source confusion. In addition, these observations will help fill the 10-40 micron gap in the spectral energy distributions of YSOs in these fields, and will help characterize the spatial extent of the 31 micron and 37micron emission. FORCAST's high spatial resolution will be an improvement by a factor of two over the Spitzer 24 micron images. The proposed survey will provide better statistics on bright young cluster stars which will help test current theories of clustered star formation: Turbulent Core Collapse and Competitive Accretion. Specifically, the data will improve our knowledge of the protostellar luminosity and temperature distributions in the dense regions of forming clusters, which constrain these models (Offner and Mckee 2011; Myers 2011). In addition, the extent of the 31 and 37 micron emission (unresolved compared to 5-10") will provide direct information on Competitive Accretion.

  20. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Galactic Gradients using SDSS-IV/DR13 and Gaia

    NASA Astrophysics Data System (ADS)

    Frinchaboy, Peter M.; Donor, John; O'Connell, Julia; Cunha, Katia M. L.; Thompson, Benjamin A.; Melendez, Matthew; Shetrone, Matthew D.; Majewski, Steven R.; Zasowski, Gail; Allende-Prieto, Carlos; Carrera, Ricardo; García Pérez, Ana; Hayden, Michael R.; Hearty, Fred R.; Holtzman, Jon A.; Johnson, Jennifer; Meszaros, Szabolcs; Nidever, David L.; Pinsonneault, Marc H.; Roman-Lopes, Alexandre; Schiavon, Ricardo P.; Schultheis, Mathias; Smith, Verne V.; Sobeck, Jennifer; Stassun, Keivan G.; APOGEE Team

    2017-01-01

    The Open Cluster Chemical Analysis and Mapping (OCCAM) survey aims to produce a comprehensive, uniform, infrared-based data set forhundreds of open clusters, and constrain key Galactic dynamical and chemical parameters using the SDSS/APOGEE survey. We report on multi-element radial abundance gradients obtained from a sample of over 30 disk open clusters. The chemical abundances were derived automatically by the ASPCAP pipeline and these are part of the SDSS IV Data Release 13. The open cluster sample studied spans a significant range in age allowing exploration of the evolution of the Galactic abundance gradient.This work is supported by an NSF AAG grant AST-1311835.

  1. Rapid Survey of Wasting and Stunting in Children: Whats New, Whats Old and Whats the Buzz?

    PubMed

    Dasgupta, Rajib; Sinha, Dipa; Yumnam, Veda

    2016-01-01

    Nationwide Rapid Survey on Children (RSoC), conducted by the Ministry of Women and Child Development and UNICEF in 2013-14 showed a marked improvement in the status of the child malnutrition over the third National Family Health Survey (NFHS-3) that was conducted in 2005-06. Despite some impressive gains in the anthropometric indicators of malnutrition, the absolute levels remain high, and of concern. Despite these gains, the feeding indicators remain stagnant. The programmatic responses need to adopt a multi-sectoral comprehensive approach with regular and comprehensive nutrition surveillance and recognize the epidemiological diversity.

  2. THE ACS VIRGO CLUSTER SURVEY. XVII. THE SPATIAL ALIGNMENT OF GLOBULAR CLUSTER SYSTEMS WITH EARLY-TYPE HOST GALAXIES

    SciTech Connect

    Wang Qiushi; Peng, Eric W.; Blakeslee, John P.; Cote, Patrick; Ferrarese, Laura; Jordan, Andres; Mei, Simona; West, Michael J.

    2013-06-01

    We study the azimuthal distribution of globular clusters (GCs) in early-type galaxies and compare them to their host galaxies using data from the ACS Virgo Cluster Survey. We find that in host galaxies with visible elongation ({epsilon} > 0.2) and intermediate to high luminosities (M{sub z} < -19), the GCs are preferentially aligned along the major axis of the stellar light. The red (metal-rich) GC subpopulations show strong alignment with the major axis of the host galaxy, which supports the notion that these GCs are associated with metal-rich field stars. The metal-rich GCs in lenticular galaxies show signs of being more strongly associated with disks rather than bulges. Surprisingly, we also find that the blue (metal-poor) GCs can also show the same correlation. If the metal-poor GCs are part of the early formation of the halo and built up through mergers, then our results support a picture where halo formation and merging occur anisotropically, and that the present-day major axis is an indicator of the preferred merging axis.

  3. The SCUBA-2 Cosmology Legacy Survey: the clustering of submillimetre galaxies in the UKIDSS UDS field

    NASA Astrophysics Data System (ADS)

    Wilkinson, Aaron; Almaini, Omar; Chen, Chian-Chou; Smail, Ian; Arumugam, Vinodiran; Blain, Andrew; Chapin, Edward L.; Chapman, Scott C.; Conselice, Christopher J.; Cowley, William I.; Dunlop, James S.; Farrah, Duncan; Geach, James; Hartley, William G.; Ivison, Rob J.; Maltby, David T.; Michałowski, Michał J.; Mortlock, Alice; Scott, Douglas; Simpson, Chris; Simpson, James M.; van der Werf, Paul; Wild, Vivienne

    2017-01-01

    Submillimetre galaxies (SMGs) are among the most luminous dusty galaxies in the Universe, but their true nature remains unclear; are SMGs the progenitors of the massive elliptical galaxies we see in the local Universe, or are they just a short-lived phase among more typical star-forming galaxies? To explore this problem further, we investigate the clustering of SMGs identified in the SCUBA-2 Cosmology Legacy Survey. We use a catalogue of submillimetre (850 μm) source identifications derived using a combination of radio counterparts and colour/infrared selection to analyse a sample of 610 SMG counterparts in the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Survey (UKIDSS) Ultra Deep Survey (UDS), making this the largest high-redshift sample of these galaxies to date. Using angular cross-correlation techniques, we estimate the halo masses for this large sample of SMGs and compare them with passive and star-forming galaxies selected in the same field. We find that SMGs, on average, occupy high-mass dark matter haloes (Mhalo > 1013 M⊙) at redshifts z > 2.5, consistent with being the progenitors of massive quiescent galaxies in present-day galaxy clusters. We also find evidence of downsizing, in which SMG activity shifts to lower mass haloes at lower redshifts. In terms of their clustering and halo masses, SMGs appear to be consistent with other star-forming galaxies at a given redshift.

  4. Crowded Cluster Cores. Algorithms for Deblending in Dark Energy Survey Images

    SciTech Connect

    Zhang, Yuanyuan; McKay, Timothy A.; Bertin, Emmanuel; Jeltema, Tesla; Miller, Christopher J.; Rykoff, Eli; Song, Jeeseon

    2015-10-26

    Deep optical images are often crowded with overlapping objects. We found that this is especially true in the cores of galaxy clusters, where images of dozens of galaxies may lie atop one another. Accurate measurements of cluster properties require deblending algorithms designed to automatically extract a list of individual objects and decide what fraction of the light in each pixel comes from each object. In this article, we introduce a new software tool called the Gradient And Interpolation based (GAIN) deblender. GAIN is used as a secondary deblender to improve the separation of overlapping objects in galaxy cluster cores in Dark Energy Survey images. It uses image intensity gradients and an interpolation technique originally developed to correct flawed digital images. Our paper is dedicated to describing the algorithm of the GAIN deblender and its applications, but we additionally include modest tests of the software based on real Dark Energy Survey co-add images. GAIN helps to extract an unbiased photometry measurement for blended sources and improve detection completeness, while introducing few spurious detections. When applied to processed Dark Energy Survey data, GAIN serves as a useful quick fix when a high level of deblending is desired.

  5. Crowded Cluster Cores. Algorithms for Deblending in Dark Energy Survey Images

    DOE PAGES

    Zhang, Yuanyuan; McKay, Timothy A.; Bertin, Emmanuel; ...

    2015-10-26

    Deep optical images are often crowded with overlapping objects. We found that this is especially true in the cores of galaxy clusters, where images of dozens of galaxies may lie atop one another. Accurate measurements of cluster properties require deblending algorithms designed to automatically extract a list of individual objects and decide what fraction of the light in each pixel comes from each object. In this article, we introduce a new software tool called the Gradient And Interpolation based (GAIN) deblender. GAIN is used as a secondary deblender to improve the separation of overlapping objects in galaxy cluster cores inmore » Dark Energy Survey images. It uses image intensity gradients and an interpolation technique originally developed to correct flawed digital images. Our paper is dedicated to describing the algorithm of the GAIN deblender and its applications, but we additionally include modest tests of the software based on real Dark Energy Survey co-add images. GAIN helps to extract an unbiased photometry measurement for blended sources and improve detection completeness, while introducing few spurious detections. When applied to processed Dark Energy Survey data, GAIN serves as a useful quick fix when a high level of deblending is desired.« less

  6. WEAK LENSING MEASUREMENT OF GALAXY CLUSTERS IN THE CFHTLS-WIDE SURVEY

    SciTech Connect

    Shan Huanyuan; Tao Charling; Kneib, Jean-Paul; Jauzac, Mathilde; Limousin, Marceau; Fan Zuhui; Massey, Richard; Rhodes, Jason; Thanjavur, Karun; McCracken, Henry J.

    2012-03-20

    We present the first weak gravitational lensing analysis of the completed Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We study the 64 deg{sup 2} W1 field, the largest of the CFHTLS-Wide survey fields, and present the largest contiguous weak lensing convergence 'mass map' yet made. 2.66 million galaxy shapes are measured, using the Kaiser Squires and Broadhurst Method (KSB) pipeline verified against high-resolution Hubble Space Telescope imaging that covers part of the CFHTLS. Our i'-band measurements are also consistent with an analysis of independent r'-band imaging. The reconstructed lensing convergence map contains 301 peaks with signal-to-noise ratio {nu} > 3.5, consistent with predictions of a {Lambda}CDM model. Of these peaks, 126 lie within 3.'0 of a brightest central galaxy identified from multicolor optical imaging in an independent, red sequence survey. We also identify seven counterparts for massive clusters previously seen in X-ray emission within 6 deg{sup 2} XMM-LSS survey. With photometric redshift estimates for the source galaxies, we use a tomographic lensing method to fit the redshift and mass of each convergence peak. Matching these to the optical observations, we confirm 85 groups/clusters with {chi}{sup 2}{sub reduced} < 3.0, at a mean redshift (z{sub c} ) = 0.36 and velocity dispersion ({sigma}{sub c}) = 658.8 km s{sup -1}. Future surveys, such as DES, LSST, KDUST, and EUCLID, will be able to apply these techniques to map clusters in much larger volumes and thus tightly constrain cosmological models.

  7. Weak Lensing Measurement of Galaxy Clusters in the CFHTLS-Wide Survey

    NASA Astrophysics Data System (ADS)

    Shan, HuanYuan; Kneib, Jean-Paul; Tao, Charling; Fan, Zuhui; Jauzac, Mathilde; Limousin, Marceau; Massey, Richard; Rhodes, Jason; Thanjavur, Karun; McCracken, Henry J.

    2012-03-01

    We present the first weak gravitational lensing analysis of the completed Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We study the 64 deg2 W1 field, the largest of the CFHTLS-Wide survey fields, and present the largest contiguous weak lensing convergence "mass map" yet made. 2.66 million galaxy shapes are measured, using the Kaiser Squires and Broadhurst Method (KSB) pipeline verified against high-resolution Hubble Space Telescope imaging that covers part of the CFHTLS. Our i'-band measurements are also consistent with an analysis of independent r'-band imaging. The reconstructed lensing convergence map contains 301 peaks with signal-to-noise ratio ν > 3.5, consistent with predictions of a ΛCDM model. Of these peaks, 126 lie within 3farcm0 of a brightest central galaxy identified from multicolor optical imaging in an independent, red sequence survey. We also identify seven counterparts for massive clusters previously seen in X-ray emission within 6 deg2 XMM-LSS survey. With photometric redshift estimates for the source galaxies, we use a tomographic lensing method to fit the redshift and mass of each convergence peak. Matching these to the optical observations, we confirm 85 groups/clusters with χ2 reduced < 3.0, at a mean redshift langzc rang = 0.36 and velocity dispersion langσ c rang = 658.8 km s-1. Future surveys, such as DES, LSST, KDUST, and EUCLID, will be able to apply these techniques to map clusters in much larger volumes and thus tightly constrain cosmological models.

  8. The SUNBIRD survey: characterizing the super star cluster populations of intensely star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Randriamanakoto, Zara; Väisänen, Petri

    2017-03-01

    Super star clusters (SSCs) represent the youngest and most massive form of known gravitationally bound star clusters in the Universe. They are born abundantly in environments that trigger strong and violent star formation. We investigate the properties of these massive SSCs in a sample of 42 nearby starbursts and luminous infrared galaxies. The targets form the sample of the SUperNovae and starBursts in the InfraReD (SUNBIRD) survey that were imaged using near-infrared (NIR) K-band adaptive optics mounted on the Gemini/NIRI and the VLT/NaCo instruments. Results from i) the fitted power-laws to the SSC K-band luminosity functions, ii) the NIR brightest star cluster magnitude - star formation rate (SFR) relation and iii) the star cluster age and mass distributions have shown the importance of studying SSC host galaxies with high SFR levels to determine the role of the galactic environments in the star cluster formation, evolution and disruption mechanisms.

  9. SHEAR-SELECTED CLUSTERS FROM THE DEEP LENS SURVEY. III. MASSES FROM WEAK LENSING

    SciTech Connect

    Abate, Alexandra; Wittman, D.; Margoniner, V. E.; Gee, Perry; Tyson, J. Anthony; Bridle, S. L.; Dell'Antonio, Ian P. E-mail: dwittman@physics.ucdavis.edu

    2009-09-01

    We present weak lensing mass estimates of seven shear-selected galaxy cluster candidates from the deep lens survey. The clusters were previously identified as mass peaks in convergence maps of 8.6 deg{sup 2} of R-band imaging, and followed up with X-ray and spectroscopic confirmation, spanning a redshift range 0.19-0.68. Most clusters contained multiple X-ray peaks, yielding 17 total mass concentrations. In this paper, we constrain the masses of these X-ray sources with weak lensing, using photometric redshifts from the full set of BVRz' imaging to properly weight background galaxies according to their lensing distance ratios. We fit both NFW and singular isothermal sphere profiles, and find that the results are insensitive to the assumed profile. We also show that the results do not depend significantly on the assumed prior on the position of the mass peak, but that this may become an issue in future larger samples. The inferred velocity dispersions for the extended X-ray sources range from 250 to 800 km s{sup -1}, with the exception of one source for which no lensing signal was found. This work further establishes shear selection as a viable technique for finding clusters, but also highlights some unresolved issues such as determination of the mass profile center without biasing the mass estimate, and fully accounting for line-of-sight projections. A follow-up paper will examine the mass-X-ray scaling relations of these clusters.

  10. Chemical abundance gradients from open clusters in the Milky Way disk: Results from the APOGEE survey

    NASA Astrophysics Data System (ADS)

    Cunha, K.; Frinchaboy, P. M.; Souto, D.; Thompson, B.; Zasowski, G.; Allende Prieto, C.; Carrera, R.; Chiappini, C.; Donor, J.; García-Hernández, D. A.; García Pérez, A. E.; Hayden, M. R.; Holtzman, J.; Jackson, K. M.; Johnson, J. A.; Majewski, S. R.; Mészáros, S.; Meyer, B.; Nidever, D. L.; O'Connell, J.; Schiavon, R. P.; Schultheis, M.; Shetrone, M.; Simmons, A.; Smith, V. V.; et al.

    2016-09-01

    Metallicity gradients provide strong constraints for understanding the chemical evolution of the Galaxy. We report on radial abundance gradients of Fe, Ni, Ca, Si, and Mg obtained from a sample of 304 red-giant members of 29 disk open clusters, mostly concentrated at galactocentric distances between ˜ 8-15 kpc, but including two open clusters in the outer disk. The observations are from the APOGEE survey. The chemical abundances were derived automatically by the ASPCAP pipeline and these are part of the SDSS III Data Release 12. The gradients, obtained from least squares fits to the data, are relatively flat, with slopes ranging from -0.026 to -0.033 dex kpc-1 for the α-elements [O/H], [Ca/H], [Si/H], and [Mg/H], and -0.035 dex kpc-1 and -0.040 dex kpc-1 for [Fe/H] and [Ni/H], respectively. Our results are not at odds with the possibility that metallicity ([Fe/H]) gradients are steeper in the inner disk ({R_GC˜ 7}-12 kpc) and flatter towards the outer disk. The open cluster sample studied spans a significant range in age. When breaking the sample into age bins, there is some indication that the younger open cluster population in our sample (log age < 8.7) has a flatter metallicity gradient when compared with the gradients obtained from older open clusters.

  11. The Massive and Distant Clusters of WISE Survey (MaDCoWS): Stellar mass fractions in a sample of infrared-selected galaxy clusters at z~1

    NASA Astrophysics Data System (ADS)

    Decker, Bandon; Brodwin, Mark

    2017-01-01

    Galaxy clusters are the largest gravitationally bound objects in the universe. In addition to being interesting objects in their own right, they are excellent laboratories in which to study galaxy evolution and the properties and abundance of galaxy clusters provide important tests for cosmology. The Massive and Distant Clusters of WISE Survey (MaDCoWS) is a high-redshift (z~1) survey that selects galaxy clusters in the infrared over nearly the full extragalactic sky using the Wide-field Infrared Survey Explorer (WISE) AllWISE data release. We have measured Sunyaev-Zel'dovich (SZ) masses for twelve of the MaDCoWS clusters lying in the range 0.9 < z <1.3 using the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and used follow-up Spitzer/IRAC rest-frame near-infrared observations to measure the stellar mass of these clusters. With these data, we have measured the stellar mass fraction, f_star, and it's relation to total mass for a sample of infrared-selected clusters at z~1. We repeated our analysis of stellar mass fraction on a sample of SZ-selected clusters from the South Pole Telescope (SPT)-SZ survey that lie in a comparable range of mass and redshift to our MaDCoWS clusters to compare the selection methods. We found no significant difference in the trend of stellar mass fraction-to-total mass between infrared and radio selections. Comparing to similar measurements in the local Universe, we find no evidence of strong evolution in the trend over the last 8 Gyr.

  12. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    SciTech Connect

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modeling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modeling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1 degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  13. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    SciTech Connect

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-03-31

    We measure the weak lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey (DES). This pathfinder study is meant to (1) validate the Dark Energy Camera (DECam) imager for the task of measuring weak lensing shapes, and (2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, point spread function (PSF) modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting Navarro-Frenk-White profiles to the clusters in this study, we determine weak lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1. (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  14. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    DOE PAGES

    Melchior, P.; Suchyta, E.; Huff, E.; ...

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Sciencemore » Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. Additionally, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.« less

  15. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    SciTech Connect

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. Additionally, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  16. The extended ROSAT-ESO flux limited X-ray galaxy cluster survey (REFLEX II) II. Construction and properties of the survey

    NASA Astrophysics Data System (ADS)

    Böhringer, H.; Chon, G.; Collins, C. A.; Guzzo, L.; Nowak, N.; Bobrovskyi, S.

    2013-07-01

    Context. Galaxy clusters provide unique laboratories to study astrophysical processes on large scales and are important probes for cosmology. X-ray observations are currently the best means of detecting and characterizing galaxy clusters. Therefore X-ray surveys for galaxy clusters are one of the best ways to obtain a statistical census of the galaxy cluster population. Aims: In this paper we describe the construction of the REFLEX II galaxy cluster survey based on the southern part of the ROSAT All-Sky Survey. REFLEX II extends the REFLEX I survey by a factor of about two down to a flux limit of 1.8 × 10-12 erg s cm (0.1-2.4 keV). Methods: We describe the determination of the X-ray parameters, the process of X-ray source identification, and the construction of the survey selection function. Results: The REFLEX II cluster sample comprises currently 915 objects. A standard selection function is derived for a lower source count limit of 20 photons in addition to the flux limit. The median redshift of the sample is z = 0.102. Internal consistency checks and the comparison to several other galaxy cluster surveys imply that REFLEX II is better than 90% complete with a contamination less than 10%. Conclusions: With this publication we give a comprehensive statistical description of the REFLEX II survey and provide all the complementary information necessary for a proper modeling of the survey for astrophysical and cosmological applications. Based on observations at the European Southern Observatory La Silla, ChileFull Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A30

  17. VizieR Online Data Catalog: Hectospec survey of SZ clusters (HeCS-SZ) (Rines+, 2016)

    NASA Astrophysics Data System (ADS)

    Rines, K. J.; Geller, M. J.; Diaferio, A.; Hwang, H. S.

    2016-05-01

    HeCS-SZ is an extension of the HeCS survey to include clusters that enable the construction of an SZ-limited sample. We measured 7721 new redshifts with MMT/Hectospec in 21 clusters selected from the Planck SZ catalog (2014A&A...571A..20P; arXiv:1502.01597). We combine these new measurements with the existing HeCS (Hectospec Cluster Survey; Rines et al. 2013, J/ApJ/767/15) and CIRS (Cluster Infall Regions in SDSS project; Rines & Diaferio 2006, J/AJ/132/1275) surveys and with data from the literature to construct a total sample of 123 clusters. We use SDSS photometry for all clusters. The HeCS is a spectroscopic survey of 58 galaxy clusters at moderate redshift (z=0.1-0.3) with MMT/Hectospec. HeCS includes all clusters with ROSAT X-ray fluxes of f_X>5x10-12erg/s at [0.5-2.0]keV from the Bright Cluster Survey (BCS; Ebeling et al. 1998, J/MNRAS/301/881) or REFLEX survey (Bohringer et al. 2004, J/A+A/425/367) with optical imaging in the sixth Data Release (DR6) of SDSS (Adelman-McCarthy et al. 2008, II/282; superseded by II/294). CIRS used spectroscopy from the fourth Data Release of SDSS. Table 3 lists 168 redshifts measured with the FAST instrument on the 1.5m Tillinghast telescope at the Fred Lawrence Whipple Observatory. The additional single-slit spectra from FAST reduce the incompleteness of bright (SDSS r<~16.5) galaxies in the HeCS-SZ clusters. (4 data files).

  18. Massive open star clusters using the VVV survey. IV. WR 62-2, a new very massive star in the core of the VVV CL041 cluster

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Ramírez Alegría, S.; Borissova, J.; O'Leary, E.; Martins, F.; Hervé, A.; Kuhn, M.; Kurtev, R.; Consuelo Amigo Fuentes, P.; Bonatto, C.; Minniti, D.

    2015-12-01

    Context. The ESO Public Survey VISTA Variables in the Vía Láctea (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. deg of the Galactic bulge and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims: We present the fourth article in a series of papers focussed on young and massive clusters discovered in the VVV survey. This article is dedicated to the cluster VVV CL041, which contains a new very massive star candidate, WR 62-2. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters (distance, reddening, mass, age) of VVV CL041. Results: We confirm that the cluster VVV CL041 is a young (less than 4 Myr) and massive (3 ± 2 × 103 M⊙) cluster, and not a simple asterism. It is located at a distance of 4.2 ± 0.9 kpc, and its reddening is AV = 8.0 ± 0.2 mag, which is slightly lower than the average for the young clusters towards the centre of the Galaxy. Spectral analysis shows that the most luminous star of the cluster, of the WN8h spectral type, is a candidate to have an initial mass larger than 100 M⊙. Based on observations taken within the ESO VISTA Public Survey VVV, Programme ID 179.B-2002, and on observations with VLT/ISAAC at ESO (programme 087.D.0341A) and Flamingos-2 at Gemini (programme GS-2014A-Q-72).The photometric catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A31

  19. Spectroscopic Confirmation of Two Massive Red-sequence-selected Galaxy Clusters at Z Approximately Equal to 1.2 in the Sparcs-North Cluster Survey

    NASA Technical Reports Server (NTRS)

    Muzzin, Adam; Wilson, Gillian; Yee, H.K.C.; Hoekstra, Henk; Gilbank, David; Surace, Jason; Lacy, Mark; Blindert, Kris; Majumdar, Subhabrata; Demarco, Ricardo; Gardner, Jonathan P.; Gladders, Mike; Lonsdale, Carol

    2008-01-01

    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a deep z -band imaging survey covering the Spitzer SWIRE Legacy fields designed to create the first large homogeneously-selected sample of massive clusters at z > 1 using an infrared adaptation of the cluster red-sequence method. We present an overview of the northern component of the survey which has been observed with CFHT/MegaCam and covers 28.3 deg(sup 2). The southern component of the survey was observed with CTIO/MOSAICII, covers 13.6 deg(sup 2), and is summarized in a companion paper by Wilson et al. (2008). We also present spectroscopic confirmation of two rich cluster candidates at z approx. 1.2. Based on Nod-and- Shuffle spectroscopy from GMOS-N on Gemini there are 17 and 28 confirmed cluster members in SpARCS J163435+402151 and SpARCS J163852+403843 which have spectroscopic redshifts of 1.1798 and 1.1963, respectively. The clusters have velocity dispersions of 490 +/- 140 km/s and 650 +/- 160 km/s, respectively which imply masses (M(sub 200)) of (1.0 +/- 0.9) x 10(exp 14) Stellar Mass and (2.4 +/- 1.8) x 10(exp 14) Stellar Mass. Confirmation of these candidates as bonafide massive clusters demonstrates that two-filter imaging is an effective, yet observationally efficient, method for selecting clusters at z > 1.

  20. Constraining neutrino properties with a Euclid-like galaxy cluster survey

    SciTech Connect

    Cerbolini, M. Costanzi Alunno; Sartoris, B.; Borgani, S.; Xia, Jun-Qing; Biviano, A.; Viel, M. E-mail: sartoris@oats.inaf.it E-mail: borgani@oats.inaf.it E-mail: biviano@oats.inaf.it

    2013-06-01

    We perform a forecast analysis on how well a Euclid-like photometric galaxy cluster survey will constrain the total neutrino mass and effective number of neutrino species. We base our analysis on the Monte Carlo Markov Chains technique by combining information from cluster number counts and cluster power spectrum. We find that combining cluster data with Cosmic Microwave Background (CMB) measurements from Planck improves by more than an order of magnitude the constraint on neutrino masses compared to each probe used independently. For the ΛCDM+m{sub ν} model the 2σ upper limit on total neutrino mass shifts from Σm{sub ν} < 0.35 eV using cluster data alone to Σm{sub ν} < 0.031 eV when combined with Planck data. When a non-standard scenario with N{sub eff}≠3.046 number of neutrino species is considered, we estimate an upper limit of N{sub eff} < 3.14 (95%CL), while the bounds on neutrino mass are relaxed to Σm{sub ν} < 0.040 eV. This accuracy would be sufficient for a 2σ detection of neutrino mass even in the minimal normal hierarchy scenario (Σm{sub ν} ≅ 0.05 eV). In addition to the extended ΛCDM+m{sub ν}+N{sub eff} model we also consider scenarios with a constant dark energy equation of state and a non-vanishing curvature. When these models are considered the error on Σm{sub ν} is only slightly affected, while there is a larger impact of the order of ∼ 15% and ∼ 20% respectively on the 2σ error bar of N{sub eff} with respect to the standard case. To assess the effect of an uncertain knowledge of the relation between cluster mass and optical richness, we also treat the ΛCDM+m{sub ν}+N{sub eff} case with free nuisance parameters, which parameterize the uncertainties on the cluster mass determination. Adopting the over-conservative assumption of no prior knowledge on the nuisance parameter the loss of information from cluster number counts leads to a large degradation of neutrino constraints. In particular, the upper bounds for Σm{sub

  1. A deep survey for transiting hot planets in the open cluster M37 with the MMT

    NASA Astrophysics Data System (ADS)

    Hartman, Joel David

    This thesis presents the results of a deep (14.5 [Special characters omitted.] the intermediate age open cluster M37 (NGC 2099) using the 6.5m MMT. We combine spectroscopic and photometric observations of the cluster to refine estimates of the cluster fundamental parameters, identify variable stars, study stellar rotation, and place limits on the fraction of stars with planets as small as Neptune. We determine new estimates of the fundamental cluster parameters: t 550 ± 30 Myr, E ( B - V ) = 0.227 ± 0.038, ( m - M ) v = 11.57 ± 0.13 and [ M/ H ] = +0.045 ± 0.044. We obtain light curves for ~ 23,000 stars and identify 1445 variable stars, 99% of which are new discoveries. These variables include 575 rotational variables that are potential cluster members. Using this rich sample we investigate a number of relations between rotation period, color and the amplitude of photometric variability, and we combine these results with published observations of other open clusters to test the standard theory of lower-main sequence stellar angular momentum evolution. Notably we find that the period of the Sun and the periods of solar mass stars in M37, and the Hyades do not follow the "Skumanich law", i.e. they cannot be related by a simple model invoking solid-body rotation with a standard wind angular momentum-loss law. Finally, we do not detect any transiting planets among the ~ 1450 observed cluster members. We do, however, identify a ~ 1 R J candidate planet transiting a Galactic field star. We use this null result to place 95% confidence upper limits on the fraction of cluster members and field stars with planets as a function of planetary radius and orbital period. We find that < 25% of cluster members have 0.35 R J planets with periods shorter than 1 day, and < 16% of field stars have 0.3 R J planets with periods shorter than 1 day. This is the first transit survey to place limits on the fraction of stars with planets as small as Neptune.

  2. The SUNBIRD survey: characterizing the super star cluster populations of intensely star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Randriamanakoto, Zara; Vaisanen, Petri; Escala, Andres

    2015-08-01

    This work investigates properties of young, massive and dense star clusters in a sample of 42 nearby starbursts and LIRGs with an average distance of 80 Mpc. The targets form the sample of the SUperNovae and starBursts in the InfraReD (SUNBIRD) survey that were imaged using near-infrared K-band adaptive optics mounted on the Gemini/NIRI and the VLT/NaCo instruments.We fitted power-laws to the SSC K-band luminosity functions and found index values ranging between 1.5 and 2.4 with a median value of α ˜ 1.86±0.24. This is shallower than the average of ≈ 2.4 associated with normal spiral galaxies indicating that SSCs hosted by star-forming galaxies are disrupted in a way depending on their mass or environment. Using simulations we found that blending effects are not significant for targets closer than ≈100Mpc. We also established the first ever near-infrared (NIR) brightest star cluster magnitude - star formation rate (SFR) relation. The correlation has a steeper slope compared to the one with optical data at lower SFRs which could indicate a simple statistical effect, though we argue that a physical truncation of the mass distribution at high masses would better explain the tight scatter of the observed relation.Finally, we combined new NIR imaging of seven LIRG targets with their optical HST archival data to derive the age, mass, and extinction distributions of optically-selected SSC candidates. Apart from having a high mass range of 10^4 - 10^8 M⊙, more than a quarter of the cluster population is younger than 30 Myr. We also derived the cluster initial mass functions and found that at least in one of the LIRGs, a mass-dependent disruption mechanism is responsible for the deficiency in low-mass star clusters. The cluster formation efficiencies Γ = 10 - 23 %, on the other hand, support the arguments that highly-pressurized environments favor SF in bound star clusters.This work has shown the importance of studying SSC host galaxies with high SFR levels to

  3. The VIMOS VLT Deep Survey: Clustering and the Role of Environment in Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Le Fèvre, O.; Cucciati, O.; Guzzo, L.; Ilbert, O.; Iovino, A.; Marinoni, C.; Meneux, B.; Paltani, S.; Pollo, A.; Bottini, D.; Garilli, B.; Le Brun, V.; Maccagni, D.; Picat, J. P.; Scaramella, R.; Scodeggio, M.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnaboldi, M.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; McCracken, H. J.; Marano, B.; Mazure, A.; Merighi, R.; Pellò, R.; Pozzetti, L.; Radovich, M.; Zamorani, G.; Zucca, E.; Bondi, M.; Bongiorno, A.; Busarello, G.; de La Torre, S.; Gregorini, L.; Lamareille, F.; Mathez, G.; Mellier, Y.; Merluzzi, P.; Ripepi, V.; Rizzo, D.

    2007-12-01

    We present results from the VIMOS VLT Deep Survey on the influence of large scale structures on the evolution of galaxies. The large volume and 11564 galaxies with measured spectroscopic redshifts in the ``First Epoch'' survey enables to study galaxy evolution as a function of local galaxy density and galaxy luminosity or type. We find that the clustering of galaxies is strongly dependent on galaxy types at all redshifts probed, with early spectral type galaxies always more clustered than late-type or irregular galaxies up to z≃1.5. The more luminous galaxies with M_B ≥ -20 are also more strongly clustered than fainter galaxies at all epochs probed up to z≃1.5. From the 3D galaxy density field computed using spectroscopic redshifts, we find a strong evolution of the color-density relation which flattens out with increasing redshifts, with red and blue galaxies becoming equally likely to be found in high density regions probed by the VVDS. At high redshifts 3 ≤ z ≤ 4, we find that the progenitors of the most massive galaxies are more numerous and concentrating more luminosity density than galaxies previously measured at these epochs.

  4. Clustering properties of luminous red galaxies with the Sloan Digital Sky Survey imaging data

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil

    We study the 3D spatial clustering properties of luminous red galaxies in the Sloan Digital Sky Survey (SDSS) imaging data, and discuss their cosmological implications. The need to control systematics leads us to propose a new algorithm to photometrically calibrate wide-field imaging surveys. Applying this to the SDSS, we achieve a 1% relative photometric calibration over 8500 square degrees, an improvement of a factor of ~2 over current calibrations. We then calibrate distances, derived from only the SDSS imaging data, to a class of galaxies with very regular colours, the luminous red galaxies (LRGs). Measuring their 2-point correlation function allows us to detect the non-random clustering of galaxies on gigaparsec scales for the first time. We also detect the imprint of acoustic oscillations in the plasma of the early Universe on the clustering of the LRGs. We finally discuss cross-correlating the LRGs with the cosmic microwave background, detecting the integrated Sachs-Wolfe effect and providing further evidence for a late-time acceleration in the expansion of the Universe.

  5. The Gaia-ESO Survey: membership and initial mass function of the γ Velorum cluster

    NASA Astrophysics Data System (ADS)

    Prisinzano, L.; Damiani, F.; Micela, G.; Jeffries, R. D.; Franciosini, E.; Sacco, G. G.; Frasca, A.; Klutsch, A.; Lanzafame, A.; Alfaro, E. J.; Biazzo, K.; Bonito, R.; Bragaglia, A.; Caramazza, M.; Vallenari, A.; Carraro, G.; Costado, M. T.; Flaccomio, E.; Jofré, P.; Lardo, C.; Monaco, L.; Morbidelli, L.; Mowlavi, N.; Pancino, E.; Randich, S.; Zaggia, S.

    2016-05-01

    Context. Understanding the properties of young open clusters, such as the initial mass function (IMF), star formation history, and dynamic evolution, is crucial for obtaining reliable theoretical predictions of the mechanisms involved in the star formation process. Aims: We want to obtain a list that is as complete as possible of confirmed members of the young open cluster γ Velorum, with the aim of deriving general cluster properties such as the IMF. Methods: We used all available spectroscopic membership indicators within the Gaia-ESO public archive, together with literature photometry and X-ray data, and for each method, we derived the most complete list of candidate cluster members. Then, we considered photometry, gravity, and radial velocities as necessary conditions for selecting a subsample of candidates whose membership was confirmed by using the lithium and Hα lines and X-rays as youth indicators. Results: We found 242 confirmed and 4 possible cluster members for which we derived masses using very recent stellar evolutionary models. The cluster IMF in the mass range investigated in this study shows a slope of α = 2.6 ± 0.5 for 0.5 Survey).Table 5 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A70

  6. The XXL Survey . IV. Mass-temperature relation of the bright cluster sample

    NASA Astrophysics Data System (ADS)

    Lieu, M.; Smith, G. P.; Giles, P. A.; Ziparo, F.; Maughan, B. J.; Démoclès, J.; Pacaud, F.; Pierre, M.; Adami, C.; Bahé, Y. M.; Clerc, N.; Chiappetti, L.; Eckert, D.; Ettori, S.; Lavoie, S.; Le Fevre, J. P.; McCarthy, I. G.; Kilbinger, M.; Ponman, T. J.; Sadibekova, T.; Willis, J. P.

