Science.gov

Sample records for rapid cycling bubble

  1. Behavior of Rapidly Sheared Bubble Suspensions

    NASA Technical Reports Server (NTRS)

    Sangani, A. S.; Kushch, V. I.; Hoffmann, M.; Nahra, H.; Koch, D. L.; Tsang, Y.

    2002-01-01

    An experiment to be carried out aboard the International Space Station is described. A suspension consisting of millimeter-sized bubbles in water containing some dissolved salt, which prevents bubbles from coalescing, will be sheared in a Couette cylindrical cell. Rotation of the outer cylinder will produce centrifugal force which will tend to accumulate the bubbles near the inner wall. The shearing will enhance collisions among bubbles creating thereby bubble phase pressure that will resist the tendency of the bubbles to accumulate near the inner wall. The bubble volume fraction and velocity profiles will be measured and compared with the theoretical predictions. Ground-based research on measurement of bubble phase properties and flow in vertical channel are described.

  2. Bubble nucleation and growth in open-cycle OTEC subsystems

    NASA Astrophysics Data System (ADS)

    Bugby, D. C.; Wassel, A. T.; Mills, A. F.

    1983-05-01

    Bubble nucleation and growth in the evaporator, condenser, upcomers, and feedwater distribution systems of open-cycle ocean thermal energy conversion (OTEC) power plants are examined. The phenomenon that will probably have the most impact on system design is cavitation in the warm water feed near the entrance of the evaporator. The critical bubble size for cavitation is about 105 microns. Sources of bubbles in the warm water feed are those entering from the ocean, those nucleating on suspended particles, and those nucleating on the upcomer wall. Analyses of bubble growth induced by changes in hydrostatic pressure, mass transfer, and coalescence are presented. Using available information for bubble size distribution in seawater at California locations, it is shown that cavitation will probably have a significant impact on evaporator performance unless a debubbler is provided upstream of the evaporator entrance.

  3. Rapid Cycling and Its Treatment

    MedlinePlus

    ... Service Announcements Partnering with DBSA Rapid Cycling and its Treatment What is bipolar disorder? Bipolar disorder, also ... episode Similar to a manic episode, except that it is less severe and there are no delusions ...

  4. Rapid compressions in a captive bubble apparatus are isothermal

    PubMed Central

    Yan, Wenfei; Hall, Stephen B.

    2012-01-01

    Captive bubbles are commonly used to determine how interfacial films of pulmonary surfactant respond to changes in surface area, achieved by varying hydrostatic pressure. Although assumed to be isothermal, the gas phase temperature (Tg) would increase by >100°C during compression from 1 to 3 atm if the process were adiabatic. To determine the actual change in temperature, we monitored pressure (P) and volume (V) during compressions lasting <1 s for bubbles with and without interfacial films and used P·V to evaluate Tg. P·V fell during and after the rapid compressions, consistent with reductions in n, the moles of gas phase molecules, because of increasing solubility in the subphase at higher P. As expected for a process with first-order kinetics, during 1 h after the rapid compression P·V decreased along a simple exponential curve. The temporal variation of n moles of gas was determined from P·V >10 min after the compression when the two phases should be isothermal. Back extrapolation of n then allowed calculation of Tg from P·V immediately after the compression. Our results indicate that for bubbles with or without interfacial films compressed to >3 atm within 1 s, the change in Tg is <2°C. PMID:12871969

  5. Helium bubble linkage and the transition to rapid He release in aging Pd tritide.

    SciTech Connect

    Cowgill, Donald F.

    2006-02-01

    A model is presented for the linking of helium bubbles growing in aging metal tritides. Stresses created by neighboring bubbles are found to produce bubble growth toward coalescence. This process is interrupted by the fracture of ligaments between bubble arrays. The condition for ligament fracture percolates through the material to reach external surfaces, leading to material micro-cracking and the release of helium within the linked-bubble cluster. A comparison of pure coalescence and pure fracture mechanisms shows the critical HeM concentration for bubble linkage is not strongly dependent on details of the linkage process. The combined stress-directed growth and fracture process produces predictions for the onset of rapid He release and the He emission rate. Transition to this rapid release state is determined from the physical size of the linked-bubble clusters, which is calculated from dimensional invariants in classical percolation theory. The result is a transition that depends on material dimensions. The onset of bubble linkage and rapid He release are found to be quite sensitive to the bubble spacing distribution, which is log-normal for bubbles nucleated by self-trapping.

  6. Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2004-06-01

    Vanitas vanitatum et omnia vanitas: bubbles are emptiness, non-liquid, a tiny cloud shielding a mathematical singularity. Born from chance, a violent and brief life ending in the union with the (nearly) infinite. But a wealth of phenomena spring forth from this nothingness: underwater noise, sonoluminescence, boiling, and many others. Some recent results on a "blinking bubble" micropump and vapor bubbles in sound fields are outlined. The last section describes Leonardo da Vinci's observation of the non-rectlinear ascent of buoyant bubbles and justifies the name Leonardo's paradox recently attributed to this phenomenon.

  7. OPTICAL FACTORS IN THE RAPID ANALYSIS OF CAPTIVE BUBBLES

    PubMed Central

    Khoojinian, Hamed; Goodarzi, Jim P.; Hall, Stephen B.

    2012-01-01

    Bubbles and droplets offer multiple advantages over Langmuir troughs for compressing interfacial films. Experiments, however, that manipulate films to maintain constant surface tension (γ) present problems because they require feedback. Measurements of bubbles and droplets calculate γ from the shape of the interface, and calculations in real time based on finding the Laplacian shape that best fits the interface can be difficult. Faster methods obtain γ from only the height and diameter, but the bubbles and droplets rest against a solid support, which obscures one section of the interface and complicates measurements of the height. The experiments here investigated a series of optical variables that affect the visualized location of the different surfaces for captive bubbles. The pitch of the support and camera as well as the collimation of illuminating light affected the accuracy of the measured dimensions. The wavelength of illumination altered the opacity of turbid subphases and hydrated gel used to form the solid support. The width of all visualized edges depended on the spectral width and collimation of the illuminating light. The intensity of illumination had little effect on the images as long as the grayscale remained within the dynamic range of the camera. With optimization of these optical factors, the width of all edges narrowed significantly. The surfaces away from the solid support approached the infinite sharpness of the physical interface. With these changes, the grayscale at the upper interface provided the basis for locating all surfaces, which improved real-time measurements based on the height and diameter. PMID:22950373

  8. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  9. THE RAPID CYCLING MEDICAL SYNCHROTRON RCMS.

    SciTech Connect

    PEGGS,S.; BARTON,D.; BEEBE-WANG,J.; CARDONA,J.; BRENNAN,M.; FISCHER,W.; GARDNER,C.; GASSNER,D.; ET AL

    2002-06-02

    Thirteen hadron beam therapy facilities began operation between 1990 and 2001 - 5 in Europe, 4 in North America, 3 in Japan, and 1 in South Africa [l]. Ten of them irradiate tumors with protons, 2 with Carbon- 12 ions, and 1 with both protons and Carbon-12. The facility with the highest patient throughput - a total of 6 174 patients in 11 years and as many as 150 patient treatments per day -is the Loma Linda University Medical Center, which uses a weak focusing slow cycling synchrotron to accelerate beam for delivery to passive scattering nozzles at the end of rotatable gantries [2, 3,4]. The Rapid Cycling Medical Synchrotron (RCMS) is a second generation synchrotron that, by contrast with the Loma Linda synchrotron, is strong focusing and rapid cycling, with a repetition rate of 30 Hz. Primary parameters for the RCMS are listed in Table 1.

  10. Methods and compositions for rapid thermal cycling

    DOEpatents

    Beer, Neil Reginald; Benett, William J.; Frank, James M.; Deotte, Joshua R.; Spadaccini, Christopher

    2015-10-27

    The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature of the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.

  11. Dependence of pulsed focused ultrasound induced thrombolysis on duty cycle and cavitation bubble size distribution.

    PubMed

    Xu, Shanshan; Zong, Yujin; Feng, Yi; Liu, Runna; Liu, Xiaodong; Hu, Yaxin; Han, Shimin; Wan, Mingxi

    2015-01-01

    In this study, we investigated the relationship between the efficiency of pulsed, focused ultrasound (FUS)-induced thrombolysis, the duty cycle (2.3%, 9%, and 18%) and the size distribution of cavitation bubbles. The efficiency of thrombolysis was evaluated through the degree of mechanical fragmentation, namely the number, mass, and size of clot debris particles. First, we found that the total number and mass of clot debris particles were highest when a duty cycle of 9% was used and that the mean diameter of clot debris particles was smallest. Second, we found that the size distribution of cavitation bubbles was mainly centered around the linear resonance radius (2.5μm) of the emission frequency (1.2MHz) of the FUS transducer when a 9% duty cycle was used, while the majority of cavitation bubbles became smaller or larger than the linear resonance radius when a 2.3% or 18% duty cycle was used. In addition, the inertial cavitation dose from the treatment performed at 9% duty cycle was much higher than the dose obtained with the other two duty cycles. The data presented here suggest that there is an optimal duty cycle at which the thrombolysis efficiency and cavitation activity are strongest. They further indicate that using a pulsed FUS may help control the size distribution of cavitation nuclei within an active size range, which we found to be near the linear resonance radius of the emission frequency of the FUS transducer.

  12. Quadrupole magnet for a rapid cycling synchrotron

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  13. Cognitive-Behavioral Therapy for Rapid Cycling Bipolar Disorder

    ERIC Educational Resources Information Center

    Reilly-Harrington, Noreen A.; Knauz, Robert O.

    2005-01-01

    This article describes the application of cognitive-behavioral therapy (CBT) to the treatment of rapid cycling bipolar disorder. Between 10% and 24% of bipolar patients experience a rapid cycling course, with 4 or more mood episodes occurring per year. Characterized by nonresponse to standard mood-stabilizing medications, rapid cyclers are…

  14. Formation mechanisms of rapid pressure recovery around a laminar separation bubble

    NASA Astrophysics Data System (ADS)

    Lee, Donghwi; Nonomura, Taku; Oyama, Akira; Fujii, Kozo

    2016-11-01

    Large-eddy simulations around 5 % thickness flat plate are conducted at Rec = 5 , 000 , 8 , 000 and 20 , 000 and formation mechanisms of rapid pressure recovery in the surface pressure distribution around laminar separation bubbles are analyzed. Three analyses are applied to investigate the mechanisms of rapid pressure recovery. First, by using the Reynolds averaged streamwise pressure gradient equation, it is confirmed that the "overall Reynolds stress diffusion (ORSD)" is an important factor for inducing rapid pressure recovery. Second, we decompose the ORSD into the "normal Reynolds stress diffusion in the streamwise direction" and the "tangential Reynolds stress diffusion (TRSD) in the wall-normal direction". We show that the TRSD in the wall-normal direction, which corresponds to the momentum transfer in the same direction, is the main contributor to the ORSD. Third, the TRSD in the wall-normal direction is decomposed into two- and three-dimensional components. The results indicate that the rapid pressure recovery is strongly affected by the presence of Reynolds stress rather than by the type of physical phenomena that creates the Reynolds stress. In other words, the three-dimensional turbulent structures are not a necessary condition for the rapid pressure recovery. Grain-in-Aid for JSPS Fellows.

  15. The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy.

    PubMed

    Garcia, David; Tessone, Claudio J; Mavrodiev, Pavlin; Perony, Nicolas

    2014-10-06

    What is the role of social interactions in the creation of price bubbles? Answering this question requires obtaining collective behavioural traces generated by the activity of a large number of actors. Digital currencies offer a unique possibility to measure socio-economic signals from such digital traces. Here, we focus on Bitcoin, the most popular cryptocurrency. Bitcoin has experienced periods of rapid increase in exchange rates (price) followed by sharp decline; we hypothesize that these fluctuations are largely driven by the interplay between different social phenomena. We thus quantify four socio-economic signals about Bitcoin from large datasets: price on online exchanges, volume of word-of-mouth communication in online social media, volume of information search and user base growth. By using vector autoregression, we identify two positive feedback loops that lead to price bubbles in the absence of exogenous stimuli: one driven by word of mouth, and the other by new Bitcoin adopters. We also observe that spikes in information search, presumably linked to external events, precede drastic price declines. Understanding the interplay between the socio-economic signals we measured can lead to applications beyond cryptocurrencies to other phenomena that leave digital footprints, such as online social network usage.

  16. The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy

    PubMed Central

    Garcia, David; Tessone, Claudio J.; Mavrodiev, Pavlin; Perony, Nicolas

    2014-01-01

    What is the role of social interactions in the creation of price bubbles? Answering this question requires obtaining collective behavioural traces generated by the activity of a large number of actors. Digital currencies offer a unique possibility to measure socio-economic signals from such digital traces. Here, we focus on Bitcoin, the most popular cryptocurrency. Bitcoin has experienced periods of rapid increase in exchange rates (price) followed by sharp decline; we hypothesize that these fluctuations are largely driven by the interplay between different social phenomena. We thus quantify four socio-economic signals about Bitcoin from large datasets: price on online exchanges, volume of word-of-mouth communication in online social media, volume of information search and user base growth. By using vector autoregression, we identify two positive feedback loops that lead to price bubbles in the absence of exogenous stimuli: one driven by word of mouth, and the other by new Bitcoin adopters. We also observe that spikes in information search, presumably linked to external events, precede drastic price declines. Understanding the interplay between the socio-economic signals we measured can lead to applications beyond cryptocurrencies to other phenomena that leave digital footprints, such as online social network usage. PMID:25100315

  17. Rapid Cycling Bipolar Disorder in Individuals with Developmental Disabilities.

    ERIC Educational Resources Information Center

    King, Robert; Fay, Garry; Croghan, Patricia

    2000-01-01

    This retrospective case series contrasts the phenomenology, clinical outcomes, treatment responses, and clinical characteristics of 26 individuals with bipolar disorder and developmental disabilities, 12 with nonrapid cycling courses and 14 with rapid cycling courses. Similarities and differences are highlighted within these two groups and…

  18. LRL 25-inch Bubble Chamber

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Gow, J. D.; Barrera, F.; Eckman, G.; Shand, J.; Watt, R.; Norgren, D.; Hernandez, H. P.

    1964-07-08

    The recently completed 25-inch hydrogen bubble chamber combines excellent picture quality with a fast operating cycle. The chamber has a unique optical system and is designed to take several pictures each Bevatron pulse, in conjunction with the Bevatron rapid beam ejection system.

  19. Rapid cycling medical synchrotron and beam delivery system

    DOEpatents

    Peggs, Stephen G.; Brennan, J. Michael; Tuozzolo, Joseph E.; Zaltsman, Alexander

    2008-10-07

    A medical synchrotron which cycles rapidly in order to accelerate particles for delivery in a beam therapy system. The synchrotron generally includes a radiofrequency (RF) cavity for accelerating the particles as a beam and a plurality of combined function magnets arranged in a ring. Each of the combined function magnets performs two functions. The first function of the combined function magnet is to bend the particle beam along an orbital path around the ring. The second function of the combined function magnet is to focus or defocus the particle beam as it travels around the path. The radiofrequency (RF) cavity is a ferrite loaded cavity adapted for high speed frequency swings for rapid cycling acceleration of the particles.

  20. Fluctuation emergence of bubbles under a rapid drop of pressure in a liquid

    NASA Astrophysics Data System (ADS)

    Pavlov, P. A.; Vinogradov, V. E.