    2016-06-01

    Context. The XXL Survey is the largest survey carried out by XMM-Newton. Covering an area of 50 deg2, the survey contains ~450 galaxy clusters out to a redshift ~2 and to an X-ray flux limit of ~ 5 × 10-15 erg s-1 cm-2. This paper is part of the first release of XXL results focussed on the bright cluster sample. Aims: We investigate the scaling relation between weak-lensing mass and X-ray temperature for the brightest clusters in XXL. The scaling relation discussed in this article is used to estimate the mass of all 100 clusters in XXL-100-GC. Methods: Based on a subsample of 38 objects that lie within the intersection of the northern XXL field and the publicly available CFHTLenS shear catalog, we derive the weak-lensing mass of each system with careful considerations of the systematics. The clusters lie at 0.1 clusters from the literature, increasing the range to T ≃ 1-10 keV. To date, this is the largest sample of clusters with weak-lensing mass measurements that has been used to study the mass-temperature relation. Results: The mass-temperature relation fit (M ∝ Tb) to the XXL clusters returns a slope and intrinsic scatter σlnM|T≃ 0.53; the scatter is dominated by disturbed clusters. The fit to the combined sample of 96 clusters is in tension with self-similarity, b = 1.67 ± 0.12 and σlnM|T ≃ 0.41. Conclusions: Overall our results demonstrate the feasibility of ground-based weak-lensing scaling relation studies down to cool systems of ~1 keV temperature and highlight that the current data and samples are a limit to our statistical precision. As such we are unable to determine whether the validity of hydrostatic equilibrium is a function of halo mass. An enlarged sample of cool systems, deeper weak-lensing data, and robust modelling of the selection function will help to explore these issues further. Based on observations obtained with XMM-Newton, an ESA

  7. THE MASSIVE AND DISTANT CLUSTERS OF WISE SURVEY: MOO J1142+1527, A 10{sup 15}M{sub ⊙} GALAXY CLUSTER AT z = 1.19

    SciTech Connect

    Gonzalez, Anthony H.; Gettings, Daniel P.; Decker, Bandon; Brodwin, Mark; Eisenhardt, Peter R. M.; Stern, Daniel; Marrone, Daniel P.; Greer, Christopher H.; Stanford, S. A.; Wylezalek, Dominika; Aldering, Greg; Boone, Kyle; Fagrelius, Parker; Hayden, Brian; Abdulla, Zubair; Carlstrom, John; Leitch, Erik M.; Lin, Yen-Ting; Mantz, Adam B.; Muchovej, Stephen; and others

    2015-10-20

    We present confirmation of the cluster MOO J1142+1527, a massive galaxy cluster discovered as part of the Massive and Distant Clusters of WISE Survey. The cluster is confirmed to lie at z = 1.19, and using the Combined Array for Research in Millimeter-wave Astronomy we robustly detect the Sunyaev–Zel’dovich (SZ) decrement at 13.2σ. The SZ data imply a mass of M{sub 200m} = (1.1 ± 0.2) × 10{sup 15}M{sub ⊙}, making MOO J1142+1527 the most massive galaxy cluster known at z > 1.15 and the second most massive cluster known at z > 1. For a standard ΛCDM cosmology it is further expected to be one of the ∼5 most massive clusters expected to exist at z ≥ 1.19 over the entire sky. Our ongoing Spitzer program targeting ∼1750 additional candidate clusters will identify comparably rich galaxy clusters over the full extragalactic sky.

  8. Detailed studies om three open clusters from Gaia ESO Survey (GES)

    NASA Astrophysics Data System (ADS)

    Balaguer-Núnez, L.; Casamiquela, L.; Jordana, N.; Massana, P.; Jordi, C.; Masana, E.

    2017-03-01

    We present results for the intermediate-age and old open clusters NGC 6633, NGC 6705 (M 11) and NGC 2682 (M 67). We have used new Str ̈omgren-Crawford photometry, proper motions from ROA observations and spectral information from Gaia-ESO Survey (GES), to study the physical parameters of the stars in the three cluster's areas. The astrometric studies cover an area of about 1°x2° and down to r' ˜ 17 while our INT-WFC CCD intermediate-band photometry covers an area of about 40'x40' down to V ˜ 19. The stars of those areas selected as cluster members from their proper motions, are classified into photometric regions and their physical parameters determined, using uvbyHβ photometry and standard relations among colour indices for each of the photometric regions of the HR diagram. That allows us to determine reddening, distances, absolute magnitudes, spectral types, effective temperatures, gravities and metallicities, thus providing an astrophysical characterization of the clusters. These results are compared with the physical parameters obtained from GES spectral data as well as radial velocities to confirm membership. All these data lead us to a comparison of photometric and spectroscopic physical parameters.

  9. Radio AGN in 13,240 galaxy clusters from the Sloan Digital Sky Survey

    SciTech Connect

    Croft, S; de Vries, W; Becker, R

    2007-05-30

    We correlate the positions of 13,240 Brightest Cluster Galaxies (BCGs) with 0.1 {le} z {le} 0.3 from the maxBCG catalog with radio sources from the FIRST survey to study the sizes and distributions of radio AGN in galaxy clusters. We find that 19.7% of our BCGs are radio-loud, and this fraction depends on the stellar mass of the BCG, and to a lesser extent on the richness of the parent cluster (in the sense of increasing radio loudness with increasing mass). The intrinsic size of the radio emission associated with the BCGs peaks at 55 kpc, with a tail extending to 200 kpc. The radio power of the extended sources places them on the divide between FR I and FR II type sources, while sources compact in the radio tend to be somewhat less radio-luminous. We also detect an excess of radio sources associated with the cluster, instead of with the BCG itself, extending out to {approx} 1.4 kpc.

  10. Young Stellar Clusters Containing Massive Young Stellar Objects in the VVV Survey

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Ramírez Alegría, S.; Alonso, J.; Lucas, P. W.; Kurtev, R.; Medina, N.; Navarro, C.; Kuhn, M.; Gromadzki, M.; Retamales, G.; Fernandez, M. A.; Agurto-Gangas, C.; Chené, A.-N.; Minniti, D.; Contreras Pena, C.; Catelan, M.; Decany, I.; Thompson, M. A.; Morales, E. F. E.; Amigo, P.

    2016-09-01

    The purpose of this research is to study the connections of the global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object (YSO) populations. The analysis is based on the combination of spectroscopic parallax-based reddening and distance determinations with main-sequence and pre-main-sequence ishochrone fitting to determine the basic parameters (reddening, age, distance) of the sample clusters. The lower mass limit estimations show that all clusters are low or intermediate mass (between 110 and 1800 M ⊙), the slope Γ of the obtained present-day mass functions of the clusters is close to the Kroupa initial mass function. The YSOs in the cluster’s surrounding fields are classified using low resolution spectra, spectral energy distribution fits with theoretical predictions, and variability, taking advantage of multi-epoch VVV observations. All spectroscopically confirmed YSOs (except one) are found to be massive (more than 8 M ⊙). Using VVV and GLIMPSE color-color cuts we have selected a large number of new YSO candidates, which are checked for variability and 57% are found to show at least low-amplitude variations. In few cases it was possible to distinguish between YSO and AGB classifications on the basis of light curves.

  11. Calibrating the lithium-age relation with open clusters observed with GES (Gaia-ESO Survey)

    NASA Astrophysics Data System (ADS)

    Gutiérrez Albarrán, M. L.; Montes, D.; Gómez Garrido, M.; Tabernero, H. M..; González Hernández, J. I.; GES Survey Builders

    2017-03-01

    Li depletion is strongly age-dependent but currently available data have shown a complex pattern of Li depletion on the pre- and main-sequence stars that is not yet understood. The lithium abundance observed in late-type stars depend not only of the age and the temperature but also on metallicity, mixing mechanisms, convection structure, rotation and magnetic activity. The large number of stars observed within the Gaia-ESO survey (GES - https://www.gaia-eso.eu/) for many open clusters and associations can be used to calibrate the lithium-age relation and its dependence with other parameters that can be derived from the UVES and GIRAFFE spectroscopic observations. We present here the preliminary results of the analysis of membership and Li abundance of the young clusters and associations, as well as of the intermediate-age and old open clusters, observed until now in GES (iDR4) in order to conduct a comparative study. All this information allowed us to characterize the properties of the members of these clusters and identify a series of field contaminant stars, both lithium-rich giants and non-giant outliers.

  12. Assessment of Universal Healthcare Coverage in a District of North India: A Rapid Cross-Sectional Survey Using Tablet Computers

    PubMed Central

    Singh, Tarundeep; Roy, Pritam; Jamir, Limalemla; Gupta, Saurav; Kaur, Navpreet; Jain, D. K.; Kumar, Rajesh

    2016-01-01

    Objective A rapid survey was carried out in Shaheed Bhagat Singh Nagar District of Punjab state in India to ascertain health seeking behavior and out-of-pocket health expenditures. Methods Using multistage cluster sampling design, 1,008 households (28 clusters x 36 households in each cluster) were selected proportionately from urban and rural areas. Households were selected through a house-to-house survey during April and May 2014 whose members had (a) experienced illness in the past 30 days, (b) had illness lasting longer than 30 days, (c) were hospitalized in the past 365 days, or (d) had women who were currently pregnant or experienced childbirth in the past two years. In these selected households, trained investigators, using a tablet computer-based structured questionnaire, enquired about the socio-demographics, nature of illness, source of healthcare, and healthcare and household expenditure. The data was transmitted daily to a central server using wireless communication network. Mean healthcare expenditures were computed for various health conditions. Catastrophic healthcare expenditure was defined as more than 10% of the total annual household expenditure on healthcare. Chi square test for trend was used to compare catastrophic expenditures on hospitalization between households classified into expenditure quartiles. Results The mean monthly household expenditure was 15,029 Indian Rupees (USD 188.2). Nearly 14.2% of the household expenditure was on healthcare. Fever, respiratory tract diseases, gastrointestinal diseases were the common acute illnesses, while heart disease, diabetes mellitus, and respiratory diseases were the more common chronic diseases. Hospitalizations were mainly due to cardiovascular diseases, gastrointestinal problems, and accidents. Only 17%, 18%, 20% and 31% of the healthcare for acute illnesses, chronic illnesses, hospitalizations and childbirth was sought in the government health facilities. Average expenditure in government health

  13. Don't spin the pen: two alternative methods for second-stage sampling in urban cluster surveys.

    PubMed

    Grais, Rebecca F; Rose, Angela M C; Guthmann, Jean-Paul

    2007-06-01

    In two-stage cluster surveys, the traditional method used in second-stage sampling (in which the first household in a cluster is selected) is time-consuming and may result in biased estimates of the indicator of interest. Firstly, a random direction from the center of the cluster is selected, usually by spinning a pen. The houses along that direction are then counted out to the boundary of the cluster, and one is then selected at random to be the first household surveyed. This process favors households towards the center of the cluster, but it could easily be improved. During a recent meningitis vaccination coverage survey in Maradi, Niger, we compared this method of first household selection to two alternatives in urban zones: 1) using a superimposed grid on the map of the cluster area and randomly selecting an intersection; and 2) drawing the perimeter of the cluster area using a Global Positioning System (GPS) and randomly selecting one point within the perimeter. Although we only compared a limited number of clusters using each method, we found the sampling grid method to be the fastest and easiest for field survey teams, although it does require a map of the area. Selecting a random GPS point was also found to be a good method, once adequate training can be provided. Spinning the pen and counting households to the boundary was the most complicated and time-consuming. The two methods tested here represent simpler, quicker and potentially more robust alternatives to spinning the pen for cluster surveys in urban areas. However, in rural areas, these alternatives would favor initial household selection from lower density (or even potentially empty) areas. Bearing in mind these limitations, as well as available resources and feasibility, investigators should choose the most appropriate method for their particular survey context.

  14. The Brera Multi-scale Wavelet HRI Cluster Survey. I. Selection of the sample and number counts

    NASA Astrophysics Data System (ADS)

    Moretti, A.; Guzzo, L.; Campana, S.; Lazzati, D.; Panzera, M. R.; Tagliaferri, G.; Arena, S.; Braglia, F.; Dell'Antonio, I.; Longhetti, M.

    2004-12-01

    We describe the construction of the Brera Multi-scale Wavelet (BMW) HRI Cluster Survey, a deep sample of serendipitous X-ray selected clusters of galaxies based on the ROSAT HRI archive. This is the first cluster catalog exploiting the high angular resolution of this instrument. Cluster candidates are selected on the basis of their X-ray extension only, a parameter which is well measured by the BMW wavelet detection algorithm. The survey includes 154 candidates over a total solid angle of ˜160 deg2 at 10-12 erg s-1 cm-2 and ˜80 deg2 at 1.8×10-13 erg s-1 cm-2. At the same time, a fairly good sky coverage in the faintest flux bins (3-5 × 10-14 erg s-1 cm-2) gives this survey the capability of detecting a few clusters with z˜ 1-1.2, depending on evolution. We present the results of extensive Monte Carlo simulations, providing a complete statistical characterization of the survey selection function and contamination level. We also present a new estimate of the surface density of clusters of galaxies down to a flux of 3× 10-14 erg s-1 cm-2, which is consistent with previous measurements from PSPC-based samples. Several clusters with redshifts up to z=0.92 have already been confirmed, either by cross-correlation with existing PSPC surveys or from early results of an ongoing follow-up campaign. Overall, these results indicate that the excellent HRI PSF (5 arcsec FWHM on axis) more than compensates for the negative effect of the higher instrumental background on the detection of high-redshift clusters. In addition, it allows us to detect compact clusters that could be lost at lower resolution, thus potentially providing an important new insight into cluster evolution. Partially based on observations taken at ESO and TNG telescopes.

  15. One survey to find them all: detecting and studying galaxy clusters from infancy to maturity with Subaru HyperSuprimeCam Survey

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; HSC Collaboration

    2017-01-01

    With its unprecedented combination of depth and area, the Subaru HSC survey opens up a unique window to probe the formation and evolution of galaxy clusters from infancy (proto-clusters) to maturity based on one single dataset. Furthermore, the superb imaging quality and the combination of broad and narrow band filters offer several complementary ways in detecting clusters, including total-mass selection (via weak shear), red sequence selection, and concentration of line-emitting galaxies (for clusters at z>1). I will present the efforts of the HSC cluster working group in detecting clusters and proto-clusters, and the studies of galaxy population evolution in clusters. In particular, for the latter topic, I will summarize results based on the Camira cluster sample (Oguri et al.), which is constructed from concentrations of red galaxies in multi-color space. Using cross correlation techniques, we have examined the stellar mass assembly history of brightest cluster galaxies, inferred the details of dynamical friction and mechanisms of quenching of star formation from the radial profile of quiescent galaxies, quantified the evolution of stellar mass function of both red and blue galaxies, and made the first measurement of the radio luminosity function of radio-loud galaxies in clusters out to z~1.

  16. A Kinematic Survey in the Perseus Molecular Cloud: Results from the APOGEE Infrared Survey of Young Nebulous Clusters (IN-SYNC)

    NASA Astrophysics Data System (ADS)

    Covey, Kevin R.; Cottaar, M.; Foster, J. B.; Nidever, D. L.; Meyer, M.; Tan, J.; Da Rio, N.; Flaherty, K. M.; Stassun, K.; Frinchaboy, P. M.; Majewski, S.; APOGEE IN-SYNC Team

    2014-01-01

    Demographic studies of stellar clusters indicate that relatively few persist as bound structures for 100 Myrs or longer. If cluster dispersal is a 'violent' process, it could strongly influence the formation and early evolution of stellar binaries and planetary systems. Unfortunately, measuring the dynamical state of 'typical' (i.e., ~300-1000 member) young star clusters has been difficult, particularly for clusters still embedded within their parental molecular cloud. The near-infrared spectrograph for the Apache Point Observatory Galactic Evolution Experiment (APOGEE), which can measure precise radial velocities for 230 cluster stars simultaneously, is uniquely suited to diagnosing the dynamics of Galactic star formation regions. We give an overview of the INfrared Survey of Young Nebulous Clusters (IN-SYNC), an APOGEE ancillary science program that is carrying out a comparative study of young clusters in the Perseus molecular cloud: NGC 1333, a heavily embedded cluster, and IC 348, which has begun to disperse its surrounding molecular gas. These observations appear to rule out a significantly super-virial velocity dispersion in IC 348, contrary to predictions of models where a cluster's dynamics is strongly influenced by the dispersal of its primordial gas. We also summarize the properties of two newly identified spectroscopic binaries; binary systems such as these play a key role in the dynamical evolution of young clusters, and introduce velocity offsets that must be accounted for in measuring cluster velocity dispersions.

  17. The VIRMOS-VLT Deep Survey: the Last 10 Billion Years of Evolution of Galaxy Clustering

    NASA Astrophysics Data System (ADS)

    Pollo, A.; Guzzo, L.; Le Fèvre, O.; Meneux, B.; Cappi, A.; McCracken, H. J.; Iovino, A.; Marinoni, C.; Bottini, D.; Garilli, B.; Le Brun, V. L.; Maccagni, D.; Picat, J. P.; Scaramella, R.; Scodeggio, M.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Ilbert, O.; Marano, B.; Mazure, A.; Merighi, R.; Paltani, S.; Pellò, R.; Pozzetti, L.; Radovich, M.; Zamorani, G.; Zucca, E.; Bondi, M.; Bongiorno, A.; Brinchmann, J.; Cucciati, O.; de la Torre, S.; Lamareille, F.; Mellier, Y.; Merluzzi, P.; Temporin, S.; Vergani, D.; Walcher, C. J.

    2007-12-01

    We discuss the evolution of clustering of galaxies in the Universe from the present epoch back to z ˜ 2, using the first-epoch data from the VIMOS-VLT Deep Survey (VVDS). We present the evolution of the projected two-point correlation function of galaxies for the global galaxy population, as well as its dependence on galaxy intrinsic luminosities and spectral types. While we do not find strong variations of the correlation function parameters with redshift for the global galaxy population, the clustering of objects with different intrinsic luminosities evolved significantly during last 8-10 billion years. Our findings indicate that bright galaxies in the past traced higher density peaks than they do now and that the shape of the correlation function of most luminous galaxies is different from observed for their local counterparts, which is a supporting evidence of a non-trivial evolution of the galaxy vs. dark matter bias.

  18. Regularized Non-negative Matrix Factorization for Identifying Differential Genes and Clustering Samples: a Survey.

    PubMed

    Liu, Jin-Xing; Wang, Dong; Gao, Ying-Lian; Zheng, Chun-Hou; Xu, Yong; Yu, Jiguo

    2017-02-07

    Non-negative Matrix Factorization (NMF), a classical method for dimensionality reduction, has been applied in many fields. It is based on the idea that negative numbers are physically meaningless in various data-processing tasks. Apart from its contribution to conventional data analysis, the recent overwhelming interest in NMF is due to its newly discovered ability to solve challenging data mining and machine learning problems, especially in relation to gene expression data. This survey paper mainly focuses on research examining the application of NMF to identify differentially expressed genes and to cluster samples, and the main NMF models, properties, principles, and algorithms with its various generalizations, extensions, and modifications are summarized. The experimental results demonstrate the performance of the various NMF algorithms in identifying differentially expressed genes and clustering samples.

  19. Investigating the Cores of Early-Type Galaxies Using the ACS Virgo and Fornax Cluster Surveys

    NASA Astrophysics Data System (ADS)

    Glass, Lisa; Ferrarese, L.; Côté, P.; Jordán, A.; Peng, E.; Blakeslee, J.; Chen, C.; Infante, L.; Mei, S.; Tonry, J.; West, M. J.

    2011-01-01

    Understanding the processes that shape and influence the centers of galaxies is crucial to understanding galaxies as a whole. In particular, data suggests nuclear star clusters are three times more common than previously thought and there is evidence to suggest that they may be the low-mass analogues to the supermassive black holes found in more luminous galaxies. My research focuses on the cores of early-type galaxies and how they relate, influence, and respond to processes occurring in the rest of the galaxy. I will present new results from the ACS Virgo and Fornax Cluster Surveys that shed light on these questions. The authors gratefully acknowledge support from NSERC though the Discovery and Postgraduate Scholarship programs, as well as from the University of Victoria through their fellowship program.

  20. A High Angular Resolution Multiplicity Survey of the Open Clusters α Persei and Praesepe

    NASA Astrophysics Data System (ADS)

    Patience, J.; Ghez, A. M.; Reid, I. N.; Matthews, K.

    2002-03-01

    Two hundred forty-two members of the Praesepe and α Persei clusters have been surveyed with high angular resolution 2.2 μm speckle imaging on the 3 m Infrared Telescope Facility, the 5 m Hale, and the 10 m Keck telescopes, along with direct imaging using the near-infrared camera (NICMOS) aboard the Hubble Space Telescope. The observed stars range in spectral type from B (~5 Msolar) to early M (~0.5 Msolar), with the majority of the targets more massive than ~0.8 Msolar. The one quadruple and 39 binary systems detected encompass separations from 0.053" to 7.28" 28 of the systems are new detections, and there are nine candidate substellar companions. The results of the survey are used to test binary star formation and evolution scenarios and to investigate the effects of companion stars on X-ray emission and stellar rotation. The main results are as follows:1. Over the projected separation range of 26 to 581 AU and magnitude differences of ΔK<4.0 (comparable to mass ratios q=Msec/Mprim>0.25), the companion-star fraction (CSF) for α Per is 0.09+/-0.03, and that for Praesepe is 0.10+/-0.03. This fraction is consistent with the field G dwarf value, implying that there is not a systematic decline in multiplicity with age at these separations on timescales of a few times 107 yr. The combination of previous spectroscopic work and the current cluster survey results in a cluster binary separation distribution that peaks at 4+1-1.5 AU, a significantly smaller value than the peaks of both the field G dwarf and the nearby T Tauri distributions. If the field G dwarf distribution represents a superposition of distributions from the populations that contributed to the field, then the data imply that ~30% of field binaries formed in dark clouds like the nearby T Tauri stars and the remaining ~70% formed in denser regions.2. An exploration of the binary star properties reveals a cluster CSF that increases with decreasing target mass, and a cluster mass ratio distribution that

  1. BINARY QUASARS IN THE SLOAN DIGITAL SKY SURVEY: EVIDENCE FOR EXCESS CLUSTERING ON SMALL SCALES

    SciTech Connect

    Hennawi, J F; Strauss, M A; Oguri, M; Inada, N; Richards, G T; Pindor, B; Schneider, D P; Becker, R H; Gregg, M D; Hall, P B; Johnston, D E; Fan, X; Burles, S; Schlegel, D J; Gunn, J E; Lupton, R; Bahcall, N A; Brunner, R J; Brinkman, J

    2005-11-10

    We present a sample of 218 new quasar pairs with proper transverse separations R{sub prop} < 1 h{sup -1} Mpc over the redshift range 0.5 < z < 3.0, discovered from an extensive follow up campaign to find companions around the Sloan Digital Sky Survey and 2dF Quasar Redshift Survey quasars. This sample includes 26 new binary quasars with separations R{sub prop} < 50 h{sup -1} kpc ({theta} < 10''), more than doubling the number of such systems known. We define a statistical sample of binaries selected with homogeneous criteria and compute its selection function, taking into account sources of incompleteness. The first measurement of the quasar correlation function on scales 10 h{sup -1} kpc < R{sub prop} < 400 h{sup -1} kpc is presented. For R{sub prop} {approx}< 40 h{sup -1} kpc, we detect an order of magnitude excess clustering over the expectation from the large scale (R{sub prop} {approx}> 3 h{sup -1} Mpc) quasar correlation function, extrapolated down as a power law to the separations probed by our binaries. The excess grows to {approx}30 at R{sub prop} {approx} 10 h{sup -1} kpc, and provides compelling evidence that the quasar autocorrelation function gets progressively steeper on sub-Mpc scales. This small scale excess can likely be attributed to dissipative interaction events which trigger quasar activity in rich environments. Recent small scale measurements of galaxy clustering and quasar-galaxy clustering are reviewed and discussed in relation to our measurement of small scale quasar clustering.

  2. Redshift-Distance Survey of Early-Type Galaxies. I. The ENEARc Cluster Sample

    NASA Astrophysics Data System (ADS)

    Bernardi, M.; Alonso, M. V.; da Costa, L. N.; Willmer, C. N. A.; Wegner, G.; Pellegrini, P. S.; Rité, C.; Maia, M. A. G.

    2002-06-01

    This paper presents data on the ENEARc subsample of the larger ENEAR survey of nearby early-type galaxies. The ENEARc galaxies belong to clusters and were specifically chosen to be used for the construction of a Dn-σ template. The ENEARc sample includes new measurements of spectroscopic and photometric parameters (redshift, velocity dispersion, line index Mg2, and the angular diameter dn), as well as data from the literature. New spectroscopic data are given for 229 cluster early-type galaxies, and new photometry is presented for 348 objects. Repeat and overlap observations with external data sets are used to construct a final merged catalog consisting of 640 early-type galaxies in 28 clusters. Objective criteria, based on catalogs of groups of galaxies derived from complete redshift surveys of the nearby universe, are used to assign galaxies to clusters. In a companion paper, these data are used to construct the template Dn-σ distance relation for early-type galaxies, which has been used to estimate galaxy distances and derive peculiar velocities for the ENEAR all-sky sample. Based on observations at Complejo Astronomico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan; Cerro Tololo Inter-American Observatory, National Optical Astronomical Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation; the European Southern Observatory (ESO), partially under the ESO-ON agreement; the Fred Lawrence Whipple Observatory; the Observatório do Pico dos Dias, operated by the Laboratório Nacional de Astrofísica and the MDM Observatory at Kitt Peak.

  3. The XXL Survey. XIII. Baryon content of the bright cluster sample

    NASA Astrophysics Data System (ADS)

    Eckert, D.; Ettori, S.; Coupon, J.; Gastaldello, F.; Pierre, M.; Melin, J.-B.; Le Brun, A. M. C.; McCarthy, I. G.; Adami, C.; Chiappetti, L.; Faccioli, L.; Giles, P.; Lavoie, S.; Lefèvre, J. P.; Lieu, M.; Mantz, A.; Maughan, B.; McGee, S.; Pacaud, F.; Paltani, S.; Sadibekova, T.; Smith, G. P.; Ziparo, F.

    2016-06-01

    Traditionally, galaxy clusters have been expected to retain all the material accreted since their formation epoch. For this reason, their matter content should be representative of the Universe as a whole, and thus their baryon fraction should be close to the Universal baryon fraction Ωb/ Ωm. We make use of the sample of the 100 brightest galaxy clusters discovered in the XXL Survey to investigate the fraction of baryons in the form of hot gas and stars in the cluster population. Since it spans a wide range of mass (1013-1015 M⊙) and redshift (0.05-1.1) and benefits from a large set of multiwavelength data, the XXL-100-GC sample is ideal for measuring the global baryon budget of massive halos. We measure the gas masses of the detected halos and use a mass-temperature relation directly calibrated using weak-lensing measurements for a subset of XXL clusters to estimate the halo mass. We find that the weak-lensing calibrated gas fraction of XXL-100-GC clusters is substantially lower than was found in previous studies using hydrostatic masses. Our best-fit relation between gas fraction and mass reads fgas,500 = 0.055-0.006+0.007(M500/1014 M⊙)0.21-0.10+0.11. The baryon budget of galaxy clusters therefore falls short of the Universal baryon fraction by about a factor of two at r500,MT. Our measurements require a hydrostatic bias 1-b = MX/MWL = 0.72-0.07+0.08 to match the gas fraction obtained using lensing and hydrostatic equilibrium, which holds independently of the instrument considered. Comparing our gas fraction measurements with the expectations from numerical simulations, we find that our results favour an extreme feedback scheme in which a significant fraction of the baryons are expelled from the cores of halos. This model is, however, in contrast with the thermodynamical properties of observed halos, which might suggest that weak-lensing masses are overestimated. In light of these results, we note that a mass bias 1-b = 0.58 as required to reconcile Planck

  4. Rapid Expansion of New Oncology Care Delivery Payment Models: Results from a Payer Survey

    PubMed Central

    Greenapple, Rhonda

    2013-01-01

    Background Oncology practices are seeking to adapt to new care delivery models, including accountable care organizations (ACOs), patient-centered medical homes (PCMHs) in oncology, and oncology pathways, as well as new payment models, such as bundled payments or pay-for-performance contracts. Objective Our survey sought to determine which payment models and care delivery models payers view as the most viable and the most potentially impactful in managing and reducing the cost of cancer care. Methods We conducted an online national survey of 49 payers, including 19 medical directors and 30 pharmacy directors, representing more than 100 million covered lives within national and regional plans, using a validated instrument comprised of approximately 120 questions. The survey was administered using the SurveyGizmo website. It was initiated on July 10, 2012, and completed on July 25, 2012. The survey included open- and closed-ended questions and probed payers about models of care that they, in collaboration with providers, are implementing or supporting to improve the quality of cancer care and to reduce the associated costs. Results Payers are rapidly moving to implement new reimbursement models to support new care delivery models, including ACOs and PCMHs. Based on the results of this survey, a minority of payers are experimenting with new oncology payment models, but most payers are evaluating various models, including bundled payments, capitation, shared savings, and pay for performance. Of the payers in this survey, 39% have already implemented oncology pathways, and 59% who have not already done so are planning to implement pathways in 2 years. Input from local oncology experts is an important resource for pathway development, and a substantial majority (95%) of payers will use pathways to address earlier initiation of palliative care discussions where appropriate. Conclusion Payers anticipate that there will be a rapid expansion of the use of innovative

  5. New galactic star clusters discovered in the VVV survey. Candidates projected on the inner disk and bulge

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Chené, A.-N.; Ramírez Alegría, S.; Sharma, S.; Clarke, J. R. A.; Kurtev, R.; Negueruela, I.; Marco, A.; Amigo, P.; Minniti, D.; Bica, E.; Bonatto, C.; Catelan, M.; Fierro, C.; Geisler, D.; Gromadzki, M.; Hempel, M.; Hanson, M. M.; Ivanov, V. D.; Lucas, P.; Majaess, D.; Moni Bidin, C.; Popescu, B.; Saito, R. K.

    2014-09-01

    Context. VISTA Variables in the Vía Láctea (VVV) is one of six ESO Public Surveys using the 4 meter Visible and Infrared Survey Telescope for Astronomy (VISTA). The VVV survey covers the Milky Way bulge and an adjacent section of the disk, and one of the principal objectives is to search for new star clusters within previously unreachable obscured parts of the Galaxy. Aims: The primary motivation behind this work is to discover and analyze obscured star clusters in the direction of the inner Galactic disk and bulge. Methods: Regions of the inner disk and bulge covered by the VVV survey were visually inspected using composite JHKS color images to select new cluster candidates on the basis of apparent overdensities. DR1, DR2, CASU, and point spread function photometry of 10 × 10 arcmin fields centered on each candidate cluster were used to construct color-magnitude and color-color diagrams. Follow-up spectroscopy of the brightest members of several cluster candidates was obtained in order to clarify their nature. Results: We report the discovery of 58 new infrared cluster candidates. Fundamental parameters such as age, distance, and metallicity were determined for 20 of the most populous clusters. Based on observations gathered as part of observing programs: 179.B-2002,VIRCAM, VISTA at ESO, Paranal Observatory; NTT at ESO, La Silla Observatory (programs 087.D-0490A and 089.D-0462A) and with the SOAR telescope at the NOAO (program CN2012A-045).

  6. The colour-magnitude relation of elliptical and lenticular galaxies in the ESO Distant Cluster Survey

    NASA Astrophysics Data System (ADS)

    Jaffé, Yara L.; Aragón-Salamanca, Alfonso; De Lucia, Gabriella; Jablonka, Pascale; Rudnick, Gregory; Saglia, Roberto; Zaritsky, Dennis

    2011-01-01

    In this paper we study the colour-magnitude relation (CMR) for a sample of 172 morphologically classified elliptical and S0 cluster galaxies from the ESO Distant Cluster Survey (EDisCS) at 0.4 ≲z≲ 0.8. The intrinsic colour scatter about the CMR is very small (<σint>= 0.076) in rest-frame U-V. However, there is a small minority of faint early-type galaxies (7 per cent) that are significantly bluer than the CMR. We observe no significant dependence of σint with redshift or cluster velocity dispersion. Because our sample is strictly morphologically selected, this implies that by the time cluster elliptical and S0 galaxies achieve their morphology, the vast majority have already joined the red sequence. The only exception seems to be the very small fraction of faint blue early types. Assuming that the intrinsic colour scatter is due to differences in stellar population ages, we estimate the galaxy formation redshift zF of each cluster and find that zF does not depend on the cluster velocity dispersion. However, zF increases weakly with cluster redshift within the EDisCS sample. This trend becomes very clear when higher redshift clusters from the literature are included. This suggests that, at any given redshift, in order to have a population of fully formed ellipticals and S0s they needed to have formed most of their stars ≃2-4 Gyr prior to observation. That does not mean that all early-type galaxies in all clusters formed at these high redshifts. It means that the ones we see already having early-type morphologies also have reasonably old stellar populations. This is partly a manifestation of the `progenitor bias', but also a consequence of the fact that the vast majority of the early-type galaxies in clusters (in particular the massive galaxies) were already red (i.e. already had old stellar populations) by the time they achieved their morphology. Elliptical and S0 galaxies exhibit very similar colour scatter, implying similar stellar population ages. The

  7. WINGS: A WIde-field Nearby Galaxy-cluster Survey. II. Deep optical photometry of 77 nearby clusters

    NASA Astrophysics Data System (ADS)

    Varela, J.; D'Onofrio, M.; Marmo, C.; Fasano, G.; Bettoni, D.; Cava, A.; Couch, W. J.; Dressler, A.; Kjærgaard, P.; Moles, M.; Pignatelli, E.; Poggianti, B. M.; Valentinuzzi, T.

    2009-04-01

    Context: This is the second paper of a series devoted to the WIde Field Nearby Galaxy-cluster Survey (WINGS). WINGS is a long term project which is gathering wide-field, multi-band imaging and spectroscopy of galaxies in a complete sample of 77 X-ray selected, nearby clusters (0.04 < z < 0.07) located far from the galactic plane (|b|≥ 20°). The main goal of this project is to establish a local reference for evolutionary studies of galaxies and galaxy clusters. Aims: This paper presents the optical (B,V) photometric catalogs of the WINGS sample and describes the procedures followed to construct them. We have paid special care to correctly treat the large extended galaxies (which includes the brightest cluster galaxies) and the reduction of the influence of the bright halos of very bright stars. Methods: We have constructed photometric catalogs based on wide-field images in B and V bands using SExtractor. Photometry has been performed on images in which large galaxies and halos of bright stars were removed after modeling them with elliptical isophotes. Results: We publish deep optical photometric catalogs (90% complete at V ~ 21.7, which translates to ˜ M^*_V+6 at mean redshift), giving positions, geometrical parameters, and several total and aperture magnitudes for all the objects detected. For each field we have produced three catalogs containing galaxies, stars and objects of “unknown” classification (~6%). From simulations we found that the uncertainty of our photometry is quite dependent of the light profile of the objects with stars having the most robust photometry and de Vaucouleurs profiles showing higher uncertainties and also an additional bias of ~-0.2^m. The star/galaxy classification of the bright objects (V < 20) was checked visually making negligible the fraction of misclassified objects. For fainter objects, we found that simulations do not provide reliable estimates of the possible misclassification and therefore we have compared our data

  8. CLUSTERING OF SLOAN DIGITAL SKY SURVEY III PHOTOMETRIC LUMINOUS GALAXIES: THE MEASUREMENT, SYSTEMATICS, AND COSMOLOGICAL IMPLICATIONS

    SciTech Connect

    Ho, Shirley; White, Martin; Schlegel, David J.; Seljak, Uros; Reid, Beth; Cuesta, Antonio; Padmanabhan, Nikhil; Seo, Hee-Jong; De Putter, Roland; Ross, Ashley J.; Percival, Will J.; Saito, Shun; Schlafly, Eddie; Hernandez-Monteagudo, Carlos; Sanchez, Ariel G.; Blanton, Michael; Skibba, Ramin; Schneider, Don; Mena, Olga; Viel, Matteo; and others

    2012-12-10

    The Sloan Digital Sky Survey (SDSS) surveyed 14,555 deg{sup 2}, and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between z = 0.45 and z = 0.65, constructed from the SDSS using methods described in Ross et al. This data set spans 11,000 deg{sup 2} and probes a volume of 3 h {sup -3} Gpc{sup 3}, making it the largest volume ever used for galaxy clustering measurements. We describe in detail the construction of the survey window function and various systematics affecting our measurement. With such a large volume, high-precision cosmological constraints can be obtained given careful control and understanding of the observational systematics. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadratic estimator at four redshift slices with an accuracy of {approx}15%, with a bin size of {delta}{sub l} = 10 on scales of the baryon acoustic oscillations (BAOs; at l {approx} 40-400). We also apply corrections to the power spectra due to systematics and derive cosmological constraints using the full shape of the power spectra. For a flat {Lambda}CDM model, when combined with cosmic microwave background Wilkinson Microwave Anisotropy Probe 7 (WMAP7) and H{sub 0} constraints from using 600 Cepheids observed by Wide Field Camera 3 (WFC3; HST), we find {Omega}{sub {Lambda}} = 0.73 {+-} 0.019 and H{sub 0} to be 70.5 {+-} 1.6 s{sup -1} Mpc{sup -1} km. For an open {Lambda}CDM model, when combined with WMAP7 + HST, we find {Omega}{sub K} = 0.0035 {+-} 0.0054, improved over WMAP7+HST alone by 40%. For a wCDM model, when combined with WMAP7+HST+SN, we find w = -1.071 {+-} 0.078, and H{sub 0} to be 71.3 {+-} 1.7 s{sup -1} Mpc{sup -1} km, which is competitive with the latest large-scale structure constraints from large spectroscopic

  9. Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics, and Cosmological Implications

    NASA Astrophysics Data System (ADS)

    Ho, Shirley; Cuesta, Antonio; Seo, Hee-Jong; de Putter, Roland; Ross, Ashley J.; White, Martin; Padmanabhan, Nikhil; Saito, Shun; Schlegel, David J.; Schlafly, Eddie; Seljak, Uros; Hernández-Monteagudo, Carlos; Sánchez, Ariel G.; Percival, Will J.; Blanton, Michael; Skibba, Ramin; Schneider, Don; Reid, Beth; Mena, Olga; Viel, Matteo; Eisenstein, Daniel J.; Prada, Francisco; Weaver, Benjamin A.; Bahcall, Neta; Bizyaev, Dimitry; Brewinton, Howard; Brinkman, Jon; Nicolaci da Costa, Luiz; Gott, John R.; Malanushenko, Elena; Malanushenko, Viktor; Nichol, Bob; Oravetz, Daniel; Pan, Kaike; Palanque-Delabrouille, Nathalie; Ross, Nicholas P.; Simmons, Audrey; de Simoni, Fernando; Snedden, Stephanie; Yeche, Christophe

    2012-12-01

    The Sloan Digital Sky Survey (SDSS) surveyed 14,555 deg2, and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between z = 0.45 and z = 0.65, constructed from the SDSS using methods described in Ross et al. This data set spans 11,000 deg2 and probes a volume of 3 h -3 Gpc3, making it the largest volume ever used for galaxy clustering measurements. We describe in detail the construction of the survey window function and various systematics affecting our measurement. With such a large volume, high-precision cosmological constraints can be obtained given careful control and understanding of the observational systematics. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadratic estimator at four redshift slices with an accuracy of ~15%, with a bin size of δ l = 10 on scales of the baryon acoustic oscillations (BAOs; at l ~ 40-400). We also apply corrections to the power spectra due to systematics and derive cosmological constraints using the full shape of the power spectra. For a flat ΛCDM model, when combined with cosmic microwave background Wilkinson Microwave Anisotropy Probe 7 (WMAP7) and H 0 constraints from using 600 Cepheids observed by Wide Field Camera 3 (WFC3; HST), we find ΩΛ = 0.73 ± 0.019 and H 0 to be 70.5 ± 1.6 s-1 Mpc-1 km. For an open ΛCDM model, when combined with WMAP7 + HST, we find Ω K = 0.0035 ± 0.0054, improved over WMAP7+HST alone by 40%. For a wCDM model, when combined with WMAP7+HST+SN, we find w = -1.071 ± 0.078, and H 0 to be 71.3 ± 1.7 s-1 Mpc-1 km, which is competitive with the latest large-scale structure constraints from large spectroscopic surveys such as the SDSS Data Release 7 (DR7) and WiggleZ. We also find that systematic-corrected power spectra give consistent

  10. Hotspots of Malaria Transmission in the Peruvian Amazon: Rapid Assessment through a Parasitological and Serological Survey

    PubMed Central

    Rosas-Aguirre, Angel; Speybroeck, Niko; Llanos-Cuentas, Alejandro; Rosanas-Urgell, Anna; Carrasco-Escobar, Gabriel; Rodriguez, Hugo; Gamboa, Dionicia; Contreras-Mancilla, Juan; Alava, Freddy; Soares, Irene S.; Remarque, Edmond; D´Alessandro, Umberto; Erhart, Annette

    2015-01-01

    Background With low and markedly seasonal malaria transmission, increasingly sensitive tools for better stratifying the risk of infection and targeting control interventions are needed. A cross-sectional survey to characterize the current malaria transmission patterns, identify hotspots, and detect recent changes using parasitological and serological measures was conducted in three sites of the Peruvian Amazon. Material and Methods After full census of the study population, 651 participants were interviewed, clinically examined and had a blood sample taken for the detection of malaria parasites (microscopy and PCR) and antibodies against P. vivax (PvMSP119, PvAMA1) and P. falciparum (PfGLURP, PfAMA1) antigens by ELISA. Risk factors for malaria infection (positive PCR) and malaria exposure (seropositivity) were assessed by multivariate survey logistic regression models. Age-specific seroprevalence was analyzed using a reversible catalytic conversion model based on maximum likelihood for generating seroconversion rates (SCR, λ). SaTScan was used to detect spatial clusters of serology-positive individuals within each site. Results The overall parasite prevalence by PCR was low, i.e. 3.9% for P. vivax and 6.7% for P. falciparum, while the seroprevalence was substantially higher, 33.6% for P. vivax and 22.0% for P. falciparum, with major differences between study sites. Age and location (site) were significantly associated with P. vivax exposure; while location, age and outdoor occupation were associated with P. falciparum exposure. P. falciparum seroprevalence curves showed a stable transmission throughout time, while for P. vivax transmission was better described by a model with two SCRs. The spatial analysis identified well-defined clusters of P. falciparum seropositive individuals in two sites, while it detected only a very small cluster of P. vivax exposure. Conclusion The use of a single parasitological and serological malaria survey has proven to be an efficient

  11. The sluggs survey: HST/ACS mosaic imaging of the NGC 3115 globular cluster system

    SciTech Connect

    Jennings, Zachary G.; Romanowsky, Aaron J.; Brodie, Jean P.; Arnold, Jacob A.; Strader, Jay; Lin, Dacheng; Irwin, Jimmy A.; Wong, Ka-Wah; Sivakoff, Gregory R.

    2014-08-01

    We present Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) g and z photometry and half-light radii R {sub h} measurements of 360 globular cluster (GC) candidates around the nearby S0 galaxy NGC 3115. We also include Subaru/Suprime-Cam g, r, and i photometry of 421 additional candidates. The well-established color bimodality of the GC system is obvious in the HST/ACS photometry. We find evidence for a 'blue tilt' in the blue GC subpopulation, wherein the GCs in the blue subpopulation get redder as luminosity increases, indicative of a mass-metallicity relationship. We find a color gradient in both the red and blue subpopulations, with each group of clusters becoming bluer at larger distances from NGC 3115. The gradient is of similar strength in both subpopulations, but is monotonic and more significant for the blue clusters. On average, the blue clusters have ∼10% larger R {sub h} than the red clusters. This average difference is less than is typically observed for early-type galaxies but does match that measured in the literature for the Sombrero Galaxy (M104), suggesting that morphology and inclination may affect the measured size difference between the red and blue clusters. However, the scatter on the R {sub h} measurements is large. We also identify 31 clusters more extended than typical GCs, which we term ultra-compact dwarf (UCD) candidates. Many of these objects are actually considerably fainter than typical UCDs. While it is likely that a significant number will be background contaminants, six of these UCD candidates are spectroscopically confirmed as NGC 3115 members. To explore the prevalence of low-mass X-ray binaries in the GC system, we match our ACS and Suprime-Cam detections to corresponding Chandra X-ray sources. We identify 45 X-ray-GC matches: 16 among the blue subpopulation and 29 among the red subpopulation. These X-ray/GC coincidence fractions are larger than is typical for most GC systems, probably due to the increased depth of

  12. The Formation of Secondary Stellar Generations in Massive Young Star Clusters from Rapidly Cooling Shocked Stellar Winds

    NASA Astrophysics Data System (ADS)

    Wünsch, R.; Palouš, J.; Tenorio-Tagle, G.; Ehlerová, S.

    2017-01-01

    We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 107 M⊙ and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structures that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, ηhe, and the mass loading, ηml. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if ηhe ≲ 10%, which is suggested by the observations. Furthermore, for low ηhe, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.

  13. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    NASA Astrophysics Data System (ADS)

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-05-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.

  14. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    PubMed Central

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-01-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi. PMID:27143514

  15. Infant immunization coverage in Italy: estimates by simultaneous EPI cluster surveys of regions. ICONA Study Group.

    PubMed Central

    Salmaso, S.; Rota, M. C.; Ciofi Degli Atti, M. L.; Tozzi, A. E.; Kreidl, P.

    1999-01-01

    In 1998, a series of regional cluster surveys (the ICONA Study) was conducted simultaneously in 19 out of the 20 regions in Italy to estimate the mandatory immunization coverage of children aged 12-24 months with oral poliovirus (OPV), diphtheria-tetanus (DT) and viral hepatitis B (HBV) vaccines, as well as optional immunization coverage with pertussis, measles and Haemophilus influenzae b (Hib) vaccines. The study children were born in 1996 and selected from birth registries using the Expanded Programme of Immunization (EPI) cluster sampling technique. Interviews with parents were conducted to determine each child's immunization status and the reasons for any missed or delayed vaccinations. The study population comprised 4310 children aged 12-24 months. Coverage for both mandatory and optional vaccinations differed by region. The overall coverage for mandatory vaccines (OPV, DT and HBV) exceeded 94%, but only 79% had been vaccinated in accord with the recommended schedule (i.e. during the first year of life). Immunization coverage for pertussis increased from 40% (1993 survey) to 88%, but measles coverage (56%) remained inadequate for controlling the disease; Hib coverage was 20%. These results confirm that in Italy the coverage of only mandatory immunizations is satisfactory. Pertussis immunization coverage has improved dramatically since the introduction of acellular vaccines. A greater effort to educate parents and physicians is still needed to improve the coverage of optional vaccinations in all regions. PMID:10593033

  16. The HST/ACS Coma Cluster Survey. II. Data Description and Source Catalogs

    NASA Astrophysics Data System (ADS)

    Hammer, Derek; Verdoes Kleijn, Gijs; Hoyos, Carlos; den Brok, Mark; Balcells, Marc; Ferguson, Henry C.; Goudfrooij, Paul; Carter, David; Guzmán, Rafael; Peletier, Reynier F.; Smith, Russell J.; Graham, Alister W.; Trentham, Neil; Peng, Eric; Puzia, Thomas H.; Lucey, John R.; Jogee, Shardha; Aguerri, Alfonso L.; Batcheldor, Dan; Bridges, Terry J.; Chiboucas, Kristin; Davies, Jonathan I.; del Burgo, Carlos; Erwin, Peter; Hornschemeier, Ann; Hudson, Michael J.; Huxor, Avon; Jenkins, Leigh; Karick, Arna; Khosroshahi, Habib; Kourkchi, Ehsan; Komiyama, Yutaka; Lotz, Jennifer; Marzke, Ronald O.; Marinova, Irina; Matkovic, Ana; Merritt, David; Miller, Bryan W.; Miller, Neal A.; Mobasher, Bahram; Mouhcine, Mustapha; Okamura, Sadanori; Percival, Sue; Phillipps, Steven; Poggianti, Bianca M.; Price, James; Sharples, Ray M.; Tully, R. Brent; Valentijn, Edwin

    2010-11-01

    The Coma cluster, Abell 1656, was the target of an HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in early 2007, the partially completed survey still covers ~50% of the core high-density region in Coma. Observations were performed for 25 fields that extend over a wide range of cluster-centric radii (~1.75 Mpc or 1°) with a total coverage area of 274 arcmin2. The majority of the fields are located near the core region of Coma (19/25 pointings) with six additional fields in the southwest region of the cluster. In this paper, we present reprocessed images and SEXTRACTOR source catalogs for our survey fields, including a detailed description of the methodology used for object detection and photometry, the subtraction of bright galaxies to measure faint underlying objects, and the use of simulations to assess the photometric accuracy and completeness of our catalogs. We also use simulations to perform aperture corrections for the SEXTRACTOR Kron magnitudes based only on the measured source flux and its half-light radius. We have performed photometry for ~73,000 unique objects; approximately one-half of our detections are brighter than the 10σ point-source detection limit at F814W = 25.8 mag (AB). The slight majority of objects (60%) are unresolved or only marginally resolved by ACS. We estimate that Coma members are 5%-10% of all source detections, which consist of a large population of unresolved compact sources (primarily globular clusters but also ultra-compact dwarf galaxies) and a wide variety of extended galaxies from a cD galaxy to dwarf low surface brightness galaxies. The red sequence of Coma member galaxies has a color-magnitude relation with a constant slope and dispersion over 9 mag (-21 < M F814W < -13). The initial data release for the HST-ACS Coma Treasury program was made available to the public in 2008 August. The images and catalogs described in

  17. THE CLUSTERING CHARACTERISTICS OF H I-SELECTED GALAXIES FROM THE 40% ALFALFA SURVEY

    SciTech Connect

    Martin, Ann M.; Giovanelli, Riccardo; Haynes, Martha P.; Guzzo, Luigi E-mail: riccardo@astro.cornell.edu E-mail: luigi.guzzo@brera.inaf.it

    2012-05-01

    The 40% Arecibo Legacy Fast ALFA survey catalog ({alpha}.40) of {approx}10,150 H I-selected galaxies is used to analyze the clustering properties of gas-rich galaxies. By employing the Landy-Szalay estimator and a full covariance analysis for the two-point galaxy-galaxy correlation function, we obtain the real-space correlation function and model it as a power law, {xi}(r) = (r/r{sub 0}){sup -{gamma}}, on scales <10 h{sup -1} Mpc. As the largest sample of blindly H I-selected galaxies to date, {alpha}.40 provides detailed understanding of the clustering of this population. We find {gamma} = 1.51 {+-} 0.09 and r{sub 0} = 3.3 + 0.3, -0.2 h{sup -1} Mpc, reinforcing the understanding that gas-rich galaxies represent the most weakly clustered galaxy population known; we also observe a departure from a pure power-law shape at intermediate scales, as predicted in {Lambda}CDM halo occupation distribution models. Furthermore, we measure the bias parameter for the {alpha}.40 galaxy sample and find that H I galaxies are severely antibiased on small scales, but only weakly antibiased on large scales. The robust measurement of the correlation function for gas-rich galaxies obtained via the {alpha}.40 sample constrains models of the distribution of H I in simulated galaxies, and will be employed to better understand the role of gas in environmentally dependent galaxy evolution.

  18. The SLUGGS survey: globular cluster stellar population trends from weak absorption lines in stacked spectra

    NASA Astrophysics Data System (ADS)

    Usher, Christopher; Forbes, Duncan A.; Brodie, Jean P.; Romanowsky, Aaron J.; Strader, Jay; Conroy, Charlie; Foster, Caroline; Pastorello, Nicola; Pota, Vincenzo; Arnold, Jacob A.

    2015-01-01

    As part of the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey, we stack 1137 Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) spectra of globular clusters from 10 galaxies to study their stellar populations in detail. The stacked spectra have median signal-to-noise ratios of ˜90 Å-1. Besides the calcium triplet, we study weaker sodium, magnesium, titanium and iron lines as well as the Hα and higher order Paschen hydrogen lines. In general, the stacked spectra are consistent with old ages and a Milky Way-like initial mass function. However, we see different metal line index strengths at fixed colour and magnitude, and differences in the calcium triplet-colour relation from galaxy to galaxy. We interpret this as strong evidence for variations in the globular cluster colour-metallicity relation between galaxies. Two possible explanations for the colour-metallicity relation variations are that the average ages of globular clusters vary from galaxy to galaxy or that the average abundances of light elements (i.e. He, C, N and O) differ between galaxies. Stacking spectra by magnitude, we see that the colours become redder and metal line indices stronger with brighter magnitudes. These trends are consistent with the previously reported `blue tilts' being mass-metallicity relations.

  19. The Gaia-ESO Survey: Kinematic structure in the Gamma Velorum cluster

    NASA Astrophysics Data System (ADS)

    Jeffries, R. D.; Jackson, R. J.; Cottaar, M.; Koposov, S. E.; Lanzafame, A. C.; Meyer, M. R.; Prisinzano, L.; Randich, S.; Sacco, G. G.; Brugaletta, E.; Caramazza, M.; Damiani, F.; Franciosini, E.; Frasca, A.; Gilmore, G.; Feltzing, S.; Micela, G.; Alfaro, E.; Bensby, T.; Pancino, E.; Recio-Blanco, A.; de Laverny, P.; Lewis, J.; Magrini, L.; Morbidelli, L.; Costado, M. T.; Jofré, P.; Klutsch, A.; Lind, K.; Maiorca, E.

    2014-03-01

    Context. A key science goal of the Gaia-ESO survey (GES) at the VLT is to use the kinematics of low-mass stars in young clusters and star forming regions to probe their dynamical histories and how they populate the field as they become unbound. The clustering of low-mass stars around the massive Wolf-Rayet binary system γ2 Velorum was one of the first GES targets. Aims: We empirically determine the radial velocity precision of GES data, construct a kinematically unbiased sample of cluster members and characterise their dynamical state. Methods: Targets were selected from colour-magnitude diagrams and intermediate resolution spectroscopy was used to derive radial velocities and assess membership from the strength of the Li i 6708 Å line. The radial velocity distribution was analysed using a maximum likelihood technique that accounts for unresolved binaries. Results: The GES radial velocity precision is about 0.25 km s-1 and sufficient to resolve velocity structure in the low-mass population around γ2 Vel. The structure is well fitted by two kinematic components with roughly equal numbers of stars; the first has an intrinsic dispersion of 0.34 ± 0.16 km s-1, consistent with virial equilibrium. The second has a broader dispersion of 1.60 ± 0.37 km s-1 and is offset from the first by ≃2 km s-1. The first population is older by 1-2 Myr based on a greater level of Li depletion seen among its M-type stars and is probably more centrally concentrated around γ2 Vel. Conclusions: We consider several formation scenarios, concluding that the two kinematic components are a bound remnant of the original, denser cluster that formed γ2 Vel, and a dispersed population from the wider Vela OB2 association, of which γ2 Vel is the most massive member. The apparent youth of γ2 Vel compared to the older (≥10 Myr) low-mass population surrounding it suggests a scenario in which the massive binary formed in a clustered environment after the formation of the bulk of the low

  20. Sloan Digital Sky Survey III photometric quasar clustering: probing the initial conditions of the Universe

    NASA Astrophysics Data System (ADS)

    Ho, Shirley; Agarwal, Nishant; Myers, Adam D.; Lyons, Richard; Disbrow, Ashley; Seo, Hee-Jong; Ross, Ashley; Hirata, Christopher; Padmanabhan, Nikhil; O'Connell, Ross; Huff, Eric; Schlegel, David; Slosar, Anže; Weinberg, David; Strauss, Michael; Ross, Nicholas P.; Schneider, Donald P.; Bahcall, Neta; Brinkmann, J.; Palanque-Delabrouille, Nathalie; Yèche, Christophe

    2015-05-01

    The Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z=0.5 and z=2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans 0~ 11,00 square degrees and probes a volume of 80 h-3 Gpc3. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimal quadratic estimator in four redshift slices with an accuracy of ~ 25% over a bin width of δl ~ 10-15 on scales corresponding to matter-radiation equality and larger (0l ~ 2-3). Observational systematics can strongly bias clustering measurements on large scales, which can mimic cosmologically relevant signals such as deviations from Gaussianity in the spectrum of primordial perturbations. We account for systematics by employing a new method recently proposed by Agarwal et al. (2014) to the clustering of photometrically classified quasars. We carefully apply our methodology to mitigate known observational systematics and further remove angular bins that are contaminated by unknown systematics. Combining quasar data with the photometric luminous red galaxy (LRG) sample of Ross et al. (2011) and Ho et al. (2012), and marginalizing over all bias and shot noise-like parameters, we obtain a constraint on local primordial non-Gaussianity of fNL = -113+154-154 (1σ error). We next assume that the bias of quasar and galaxy distributions can be obtained independently from quasar/galaxy-CMB lensing cross-correlation measurements (such as those in Sherwin et al. (2013)). This can be facilitated by spectroscopic observations of the sources, enabling the redshift distribution to be completely determined, and allowing precise estimates of the bias

  1. Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function

    SciTech Connect

    Berlind, Andreas A.; Frieman, Joshua A.; Weinberg, David H.; Blanton, Michael R.; Warren, Michael S.; Abazajian, Kevork; Scranton, Ryan; Hogg, David W.; Scoccimarro, Roman; Bahcall, Neta A.; Brinkmann, J.; Gott, J.Richard, III; Kleinman, S.J.; Krzesinski, J.; Lee, Brian C.; Miller, Christopher J.; Nitta, Atsuko; Schneider, Donald P.; Tucker, Douglas L.; Zehavi, Idit; /CCPP, New York /Chicago U., Astron. Astrophys. Ctr. /Ohio State U., Dept. Astron. /Los Alamos /Pittsburgh U. /Princeton U. /Subaru Telescope /Apache Point Observ. /Mt. Suhora Observ., Cracow /LBL, Berkeley /Cerro-Tololo InterAmerican Obs. /Penn State U., Astron. Astrophys. /Fermilab /Arizona U., Astron. Dept. - Steward Observ. /Case Western Reserve U.

    2006-01-01

    We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups with ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.

  2. The Gaia-ESO Survey: A globular cluster escapee in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Lind, K.; Koposov, S. E.; Battistini, C.; Marino, A. F.; Ruchti, G.; Serenelli, A.; Worley, C. C.; Alves-Brito, A.; Asplund, M.; Barklem, P. S.; Bensby, T.; Bergemann, M.; Blanco-Cuaresma, S.; Bragaglia, A.; Edvardsson, B.; Feltzing, S.; Gruyters, P.; Heiter, U.; Jofre, P.; Korn, A. J.; Nordlander, T.; Ryde, N.; Soubiran, C.; Gilmore, G.; Randich, S.; Ferguson, A. M. N.; Jeffries, R. D.; Vallenari, A.; Allende Prieto, C.; Pancino, E.; Recio-Blanco, A.; Romano, D.; Smiljanic, R.; Bellazzini, M.; Damiani, F.; Hill, V.; de Laverny, P.; Jackson, R. J.; Lardo, C.; Zaggia, S.

    2015-03-01

    A small fraction of the halo field is made up of stars that share the light element (Z ≤ 13) anomalies characteristic of second generation globular cluster (GC) stars. The ejected stars shed light on the formation of the Galactic halo by tracing the dynamical history of the clusters, which are believed to have once been more massive. Some of these ejected stars are expected to show strong Al enhancement at the expense of shortage of Mg, but until now no such star has been found. We search for outliers in the Mg and Al abundances of the few hundreds of halo field stars observed in the first eighteen months of the Gaia-ESO public spectroscopic survey. One halo star at the base of the red giant branch, here referred to as 22593757-4648029 is found to have [ Mg/Fe ] = -0.36 ± 0.04 and [ Al/Fe ] = 0.99 ± 0.08, which is compatible with the most extreme ratios detected in GCs so far. We compare the orbit of 22593757-4648029 to GCs of similar metallicity andfind it unlikely that this star has been tidally stripped with low ejection velocity from any of the clusters. However, both chemical and kinematic arguments render it plausible that the star has been ejected at high velocity from the anomalous GC ω Centauri within the last few billion years. We cannot rule out other progenitor GCs, because some may have disrupted fully, and the abundance and orbital data are inadequate for many of those that are still intact. Based on data acquired by the Gaia-ESO Survey, programme ID 188.B-3002. Observations were made with ESO Telescopes at the La Silla Paranal Observatory.Appendix A is available in electronic form at http://www.aanda.org

  3. The 2dF Galaxy Redshift Survey: correlation with the ROSAT-ESO flux-limited X-ray galaxy cluster survey

    NASA Astrophysics Data System (ADS)

    Hilton, Matt; Collins, Chris; De Propris, Roberto; Baldry, Ivan K.; Baugh, Carlton M.; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Cole, Shaun; Colless, Matthew; Couch, Warrick J.; Dalton, Gavin B.; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Frenk, Carlos S.; Glazebrook, Karl; Jackson, Carole A.; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Maddox, Steve J.; Madgwick, Darren; Norberg, Peder; Peacock, John A.; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith

    2005-10-01

    The ROSAT-European Southern Observatory (ESO) flux-limited X-ray (REFLEX) galaxy cluster survey and the Two-degree Field Galaxy Redshift Survey (2dFGRS), respectively, comprise the largest, homogeneous X-ray selected cluster catalogue and completed galaxy redshift survey. In this work, we combine these two outstanding data sets in order to study the effect of the large-scale cluster environment, as traced by X-ray luminosity, on the properties of the cluster member galaxies. We measure the LX-σr relation from the correlated data set and find it to be consistent with recent results found in the literature. Using a sample of 19 clusters with LX>= 0.36 × 1044 erg s-1 in the 0.1-2.4 keV band, and 49 clusters with lower X-ray luminosity, we find that the fraction of early spectral type (η<=-1.4), passively evolving galaxies is significantly higher in the high-LX sample within R200. We extend the investigation to include composite bJ cluster luminosity functions, and find that the characteristic magnitude of the Schechter-function fit to the early-type luminosity function is fainter for the high-LX sample compared to the low-LX sample (ΔM*= 0.58 +/- 0.14). This seems to be driven by a deficit of such galaxies with MbJ~-21. In contrast, we find no significant differences between the luminosity functions of star-forming, late-type galaxies. We believe these results are consistent with a scenario in which the high-LX clusters are more dynamically evolved systems than the low-LX clusters.

  4. Dynamics of cD Clusters of Galaxies. 4; Conclusion of a Survey of 25 Abell Clusters

    NASA Technical Reports Server (NTRS)

    Oegerle, William R.; Hill, John M.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present the final results of a spectroscopic study of a sample of cD galaxy clusters. The goal of this program has been to study the dynamics of the clusters, with emphasis on determining the nature and frequency of cD galaxies with peculiar velocities. Redshifts measured with the MX Spectrometer have been combined with those obtained from the literature to obtain typically 50 - 150 observed velocities in each of 25 galaxy clusters containing a central cD galaxy. We present a dynamical analysis of the final 11 clusters to be observed in this sample. All 25 clusters are analyzed in a uniform manner to test for the presence of substructure, and to determine peculiar velocities and their statistical significance for the central cD galaxy. These peculiar velocities were used to determine whether or not the central cD galaxy is at rest in the cluster potential well. We find that 30 - 50% of the clusters in our sample possess significant subclustering (depending on the cluster radius used in the analysis), which is in agreement with other studies of non-cD clusters. Hence, the dynamical state of cD clusters is not different than other present-day clusters. After careful study, four of the clusters appear to have a cD galaxy with a significant peculiar velocity. Dressler-Shectman tests indicate that three of these four clusters have statistically significant substructure within 1.5/h(sub 75) Mpc of the cluster center. The dispersion 75 of the cD peculiar velocities is 164 +41/-34 km/s around the mean cluster velocity. This represents a significant detection of peculiar cD velocities, but at a level which is far below the mean velocity dispersion for this sample of clusters. The picture that emerges is one in which cD galaxies are nearly at rest with respect to the cluster potential well, but have small residual velocities due to subcluster mergers.

  5. The ROSAT-ESO flux limited X-ray galaxy cluster survey (REFLEX II). I. Newly identified X-ray luminous clusters at z ≥ 0.2

    NASA Astrophysics Data System (ADS)

    Chon, G.; Böhringer, H.

    2012-02-01

    We report 19 intermediate redshift clusters newly detected in the ROSAT All-Sky survey that are spectroscopically confirmed. They form a part of 911 objects in the REFLEX II cluster catalogue with a limiting flux of 1.8 × 10-12 erg/s/cm2 in the 0.1-2.4 keV ROSAT band at redshift z ≥ 0.2. In addition we report three clusters from the REFLEX III supplementary catalogue, which contains objects below the REFLEX II flux limit but satisfies the redshift constraint above. These clusters are spectroscopically followed-up by our ESO NTT-EFOSC2 campaigns for the redshift measurement. We describe our observing and data reduction methods. We show how X-ray properties such as spectral hardness ratio and source extent can be used as important diagnostics in selecting galaxy cluster candidates. Physical properties of the clusters are subsequently calculated from the X-ray observations. This sample contains the high mass and intermediate-redshift galaxy clusters for astrophysical and cosmological applications. Based on the data obtained at the European Southern Observatory, La Silla, Chile.

  6. X-RAY EMISSION FROM TWO INFRARED-SELECTED GALAXY CLUSTERS AT z > 1.4 IN THE IRAC SHALLOW CLUSTER SURVEY

    SciTech Connect

    Brodwin, M.; Vikhlinin, A.; Ashby, M. L. N.; Forman, W. R.; Jones, C.; Snyder, G.; Stern, D.; Eisenhardt, P. R.; Moustakas, L. A.; Stanford, S. A.; Zeimann, G.; Gonzalez, A. H.; Gettings, D.; Mancone, C.; Bautz, M.; Miller, E. D.; Dey, A.; Jannuzi, B. T.; Hickox, R. C.; Ruel, J.

    2011-05-01

    We report the X-ray detection of two z > 1.4 infrared-selected galaxy clusters from the IRAC Shallow Cluster Survey (ISCS). We present new data from the Hubble Space Telescope and the W. M. Keck Observatory that spectroscopically confirm cluster ISCS J1432.4+3250 at z = 1.49, the most distant of 18 confirmed z > 1 clusters in the ISCS to date. We also present new spectroscopy for ISCS J1438.1+3414, previously reported at z = 1.41, and measure its dynamical mass. Clusters ISCS J1432.4+3250 and ISCS J1438.1+3414 are detected in 36 ks and 143 ks Chandra exposures at significances of 5.2{sigma} and 9.7{sigma}, from which we measure total masses of log (M{sub 200,L{sub X}}/M{sub sun}) = 14.4 {+-} 0.2 and 14.35 {sup +0.14}{sub -0.11}, respectively. The consistency of the X-ray and dynamical properties of these high-redshift clusters further demonstrates that the ISCS is robustly detecting massive clusters to at least z = 1.5.

  7. THE ACS SURVEY OF GLOBULAR CLUSTERS. XIII. PHOTOMETRIC CALIBRATION IN COMPARISON WITH STETSON STANDARDS

    SciTech Connect

    Hempel, Maren; Sarajedini, Ata; Anderson, Jay; Reid, I. Neill E-mail: ata@astro.ufl.edu E-mail: inr@stsci.edu; and others

    2014-03-01

    In this study we compare the photometric data of 34 Milky Way globular clusters, observed within the Advanced Camera for Surveys (ACS) Treasury Program (PI: A. Sarajedini) with the corresponding ground-based data, provided by the Photometric Standard Field Catalogs of Stetson. We focus on the transformation between the Hubble Space Telescope/ACS F606W to V-band and F814W to I-band only. The goal is to assess the validity of the filter transformation equations by Sirianni et al. with respect to their dependence on metallicity, horizontal branch morphology, mass, and integrated (V – I) color of the various globular clusters. The transformation equations as recommended by Sirianni et al. are based on synthetic photometry, were mostly tested on NGC 2419, and may introduce additional uncertainties when applied to different stellar populations. Such a dependence is expected due to the fact that the transformation equations are based on the observations of only one globular cluster, i.e., NGC 2419. Surprisingly, the correlation between offset and metallicity is found to be weak, with a low level significance. The correlation between offset and horizontal branch structure, as well as total cluster mass is still weaker. Based on the available data we do not find the photometric offset to be linked to multiple stellar populations, e.g., as found in NGC 0288, NGC 1851, and NGC 5139. The results of this study show that there are small systematic offsets between the transformed ACS- and observed ground-based photometry, and that these are only weakly correlated, if at all, with various cluster parameters and their underlying stellar populations. As a result, investigators wishing to transform globular cluster photometry from the Sirianni et al. ground-based V, I system onto the Stetson system simply need to add –0.040 (±0.012) to the V magnitudes and –0.047 (±0.011) to the I magnitudes. This in turn means that the transformed ACS V – I colors match the ground

  8. THE NEXT GENERATION VIRGO CLUSTER SURVEY. XV. THE PHOTOMETRIC REDSHIFT ESTIMATION FOR BACKGROUND SOURCES

    SciTech Connect

    Raichoor, A.; Mei, S.; Huertas-Company, M.; Licitra, R.; Erben, T.; Hildebrandt, H.; Ilbert, O.; Boissier, S.; Boselli, A.; Ball, N. M.; Côté, P.; Ferrarese, L.; Gwyn, S. D. J.; Kavelaars, J. J.; Chen, Y.-T.; Cuillandre, J.-C.; Duc, P. A.; Guhathakurta, P.; and others

    2014-12-20

    The Next Generation Virgo Cluster Survey (NGVS) is an optical imaging survey covering 104 deg{sup 2} centered on the Virgo cluster. Currently, the complete survey area has been observed in the u*giz bands and one third in the r band. We present the photometric redshift estimation for the NGVS background sources. After a dedicated data reduction, we perform accurate photometry, with special attention to precise color measurements through point-spread function homogenization. We then estimate the photometric redshifts with the Le Phare and BPZ codes. We add a new prior that extends to i {sub AB} = 12.5 mag. When using the u* griz bands, our photometric redshifts for 15.5 mag ≤ i ≲ 23 mag or z {sub phot} ≲ 1 galaxies have a bias |Δz| < 0.02, less than 5% outliers, a scatter σ{sub outl.rej.}, and an individual error on z {sub phot} that increases with magnitude (from 0.02 to 0.05 and from 0.03 to 0.10, respectively). When using the u*giz bands over the same magnitude and redshift range, the lack of the r band increases the uncertainties in the 0.3 ≲ z {sub phot} ≲ 0.8 range (–0.05 < Δz < –0.02, σ{sub outl.rej} ∼ 0.06, 10%-15% outliers, and z {sub phot.err.} ∼ 0.15). We also present a joint analysis of the photometric redshift accuracy as a function of redshift and magnitude. We assess the quality of our photometric redshifts by comparison to spectroscopic samples and by verifying that the angular auto- and cross-correlation function w(θ) of the entire NGVS photometric redshift sample across redshift bins is in agreement with the expectations.