    2015-07-01

    Explosive cavitation at the front of a negative-pressure pulse has been studied. Conditions for the emergence of bubbles by the mechanism of homogeneous fluctuation nucleation were identified. Those conditions feature a high rate of the phase transformation, with the vapor formation process being concentrated in time at the instant of attainment of a certain pressure. Under such conditions, the liquid cavitation strength is maximal, and its value can be predicted by the homogeneous nucleation theory. For implementing the regime with high nucleation frequency, a method based on passing a negative-pressure pulse across a region with locally heated liquid was employed. The cavitation kinetics was examined by monitoring the perturbation of the heat flow from a miniature heater. The experimental data were generalized using the theory of explosive vapor formation in shock boiling mode. A method for calculating the cavitation in the regime of the fluctuation emergence of bubbles was approbated.

  1. Tune control improvements on the rapid cycling synchrotron

    SciTech Connect

    Potts, C.; Faber, M.; Gunderson, G.; Knott, M.; Voss, D.

    1981-06-01

    The as-built lattice of the Rapid Cycling Synchrotron (RCS) had two sets of correction sextupoles and two sets of quadrupoles energized by dc power supplies to control the tune and the tune tilt. With this method of powering these magnets, adjustment of tune conditions during the accelerating cycle as needed was not possible. A set of dynamically programmable power supplies has been built and operated to provide the required chromaticity adjustment. The short accelerating time (16.7 ms) of the RCS and the inductance of the magnets dictated large transistor amplifier power supplies. The required time resolution and waveform flexibility indicated the desirability of computer control. Both the amplifiers and controls are described, along with resulting improvements in the beam performance. 5 refs.

  2. Tune-control improvements on the rapid-cycling synchrotron

    SciTech Connect

    Potts, C.; Faber, M.; Gunderson, G.; Knott, M.; Voss, D.

    1981-01-01

    The as-built lattice of the Rapid-Cycling Synchrotron (RCS) had two sets of correction sextupoles and two sets of quadrupoles energized by dc power supplies to control the tune and the tune tilt. With this method of powering these magnets, adjustment of tune conditions during the accelerating cycle as needed was not possible. A set of dynamically programmable power supplies has been built and operated to provide the required chromaticity adjustment. The short accelerating time (16.7 ms) of the RCS and the inductance of the magnets dictated large transistor amplifier power supplies. The required time resolution and waveform flexibility indicated the desirability of computer control. Both the amplifiers and controls are described, along with resulting improvements in the beam performance. A set of octupole magnets and programmable power supplies with similar dynamic qualities have been constructed and installed to control the anticipated high-intensity transverse instability. This system will be operational in the spring of 1981.

  3. Betatron tune measurement at the Argonne Rapid-Cycling Synchrotron

    SciTech Connect

    Rauchas, A.V.; Brumwell, F.R.; Cho, Y.; Czyz, W.S.; Gunderson, G.R.; Knott, M.J.; Suddeth, D.E.; Volk, G.J.

    1981-01-01

    In the past, betatron tune measurements at the Rapid Cycling Synchrotron (RCS) were made using a spectrum analyzer for betatron frequency analysis and one of the extraction kicker magnets to induce the coherent betatron motion. This method had several severe limitations: poor signal-to-noise ratio, inability to extract the beam after the measurement and dependence on the horizontal kick coupling into the vertical plane for vertical tune measurements. A new system is presently being constructed which will eliminate these problems. The beam will be kicked by independent horizontal and vertical ferrite pinger magnets. The beam positron data will be digitized and then analyzed by an array-processing computer using the Fast Fourier Transform (FFT). The control system will allow for additional improvements.

  4. Ceramic thermal barrier coating for rapid thermal cycling applications

    DOEpatents

    Scharman, Alan J.; Yonushonis, Thomas M.

    1994-01-01

    A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.

  5. Rapid peptide metabolism: A major component of soil nitrogen cycling?

    NASA Astrophysics Data System (ADS)

    Farrell, Mark; Hill, Paul W.; Wanniarachchi, Sudas D.; Farrar, John; Bardgett, Richard D.; Jones, Davey L.

    2011-09-01

    Proteinaceous and peptidic nitrogen is a potential direct nutrient source for both plants and microbes in the soil, without prior degradation to amino acids and mineralization. We used a series of five sites along an elevation gradient from 15 m a.s.l. to 710 m a.s.l. along which primary productivity decreases to investigate peptide utilization rates by soil microbes. Using 14C-labeled L-alanine, L-dialanine, and L-trialanine in a series of incubation experiments, we show that peptides are directly and rapidly assimilated by soil microbes, and that they are utilized for both biomass production and respiration. Alanine, dialanine, and trialanine were mineralized rapidly by soil microbes from the five sites along the gradient. Across all five sites, dialanine and trialanine were mineralized faster than alanine. In competition experiments, a 100-fold excess of alanine had no effect on the rate of trialanine mineralization in four of the five sites, and the same excess of trialanine had no effect on alanine mineralization. This is indicative of uptake of the intact peptide by the soil microbial community. Our findings have implications for understanding terrestrial nitrogen cycling because they point to a short-circuit whereby large peptides and proteins need only be extracellularly cleaved to short chain length peptides before direct assimilation by microbes.

  6. Bubbling Reactor Technology for Rapid Synthesis of Uniform, Small MFI-Type Zeolite Crystals

    SciTech Connect

    Liu, Wei; Rao, Yuxiang; Wan, Haiying; Karkamkar, Abhijeet J.; Liu, Jun; Wang, Li Q.

    2011-06-27

    MFI-type zeolite is an important family of materials used in today’s industries as catalysts and adsorbents. Preparation of this type of zeolite material as uniform and pure crystals of sizes from tens of nanometer to hundreds of nanometer are not only desired by current catalytic and adsorption processes for enhanced reaction kinetics and/or selectivity, but also much needed by some new applications, such as CO2 capture adsorbents and composite materials. However, it has been a major challenge in the zeolite synthesis field to prepare small crystals of MFI-type zeolite over a range of Si/Al ratio with very high throughput. In this work, a gas-bubbling flow reactor is used to conduct hydrothermal growth of the zeolite crystals with controllable Si/Al ratio and crystal sizes. Distinctive, uniform ZSM-5 crystals are successfully synthesized within two hours of reaction time, exceptionally short compared to the conventional synthesis process. The crystals are small enough to form a stable milk-like suspension in water. The Si/Al ratio can be controlled by adjusting the growth solution composition and reaction conditions over a range from about 9 to infinity. Characterization by SEM/EDS, XRD, TEM, N2 adsorption/desorption, and NMR confirms ZSM-5 crystal structures and reveals presence of meso-porosity in the resulting crystals.

  7. Modelling of heat flux received by a bubble pump of absorption-diffusion refrigeration cycles

    NASA Astrophysics Data System (ADS)

    Benhmidene, Ali; Chaouachi, Béchir; Gabsi, Slimane; Bourouis, Mahmoud

    2011-11-01

    In the present study, the heat flux received by a bubble pump, which was simulated to a vertical tube 1 m long and with a variable diameter, was optimized. A numerical study was carried out in order to solve balance equations concerning the water-ammonia mixture in the up flow. The two-fluid model was used to derive the equations. A numerical study was carried out on a heat flux between 1 and 70 kW m-2 and the liquid velocity was determined. The optimum flux was determined for a tube diameter equal to 4, 6, 8 and 10 mm and a mass flow rate ranging from 10 to 90 kg m-2 s-1. The optimum heat flux was correlated as a function of the tube diameter and mass flow rate, while the minimum heat flux required for pumping was correlated as a function of the tube diameter.

  8. On-line DNA analysis system with rapid thermal cycling

    DOEpatents

    Swerdlow, Harold P.; Wittwer, Carl T.

    1999-01-01

    An apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column.

  9. On-line DNA analysis system with rapid thermal cycling

    DOEpatents

    Swerdlow, H.P.; Wittwer, C.T.

    1999-08-10

    This application describes an apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column. 6 figs.

  10. Rapid Cycle Amine (RCA 2.0) System Development

    NASA Technical Reports Server (NTRS)

    Papale, William; O'Coin, James; Wichowski, Robert; Chullen, Cinda; Campbell, Colin

    2012-01-01

    The Rapid Cycle Amine (RCA) system is a low power assembly capable of simultaneously removing carbon dioxide (CO2) and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. Two solid amine sorbent beds are alternated between an uptake mode and a regeneration mode. During the uptake mode, the sorbent is exposed to an air steam (ventilation loop) to adsorb CO2 and water vapor, while during the regeneration mode, the sorbent rejects the adsorbed CO2 and water vapor to a vacuum source. The two beds operate such that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. A novel valve assembly provides a simple means of diverting the process air flow through the uptake bed while simultaneously directing the vacuum source to the regeneration bed. Additionally, the valve assembly is designed to allow for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The process can be controlled by a compact, low power controller design with several modes of operation available to the user. Together with NASA, United Technologies Corporation Aerospace Systems has been developing RCA 2.0 based on performance and design feedback on several sorbent bed test articles and valve design concepts. A final design was selected in November 2011 and fabricated and assembled between March and August 2012, with delivery to NASA-JSC in September 2012. This paper will provide an overview on the RCA system design and results of pre-delivery testing.

  11. Rapid Cycle Amine (RCA 2.0) System Development

    NASA Technical Reports Server (NTRS)

    Papale, William; O'Coin, James; Wichowski, Robert; Chullen, Cinda; Campbell, Colin

    2013-01-01

    The Rapid Cycle Amine (RCA) system is a low-power assembly capable of simultaneously removing carbon dioxide (CO2) and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. Two solid amine sorbent beds are alternated between an uptake mode and a regeneration mode. During the uptake mode, the sorbent is exposed to an air steam (ventilation loop) to adsorb CO2 and water (H2O) vapor, whereas during the regeneration mode, the sorbent rejects the adsorbed CO2 and H2O vapor to a vacuum source. The two beds operate such that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. A novel valve assembly provides a simple means of diverting the process air flow through the uptake bed while simultaneously directing the vacuum source to the regeneration bed. Additionally, the valve assembly is designed to allow for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The process can be controlled by a compact, low-power controller design with several modes of operation available to the user. Together with NASA Johnson Space Center, Hamilton Sundstrand Space Systems International, Inc. has been developing RCA 2.0 based on performance and design feedback on several sorbent bed test articles and valve design concepts. A final design of RCA 2.0 was selected in November 2011 and fabricated and assembled between March and August 2012, with delivery to NASA Johnson Space Center in September 2012. This paper provides an overview of the RCA system design and results of pre-delivery testing.

  12. Rapid Cycle Amine (RCA) 3.0 System Development

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Campbell, Colin; Papale, William; Hawes, Kevin; Wichowski, Robert

    2015-01-01

    The Rapid Cycle Amine (RCA) 3.0 system is currently under development by NASA, the Lyndon B. Johnson Space Center (JSC) in conjunction with United Technologies Corporation Aerospace Systems (UTAS). The RCA technology is a new carbon dioxide (CO2) and humidity removal system that has been baselined for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System. The evolution of the RCA development has progressed through several iterations of technology readiness levels including RCA 1.0, RCA 2.0, and RCA 3.0 test articles. The RCA is an advancement over currently technologies due to its unique regeneration capability. The RCA is capable of simultaneously removing CO2 and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. The RCA technology uses two solid amine sorbent beds in an alternating fashion to adsorb CO2 and water (uptake mode) and desorb CO2 and water (regeneration mode) at the same time. The two beds operate in an efficient manner so that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. The RCA 2.0 and 3.0 test articles were designed with a novel valve assembly which allows for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The RCA technology also is low power, small, and has performed extremely well in all development testing thus far. A final design was selected for the RCA 3.0, fabricated, assembled, and performance tested in 2014 with delivery to NASAJSC in January 2015. This paper will provide an overview on the RCA 3.0 system design and results of pre-delivery testing with references to the development of RCA 1.0 and RCA 2.0.

  13. Plant Growth and Development: An Outline for a Unit Structured Around the Life Cycle of Rapid-Cycling Brassica Rapa.

    ERIC Educational Resources Information Center

    Becker, Wayne M.

    This outline is intended for use in a unit of 10-12 lectures on plant growth and development at the introductory undergraduate level as part of a course on organismal biology. The series of lecture outlines is structured around the life cycle of rapid-cycling Brassica rapa (RCBr). The unit begins with three introductory lectures on general plant…

  14. Bubble Proliferation in Shock Wave Lithotripsy Occurs during Inertial Collapse

    NASA Astrophysics Data System (ADS)

    Pishchalnikov, Yuri A.; McAteer, James A.; Pishchalnikova, Irina V.; Williams, James C.; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2008-06-01

    In shock wave lithotripsy (SWL), firing shock pulses at slow pulse repetition frequency (0.5 Hz) is more effective at breaking kidney stones than firing shock waves (SWs) at fast rate (2 Hz). Since at fast rate the number of cavitation bubbles increases, it appears that bubble proliferation reduces the efficiency of SWL. The goal of this work was to determine the basis for bubble proliferation when SWs are delivered at fast rate. Bubbles were studied using a high-speed camera (Imacon 200). Experiments were conducted in a test tank filled with nondegassed tap water at room temperature. Acoustic pulses were generated with an electromagnetic lithotripter (DoLi-50). In the focus of the lithotripter the pulses consisted of a ˜60 MPa positive-pressure spike followed by up to -8 MPa negative-pressure tail, all with a total duration of about 7 μs. Nonlinear propagation steepened the shock front of the pulses to become sufficiently thin (˜0.03 μm) to impose differential pressure across even microscopic bubbles. High-speed camera movies showed that the SWs forced preexisting microbubbles to collapse, jet, and break up into daughter bubbles, which then grew rapidly under the negative-pressure phase of the pulse, but later coalesced to re-form a single bubble. Subsequent bubble growth was followed by inertial collapse and, usually, rebound. Most, if not all, cavitation bubbles emitted micro-jets during their first inertial collapse and re-growth. After jetting, these rebounding bubbles could regain a spherical shape before undergoing a second inertial collapse. However, either upon this second inertial collapse, or sometimes upon the first inertial collapse, the rebounding bubble emerged from the collapse as a cloud of smaller bubbles rather than a single bubble. These daughter bubbles could continue to rebound and collapse for a few cycles, but did not coalesce. These observations show that the positive-pressure phase of SWs fragments preexisting bubbles but this initial

  15. Rapid-fire improvement with short-cycle kaizen.

    PubMed

    Heard, E

    1999-05-01

    Continuous improvement is an attractive idea, but it is typically more myth than reality. SCK is no myth. It delivers dramatic improvements in traditional measures quickly. SCK accomplishes this via kaizens: rapid, repeated, time-compressed changes for the better in bite-sized chunks of the business.

  16. Bubbling orientifolds

    NASA Astrophysics Data System (ADS)

    Mukhi, Sunil; Smedbäck, Mikael

    2005-08-01

    We investigate a class of 1/2-BPS bubbling geometries associated to orientifolds of type-IIB string theory and thereby to excited states of the SO(N)/Sp(N) Script N = 4 supersymmetric Yang-Mills theory. The geometries are in correspondence with free fermions moving in a harmonic oscillator potential on the half-line. Branes wrapped on torsion cycles of these geometries are identified in the fermi fluid description. Besides being of intrinsic interest, these solutions may also occur as local geometries in flux compactifications where orientifold planes are present to ensure global charge cancellation. We comment on the extension of this procedure to M-theory orientifolds.

  17. Tropical Cyclone Structure Change Cycles during Rapid Intensification

    NASA Astrophysics Data System (ADS)

    Nguyen, Chi Mai; Reeder, Michael J.; Davidson, Noel E.; Smith, Roger K.; Montgomery, Michael T.