  9. THE NEXT GENERATION VIRGO CLUSTER SURVEY. XIX. TOMOGRAPHY OF MILKY WAY SUBSTRUCTURES IN THE NGVS FOOTPRINT

    SciTech Connect

    Lokhorst, Deborah; Starkenburg, Else; Navarro, Julio F.; McConnachie, Alan W.; Ferrarese, Laura; Côté, Patrick; Gwyn, Stephen D. J.; Liu, Chengze; Peng, Eric W.; Cuillandre, Jean-Charles

    2016-03-10

    The Next Generation Virgo Cluster Survey (NGVS) is a deep u*giz survey targeting the Virgo Cluster of galaxies at 16.5 Mpc. This survey provides high-quality photometry over an ∼100 deg{sup 2} region straddling the constellations of Virgo and Coma Berenices. This sightline through the Milky Way is noteworthy in that it intersects two of the most prominent substructures in the Galactic halo: the Virgo overdensity (VOD) and Sagittarius stellar stream (close to its bifurcation point). In this paper, we use deep u*gi imaging from the NGVS to perform tomography of the VOD and Sagittarius stream using main-sequence turnoff (MSTO) stars as a halo tracer population. The VOD, whose centroid is known to lie at somewhat lower declinations (α ∼ 190°, δ ∼ −5°) than is covered by the NGVS, is nevertheless clearly detected in the NGVS footprint at distances between ∼8 and 25 kpc. By contrast, the Sagittarius stream is found to slice directly across the NGVS field at distances between 25 and 40 kpc, with a density maximum at ≃35 kpc. No evidence is found for new substructures beyond the Sagittarius stream, at least out to a distance of ∼90 kpc—the largest distance to which we can reliably trace the halo using MSTO stars. We find clear evidence for a distance gradient in the Sagittarius stream across the ∼30° of sky covered by the NGVS and its flanking fields. We compare our distance measurements along the stream with those predicted by leading stream models.

  10. The Next Generation Virgo Cluster Survey. XIX. Tomography of Milky Way Substructures in the NGVS Footprint

    NASA Astrophysics Data System (ADS)

    Lokhorst, Deborah; Starkenburg, Else; McConnachie, Alan W.; Navarro, Julio F.; Ferrarese, Laura; Côté, Patrick; Liu, Chengze; Peng, Eric W.; Gwyn, Stephen D. J.; Cuillandre, Jean-Charles; Guhathakurta, Puragra

    2016-03-01

    The Next Generation Virgo Cluster Survey (NGVS) is a deep u*giz survey targeting the Virgo Cluster of galaxies at 16.5 Mpc. This survey provides high-quality photometry over an ˜100 deg2 region straddling the constellations of Virgo and Coma Berenices. This sightline through the Milky Way is noteworthy in that it intersects two of the most prominent substructures in the Galactic halo: the Virgo overdensity (VOD) and Sagittarius stellar stream (close to its bifurcation point). In this paper, we use deep u*gi imaging from the NGVS to perform tomography of the VOD and Sagittarius stream using main-sequence turnoff (MSTO) stars as a halo tracer population. The VOD, whose centroid is known to lie at somewhat lower declinations (α ˜ 190°, δ ˜ -5°) than is covered by the NGVS, is nevertheless clearly detected in the NGVS footprint at distances between ˜8 and 25 kpc. By contrast, the Sagittarius stream is found to slice directly across the NGVS field at distances between 25 and 40 kpc, with a density maximum at ≃35 kpc. No evidence is found for new substructures beyond the Sagittarius stream, at least out to a distance of ˜90 kpc—the largest distance to which we can reliably trace the halo using MSTO stars. We find clear evidence for a distance gradient in the Sagittarius stream across the ˜30° of sky covered by the NGVS and its flanking fields. We compare our distance measurements along the stream with those predicted by leading stream models.

  11. The Next Generation Virgo Cluster Survey. XV. The Photometric Redshift Estimation for Background Sources

    NASA Astrophysics Data System (ADS)

    Raichoor, A.; Mei, S.; Erben, T.; Hildebrandt, H.; Huertas-Company, M.; Ilbert, O.; Licitra, R.; Ball, N. M.; Boissier, S.; Boselli, A.; Chen, Y.-T.; Côté, P.; Cuillandre, J.-C.; Duc, P. A.; Durrell, P. R.; Ferrarese, L.; Guhathakurta, P.; Gwyn, S. D. J.; Kavelaars, J. J.; Lançon, A.; Liu, C.; MacArthur, L. A.; Muller, M.; Muñoz, R. P.; Peng, E. W.; Puzia, T. H.; Sawicki, M.; Toloba, E.; Van Waerbeke, L.; Woods, D.; Zhang, H.

    2014-12-01

    The Next Generation Virgo Cluster Survey (NGVS) is an optical imaging survey covering 104 deg2 centered on the Virgo cluster. Currently, the complete survey area has been observed in the u*giz bands and one third in the r band. We present the photometric redshift estimation for the NGVS background sources. After a dedicated data reduction, we perform accurate photometry, with special attention to precise color measurements through point-spread function homogenization. We then estimate the photometric redshifts with the Le Phare and BPZ codes. We add a new prior that extends to i AB = 12.5 mag. When using the u* griz bands, our photometric redshifts for 15.5 mag <= i <~ 23 mag or z phot <~ 1 galaxies have a bias |Δz| < 0.02, less than 5% outliers, a scatter σoutl.rej., and an individual error on z phot that increases with magnitude (from 0.02 to 0.05 and from 0.03 to 0.10, respectively). When using the u*giz bands over the same magnitude and redshift range, the lack of the r band increases the uncertainties in the 0.3 <~ z phot <~ 0.8 range (-0.05 < Δz < -0.02, σoutl.rej ~ 0.06, 10%-15% outliers, and z phot.err. ~ 0.15). We also present a joint analysis of the photometric redshift accuracy as a function of redshift and magnitude. We assess the quality of our photometric redshifts by comparison to spectroscopic samples and by verifying that the angular auto- and cross-correlation function w(θ) of the entire NGVS photometric redshift sample across redshift bins is in agreement with the expectations.

  12. FURTHER RESULTS FROM THE GALACTIC O-STAR SPECTROSCOPIC SURVEY: RAPIDLY ROTATING LATE ON GIANTS

    SciTech Connect

    Walborn, Nolan R.; MaIz Apellaniz, Jesus; Sota, Alfredo; Alfaro, Emilio J.; Barba, Rodolfo H.; Arias, Julia I.; Gamen, Roberto C. E-mail: jmaiz@iaa.es E-mail: emilio@iaa.es E-mail: rbarba@dfuls.cl E-mail: rgamen@fcaglp.unlp.edu.ar

    2011-11-15

    With new data from the Galactic O-Star Spectroscopic Survey, we confirm and expand the ONn category of late-O, nitrogen-enriched (N), rapidly rotating (n) giants. In particular, we have discovered two 'clones' (HD 102415 and HD 117490) of one of the most rapidly rotating O stars previously known (HD 191423, 'Howarth's Star'). We compare the locations of these objects in the theoretical H-R diagram to those of slowly rotating ON dwarfs and supergiants. All ON giants known to date are rapid rotators, whereas no ON dwarf or supergiant is, but all ON stars are small fractions of their respective spectral-type/luminosity-class/rotational subcategories. The ONn giants, displaying both substantial processed material and high rotation at an intermediate evolutionary stage, may provide significant information about the development of these properties. They may have preserved high initial rotational velocities or may have been spun up by terminal-age main-sequence core contraction; alternatively, and perhaps more likely, they may be products of binary mass transfer. At least some of them are also runaway stars.

  13. Formation of Globular Clusters in Atomic-cooling Halos Via Rapid Gas Condensation and Fragmentation during the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Kimm, Taysun; Cen, Renyue; Rosdahl, Joakim; Yi, Sukyoung K.

    2016-05-01

    We investigate the formation of metal-poor globular clusters (GCs) at the center of two dark matter halos with {M}{{halo}}˜ 4× {10}7 {M}⊙ at z\\gt 10 using cosmological radiation-hydrodynamics simulations. We find that very compact (≲1 pc) and massive (˜ 6× {10}5 {M}⊙ ) clusters form rapidly when pristine gas collapses isothermally with the aid of efficient Lyα emission during the transition from molecular-cooling halos to atomic-cooling halos. Because the local free-fall time of dense star-forming gas is very short (\\ll 1 {{Myr}}), a large fraction of the collapsed gas is turned into stars before stellar feedback processes blow out the gas and shut down star formation. Although the early stage of star formation is limited to a small region of the central star-forming disk, we find that the disk quickly fragments due to metal enrichment from supernovae. Sub-clusters formed in the fragmented clouds eventually merge with the main cluster at the center. The simulated clusters closely resemble the local GCs in mass and size but show a metallicity spread that is much wider than found in the local GCs. We discuss a role of pre-enrichment by Pop III and II stars as a potential solution to the latter issue. Although not without shortcomings, it is encouraging that a naive blind (not tuned) cosmological simulation presents a possible channel for the formation of at least some massive GCs.

  14. PARAMETERIZED K-MEANS CLUSTERING FOR RAPID HARDWARE DEVELOPMENT TO ACCELERATE ANALYSIS OF SATELLITE DATA

    SciTech Connect

    Leeser, M. ,; Belanov, P.; Estlick, M.; Gokhale, M.; Szymanski, J. J.; Theiler, J. P.

    2001-01-01

    Reconfigurable hardware has successfully been used to obtain speed-up in the implementation of image processing algorithms over purely software based implementations. At HPEC 2000 111, we described research we have done in applying reconfigurable hardware to satellite image data for remote sensing applications. We presented an FPGA implementation of K-means clustering that exhibited two orders of magnitude speedup over a software implementation.

  15. Candidate Clusters of Galaxies at z > 1.3 Identified in the Spitzer South Pole Telescope Deep Field Survey

    NASA Astrophysics Data System (ADS)

    Rettura, A.; Martinez-Manso, J.; Stern, D.; Mei, S.; Ashby, M. L. N.; Brodwin, M.; Gettings, D.; Gonzalez, A. H.; Stanford, S. A.; Bartlett, J. G.

    2014-12-01

    We present 279 galaxy cluster candidates at z > 1.3 selected from the 94 deg2 Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Boötes field. Our simple algorithm detects all three 1.4 < z <= 1.75 X-ray detected clusters in the Boötes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE, and XMM-Newton. This rich data set will allow direct or stacked measurements of Sunyaev-Zel'dovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable a systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density nc = (0.7+6.3-0.6) × 10-7 h3 {Mpc}-3 and a spatial clustering correlation scale length r 0 = (32 ± 7) h -1 Mpc. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, M min, we derive that at z = 1.5 these clusters reside in halos larger than Mmin = 1.5+0.9-0.7 × 1014 h-1 M⊙ . We find that the mean mass of our cluster sample is equal to Mmean = 1.9+1.0-0.8 × 1014 h-1 M⊙ ; thus, our sample contains the progenitors of present-day massive galaxy clusters.

  16. CANDIDATE CLUSTERS OF GALAXIES AT z > 1.3 IDENTIFIED IN THE SPITZER SOUTH POLE TELESCOPE DEEP FIELD SURVEY

    SciTech Connect

    Rettura, A.; Stern, D.; Martinez-Manso, J.; Gettings, D.; Gonzalez, A. H.; Mei, S.; Ashby, M. L. N.; Brodwin, M.; Stanford, S. A.; Bartlett, J. G.

    2014-12-20

    We present 279 galaxy cluster candidates at z > 1.3 selected from the 94 deg{sup 2} Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Boötes field. Our simple algorithm detects all three 1.4 < z ≤ 1.75 X-ray detected clusters in the Boötes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE, and XMM-Newton. This rich data set will allow direct or stacked measurements of Sunyaev-Zel'dovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable a systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density n{sub c}=(0.7{sub −0.6}{sup +6.3})×10{sup −7} h{sup 3} Mpc{sup −3} and a spatial clustering correlation scale length r {sub 0} = (32 ± 7) h {sup –1} Mpc. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, M {sub min}, we derive that at z = 1.5 these clusters reside in halos larger than M{sub min}=1.5{sub −0.7}{sup +0.9}×10{sup 14} h{sup −1} M{sub ⊙}. We find that the mean mass of our cluster sample is equal to M{sub mean}=1.9{sub −0.8}{sup +1.0}×10{sup 14} h{sup −1} M{sub ⊙}; thus, our sample contains the progenitors of

  17. The Herschel Virgo Cluster Survey. XIII. Dust in early-type galaxies

    NASA Astrophysics Data System (ADS)

    di Serego Alighieri, S.; Bianchi, S.; Pappalardo, C.; Zibetti, S.; Auld, R.; Baes, M.; Bendo, G.; Corbelli, E.; Davies, J. I.; Davis, T.; De Looze, I.; Fritz, J.; Gavazzi, G.; Giovanardi, C.; Grossi, M.; Hunt, L. K.; Magrini, L.; Pierini, D.; Xilouris, E. M.

    2013-04-01

    Aims: We study the dust content of a large optical input sample of 910 early-type galaxies (ETG) in the Virgo cluster, also extending to the dwarf ETG, and examine the results in relation to those on the other cold ISM components. Methods: We have searched for far-infrared emission in all galaxies in the input sample using the 250 μm image of the Herschel Virgo Cluster Survey (HeViCS). This image covers a large fraction of the cluster with an area of ~55 square degrees. For the detected ETG we measured fluxes in five bands from 100 to 500 μm, and estimated the dust mass and temperature with modified black-body fits. Results: Dust is detected above the completeness limit of 25.4 mJy at 250 μm in 46 ETG, 43 of which are in the optically complete part of the input sample. In addition, dust is present at fainter levels in another six ETG. We detect dust in the four ETG with synchrotron emission, including M 87. Dust appears to be much more concentrated than stars and more luminous ETG have higher dust temperatures. Considering only the optically complete input sample and correcting for the contamination by background galaxies, dust detection rates down to the 25.4 mJy limit are 17% for ellipticals, about 40% for lenticulars (S0 + S0a), and around 3% for dwarf ETG. Dust mass does not correlate clearly with stellar mass and is often much greater than expected for a passive galaxy in a closed-box model. The dust-to-stars mass ratio anticorrelates with galaxy luminosity, and for some dwarf ETG reaches values as high as for dusty late-type galaxies. In the Virgo cluster slow rotators appear more likely to contain dust than fast ones. Comparing the dust results with those on Hi there are only eight ETG detected both in dust and in Hi in the HeViCS area; 39 have dust but only an upper limit on Hi, and eight have Hi but only an upper limit on dust. The locations of these galaxies in the cluster are different, with the dusty ETG concentrated in the densest regions, while the

  18. Wide-Field Survey of Globular Clusters in M31. II. Kinematics of the Globular Cluster System

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Hwang, Ho Seong; Kim, Sang Chul; Park, Hong Soo; Geisler, Doug; Sarajedini, Ata; Harris, William E.

    2008-02-01

    We present a kinematic analysis of the globular cluster (GC) system in M31, using the velocity data for 504 GCs including those for 150 GCs in our wide-field survey. The all GC system shows strong rotation, with rotation amplitude of vrot ~ 190 km s-1, and weak rotation persists even for the outermost samples at | Y| >= 5 kpc, where Y represents the projected distance from the major axis. The rotation-corrected velocity dispersion for the GC system is estimated to be σp,r ~ 130 km s-1, and it increases from σp,r ~ 120 km s-1 at | Y| < 1 kpc to σp,r ~ 150 km s-1 at | Y| >= 5 kpc. These results are very similar to those for the metal-poor GCs. This shows that there is a dynamically hot halo in M31 that is rotating but primarily pressure-supported. We have identified 50 "friendless" GCs, and they appear to rotate around the major axis of M31. Both metal-rich GCs and metal-poor GCs show strong rotation in the inner region. The rotation for the faint GCs is stronger than that for the bright GCs. We have identified 56 GCs and GC candidates with X-ray detection including 39 GCs with measured velocities. The majority of X-ray-emitting GCs follow the disk rotation. We have derived a rotation curve of M31 using the GCs at | Y| <= 0.6 kpc. We have estimated the dynamical mass of M31 using "Projected Mass Estimator (PME)" and "Tracer Mass Estimator (TME)" as MPME = 5.5+ 0.4-0.3 × 1011 M⊙ out to a radius of ~55 kpc and MTME = 19.2+ 1.4-1.3 × 1011 M⊙ for a radius of ~100 kpc, respectively. We finally discuss the implication of these results and compare the kinematics of GCs with that of planetary nebulae in M31. Based on observations with the Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation.

  19. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences.

    PubMed

    Medema, Marnix H; Blin, Kai; Cimermancic, Peter; de Jager, Victor; Zakrzewski, Piotr; Fischbach, Michael A; Weber, Tilmann; Takano, Eriko; Breitling, Rainer

    2011-07-01

    Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide variety of microbes. However, rapidly and reliably pinpointing all the potential gene clusters for secondary metabolites in dozens of newly sequenced genomes has been extremely challenging, due to their biochemical heterogeneity, the presence of unknown enzymes and the dispersed nature of the necessary specialized bioinformatics tools and resources. Here, we present antiSMASH (antibiotics & Secondary Metabolite Analysis Shell), the first comprehensive pipeline capable of identifying biosynthetic loci covering the whole range of known secondary metabolite compound classes (polyketides, non-ribosomal peptides, terpenes, aminoglycosides, aminocoumarins, indolocarbazoles, lantibiotics, bacteriocins, nucleosides, beta-lactams, butyrolactones, siderophores, melanins and others). It aligns the identified regions at the gene cluster level to their nearest relatives from a database containing all other known gene clusters, and integrates or cross-links all previously available secondary-metabolite specific gene analysis methods in one interactive view. antiSMASH is available at http://antismash.secondarymetabolites.org.

  20. The VIMOS-VLT Deep Survey. Luminosity dependence of clustering at z ≃ 1

    NASA Astrophysics Data System (ADS)

    Pollo, A.; Guzzo, L.; Le Fèvre, O.; Meneux, B.; Cappi, A.; Franzetti, P.; Iovino, A.; McCracken, H. J.; Marinoni, C.; Zamorani, G.; Bottini, D.; Garilli, B.; Le Brun, V.; Maccagni, D.; Picat, J. P.; Scaramella, R.; Scodeggio, M.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Gavignaud, I.; Ilbert, O.; Marano, B.; Mazure, A.; Merighi, R.; Paltani, S.; Pellò, R.; Pozzetti, L.; Radovich, M.; Zucca, E.; Bondi, M.; Bongiorno, A.; Busarello, G.; Cucciati, O.; Gregorini, L.; Lamareille, F.; Mathez, G.; Mellier, Y.; Merluzzi, P.; Ripepi, V.; Rizzo, D.

    2006-05-01

    We investigate the dependence of galaxy clustering on the galaxy intrinsic luminosity at high redshift, using the data from the First Epoch VIMOS-VLT Deep Survey (VVDS). The size (6530 galaxies) and depth (IAB<24) of the survey allows us to measure the projected two-point correlation function of galaxies, w_p(r_p), for a set of volume-limited samples up to an effective redshift =0.9 and median absolute magnitude -19.6< MB < -21.3. Fitting w_p(r_p) with a single power-law model for the real-space correlation function ξ(r)=(r/r_0)-γ, we measure the relationship of the correlation length r0 and the slope γ with the sample median luminosity for the first time at such high redshift. Values from our lower-redshift samples (0.1surveys. In our high redshift sample (0.5clustering strength suddenly rises around M_B^*, apparently with a sharper inflection than at low redshifts. Galaxies in the faintest sample (=-19.6) have a correlation length r_0=2.7+0.3-0.3 h-1 Mpc, compared to r_0=5.0+1.5-1.6 h-1 Mpc at =-21.3. The slope of the correlation function is observed to correspondingly steepen significantly from γ=1.6+0.1-0.1 to γ=2.4+0.4-0.2. This is not observed either by large local surveys or in our lower-redshift samples and seems to imply a significant change in the way luminous galaxies trace dark-matter halos at z˜ 1 with respect to z˜ 0. At our effective median redshift z ≃ 0.9 this corresponds to a strong difference of the relative bias, from b/b* < 0.7 for galaxies with L < L* to b/b* ≃ 1.4 for galaxies with L > L*.

  1. THE SLOAN DIGITAL SKY SURVEY CO-ADD: CROSS-CORRELATION WEAK LENSING AND TOMOGRAPHY OF GALAXY CLUSTERS

    SciTech Connect

    Simet, Melanie; Dodelson, Scott; Kubo, Jeffrey M.; Annis, James T.; Hao Jiangang; Johnston, David; Lin, Huan; Soares-Santos, Marcelle; Reis, Ribamar R. R.; Seo, Hee-Jong

    2012-04-01

    The shapes of distant galaxies are sheared by intervening galaxy clusters. We examine this effect in Stripe 82, a 275 deg{sup 2} region observed multiple times in the Sloan Digital Sky Survey (SDSS) and co-added to achieve greater depth. We obtain a mass-richness calibration that is similar to other SDSS analyses, demonstrating that the co-addition process did not adversely affect the lensing signal. We also propose a new parameterization of the effect of tomography on the cluster lensing signal which does not require binning in redshift, and we show that using this parameterization we can detect tomography for stacked clusters at varying redshifts. Finally, due to the sensitivity of the tomographic detection to accurately marginalize over the effect of the cluster mass, we show that tomography at low redshift (where dependence on exact cosmological models is weak) can be used to constrain mass profiles in clusters.

  2. A homogeneous photometric and spectroscopic survey of open clusters in the Perseus Arm

    NASA Astrophysics Data System (ADS)

    Marco, Amparo; Negueruela, Ignacio; Monguió, Maria

    2015-08-01

    We are carrying out a homogeneous photometric survey of all young (< 100 Ma) open clusters in the Perseus Arm between Galactic longitudes 90º and 140º, using Strömgren filters at the Isaac Newton Telescope in La Palma. We intend to derive relative ages and distances with typical accuracies of 5 Ma and 200 pc. Our data will allow us to test the predictions of different models for the main mechanism producing the spiral structure of the Milky Way. In addition, we will enormously improve our knowledge of stellar evolution for stars in the 6-15 Msolar range. Moreover, the huge dataset of homogeneous photometry for thousands of stars (including ~2000 B-type stars) will have an enormous legacy value

  3. Galaxy Clustering in the Completed SDSS Redshift Survey: The Dependence on Color and Luminosity

    NASA Astrophysics Data System (ADS)

    Zehavi, Idit; Zheng, Zheng; Weinberg, David H.; Blanton, Michael R.; Bahcall, Neta A.; Berlind, Andreas A.; Brinkmann, Jon; Frieman, Joshua A.; Gunn, James E.; Lupton, Robert H.; Nichol, Robert C.; Percival, Will J.; Schneider, Donald P.; Skibba, Ramin A.; Strauss, Michael A.; Tegmark, Max; York, Donald G.

    2011-07-01

    We measure the luminosity and color dependence of galaxy clustering in the largest-ever galaxy redshift survey, the main galaxy sample of the Sloan Digital Sky Survey Seventh Data Release. We focus on the projected correlation function wp (rp ) of volume-limited samples, extracted from the parent sample of ~700,000 galaxies over 8000 deg2, extending up to redshift of 0.25. We interpret our measurements using halo occupation distribution (HOD) modeling assuming a ΛCDM cosmology (inflationary cold dark matter with a cosmological constant). The amplitude of wp (rp ) grows slowly with luminosity for L < L * and increases sharply at higher luminosities, with a large-scale bias factor b(> L) × (σ8/0.8) = 1.06 + 0.21(L/L *)1.12, where L is the sample luminosity threshold. At fixed luminosity, redder galaxies exhibit a higher amplitude and steeper correlation function, a steady trend that runs through the "blue cloud" and "green valley" and continues across the "red sequence." The cross-correlation of red and blue galaxies is close to the geometric mean of their autocorrelations, dropping slightly below at rp < 1 h -1 Mpc. The luminosity trends for the red and blue galaxy populations separately are strikingly different. Blue galaxies show a slow but steady increase of clustering strength with luminosity, with nearly constant shape of wp (rp ). The large-scale clustering of red galaxies shows little luminosity dependence until a sharp increase at L > 4 L *, but the lowest luminosity red galaxies (0.04-0.25 L *) show very strong clustering on small scales (rp < 2 h -1 Mpc). Most of the observed trends can be naturally understood within the ΛCDM+HOD framework. The growth of wp (rp ) for higher luminosity galaxies reflects an overall shift in the mass scale of their host dark matter halos, in particular an increase in the minimum host halo mass M min. The mass at which a halo has, on average, one satellite galaxy brighter than L is M 1 ≈ 17 M min(L) over most of the

  4. Activation-Dependent Rapid Postsynaptic Clustering of Glycine Receptors in Mature Spinal Cord Neurons

    PubMed Central

    Eto, Kei; Murakoshi, Hideji; Watanabe, Miho; Hirata, Hiromi; Moorhouse, Andrew J.; Ishibashi, Hitoshi

    2017-01-01

    Abstract Inhibitory synapses are established during development but continue to be generated and modulated in strength in the mature nervous system. In the spinal cord and brainstem, presynaptically released inhibitory neurotransmitter dominantly switches from GABA to glycine during normal development in vivo. While presynaptic mechanisms of the shift of inhibitory neurotransmission are well investigated, the contribution of postsynaptic neurotransmitter receptors to this shift is not fully elucidated. Synaptic clustering of glycine receptors (GlyRs) is regulated by activation-dependent depolarization in early development. However, GlyR activation induces hyperpolarization after the first postnatal week, and little is known whether and how presynaptically released glycine regulates postsynaptic receptors in a depolarization-independent manner in mature developmental stage. Here we developed spinal cord neuronal culture of rodents using chronic strychnine application to investigate whether initial activation of GlyRs in mature stage could change postsynaptic localization of GlyRs. Immunocytochemical analyses demonstrate that chronic blockade of GlyR activation until mature developmental stage resulted in smaller clusters of postsynaptic GlyRs that could be enlarged upon receptor activation for 1 h in the mature stage. Furthermore, live cell-imaging techniques show that GlyR activation decreases its lateral diffusion at synapses, and this phenomenon is dependent on PKC, but neither Ca2+ nor CaMKII activity. These results suggest that the GlyR activation can regulate receptor diffusion and cluster size at inhibitory synapses in mature stage, providing not only new insights into the postsynaptic mechanism of shifting inhibitory neurotransmission but also the inhibitory synaptic plasticity in mature nervous system. PMID:28197549

  5. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: RAPID C iv BROAD ABSORPTION LINE VARIABILITY

    SciTech Connect

    Grier, C. J.; Brandt, W. N.; Trump, J. R.; Schneider, D. P.; Hall, P. B.; Shen, Yue; Vivek, M.; Dawson, K. S.; Ak, N. Filiz; Chen, Yuguang; Denney, K. D.; Kochanek, C. S.; Peterson, B. M.; Green, Paul J.; Jiang, Linhua; McGreer, Ian D.; Pâris, I.; Tao, Charling; Bizyaev, Dmitry; and others

    2015-06-10

    We report the discovery of rapid variations of a high-velocity C iv broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Project, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4σ) variability in the equivalent width (EW) of the broad (∼4000 km s{sup −1} wide) C iv trough on rest-frame timescales as short as 1.20 days (∼29 hr), the shortest broad absorption line variability timescale yet reported. The EW varied by ∼10% on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n{sub e} ≳ 3.9 × 10{sup 5} cm{sup −3}. The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios.

  6. A SCUBA-2 850-micron Survey of Circumstellar Disks in the λ Orionis Cluster

    NASA Astrophysics Data System (ADS)

    Ansdell, Megan; Williams, Jonathan P.; Cieza, Lucas A.

    2015-06-01

    We present results from an 850 μm survey of the ˜5 Myr old λ Orionis star-forming region. We used the SCUBA-2 camera on the James Clerk Maxwell Telescope to survey a ˜0.°5-diameter circular region containing 36 (out of 59) cluster members with infrared excesses indicative of circumstellar disks. We detected only one object at \\gt 3σ significance, the Herbig Ae star HD 245185, with a flux density of ˜74 mJy beam-1 corresponding to a dust mass of ˜150 {M}\\oplus . Stacking the individually undetected sources did not produce a significant mean signal but gives an upper limit on the average dust mass for λ Orionis disks of ˜3 {M}\\oplus . Our follow-up observations of HD 245185 with the Submillimeter Array found weak CO 2-1 line emission with an integrated flux of ˜170 mJy km s-1 but no 13CO or C18O isotopologue emission at 30 mJy km s-1 sensitivity, suggesting a gas mass of ≲ 1 M{}{Jup}. The implied gas-to-dust ratio is thus ≳ 50 times lower than the canonical interstellar medium value, setting HD 245185 apart from other Herbig Ae disks of similar age, which have been found to be gas rich; as HD 245185 also shows signs of accretion, we may be catching it in the final phases of disk clearing. Our study of the λ Orionis cluster places quantitative constraints on planet formation timescales, indicating that at ˜5 Myr the average disk no longer has sufficient dust and gas to form giant planets and perhaps even super-Earths; the bulk material has been mostly dispersed or is locked in pebbles/planetesimals larger than a few mm in size.

  7. Insights into the earliest stages of star cluster formationfrom Herschel Gould Belt survey observations

    NASA Astrophysics Data System (ADS)

    André, Philippe; Ladjelate, Bilal; Könyves, Vera

    2015-08-01

    For a long time, the conventional wisdom has been that "clustered star formation" and "isolated (or distributed) star formation" represent two fundamentally distinct modes of the star formation process. Recent detailed infrared studies of the spatial distribution of young stellar objects (YSOs) in the solar neighborhood, however, suggest that there is a continuous distribution of YSO surface densities from a diffuse population to the densest groups or clusters, with no evidence for discrete modes of star formation (e.g. Bressert et al. 2010). Based on the results of the Herschel Gould Belt survey (http://gouldbelt-herschel.cea.fr) toward the nearest regions of "clustered" and "distributed" star formation, including the Ophiuchus and Taurus clouds, we will show how these two seemingly opposing views can be reconciled.The Herschel results point to the key role of the quasi-universal filamentary structure pervading the cold ISM (cf. André et al. 2014, Protostars and Planets VI). Indeed, a large fraction of the dense molecular gas is found to be in the form of filaments and most prestellar cores are located within dense, "supercritical" filaments. To a large extent, therefore, the spatial distribution of YSOs is inherited from the filamentary texture of molecular clouds, which is partly hierarchical and shaped by a combination of turbulent, magnetic, and gravitational effects. Wherever gravity dominates on large scales, a "hub-filament" system develops (cf. Myers 2009) and a protocluster is generated at the "hub" or junction of a converging network of filaments. More distributed star formation occurs along individual filaments with marginally supercritical masses per unit length.

  8. The Herschel Virgo Cluster Survey . VI. The far-infrared view of M 87

    NASA Astrophysics Data System (ADS)

    Baes, M.; Clemens, M.; Xilouris, E. M.; Fritz, J.; Cotton, W. D.; Davies, J. I.; Bendo, G. J.; Bianchi, S.; Cortese, L.; De Looze, I.; Pohlen, M.; Verstappen, J.; Böhringer, H.; Bomans, D. J.; Boselli, A.; Corbelli, E.; Dariush, A.; di Serego Alighieri, S.; Fadda, D.; Garcia-Appadoo, D. A.; Gavazzi, G.; Giovanardi, C.; Grossi, M.; Hughes, T. M.; Hunt, L. K.; Jones, A. P.; Madden, S.; Pierini, D.; Sabatini, S.; Smith, M. W. L.; Vlahakis, C.; Zibetti, S.

    2010-07-01

    The origin of the far-infrared emission from the nearby radio galaxy M 87 remains a matter of debate. Some studies find evidence of a far-infrared excess due to thermal dust emission, whereas others propose that the far-infrared emission can be explained by synchrotron emission without the need for an additional dust emission component. We present Herschel PACS and SPIRE observations of M 87, taken as part of the science demonstration phase observations of the Herschel Virgo Cluster Survey. We compare these data with a synchrotron model based on mid-infrared, far-infrared, submm and radio data from the literature to investigate the origin of the far-infrared emission. Both the integrated SED and the Herschel surface brightness maps are adequately explained by synchrotron emission. At odds with previous claims, we find no evidence of a diffuse dust component in M 87, which is not unexpected in the harsh X-ray environment of this radio galaxy sitting at the core of the Virgo cluster. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  9. The WFI Hα spectroscopic survey of the Magellanic Clouds: Be stars in SMC open clusters

    NASA Astrophysics Data System (ADS)

    Martayan, Christophe; Baade, Dietrich; Fabregat, Juan

    2009-03-01

    At low metallicity, B-type stars show lower loss of mass and, therefore, angular momentum so that it is expected that there are more Be stars in the Magellanic Clouds than in the Milky Way. However, till now, searches for Be stars were only performed in a very small number of open clusters in the Magellanic Clouds. Using the ESO/WFI in its slitless spectroscopic mode, we performed a Hα survey of the Large and Small Magellanic Cloud. Eight million low-resolution spectra centered on Hα were obtained. For their automatic analysis, we developed the ALBUM code. Here, we present the observations, the method to exploit the data and first results for 84 open clusters in the SMC. In particular, cross-correlating our catalogs with OGLE positional and photometric data, we classified more than 4000 stars and were able to find the B and Be stars in them. We show the evolution of the rates of Be stars as functions of area density, metallicity, spectral type, and age.

  10. VizieR Online Data Catalog: Fornax Cluster Spectroscopic Survey 2MASS galaxies (Morris+ 2007)

    NASA Astrophysics Data System (ADS)

    Morris, R. A. H.; Phillipps, S.; Jones, J. B.; Drinkwater, M. J.; Gregg, M. D.; Couch, W. J.; Parker, Q. A.; Smith, R. M.

    2007-09-01

    We present two tables, the results of matching the Fornax Cluster Spectroscopic Survey (FCSS) both with the 2MASS extended source catalogue (XSC) and the 2MASS point source catalogue (PSC, Cat. II/246). The 2MASS 2nd release data described in Jarrett et al. (2000AJ....119.2498J) is used in this paper. xsc-fcss.dat contains 114 extended objects in a circle of radius 1degree centred on NGC1399, 84 are matched in the FCSS itself using a positional error of 3", 28 are in the brighter FLAIR sample of Drinkwater et al. (2001ApJ...548L.139D) and two are 15th magnitude galaxies in the Ferguson (1989AJ.....98..367F, Cat. ) Fornax Cluster Catalogue (FCC). psc-fcss.dat contains objects that are in the 2MASS PSC and also in the FCSS again using a positional error of 3". Objects with cz of less than 900km/s are removed as are objects which are also in the extended sample above to leave a sample of 228 confirmed galaxies. (2 data files).

  11. Dengue fever occurrence and vector detection by larval survey, ovitrap and MosquiTRAP: a space-time clusters analysis.

    PubMed

    de Melo, Diogo Portella Ornelas; Scherrer, Luciano Rios; Eiras, Álvaro Eduardo

    2012-01-01

    The use of vector surveillance tools for preventing dengue disease requires fine assessment of risk, in order to improve vector control activities. Nevertheless, the thresholds between vector detection and dengue fever occurrence are currently not well established. In Belo Horizonte (Minas Gerais, Brazil), dengue has been endemic for several years. From January 2007 to June 2008, the dengue vector Aedes (Stegomyia) aegypti was monitored by ovitrap, the sticky-trap MosquiTRAP™ and larval surveys in an study area in Belo Horizonte. Using a space-time scan for clusters detection implemented in SaTScan software, the vector presence recorded by the different monitoring methods was evaluated. Clusters of vectors and dengue fever were detected. It was verified that ovitrap and MosquiTRAP vector detection methods predicted dengue occurrence better than larval survey, both spatially and temporally. MosquiTRAP and ovitrap presented similar results of space-time intersections to dengue fever clusters. Nevertheless ovitrap clusters presented longer duration periods than MosquiTRAP ones, less acuratelly signalizing the dengue risk areas, since the detection of vector clusters during most of the study period was not necessarily correlated to dengue fever occurrence. It was verified that ovitrap clusters occurred more than 200 days (values ranged from 97.0±35.35 to 283.0±168.4 days) before dengue fever clusters, whereas MosquiTRAP clusters preceded dengue fever clusters by approximately 80 days (values ranged from 65.5±58.7 to 94.0±14. 3 days), the former showing to be more temporally precise. Thus, in the present cluster analysis study MosquiTRAP presented superior results for signaling dengue transmission risks both geographically and temporally. Since early detection is crucial for planning and deploying effective preventions, MosquiTRAP showed to be a reliable tool and this method provides groundwork for the development of even more precise tools.