    2010-05-01

    High-resolution simulations of Hurricane Katrina (2005) using TCLAPS show that the modelled vortex vacillates between symmetric and asymmetric phases during periods of rapid intensification. During the Symmetric phase the eye-wall has a high degree of symmetry, comprising relatively uniform elongated convective bands. In this phase the low-level vorticity and equivalent potential temperature fields exhibit a ring-like structure, and the largest intensification rates occur near the radius of maximum tangential wind (RMW). In contrast, the Asymmetric phase is characterised by a highly asymmetric eyewall, having a polygonal form with vortical hot towers (VHTs) located at the vertices. The low-level vorticity and equivalent potential temperature fields have monopole structures with their maxima near the center. In this phase, the largest intensification rates occur inside the RMW. These two phases are very similar to Regimes 1 and 2 respectively found by Kossin and Eastin (2001) using aircraft observations. Symmetric to Asymmetric transitions are associated with the development of VHTs along the eyewall, resulting from a combination of barotropic and convective instability. These VHTs vigorously mix the air between the eye and eyewall, increasing the vorticity near the vortex center. In conrast, Asymmetric to Symmetric transitions occur as the potential energy available to the convection is consumed and the VHTs weaken. In the process the VHTs become strained in the horizontal and move radially outward as vortex Rossby waves (VRWs). High intensification rates resume near the RMW as result of increased horizontal vorticity fluxes associated with redevelopment of convection in the reduced rapid filamentation zone outside of the weakened VHTs, and through VRW wave-mean flow interactions.

  18. Statistical equilibrium of bubble oscillations in dilute bubbly flows

    PubMed Central

    Colonius, Tim; Hagmeijer, Rob; Ando, Keita; Brennen, Christopher E.

    2008-01-01

    The problem of predicting the moments of the distribution of bubble radius in bubbly flows is considered. The particular case where bubble oscillations occur due to a rapid (impulsive or step change) change in pressure is analyzed, and it is mathematically shown that in this case, inviscid bubble oscillations reach a stationary statistical equilibrium, whereby phase cancellations among bubbles with different sizes lead to time-invariant values of the statistics. It is also shown that at statistical equilibrium, moments of the bubble radius may be computed using the period-averaged bubble radius in place of the instantaneous one. For sufficiently broad distributions of bubble equilibrium (or initial) radius, it is demonstrated that bubble statistics reach equilibrium on a time scale that is fast compared to physical damping of bubble oscillations due to viscosity, heat transfer, and liquid compressibility. The period-averaged bubble radius may then be used to predict the slow changes in the moments caused by the damping. A benefit is that period averaging gives a much smoother integrand, and accurate statistics can be obtained by tracking as few as five bubbles from the broad distribution. The period-averaged formula may therefore prove useful in reducing computational effort in models of dilute bubbly flow wherein bubbles are forced by shock waves or other rapid pressure changes, for which, at present, the strong effects caused by a distribution in bubble size can only be accurately predicted by tracking thousands of bubbles. Some challenges associated with extending the results to more general (nonimpulsive) forcing and strong two-way coupled bubbly flows are briefly discussed. PMID:19547725

  19. The dynamics of histotripsy bubbles

    NASA Astrophysics Data System (ADS)

    Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.

    2011-09-01

    Histotripsy describes treatments in which high-amplitude acoustic pulses are used to excite bubbles and erode tissue. Though tissue erosion can be directly attributed to bubble activity, the genesis and dynamics of bubbles remain unclear. Histotripsy lesions that show no signs of thermal coagulative damage have been generated with two different acoustic protocols: relatively long acoustic pulses that produce local boiling within milliseconds and relatively short pulses that are higher in amplitude but likely do not produce boiling. While these two approaches are often distinguished as `boiling' versus `cavitation', such labels can obscure similarities. In both cases, a bubble undergoes large changes in radius and vapor is transported into and out of the bubble as it oscillates. Moreover, observations from both approaches suggest that bubbles grow to a size at which they cease to collapse violently. In order to better understand the dynamics of histotripsy bubbles, a single-bubble model has been developed that couples acoustically excited bubble motions to the thermodynamic state of the surrounding liquid. Using this model for bubbles exposed to histotripsy sound fields, simulations suggest that two mechanisms can act separately or in concert to lead to the typically observed bubble growth. First, nonlinear acoustic propagation leads to the evolution of shocks and an asymmetry in the positive and negative pressures that drive bubble motion. This asymmetry can have a rectifying effect on bubble oscillations whereby the bubble grows on average during each acoustic cycle. Second, vapor transport to/from the bubble tends to produce larger bubbles, especially at elevated temperatures. Vapor transport by itself can lead to rectified bubble growth when the ambient temperature exceeds 100 °C (`boiling') or local heating in the vicinity of the bubble leads to a superheated boundary layer.

  20. Rapid cycling of reactive nitrogen in the marine boundary layer.

    PubMed

    Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S; Apel, Eric C; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N; Ortega, John; Knote, Christoph

    2016-04-28

    Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A 'renoxification' process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth's surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.

  1. Rapid cycling of reactive nitrogen in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L.; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S.; Apel, Eric C.; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N.; Ortega, John; Knote, Christoph

    2016-04-01

    Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A ‘renoxification’ process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth’s surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.

  2. Rapid thermal cycling of metal-supported solid oxide fuel cellmembranes

    SciTech Connect

    Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

    2004-01-02

    Solid oxide fuel cell (SOFC) membranes were developed in which zirconia-based electrolyte thin films were supported by a composite metal/ceramic electrode, and were subjected to rapid thermal cycling between 200 and 800 C. The effects of this cycling on membrane performance were evaluated. The membranes, not yet optimized for performance, showed a peak power density of 350mW/cm2at 900 C in laboratory-sized SOFCs that was not affected by the thermal cycling. This resistance to cycling degradation is attributed to the close matching of thermal expansion coefficient of the cermet support electrode with that of the zirconia electrolyte.

  3. Vapor Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  4. Antidepressants worsen rapid-cycling course in bipolar depression: A STEP-BD randomized clinical trial

    PubMed Central

    El-Mallakh, Rif S.; Vöhringer, Paul A.; Ostacher, Michael M.; Baldassano, Claudia F.; Holtzman, Niki S.; Whitham, Elizabeth A.; Thommi, Sairah B.; Goodwin, Frederick K.; Ghaemi, S. Nassir

    2015-01-01

    Background The use of antidepressants in rapid-cycling bipolar disorder has been controversial. We report the first randomized clinical trial with modern antidepressants on this topic. Methods As part of the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) study, we analyzed, as an a priori secondary outcome, rapid cycling as a predictor of response in 68 patients randomized to continue versus discontinue antidepressant treatment, after initial response for an acute major depressive episode. Outcomes assessed were percent time well and total number of episodes. All patients received standard mood stabilizers. Results In those continued on antidepressants (AD), rapid cycling (RC) subjects experienced 268% (3.14/1.17) more total mood episodes/year, and 293% (1.29/0.44) more depressive episodes/year, compared with non-rapid cycling (NRC) subjects (mean difference in depressive episodes per year RC vs NRC was 0.85 ± 0.37 (SE), df=28, p =0.03). In the AD continuation group, RC patients also had 28.8% less time in remission than NRC patients (95% confidence intervals [9.9%, 46.5%], p = 0.004). No such differences between RC and NRC subjects were seen in the AD discontinuation group (Table 1). Analyses within the rapid-cycling subgroup alone were consistent with the above comparisons between RC and NRC subjects, stratified by maintenance antidepressant treatment, though limited by sample size. Conclusions In an a priori analysis, despite preselection for good antidepressant response and concurrent mood stabilizer treatment, antidepressant continuation in rapid-cycling was associated with worsened maintenance outcomes, especially for depressive morbidity, versus antidepressant discontinuation. PMID:26142612

  5. Elevated Choline-Containing Compound Levels in Rapid Cycling Bipolar Disorder.

    PubMed

    Cao, Bo; Stanley, Jeffrey A; Passos, Ives Cavalcante; Mwangi, Benson; Selvaraj, Sudhakar; Zunta-Soares, Giovana B; Soares, Jair C

    2017-03-29

    Previous studies have found increased levels of choline-containing compounds (ie, glycerophosphocholine plus phosphocholine (GPC+PC)) in bipolar disorder using in vivo proton magnetic resonance spectroscopy ((1)H MRS), especially in bipolar I disorder (BD-I). Increased levels of GPC+PC suggest alterations in the membrane phospholipids metabolism in bipolar disorder. Rapid cycling (RC) bipolar disorder is considered as a severe course of bipolar disorder, but it is unclear whether rapid cycling bipolar disorder is linked to highly altered membrane phospholipid metabolism. The purpose of this study was to investigate whether the regional extent of elevated GPC+PC were greater in BD-I patients with rapid cycling compared to BD-I patients without rapid cycling and healthy controls. Using a multi-voxel (1)H MRS approach at 3 Tesla with high spatial resolution and absolute quantification, GPC+PC levels from the anterior cingulate cortex (ACC), caudate and putamen of 16 RC BD-I, 34 non-RC BD-I and 44 healthy controls were assessed. We found significantly elevated GPC+PC levels in ACC, putamen and caudate of RC BD-I patients compared to healthy controls (P<0.005) and in ACC compared to non-RC BD-I patients (P<0.05). These results suggest greater alteration of membrane phospholipid metabolisms in rapid cycling BD-I compared to non-rapid-cycling BD-I.Neuropsychopharmacology advance online publication, 29 March 2017; doi:10.1038/npp.2017.39.

  6. Fluid Dynamics of Bubbly Liquids

    NASA Technical Reports Server (NTRS)

    Tsang, Y. H.; Koch, D. L.; Zenit, R.; Sangani, A.; Kushch, V. I.; Spelt, P. D. M.; Hoffman, M.; Nahra, H.; Fritz, C.; Dolesh, R.

    2002-01-01

    Experiments have been performed to study the average flow properties of inertially dominated bubbly liquids which may be described by a novel analysis. Bubbles with high Reynolds number and low Weber number may produce a fluid velocity disturbance that can be approximated by a potential flow. We studied the behavior of suspensions of bubbles of about 1.5 mm diameter in vertical and inclined channels. The suspension was produced using a bank of 900 glass capillaries with inner diameter of about 100 microns in a quasi-steady fashion. In addition, salt was added to the suspension to prevent bubble-bubble coalescence. As a result, a nearly monodisperse suspension of bubble was produced. By increasing the inclination angle, we were able to explore an increasing amount of shear to buoyancy motion. A pipe flow experiment with the liquid being recirculated is under construction. This will provide an even larger range of shear to buoyancy motion. We are planning a microgravity experiment in which a bubble suspension is subjected to shearing in a couette cell in the absence of a buoyancy-driven relative motion of the two phases. By employing a single-wire, hot film anemometer, we were able to obtain the liquid velocity fluctuations. The shear stress at the wall was measured using a hot film probe flush mounted on the wall. The gas volume fraction, bubble velocity, and bubble velocity fluctuations were measured using a homemade, dual impedance probe. In addition, we also employed a high-speed camera to obtain the bubble size distribution and bubble shape in a dilute suspension. A rapid decrease in bubble velocity for a dilute bubble suspension is attributed to the effects of bubble-wall collisions. The more gradual decrease of bubble velocity as gas volume fraction increases, due to subsequent hindering of bubble motion, is in qualitative agreement with the predictions of Spelt and Sangani for the effects of potential-flow bubble-bubble interactions on the mean velocity. The

  7. Demonstrated Ways to Use Rapid Cycling "Brassica Rapa" in Ecology Instruction and Research

    ERIC Educational Resources Information Center

    Kelly, Martin G.

    2004-01-01

    The National Science Foundation has a long supported the use of "Wisconsin Fast Plants" (rapid cycling "B. rapa") in the teaching of Biology (K-12). I believe that the opportunity is at hand for biologists to significantly extend past efforts made by our colleagues at the K-12 level to higher education. Biology faculty can realize the many…

  8. Methods for separation/purification utilizing rapidly cycled thermal swing sorption

    DOEpatents

    Tonkovich, Anna Lee Y.; Monzyk, Bruce F.; Wang, Yong; VanderWiel, David P.; Perry, Steven T.; Fitzgerald, Sean P.; Simmons, Wayne W.; McDaniel, Jeffrey S.; Weller, Jr., Albert E.

    2004-11-09

    The present invention provides apparatus and methods for separating fluid components. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of fluid components separated in short times using relatively compact hardware.

  9. Rapid subtropical North Atlantic salinity oscillations across Dansgaard-Oeschger cycles.

    PubMed

    Schmidt, Matthew W; Vautravers, Maryline J; Spero, Howard J

    2006-10-05

    Geochemical and sedimentological evidence suggest that the rapid climate warming oscillations of the last ice age, the Dansgaard-Oeschger cycles, were coupled to fluctuations in North Atlantic meridional overturning circulation through its regulation of poleward heat flux. The balance between cold meltwater from the north and warm, salty subtropical gyre waters from the south influenced the strength and location of North Atlantic overturning circulation during this period of highly variable climate. Here we investigate how rapid reorganizations of the ocean-atmosphere system across these cycles are linked to salinity changes in the subtropical North Atlantic gyre. We combine Mg/Ca palaeothermometry and oxygen isotope ratio measurements on planktonic foraminifera across four Dansgaard-Oeschger cycles (spanning 45.9-59.2 kyr ago) to generate a seawater salinity proxy record from a subtropical gyre deep-sea sediment core. We show that North Atlantic gyre surface salinities oscillated rapidly between saltier stadial conditions and fresher interstadials, covarying with inferred shifts in the Tropical Atlantic hydrologic cycle and North Atlantic overturning circulation. These salinity oscillations suggest a reduction in precipitation into the North Atlantic and/or reduced export of deep salty thermohaline waters during stadials. We hypothesize that increased stadial salinities preconditioned the North Atlantic Ocean for a rapid return to deep overturning circulation and high-latitude warming by contributing to increased North Atlantic surface-water density on interstadial transitions.

  10. Computer, Video, and Rapid-Cycling Plant Projects in an Undergraduate Plant Breeding Course.

    ERIC Educational Resources Information Center

    Michaels, T. E.

    1993-01-01

    Studies the perceived effectiveness of four student projects involving videotape production, computer conferencing, microcomputer simulation, and rapid-cycling Brassica breeding for undergraduate plant breeding students in two course offerings in consecutive years. Linking of the computer conferencing and video projects improved the rating of the…

  11. Bubble and bubble cloud dynamics

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoichiro

    2000-07-01

    Cavitation bubbles are formed from small air bubbles, so-called nuclei, with the surrounding pressure reduction caused by the flow, and then, the bubbles shrink and collapse with the surrounding pressure rise. Such volumetric changes of bubbles are calculated in detail and it is found that they are significantly influenced by the internal phenomena, such as thermal diffusion, mist formation due to a homogeneous condensation, mass diffusion between vapor and noncondensable gas, heat and mass transfer through the bubble wall. The structure in cavitating flow interacts with the cavitation bubbles, and those bubbles form a cloud cavitation. It is well known that cloud cavitation is one of the most destructive forms. The behavior of bubble clouds is simulated numerically. An inward propagating shock wave is formed during the collapse of the bubble cloud, and the shock wave and its precursor are focused at the cloud center area. These phenomena associate high frequency pressure oscillations and violent bubble collapses. Those bubble collapses emit high pressure peaks, which are several hundreds times larger than that of a single bubble collapse.

  12. Degradation of Teflon(trademark) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline; Powers, Charles; Viens, Michael; Ayres-Treusdell, Mary; Munoz, Bruno

    1999-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon(trademark) FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(trademark) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(trademark) FEP.

  13. Degradation of Teflon(tm) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Powers, Charles E.; Viens, Michael J.; Ayres-Treusdell, Mary T.; Munoz, Bruno F.

    1998-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon' FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(registered trademark) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(registered trademark) FEP.

  14. Degradation of Teflon(tm) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Powers, Charles E.; Viens, Michael J.; Ayres-Treusdell, Mary T.; Munoz, Bruno

    1998-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon' FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon FEP.

  15. SUN-LIKE MAGNETIC CYCLES IN THE RAPIDLY ROTATING YOUNG SOLAR ANALOG HD 30495

    SciTech Connect

    Egeland, Ricky; Metcalfe, Travis S.; Hall, Jeffrey C.; Henry, Gregory W.

    2015-10-10

    A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial (∼2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it has an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, a ∼1 Gyr old G1.5 V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at ∼1.7 years and a long cycle of ∼12 years. We measure three individual long-period cycles and find durations ranging from 9.6 to 15.5 years. We find the short-term variability to be intermittent, but present throughout the majority of the time series, though its occurrence and amplitude are uncorrelated with the longer cycle. These essentially solar-like variations occur in a Sun-like star with more rapid rotation, though surface differential rotation measurements leave open the possibility of a solar equivalence.

  16. Sun-like Magnetic Cycles in the Rapidly-rotating Young Solar Analog HD 30495

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Metcalfe, Travis S.; Hall, Jeffrey C.; Henry, Gregory W.

    2015-10-01

    A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial (∼2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it has an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, a ∼1 Gyr old G1.5 V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at ∼1.7 years and a long cycle of ∼12 years. We measure three individual long-period cycles and find durations ranging from 9.6 to 15.5 years. We find the short-term variability to be intermittent, but present throughout the majority of the time series, though its occurrence and amplitude are uncorrelated with the longer cycle. These essentially solar-like variations occur in a Sun-like star with more rapid rotation, though surface differential rotation measurements leave open the possibility of a solar equivalence.

  17. Self-assembly modified-mushroom nanocomposite for rapid removal of hexavalent chromium from aqueous solution with bubbling fluidized bed.

    PubMed

    Xu, Fei; Liu, Xu; Chen, Yijiao; Zhang, Ke; Xu, Heng

    2016-05-18

    A self-assembled modified Pleurotus Cornucopiae material (SMPM) combined with improved Intermittent Bubbling Fluidized Bed (IBFB) was investigated to remove the hexavalent chromium ions in aqueous solution. After the modification, the powder-like raw material gradually self-assembled together to SMPM, which had crinkly porous structure, improved the Cr-accommodation ability in a sound manner. Optimized by Taguchi method, Cr(VI) removal efficiency was up to 75.91% and 48.01% for 100 mg/L and 500 mg/L initial concentration of Cr(VI), respectively. Results indicated that the metal removal was dependent on dosage of adsorbent, particle diameter and treatment time. The experimental data obtained from the biosorption process was successfully correlated with Freundlich isotherm model. Thermodynamic study indicated the endothermic nature of the process. The results confirmed that self-assembly modified Pleurotus Cornucopiae material could be applied for the removal of heavy metal from wastewater in continuous fluidized bed process.

  18. Self-assembly modified-mushroom nanocomposite for rapid removal of hexavalent chromium from aqueous solution with bubbling fluidized bed

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Liu, Xu; Chen, Yijiao; Zhang, Ke; Xu, Heng

    2016-05-01

    A self-assembled modified Pleurotus Cornucopiae material (SMPM) combined with improved Intermittent Bubbling Fluidized Bed (IBFB) was investigated to remove the hexavalent chromium ions in aqueous solution. After the modification, the powder-like raw material gradually self-assembled together to SMPM, which had crinkly porous structure, improved the Cr-accommodation ability in a sound manner. Optimized by Taguchi method, Cr(VI) removal efficiency was up to 75.91% and 48.01% for 100 mg/L and 500 mg/L initial concentration of Cr(VI), respectively. Results indicated that the metal removal was dependent on dosage of adsorbent, particle diameter and treatment time. The experimental data obtained from the biosorption process was successfully correlated with Freundlich isotherm model. Thermodynamic study indicated the endothermic nature of the process. The results confirmed that self-assembly modified Pleurotus Cornucopiae material could be applied for the removal of heavy metal from wastewater in continuous fluidized bed process.

  19. Self-assembly modified-mushroom nanocomposite for rapid removal of hexavalent chromium from aqueous solution with bubbling fluidized bed

    PubMed Central

    Xu, Fei; Liu, Xu; Chen, Yijiao; Zhang, Ke; Xu, Heng

    2016-01-01

    A self-assembled modified Pleurotus Cornucopiae material (SMPM) combined with improved Intermittent Bubbling Fluidized Bed (IBFB) was investigated to remove the hexavalent chromium ions in aqueous solution. After the modification, the powder-like raw material gradually self-assembled together to SMPM, which had crinkly porous structure, improved the Cr-accommodation ability in a sound manner. Optimized by Taguchi method, Cr(VI) removal efficiency was up to 75.91% and 48.01% for 100 mg/L and 500 mg/L initial concentration of Cr(VI), respectively. Results indicated that the metal removal was dependent on dosage of adsorbent, particle diameter and treatment time. The experimental data obtained from the biosorption process was successfully correlated with Freundlich isotherm model. Thermodynamic study indicated the endothermic nature of the process. The results confirmed that self-assembly modified Pleurotus Cornucopiae material could be applied for the removal of heavy metal from wastewater in continuous fluidized bed process. PMID:27188258

  20. Sonoluminescence, sonochemistry and bubble dynamics of single bubble cavitation

    NASA Astrophysics Data System (ADS)

    Hatanaka, Shin-ichi

    2012-09-01

    The amount of hydroxyl radicals produced from a single cavitation bubble was quantified by terephthalate dosimetry at various frequencies and pressure amplitudes, while the dynamics of the single bubble was observed by stroboscopic and light-scattering methods. Also, sonoluminescence (SL), sonochemiluminescence (SCL) of luminol, and sodium atom emission (Na*) in the cavitation field were observed. The amount of hydroxyl radicals per cycle as well as the intensity of SL was proportional to pressure amplitude at every frequency performed, and it decreased with increasing frequency. When the single bubble was dancing with a decrease in pressure amplitude, however, the amount of hydroxyl radicals was greater than that for the stable bubble at the higher pressure amplitude and did not significantly decrease with frequency. Furthermore, SCL and Na* were detected only under unstable bubble conditions. These results imply that the instability of bubbles significantly enhances sonochemical efficiency for non-volatile substances in liquid phase.

  1. Neutron detection via bubble chambers.

    PubMed

    Jordan, D V; Ely, J H; Peurrung, A J; Bond, L J; Collar, J I; Flake, M; Knopf, M A; Pitts, W K; Shaver, M; Sonnenschein, A; Smart, J E; Todd, L C

    2005-01-01

    Research investigating the application of pressure-cycled bubble chambers to fast neutron detection is described. Experiments with a Halon-filled chamber showed clear sensitivity to an AmBe neutron source and insensitivity to a (137)Cs gamma source. Bubble formation was documented using high-speed photography, and a ceramic piezo-electric transducer element registered the acoustic signature of bubble formation. In a second set of experiments, the bubble nucleation response of a Freon-134a chamber to an AmBe neutron source was documented with high-speed photography.

  2. Rapid PCR protocols for forensic DNA typing on six thermal cycling platforms.

    PubMed

    Butts, Erica L R; Vallone, Peter M

    2014-11-01

    Rapid PCR protocols for the amplification of typing STR multiplexes were evaluated on six different thermal cyclers. Through the use of a faster DNA polymerase coupled with the use of rapid thermal cyclers the amplification cycling times were reduced down to as little as 14 min using PCR primers from the commercially available multiplex STR typing kit Identifiler. Previously described two-step and three-step thermal cycling protocols were evaluated for the six thermal cyclers on 95 unique single-source DNA extracts. CE characterization of the PCR products indicates good peak balance between loci (median values greater than 0.84), and N minus four stutter ratios on averages were 30 to 40% higher than for standard Identifiler PCR conditions. Nonspecific amplification artifacts were observed, but were not observed to migrate within the allele calling bins. With the exception of one locus (D18S51) in a single sample, genotyping results were concordant with manufacturer's recommended amplification conditions utilizing standard thermal cycling procedures. Assay conditions were robust enough to routinely amplify 250 to 500 pg of template DNA. This work describes the protocols for the rapid PCR amplification of STR multiplexes on various PCR thermal cyclers with the future intent to support validation for typing single-source samples in a database laboratory.

  3. Design Challenges of a Rapid Cycling Synchrotron for Carbon/Proton Therapy

    NASA Astrophysics Data System (ADS)

    Cook, Nathan

    2012-03-01

    The growing interest in radiation therapy with protons and light ions has driven demand for new methods of ion acceleration and the delivery of ion beams. One exciting new platform for ion beam acceleration and delivery is the rapid cycling synchrotron. Operating at 15Hz, rapid cycling achieves faster treatment times by making beam extraction possible at any energy during the cycle. Moreover, risk to the patient is reduced by requiring fewer particles in the beam line at a given time, thus eliminating the need for passive filtering and reducing the consequences of a malfunction. Lastly, the ability to switch between carbon ion and proton beam therapy provides the machine with an unmatched flexibility. However, these features do stipulate challenges in accelerator design. Maintaining a compact lattice requires careful tuning of lattice functions, tight focusing combined function magnets, and fast injection and extraction systems. Providing the necessary acceleration over a short cycle time also necessitates a five-fold frequency swing for carbon ions, further burdening the design requirements of ferrite-driven radiofrequency cavities. We will consider these challenges as well as some solutions selected for our current design.

  4. Bubble dynamics in a compressible liquid in contact with a rigid boundary.

    PubMed

    Wang, Qianxi; Liu, Wenke; Zhang, A M; Sui, Yi

    2015-10-06

    A bubble initiated near a rigid boundary may be almost in contact with the boundary because of its expansion and migration to the boundary, where a thin layer of water forms between the bubble and the boundary thereafter. This phenomenon is modelled using the weakly compressible theory coupled with the boundary integral method. The wall effects are modelled using the imaging method. The numerical instabilities caused by the near contact of the bubble surface with the boundary are handled by removing a thin layer of water between them and joining the bubble surface with its image to the boundary. Our computations correlate well with experiments for both the first and second cycles of oscillation. The time history of the energy of a bubble system follows a step function, reducing rapidly and significantly because of emission of shock waves at inception of a bubble and at the end of collapse but remaining approximately constant for the rest of the time. The bubble starts being in near contact with the boundary during the first cycle of oscillation when the dimensionless stand-off distance γ = s/R m < 1, where s is the distance of the initial bubble centre from the boundary and R m is the maximum bubble radius. This leads to (i) the direct impact of a high-speed liquid jet on the boundary once it penetrates through the bubble, (ii) the direct contact of the bubble at high temperature and high pressure with the boundary, and (iii) the direct impingement of shock waves on the boundary once emitted. These phenomena have clear potential to damage the boundary, which are believed to be part of the mechanisms of cavitation damage.

  5. Bubble dynamics in a compressible liquid in contact with a rigid boundary

    PubMed Central

    Wang, Qianxi; Liu, Wenke; Zhang, A. M.; Sui, Yi

    2015-01-01

    A bubble initiated near a rigid boundary may be almost in contact with the boundary because of its expansion and migration to the boundary, where a thin layer of water forms between the bubble and the boundary thereafter. This phenomenon is modelled using the weakly compressible theory coupled with the boundary integral method. The wall effects are modelled using the imaging method. The numerical instabilities caused by the near contact of the bubble surface with the boundary are handled by removing a thin layer of water between them and joining the bubble surface with its image to the boundary. Our computations correlate well with experiments for both the first and second cycles of oscillation. The time history of the energy of a bubble system follows a step function, reducing rapidly and significantly because of emission of shock waves at inception of a bubble and at the end of collapse but remaining approximately constant for the rest of the time. The bubble starts being in near contact with the boundary during the first cycle of oscillation when the dimensionless stand-off distance γ = s/Rm < 1, where s is the distance of the initial bubble centre from the boundary and Rm is the maximum bubble radius. This leads to (i) the direct impact of a high-speed liquid jet on the boundary once it penetrates through the bubble, (ii) the direct contact of the bubble at high temperature and high pressure with the boundary, and (iii) the direct impingement of shock waves on the boundary once emitted. These phenomena have clear potential to damage the boundary, which are believed to be part of the mechanisms of cavitation damage. PMID:26442148

  6. Sinking Bubbles

    NASA Astrophysics Data System (ADS)

    Koch, Jeremy; Ewoldt, Randy

    2016-11-01

    Intuition tells us that bubbles will rise and steel objects will sink in liquids, though here we describe the opposite. With experimental demonstration and theoretical rationale, we describe how the motion of containers of liquid with immersed solid objects and air bubbles can cause curious behaviors: sinking bubbles and rising high-density particles. Bubbles and solid spheres of diameter on the order of a few millimeters are introduced into fluids with different rheological constitutive behaviors. Imposed motion of the rigid container allows for control of the trajectories of the immersed particles - without the container imparting direct shearing motion on the fluid. Results demonstrate the necessary conditions to prevent or produce net motion of the bubbles and heavy particles, both with and against gravitational expectations.

  7. Bubble, Bubble, Toil and Trouble.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2001

    2001-01-01

    Bubbles are a fun way to introduce the concepts of surface tension, intermolecular forces, and the use of surfactants. Presents two activities in which students add chemicals to liquid dishwashing detergent with water in order to create longer lasting bubbles. (ASK)

  8. The Rapid Transit System That Achieves Higher Performance with Lower Life-Cycle Costs

    NASA Astrophysics Data System (ADS)

    Sone, Satoru; Takagi, Ryo

    In the age of traction system made of inverter and ac traction motors, distributed traction system with pure electric brake of regenerative mode has been recognised very advantageous. This paper proposes a new system as the lowest life-cycle cost system for high performance rapid transit, a new architecture and optimum parameters of power feeding system, and a new running method of trains. In Japan, these components of this proposal, i.e. pure electric brake and various countermeasures of reducing loss of regeneration have been already popular but not as yet the new running method for better utilisation of the equipment and for lower life-cycle cost. One example of what are proposed in this paper will be made as Tsukuba Express, which is under construction as the most modern commuter railway in Greater Tokyo area.

  9. Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity

    PubMed Central

    2012-01-01

    In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT) inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC) inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space. PMID:22273506

  10. Numerical analysis and experiment to identify origin of buckling in rapid cycling synchrotron core

    NASA Astrophysics Data System (ADS)

    Morita, Y.; Kageyama, T.; Akoshima, M.; Torizuka, S.; Tsukamoto, M.; Yamashita, S.; Yoshikawa, N.

    2013-11-01

    The accelerating cavities used in the rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex (J-PARC) are loaded with magnetic alloy (MA) cores. Over lengthly periods of RCS operation, significant reductions in the impedance of the cavities resulting from the buckling of the cores were observed. A series of thermal structural simulations and compressive strength tests showed that the buckling can be attributed to the low-viscosity epoxy resin impregnation of the MA core that causes the stiffening of the originally flexible MA-ribbon-wound core. Our results showed that thermal stress can be effectively reduced upon using a core that is not epoxy-impregnated.

  11. Elevated levels of plasma brain derived neurotrophic factor in rapid cycling bipolar disorder patients.

    PubMed

    Munkholm, Klaus; Pedersen, Bente Klarlund; Kessing, Lars Vedel; Vinberg, Maj

    2014-09-01

    Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case-control designs. The aim of this study was to investigate whether BDNF and NT-3 levels differ between patients with rapid cycling bipolar disorder and healthy control subjects and whether BDNF and NT-3 levels alter with affective states in rapid cycling bipolar disorder patients. Plasma levels of BDNF and NT-3 were measured in 37 rapid cycling bipolar disorder patients and in 40 age- and gender matched healthy control subjects using enzyme-linked immunosorbent assay (ELISA). In a longitudinal design, repeated measurements of BDNF and NT-3 were evaluated in various affective states in bipolar disorder patients during a 6-12 months period and compared with repeated measurements in healthy control subjects. Careful attention was given to standardization of all procedures and adjustment for potential confounders of BDNF and NT-3. In linear mixed models, adjusting for demographical and lifestyle factors, levels of BDNF were significantly elevated in bipolar disorder patients in euthymic- (p<0.05), depressed- (p<0.005) and manic/hypomanic (p<0.005) states compared with healthy control subjects. Within bipolar disorder patients, adjusting for medication, there was no significant difference in BDNF levels between affective states, with equally elevated levels present in euthymic-, depressive- and manic/hypomanic patients. Levels of BDNF were higher in patients with longer duration of illness compared with patients with shorter duration of illness. We found no difference in NT-3 levels between bipolar disorder patients in any affective state compared with healthy control subjects and no difference in NT-3 levels between affective states in bipolar disorder patients. The results suggest that

  12. Space Suit Portable Life Support System Rapid Cycle Amine Repackaging and Sub-Scale Test Results

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Rivera, Fatonia L.