  12. Dengue Fever Occurrence and Vector Detection by Larval Survey, Ovitrap and MosquiTRAP: A Space-Time Clusters Analysis

    PubMed Central

    de Melo, Diogo Portella Ornelas; Scherrer, Luciano Rios; Eiras, Álvaro Eduardo

    2012-01-01

    The use of vector surveillance tools for preventing dengue disease requires fine assessment of risk, in order to improve vector control activities. Nevertheless, the thresholds between vector detection and dengue fever occurrence are currently not well established. In Belo Horizonte (Minas Gerais, Brazil), dengue has been endemic for several years. From January 2007 to June 2008, the dengue vector Aedes (Stegomyia) aegypti was monitored by ovitrap, the sticky-trap MosquiTRAP™ and larval surveys in an study area in Belo Horizonte. Using a space-time scan for clusters detection implemented in SaTScan software, the vector presence recorded by the different monitoring methods was evaluated. Clusters of vectors and dengue fever were detected. It was verified that ovitrap and MosquiTRAP vector detection methods predicted dengue occurrence better than larval survey, both spatially and temporally. MosquiTRAP and ovitrap presented similar results of space-time intersections to dengue fever clusters. Nevertheless ovitrap clusters presented longer duration periods than MosquiTRAP ones, less acuratelly signalizing the dengue risk areas, since the detection of vector clusters during most of the study period was not necessarily correlated to dengue fever occurrence. It was verified that ovitrap clusters occurred more than 200 days (values ranged from 97.0±35.35 to 283.0±168.4 days) before dengue fever clusters, whereas MosquiTRAP clusters preceded dengue fever clusters by approximately 80 days (values ranged from 65.5±58.7 to 94.0±14. 3 days), the former showing to be more temporally precise. Thus, in the present cluster analysis study MosquiTRAP presented superior results for signaling dengue transmission risks both geographically and temporally. Since early detection is crucial for planning and deploying effective preventions, MosquiTRAP showed to be a reliable tool and this method provides groundwork for the development of even more precise tools. PMID:22848729

  13. The Rapid Response Radiation Survey (R3S) Mission Using the HISat Conformal Satellite Architecture

    NASA Technical Reports Server (NTRS)

    Miller, Nathanael

    2015-01-01

    The Rapid Response Radiation Survey (R3S) experiment, designed as a quick turnaround mission to make radiation measurements in LEO, will fly as a hosted payload in partnership with NovaWurks using their Hyper-integrated Satlet (HiSat) architecture. The need for the mission arises as the Nowcast of Atmospheric Ionization Radiation for Aviation Safety (NAIRAS) model moves from a research effort into an operational radiation assessment tool. The data collected by R3S, in addition to the complementary data from a NASA Langley Research Center (LaRC) atmospheric balloon mission entitled Radiation Dosimetry Experiment (RaDX), will validate exposure prediction capabilities of NAIRAS. This paper discusses the development of the R3S experiment as made possible by use of the HiSat architecture. The system design and operational modes of the experiment are described, as well as the experiment interfaces to the HiSat satellite via the user defined adapter (UDA) provided by NovaWurks. This paper outlines the steps taken by the project to execute the R3S mission in the 4 months of design, build, and test. Finally, description of the engineering process is provided, including the use of facilitated rapid/concurrent engineering sessions, the associated documentation, and the review process employed.

  14. A Survey of Open Clusters in the u'g'r'i'z' Filter System. 3. Results for the Cluster NGC 188

    SciTech Connect

    Fornal, Bartosz; Tucker, Douglas L.; Smith, J.Allyn; Allam, Sahar S.; Rider, Cristin J.; Sung, Hwankyung; /Jagiellonian U. /Fermilab /Austin Peay State U. /Wyoming U. /Johns Hopkins U. /Sejong U.

    2006-11-01

    The authors continue the series of papers describing the results of a photometric survey of open star clusters, primarily in the southern hemisphere, taken in the u'g'r'i'z' filter system. The entire observed sample covered more than 100 clusters, but here they present data only on NGC 188, which is one of the oldest open clusters known in the Milky Way. They fit the Padova theoretical isochrones to the data. Assuming a solar metallicity for NGC 188, they find a distance of 1700 {+-} 100 pc, an age of 7.5 {+-} 0.7 Gyr, and a reddening E(B-V) of 0.025 {+-} 0.005. This yields a distance modulus of 11.23 {+-} 0.14.

  15. Distant Cluster Hunting. II; A Comparison of X-Ray and Optical Cluster Detection Techniques and Catalogs from the ROSAT Optical X-Ray Survey

    NASA Technical Reports Server (NTRS)

    Donahue, Megan; Scharf, Caleb A.; Mack, Jennifer; Lee, Y. Paul; Postman, Marc; Rosait, Piero; Dickinson, Mark; Voit, G. Mark; Stocke, John T.

    2002-01-01

    We present and analyze the optical and X-ray catalogs of moderate-redshift cluster candidates from the ROSA TOptical X-Ray Survey, or ROXS. The survey covers the sky area contained in the fields of view of 23 deep archival ROSA T PSPC pointings, 4.8 square degrees. The cross-correlated cluster catalogs were con- structed by comparing two independent catalogs extracted from the optical and X-ray bandpasses, using a matched-filter technique for the optical data and a wavelet technique for the X-ray data. We cross-identified cluster candidates in each catalog. As reported in Paper 1, the matched-filter technique found optical counter- parts for at least 60% (26 out of 43) of the X-ray cluster candidates; the estimated redshifts from the matched filter algorithm agree with at least 7 of 1 1 spectroscopic confirmations (Az 5 0.10). The matched filter technique. with an imaging sensitivity of ml N 23, identified approximately 3 times the number of candidates (155 candidates, 142 with a detection confidence >3 u) found in the X-ray survey of nearly the same area. There are 57 X-ray candidates, 43 of which are unobscured by scattered light or bright stars in the optical images. Twenty-six of these have fairly secure optical counterparts. We find that the matched filter algorithm, when applied to images with galaxy flux sensitivities of mI N 23, is fairly well-matched to discovering z 5 1 clusters detected by wavelets in ROSAT PSPC exposures of 8000-60,000 s. The difference in the spurious fractions between the optical and X-ray (30%) and IO%, respectively) cannot account for the difference in source number. In Paper I, we compared the optical and X-ray cluster luminosity functions and we found that the luminosity functions are consistent if the relationship between X-ray and optical luminosities is steep (Lx o( L&f). Here, in Paper 11, we present the cluster catalogs and a numerical simulation of the ROXS. We also present color-magnitude plots for several of the cluster

  16. Proper motion survey and kinematic analysis of the ρ Ophiuchi embedded cluster

    NASA Astrophysics Data System (ADS)

    Ducourant, C.; Teixeira, R.; Krone-Martins, A.; Bontemps, S.; Despois, D.; Galli, P. A. B.; Bouy, H.; Le Campion, J. F.; Rapaport, M.; Cuillandre, J. C.

    2017-01-01

    . Conclusions: We kinematically confirmed that the 56 members that were known from previous studies of the ρ Ophiuchi F cluster and that were also part of our survey are members of the cluster, and we added 26 new members. We defined the evolutionary status of the unclassified members of the cluster. We showed that a large part (23) of these new members are probably brown dwarfs, which multiplies the number of known substellar objects in the cluster by a factor of 3.3. Based on observations collected at the European Southern Observatory, Chile (64.I-0197, 67.C-0349, 69.C-0230, 71.C-0028, 73.C-0022, 83.D-0635).Full Tables 6-8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A90

  17. The GALEX Ultraviolet Virgo Cluster Survey (GUViCS). I. The UV luminosity function of the central 12 sq. deg

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Boissier, S.; Heinis, S.; Cortese, L.; Ilbert, O.; Hughes, T.; Cucciati, O.; Davies, J.; Ferrarese, L.; Giovanelli, R.; Haynes, M. P.; Baes, M.; Balkowski, C.; Brosch, N.; Chapman, S. C.; Charmandaris, V.; Clemens, M. S.; Dariush, A.; De Looze, I.; di Serego Alighieri, S.; Duc, P.-A.; Durrell, P. R.; Emsellem, E.; Erben, T.; Fritz, J.; Garcia-Appadoo, D. A.; Gavazzi, G.; Grossi, M.; Jordán, A.; Hess, K. M.; Huertas-Company, M.; Hunt, L. K.; Kent, B. R.; Lambas, D. G.; Lançon, A.; MacArthur, L. A.; Madden, S. C.; Magrini, L.; Mei, S.; Momjian, E.; Olowin, R. P.; Papastergis, E.; Smith, M. W. L.; Solanes, J. M.; Spector, O.; Spekkens, K.; Taylor, J. E.; Valotto, C.; van Driel, W.; Verstappen, J.; Vlahakis, C.; Vollmer, B.; Xilouris, E. M.

    2011-04-01

    The GALEX Ultraviolet Virgo Cluster Survey (GUViCS) is a complete blind survey of the Virgo cluster covering ~40 sq. deg in the far UV (FUV, λeff = 1539 Å, Δλ = 442 Å) and ~120 sq. deg in the near UV (NUV, λeff = 2316 Å, Δλ = 1060 Å). The goal of the survey is to study the ultraviolet (UV) properties of galaxies in a rich cluster environment, spanning a wide luminosity range from giants to dwarfs, and regardless of prior knowledge of their star formation activity. The UV data will be combined with those in other bands (optical: NGVS; far-infrared - submm: HeViCS; HI: ALFALFA) and with our multizone chemo-spectrophotometric models of galaxy evolution to make a complete and exhaustive study of the effects of the environment on the evolution of galaxies in high density regions. We present here the scientific objectives of the survey, describing the observing strategy and briefly discussing different data reduction techniques. Using UV data already in-hand for the central 12 sq. deg we determine the FUV and NUV luminosity functions of the Virgo cluster core for all cluster members and separately for early- and late-type galaxies and compare it to the one obtained in the field and other nearby clusters (Coma, A1367). This analysis shows that the FUV and NUV luminosity functions of the core of the Virgo clusters are flatter (α ~ -1.1) than those determined in Coma and A1367. We discuss the possible origin of this difference. Table 1 is only available in electronic form at http://www.aanda.org

  18. The HST/ACS Coma Cluster Survey. II. Data Description and Source Catalogs

    NASA Technical Reports Server (NTRS)

    Hammer, Derek; Kleijn, Gijs Verdoes; Hoyos, Carlos; Den Brok, Mark; Balcells, Marc; Ferguson, Henry C.; Goudfrooij, Paul; Carter, David; Guzman, Rafael; Peletier, Reynier F.; Smith, Russell J.; Graham, Alister W.; Trentham, Neil; Peng, Eric; Puzia, Thomas H.; Lucey, John R.; Jogee, Shardha; Aguerri, Alfonso L.; Batcheldor, Dan; Bridges, Terry J.; Davies, Jonathan I.; Del Burgo, Carlos; Erwin, Peter; Hornschemeier, Ann; Hudson, Michael J.

    2010-01-01

    The Coma cluster, Abell 1656, was the target of a HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in early 2007, the partially-completed survey still covers approximately 50% of the core high density region in Coma. Observations were performed for twenty-five fields with a total coverage area of 274 aremin(sup 2), and extend over a wide range of cluster-centric radii (approximately 1.75 Mpe or 1 deg). The majority of the fields are located near the core region of Coma (19/25 pointings) with six additional fields in the south-west region of the cluster. In this paper we present SEXTRACTOR source catalogs generated from the processed images, including a detailed description of the methodology used for object detection and photometry, the subtraction of bright galaxies to measure faint underlying objects, and the use of simulations to assess the photometric accuracy and completeness of our catalogs. We also use simulations to perform aperture corrections for the SEXTRACTOR Kron magnitudes based only on the measured source flux and its half-light radius. We have performed photometry for 76,000 objects that consist of roughly equal numbers of extended galaxies and unresolved objects. Approximately two-thirds of all detections are brighter than F814W=26.5 mag (AB), which corresponds to the 10sigma, point-source detection limit. We estimate that Coma members are 5-10% of the source detections, including a large population of compact objects (primarily GCs, but also cEs and UCDs), and a wide variety of extended galaxies from cD galaxies to dwarf low surface brightness galaxies. The initial data release for the HST-ACS Coma Treasury program was made available to the public in August 2008. The images and catalogs described in this study relate to our second data release.

  19. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    SciTech Connect

    Schrabback, T.; et al.

    2016-11-11

    We present an HST/ACS weak gravitational lensing analysis of 13 massive high-redshift (z_median=0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on CANDELS data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the mass-concentration relation using simulations. In combination with temperature estimates from Chandra we constrain the normalisation of the mass-temperature scaling relation ln(E(z) M_500c/10^14 M_sun)=A+1.5 ln(kT/7.2keV) to A=1.81^{+0.24}_{-0.14}(stat.) +/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.

  20. A Photometric redshift galaxy catalog from the Red-Sequence Cluster Survey

    SciTech Connect

    Hsieh, Bau-Ching; Yee, H.K.C.; Lin, H.; Gladders, M.D.; /Carnegie Inst. Observ.

    2005-02-01

    The Red-Sequence Cluster Survey (RCS) provides a large and deep photometric catalog of galaxies in the z' and R{sub c} bands for 90 square degrees of sky, and supplemental V and B data have been obtained for 33.6 deg{sup 2}. They compile a photometric redshift catalog from these 4-band data by utilizing the empirical quadratic polynomial photometric redshift fitting technique in combination with CNOC2 and GOODS/HDF-N redshift data. The training set includes 4924 spectral redshifts. The resulting catalog contains more than one million galaxies with photometric redshifts < 1.5 and R{sub c} < 24, giving an rms scatter {delta}({Delta}z) < 0.06 within the redshift range 0.2 < z < 0.5 and {sigma}({Delta}z) < 0.11 for galaxies at 0.0 < z < 1.5. They describe the empirical quadratic polynomial photometric redshift fitting technique which they use to determine the relation between red-shift and photometry. A kd-tree algorithm is used to divide up the sample to improve the accuracy of the catalog. They also present a method for estimating the photometric redshift error for individual galaxies. They show that the redshift distribution of the sample is in excellent agreement with smaller and much deeper photometric and spectroscopic redshift surveys.

  1. Sloan Digital Sky Survey III photometric quasar clustering: probing the initial conditions of the Universe

    SciTech Connect

    Ho, Shirley; Agarwal, Nishant; Lyons, Richard; Disbrow, Ashley; O'Connell, Ross; Myers, Adam D.; Seo, Hee-Jong; Schlegel, David; Ross, Nicholas P.; Ross, Ashley; Hirata, Christopher; Huff, Eric; Weinberg, David; Padmanabhan, Nikhil; Slosar, Anže; Strauss, Michael; Bahcall, Neta; Schneider, Donald P.; Brinkmann, J.; Palanque-Delabrouille, Nathalie [CEA, Centre de Saclay, Irfu and others

    2015-05-01

    The Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z=0.5 and z=2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans 0∼ 11,00 square degrees and probes a volume of 80 h{sup −3} Gpc{sup 3}. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimal quadratic estimator in four redshift slices with an accuracy of ∼ 25% over a bin width of δ{sub l} ∼ 10−15 on scales corresponding to matter-radiation equality and larger (0ℓ ∼ 2−3). Observational systematics can strongly bias clustering measurements on large scales, which can mimic cosmologically relevant signals such as deviations from Gaussianity in the spectrum of primordial perturbations. We account for systematics by employing a new method recently proposed by Agarwal et al. (2014) to the clustering of photometrically classified quasars. We carefully apply our methodology to mitigate known observational systematics and further remove angular bins that are contaminated by unknown systematics. Combining quasar data with the photometric luminous red galaxy (LRG) sample of Ross et al. (2011) and Ho et al. (2012), and marginalizing over all bias and shot noise-like parameters, we obtain a constraint on local primordial non-Gaussianity of f{sub NL} = −113{sup +154}{sub −154} (1σ error). We next assume that the bias of quasar and galaxy distributions can be obtained independently from quasar/galaxy-CMB lensing cross-correlation measurements (such as those in Sherwin et al. (2013)). This can be facilitated by spectroscopic observations of the sources, enabling the redshift distribution to be

  2. The VLT LBG Redshift Survey - I. Clustering and dynamics of ≈1000 galaxies at z≈ 3

    NASA Astrophysics Data System (ADS)

    Bielby, R. M.; Shanks, T.; Weilbacher, P. M.; Infante, L.; Crighton, N. H. M.; Bornancini, C.; Bouché, N.; Héraudeau, P.; Lambas, D. G.; Lowenthal, J.; Minniti, D.; Padilla, N.; Petitjean, P.; Theuns, T.

    2011-06-01

    We present the initial imaging and spectroscopic data acquired as part of the Very Large Telescope (VLT) VIMOS Lyman-break galaxy Survey. UBR (or UBVI) imaging covers five ≈36 × 36 arcmin2 fields centred on bright z > 3 quasi-stellar objects (QSOs), allowing ≈21 000 2 < z < 3.5 galaxy candidates to be selected using the Lyman-break technique. We performed spectroscopic follow-up using VLT VIMOS, measuring redshifts for 1020 z > 2 Lyman-break galaxies and 10 z > 2 QSOs from a total of 19 VIMOS pointings. From the galaxy spectra, we observe a 625 ± 510 km s-1 velocity offset between the interstellar absorption and Lyman α emission-line redshifts, consistent with previous results. Using the photometric and spectroscopic catalogues, we have analysed the galaxy clustering at z≈ 3. The angular correlation function, w(θ), is well fitted by a double power law with clustering scalelength, r0= 3.19+0.32-0.54 h-1 Mpc and slope γ= 2.45 for r < 1 h-1 Mpc and r0= 4.37+0.43-0.55 h-1 Mpc with γ= 1.61 ± 0.15 at larger scales. Using the redshift sample we estimate the semiprojected correlation function, wp(σ), and, for a γ= 1.8 power law, find r0= 3.67+0.23-0.24 h-1 Mpc for the VLT sample and r0= 3.98+0.14-0.15 h-1 Mpc for a combined VLT+Keck sample. From ξ(s) and ξ(σ, π), and assuming the above ξ(r) models, we find that the combined VLT and Keck surveys require a galaxy pairwise velocity dispersion of ≈700 km s-1, higher than ≈400 km s-1 assumed by previous authors. We also measure a value for the gravitational growth rate parameter of β(z= 3) = 0.48 ± 0.17, again higher than that previously found and implying a low value for the bias of b= 2.06+1.1-0.5. This value is consistent with the galaxy clustering amplitude which gives b= 2.22 ± 0.16, assuming the standard cosmology, implying that the evolution of the gravitational growth rate is also consistent with Einstein gravity. Finally, we have compared our Lyman-break galaxy clustering amplitudes with

  3. Rapidly convergent cluster expansion and application to lithium ion battery materials

    NASA Astrophysics Data System (ADS)

    Lee, Eunseok; Iddir, Hakim; Benedek, Roy

    2017-02-01

    The convergence of a cluster expansion for lithium transition-metal (TM) oxides is improved by explicit treatment of TM magnetic moments. The approach is applied to layered LiC oyN i1 -yO2 (NC). The ground state and low-lying excited state structures are identified, and the distribution of TM ions and magnetic moment in those structures is investigated to explain the origin of Ni-antisite ions and Jahn-Teller distortion. The developed model also reveals the mechanisms governing the atomic arrangement of NC, including in-plane Co-Co vs Co-Ni competition, magnetic frustration vs disproportionation competition, and cationic interactions spanning adjacent layers.

  4. Self-assembled germanium nano-clusters on silver(110) [rapid communication

    NASA Astrophysics Data System (ADS)

    Léandri, C.; Oughaddou, H.; Gay, J. M.; Aufray, B.; Le Lay, G.; Bibérian, J. P.; Ranguis, A.; Bunk, O.; Johnson, R. L.

    2004-12-01

    The adsorption of germanium on Ag(1 1 0) has been investigated by scanning tunnelling microscopy (STM), as well as surface X-ray diffraction (SXRD). At 0.5 germanium monolayer (ML) coverage, Low Energy Electron Diffraction (LEED) patterns reveals a sharp c(4 × 2) superstructure. Based on STM images and SXRD measurements, we present an atomic model of the surface structure with Ge atoms forming tetramer nano-clusters perfectly assembled in a two-dimensional array over the silver top layer. The adsorption of the germanium atoms induces a weak perturbation of the Ag surface. Upon comparison with results obtained on the (1 1 1) and (1 0 0) faces, we stress the role played by the relative interactions between silver and germanium on the observed surface structures.

  5. The Cosmic Large-Scale Structure in X-rays (CLASSIX) Cluster Survey. I. Probing galaxy cluster magnetic fields with line of sight rotation measures

    NASA Astrophysics Data System (ADS)

    Böhringer, Hans; Chon, Gayoung; Kronberg, Philipp P.

    2016-11-01

    To search for a signature of an intracluster magnetic field, we compare measurements of Faraday rotation of polarised extragalactic radio sources in the line of sight of galaxy clusters with those outside. To this end, we correlated a catalogue of 1383 rotation measures of extragalactic polarised radio sources with galaxy clusters from the CLASSIX survey (combining REFLEX II and NORAS II) detected by their X-ray emission in the ROSAT All-Sky Survey. The survey covers 8.25 ster of the sky at | bII | ≥ 20°. We compared the rotation measures in the line of sight of clusters within their projected radii of r500 with those outside and found a significant excess of the dispersion of the rotation measures in the cluster regions. Since the observed rotation measure is the result of Faraday rotation in several presumably uncorrelated magnetised cells of the intracluster medium, the observations correspond to quantities averaged over several magnetic field directions and strengths. Therefore the interesting quantity is the dispersion or standard deviation of the rotation measure for an ensemble of clusters. In the analysis of the observations we found a standard deviation of the rotation measure inside r500 of about 120 (± 21) rad m-2. This compares to about 56 (± 8) rad m-2 outside. Correcting for the effect of the Galaxy with the mean rotation measure in a region of 10 deg radius in the outskirts of the clusters does not change the outcome quoted above. We show that the most X-ray luminous and thus most massive clusters contribute most to the observed excess rotation measure. Modelling the electron density distribution in the intracluster medium with a self-similar model based on the REXCESS Survey, we found that the dispersion of the rotation measure increases with the column density, and we deduce a magnetic field value of about 2-6 (l/ 10 kpc)- 1/2μG assuming a constant magnetic field strength, where l is the size of the coherently magnetised intracluster medium

  6. Integrated light chemical tagging analyses of seven M31 outer halo globular clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Venn, Kim A.; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron; Ferguson, Annette M. N.; Huxor, Avon

    2015-04-01

    Detailed chemical abundances are presented for seven M31 outer halo globular clusters (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated light spectra taken with the Hobby-Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS) - this paper presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal poor ([Fe/H] < -1.5), α-enhanced (though they are possibly less α-enhanced than Milky Way stars at the 1σ level), and show signs of star-to-star Na and Mg variations. The other three globular clusters (H10, H23, and PA17) are more metal rich, with metallicities ranging from [Fe/H] = -1.4 to -0.9. While H23 is chemically similar to Milky Way field stars, Milky Way globular clusters, and other M31 clusters, H10 and PA17, have moderately low [Ca/Fe], compared to Milky Way field stars and clusters. Additionally, PA17's high [Mg/Ca] and [Ba/Eu] ratios are distinct from Milky Way stars, and are in better agreement with the stars and clusters in the Large Magellanic Cloud. None of the clusters studied here can be conclusively linked to any of the identified streams from PAndAS; however, based on their locations, kinematics, metallicities, and detailed abundances, the most metal-rich PAndAS clusters H23 and PA17 may be associated with the progenitor of the Giant Stellar Stream, H10 may be associated with the SW cloud, and PA53 and PA56 may be associated with the eastern cloud.

  7. Deep Advanced Camera for Surveys Imaging in the Globular Cluster NGC 6397: the Cluster Color-Magnitude Diagram and Luminosity Function

    NASA Astrophysics Data System (ADS)

    Richer, Harvey B.; Dotter, Aaron; Hurley, Jarrod; Anderson, Jay; King, Ivan; Davis, Saul; Fahlman, Gregory G.; Hansen, Brad M. S.; Kalirai, Jason; Paust, Nathaniel; Rich, R. Michael; Shara, Michael M.

    2008-06-01

    We present the color-magnitude diagram (CMD) from deep Hubble Space Telescope imaging in the globular cluster NGC 6397. The Advanced Camera for Surveys (ACS) was used for 126 orbits to image a single field in two colors (F814W, F606W) 5' SE of the cluster center. The field observed overlaps that of archival WFPC2 data from 1994 and 1997 which were used to proper motion (PM) clean the data. Applying the PM corrections produces a remarkably clean CMD which reveals a number of features never seen before in a globular cluster CMD. In our field, the main-sequence stars appeared to terminate close to the location in the CMD of the hydrogen-burning limit predicted by two independent sets of stellar evolution models. The faintest observed main-sequence stars are about a magnitude fainter than the least luminous metal-poor field halo stars known, suggesting that the lowest-luminosity halo stars still await discovery. At the bright end the data extend beyond the main-sequence turnoff to well up the giant branch. A populous white dwarf cooling sequence is also seen in the cluster CMD. The most dramatic features of the cooling sequence are its turn to the blue at faint magnitudes as well as an apparent truncation near F814W = 28. The cluster luminosity and mass functions were derived, stretching from the turnoff down to the hydrogen-burning limit. It was well modeled with either a very flat power-law or a lognormal function. In order to interpret these fits more fully we compared them with similar functions in the cluster core and with a full N-body model of NGC 6397 finding satisfactory agreement between the model predictions and the data. This exercise demonstrates the important role and the effect that dynamics has played in altering the cluster initial mass function.

  8. Herschel-Astrophysical Terahertz Large Area Survey: detection of a far-infrared population around galaxy clusters

    NASA Astrophysics Data System (ADS)

    Coppin, K. E. K.; Geach, J. E.; Smail, Ian; Dunne, L.; Edge, A. C.; Ivison, R. J.; Maddox, S.; Auld, R.; Baes, M.; Buttiglione, S.; Cava, A.; Clements, D. L.; Cooray, A.; Dariush, A.; de Zotti, G.; Dye, S.; Eales, S.; Fritz, J.; Hopwood, R.; Ibar, E.; Jarvis, M.; Michałowski, M. J.; Murphy, D. N. A.; Negrello, M.; Pascale, E.; Pohlen, M.; Rigby, E.; Rodighiero, G.; Scott, D.; Serjeant, S.; Smith, D. J. B.; Temi, P.; van der Werf, P.

    2011-09-01

    We report the detection of a significant excess in the surface density of far-infrared sources from the Herschel-Astrophysical Terahertz Large Area Survey within ˜1 Mpc of the centres of 66 optically selected clusters of galaxies in the Sloan Digital Sky Survey with ˜ 0.25. From the analysis of the multiwavelength properties of their counterparts we conclude that the far-infrared emission is associated with dust-obscured star formation and/or active galactic nuclei (AGN) within galaxies in the clusters themselves. The excess reaches a maximum at a radius of ˜0.8 Mpc, where we find 1.0 ± 0.3 S250 > 34 mJy sources on average per cluster above what would be expected for random field locations. If the far-infrared emission is dominated by star formation (as opposed to AGN) then this corresponds to an average star formation rate of ˜7 M⊙ yr-1 per cluster in sources with LIR > 5 × 1010 L⊙. Although lensed sources make a negligible contribution to the excess signal, a fraction of the sources around the clusters could be gravitationally lensed, and we have identified a sample of potential cases of cluster-lensed Herschel sources that could be targeted in follow-up studies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  9. TESTING STELLAR POPULATION SYNTHESIS MODELS WITH SLOAN DIGITAL SKY SURVEY COLORS OF M31's GLOBULAR CLUSTERS

    SciTech Connect

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.; Kundu, Arunav

    2011-08-10

    Accurate stellar population synthesis models are vital in understanding the properties and formation histories of galaxies. In order to calibrate and test the reliability of these models, they are often compared with observations of star clusters. However, relatively little work has compared these models in the ugriz filters, despite the recent widespread use of this filter set. In this paper, we compare the integrated colors of globular clusters in the Sloan Digital Sky Survey (SDSS) with those predicted from commonly used simple stellar population (SSP) models. The colors are based on SDSS observations of M31's clusters and provide the largest population of star clusters with accurate photometry available from the survey. As such, it is a unique sample with which to compare SSP models with SDSS observations. From this work, we identify a significant offset between the SSP models and the clusters' g - r colors, with the models predicting colors which are too red by g - r {approx} 0.1. This finding is consistent with previous observations of luminous red galaxies in the SDSS, which show a similar discrepancy. The identification of this offset in globular clusters suggests that it is very unlikely to be due to a minority population of young stars. The recently updated SSP model of Maraston and Stroembaeck better represents the observed g - r colors. This model is based on the empirical MILES stellar library, rather than theoretical libraries, suggesting an explanation for the g - r discrepancy.

  10. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  11. Hundreds of new cluster candidates in the VISTA Variables in the Vía Láctea survey DR1

    NASA Astrophysics Data System (ADS)

    Barbá, R. H.; Roman-Lopes, A.; Nilo Castellón, J. L.; Firpo, V.; Minniti, D.; Lucas, P.; Emerson, J. P.; Hempel, M.; Soto, M.; Saito, R. K.

    2015-09-01

    Context. VISTA variables in the Vía Láctea is an ESO Public survey dedicated to scanning the bulge and an adjacent portion of the Galactic disk in the fourth quadrant using the VISTA telescope and its near-infrared camera VIRCAM. One of the leading goals of the VVV survey is to contribute to knowledge of the star cluster population of the Milky Way. Aims: To improve the census of Galactic star clusters, we performed a systematic and careful scan of the JHKs images of the Galactic plane section of the VVV survey. Methods: Our detection procedure is based on a combination of stellar density maps and visual inspection of promising features in the J-, H-, and KS-band images. The material examined are VVV JHKS color-composite images corresponding to Data Release 1 of VVV. Results: We report the discovery of 493 new infrared star cluster candidates. The analysis of the spatial distribution show that the clusters are very concentrated in the Galactic plane, presenting some local maxima around the position of large star-forming complexes, such as G305, RCW 95, and RCW 106. The vast majority of the new star cluster candidates are quite compact and generally surrounded by bright and/or dark nebulosities. IRAS point sources are associated with 59% of the sample, while 88% are associated with MSX point sources. GLIMPSE 8 μm images of the cluster candidates show a variety of morphologies, with 292 clusters dominated by knotty sources, while 361 clusters show some kind of nebulosity in this wavelength regime. Spatial cross-correlation with young stellar objects, masers, and extended green-object catalogs suggest that a large sample of the new cluster candidates are extremely young. In particular, 104 star clusters associated with methanol masers are excellent candidates for ongoing massive star formation. Also, there is a special set of sixteen cluster candidates that present clear signposts of star-forming activity having associated simultaneosly dark nebulae, young stellar

  12. An accurate cluster selection function for the J-PAS narrow-band wide-field survey

    NASA Astrophysics Data System (ADS)

    Ascaso, B.; Benítez, N.; Dupke, R.; Cypriano, E.; Lima-Neto, G.; López-Sanjuan, C.; Varela, J.; Alcaniz, J. S.; Broadhurst, T.; Cenarro, A. J.; Devi, N. Chandrachani; Díaz-García, L. A.; Fernandes, C. A. C.; Hernández-Monteagudo, C.; Mei, S.; Mendes de Oliveira, C.; Molino, A.; Oteo, I.; Schoenell, W.; Sodré, L.; Viironen, K.; Marín-Franch, A.

    2016-03-01

    The impending Javalambre Physics of the accelerating Universe Astrophysical Survey (J-PAS) will be the first wide-field survey of ≳ 8500 deg2 to reach the `stage IV' category. Because of the redshift resolution afforded by 54 narrow-band filters, J-PAS is particularly suitable for cluster detection in the range z<1. The photometric redshift dispersion is estimated to be only ˜0.003 with few outliers ≲4 per cent for galaxies brighter than i ˜ 23 AB, because of the sensitivity of narrow band imaging to absorption and emission lines. Here, we evaluate the cluster selection function for J-PAS using N-body+semi-analytical realistic mock catalogues. We optimally detect clusters from this simulation with the Bayesian Cluster Finder, and we assess the completeness and purity of cluster detection against the mock data. The minimum halo mass threshold we find for detections of galaxy clusters and groups with both >80 per cent completeness and purity is Mh ˜ 5 × 1013 M⊙ up to z ˜ 0.7. We also model the optical observable, M^{*}_CL-halo mass relation, finding a non-evolution with redshift and main scatter of σ _{M^{*}_CL | M_h}˜ 0.14 dex down to a factor 2 lower in mass than other planned broad-band stage IV surveys, at least. For the Mh ˜ 1 × 1014 M⊙ Planck mass limit, J-PAS will arrive up to z ˜ 0.85 with a σ _{M^{*}_CL | M_h}˜ 0.12 dex. Therefore, J-PAS will provide the largest sample of clusters and groups up to z ˜ 0.8 with a mass calibration accuracy comparable to X-ray data.

  13. New variable stars discovered in the fields of three Galactic open clusters using the VVV survey

    NASA Astrophysics Data System (ADS)

    Palma, T.; Minniti, D.; Dékány, I.; Clariá, J. J.; Alonso-García, J.; Gramajo, L. V.; Ramírez Alegría, S.; Bonatto, C.

    2016-11-01

    This project is a massive near-infrared (NIR) search for variable stars in highly reddened and obscured open cluster (OC) fields projected on regions of the Galactic bulge and disk. The search is performed using photometric NIR data in the J-, H- and Ks- bands obtained from the Vista Variables in the Vía Láctea (VVV) Survey. We performed in each cluster field a variability search using Stetson's variability statistics to select the variable candidates. Later, those candidates were subjected to a frequency analysis using the Generalized Lomb-Scargle and the Phase Dispersion Minimization algorithms. The number of independent observations range between 63 and 73. The newly discovered variables in this study, 157 in total in three different known OCs, are classified based on their light curve shapes, periods, amplitudes and their location in the corresponding color-magnitude (J -Ks ,Ks) and color-color (H -Ks , J - H) diagrams. We found 5 possible Cepheid stars which, based on the period-luminosity relation, are very likely type II Cepheids located behind the bulge. Among the newly discovered variables, there are eclipsing binaries, δ Scuti, as well as background RR Lyrae stars. Using the new version of the Wilson & Devinney code as well as the "Physics Of Eclipsing Binaries" (PHOEBE) code, we analyzed some of the best eclipsing binaries we discovered. Our results show that these studied systems turn out to be ranging from detached to double-contact binaries, with low eccentricities and high inclinations of approximately 80°. Their surface temperatures range between 3500 K and 8000 K.

  14. The VMC Survey - XXI. New star cluster candidates discovered from infrared photometry in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.; Ivanov, Valentin D.; Rubele, Stefano; Marconi, Marcella; Ripepi, Vincenzo; Cioni, Maria-Rosa L.; Oliveira, Joana M.; Bekki, Kenji

    2016-07-01

    We report the first search for new star clusters performed using the VISTA near-infrared YJKs Magellanic Clouds survey (VMC) data sets. We chose a pilot field of ˜0.4 deg2 located in the South-west of the Small Magelllanic Cloud bar, where the star field is among the densest and highest reddened region in the galaxy. In order to devise an appropriate automatic procedure we made use of dimensions and stellar densities observed in the VMC data sets of the known clusters in this area. We executed different kernel density estimations over a sample of more than 358 000 stars with magnitudes measured in the three YJKs filters. We analysed the new cluster candidates whose colour-magnitude diagrams (CMDs), cleaned from field star contamination, were used to assess the clusters' reality and estimate reddenings and ages of the genuine systems. As a result 38 objects (≈ a 55 per cent increase in the known star clusters located in the surveyed field) of 0.15-0.40 arcmin (2.6-7.0 pc) in radius resulted to have near-infrared CMD features which resemble those of star clusters of young to moderate intermediate age (log(t yr-1) ˜7.5-9.0). Most of the new star cluster candidates are hardly recognizable in optical images without the help of a sound star field decontaminated CMD analysis. For highly reddened star cluster candidates (E(B - V) ≥ 0.6 mag) the VMC data sets were necessary in order to recognize them.