    2010-01-01

    NASA is developing technologies to meet requirements for an extravehicular activity (EVA) Portable Life Support System (PLSS) for exploration. The PLSS Ventilation Subsystem transports clean, conditioned oxygen to the pressure garment for space suit pressurization and human consumption, and recycles the ventilation gas, removing carbon dioxide, humidity, and trace contaminants. This paper provides an overview of the development efforts conducted at the NASA Johnson Space Center to redesign the Rapid Cycle Amine (RCA) canister and valve assembly into a radial flow, cylindrical package for carbon dioxide and humidity control of the PLSS ventilation loop. Future work is also discussed.

  13. The Investigation of the Effects of Gravity on Single Bubble Sonoluminescence

    NASA Technical Reports Server (NTRS)

    Dzikowicz, Ben; Thiessen, David B.; Marston, Philip

    2000-01-01

    In single bubble following it's rapid collapse each cycle of oscillation of an ultrasonic field. Since widely varying length and time scales affect the bubble dynamics and optical emission processes, it is difficult to anticipate the importance of the effects of gravity present for observations on earth. Our bubble is driven in an acoustically resonating cavity at it's first harmonic mode. The acoustical radiation pressure (Bjerknes force) will then keep it suspended in the center near the pressure antinode. When driven in a region where the diffusive processes balance the bubble it acts in a nonlinear but regular way, emitting a short (approx. 200ps) burst of light each acoustic cycle. Balancing the Bjerknes force with buoyancy, as in, we can see that the bubble should be displaced from the velocity node approximately 20m at normal gravity. Therefore, water flows past the bubble at the time of collapse. Gravitation also changes the ambient pressure at the bubble's location, as Delta.P = rho.g.h this gives a change of approximately -0.5% in our experiment when going from 1.8g to 0g. Studies of ambient pressure changes were also done in order to assess these effects. Inside a pressure sealed chamber a spherical glass cell is filled with distilled water which has been degassed to 120mmHg. A bubble is then trapped in the center and driven by a piezoelectric transducer at 32.2kHz attached to the side of the cell. An optical system is then set up to take strobbed video images along and light emission data simultaneously. Temperature, pressure, drive voltage, and listener voltage are also monitored. PMT output in Volts The radii of the bubbles for both experiment s are fit using the Rayleigh-Plesset equation and the acoustic drive amplitude and the ambient bubble radius are found. There is little change in the acoustic drive amplitude as we expect, since we are not varying the drive voltage. However. the ambient bubble radius goes up considerably. These changes

  14. Bubble diagnostics

    DOEpatents

    Visuri, Steven R.; Mammini, Beth M.; Da Silva, Luiz B.; Celliers, Peter M.

    2003-01-01

    The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.

  15. Hoarding Symptoms Respond to Treatment for Rapid Cycling Bipolar II Disorder.

    PubMed

    Laurito, Luana D; Fontenelle, Leonardo F; Kahn, David A

    2016-01-01

    Although some studies have reported a relationship between hoarding and bipolar disorder, we are unaware of any previous description of how they may interact with each other and how they should be managed appropriately. A 48-year-old male depressed patient with hoarding symptoms and obsessive-compulsive disorder (OCD) was diagnosed with bipolar II disorder after 2 hypomanic episodes. The patient was treated unsuccessfully with different high-dose serotonin reuptake inhibitors and atypical antipsychotics, maintaining a pattern of 6 to 8 discrete, but severe, depressive episodes each year, always in association with a drastic worsening of his OCD and hoarding symptoms. T.he patient did not improve until the dose of the serotonin reuptake inhibitor was decreased and a combination of lamotrigine and methylphenidate was initiated. On this treatment regimen, the patient did not show clinically significant levels of depression or hoarding or other OCD symptoms. This case suggests that, in some patients, (1) hoarding-related cognitions and behaviors may be a part of bipolar depression, (2) the episodic nature of rapid cycling bipolar II disorder may protect against the development of severe clutter, and (3) treatment focusing on bipolar depression (eg, lamotrigine plus methylphenidate) may result in an improvement of hoarding symptoms when these are present in patients with rapid cycling bipolar II disorder.

  16. Rapid cycling as a feature of bipolar disorder and comorbid migraine

    PubMed Central

    Gordon-Smith, K.; Forty, L.; Chan, C.; Knott, S.; Jones, I.; Craddock, N.; Jones, L.A.

    2015-01-01

    Background Previous research has suggested the clinical profile of individuals with bipolar disorder (BD) differs according to the presence or absence of comorbid migraine. We aimed to determine the clinical characteristics that differentiate individuals with BD with and without comorbid migraine in a large, representative, clinically well-characterised UK sample. Methods The lifetime clinical characteristics of 1488 individuals with BD (BPI n=1120, BPII n=368) with and without comorbid migraine were compared (n=375 vs. n=1113 respectively). Results Individuals with BD and comorbid migraine had a distinctive set of lifetime clinical characteristics. A multivariate model showed that consistent with previous studies those with comorbid migraine were significantly more likely to be female (OR=2.099, p=0.005) and have comorbid panic attacks (OR=1.842, p=0.004). A novel finding was that even after controlling for other differences, the individuals with BD and comorbid migraine were more likely to have a rapid cycling illness course (OR=1.888, p=0.002). Limitations Presence of migraine was assessed using self report measures. Cross-sectional study design limits investigations of bidirectional associations between migraine and bipolar disorder. Conclusions Comorbid migraine in BD may represent a more homogenous subtype of BD with an unstable rapid cycling course. Identifying individuals with BD and comorbid migraine may be of use in a clinical setting and this subgroup could be the focus of future aetiological studies. PMID:25661398

  17. Daytime spikes in dopaminergic activity drive rapid mood-cycling in mice

    PubMed Central

    Sidor, Michelle M.; Spencer, Sade M.; Dzirasa, Kafui; Parekh, Puja K.; Tye, Kay M.; Warden, Melissa R.; Arey, Rachel N.; Enwright, John F; Jacobsen, Jacob PR; Kumar, Sunil; Remillard, Erin M; Caron, Marc G.; Deisseroth, Karl; McClung, Colleen A

    2014-01-01

    Disruptions in circadian rhythms and dopaminergic activity are involved in the pathophysiology of bipolar disorder, though their interaction remains unclear. Moreover, a lack of animal models that display spontaneous cycling between mood states has hindered our mechanistic understanding of mood switching. Here we find that mice with a mutation in the circadian Clock gene (ClockΔ19) exhibit rapid mood-cycling, with a profound manic-like phenotype emerging during the day following a period of euthymia at night. Mood cycling coincides with abnormal daytime spikes in ventral tegmental area (VTA) dopaminergic activity, tyrosine hydroxylase (TH) levels, and dopamine synthesis. To determine the significance of daytime increases in VTA dopamine activity to manic behaviors, we developed a novel optogenetic stimulation paradigm that produces a sustained increase in dopamine neuronal activity and find that this induces a manic-like behavioral state. Time-dependent dampening of TH activity during the day reverses manic-related behaviours in ClockΔ19 mice. Finally, we show that CLOCK acts as a negative regulator of TH transcription, revealing a novel molecular mechanism underlying cyclic changes in mood-related behaviour. Taken together, these studies have identified a mechanistic connection between circadian gene disruption and the precipitation of manic episodes in bipolar disorder. PMID:25560763

  18. Influence of process parameters on the weld lines formation in rapid heat cycle molding

    NASA Astrophysics Data System (ADS)

    Fiorotto, Marco; Lucchetta, Giovanni

    2011-05-01

    The insufficient entanglement of the molecular chains at the v-notch of a weld line impairs the mechanical strength and the surface quality of a plastic product. The rapid heat cycle molding technology (RHCM) has been recently used to enhance surface appearance of the parts, by thermally cycling the mold surface temperature. The mold temperature is the key of RHCM technology because it significantly affects productivity, energy efficiency and the quality of the final polymer part. In this work the influence of mold temperature on the weld lines depth and roughness were studied. Three different materials were tested. To investigate the influence of process parameters, a special mold insert was designed and manufactured. Weld lines geometry and roughness were quantitatively characterized by means of a profilometer. Experimental results show that is possible to increase the temperature to 10° C lower than the glass transition to obtain a high-gloss parts without weld lines with a significant reduction of cycle time and energy consumption.

  19. Rapid nutrient cycling in leaf litter from invasive plants in Hawai'i.

    PubMed

    Allison, Steven D; Vitousek, Peter M

    2004-12-01

    Physiological traits that contribute to the establishment and spread of invasive plant species could also have impacts on ecosystem processes. The traits prevalent in many invasive plants, such as high specific leaf areas, rapid growth rates, and elevated leaf nutrient concentrations, improve litter quality and should increase rates of decomposition and nutrient cycling. To test for these ecosystem impacts, we measured initial leaf litter properties, decomposition rates, and nutrient dynamics in 11 understory plants from the Hawaiian islands in control and nitrogen + phosphorus fertilized plots. These included five common native species, four of which were ferns, and six aggressive invasive species, including five angiosperms and one fern. We found a 50-fold variation in leaf litter decay rates, with natives decaying at rates of 0.2-2.3 year(-1) and invaders at 1.4-9.3 year(-1). This difference was driven by very low decomposition rates in native fern litter. Fertilization significantly increased the decay rates of leaf litter from two native and two invasive species. Most invasive litter types lost nitrogen and phosphorus more rapidly and in larger quantities than comparable native litter types. All litter types except three native ferns lost nitrogen after 100 days of decomposition, and all litter types except the most recalcitrant native ferns lost >50% of initial phosphorus by the end of the experiment (204-735 days). If invasive understory plants displace native species, nutrient cycling rates could increase dramatically due to rapid decomposition and nutrient release from invasive litter. Such changes are likely to cause a positive feedback to invasion in Hawai'i because many invasive plants thrive on nutrient-rich soils.

  20. Mining Available Data from the United States Environmental Protection Agency to Support Rapid Life Cycle Inventory Modeling of Chemical Manufacturing

    EPA Science Inventory

    Demands for quick and accurate life cycle assessments create a need for methods to rapidly generate reliable life cycle inventories (LCI). Data mining is a suitable tool for this purpose, especially given the large amount of available governmental data. These data are typically a...

  1. Tuning bubbly structures in microchannels

    PubMed Central

    Vuong, Sharon M.; Anna, Shelley L.

    2012-01-01

    Foams have many useful applications that arise from the structure and size distribution of the bubbles within them. Microfluidics allows for the rapid formation of uniform bubbles, where bubble size and volume fraction are functions of the input gas pressure, liquid flow rate, and device geometry. After formation, the microchannel confines the bubbles and determines the resulting foam structure. Bubbly structures can vary from a single row (“dripping”), to multiple rows (“alternating”), to densely packed bubbles (“bamboo” and dry foams). We show that each configuration arises in a distinct region of the operating space defined by bubble volume and volume fraction. We describe the boundaries between these regions using geometric arguments and show that the boundaries are functions of the channel aspect ratio. We compare these geometric arguments with foam structures observed in experiments using flow-focusing, T-junction, and co-flow designs to generate stable nitrogen bubbles in aqueous surfactant solution and stable droplets in oil containing dissolved surfactant. The outcome of this work is a set of design parameters that can be used to achieve desired foam structures as a function of device geometry and experimental control parameters. PMID:22655008

  2. Realizing the potential of rapid-cycling Brassica as a model system for use in plant biology research

    NASA Technical Reports Server (NTRS)

    Musgrave, M. E.

    2000-01-01

    Rapid-cycling Brassica populations were initially developed as a model for probing the genetic basis of plant disease. Paul Williams and co-workers selected accessions of the six main species for short time to flower and rapid seed maturation. Over multiple generations of breeding and selection, rapid-cycling populations of each of the six species were developed. Because of their close relationship with economically important Brassica species, rapid-cycling Brassica populations, especially those of B. rapa (RCBr) and B. oleracea, have seen wide application in plant and crop physiology investigations. Adding to the popularity of these small, short-lived plants for research applications is their extensive use in K-12 education and outreach.

  3. Elevated metabolites within dorsolateral prefrontal cortex in rapid cycling bipolar disorder.

    PubMed

    Michael, Nikolaus; Erfurth, Andreas; Pfleiderer, Bettina

    2009-04-30

    Metabolites within the left dorsolateral prefrontal cortex (DLPFC) of six inpatients with bipolar II rapid cycling (RC) during various mood states (depressed, hypomanic, and euthymic), six depressed inpatients with non-RC bipolar disorder (BIPD), and six healthy controls (HC) were assessed by proton magnetic resonance spectroscopy (MRS). We hypothesized that glutamate/glutamine levels should be altered in RC compared with HC. Patients with RC in contrast to BIPD and HC exhibited elevated levels of N-acetylaspartate (NAA), choline (Cho), creatine (Cr), and glutamate/glutamine (Glx) during all mood states. The Glx levels of BIPD compared with HC did not differ significantly; the other metabolites were increased, though less than in RC patients. Our findings of elevated metabolites in patients with RC, especially Glx as a possible marker of cortical activity, indicate that increased neuronal activity may constitute an important neurobiological feature of RC.

  4. Reconsidering Tree Fruit as Candidate Crops Through the Use of Rapid Cycle Crop Breeding Technologies

    NASA Technical Reports Server (NTRS)

    Graham, Gary Thomas

    2014-01-01

    Tree fruit, although desirable from a crew nutrition and menu diversity perspective, have long been dismissed as candidate crops based on their long juvenile phase, large architecture, low short-term harvest index, and dormancy requirements. Recent developments in Rapid Cycle Crop Breeding (RCCB) have overcome these historical limitations, opening the door to a new era in candidate crop research. Researchers at the United States Department of Agriculture (USDA) have developed FT-construct (Flowering Locus T) dwarf plum lines that have a very short juvenile phase, vine-like architecture, and no obligate dormancy period. In a collaborative research effort, NASA and the USDA are evaluating the performance of these FT-lines under controlled environment conditions relevant to spaceflight.

  5. Driving bubbles out of glass

    NASA Technical Reports Server (NTRS)

    Mattox, D. M.

    1981-01-01

    Surface tension gradient in melt forces gas bubbles to surface, increasing glass strength and transparency. Conventional chemical and buoyant fining are extremely slow in viscous glasses, but tension gradient method moves 250 um bubbles as rapidly as 30 um/s. Heat required for high temperature part of melt is furnished by stationary electrical or natural-gas heater; induction and laser heating are also possible. Method has many applications in industry processes.

  6. Primordial Bubbles within Primordial Bubbles

    NASA Astrophysics Data System (ADS)

    Occhionero, Franco; Amendola, Luca; Corasaniti, Pier Stefano

    The nucleation of primordial bubbles during an inflationary phase transition has been suggested to promote the formation of structure either above or below the horizon, depending on whether the nucleation occurs more or less than 60 e-folds before the end of inflation. Here we propose a mechanism which has both features and produces subhorizon cavities up to hundreds of h-1 Mpc -- where excess power is observed -- inside superhorizon bubbles, i.e. in open universes. For this purpose we build a new inflationary two-field model with two vacuum channels in the potential surface: by modulating the energy difference between these channels, episodes of back and forth transition occur in sequence during inflation. Thus, one physical process may i) reconcile inflation with openness and ii) seed a distribution of observable voids. Bubble spectra are given in terms of phenomenological parameters which in turn are functions of microscopic physical parameters. In principle large scale structure constrains fundamental physics: for example, to account for power at scales of hundreds of h-1 Mpc the singularity in the Euclidean action -- which separates the first from the second phase transition -- must be mild enough. The smoking gun of the process might be the imprint of non-Gaussian, ring-like signals on the microwave background at l > 1000 by the subhorizon bubbles. On the other end of the spectrum, the contribution to l =1,2 from the off-centerness of the observer in the open bubble, is being evaluated.

  7. A rapid survival assay to measure drug-induced cytotoxicity and cell cycle effects.

    PubMed

    Valiathan, Chandni; McFaline, Jose L; Samson, Leona D

    2012-01-02

    We describe a rapid method to accurately measure the cytotoxicity of mammalian cells upon exposure to various drugs. Using this assay, we obtain survival data in a fraction of the time required to perform the traditional clonogenic survival assay, considered the gold standard. The dynamic range of the assay allows sensitivity measurements on a multi-log scale allowing better resolution of comparative sensitivities. Moreover, the results obtained contain additional information on cell cycle effects of the drug treatment. Cell survival is obtained from a quantitative comparison of proliferation between drug-treated and untreated cells. During the assay, cells are treated with a drug and, following a recovery period, allowed to proliferate in the presence of bromodeoxyuridine (BrdU). Cells that synthesize DNA in the presence of BrdU exhibit quenched Hoechst fluorescence, easily detected by flow cytometry; quenching is used to determine relative proliferation in treated vs. untreated cells. Finally, this assay can be used in high-throughput format to simultaneously screen multiple cell lines and drugs for accurate measurements of cell survival and cell cycle effects after drug treatment.

  8. Using the Deepwater Horizon Disaster to Investigate Natural Biogeochemical Cycling Associated with Rapid Methane Emissions (Invited)

    NASA Astrophysics Data System (ADS)

    Kessler, J. D.; Valentine, D. L.; Yvon-Lewis, S. A.; Heintz, M. B.; Hu, L.; Garcia Tigreros, F.; Du, M.; Chan, E. W.

    2010-12-01

    On April 20, a violent methane discharge severed the Deepwater Horizon rig from its well and oil and gas began spilling into the deep Gulf of Mexico at depths of ca. 1.5 km simulating a natural, rapid, and short-term methane release in deepwater. Given the estimated rates of emission of total material as well as the fraction methane by weight, one can estimate that a total of 0.1 to 0.3 Tg (10^12 g) of methane were emitted from a localized area in only 83 days. Measurements of methane oxidation and sea-air methane flux were measured in June indicating that at that time, oxidation rates were slow and sea-air fluxes were relatively insignificant. A deepwater methane plume was identified and in June 2010, the depth of the methane plume was on average from 950 - 1150 m with the maximum methane concentration measured being 183 μM. Analyses of diffusion, advective mixing, and methane oxidation were used to estimate that this plume has a lifetime of years to decades with the main controlling factor being the rate of methane oxidation. The persistent nature of this deepwater methane plume allows it to be used as a natural laboratory to investigate key hypotheses concerning the biogeochemical cycling of methane and oxygen associated with rapid, short-term methane discharges.

  9. Leverage bubble

    NASA Astrophysics Data System (ADS)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  10. Tiny Bubbles.

    ERIC Educational Resources Information Center

    Kim, Hy

    1985-01-01

    A simple oxygen-collecting device (easily constructed from glass jars and a lid) can show bubbles released by water plants during photosynthesis. Suggestions are given for: (1) testing the collected gas; (2) using various carbon dioxide sources; and (3) measuring respiration. (DH)

  11. β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle

    PubMed Central

    Nuber, Susanne; Zabel, Ulrike; Lorenz, Kristina; Nuber, Andreas; Milligan, Graeme; Tobin, Andrew B.; Lohse, Martin J.; Hoffmann, Carsten

    2016-01-01

    (β-)Arrestins are important regulators of G-protein-coupled receptors (GPCRs)1–3. They bind to active, phosphorylated GPCRs and thereby shut off ‘classical’ signalling to G proteins3,4, trigger internalization of GPCRs via interaction with the clathrin machinery5–7 and mediate signalling via ‘non-classical’ pathways1,2. In addition to two visual arrestins that bind to rod and cone photoreceptors (termed arrestin1 and arrestin4), there are only two (non-visual) β-arrestin proteins (β-arrestin1 and β-arrestin2, also termed arrestin2 and arrestin3), which regulate hundreds of different (non-visual) GPCRs. Binding of these proteins to GPCRs usually requires the active form of the receptors plus their phosphorylation by G-protein-coupled receptor kinases (GRKs)1,3,4. The binding of receptors or their carboxy terminus as well as certain truncations induce active conformations of (β-)arrestins that have recently been solved by X-ray crystallography8–10. Here we investigate both the interaction of β-arrestin with GPCRs, and the β-arrestin conformational changes in real time and in living human cells, using a series of fluorescence resonance energy transfer (FRET)-based β-arrestin2 biosensors. We observe receptor-specific patterns of conformational changes in β-arrestin2 that occur rapidly after the receptor–β-arrestin2 interaction. After agonist removal, these changes persist for longer than the direct receptor interaction. Our data indicate a rapid, receptor-type-specific, two-step binding and activation process between GPCRs and β-arrestins. They further indicate that β-arrestins remain active after dissociation from receptors, allowing them to remain at the cell surface and presumably signal independently. Thus, GPCRs trigger a rapid, receptor-specific activation/deactivation cycle of β-arrestins, which permits their active signalling. PMID:27007855

  12. Bubble Drag Reduction Requires Large Bubbles

    NASA Astrophysics Data System (ADS)

    Verschoof, Ruben A.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef

    2016-09-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  13. Supercontinuum based absorption spectrometer for cycle-resolved multiparameter measurements in a rapid compression machine.

    PubMed

    Werblinski, Thomas; Kleindienst, Stefan; Engelbrecht, Rainer; Zigan, Lars; Will, Stefan

    2016-06-10

    A broadband supercontinuum (SC) based absorption spectrometer capable of cycle-resolved multiparameter measurements at internal combustion (IC) engine conditions is presented. Three parameters, temperature, pressure and water mole fraction, were extracted from broadband near-infrared H2O absorption spectra, spanning the wavelength-range from 1340 to 1405.5 nm, which exhibits a large number of specific H2O transitions. The spectrometer is based on spatial domain detection and features a near-infrared line scan camera as a detector. Measurements were performed during a compression cycle of a rapid compression machine comprising a pressure and temperature range from 2.5 to 65 bar and 300 to 900 K, respectively. With the new spectrometer, we are for the first time, based on the authors' knowledge, able to perform measurements based on SC radiation over a complete compression and expansion stroke at measurement rates up to 50 kHz. A detailed overview is provided about the best match algorithm between theory and experiments, including parameters from two different spectral databases, namely the Barber-Tennyson database (BT2) and HITRAN2012. The results indicate that spectral broadening effects are not properly described by theory, especially at pressure levels exceeding 20 bar, which culminates in a clear underestimation of the derived pressure data by SC absorption spectroscopy. Nevertheless, temperature can be determined accurately by performing a three-parameter fit based on water mole fraction, temperature, and pressure. In contrast, making use of pressure transducer data as look-up values and varying only temperature and H2O mole fraction to find the best match leads to a clear overestimation of temperature at elevated pressures.

  14. Parasitic slow extraction of extremely weak beam from a high-intensity proton rapid cycling synchrotron

    NASA Astrophysics Data System (ADS)

    Zou, Ye; Tang, Jingyu; Yang, Zheng; Jing, Hantao

    2014-02-01

    This paper proposes a novel method to extract extremely weak beam from a high-intensity proton rapid cycling synchrotron (RCS) in the parasitic mode, while maintaining the normal fast extraction. The usual slow extraction method from a synchrotron by employing third-order resonance cannot be applied in a high-intensity RCS due to a very short flat-top at the extraction energy and the strict control on beam loss. The proposed parasitic slow extraction method moves the beam to scrape a scattering foil prior to the fast beam extraction by employing either a local orbit bump or momentum deviation or their combination, so that the halo part of the beam will be scattered. A part of the scattered particles will be extracted from the RCS and guided to the experimental area. The slow extraction process can last about a few milliseconds before the beam is extracted by the fast extraction system. The method has been applied to the RCS of China Spallation Neutron Source. With 1.6 GeV in the extraction energy, 62.5 μA in the average current and 25 Hz in the repetition rate for the RCS, the proton intensity by the slow extraction method can be up to 2×104 protons per cycle or 5×105 protons per second. The extracted beam has also a good time structure of approximately uniform in a spill which is required for many applications such as detector tests. Detailed studies including the scattering effect in the foil, the local orbit bump by the bump magnets and dispersive orbit bump by modifying the RF pattern, the multi-particle simulations by ORBIT and TURTLE codes, and some technical features for the extraction magnets are presented.

  15. An episode of rapid bedrock channel incision during the last glacial cycle, measured with 10Be

    USGS Publications Warehouse

    Reusser, L.; Bierman, P.; Pavich, M.; Larsen, J.; Finkel, R.

    2006-01-01

    We use 10Be to infer when, how fast, and why the Susquehanna River incised through bedrock along the U.S. Atlantic seaboard, one of the world's most prominent and ancient passive margins. Although the rate at which large rivers incise rock is a fundamental control on the development of landscapes, relatively few studies have directly measured how quickly such incision occurs either in tectonically active environments or along passive margins. Exposure ages of fluvially carve d, bedrock strath terraces, preserved along the lower Susquehanna River, demonstrate that even along a passive margin, large rivers are capable of incising through rock for short periods of time at rates approaching those recorded in tectonically active regions, such as the Himalayas. Over eighty samples, collected along and between three prominent levels of strath terraces within Holtwood Gorge, indicate that the Susquehanna River incised more than 10 meters into the Appalachian Piedmont during the last glacial cycle. Beginning ???36 ka, incision rates increased dramatically, and remained elevated until ???14 ka. The northern half of the Susquehanna basin was glaciated during the late Wisconsinan; however, similar rates and timing of incision occurred in the unglaciated Potomac River basin immediately to the south. The concurrence of incision periods on both rivers suggests that glaciation and associated meltwater were not the primary drivers of incision. Instead, it appears that changing climatic conditions during the late Pleistocene promoted an increase in the frequency and magnitude of flood events capable of exceeding thresholds for rock detachment and bedrock erosion, thus enabling a short-lived episode of rapid incision into rock. Although this study has constraine d the timing and rate of bedrock incision along the largest river draining the Atlantic passive margin, the dates alone cannot explain fully why, or by what processes, this incision occurred. However, cosmogenic dating offers

  16. Rapid Quench Cold-Seal Apparatus with Computer-Controlled Pressure and Temperature Cycling

    NASA Astrophysics Data System (ADS)

    Johnston, A.; Senkovich, D.

    2007-12-01

    We have constructed two computer-controlled, rapid quench, hydrothermal apparatuses that are ideal for experimentation on volcanological, geothermal, and ore deposit research problems. The devices can achieve maximum pressures of about 2 kbar and temperatures to 1100C, have the ability for experiments to be quenched very rapidly in a water-cooled environment, and are interfaced with computers which can control any regimen of pressure and/or temperature cycling that may be desired, accomplished via Lab-View software and data acquisition and motion control boards from National Instruments. The rapid quench aspects of the design were developed originally by Dr. Phil Ihinger and have subsequently been adopted by many labs around the world; a good summary description of these aspects of the equipment, and the use of filler-rods for controlling redox conditions in such equipment, are provided by Matthews et al. (2004, Am. Mineral., 88: 701-707). Our design has fixed Rene 41 pressure vessels, furnaces that are raised and lowered by computer controlled pneumatic cylinders and water cooling systems that are controlled by computer operated solenoid valves. The novel feature of our design is the pressure generation and control systems. We coupled the seal-ends of commercially available (HIP) pressure generators to shop-built linear actuators consisting of nearly frictionless ball lead screws within thick walled stainless steel housings. These in turn are driven by NEMA size 23 stepper motors coupled to 100:1 gear reduction units. The actuators require 21 revolutions to achieve their full stroke of 12.7 cm which displaces about 10 cc of fluid. Operating the motors at the relatively low resolution of 800 steps per revolution leads to about 132,000 steps per cm of travel of the pressure-generating piston, providing exceptionally high precision and excellent pressure control. Instantaneous decompression can be achieved by simply opening a valve while motor

  17. Repeated Cycles of Rapid Actin Assembly and Disassembly on Epithelial Cell PhagosomesV⃞

    PubMed Central

    Yam, Patricia T.; Theriot, Julie A.

    2004-01-01

    We have found that early in infection of the intracellular pathogen Listeria monocytogenes in Madin-Darby canine kidney epithelial cells expressing actin conjugated to green fluorescent protein, F-actin rapidly assembles (∼25 s) and disassembles (∼30 s) around the bacteria, a phenomenon we call flashing. L. monocytogenes strains unable to perform actin-based motility or unable to escape the phagosome were capable of flashing, suggesting that the actin assembly occurs on the phagosome membrane. Cycles of actin assembly and disassembly could occur repeatedly on the same phagosome. Indirect immunofluorescence showed that most bacteria were fully internalized when flashing occurred, suggesting that actin flashing does not represent phagocytosis. Escherichia coli expressing invA, a gene product from Yersinia pseudotuberculosis that mediates cellular invasion, also induced flashing. Furthermore, polystyrene beads coated with E-cadherin or transferrin also induced flashing after internalization. This suggests that flashing occurs downstream of several distinct molecular entry mechanisms and may be a general consequence of internalization of large objects by epithelial cells. PMID:15456901

  18. Respiration accumulates Calvin cycle intermediates for the rapid start of photosynthesis in Synechocystis sp. PCC 6803.

    PubMed

    Shimakawa, Ginga; Hasunuma, Tomohisa; Kondo, Akihiko; Matsuda, Mami; Makino, Amane; Miyake, Chikahiro

    2014-01-01

    We tested the hypothesis that inducing photosynthesis in cyanobacteria requires respiration. A mutant deficient in glycogen phosphorylase (∆GlgP) was prepared in Synechocystis sp. PCC 6803 to suppress respiration. The accumulated glycogen in ΔGlgP was 250-450% of that accumulated in wild type (WT). The rate of dark respiration in ΔGlgP was 25% of that in WT. In the dark, P700(+) reduction was suppressed in ΔGlgP, and the rate corresponded to that in (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone)-treated WT, supporting a lower respiration rate in ∆GlgP. Photosynthetic O2-evolution rate reached a steady-state value much slower in ∆GlgP than in WT. This retardation was solved by addition of d-glucose. Furthermore, we found that the contents of Calvin cycle intermediates in ∆GlgP were lower than those in WT under dark conditions. These observations indicated that respiration provided the carbon source for regeneration of ribulose 1,5-bisphosphate in order to drive the rapid start of photosynthesis.