  15. To Treat or Not to Treat? A Pilot Survey for Minor and Rapidly Improving Stroke

    PubMed Central

    Balucani, Clotilde; Bianchi, Riccardo; Feldmann, Edward; Weedon, Jeremy; Kolychev, Dmitri; Levine, Steven R.

    2015-01-01

    Background and Purpose Minor stroke and rapidly improving stroke symptoms (RISS) are frequent exclusions for intravenous tissue-type plasminogen activator (t-PA). We explored factors influencing t-PA treatment decision for minor stroke/RISS. Methods A pilot survey including 110 case scenarios completed by 17 clinicians from two academic medical centers. Respondents were asked whether they would treat each case with t-PA at 60 min after Emergency Department admission. Cases varied by: (a) NIHSS score at treatment decision time; (b) symptom pattern over time [“improvement (IMP)” or “worsening and then improving (WI)”]; (c) type of neurological deficit [three main domains, “Motor (M)”, “Visual/Sensory/Ataxia (VSA)”, “Language/Neglect (LN)”]; and, (d) age/occupation (four profiles). Logistic regression was used to predict probability of omission (po). A binomial regression model was used to predict probability of treatment decision [p(t-PA)]. Results P(t-PA) was affected by NIHSS score (p<0.001), age/occupation profiles (p<0.001), but not by symptom patterns (p=0.334). There were significant, albeit modest main effects on p(t-PA) for neurological domains. Responses were most likely omitted (p=0.027) for cases with “IMP” pattern and “LN” domain (po)=0.74; 95% [confidence interval (CI) 0.52-0.89] and with “VSA” domain (po=0.74; CI 0.37-0.93), as compared to “IMP” pattern and “M” domain (po =0.17; CI 0.06-0.42) and to any “WI” patterns (0.37survey provides the first quantitative evidence that NIHSS score is not the only determinant of treatment decision. An NIHSS score of 2 is the potential equipoise point, with the least consensus on treatment decision. These preliminary findings require validation in larger population surveys. PMID:25604250

  16. The Herschel Virgo Cluster Survey. XX. Dust and gas in the foreground Galactic cirrus

    NASA Astrophysics Data System (ADS)

    Bianchi, S.; Giovanardi, C.; Smith, M. W. L.; Fritz, J.; Davies, J. I.; Haynes, M. P.; Giovanelli, R.; Baes, M.; Bocchio, M.; Boissier, S.; Boquien, M.; Boselli, A.; Casasola, V.; Clark, C. J. R.; De Looze, I.; di Serego Alighieri, S.; Grossi, M.; Jones, A. P.; Hughes, T. M.; Hunt, L. K.; Madden, S.; Magrini, L.; Pappalardo, C.; Ysard, N.; Zibetti, S.

    2017-01-01

    We study the correlation between far-infrared/submm dust emission and atomic gas column density in order to derive the properties of the high Galactic latitude, low density, Milky Way cirrus in the foreground of the Virgo cluster of galaxies. Dust emission maps from 60 to 850 μm are obtained from observations with the Spectral and Photometric Imaging Receiver (SPIRE) and carried out within the Herschel Virgo Cluster Survey (HeViCS); these are complemented by IRAS and Planck maps. Data from the Arecibo legacy Fast ALFA Survey is used to derive atomic gas column densities for two broad velocity components: low and intermediate velocity clouds. Dust emissivities are derived for each gas component and each far-infrared/submm band. For the low velocity clouds, we measure an average emissivity ɛLVCν = (0.79 ± 0.08) × 10-20 MJy sr-1 cm2 at 250 μm. After fitting a modified blackbody to the available bands, we estimated a dust absorption cross section of τLVCν/NH i = (0.49 ± 0.13) × 10-25 cm2 H-1 at 250 μm (with dust temperature T = 20.4 ± 1.5 K and spectral index β = 1.53 ± 0.17). The results are in excellent agreement with those obtained by Planck over a much larger coverage of the high Galactic latitude cirrus (50% of the sky versus 0.2% in our work). For dust associated with intermediate velocity gas, we confirm earlier Planck results and find a higher temperature and lower emissivity and cross section. After subtracting the modeled components, we find regions at scales smaller than 20' in which the residuals deviate significantly from the average scatter, which is dominated by cosmic infrared background. These large residuals are most likely due to local variations in the cirrus dust properties or to high-latitude molecular clouds with average NH2 ≲ 1020 cm-2. We find no conclusive evidence for intracluster dust emission in Virgo. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and

  17. The 2dF galaxy redshift survey: clustering properties of radio galaxies

    NASA Astrophysics Data System (ADS)

    Magliocchetti, Manuela; Maddox, Steve J.; Hawkins, Ed; Peacock, John A.; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Cole, Shaun; Colless, Matthew; Collins, Chris; Couch, Warrick; Dalton, Gavin; de Propris, Roberto; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Frenk, Carlos S.; Glazebrook, Karl; Jackson, Carole A.; Jones, Bryn; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Norberg, Peder; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith; 2dFGRS Team

    2004-06-01

    The clustering properties of local, S1.4 GHz>= 1 mJy, radio sources are investigated for a sample of 820 objects drawn from the joint use of the Faint Images of the Radio Sky at 20 cm (FIRST) and 2dF Galaxy Redshift surveys. To this aim, we present 271 new bJ<= 19.45 spectroscopic counterparts of FIRST radio sources to be added to those already introduced in our previous paper. The two-point correlation function for the local radio population is found to be entirely consistent with estimates obtained for the whole sample of 2dFGRS galaxies. From measurements of the redshift-space correlation function ξ(s) we derive a redshift-space clustering length s0= 10.7+0.8-0.7 Mpc, while from the projected correlation function Ξ(rT) we estimate the parameters of the real-space correlation function ξ(r) = (r/r0)-γ, r0= 6.7+0.9-1.1 Mpc and γ= 1.6 +/- 0.1, where h= 0.7 is assumed. Different results are instead obtained if we only consider sources that present signatures of active galactic nucleus (AGN) activity in their spectra. These objects are shown to be very strongly correlated, with r0= 10.9+1.0-1.2 Mpc and γ= 2 +/- 0.1, a steeper slope than has been claimed in other recent works. No difference is found in the clustering properties of radio-AGNs of different radio luminosity. Comparisons with models for ξ(r) show that AGN-fuelled sources reside in dark matter haloes more massive than ~1013.4 Msolar, higher than the corresponding figure for radio-quiet quasi-stellar objects. This value can be converted into a minimum black hole mass associated with radio-loud, AGN-fuelled objects of MminBH~ 109 Msolar. The above results then suggest - at least for relatively faint radio objects - the existence of a threshold black hole mass associated with the onset of significant radio activity such as that of radio-loud AGNs; however, once the activity is triggered, there appears to be no evidence for a connection between black hole mass and level of radio output.

  18. The XMM-LSS survey: the Class 1 cluster sample over the initial 5 deg2 and its cosmological modelling

    NASA Astrophysics Data System (ADS)

    Pacaud, F.; Pierre, M.; Adami, C.; Altieri, B.; Andreon, S.; Chiappetti, L.; Detal, A.; Duc, P.-A.; Galaz, G.; Gueguen, A.; Le Fèvre, J.-P.; Hertling, G.; Libbrecht, C.; Melin, J.-B.; Ponman, T. J.; Quintana, H.; Refregier, A.; Sprimont, P.-G.; Surdej, J.; Valtchanov, I.; Willis, J. P.; Alloin, D.; Birkinshaw, M.; Bremer, M. N.; Garcet, O.; Jean, C.; Jones, L. R.; Le Fèvre, O.; Maccagni, D.; Mazure, A.; Proust, D.; Röttgering, H. J. A.; Trinchieri, G.

    2007-12-01

    We present a sample of 29 galaxy clusters from the XMM-LSS survey over an area of some 5 deg2 out to a redshift of z = 1.05. The sample clusters, which represent about half of the X-ray clusters identified in the region, follow well-defined X-ray selection criteria and are all spectroscopically confirmed. For all clusters, we provide X-ray luminosities and temperatures as well as masses, obtained from dedicated spatial and spectral fitting. The cluster distribution peaks around z = 0.3 and T = 1.5 keV, half of the objects being groups with a temperature below 2 keV. Our LX-T(z) relation points towards self-similar evolution, but does not exclude other physically plausible models. Assuming that cluster scaling laws follow self-similar evolution, our number density estimates up to z = 1 are compatible with the predictions of the concordance cosmology and with the findings of previous ROSAT surveys. Our well-monitored selection function allowed us to demonstrate that the inclusion of selection effects is essential for the correct determination of the evolution of the LX-T relation, which may explain the contradictory results from previous studies. Extensive simulations show that extending the survey area to 10 deg2 has the potential to exclude the non-evolution hypothesis, but those constraints on more refined intracluster medium models will probably be limited by the large intrinsic dispersion of the LX-T relation, whatever be the sample size. We further demonstrate that increasing the dispersion in the scaling laws increases the number of detectable clusters, hence generating further degeneracy [in addition to σ8,Ωm, LX-T(z)] in the cosmological interpretation of the cluster number counts. We provide useful empirical formulae for the cluster mass-flux and mass-count rate relations as well as a comparison between the XMM-LSS mass sensitivity and that of forthcoming Sunyaev-Zel'dovich surveys. Based on data collected with XMM, Very Large Telescope, Magellan, NTT and

  19. SIS Mixer Design for a Broadband Millimeter Spectrometer Suitable for Rapid Line Surveys and Redshift Determinations

    NASA Technical Reports Server (NTRS)

    Rice, F.; Sumner, M.; Zmuidzinas, J.; Hu, R.; LeDuc, H.; Harris, A.; Miller, D.

    2004-01-01

    We present some detail of the waveguide probe and SIS mixer chip designs for a low-noise 180-300 GHz double- sideband receiver with an instantaneous RF bandwidth of 24 GHz. The receiver's single SIS junction is excited by a broadband, fixed-tuned waveguide probe on a silicon substrate. The IF output is coupled to a 6-18 GHz MMIC low- noise preamplifier. Following further amplification, the output is processed by an array of 4 GHz, 128-channel analog autocorrelation spectrometers (WASP 11). The single-sideband receiver noise temperature goal of 70 Kelvin will provide a prototype instrument capable of rapid line surveys and of relatively efficient carbon monoxide (CO) emission line searches of distant, dusty galaxies. The latter application's goal is to determine redshifts by measuring the frequencies of CO line emissions from the star-forming regions dominating the submillimeter brightness of these galaxies. Construction of the receiver has begun; lab testing should begin in the fall. Demonstration of the receiver on the Caltech Submillimeter Observatory (CSO) telescope should begin in spring 2003.

  20. The administration and interpretation of the rapid exchange grip test: a national survey.

    PubMed

    Shechtman, Orit; Goodall, Sara K

    2008-01-01

    The purpose of the present study was to determine if the administration and interpretation of the rapid exchange grip (REG) test vary among hand therapists nationally. The REG is used to determine sincerity of effort of grip strength. There are inconsistencies in the literature regarding the administration and interpretation of the REG, as various studies use different testing protocols and diverse interpretation criteria for what constitutes a sincere effort. As a result, we expected to find a lack of standardization in the administration and interpretation of the REG in clinical practice. We conducted a random nationwide survey of 200 hand therapists. The questionnaire items regarding the administration of the REG included patient position, test instructions, handle settings, handling of the dynamometer, hand switch rate, number of repetitions, and techniques used to record the score. The items for the interpretation of the REG involved questions regarding comparative tests. We found that the REG test lacks standardized administration protocols and interpretation criteria among therapists nationwide. The lack of standardization is likely to affect the reliability and validity of the REG and to hinder the therapist's ability to accurately report its outcomes. The implications of lack of standardization in assessment techniques to the profession are discussed.

  1. Expanding LAGLIDADG endonuclease scaffold diversity by rapidly surveying evolutionary sequence space

    PubMed Central

    Jacoby, Kyle; Metzger, Michael; Shen, Betty W.; Certo, Michael T.; Jarjour, Jordan; Stoddard, Barry L.; Scharenberg, Andrew M.

    2012-01-01

    LAGLIDADG homing endonucleases (LHEs) are a family of highly specific DNA endonucleases capable of recognizing target sequences ∼20 bp in length, thus drawing intense interest for their potential academic, biotechnological and clinical applications. Methods for rational design of LHEs to cleave desired target sites are presently limited by a small number of high-quality native LHEs to serve as scaffolds for protein engineering—many are unsatisfactory for gene targeting applications. One strategy to address such limitations is to identify close homologs of existing LHEs possessing superior biophysical or catalytic properties. To test this concept, we searched public sequence databases to identify putative LHE open reading frames homologous to the LHE I-AniI and used a DNA binding and cleavage assay using yeast surface display to rapidly survey a subset of the predicted proteins. These proteins exhibited a range of capacities for surface expression and also displayed locally altered binding and cleavage specificities with a range of in vivo cleavage activities. Of these enzymes, I-HjeMI demonstrated the greatest activity in vivo and was readily crystallizable, allowing a comparative structural analysis. Taken together, our results suggest that even highly homologous LHEs offer a readily accessible resource of related scaffolds that display diverse biochemical properties for biotechnological applications. PMID:22334611

  2. Hidden Gems: A Multiwavelength Survey of X-ray Sources in Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Morris, David C.; Dhuga, K.; Parke, W.; Eskandarian, A.

    2010-01-01

    Quiescent low mass X-ray binaries (qLMXBs) in Milky Way globular clusters (MWGCs) are an excellent diagnostic tool for studying several fundamental questions in astrophysics, including the nature of the equation of state (EoS) of neutron stars (NSs), the mechanism of binary system formation, the internal dynamics of compact stellar systems and the accretion process. Due to their accurately known distances and reddening/NH measures, the luminosity of GC XBs can be calculated far more precisely than that of XBs found in the field. The 12(13) luminous (L>1x1036 erg/s) XBs in MWGCs have been known for several (many) years but qLMXBs in MWGCs have only recently begun to be identified thanks to the advances in sensitivity and spatial resolution of the Chandra and XMM-Newton observatories. While low luminosity XB searches of MWGCs using these two great observatories now constitute an active field of research, there remain dozens of MWGCs for which the most sensitive previous X-ray observation is that of the ROSAT all-sky survey (RASS; hereafter RASS-MWGCs). For many RASS-MWGCs, the lower sensitivity threshold of the qLMXB population can be reached with relatively short exposures of the X-ray Telescope on-board the Swift Gamma-Ray Burst Observatory (Swift). I will discuss a systematic survey of unobserved nearby MWGCs, with Swift, which is creating a pathway to identifying their qLMXB populations, allowing follow-up observations with larger observatories. I will present statistics of the candidate qLMXBs identified in the Swift observing campaign, discuss follow-up measurements with XMM-Newton and Chandra and present prospects for answering vital questions about both the evolution of GCs and neutron stars themselves.

  3. Surgical need in an aging population: a cluster based household survey in Nepal

    PubMed Central

    Stewart, Barclay; Wong, Evan; Gupta, Shailvi; Bastola, Santosh; Shrestha, Sunil; Kushner, Adam; Nwomeh, Benedict C.

    2015-01-01

    Background With an aging global population comes significant non-communicable disease burden, especially in low- and middle-income countries (LMICs). An unknown proportion of this burden is treatable with surgery. For health system planning, this study aimed to estimate the surgical needs of individuals over 50 years in Nepal. Methods A two-stage, cluster randomized, community-based survey was performed in Nepal using the validated Surgeons OverSeas Assessment of Surgical Need (SOSAS) tool. SOSAS collects household demographics, randomly selects household members for verbal head-to-toe examinations for surgical conditions and completes a verbal autopsy for deaths in the preceding year. Only respondents older than 50 years were included in the analysis. Results The survey sampled 1,350 households, totaling 2,695 individuals (97% response rate). Of these, 273 surgical conditions were reported by 507 persons ages ≥50 years. Extrapolating, there are potentially 2.1 million people over age 50 with surgically treatable conditions needing care in Nepal (95%CI 1.8 – 2.4 million; 46,000 – 62,6000 per 100,000 persons). One in five deaths were potentially treatable or palliated by surgery. Though a growth or mass (including hernias and goiters) was the most commonly reported surgical condition (25%), injuries and fractures were also common and associated with the greatest disability. Literacy and distance to secondary and tertiary health facilities were associated with lack of care for surgical conditions (p<0.05). Conclusion There is a large unmet surgical need among the elderly in Nepal. Low literacy and distance from a capable health facility are the greatest barriers to care. As the global population ages, there is an increasing need to improve surgical services and strengthen health systems to care for this group. PMID:25934023

  4. A WIDE-FIELD SURVEY OF THE ORION NEBULA CLUSTER IN THE NEAR-INFRARED

    SciTech Connect

    Robberto, M.; Soderblom, D. R.; Scandariato, G.; Smith, K.; Da Rio, N.; Pagano, I.; Spezzi, L. E-mail: drs@stsci.edu E-mail: smith@mpia-hd.mpg.de E-mail: ipa@oact.inaf.it

    2010-03-15

    We present J, H, and K {sub S} photometry of the Orion Nebula Cluster (ONC) obtained at the CTIO/Blanco 4 m telescope at Cerro Tololo with the Infrared Side Port Imager camera. From the observations we have assembled a catalog of about {approx}7800 sources distributed over an area of approximately 30' x 40', the largest of any survey deeper than the Two Micron All Sky Survey (2MASS) in this region. The catalog provides absolute coordinates accurate to about 0.15 arcsec and 3{sigma} photometry in the 2MASS system, enough to detect planetary size objects 1 Myr old under A{sub V} {approx_equal} 10 mag of extinction at the distance of the Orion Nebula. We present a preliminary analysis of the catalog, done by comparing the (J-H, H-K {sub S} ) color-color diagram, the (H, J-H) and (K {sub S} , H-K {sub S} ) color-magnitude diagrams, and the J H K {sub S} luminosity functions (LFs) of three regions at an increasing projected distance from the Trapezium. Sources in the inner region typically show IR colors compatible with reddened T Tauri stars, whereas the outer fields are dominated by field stars seen through an amount of extinction which decreases with the distance from the center. The color-magnitude diagrams make it possible to clearly distinguish between the main ONC population, spread across the full field, and background sources. The LFs of the inner region, corrected for completeness, remain relatively flat in the substellar regime regardless of the strategy adopted to remove background contamination.

  5. A Cluster Randomised Trial Introducing Rapid Diagnostic Tests into Registered Drug Shops in Uganda: Impact on Appropriate Treatment of Malaria

    PubMed Central

    Mbonye, Anthony K.; Magnussen, Pascal; Lal, Sham; Hansen, Kristian S.; Cundill, Bonnie; Chandler, Clare; Clarke, Siân E.

    2015-01-01

    Background Inappropriate treatment of malaria is widely reported particularly in areas where there is poor access to health facilities and self-treatment of fevers with anti-malarial drugs bought in shops is the most common form of care-seeking. The main objective of the study was to examine the impact of introducing rapid diagnostic tests for malaria (mRDTs) in registered drug shops in Uganda, with the aim to increase appropriate treatment of malaria with artemisinin-based combination therapy (ACT) in patients seeking treatment for fever in drug shops. Methods A cluster-randomized trial of introducing mRDTs in registered drug shops was implemented in 20 geographical clusters of drug shops in Mukono district, central Uganda. Ten clusters were randomly allocated to the intervention (diagnostic confirmation of malaria by mRDT followed by ACT) and ten clusters to the control arm (presumptive treatment of fevers with ACT). Treatment decisions by providers were validated by microscopy on a reference blood slide collected at the time of consultation. The primary outcome was the proportion of febrile patients receiving appropriate treatment with ACT defined as: malaria patients with microscopically-confirmed presence of parasites in a peripheral blood smear receiving ACT or rectal artesunate, and patients with no malaria parasites not given ACT. Findings A total of 15,517 eligible patients (8672 intervention and 6845 control) received treatment for fever between January-December 2011. The proportion of febrile patients who received appropriate ACT treatment was 72·9% versus 33·7% in the control arm; a difference of 36·1% (95% CI: 21·3 – 50·9), p<0·001. The majority of patients with fever in the intervention arm accepted to purchase an mRDT (97·8%), of whom 58·5% tested mRDT-positive. Drug shop vendors adhered to the mRDT results, reducing over-treatment of malaria by 72·6% (95% CI: 46·7– 98·4), p<0·001) compared to drug shop vendors using presumptive

  6. The zCOSMOS-Bright survey: the clustering of early and late galaxy morphological types since z≃ 1

    NASA Astrophysics Data System (ADS)

    de la Torre, S.; Le Fèvre, O.; Porciani, C.; Guzzo, L.; Meneux, B.; Abbas, U.; Tasca, L.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Lilly, S. J.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Coppa, G.; Cucciati, O.; de Ravel, L.; Franzetti, P.; Garilli, B.; Halliday, C.; Iovino, A.; Kampczyk, P.; Knobel, C.; Koekemoer, A. M.; Kovač, K.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Mignoli, M.; Pelló, R.; Peng, Y.; Perez-Montero, E.; Ricciardelli, E.; Silverman, J.; Tanaka, M.; Tresse, L.; Vergani, D.; Zucca, E.; Bottini, D.; Cappi, A.; Cassata, P.; Cimatti, A.; Leauthaud, A.; Maccagni, D.; Marinoni, C.; McCracken, H. J.; Memeo, P.; Oesch, P.; Pozzetti, L.; Scaramella, R.

    2011-04-01

    We measure the spatial clustering of galaxies as a function of their morphological type at z≃ 0.8, for the first time in a deep redshift survey with full morphological information. This is obtained by combining high-resolution Hubble Space Telescope imaging and Very Large Telescope spectroscopy for about 8500 galaxies to ? with accurate spectroscopic redshifts from the zCOSMOS-Bright redshift survey. At this epoch, early-type galaxies already show a significantly stronger clustering than late-type galaxies on all probed scales. A comparison to the Sloan Digital Sky Survey Data at z≃ 0.1 shows that the relative clustering strength between early and late morphological classes tends to increase with cosmic time at small separations, while on large scales it shows no significant evolution since z≃ 0.8. This suggests that most early-type galaxies had already formed in intermediate and dense environments at this epoch. Our results are consistent with a picture in which the relative clustering of different morphological types between z≃ 1 and 0 reflects the evolving role of environment in the morphological transformation of galaxies, on top of a global evolution driven by mass.

  7. Annealing a Follow-up Program: Improvement of the Dark Energy Figure of Merit for Optical Galaxy Cluster Surveys

    SciTech Connect

    Wu, Hao-Yi; Rozo, Eduardo; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC /CCAPP, Columbus /KICP, Chicago /KIPAC, Menlo Park /SLAC

    2010-06-02

    The precision of cosmological parameters derived from galaxy cluster surveys is limited by uncertainty in relating observable signals to cluster mass. We demonstrate that a small mass-calibration follow-up program can significantly reduce this uncertainty and improve parameter constraints, particularly when the follow-up targets are judiciously chosen. To this end, we apply a simulated annealing algorithm to maximize the dark energy information at fixed observational cost, and find that optimal follow-up strategies can reduce the observational cost required to achieve a specified precision by up to an order of magnitude. Considering clusters selected from optical imaging in the Dark Energy Survey, we find that approximately 200 low-redshift X-ray clusters or massive Sunyaev-Zel'dovich clusters can improve the dark energy figure of merit by 50%, provided that the follow-up mass measurements involve no systematic error. In practice, the actual improvement depends on (1) the uncertainty in the systematic error in follow-up mass measurements, which needs to be controlled at the 5% level to avoid severe degradation of the results; and (2) the scatter in the optical richness-mass distribution, which needs to be made as tight as possible to improve the efficacy of follow-up observations.

  8. Structural evolutions and hereditary characteristics of icosahedral nano-clusters formed in Mg70Zn30 alloys during rapid solidification processes

    NASA Astrophysics Data System (ADS)

    Liang, Yong-Chao; Liu, Rang-Su; Xie, Quan; Tian, Ze-An; Mo, Yun-Fei; Zhang, Hai-Tao; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Peng, Ping

    2017-02-01

    To investigate the structural evolution and hereditary mechanism of icosahedral nano-clusters formed during rapid solidification, a molecular dynamics (MD) simulation study has been performed for a system consisting of 107 atoms of liquid Mg70Zn30 alloy. Adopting Honeycutt-Anderson (HA) bond-type index method and cluster type index method (CTIM-3) to analyse the microstructures in the system it is found that for all the nano-clusters including 2~8 icosahedral clusters in the system, there are 62 kinds of geometrical structures, and those can be classified, by the configurations of the central atoms of basic clusters they contained, into four types: chain-like, triangle-tailed, quadrilateral-tailed and pyramidal-tailed. The evolution of icosahedral nano-clusters can be conducted by perfect heredity and replacement heredity, and the perfect heredity emerges when temperature is slightly less than Tm then increase rapidly and far exceeds the replacement heredity at Tg; while for the replacement heredity, there are three major modes: replaced by triangle (3-atoms), quadrangle (4-atoms) and pentagonal pyramid (6-atoms), rather than by single atom step by step during rapid solidification processes.

  9. Structural evolutions and hereditary characteristics of icosahedral nano-clusters formed in Mg70Zn30 alloys during rapid solidification processes

    PubMed Central

    Liang, Yong-Chao; Liu, Rang-Su; Xie, Quan; Tian, Ze-An; Mo, Yun-Fei; Zhang, Hai-Tao; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Peng, Ping

    2017-01-01

    To investigate the structural evolution and hereditary mechanism of icosahedral nano-clusters formed during rapid solidification, a molecular dynamics (MD) simulation study has been performed for a system consisting of 107 atoms of liquid Mg70Zn30 alloy. Adopting Honeycutt-Anderson (HA) bond-type index method and cluster type index method (CTIM-3) to analyse the microstructures in the system it is found that for all the nano-clusters including 2~8 icosahedral clusters in the system, there are 62 kinds of geometrical structures, and those can be classified, by the configurations of the central atoms of basic clusters they contained, into four types: chain-like, triangle-tailed, quadrilateral-tailed and pyramidal-tailed. The evolution of icosahedral nano-clusters can be conducted by perfect heredity and replacement heredity, and the perfect heredity emerges when temperature is slightly less than Tm then increase rapidly and far exceeds the replacement heredity at Tg; while for the replacement heredity, there are three major modes: replaced by triangle (3-atoms), quadrangle (4-atoms) and pentagonal pyramid (6-atoms), rather than by single atom step by step during rapid solidification processes. PMID:28230068

  10. Structural evolutions and hereditary characteristics of icosahedral nano-clusters formed in Mg70Zn30 alloys during rapid solidification processes.

    PubMed

    Liang, Yong-Chao; Liu, Rang-Su; Xie, Quan; Tian, Ze-An; Mo, Yun-Fei; Zhang, Hai-Tao; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Peng, Ping

    2017-02-23

    To investigate the structural evolution and hereditary mechanism of icosahedral nano-clusters formed during rapid solidification, a molecular dynamics (MD) simulation study has been performed for a system consisting of 10(7) atoms of liquid Mg70Zn30 alloy. Adopting Honeycutt-Anderson (HA) bond-type index method and cluster type index method (CTIM-3) to analyse the microstructures in the system it is found that for all the nano-clusters including 2~8 icosahedral clusters in the system, there are 62 kinds of geometrical structures, and those can be classified, by the configurations of the central atoms of basic clusters they contained, into four types: chain-like, triangle-tailed, quadrilateral-tailed and pyramidal-tailed. The evolution of icosahedral nano-clusters can be conducted by perfect heredity and replacement heredity, and the perfect heredity emerges when temperature is slightly less than Tm then increase rapidly and far exceeds the replacement heredity at Tg; while for the replacement heredity, there are three major modes: replaced by triangle (3-atoms), quadrangle (4-atoms) and pentagonal pyramid (6-atoms), rather than by single atom step by step during rapid solidification processes.

  11. PROSPECTS FOR MEASURING THE RELATIVE VELOCITIES OF GALAXY CLUSTERS IN PHOTOMETRIC SURVEYS USING THE KINETIC SUNYAEV-ZEL'DOVICH EFFECT

    SciTech Connect

    Keisler, Ryan; Schmidt, Fabian E-mail: fabians@astro.princeton.edu

    2013-03-10

    We consider the prospects for measuring the pairwise kinetic Sunyaev-Zel'dovich (kSZ) signal from galaxy clusters discovered in large photometric surveys such as the Dark Energy Survey (DES). We project that the DES cluster sample will, in conjunction with existing mm-wave data from the South Pole Telescope (SPT), yield a detection of the pairwise kSZ signal at the 8{sigma}-13{sigma} level, with sensitivity peaking for clusters separated by {approx}100 Mpc distances. A next-generation version of SPT would allow for a 18{sigma}-30{sigma} detection and would be limited by variance from the kSZ signal itself and the residual thermal Sunyaev-Zel'dovich (tSZ) signal. Throughout our analysis, we assume photometric redshift errors that wash out the signal for clusters separated by {approx}<50 Mpc; a spectroscopic survey of the DES sample would recover this signal and allow for a 26{sigma}-43{sigma} detection, and would again be limited by kSZ/tSZ variance. Assuming a standard model of structure formation, these high-precision measurements of the pairwise kSZ signal will yield detailed information on the gas content of the galaxy clusters. Alternatively, if the gas can be sufficiently characterized by other means (e.g., using tSZ, X-ray, or weak lensing), then the relative velocities of the galaxy clusters can be isolated, thereby providing a precision measurement of gravity on 100 Mpc scales. We briefly consider the utility of these measurements for constraining theories of modified gravity.

  12. THE XMM CLUSTER SURVEY: THE BUILD-UP OF STELLAR MASS IN BRIGHTEST CLUSTER GALAXIES AT HIGH REDSHIFT

    SciTech Connect

    Stott, J. P.; Collins, C. A.; Hilton, M.; Capozzi, D.; Sahlen, M.; Lloyd-Davies, E.; Hosmer, M.; Liddle, A. R.; Mehrtens, N.; Romer, A. K.; Miller, C. J.; Stanford, S. A.; Viana, P. T. P.; Davidson, M.; Hoyle, B.; Kay, S. T.; Nichol, R. C.

    2010-07-20

    We present deep J- and K{sub s} -band photometry of 20 high redshift galaxy clusters between z = 0.8 and1.5, 19 of which are observed with the MOIRCS instrument on the Subaru telescope. By using near-infrared light as a proxy for stellar mass we find the surprising result that the average stellar mass of Brightest Cluster Galaxies (BCGs) has remained constant at {approx}9 x 10{sup 11} M {sub sun} since z {approx} 1.5. We investigate the effect on this result of differing star formation histories generated by three well-known and independent stellar population codes and find it to be robust for reasonable, physically motivated choices of age and metallicity. By performing Monte Carlo simulations we find that the result is unaffected by any correlation between BCG mass and cluster mass in either the observed or model clusters. The large stellar masses imply that the assemblage of these galaxies took place at the same time as the initial burst of star formation. This result leads us to conclude that dry merging has had little effect on the average stellar mass of BCGs over the last 9-10 Gyr in stark contrast to the predictions of semi-analytic models, based on the hierarchical merging of dark matter halos, which predict a more protracted mass build-up over a Hubble time. However, we discuss that there is potential for reconciliation between observation and theory if there is a significant growth of material in the intracluster light over the same period.

  13. The Herschel Virgo Cluster Survey. IV. Resolved dust analysis of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Smith, M. W. L.; Vlahakis, C.; Baes, M.; Bendo, G. J.; Bianchi, S.; Bomans, D. J.; Boselli, A.; Clemens, M.; Corbelli, E.; Cortese, L.; Dariush, A.; Davies, J. I.; De Looze, I.; di Serego Alighieri, S.; Fadda, D.; Fritz, J.; Garcia-Appadoo, D. A.; Gavazzi, G.; Giovanardi, C.; Grossi, M.; Hughes, T. M.; Hunt, L. K.; Jones, A. P.; Madden, S.; Pierini, D.; Pohlen, M.; Sabatini, S.; Verstappen, J.; Xilouris, E. M.; Zibetti, S.

    2010-07-01

    We present a resolved dust analysis of three of the largest angular size spiral galaxies, NGC 4501 and NGC 4567/8, in the Herschel Virgo Cluster Survey (HeViCS) science demonstration field. Herschel has unprecedented spatial resolution at far-infrared wavelengths and with the PACS and SPIRE instruments samples both sides of the peak in the far infrared spectral energy distribution (SED). We present maps of dust temperature, dust mass, and gas-to-dust ratio, produced by fitting modified black bodies to the SED for each pixel. We find that the distribution of dust temperature in both systems is in the range ~19-22 K and peaks away from the centres of the galaxies. The distribution of dust mass in both systems is symmetrical and exhibits a single peak coincident with the galaxy centres. This Letter provides a first insight into the future analysis possible with a large sample of resolved galaxies to be observed by Herschel. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  14. A VLA Survey for Faint Compact Radio Sources in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Sheehan, Patrick D.; Eisner, Josh A.; Mann, Rita K.; Williams, Jonathan P.

    2016-11-01

    We present Karl G. Jansky Very Large Array 1.3, 3.6, and 6 cm continuum maps of compact radio sources in the Orion Nebular Cluster (ONC). We mosaicked 34 arcmin2 at 1.3 cm, 70 arcmin2 at 3.6 cm and 109 arcmin2 at 6 cm, containing 778 near-infrared detected young stellar objects and 190 Hubble Space Telescope-identified proplyds (with significant overlap between those characterizations). We detected radio emission from 175 compact radio sources in the ONC, including 26 sources that were detected for the first time at these wavelengths. For each detected source, we fitted a simple free-free and dust emission model to characterize the radio emission. We extrapolate the free-free emission spectrum model for each source to ALMA bands to illustrate how these measurements could be used to correctly measure protoplanetary disk dust masses from submillimeter flux measurements. Finally, we compare the fluxes measured in this survey with previously measured fluxes for our targets, as well as four separate epochs of 1.3 cm data, to search for and quantify the variability of our sources.

  15. Measuring subhalo mass in redMaPPer clusters with CFHT Stripe 82 Survey

    NASA Astrophysics Data System (ADS)

    Li, Ran; Shan, Huanyuan; Kneib, Jean-Paul; Mo, Houjun; Rozo, Eduardo; Leauthaud, Alexie; Moustakas, John; Xie, Lizhi; Erben, Thomas; Van Waerbeke, Ludovic; Makler, Martin; Rykoff, Eli; Moraes, Bruno

    2016-05-01

    We use the shear catalogue from the CFHT Stripe-82 Survey to measure the subhalo masses of satellite galaxies in redMaPPer clusters. Assuming a Chabrier initial mass function and a truncated NFW model for the subhalo mass distribution, we find that the subhalo mass to galaxy stellar mass ratio increases as a function of projected halo-centric radius rp, from M_sub/M_star=4.43^{+ 6.63}_{- 2.23} at rp ∈ [0.1, 0.3] h-1 Mpc to M_sub/M_star=75.40^{+ 19.73}_{- 19.09} at rp ∈ [0.6, 0.9] h-1 Mpc. We also investigate the dependence of subhalo masses on stellar mass by splitting satellite galaxies into two stellar mass bins: 10 < log (Mstar/h-1 M⊙) < 10.5 and 11 < log (Mstar/h-1 M⊙) < 12. The best-fitting subhalo mass of the more massive satellite galaxy bin is larger than that of the less massive satellites: log (M_sub/{h^{-1} M_{{⊙}}})=11.14 ^{+ 0.66 }_{- 0.73} (M_sub/M_star=19.5^{+19.8}_{-17.9}) versus log (M_sub/{h^{-1} M_{{⊙}}})=12.38 ^{+ 0.16 }_{- 0.16} (M_sub/M_star=21.1^{+7.4}_{-7.7}).