  19. Rapid and Efficient Protein Digestion using Trypsin Coated Magnetic Nanoparticles under Pressure Cycles

    SciTech Connect

    Lee, Byoungsoo; Lopez-Ferrer, Daniel; Kim, Byoung Chan; Na, Hyon Bin; Park, Yong Il; Weitz, Karl K.; Warner, Marvin G.; Hyeon, Taeghwan; Lee, Sang-Won; Smith, Richard D.; Kim, Jungbae

    2011-01-01

    Trypsin-coated magnetic nanoparticles (EC-TR/NPs), prepared via a simple crosslinking of the enzyme to magnetic nanoparticles, were highly stable and could be easily captured using a magnet after the digestion was complete. EC-TR/NPs showed a negligible loss of trypsin activity after multiple uses and continuous shaking, while a control sample of covalently-attached trypsin on NPs resulted in a rapid inactivation under the same conditions due to the denaturation and autolysis of trypsin. Digestions were carried out on a single model protein, a five protein mixture, and a whole mouse brain proteome, and also compared for digestion at atmospheric pressure and 37 ºC for 12 h, and in combination with pressure cycling technology (PCT) at room temperature for 1 min. In all cases, the EC-TR/NPs performed equally as well or better than free trypsin in terms of the number of peptide/protein identifications and reproducibility across technical replicates. However, the concomitant use of EC-TR/NPs and PCT resulted in very fast (~1 min) and more reproducible digestions.

  20. AN ANTI-SYMMETRIC LATTICE FOR HIGH-INTENSITY RAPID CYCLING SYNCHROTRONS.

    SciTech Connect

    WEI, J.; WANG, S.; FANG, S.-X.; LEE, Y.Y.; MACHIDA, S.; PRIOR, C.; QIN, Q.; REES, G.; TANG, J.-Y.; TEPIKIAN, S.

    2006-06-23

    Rapid cycling synchrotrons (RCSs) are used in many high power facilities like spallation neutron sources and proton drivers to accumulate and accelerate proton beams. In such accelerators, beam collimation plays a crucial role in reducing the uncontrolled beam loss. Furthermore, injection and extraction sections often need to reside in dispersion-free regions to avoid couplings; sizeable drift space is needed to house the RF accelerating cavities; long, uninterrupted straights are desired to ease injection tuning and to raise collimation efficiency. Finally, the machine circumference needs to be small to reduce construction costs. In this paper, we present a lattice satisfying these needs. The lattice contains a drift created by a missing dipole near the peak dispersion to facilitate longitudinal collimation. The compact FODO arc allows easy orbit, tune, coupling, and chromatic correction. The doublets provide long uninterrupted straights. The four-fold lattice symmetry separates injection, extraction, and collimation to different straights. This lattice is adopted for the China Spallation Neutron Source (CSNS) synchrotron [1].

  1. Maintaining Adequate CO2 Washout for an Advanced EMU via a New Rapid Cycle Amine Technology

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce

    2012-01-01

    Over the past several years, NASA has realized tremendous progress in Extravehicular Activity (EVA) technology development. This has been evidenced by the progressive development of a new Rapid Cycle Amine (RCA) system for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support Subsystem (PLSS). The PLSS is responsible for the life support of the crew member in the spacesuit. The RCA technology is responsible for carbon dioxide (CO2) and humidity control. Another aspect of the RCA is that it is on-back vacuum-regenerable, efficient, and reliable. The RCA also simplifies the PLSS schematic by eliminating the need for a condensing heat exchanger for humidity control in the current EMU. As development progresses on the RCA, it is important that the sizing be optimized so that the demand on the PLSS battery is minimized. As well, maintaining the CO2 washout at adequate levels during an EVA is an absolute requirement of the RCA and associated ventilation system. Testing has been underway in-house at NASA Johnson Space Center and analysis has been initiated to evaluate whether the technology provides exemplary performance in ensuring that the CO2 is removed sufficiently and the ventilation flow is adequate for maintaining CO2 washout in the AEMU spacesuit helmet of the crew member during an EVA. This paper will review the recent developments of the RCA unit, testing planned in-house with a spacesuit simulator, and the associated analytical work along with insights from the medical aspect on the testing. 1

  2. Continued Development of the Rapid Cycle Amine (RCA) System for Advanced Extravehicular Activity Systems

    NASA Technical Reports Server (NTRS)

    Papale, William; Chullen, Cinda; Campbell, Colin; Conger, Bruce; McMillin, Summer; Jeng, Frank

    2014-01-01

    Development activities related to the Rapid Cycle Amine (RCA) Carbon Dioxide (CO2) and Humidity control system have progressed to the point of integrating the RCA into an advanced Primary Life Support System (PLSS 2.0) to evaluate the interaction of the RCA among other PLSS components in a ground test environment. The RCA 2.0 assembly (integrated into PLSS 2.0) consists of a valve assembly with commercial actuator motor, a sorbent canister, and a field-programmable gate array (FPGA)-based process node controller. Continued design and development activities for RCA 3.0 have been aimed at optimizing the canister size and incorporating greater fidelity in the valve actuator motor and valve position feedback design. Further, the RCA process node controller is envisioned to incorporate a higher degree of functionality to support a distributed PLSS control architecture. This paper will describe the progression of technology readiness levels of RCA 1.0, 2.0 and 3.0 along with a review of the design and manufacturing successes and challenges for 2.0 and 3.0 units. The anticipated interfaces and interactions with the PLSS 2.0/2.5/3.0 assemblies will also be discussed.

  3. Generation of Bubbly Suspensions in Low Gravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hoffmann, Monica I.; Hussey, Sam; Bell, Kimberly R.

    2000-01-01

    Generation of a uniform monodisperse bubbly suspension in low gravity is a rather difficult task because bubbles do not detach as easily as on Earth. Under microgravity, the buoyancy force is not present to detach the bubbles as they are formed from the nozzles. One way to detach the bubbles is to establish a detaching force that helps their detachment from the orifice. The drag force, established by flowing a liquid in a cross or co-flow configuration with respect to the nozzle direction, provides this additional force and helps detach the bubbles as they are being formed. This paper is concerned with studying the generation of a bubbly suspension in low gravity in support of a flight definition experiment titled "Behavior of Rapidly Sheared Bubbly Suspension." Generation of a bubbly suspension, composed of 2 and 3 mm diameter bubbles with a standard deviation <10% of the bubble diameter, was identified as one of the most important engineering/science issues associated with the flight definition experiment. This paper summarizes the low gravity experiments that were conducted to explore various ways of making the suspension. Two approaches were investigated. The first was to generate the suspension via a chemical reaction between the continuous and dispersed phases using effervescent material, whereas the second considered the direct injection of air into the continuous phase. The results showed that the reaction method did not produce the desired bubble size distribution compared to the direct injection of bubbles. However, direct injection of air into the continuous phase (aqueous salt solution) resulted in uniform bubble-diameter distribution with acceptable bubble-diameter standard deviation.

  4. Fast Plants for Finer Science--An Introduction to the Biology of Rapid-Cycling Brassica Campestris (rapa) L.

    ERIC Educational Resources Information Center

    Tomkins, Stephen P.; Williams, Paul H.

    1990-01-01

    Rapid-cycling brassicas can be used in the classroom to teach concepts such as plant growth, tropisms, floral reproduction, pollination, embryonic development, and plant genetics. Directions on how to obtain them for classroom use and how they may be grown are included. Practical physiology and genetics exercises are listed. (KR)

  5. A Method to Teach Age-Specific Demography with Field Grown Rapid Cycling "Brassica rapa" (Wisconsin Fast Plants)

    ERIC Educational Resources Information Center

    Kelly, Martin G.; Terrana, Sebastian

    2004-01-01

    In this paper, we demonstrate that rapid cycling "Brassica rapa" (Wisconsin Fast Plants) can be used in inquiry-based, student ecological fieldwork. We are the first to describe age-specific survival for field-grown Fast Plants and identify life history traits associated with individual survival. This experiment can be adapted by educators as a…

  6. Conformal cooling and rapid thermal cycling in injection molding with 3D printed tools

    NASA Astrophysics Data System (ADS)

    Xu, Xiaorong

    Solid Freeform Fabrication processes such as 3D Printing have demonstrated the potential to produce tools with complex internal geometry. This work explores the application of this capability to improved thermal management for injection molding tooling through: (i)cooling lines which are conformal to the mold surface which provide improved uniformity and stability of mold temperature and (ii)tools with low thermal inertia which, in combination with conformal fluid channels allow for rapid heating and cooling of tooling, thereby facilitating isothermal filling of the mold cavity. This work presents a systematic, modular, approach to the design of conformal cooling channels. Recognizing that the cooling is local to the surface of the tool, the tool is divided up into geometric regions and a channel system is designed for each region. Each channel system is itself modeled as composed of cooling elements, typically the region spanned by two channels. Six criteria are applied including; a transient heat transfer condition which dictates a maximum distance from mold surface to cooling channel, considerations of pressure and temperature drop along the flow channel and considerations of strength of the mold. These criteria are treated as constraints and successful designs are sought which define windows bounded by these constraints. The methodology is demonstrated in application to a complex core and cavity for injection molding. In the area of rapid thermal cycling, this work utilizes the design methods for conformal channels for the heating phases and adds analysis of the packing and cooling phases. A design is created which provides thermal isolation and accommodation of cyclic thermal stresses though an array of bendable support columns which support the molding portion of the tool where the heating/cooling channels are contained. Designed elasticity of the tool is used to aid in packing of the polymer during the cooling phase. Methodology for the design of this

  7. Nonlinear dynamics of laser-induced bubble near elastic boundaries

    NASA Astrophysics Data System (ADS)

    Liu, Xiu Mei; He, Jie; Lu, Jian; Ni, Xiao Wu

    2008-01-01

    Nonlinear dynamics of a laser-generated single cavitation bubble near an elastic boundary is investigated by a fiber-optic diagnostic technique based on optical beam deflection (OBD). The maximum bubble radii and the bubble life-time for each oscillation cycle are determined according to the characteristic signals. It is shown that with the increase of the number of oscillating cycles, the maximum radii and the life-time of the bubble are decreased sharply. Furthermore, the effect of material elasticity on nonlinear dynamics of cavitation bubble has also been investigated in some detail. The maximum bubble size and thus the bubble life time decreases with an increase in elastic modulus. In addition, increasing elastic modulus leads to a significant decrease of the collapse amplitude and the bubble energy. These results are valuable in the fields of cavitation erosion, collateral damage in laser surgery, and cavitation-mediated enhancement of pulsed laser ablation of tissue.

  8. Effects of adding injection-compression to rapid heat cycle molding on the structure of a light guide plate

    NASA Astrophysics Data System (ADS)

    Hong, Seokkwan; Min, Inki; Yoon, Kyunghwan; Kang, Jeongjin

    2014-01-01

    This study investigates the effects of adding injection-compression to rapid heat cycle molding (RHCM) (rapid heat cycle injection-compression molding (RICM)) on the physical quality and optical anisotropy of a molded light guide plate (LGP). Transcription ratio of microstructure, uniformity of part thickness and birefringence were experimentally evaluated on a 7 inch LGP of nominal thickness of 1.12 mm (including a microstructure array of 30 µm diameter and 14 µm height). The designed mold was equipped with rapid heating and compressing facilities and a microstructured nickel stamper was fabricated by UV LIGA process. In addition, to investigate the efficacy of RICM, experiments involving conventional injection molding (CIM), ICM, and RHCM were conducted in parallel with RICM using the same mold. RHCM and RICM yielded excellent transcription ratios for the microstructure, while CIM and RICM provided high thickness uniformity and low birefringence. Thus, RICM obtains high transcription ratio of microstructure, uniform thickness and low birefringence.

  9. Real-Time Patient Survey Data During Routine Clinical Activities for Rapid-Cycle Quality Improvement

    PubMed Central

    Jones, Robert E

    2015-01-01

    Background Surveying patients is increasingly important for evaluating and improving health care delivery, but practical survey strategies during routine care activities have not been available. Objective We examined the feasibility of conducting routine patient surveys in a primary care clinic using commercially available technology (Web-based survey creation, deployment on tablet computers, cloud-based management of survey data) to expedite and enhance several steps in data collection and management for rapid quality improvement cycles. Methods We used a Web-based data management tool (survey creation, deployment on tablet computers, real-time data accumulation and display of survey results) to conduct four patient surveys during routine clinic sessions over a one-month period. Each survey consisted of three questions and focused on a specific patient care domain (dental care, waiting room experience, care access/continuity, Internet connectivity). Results Of the 727 available patients during clinic survey days, 316 patients (43.4%) attempted the survey, and 293 (40.3%) completed the survey. For the four 3-question surveys, the average time per survey was overall 40.4 seconds, with a range of 5.4 to 20.3 seconds for individual questions. Yes/No questions took less time than multiple choice questions (average 9.6 seconds versus 14.0). Average response time showed no clear pattern by order of questions or by proctor strategy, but monotonically increased with number of words in the question (<20 words, 21-30 words, >30 words)—8.0, 11.8, 16.8, seconds, respectively. Conclusions This technology-enabled data management system helped capture patient opinions, accelerate turnaround of survey data, with minimal impact on a busy primary care clinic. This new model of patient survey data management is feasible and sustainable in a busy office setting, supports and engages clinicians in the quality improvement process, and harmonizes with the vision of a learning health

  10. SU-E-T-303: Spot Scanning Dose Delivery with Rapid Cycling Proton Beams From RCMS

    SciTech Connect

    Cheng, C; Liu, H; Lee, S

    2014-06-01

    Purpose: A rapid cycling proton beam has several distinct characteristics superior to a slow extraction synchrotron: The beam energy and energy spread, beam intensity and spot size can be varied spot by spot. The feasibility of using a spot scanning beam from a rapidc-ycling-medical-synchrotron (RCMS) at 10 Hz repetition frequency is investigated in this study for its application in proton therapy. Methods: The versatility of the beam is illustrated by two examples in water phantoms: (1) a cylindrical PTV irradiated by a single field and (2) a spherical PTV irradiated by two parallel opposed fields. A uniform dose distribution is to be delivered to the volumes. Geant4 Monte Carlo code is used to validate the dose distributions in each example. Results: Transverse algorithms are developed to produce uniform distributions in each transverseplane in the two examples with a cylindrical and a spherical PTV respectively. Longitudinally, different proton energies are used in successive transverse planes toproduce the SOBP required to cover the PTVs. In general, uniformity of dosedistribution within 3% is obtained for the cylinder and 3.5% for the sphere. The transversealgorithms requires only few hundred beam spots for each plane The algorithms may beapplied to larger volumes by increasing the intensity spot by spot for the same deliverytime of the same dose. The treatment time can be shorter than 1 minute for any fieldconfiguration and tumor shape. Conclusion: The unique beam characteristics of a spot scanning beam from a RCMS at 10 Hz repetitionfrequency are used to design transverse and longitudinal algorithms to produce uniformdistribution for any arbitrary shape and size of targets. The proposed spot scanning beam ismore versatile than existing spot scanning beams in proton therapy with better beamcontrol and lower neutron dose. This work is supported in part by grants from the US Department of Energy under contract; DE-FG02-12ER41800 and the National Science

  11. Single Bubble Sonoluminescence

    NASA Astrophysics Data System (ADS)

    Farley, Jennifer; Hough, Shane

    2003-05-01

    Single Bubble Sonoluminescence is the emission of light from a single bubble suspended in a liquid caused by a continuum of repeated implosions due to pressure waves generated from a maintained ultrasonic sinusoidal wave source. H. Frenzel and H. Schultz first studied it in 1934 at the University of Cologne. It was not until 1988 with D.F. Gaitan that actual research began with single bubble sonoluminescence. Currently many theories exist attempting to explain the observed bubble phenomenon. Many of these theories require spherical behavior of the bubble. Observation of the bubble has shown that the bubble does not behave spherically in most cases. One explanation for this is known as jet theory. A spectrum of the bubble will give us the mean physical properties of the bubble such as temperature and pressure inside the bubble. Eventually, with the aide of fluorocene dye a full spectrum of the bubble will be obtained.