  16. Measuring subhalo mass in redMaPPer clusters with CFHT Stripe 82 Survey

    DOE PAGES

    Li, Ran; Shan, Huanyuan; Kneib, Jean -Paul; ...

    2016-03-07

    Here, we use the shear catalogue from the CFHT Stripe-82 Survey to measure the subhalo masses of satellite galaxies in redMaPPer clusters. Assuming a Chabrier initial mass function and a truncated NFW model for the subhalo mass distribution, we find that the subhalo mass to galaxy stellar mass ratio increases as a function of projected halo-centric radius rp, from Msub/Mstar = 4.43+6.63–2.23 at rp ε [0.1, 0.3] h–1 Mpc to Msub/Mstar = 75.40+19.73–19.09 at rp ε [0.6, 0.9] h–1 Mpc. We also investigate the dependence of subhalo masses on stellar mass by splitting satellite galaxies into two stellar mass bins:more » 10 < log (Mstar/h–1M⊙) < 10.5 and 11 < log (Mstar/h–1 M⊙) < 12. The best-fitting subhalo mass of the more massive satellite galaxy bin is larger than that of the less massive satellites: log(Msub/h–1M⊙) = 11.14+0.66–0.73 (Msub/Mstar = 19.5+19.8–17.9) versus log(Msub/h–1M⊙) = 12.38+0.16–0.16 (Msub/Mstar = 21.1+7.4–7.7).« less

  17. A VIRUS-P Survey of Galaxy Clusters to Find Faint Lyα-emitting Galaxies

    NASA Astrophysics Data System (ADS)

    McLinden, Emily; Finkelstein, S. L.; Siana, B. D.; Alavi, A.

    2014-01-01

    The VIRUS-P instrument on the 2.7m telescope at the McDonald Observatory was originally built as a prototype of the larger VIRUS instrument that will be used for HETDEX. We demonstrate that this multi-fiber, optical integral field unit spectrograph can be efficiently used to detect faint Lyα-emitting galaxies (LAEs) at intermediate redshift (z = 2-3) with the aid of gravitational lensing from galaxy clusters. The bulk z=2-3 LAEs to date have been discovered with narrowband imaging campaigns, which are highly efficient only at selecting L > L_star galaxies and only over a narrow redshift slice. By making use of gravitational lensing, however, we are able to observe intrinsically very faint galaxies that only appear to have brightnesses ≥ L_star. Gravitationally lensed faint LAEs, such as our sample from VIRUS-P, allow us to go fainter than existing narrowband surveys and therefore allow for better constraints at the faint end of the Lyα luminosity function at these intermediate redshifts.

  18. Exploring public discourses about emerging technologies through statistical clustering of open-ended survey questions

    PubMed Central

    Stoneman, Paul; Sturgis, Patrick; Allum, Nick

    2013-01-01

    The primary method by which social scientists describe public opinion about science and technology is to present frequencies from fixed response survey questions and to use multivariate statistical models to predict where different groups stand with regard to perceptions of risk and benefit. Such an approach requires measures of individual preference which can be aligned numerically in an ordinal or, preferably, a continuous manner along an underlying evaluative dimension – generally the standard 5- or 7-point attitude question. The key concern motivating the present paper is that, due to the low salience and “difficult” nature of science for members of the general public, it may not be sensible to require respondents to choose from amongst a small and predefined set of evaluative response categories. Here, we pursue a different methodological approach: the analysis of textual responses to “open-ended” questions, in which respondents are asked to state, in their own words, what they understand by the term “DNA.” To this textual data we apply the statistical clustering procedures encoded in the Alceste software package to detect and classify underlying discourse and narrative structures. We then examine the extent to which the classifications, thus derived, can aid our understanding of how the public develop and use “everyday” images of, and talk about, biomedicine to structure their evaluations of emerging technologies. PMID:23825238

  19. The XXL Survey. X. K-band luminosity - weak-lensing mass relation for groups and clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Ziparo, F.; Smith, G. P.; Mulroy, S. L.; Lieu, M.; Willis, J. P.; Hudelot, P.; McGee, S. L.; Fotopoulou, S.; Lidman, C.; Lavoie, S.; Pierre, M.; Adami, C.; Chiappetti, L.; Clerc, N.; Giles, P.; Maughan, B.; Pacaud, F.; Sadibekova, T.

    2016-06-01

    Galaxy clusters and groups are important cosmological probes and giant cosmic laboratories for studying galaxy evolution. Much effort has been devoted to understanding how and when baryonic matter cools at the centre of potential wells. However, a clear picture of the efficiency with which baryons are converted into stars is still missing. We present the K-band luminosity-halo mass relation, LK,500-M500,WL, for a subsample of 20 of the 100 brightest clusters in the XXL Survey observed with WIRCam at the Canada-France-Hawaii Telescope (CFHT). For the first time, we have measured this relation via weak-lensing analysis down to M500,WL = 3.5 × 1013 M⊙. This allows us to investigate whether the slope of the LK-M relation is different for groups and clusters, as seen in other works. The clusters in our sample span a wide range in mass, M500,WL = 0.35-12.10 × 1014 M⊙, at 0 < z < 0.6. The K-band luminosity scales as log 10(LK,500/ 1012 L⊙) ∝ βlog 10(M500,WL/ 1014 M⊙) with β = 0.85+0.35-0.27 and an intrinsic scatter of σlnLK|M = 0.37+0.19-0.17. Combining our sample with some clusters in the Local Cluster Substructure Survey (LoCuSS) present in the literature, we obtain a slope of 1.05+0.16-0.14 and an intrinsic scatter of 0.14+0.09-0.07. The flattening in the LK-M seen in previous works is not seen here and might be a result of a bias in the mass measurement due to assumptions on the dynamical state of the systems. We also study the richness-mass relation and find that group-sized halos have more galaxies per unit halo mass than massive clusters. However, the brightest cluster galaxy (BCG) in low-mass systems contributes a greater fraction to the total cluster light than BCGs do in massive clusters; the luminosity gap between the two brightest galaxies is more prominent for group-sized halos. This result is a natural outcome of the hierarchical growth of structures, where massive galaxies form and gain mass within low-mass groups and are ultimately accreted

  20. Integrated Light Chemical Abundance Analyses of 7 M31 Outer Halo Globular Clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; Venn, Kim; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron L.; Wallerstein, George

    2015-01-01

    Detailed chemical abundances of globular clusters provide insight into the formation and evolution of galaxies and their globular cluster systems. This talk presents detailed chemical abundances for seven M31 outer halo globular clusters (with projected radii greater than 30 kpc), as derived from high resolution integrated light spectra. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS). The integrated abundances show that 4 of these clusters are metal-poor ([Fe/H] < -1.5) while the other 3 are more metal-rich. The most metal-poor globular clusters are α-enhanced, though 3 of the 4 are possibly less α-enhanced than MW stars (at the 1σ level). Other chemical abundance ratios ([Ba/Eu], [Eu/Ca], and [Ni/Fe]) are consistent with origins in low mass dwarf galaxies (similar to Fornax). The most metal-rich cluster ([Fe/H] ~ -1) stands out as being chemically distinct from Milky Way field stars of the same metallicity---its chemical abundance ratios agree best with the stars and clusters in the Large Magellanic Cloud (LMC) and the Sagittarius dwarf spheroidal (Sgr) than with the Milky Way field stars. The other metal-rich clusters, H10 and H23, look similar to the LMC and Milky Way field stars in all abundance ratios. These results indicate that M31's outer halo is being at least partially built up by the accretion of dwarf satellites, in agreement with previous observations.

  1. Clustering of High Redshift (z>2.9) Quasars from the Sloan Digital Sky Survey

    SciTech Connect

    Shen, Yue; Strauss, Michael A.; Oguri, Masamune; Hennawi, Joseph F.; Fan, Xiaohui; Richards, Gordon T.; Hall, Patrick B.; Schneider, Donald P.; Szalay, Alexander S.; Thakar, Anirudda R.; Berk, Daniel E.Vanden; Anderson, Scott F.; Bahcall, Neta A.; /KIPAC, Menlo Park

    2006-11-30

    We study the two-point correlation function of a uniformly selected sample of 4,428 optically selected luminous quasars with redshift 2.9 {le} z {le} 5.4 selected over 4041 deg{sup 2} from the Fifth Data Release of the Sloan Digital Sky Survey. We fit a power-law to the projected correlation function w{sub p}(r{sub p}) to marginalize over redshift space distortions and redshift errors. For a real-space correlation function of the form {zeta}(r) = (r/r{sub 0}){sup -{gamma}}, the fitted parameters in comoving coordinates are r{sub 0} = 15.2 {+-} 2.7 h{sup -1} Mpc and {gamma} = 2.0 {+-} 0.3, over a scale range 4 {le} r{sub p} {le} 150 h{sup -1} Mpc. Thus high-redshift quasars are appreciably more strongly clustered than their z {approx} 1.5 counterparts, which have a comoving clustering length r{sub 0} {approx} 6.5 h{sup -1} Mpc. Dividing our sample into two redshift bins: 2.9 {le} z {le} 3.5 and z {ge} 3.5, and assuming a power-law index {gamma} = 2.0, we find a correlation length of r{sub 0} = 16.9 {+-} 1.7 h{sup -1} Mpc for the former, and r{sub 0} = 24.3 {+-} 2.4 h{sup -1} Mpc for the latter. Strong clustering at high redshift indicates that quasars are found in very massive, and therefore highly biased, halos. Following Martini & Weinberg, we relate the clustering strength and quasar number density to the quasar lifetimes and duty cycle. Using the Sheth & Tormen halo mass function, the quasar lifetime is estimated to lie in the range 4 {approx} 50 Myr for quasars with 2.9 {le} z {le} 3.5; and 30 {approx} 600 Myr for quasars with z {ge} 3.5. The corresponding duty cycles are 0.004 {approx} 0.05 for the lower redshift bin and 0.03 {approx} 0.6 for the higher redshift bin. The minimum mass of halos in which these quasars reside is 2-3 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with 2.9 {le} z {le} 3.5 and 4-6 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with z {ge} 3.5; the effective bias factor b{sub eff} increases with redshift, e.g., b

  2. The VIMOS-VLT Deep Survey (VVDS). The dependence of clustering on galaxy stellar mass at z ~ 1

    NASA Astrophysics Data System (ADS)

    Meneux, B.; Guzzo, L.; Garilli, B.; Le Fèvre, O.; Pollo, A.; Blaizot, J.; De Lucia, G.; Bolzonella, M.; Lamareille, F.; Pozzetti, L.; Cappi, A.; Iovino, A.; Marinoni, C.; McCracken, H. J.; de la Torre, S.; Bottini, D.; Le Brun, V.; Maccagni, D.; Picat, J. P.; Scaramella, R.; Scodeggio, M.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bardelli, S.; Bongiorno, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Cucciati, O.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Ilbert, O.; Marano, B.; Mazure, A.; Merighi, R.; Paltani, S.; Pellò, R.; Radovich, M.; Vergani, D.; Zamorani, G.; Zucca, E.

    2008-02-01

    We present a measurement of the dependence of galaxy clustering on galaxy stellar mass at redshift z˜0.9, based on the first-epoch data from the VVDS-Deep survey. Concentrating on the redshift interval 0.5survey, both from the data themselves and with a suite of realistic mock samples constructed by coupling the Millennium Simulation to semi-analytic models. We identify the range of masses within which our main conclusions are robust against these effects. Serious incompleteness in mass is present below log (M/M_⊙)=9.5, with about two thirds of the galaxies in the range 9clustering on the galaxy stellar mass at a redshift as high as z˜0.85. We quantify this by fitting the projected function w_p(r_p) with a power-law model. The clustering length increases from r_0=2.76-0.15+0.17~h-1 Mpc for galaxies with mass M>109~M_⊙ to r_0=4.28-0.45+0.43~h-1 Mpc when only the most massive (M>1010.5~M_⊙) are considered. At the same time, we observe a significant increase in the slope, which over the same range of masses, changes from γ=1.67-0.07+0.08 to γ=2.28-0.27+0.28. Comparison to the SDSS measurements at z˜0.15 shows that the evolution of w_p(r_p) is significant for samples of galaxies with M<1010.5~M_⊙, while it is negligible for more massive objects. Considering the growth of structure, this implies that the linear bias bL of the most massive galaxies evolves more rapidly between these two cosmic epochs. We quantify this effect by computing the value of bL from the SDSS and VVDS clustering

  3. A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey

    SciTech Connect

    Dilday, Benjamin; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter; Goobar, Ariel; Hopp, Ulrich; /Munich, Tech. U. /Munich U. Observ. /Tokyo U.

    2010-03-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z {le} 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 {le} z {le} 0.3. We find values for the cluster SN Ia rate of (0.37{sub -0.12-0.01}{sup +0.17+0.01}) SNur h{sup 2} and (0.55{sub -0.11-0.01}{sup +0.13+0.02}) SNur h{sup 2} (SNux = 10{sup -12}L{sub x{circle_dot}}{sup -1} yr{sup -1}) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31{sub -0.12-0.01}{sup +0.18+0.01}) SNur h{sup 2} and (0.49{sub -0.11-0.01}{sup +0.15+0.02}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04{sub -1.11-0.04}{sup +1.99+0.07}) SNur h{sup 2} and (0.36{sub -0.30-0.01}{sup +0.84+0.01}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94{sub -0.91-0.015}{sup +1.31+0.043} and 3.02{sub -1.03-0.048}{sup +1.31+0.062}, for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r{sub L} = [(0.49{sub -0.14}{sup +0.15}) + (0.91{sub -0.81}{sup +0.85}) x z] SNuB h{sup 2}. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most 3 hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe that are

  4. A MEASUREMENT OF THE RATE OF TYPE Ia SUPERNOVAE IN GALAXY CLUSTERS FROM THE SDSS-II SUPERNOVA SURVEY

    SciTech Connect

    Dilday, Benjamin; Jha, Saurabh W.; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Hopp, Ulrich; Castander, Francisco; Cinabro, David; Frieman, Joshua A.; Galbany, LluIs; Miquel, Ramon; Garnavich, Peter; Goobar, Ariel; Ihara, Yutaka; Kessler, Richard; Lampeitl, Hubert; Nichol, Robert C.; Marriner, John; Molla, Mercedes

    2010-06-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z {<=} 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 {<=} z {<=} 0.3. We find values for the cluster SN Ia rate of (0.37{sup +0.17+0.01} {sub -0.12-0.01}) SNur h {sup 2} and (0.55{sup +0.13+0.02} {sub -0.11-0.01}) SNur h {sup 2} (SNux = 10{sup -12} L {sup -1} {sub xsun} yr{sup -1}) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31{sup +0.18+0.01} {sub -0.12-0.01}) SNur h {sup 2} and (0.49{sup +0.15+0.02} {sub -0.11-0.01}) SNur h {sup 2} in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04{sup +1.99+0.07} {sub -1.11-0.04}) SNur h {sup 2} and (0.36{sup +0.84+0.01} {sub -0.30-0.01}) SNur h {sup 2} in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94{sup +1.31+0.043} {sub -0.91-0.015} and 3.02{sup +1.31+0.062} {sub -1.03-0.048}, for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r{sub L} = [(0.49{sup +0.15} {sub -0.14})+(0.91{sup +0.85} {sub -0.81}) x z] SNuB h {sup 2}. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most three hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe

  5. The Next Generation Virgo Cluster Survey. VI. The Kinematics of Ultra-compact Dwarfs and Globular Clusters in M87

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Xin; Peng, Eric W.; Côté, Patrick; Liu, Chengze; Ferrarese, Laura; Cuillandre, Jean-Charles; Caldwell, Nelson; Gwyn, Stephen D. J.; Jordán, Andrés; Lançon, Ariane; Li, Biao; Muñoz, Roberto P.; Puzia, Thomas H.; Bekki, Kenji; Blakeslee, John P.; Boselli, Alessandro; Drinkwater, Michael J.; Duc, Pierre-Alain; Durrell, Patrick; Emsellem, Eric; Firth, Peter; Sánchez-Janssen, Rubén

    2015-03-01

    The origin of ultra-compact dwarfs (UCDs; rh >~ 10 pc)—objects larger and more massive than typical globular clusters (GCs), but more compact than typical dwarf galaxies—has been hotly debated in the 15 years since their discovery. Even whether UCDs should be considered galactic in origin, or simply the most extreme star clusters, is not yet settled. We present the dynamical properties of 97 spectroscopically confirmed UCDs and 911 GCs associated with the central cD galaxy of the Virgo cluster, M87. Our UCDs, of which 89% have M sstarf gsim 2× 106 M ⊙ and 92% are as blue as the classic blue GCs, nearly triple the confirmed sample of Virgo UCDs, providing by far the best opportunity for studying global dynamics of a UCD system. We found that (1) UCDs have a surface number density profile that is shallower than that of blue GCs in the inner ~70 kpc and as steep as that of red GCs at larger radii; (2) UCDs exhibit a significantly stronger rotation than GCs, and blue GCs seem to have a velocity field that is more consistent with that of the surrounding dwarf ellipticals than with that of UCDs; (3) UCDs have an orbital anisotropy profile that is tangentially biased at radii lsim40 kpc and radially biased farther out, whereas blue GCs become more tangentially biased at larger radii beyond ~40 kpc (4) GCs with M sstarf gsim 2 × 106 M ⊙ have rotational properties indistinguishable from the less massive ones, suggesting that it is the size, instead of mass, that differentiates UCDs from GCs as kinematically distinct populations. We conclude that most UCDs in M87 are not consistent with being merely the most luminous and extended examples of otherwise normal GCs. The radially biased orbital structure of UCDs at large radii is in general agreement with the "tidally threshed dwarf galaxy" scenario.

  6. A Rapid Radiocarbon Method for Age Surveys of Southern Ocean Deep-sea Corals

    NASA Astrophysics Data System (ADS)

    Burke, A.; Robinson, L. F.; Gerlach, D. S.; Jenkins, W. J.; McNichol, A. P.

    2008-12-01

    Deep-sea corals provide a unique archive of past ocean radiocarbon because they are sessile and can be dated independently using U-series nuclides. One difficulty, however, is that using current techniques it is impractical to date large numbers of corals in order to determine which specimens have the appropriate ages for radiocarbon reconstructions. Here we present results from a quick method of making graphite for radiocarbon dating that reduces the amount of sample preparation time, thus allowing us to date a greater number of corals. In addition, these rapid age surveys provide important information on coral age populations, allowing us to examine coral distributions through time. The corals used in this study come from a sample set of about 6,000 specimens of Flabellum, Balanophyllia and Desmophyllum spp. collected from the Drake Passage area (50S -70S, 120 m-1700 m depth). Replicate samples from a single coral yielded a standard deviation of 81 years (n=9). Variations in sample mass (3 to 85 mg) have no clear effect on the Fm and furthermore, a simple cleaning using methanol yields the same results as a more involved cleaning procedure that includes an oxidizing solution and perchloric acid rinse. To improve the efficiency of the method, we assumed a delta13C = 0 per mil. This assumption is likely our largest source of uncertainty, resulting in offsets of up to 200 radiocarbon years over a reasonable range of delta13C. This level of uncertainty is sufficiently low to allow distinction between corals from different time periods over the past 35 ky (e.g. Last Glacial Maximum, Younger Dryas, etc.). To date, we have found corals from Burdwood Bank dating from the modern to the Younger Dryas and corals from the Drake Passage dating from the modern to Heinrich Event 1, which will be used in future paleo-climatic reconstructions in this important part of the ocean.

  7. The 2dF Galaxy Redshift Survey: the clustering of galaxy groups

    NASA Astrophysics Data System (ADS)

    Padilla, Nelson D.; Baugh, Carlton M.; Eke, Vincent R.; Norberg, Peder; Cole, Shaun; Frenk, Carlos S.; Croton, Darren J.; Baldry, Ivan K.; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Colless, Matthew; Collins, Chris; Couch, Warrick; Dalton, Gavin; De Propris, Roberto; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Glazebrook, Karl; Jackson, Carole; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Maddox, Steve; Madgwick, Darren; Peacock, John A.; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith

    2004-07-01

    We measure the clustering of galaxy groups in the 2dFGRS Percolation-Inferred Galaxy Group (2PIGG) catalogue. The 2PIGG sample has 28 877 groups with at least two members. The clustering amplitude of the full 2PIGG catalogue is weaker than that of 2dFGRS galaxies, in agreement with theoretical predictions. We have subdivided the 2PIGG catalogue into samples that span a factor of ~ 25 in median total luminosity. Our correlation function measurements span an unprecedented range of clustering strengths, connecting the regimes probed by groups fainter than L* galaxies and rich clusters. There is a steady increase in clustering strength with group luminosity; the most luminous groups are 10 times more strongly clustered than the full 2PIGG catalogue. We demonstrate that the 2PIGG results are in very good agreement with the clustering of groups expected in the ΛCDM model.

  8. Cosmology with clustering anisotropies: disentangling dynamic and geometric distortions in galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Marulli, Federico; Bianchi, Davide; Branchini, Enzo; Guzzo, Luigi; Moscardini, Lauro; Angulo, Raul E.

    2012-11-01

    We investigate the impact of different observational effects affecting a precise and accurate measurement of the growth rate of fluctuations from the anisotropy of clustering in galaxy redshift surveys. We focus here on redshift measurement errors, on the reconstruction of the underlying real-space clustering and, most importantly, on the apparent degeneracy existing with the geometrical distortions induced by the cosmology-dependent conversion of redshifts into distances. We use a suite of mock catalogues extracted from large N-body simulations, focusing on the analysis of intermediate, mildly non-linear scales (r < 50 h-1 Mpc) and apply the standard 'dispersion model' to fit the anisotropy of the observed correlation function ξ(r⊥, r∥) . We first verify that redshift errors up to δz ˜ 0.2 per cent (i.e. σz ˜ 0.002 at z = 1) have a negligible impact on the precision with which the specific growth rate β can be measured. Larger redshift errors introduce a positive systematic error, which can be alleviated by adopting a Gaussian distribution function of pairwise velocities. This is, in any case, smaller than the systematic error of up to 10 per cent due to the limitations of the dispersion model, which is studied in a separate paper. We then show that 50 per cent of the statistical error budget on β depends on the deprojection procedure through which the real-space correlation function, needed for the modelling process, is obtained. Finally, we demonstrate that the degeneracy with geometric distortions can in fact be circumvented. This is obtained through a modified version of the Alcock-Paczynski test in redshift space, which successfully recovers the correct cosmology by searching for the solution that optimizes the description of dynamical redshift distortions. For a flat cosmology, we obtain largely independent, robust constraints on β and on the mass density parameter, ΩM. In a volume of 2.4 (h-1 Gpc)3, the correct ΩM is obtained with ˜12 per

  9. The Hubble Space Telescope UV Legacy Survey of Galactic globular clusters - IX. The Atlas of multiple stellar populations

    NASA Astrophysics Data System (ADS)

    Milone, A. P.; Piotto, G.; Renzini, A.; Marino, A. F.; Bedin, L. R.; Vesperini, E.; D'Antona, F.; Nardiello, D.; Anderson, J.; King, I. R.; Yong, D.; Bellini, A.; Aparicio, A.; Barbuy, B.; Brown, T. M.; Cassisi, S.; Ortolani, S.; Salaris, M.; Sarajedini, A.; van der Marel, R. P.

    2017-01-01

    We use high-precision photometry of red-giant-branch (RGB) stars in 57 Galactic globular clusters (GCs), mostly from the `Hubble Space Telescope (HST) UV Legacy Survey of Galactic GCs', to identify and characterize their multiple stellar populations. For each cluster the pseudo-two-colour diagram (or `chromosome map') is presented, built with a suitable combination of stellar magnitudes in the F275W, F336W, F438W, and F814W filters that maximizes the separation between multiple populations. In the chromosome map of most GCs (type-I clusters), stars separate in two distinct groups that we identify with the first (1G) and the second generation (2G). This identification is further supported by noticing that 1G stars have primordial (oxygen-rich, sodium-poor) chemical composition, whereas 2G stars are enhanced in sodium and depleted in oxygen. This 1G-2G separation is not possible for a few GCs where the two sequences have apparently merged into an extended, continuous sequence. In some GCs (type-II clusters) the 1G and/or the 2G sequences appear to be split, hence displaying more complex chromosome maps. These clusters exhibit multiple subgiant branches (SGBs) also in purely optical colour-magnitude diagrams, with the fainter SGB joining into a red RGB which is populated by stars with enhanced heavy-element abundance. We measure the RGB width by using appropriate colours and pseudo-colours. When the metallicity dependence is removed, the RGB width correlates with the cluster mass. The fraction of 1G stars ranges from ˜8 per cent to ˜67 per cent and anticorrelates with the cluster mass, indicating that incidence and complexity of the multiple population phenomenon both increase with cluster mass.

  10. OT2_eegami_6: SPIRE Snapshot Survey II: Using SPT/CODEX Massive Clusters as Powerful Gravitational Lenses

    NASA Astrophysics Data System (ADS)

    Egami, E.

    2011-09-01

    On the extragalactic side, one of the most remarkable results coming out of Herschel is the discovery of extremely bright (>100 mJy in the SPIRE bands) gravitationally lensed galaxies. The great sensitivity and mapping speed of SPIRE have enabled us to find these rare extraordinary objects. What is truly exciting about these bright lensed galaxies is that they enable a variety of detailed multi-wavelength follow-up observations, shedding new light on the physical properties of these high-redshift sources. In this regard, our OT1 program, "SPIRE Snapshot Survey of Massive Galaxy Clusters" turned out to be a great success. After imaging ~50 galaxies out of 279 in the program, we have already found two spectacularly bright lensed galaxies, one of which is at a redshift of 4.69. This type of cluster-lensed sources are not only bright but also spatially stretched over a large scale, so ALMA (or NOEMA in the north) is likely to be able to study them at the level of individual GMCs. Such studies will open up a new frontier in the study of high-redshift galaxies. Here, we propose to extend this highly efficient and effective survey of gravitationally lensed galaxies to another 353 clusters carefully chosen from the SPT and CODEX cluster samples. These samples contain newly discovered high-redshift (z>0.3) massive (>3-4e14 Msun) clusters, which can be used as powerful gravitational lenses to magnify sources at high redshift. With the OT1 and OT2 surveys together, we expect to find ~20 highly magnified SPIRE sources with exceptional brightnesses (assuming a discovery rate of ~1/30). Such a unique sample of extraordinary objects will enable a variety of follow-up sciences, and will therefore remain as a great legacy of the Herschel mission for years to come.

  11. Joint signal extraction from galaxy clusters in X-ray and SZ surveys: A matched-filter approach

    NASA Astrophysics Data System (ADS)

    Tarrío, P.; Melin, J.-B.; Arnaud, M.; Pratt, G. W.

    2016-06-01

    The hot ionized gas of the intra-cluster medium emits thermal radiation in the X-ray band and also distorts the cosmic microwave radiation through the Sunyaev-Zel'dovich (SZ) effect. Combining these two complementary sources of information through innovative techniques can therefore potentially improve the cluster detection rate when compared to using only one of the probes. Our aim is to build such a joint X-ray-SZ analysis tool, which will allow us to detect fainter or more distant clusters while maintaining high catalogue purity. We present a method based on matched multifrequency filters (MMF) for extracting cluster catalogues from SZ and X-ray surveys. We first designed an X-ray matched-filter method, analogous to the classical MMF developed for SZ observations. Then, we built our joint X-ray-SZ algorithm by combining our X-ray matched filter with the classical SZ-MMF, for which we used the physical relation between SZ and X-ray observations. We show that the proposed X-ray matched filter provides correct photometry results, and that the joint matched filter also provides correct photometry when the FX/Y500 relation of the clusters is known. Moreover, the proposed joint algorithm provides a better signal-to-noise ratio than single-map extractions, which improves the detection rate even if we do not exactly know the FX/Y500 relation. The proposed methods were tested using data from the ROSAT all-sky survey and from the Planck survey.

  12. Automated Unsupervised Classification of the Sloan Digital Sky Survey Stellar Spectra using k-means Clustering

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, J.; Allende Prieto, C.

    2013-01-01

    Large spectroscopic surveys require automated methods of analysis. This paper explores the use of k-means clustering as a tool for automated unsupervised classification of massive stellar spectral catalogs. The classification criteria are defined by the data and the algorithm, with no prior physical framework. We work with a representative set of stellar spectra associated with the Sloan Digital Sky Survey (SDSS) SEGUE and SEGUE-2 programs, which consists of 173,390 spectra from 3800 to 9200 Å sampled on 3849 wavelengths. We classify the original spectra as well as the spectra with the continuum removed. The second set only contains spectral lines, and it is less dependent on uncertainties of the flux calibration. The classification of the spectra with continuum renders 16 major classes. Roughly speaking, stars are split according to their colors, with enough finesse to distinguish dwarfs from giants of the same effective temperature, but with difficulties to separate stars with different metallicities. There are classes corresponding to particular MK types, intrinsically blue stars, dust-reddened, stellar systems, and also classes collecting faulty spectra. Overall, there is no one-to-one correspondence between the classes we derive and the MK types. The classification of spectra without continuum renders 13 classes, the color separation is not so sharp, but it distinguishes stars of the same effective temperature and different metallicities. Some classes thus obtained present a fairly small range of physical parameters (200 K in effective temperature, 0.25 dex in surface gravity, and 0.35 dex in metallicity), so that the classification can be used to estimate the main physical parameters of some stars at a minimum computational cost. We also analyze the outliers of the classification. Most of them turn out to be failures of the reduction pipeline, but there are also high redshift QSOs, multiple stellar systems, dust-reddened stars, galaxies, and, finally, odd

  13. AUTOMATED UNSUPERVISED CLASSIFICATION OF THE SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA USING k-MEANS CLUSTERING

    SciTech Connect

    Sanchez Almeida, J.; Allende Prieto, C. E-mail: callende@iac.es

    2013-01-20

    Large spectroscopic surveys require automated methods of analysis. This paper explores the use of k-means clustering as a tool for automated unsupervised classification of massive stellar spectral catalogs. The classification criteria are defined by the data and the algorithm, with no prior physical framework. We work with a representative set of stellar spectra associated with the Sloan Digital Sky Survey (SDSS) SEGUE and SEGUE-2 programs, which consists of 173,390 spectra from 3800 to 9200 A sampled on 3849 wavelengths. We classify the original spectra as well as the spectra with the continuum removed. The second set only contains spectral lines, and it is less dependent on uncertainties of the flux calibration. The classification of the spectra with continuum renders 16 major classes. Roughly speaking, stars are split according to their colors, with enough finesse to distinguish dwarfs from giants of the same effective temperature, but with difficulties to separate stars with different metallicities. There are classes corresponding to particular MK types, intrinsically blue stars, dust-reddened, stellar systems, and also classes collecting faulty spectra. Overall, there is no one-to-one correspondence between the classes we derive and the MK types. The classification of spectra without continuum renders 13 classes, the color separation is not so sharp, but it distinguishes stars of the same effective temperature and different metallicities. Some classes thus obtained present a fairly small range of physical parameters (200 K in effective temperature, 0.25 dex in surface gravity, and 0.35 dex in metallicity), so that the classification can be used to estimate the main physical parameters of some stars at a minimum computational cost. We also analyze the outliers of the classification. Most of them turn out to be failures of the reduction pipeline, but there are also high redshift QSOs, multiple stellar systems, dust-reddened stars, galaxies, and, finally, odd

  14. A large Hα survey of star formation in relaxed and merging galaxy cluster environments at z ∼ 0.15-0.3

    NASA Astrophysics Data System (ADS)

    Stroe, Andra; Sobral, David; Paulino-Afonso, Ana; Alegre, Lara; Calhau, João; Santos, Sergio; van Weeren, Reinout

    2017-03-01

    We present the first results from the largest Hα survey of star formation and active galactic nucleus activity in galaxy clusters. Using nine different narrow-band filters, we select >3000 Hα emitters within 19 clusters and their larger scale environment over a total volume of 1.3 × 105 Mpc3. The sample includes both relaxed and merging clusters, covering the 0.15-0.31 redshift range and spanning from 5 × 1014 to 30 × 1014 M⊙. We find that the Hα luminosity function for merging clusters has a higher characteristic density ϕ* compared to relaxed clusters. ϕ* drops from cluster core to cluster outskirts for both merging and relaxed clusters, with the merging cluster values ∼0.3 dex higher at each projected radius. The characteristic luminosity L* drops over the 0.5-2.0 Mpc distance from the cluster centre for merging clusters and increases for relaxed objects. Among disturbed objects, clusters hosting large-scale shock waves (traced by radio relics) are overdense in Hα emitters compared to those with turbulence in their intracluster medium (traced by radio haloes). We speculate that the increase in star formation activity in disturbed, young, massive galaxy clusters can be triggered by interactions between gas-rich galaxies, shocks and/or the intracluster medium, as well as accretion of filaments and galaxy groups. Our results indicate that disturbed clusters represent vastly different environments for galaxy evolution compared to relaxed clusters or average field environments.

  15. Geophysical survey at cluster 6, Westwood Area, US Army Aberdeen Proving Ground. Final report

    SciTech Connect

    Simms, J.E.; Harrelson, D.W.; Sharp, M.K.

    1995-05-01

    A geophysical investigation was conducted at Cluster 6 Site 5, located in Westwood Area of the U.S. Army Aberdeen Proving Ground. This site is the former Westwood Area Radioactive Material Disposal Facility (WRMDF) which was used for processing and packaging radioactive waste material prior to disposal. Original structures at the site included Building 3013 and adjacent concrete slabs where the waste handling work was performed, a small equipment shed, and a wastewater holding and drain system which included tanks in a concrete pit. Discharge of wastewater from the tanks was to Reardon Inlet, located a short distance south of the tank pit. Possible release of radioactive waste to the environment would have been due to either spillage, leakage, or discharge from the wastewater system. Two terra cotta pipelines, one on the western end and one of the eastern end, extended from Building 3013 to Reardon Inlet. The east pipeline handled low-level radioactive wastewater. The west pipeline was the original wastewater line and it is presumed that radioactive wastewater was not discharged through this line. After radioactive waste handling activities were discontinued at WRMDF, the west pipeline system was upgraded to include a septic tank, sand filter bed, and a chlorine contact chamber. The structures associated with the WRMDF were removed during the early 1970`s, including the concrete tank pit. Both pipelines are visible near the edge of Reardon inlet, suggesting that the pipes and related structures have not been removed. Geophysical surveys, including magnetics, electromagnetics (EM), and ground penetrating radar, were performed to identify the location of the two terra cotta pipes, septic tank, and sand filter bed.

  16. Burns in Baghdad from 2003–2014: results of a randomized household cluster survey

    PubMed Central

    Stewart, Barclay T; Lafta, Riyadh; Shatari, Sahar A Esa Al; Cherewick, Megan; Burnham, Gilbert; Hagopian, Amy; Galway, Lindsay P; Kushner, Adam L

    2015-01-01

    Purpose Civilians living amid conflict are at high-risk of burns. However, the epidemiology of burns among this vulnerable group is poorly understood, yet vital for health policy and relief planning. To address this gap, we aimed to determine the death and disability, healthcare needs and household financial consequences of burns in post-invasion Baghdad. Methods A two-stage, cluster randomized, community-based household survey was performed in May of 2014 to determine the civilian burden of injury from 2003 to 2014 in Baghdad. In addition to questions about cause of household member death, households were interviewed regarding burn specifics, healthcare required, disability, relationship to conflict and resultant financial hardship. Results Nine-hundred households, totaling 5,148 individuals, were interviewed. There were 55 burns, which were 10% of all injuries reported. There were an estimated 2,340 serious burn injures (39 per 100,000 persons) in Baghdad in 2003. The frequency of serious burn injuries generally increased post-invasion to 8,780 burns in 2013 (117 per 100,000 persons). Eight burns (15%) were the direct result of conflict. Individuals aged over 45 years had more than twice the odds of burn injury than children aged less than 13 years (aOR 2.42; 95%CI 1.08 – 5.44). Nineteen burns (35%) involved ≥20% body surface area. Death (16% of burn injuries), disability (40%), household financial hardship (48%) and food insecurity (50%) were common after burn injury. Conclusion Civilian burn injury in Baghdad is epidemic, increasing in frequency and associated with household financial hardship. Challenges of healthcare provision during prolonged conflict were evidenced by a high mortality rate and likelihood of disability after burn injury. Ongoing conflict will directly and indirectly generate more burns, which mandates planning for burn prevention and care within local capacity development initiatives, as well as humanitarian assistance. PMID:26526376

  17. THE NEXT GENERATION VIRGO CLUSTER SURVEY. VI. THE KINEMATICS OF ULTRA-COMPACT DWARFS AND GLOBULAR CLUSTERS IN M87

    SciTech Connect

    Zhang, Hong-Xin; Peng, Eric W.; Li, Biao; Côté, Patrick; Ferrarese, Laura; Gwyn, Stephen D. J.; Blakeslee, John P.; Liu, Chengze; Cuillandre, Jean-Charles; Caldwell, Nelson; Jordán, Andrés; Muñoz, Roberto P.; Puzia, Thomas H.; Lançon, Ariane; Bekki, Kenji; Boselli, Alessandro; Drinkwater, Michael J.; Duc, Pierre-Alain E-mail: peng@pku.edu.cn [Laboratoire AIM Paris-Saclay, CNRS and others

    2015-03-20

    The origin of ultra-compact dwarfs (UCDs; r{sub h} ≳ 10 pc)—objects larger and more massive than typical globular clusters (GCs), but more compact than typical dwarf galaxies—has been hotly debated in the 15 years since their discovery. Even whether UCDs should be considered galactic in origin, or simply the most extreme star clusters, is not yet settled. We present the dynamical properties of 97 spectroscopically confirmed UCDs and 911 GCs associated with the central cD galaxy of the Virgo cluster, M87. Our UCDs, of which 89% have M {sub *} ≳ 2× 10{sup 6} M {sub ☉} and 92% are as blue as the classic blue GCs, nearly triple the confirmed sample of Virgo UCDs, providing by far the best opportunity for studying global dynamics of a UCD system. We found that (1) UCDs have a surface number density profile that is shallower than that of blue GCs in the inner ∼70 kpc and as steep as that of red GCs at larger radii; (2) UCDs exhibit a significantly stronger rotation than GCs, and blue GCs seem to have a velocity field that is more consistent with that of the surrounding dwarf ellipticals than with that of UCDs; (3) UCDs have an orbital anisotropy profile that is tangentially biased at radii ≲40 kpc and radially biased farther out, whereas blue GCs become more tangentially biased at larger radii beyond ∼40 kpc; (4) GCs with M {sub *} ≳ 2 × 10{sup 6} M {sub ☉} have rotational properties indistinguishable from the less massive ones, suggesting that it is the size, instead of mass, that differentiates UCDs from GCs as kinematically distinct populations. We conclude that most UCDs in M87 are not consistent with being merely the most luminous and extended examples of otherwise normal GCs. The radially biased orbital structure of UCDs at large radii is in general agreement with the 'tidally threshed dwarf galaxy' scenario.

  18. Completing the Chandra survey of the Carina Nebula: the cluster NGC 3293

    NASA Astrophysics Data System (ADS)

    Preibisch, Thomas

    2014-09-01

    We propose to complete and conclude Chandra's investigation of the young star clusters in the Carina Nebula Complex with an observation of the last still un-observed massive cluster, NGC3293. Although NGC3293 is probably the second most massive cluster in the entire complex, its low-mass population is basically unknown. A single ACIS-I pointing will reveal the low-mass cluster members and provide a census of the cluster population and its total mass. This information is urgently needed for the study of the global properties and the history of the Carina Nebula Complex. The Chandra data will also allow us to search for isolated neutron stars that are the remnants of the about 20 supernovae that are thought to have occurred in this cluster and for diffuse X-ray emission.

  19. The Next Generation Virgo Cluster Survey XVI: The Angular Momentum of Dwarf Early-type Galaxies from Globular Cluster Satellites

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa; Li, Biao; Guhathakurta, Puragra; Peng, Eric W.; Ferrarese, Laura; Côté, Patrick; Emsellem, Eric; Gwyn, Stephen; Zhang, Hongxin; Boselli, Alessandro; Cuillandre, Jean-Charles; Jordan, Andres; Liu, Chengze

    2016-05-01

    We analyze the kinematics of six Virgo cluster dwarf early-type galaxies (dEs) from their globular cluster (GC) systems. We present new Keck/DEIMOS spectroscopy for three of them and re-analyze the data found in the literature for the remaining three. We use two independent methods to estimate the rotation amplitude (V rot) and velocity dispersion (σ GC) of the GC systems and evaluate their statistical significance by simulating non-rotating GC systems with the same number of GC satellites and velocity uncertainties. Our measured kinematics agree with the published values for the three galaxies from the literature and, in all cases, some rotation is measured. However, our simulations show that the null hypothesis of being non-rotating GC systems cannot be ruled out. In the case of VCC 1861, the measured V rot and the simulations indicate that it is not rotating. In the case of VCC 1528, the null hypothesis can be marginally ruled out, and thus it might be rotating although further confirmation is needed. In our analysis, we find that, in general, the measured V rot tends to be overestimated and the measured σ GC tends to be underestimated by amounts that depend on the intrinsic V rot/σ GC, the number of observed GCs (N GC), and the velocity uncertainties. The bias is negligible when N GC ≳ 20. In those cases where a large N GC is not available, it is imperative to obtain data with small velocity uncertainties. For instance, errors of ≤2 km s-1 lead to V rot < 10 km s-1 for a system that is intrinsically not rotating.

  20. MASGOMAS PROJECT, New automatic-tool for cluster search on IR photometric surveys

    NASA Astrophysics Data System (ADS)

    Rübke, K.; Herrero, A.; Borissova, J.; Ramirez-Alegria, S.; García, M.; Marin-Franch, A.

    2015-05-01

    The Milky Way is expected to contain a large number of young massive (few x 1000 solar masses) stellar clusters, borne in dense cores of gas and dust. Yet, their known number remains small. We have started a programme to search for such clusters, MASGOMAS (MAssive Stars in Galactic Obscured MAssive clusterS). Initially, we selected promising candidates by means of visual inspection of infrared images. In a second phase of the project we have presented a semi-automatic method to search for obscured massive clusters that resulted in the identification of new massive clusters, like MASGOMAS-1 (with more than 10,000 solar masses) and MASGOMAS-4 (a double-cored association of about 3,000 solar masses). We have now developped a new automatic tool for MASGOMAS that allows the identification of a large number of massive cluster candidates from the 2MASS and VVV catalogues. Cluster candidates fulfilling criteria appropriated for massive OB stars are thus selected in an efficient and objective way. We present the results from this tool and the observations of the first selected cluster, and discuss the implications for the Milky Way structure.

  1. GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY

    SciTech Connect

    Bleem, L. E.; Stalder, B.; de Haan, T.; Aird, K. A.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Foley, R. J.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hennig, C.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2015-01-29

    We present a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg(2) of South Pole Telescope (SPT) data. This work represents the complete sample of clusters detected at high significance in the 2500 deg(2) SPT-SZ survey, which was completed in 2011. A total of 677 (409) cluster candidates are identified above a signal-to-noise threshold of ξ = 4.5 (5.0). Ground- and space-based optical and near-infrared (NIR) imaging confirms overdensities of similarly colored galaxies in the direction of 516 (or 76%) of the ξ > 4.5 candidates and 387 (or 95%) of the ξ > 5 candidates, the measured purity is consistent with expectations from simulations. Of these confirmed clusters, 415 were first identified in SPT data, including 251 new discoveries reported in this work. We estimate photometric redshifts for all candidates with identified optical and/or NIR counterparts, we additionally report redshifts derived from spectroscopic observations for 141 of these systems. The mass threshold of the catalog is roughly independent of redshift above z ~ 0.25 leading to a sample of massive clusters that extends to high redshift. The median mass of the sample is M (500c)(ρ(crit)) $\\sim 3.5\\times 10^{14}\\,M_\\odot \\,h_{70}^{-1}$, the median redshift is z (med) = 0.55, and the highest-redshift systems are at z > 1.4. The combination of large redshift extent, clean selection, and high typical mass makes this cluster sample of particular interest for cosmological analyses and studies of cluster formation and evolution.

  2. A redshift survey of the strong-lensing cluster ABELL 383

    SciTech Connect

    Geller, Margaret J.; Hwang, Ho Seong; Kurtz, Michael J.; Diaferio, Antonaldo; Coe, Dan; Rines, Kenneth J. E-mail: hhwang@cfa.harvard.edu E-mail: diaferio@ph.unito.it E-mail: kenneth.rines@wwu.edu

    2014-03-01

    Abell 383 is a famous rich cluster (z = 0.1887) imaged extensively as a basis for intensive strong- and weak-lensing studies. Nonetheless, there are few spectroscopic observations. We enable dynamical analyses by measuring 2360 new redshifts for galaxies with r {sub Petro} ≤ 20.5 and within 50' of the Brightest Cluster Galaxy (BCG; R.A.{sub 2000} = 42.°014125, decl.{sub 2000} = –03.°529228). We apply the caustic technique to identify 275 cluster members within 7 h {sup –1} Mpc of the hierarchical cluster center. The BCG lies within –11 ± 110 km s{sup –1} and 21 ± 56 h {sup –1} kpc of the hierarchical cluster center; the velocity dispersion profile of the BCG appears to be an extension of the velocity dispersion profile based on cluster members. The distribution of cluster members on the sky corresponds impressively with the weak-lensing contours of Okabe et al. especially when the impact of foreground and background structure is included. The values of R {sub 200} = 1.22 ± 0.01 h {sup –1} Mpc and M {sub 200} = (5.07 ± 0.09) × 10{sup 14} h {sup –1} M {sub ☉} obtained by application of the caustic technique agree well with recent completely independent lensing measures. The caustic estimate extends direct measurement of the cluster mass profile to a radius of ∼5 h {sup –1} Mpc.

  3. Segmenting Business Students Using Cluster Analysis Applied to Student Satisfaction Survey Results

    ERIC Educational Resources Information Center

    Gibson, Allen

    2009-01-01

    This paper demonstrates a new application of cluster analysis to segment business school students according to their degree of satisfaction with various aspects of the academic program. The resulting clusters provide additional insight into drivers of student satisfaction that are not evident from analysis of the responses of the student body as a…

  4. A survey on the taxonomy of cluster-based routing protocols for homogeneous wireless sensor networks.

    PubMed

    Naeimi, Soroush; Ghafghazi, Hamidreza; Chow, Chee-Onn; Ishii, Hiroshi

    2012-01-01

    The past few years have witnessed increased interest among researchers in cluster-based protocols for homogeneous networks because of their better scalability and higher energy efficiency than other routing protocols. Given the limited capabilities of sensor nodes in terms of energy resources, processing and communication range, the cluster-based protocols should be compatible with these constraints in either the setup state or steady data transmission state. With focus on these constraints, we classify routing protocols according to their objectives and methods towards addressing the shortcomings of clustering process on each stage of cluster head selection, cluster formation, data aggregation and data communication. We summarize the techniques and methods used in these categories, while the weakness and strength of each protocol is pointed out in details. Furthermore, taxonomy of the protocols in each phase is given to provide a deeper understanding of current clustering approaches. Ultimately based on the existing research, a summary of the issues and solutions of the attributes and characteristics of clustering approaches and some open research areas in cluster-based routing protocols that can be further pursued are provided.

  5. A Survey on the Taxonomy of Cluster-Based Routing Protocols for Homogeneous Wireless Sensor Networks

    PubMed Central

    Naeimi, Soroush; Ghafghazi, Hamidreza; Chow, Chee-Onn; Ishii, Hiroshi

    2012-01-01

    The past few years have witnessed increased interest among researchers in cluster-based protocols for homogeneous networks because of their better scalability and higher energy efficiency than other routing protocols. Given the limited capabilities of sensor nodes in terms of energy resources, processing and communication range, the cluster-based protocols should be compatible with these constraints in either the setup state or steady data transmission state. With focus on these constraints, we classify routing protocols according to their objectives and methods towards addressing the shortcomings of clustering process on each stage of cluster head selection, cluster formation, data aggregation and data communication. We summarize the techniques and methods used in these categories, while the weakness and strength of each protocol is pointed out in details. Furthermore, taxonomy of the protocols in each phase is given to provide a deeper understanding of current clustering approaches. Ultimately based on the existing research, a summary of the issues and solutions of the attributes and characteristics of clustering approaches and some open research areas in cluster-based routing protocols that can be further pursued are provided. PMID:22969350

  6. Subaru weak-lensing survey of dark matter subhalos in the Coma cluster: Subhalo mass function and statistical properties

    SciTech Connect

    Okabe, Nobuhiro; Futamase, Toshifumi; Kuroshima, Risa; Kajisawa, Masaru

    2014-04-01

    We present a 4 deg{sup 2} weak gravitational lensing survey of subhalos in the very nearby Coma cluster using the Subaru/Suprime-Cam. The large apparent size of cluster subhalos allows us to measure the mass of 32 subhalos detected in a model-independent manner, down to the order of 10{sup –3} of the virial mass of the cluster. Weak-lensing mass measurements of these shear-selected subhalos enable us to investigate subhalo properties and the correlation between subhalo masses and galaxy luminosities for the first time. The mean distortion profiles stacked over subhalos show a sharply truncated feature which is well-fitted by a Navarro-Frenk-White (NFW) mass model with the truncation radius, as expected due to tidal destruction by the main cluster. We also found that subhalo masses, truncation radii, and mass-to-light ratios decrease toward the cluster center. The subhalo mass function, dn/dln M {sub sub}, in the range of 2 orders of magnitude in mass, is well described by a single power law or a Schechter function. Best-fit power indices of 1.09{sub −0.32}{sup +0.42} for the former model and 0.99{sub −0.23}{sup +0.34} for the latter, are in remarkable agreement with slopes of ∼0.9-1.0 predicted by the cold dark matter paradigm. The tangential distortion signals in the radial range of 0.02-2 h {sup –1} Mpc from the cluster center show a complex structure which is well described by a composition of three mass components of subhalos, the NFW mass distribution as a smooth component of the main cluster, and a lensing model from a large scale structure behind the cluster. Although the lensing signals are 1 order of magnitude lower than those for clusters at z ∼ 0.2, the total signal-to-noise ratio, S/N = 13.3, is comparable, or higher, because the enormous number of background source galaxies compensates for the low lensing efficiency of the nearby cluster.

  7. Chemical Abundances of Seven Outer Halo M31 Globular Clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.

    2017-03-01

    Observations of stellar streams in M31's outer halo suggest that M31 is actively accreting several dwarf galaxies and their globular clusters (GCs). Detailed abundances can chemically link clusters to their birth environments, establishing whether or not a GC has been accreted from a satellite dwarf galaxy. This talk presents the detailed chemical abundances of seven M31 outer halo GCs (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated-light spectra taken with the Hobby Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS)-this talk presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal-poor ([Fe/H] < -1.5), α-enhanced (though they are possibly less alpha-enhanced than Milky Way stars at the 1 sigma level), and show signs of star-to-star Na and Mg variations. The other three GCs (H10, H23, and PA17) are more metal-rich, with metallicities ranging from [Fe/H] = -1.4 to -0.9. While H23 is chemically similar to Milky Way field stars, Milky Way GCs, and other M31 clusters, H10 and PA17 have moderately-low [Ca/Fe], compared to Milky Way field stars and clusters. Additionally, PA17's high [Mg/Ca] and [Ba/Eu] ratios are distinct from Milky Way stars, and are in better agreement with the stars and clusters in the Large Magellanic Cloud (LMC). None of the clusters studied here can be conclusively linked to any of the identified streams from PAndAS; however, based on their locations, kinematics, metallicities, and detailed abundances, the most metal-rich PAndAS clusters H23 and PA17 may be associated with the progenitor of the Giant Stellar Stream, H10 may be associated with the SW Cloud, and PA53 and PA56 may be associated with the Eastern Cloud.

  8. A Survey of Hardware and Software Technologies for the Rapid Development of Multimedia Instructional Modules

    ERIC Educational Resources Information Center

    Ganesan, Nanda

    2008-01-01

    A survey of hardware and software technologies was conducted to identify suitable technologies for the development of instructional modules representing various instructional approaches. The approaches modeled were short PowerPoint presentations, chalk-and-talk type of lectures and software tutorials. The survey focused on identifying application…

  9. The Gaia-ESO Survey: the first abundance determination of the pre-main-sequence cluster gamma Velorum

    NASA Astrophysics Data System (ADS)

    Spina, L.; Randich, S.; Palla, F.; Sacco, G. G.; Magrini, L.; Franciosini, E.; Morbidelli, L.; Prisinzano, L.; Alfaro, E. J.; Biazzo, K.; Frasca, A.; González Hernández, J. I.; Sousa, S. G.; Adibekyan, V.; Delgado-Mena, E.; Montes, D.; Tabernero, H.; Klutsch, A.; Gilmore, G.; Feltzing, S.; Jeffries, R. D.; Micela, G.; Vallenari, A.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Costado, M. T.; Damiani, F.; Hill, V.; Hourihane, A.; Jofré, P.; de Laverny, P.; Masseron, T.; Worley, C.

    2014-07-01

    Context. Knowledge of the abundance distribution of star forming regions and young clusters is critical to investigate a variety of issues, from triggered star formation and chemical enrichment by nearby supernova explosions to the ability to form planetary systems. In spite of this, detailed abundance studies are currently available for relatively few regions. Aims: In this context, we present the analysis of the metallicity of the gamma Velorum cluster, based on the products distributed in the first internal release of the Gaia-ESO Survey. Methods: The gamma Velorum candidate members have been observed with FLAMES, using both UVES and Giraffe, depending on the target brightness and spectral type. In order to derive a solid metallicity determination for the cluster, membership of the observed stars must be first assessed. To this aim, we use several membership criteria including radial velocities, surface gravity estimates, and the detection of the photospheric lithium line. Results: Out of the 80 targets observed with UVES, we identify 14 high-probability members. We find that the metallicity of the cluster is slightly subsolar, with a mean [ Fe/H ] = -0.057 ± 0.018 dex. Although J08095427-4721419 is one of the high-probability members, its metallicity is significantly larger than the cluster average. We speculate about its origin as the result of recent accretion episodes of rocky bodies of ~60 M⊕ hydrogen-depleted material from the circumstellar disk. Based on observations collected at the ESO telescopes under programme 188.B3002, the Gaia-ESO large public spectroscopic survey.Full Tables 1-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/567/A55

  10. Field trial of applicability of lot quality assurance sampling survey method for rapid assessment of prevalence of active trachoma.

    PubMed Central

    Myatt, Mark; Limburg, Hans; Minassian, Darwin; Katyola, Damson

    2003-01-01

    OBJECTIVE: To test the applicability of lot quality assurance sampling (LQAS) for the rapid assessment of the prevalence of active trachoma. METHODS: Prevalence of active trachoma in six communities was found by examining all children aged 2-5 years. Trial surveys were conducted in these communities. A sampling plan appropriate for classifying communities with prevalences < or =20% and > or =40% was applied to the survey data. Operating characteristic and average sample number curves were plotted, and screening test indices were calculated. The ability of LQAS to provide a three-class classification system was investigated. FINDINGS: Ninety-six trial surveys were conducted. All communities with prevalences < or =20% and > or =40% were identified correctly. The method discriminated between communities with prevalences < or =30% and >30%, with sensitivity of 98% (95% confidence interval (CI)=88.2-99.9%), specificity of 84.4% (CI=69.9-93.0%), positive predictive value of 87.7% (CI=75.7-94.5%), negative predictive value of 97.4% (CI=84.9-99.9%), and accuracy of 91.7% (CI=83.8-96.1%). Agreement between the three prevalence classes and survey classifications was 84.4% (CI=75.2-90.7%). The time needed to complete the surveys was consistent with the need to complete a survey in one day. CONCLUSION: Lot quality assurance sampling provides a method of classifying communities according to the prevalence of active trachoma. It merits serious consideration as a replacement for the assessment of the prevalence of active trachoma with the currently used trachoma rapid assessment method. It may be extended to provide a multi-class classification method. PMID:14997240

  11. Measuring subhalo mass in redMaPPer clusters with CFHT Stripe 82 Survey

    SciTech Connect

    Li, Ran; Shan, Huanyuan; Kneib, Jean -Paul; Mo, Houjun; Rozo, Eduardo; Leauthaud, Alexie; Moustakas, John; Xie, Lizhi; Erben, Thomas; Van Waerbeke, Ludovic; Makler, Martin; Rykoff, Eli; Moraes, Bruno

    2016-03-07

    Here, we use the shear catalogue from the CFHT Stripe-82 Survey to measure the subhalo masses of satellite galaxies in redMaPPer clusters. Assuming a Chabrier initial mass function and a truncated NFW model for the subhalo mass distribution, we find that the subhalo mass to galaxy stellar mass ratio increases as a function of projected halo-centric radius rp, from Msub/Mstar = 4.43+6.63–2.23 at rp ε [0.1, 0.3] h–1 Mpc to Msub/Mstar = 75.40+19.73–19.09 at rp ε [0.6, 0.9] h–1 Mpc. We also investigate the dependence of subhalo masses on stellar mass by splitting satellite galaxies into two stellar mass bins: 10 < log (Mstar/h–1M) < 10.5 and 11 < log (Mstar/h–1 M) < 12. The best-fitting subhalo mass of the more massive satellite galaxy bin is larger than that of the less massive satellites: log(Msub/h–1M) = 11.14+0.66–0.73 (Msub/Mstar = 19.5+19.8–17.9) versus log(Msub/h–1M) = 12.38+0.16–0.16 (Msub/Mstar = 21.1+7.4–7.7).

  12. THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. IX. HORIZONTAL BRANCH MORPHOLOGY AND THE SECOND PARAMETER PHENOMENON

    SciTech Connect

    Dotter, Aaron; Sarajedini, Ata; Anderson, Jay; Bedin, Luigi R.; Paust, Nathaniel; Reid, I. Neill; Aparicio, Antonio; MarIn-Franch, A.; Rosenberg, Alfred; Majewski, Steven; Milone, Antonino; Piotto, Giampaolo; Siegel, Michael E-mail: ata@astro.ufl.ed

    2010-01-01

    The horizontal branch (HB) morphology of globular clusters (GCs) is most strongly influenced by metallicity. The second parameter phenomenon, first described in the 1960s, acknowledges that metallicity alone is not enough to describe the HB morphology of all GCs. In particular, astronomers noticed that the outer Galactic halo contains GCs with redder HBs at a given metallicity than are found inside the solar circle. Thus, at least a second parameter was required to characterize HB morphology. While the term 'second parameter' has since come to be used in a broader context, its identity with respect to the original problem has not been conclusively determined. Here we analyze the median color difference between the HB and the red giant branch, hereafter denoted as DELTA(V - I), measured from Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) photometry of 60 GCs within approx20 kpc of the Galactic center. Analysis of this homogeneous data set reveals that, after the influence of metallicity has been removed from the data, the correlation between DELTA(V - I) and age is stronger than that of any other parameter considered. Expanding the sample to include HST ACS and Wide Field Planetary Camera 2 photometry of the six most distant Galactic GCs lends additional support to the correlation between DELTA(V - I) and age. This result is robust with respect to the adopted metallicity scale and the method of age determination, but must bear the caveat that high-quality, detailed abundance information is not available for a significant fraction of the sample. Furthermore, when a subset of GCs with similar metallicities and ages is considered, a correlation between DELTA(V - I) and central luminosity density is exposed. With respect to the existence of GCs with anomalously red HBs at a given metallicity, we conclude that age is the second parameter and central density is most likely the third. Important problems related to HB morphology in GCs, notably multi

  13. Evolution of Group Galaxies from the First Red-Sequence Cluster Survey

    NASA Astrophysics Data System (ADS)

    Li, I. H.; Yee, H. K. C.; Hsieh, B. C.; Gladders, M.

    2012-04-01

    We study the evolution of the red-galaxy fraction (f red) in 905 galaxy groups with 0.15 <= z < 0.52. The galaxy groups are identified by the "probability friends-of-friends" algorithm from the first Red-Sequence Cluster Survey (RCS1) photometric-redshift sample. There is a high degree of uniformity in the properties of the red sequence of the group galaxies, indicating that the luminous red-sequence galaxies in the groups are already in place by z ~ 0.5 and that they have a formation epoch of z >~ 2. In general, groups at lower redshifts exhibit larger f red than those at higher redshifts, showing a group Butcher-Oemler effect. We investigate the evolution of f red by examining its dependence on four parameters, one of which can be classified as intrinsic and three of which can be classified as environmental: galaxy stellar mass (M *), total group stellar mass (M *, grp, a proxy for group halo mass), normalized group-centric radius (r grp), and local galaxy density (Σ5). We find that M * is the dominant parameter such that there is a strong correlation between f red and galaxy stellar mass. Furthermore, the dependence of f red on the environmental parameters is also a strong function of M *. Massive galaxies (M * >~ 1011 M ⊙) show little dependence of f red on r grp, M *, grp, and Σ5 over the redshift range. The dependence of f red on these parameters is primarily seen for galaxies with lower masses, especially for M * <~ 1010.6 M ⊙. We observe an apparent "group down-sizing" effect, in that galaxies in lower-mass halos, after controlling for galaxy stellar mass, have lower f red. We find a dependence of f red on both r grp and Σ5 after the other parameters are controlled. At a fixed r grp, there is a significant dependence of f red on Σ5, while r grp gradients of f red are seen for galaxies in similar Σ5 regions. This indicates that galaxy group environment has a residual effect over that of local galaxy density (or vice versa), and both parameters need

  14. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the configuration-space clustering wedges

    NASA Astrophysics Data System (ADS)

    Sánchez, Ariel G.; Scoccimarro, Román; Crocce, Martín; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Dalla Vecchia, Claudio; Lippich, Martha; Beutler, Florian; Brownstein, Joel R.; Chuang, Chia-Hsun; Eisenstein, Daniel J.; Kitaura, Francisco-Shu; Olmstead, Matthew D.; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Ross, Ashley J.; Samushia, Lado; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Wang, Yuting; Zhao, Gong-Bo

    2017-01-01

    We explore the cosmological implications of anisotropic clustering measurements in configuration space of the final galaxy samples from Data Release 12 of the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. We implement a new detailed modelling of the effects of non-linearities, bias and redshift-space distortions that can be used to extract unbiased cosmological information from our measurements for scales s ≳ 20 h-1 Mpc. We combined the information from Baryon Oscillation Spectroscopic Survey (BOSS) with the latest cosmic microwave background (CMB) observations and Type Ia supernovae samples and found no significant evidence for a deviation from the Λ cold dark matter (ΛCDM) cosmological model. In particular, these data sets can constrain the dark energy equation-of-state parameter to wDE = -0.996 ± 0.042 when to be assumed time independent, the curvature of the Universe to Ωk = -0.0007 ± 0.0030 and the sum of the neutrino masses to ∑mν < 0.25 eV at 95 per cent confidence levels. We explore the constraints on the growth rate of cosmic structures assuming f(z) = Ωm(z)γ and obtain γ = 0.609 ± 0.079, in good agreement with the predictions of general relativity of γ = 0.55. We compress the information of our clustering measurements into constraints on the parameter combinations DV(z)/rd, FAP(z) and fσ8(z) at zeff = 0.38, 0.51 and 0.61 with their respective covariance matrices and find good agreement with the predictions for these parameters obtained from the best-fitting ΛCDM model to the CMB data from the Planck satellite. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others by Alam et al. to produce the final cosmological constraints from BOSS.

  15. The Herschel Virgo Cluster Survey. XVII. SPIRE point-source catalogs and number counts

    NASA Astrophysics Data System (ADS)

    Pappalardo, Ciro; Bendo, George J.; Bianchi, Simone; Hunt, Leslie; Zibetti, Stefano; Corbelli, Edvige; di Serego Alighieri, Sperello; Grossi, Marco; Davies, Jonathan; Baes, Maarten; De Looze, Ilse; Fritz, Jacopo; Pohlen, Michael; Smith, Matthew W. L.; Verstappen, Joris; Boquien, Médéric; Boselli, Alessandro; Cortese, Luca; Hughes, Thomas; Viaene, Sebastien; Bizzocchi, Luca; Clemens, Marcel

    2015-01-01

    Aims: We present three independent catalogs of point-sources extracted from SPIRE images at 250, 350, and 500 μm, acquired with the Herschel Space Observatory as a part of the Herschel Virgo Cluster Survey (HeViCS). The catalogs have been cross-correlated to consistently extract the photometry at SPIRE wavelengths for each object. Methods: Sources have been detected using an iterative loop. The source positions are determined by estimating the likelihood to be a real source for each peak on the maps, according to the criterion defined in the sourceExtractorSussextractor task. The flux densities are estimated using the sourceExtractorTimeline, a timeline-based point source fitter that also determines the fitting procedure with the width of the Gaussian that best reproduces the source considered. Afterwards, each source is subtracted from the maps, removing a Gaussian function in every position with the full width half maximum equal to that estimated in sourceExtractorTimeline. This procedure improves the robustness of our algorithm in terms of source identification. We calculate the completeness and the flux accuracy by injecting artificial sources in the timeline and estimate the reliability of the catalog using a permutation method. Results: The HeViCS catalogs contain about 52 000, 42 200, and 18 700 sources selected at 250, 350, and 500 μm above 3σ and are ~75%, 62%, and 50% complete at flux densities of 20 mJy at 250, 350, 500 μm, respectively. We then measured source number counts at 250, 350, and 500 μm and compare them with previous data and semi-analytical models. We also cross-correlated the catalogs with the Sloan Digital Sky Survey to investigate the redshift distribution of the nearby sources. From this cross-correlation, we select ~2000 sources with reliable fluxes and a high signal-to-noise ratio, finding an average redshift z ~ 0.3 ± 0.22 and 0.25 (16-84 percentile). Conclusions: The number counts at 250, 350, and 500 μm show an increase in

  16. Near-Infrared Photometric Parameters of Bulge Globular Clusters from the VVV Survey

    NASA Astrophysics Data System (ADS)

    Cohen, R. E.

    2015-05-01

    Despite spanning a remarkable variety of properties (e.g., mass, metallicity and horizontal branch morphology), severe and variable extinction has often thwarted detailed analyses of the globular clusters of the Milky Way bulge. We present results from recent and ongoing investigations of these clusters using deep, wide-field near-infrared photometry independently, and also in combination with, the plethora of existing photometry and spectroscopy. The results and their homogeneity facilitate not only the characterization of relations between cluster photometric properties and abundances and comparison to evolutionary models, but can also corroborate and further constrain recent results regarding the extinction law of the inner Milky Way.

  17. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions

    NASA Astrophysics Data System (ADS)

    Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Alam, Shadab; Beutler, Florian; Ross, Ashley J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Kitaura, Francisco-Shu; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.; Zhao, Gong-Bo

    2017-01-01

    The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. We present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock catalogues of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.

  18. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions

    SciTech Connect

    Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Alam, Shadab; Beutler, Florian; Ross, Ashley J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Kitaura, Francisco-Shu; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.; Zhao, Gong-Bo

    2016-09-30

    The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. Here, we present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We also illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock catalogues of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. Our paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.

  19. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions

    DOE PAGES

    Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; ...

    2016-09-30

    The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. Here, we present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We also illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock cataloguesmore » of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. Our paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.« less

  20. Searching for Distant Galaxy Clusters: Utilizing the Virtual Observatory for Multiwavelength Images and Survey Cross-correlation

    NASA Astrophysics Data System (ADS)

    Van Duyne, J.; Lucas, R.; Tamura, T.; Rohde, D.

    2004-12-01

    Through the tools and technology made available via the Virtual Observatory, we have explored the multiwavelength properties, survey coverage, and environments of a sample of 71 steep (-1.0 < α < 0.5) spectrum radio sources taken from the Texas Interferometer Radio catalog (Douglas et al. 1996). Through the VLA proposal by Lucas & Chambers (1989), these radio sources were observed with the A-array configuration at 20 cm and 1485 MHz and with 1 full Schmidt SRC-J, high-latitude sky survey plate ( ˜ 6 sq deg) down to J ˜ 22 with the purpose of finding optical counterparts of mid-to-high z galaxy clusters. With the knowledge that this field had been imaged via the Sloan Digital Sky Survey (SDSS DR2, r=22.2), we submitted the coordinates of the Lucas & Chambers survey sources to the VO image access protocol (SIAP) to quickly and efficiently explore the SDSS ugriz 5-band color images of these sources, specifically looking for u-band drop-outs. Additionally, we used this same technique to explore the multiwavelength coverage of this field with all surveys registered with the VO (2MASS, ROSAT, VLA FIRST/NVSS, Chandra, XMM) via ˜ 1 arcminute snapshots. This revealed a multitude of interesting objects, such as double-lobed radio galaxies with bent jets, implying intercluster medium interactions, extremely faint optical sources with point source 2MASS/J-band detections, and the re-discovery of 3C 273. Finally, as a proof of concept, we utilized the VO tool Topcat to cross-correlate the radio and X-ray positions of known galaxy clusters via the RBSC-NVSS Sample (Bauer et al. 2000) and ROSAT Brightest Cluster Sample (Ebeling et al. 1998), resulting in 17 clusters matched at < 15 arcsec separation. These results demonstrate the simple, yet highly effective utility of the Virtual Observatory on a sample data set to reveal scientifically interesting objects on a short timescale. We would like to acknowledge the National Virtual Observatory Summer School for supplying the

  1. VizieR Online Data Catalog: Milky Way global survey of star clusters. V. (Kharchenko+, 2016)

    NASA Astrophysics Data System (ADS)

    Kharchenko, N. V.; Piskunov, A. E.; Schilbach, E.; Roeser, S.; Scholz, R.-D.

    2015-11-01

    The catalogue presents integrated parameters in near-infrared (JHKs) passbands for 3208 Galactic star clusters. The integrated magnitudes are based on the most probable cluster members selected from the high-precision, homogeneous all-sky catalogue 2MAst that is constructed on the basis of catalogues PPMXL (Roeser et al., 2010, Cat. I/317) and 2MASS (Cutri et al., 2003, Cat. II/246). The integrated magnitudes are computed by adding the individual luminosities of the most secure cluster members. In order to put the computed magnitudes into a uniform and unbiased system they were corrected for the effect of unseen stars in the 2MAst. The clusters in the catalogue are sorted according to their numbers in the MWSC. (1 data file).

  2. VizieR Online Data Catalog: Gaia-ESO Survey. Parameters for cluster members (Jacobson+, 2016)

    NASA Astrophysics Data System (ADS)

    Jacobson, H. R.; Friel, E. D.; Jilkova, L.; Magrini, L.; Bragaglia, A.; Vallenari, A.; Tosi, M.; Randich, S.; Donati, P.; Cantat-Gaudin, T.; Sordo, R.; Smiljanic, R.; Overbeek, J. C.; Carraro, G.; Tautvaisiene, G.; San, Roman I.; Villanova, S.; Geisler, D.; Munoz, C.; Jimenez-Esteban, F.; Tang, B.; Gilmore, G.; Alfaro, E. J.; Bensby, T.; Flaccomio, E.; Koposov, S. E.; Korn, A. J.; Pancino, E.; Recio-Blanco, A.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Heiter, U.; Hill, V.; Hourihane, A.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2016-05-01

    Parameters for confirmed stellar members of the open clusters Berkeley 44, Berkeley 81, NGC 2516, NGC 3532, NGC 4815, NGC 6005, NGC 6633, NGC 6705, NGC 6802, Pismis 18, Trumpler 20, Trumpler 23. (1 data file).