  12. Air bubble migration rates as a proxy for bubble pressure distribution in ice cores

    NASA Astrophysics Data System (ADS)

    Dadic, Ruzica; Schneebeli, Martin; Bertler, Nancy

    2015-04-01

    Air bubble migration can be used as a proxy to measure the pressure of individual bubbles and can help constrain the gradual close-off of gas bubbles and the resulting age distribution of gases in ice cores. The close-off depth of single bubbles can vary by tens of meters, which leads to a distribution of pressures for bubbles at a given depth. The age distribution of gases (along with gas-age-ice-age differences) decreases the resolution of the gas level reconstructions from ice cores and limits our ability to determine the phase relationship between gas and ice, and thus, the impact of rapid changes of greenhouse gases on surface temperatures. For times of rapid climate change, including the last 150 years, and abrupt climate changes further back in the past, knowledge of the age distribution of the gases trapped in air bubbles will enable us to refine estimates of atmospheric changes. When a temperature gradient is applied to gas bubbles in an ice sample, the bubbles migrate toward warmer ice. This motion is caused by sublimation from the warm wall and subsequent frost deposition on the cold wall. The migration rate depends on ice temperature and bubble pressure and is proportional to the temperature gradient. The spread in migration rates for bubbles in the same samples at given temperatures should therefore reflect the variations in bubble pressures within a sample. Air bubbles with higher pressures would have been closed off higher in the firn column and thus have had time to equilibrate with the surrounding ice pressure, while air bubbles that have been closed off recently would have pressures that are similar to todays atmospheric pressure above the firn column. For ice under pressures up to ~13-16 bar, the pressure distribution of bubbles from a single depth provides a record of the trapping function of air bubbles in the firn column for a certain time in the past. We will present laboratory experiments on air bubble migration, using Antarctic ice core

  13. The Center For Medicare And Medicaid Innovation's blueprint for rapid-cycle evaluation of new care and payment models.

    PubMed

    Shrank, William

    2013-04-01

    The Affordable Care Act established the Center for Medicare and Medicaid Innovation to test innovative payment and service delivery models. The goal is to reduce program expenditures while preserving or improving the quality of care provided to beneficiaries of Medicare, Medicaid, and the Children's Health Insurance Program. Central to the success of the Innovation Center is a new, rapid-cycle approach to evaluation. This article describes that approach--setting forth how the Rapid Cycle Evaluation Group aims to deliver frequent feedback to providers in support of continuous quality improvement, while rigorously evaluating the outcomes of each model tested. This article also describes the relationship between the group's work and that of the Office of the Actuary at the Centers for Medicare and Medicaid Services, which plays a central role in the assessment of new models.

  14. Bubble nucleation in an explosive micro-bubble actuator

    NASA Astrophysics Data System (ADS)

    van den Broek, D. M.; Elwenspoek, M.

    2008-06-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse. In this paper we take a closer look at the bubble nucleation. The moment of bubble nucleation was determined by both stroboscopic imaging and resistance thermometry. Two nucleation regimes could be distinguished. Several different heater designs were investigated under heat fluxes of hundreds of W mm-2. A close correspondence between current density in the heater and point of nucleation was found. This results in design rules for effective heaters.

  15. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  16. Morphology of Gas Bubbles in Mud: A Microcomputed Tomographic Evaluation

    DTIC Science & Technology

    2005-07-01

    valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYYI 2. REPORT TYPE 3. DATES COVERED (From - To) 01...oxidation of organic matter is ubiquitous in marine sediments [1,2] and when supersaturated produces gas bubbles. Ebullition of methane gas bubbles from...cycle [10]. Pressure changes during a tidal cycle have also been correlated with bubble migration/ ebullition [11]. The relationship between pressure

  17. How-to-Do-It. Fast Plants--Rapid-Cycling Brassicas.

    ERIC Educational Resources Information Center

    Hafner, Robert

    1990-01-01

    Described is an activity in which the life cycle of a plant is investigated over a 20-day period. Included are background information, a list of materials, procedures, diagrams of the plant, apparatus, and pollination. An outline is suggested. (CW)

  18. Bubble drag reduction requires large bubbles

    NASA Astrophysics Data System (ADS)

    Verschoof, Ruben; van der Veen, Roeland; Sun, Chao; Lohse, Detlef

    2016-11-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. A few volume percent (<= 4 %) of bubbles can reduce the overall drag up to 40% and beyond. However, the exact mechanism is unknown, thus hindering further progress and optimization. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid . The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow. We acknowledge support from STW and FOM.

  19. BUBBLE DYNAMICS AT GAS-EVOLVING ELECTRODES

    SciTech Connect

    Sides, Paul J.

    1980-12-01

    Nucleation of bubbles, their growth by diffusion of dissolved gas to the bubble surface and by coalescence, and their detachment from the electrode are all very fast phenomena; furthermore, electrolytically generated bubbles range in size from ten to a few hundred microns; therefore, magnification and high speed cinematography are required to observe bubbles and the phenomena of their growth on the electrode surface. Viewing the action from the front side (the surface on which the bubbles form) is complicated because the most important events occur close to the surface and are obscured by other bubbles passing between the camera and the electrode; therefore, oxygen was evolved on a transparent tin oxide "window" electrode and the events were viewed from the backside. The movies showed that coalescence of bubbles is very important for determining the size of bubbles and in the chain of transport processes; growth by diffusion and by coalescence proceeds in series and parallel; coalescing bubbles cause significant fluid motion close to the electrode; bubbles can leave and reattach; and bubbles evolve in a cycle of growth by diffusion and different modes of coalescence. An analytical solution for the primary potential and current distribution around a spherical bubble in contact with a plane electrode is presented. Zero at the contact point, the current density reaches only one percent of its undisturbed value at 30 percent of the radius from that point and goes through a shallow maximum two radii away. The solution obtained for spherical bubbles is shown to apply for the small bubbles of electrolytic processes. The incremental resistance in ohms caused by sparse arrays of bubbles is given by {Delta}R = 1.352 af/kS where f is the void fraction of gas in the bubble layer, a is the bubble layer thickness, k is the conductivity of gas free electrolyte, and S is the electrode area. A densely populated gas bubble layer on an electrode was modeled as a hexagonal array of

  20. Rapid policy change to single-embryo transfer while maintaining pregnancy rates per initiated cycle.

    PubMed

    Vélez, M P; Kadoch, I-J; Phillips, S J; Bissonnette, F

    2013-05-01

    Public financing of IVF aims at increasing access to treatment while decreasing the expenses associated with multiple pregnancies. Critics argue that it is associated with lower pregnancy rates. This study compared cycles performed during 2009 (before implementation of Quebec's public IVF programme; period I) to those performed in the year following implementation (period II) in a single IVF centre. First fresh cycles in period I (499 women) and first fresh cycles (815 women) along with their corresponding first vitrified-warmed transfer (271 women) in period II were evaluated. From period I to period II, single-embryo transfer increased from 17.3% to 85.0% (P<0.001), multiple ongoing pregnancy rate decreased from 25.8% to 1.6% (P<0.001) and ongoing pregnancy rate decreased from 31.9% to 23.3% (P=0.001). During period II, the ongoing pregnancy rate per vitrified-warmed embryo transfer was 19.2%, leading to a cumulative ongoing pregnancy rate per initiated cycle of 29.7%, which was not different to the pregnancy rate per fresh cycle during period I (31.9%). To conclude, Quebec's public IVF programme decreased multiple pregnancy rates while maintaining an acceptable cumulative ongoing pregnancy rate, a more precise outcome to evaluate the impact of public IVF programmes.

  1. Steady State Vapor Bubble in Pool Boiling

    PubMed Central

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  2. Steady State Vapor Bubble in Pool Boiling.

    PubMed

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-02-03

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  3. Air bubble bursting effect of lotus leaf.

    PubMed

    Wang, Jingming; Zheng, Yongmei; Nie, Fu-Qiang; Zhai, Jin; Jiang, Lei

    2009-12-15

    In this paper, a phenomenon of air bubbles quickly bursting within several milliseconds on a "self-cleaning" lotus leaf was described. This observation prompted the synthesis of artificial surfaces similar to that of the lotus leaf. The artificial leaf surfaces, prepared by photolithography and wet etching, showed a similar air bubble bursting effect. Smooth and rough silicon surfaces with an ordered nanostructure or patterned microstructure were utilized to study the contribution of the micro/nano hierarchical structures to this phenomenon of air bubble bursting. Air bubbles were found to burst on some superhydrophobic surfaces with microstructure (within 220 ms). However, air bubbles burst much more rapidly (within 13 ms) on similar surfaces with micro/nanostructure. The height, width, and spacing of hierarchical structures could also affect air bubble bursting, and the effect of the height was more obvious. When the height of hierarchical structures was around the height found in natural lotus papillae, the width and spacing were significant for air bubble bursting. An original model was proposed to further evaluate the reason why the micro/nano hierarchical rough structures had an excellent air bubble bursting effect, and the validity of the model was theoretically demonstrated.

  4. The 1,800-year oceanic tidal cycle: a possible cause of rapid climate change.

    PubMed

    Keeling, C D; Whorf, T P

    2000-04-11

    Variations in solar irradiance are widely believed to explain climatic change on 20,000- to 100,000-year time-scales in accordance with the Milankovitch theory of the ice ages, but there is no conclusive evidence that variable irradiance can be the cause of abrupt fluctuations in climate on time-scales as short as 1,000 years. We propose that such abrupt millennial changes, seen in ice and sedimentary core records, were produced in part by well characterized, almost periodic variations in the strength of the global oceanic tide-raising forces caused by resonances in the periodic motions of the earth and moon. A well defined 1,800-year tidal cycle is associated with gradually shifting lunar declination from one episode of maximum tidal forcing on the centennial time-scale to the next. An amplitude modulation of this cycle occurs with an average period of about 5,000 years, associated with gradually shifting separation-intervals between perihelion and syzygy at maxima of the 1,800-year cycle. We propose that strong tidal forcing causes cooling at the sea surface by increasing vertical mixing in the oceans. On the millennial time-scale, this tidal hypothesis is supported by findings, from sedimentary records of ice-rafting debris, that ocean waters cooled close to the times predicted for strong tidal forcing.

  5. Determination of Compartmented Metabolite Pools by a Combination of Rapid Fractionation of Oat Mesophyll Protoplasts and Enzymic Cycling 1

    PubMed Central

    Hampp, Rüdiger; Goller, Marion; Füllgraf, Helene

    1984-01-01

    In vivo pool sizes of a range of metabolites have been determined in subcellular fractions of darkened and illuminated mesophyll protoplasts of Avena sativa L. These estimations were made by combining a method of rapid protoplast fractionation with enzymic cycling techniques. Results are given for reduced and oxidized pyridine nucleotides, triose phosphates, 3-phosphoglycerate, inorganic phosphate, aspartate, malate, oxaloacetate, glutamate, 2-oxoglutarate, and citrate, from chloroplasts, mitochondria, and a fraction representing the remainder of the protoplast. The results indicate distinct differences of compartmented levels of certain metabolites between darkened and illuminated protoplasts. PMID:16663726

  6. Quantitative multiplex real-time PCR assay for shrimp allergen: comparison of commercial master mixes and PCR platforms in rapid cycling.

    PubMed

    Eischeid, Anne C; Kasko, Sasha M

    2015-01-01

    Real-time PCR has been used widely in numerous fields. In food safety, it has been applied to detection of microbes and other contaminants, including food allergens. Interest in rapid (fast) cycling real-time PCR has grown because it yields results in less time than does conventional cycling. However, fast cycling can adversely affect assay performance. Here we report on tests of commercial master mixes specifically designed for fast real-time PCR using a shrimp allergen assay we previously developed and validated. The objective of this work was to determine whether specialized commercial master mixes lead to improved assay performance in rapid cycling. Real-time PCR assays were carried out using four different master mixes and two different rapid cycling protocols. Results indicated that specialized master mixes did yield quality results. In many cases, linear ranges spanned up to 7 orders of magnitude, R(2) values were at least 0.95, and reaction efficiencies were within or near the optimal range of 90 to 110%. In the faster of the two rapid cycling protocols tested, assay performance and PCR amplification were markedly better for the shorter PCR product. In conclusion, specialized commercial master mixes were effective as part of rapid cycling protocols, but conventional cycling as used in our previous work is more reliable for the shrimp assay tested.

  7. Bubbly Cavitation Flows.

    DTIC Science & Technology

    1991-03-31

    and 12. Comparison is also made with analytical predictions based on the Rayleigh - Plesset equations. In addition to the single bubble studies, the...bubble maximum size distributions and those predicted using the measured nuclei number distribution and the Rayleigh - Plesset model for the bubble dyna...tions 7, 9, 11, 12, 13 examined travelling bubble cavitation on two classic axisymmetric headforms (a Schiebe body and the ITTC headform) and, with the

  8. Pressure waves in a supersaturated bubbly magma

    USGS Publications Warehouse

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.

    2011-01-01

    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  9. A translating stage system for µ-PIV measurements surrounding the tip of a migrating semi-infinite bubble.

    PubMed

    Smith, B J; Yamaguchi, E; Gaver, D P

    2010-01-01

    We have designed, fabricated and evaluated a novel translating stage system (TSS) that augments a conventional micro particle image velocimetry (µ-PIV) system. The TSS has been used to enhance the ability to measure flow fields surrounding the tip of a migrating semi-infinite bubble in a glass capillary tube under both steady and pulsatile reopening conditions. With conventional µ-PIV systems, observations near the bubble tip are challenging because the forward progress of the bubble rapidly sweeps the air-liquid interface across the microscopic field of view. The translating stage mechanically cancels the mean bubble tip velocity, keeping the interface within the microscope field of view and providing a tenfold increase in data collection efficiency compared to fixed-stage techniques. This dramatic improvement allows nearly continuous observation of the flow field over long propagation distances. A large (136-frame) ensemble-averaged velocity field recorded with the TSS near the tip of a steadily migrating bubble is shown to compare well with fixed-stage results under identical flow conditions. Use of the TSS allows the ensemble-averaged measurement of pulsatile bubble propagation flow fields, which would be practically impossible using conventional fixed-stage techniques. We demonstrate our ability to analyze these time-dependent two-phase flows using the ensemble-averaged flow field at four points in the oscillatory cycle.

  10. Geyser preplay and eruption in a laboratory model with a bubble trap

    NASA Astrophysics Data System (ADS)

    Adelstein, E.; Tran, A.; Munoz Saez, C.; Shteinberg, A.; Manga, M.

    2013-12-01

    Geysers are springs that produce episodic eruptions of liquid water and vapor. Relatively short eruption cycles and accessibility of conduits make extensive observation of eruptive processes in geysers feasible. Along with field observations, laboratory models are useful for further describing geyser dynamics. Here we focus on the role of a 'bubble trap', a region in the geyser's plumbing system in which vapor can accumulate. We present measurements from a laboratory model. The model geyser consists of two reservoirs connected by a conduit with a central tight S-shaped bend to create a bubble trap. The conduit is thus divided into two sections: one extends into the upper reservoir and the other is connected to the lower reservoir. A second conduit returns erupted liquid to the lower reservoir. The apparatus is filled with water and heated below the lower reservoir. A period of quiescence follows each eruption. During this phase, a bubble is trapped in the lower S-bend. As the bubble grows, most of its volume remains in the bend while its edges oscillate and vapor is released into the upper conduit. Vapor occasionally reaches the top of the conduit and expels a small amount of liquid. This process may be analogous to geyser preplay. Eruption begins when the upper surface of the main bubble reaches the top of the conduit. We observe two modes of eruption: boiling occurs (1) in the entire system or (2) only in the conduit above the upper boundary of the trapped bubble. In the former case, the rapid hydrostatic pressure drop from filling the upper conduit with vapor results in boiling in the entire system. Eruption ends when enough cold erupted water has been recycled to the lower reservoir that the temperature drops below boiling. Though simpler than a natural geyser, our model provides insight into preplay and eruption styles in a conduit with a bubble trap, a feature that has been invoked to explain dynamics of geysers in Kamchatka and Yellowstone.

  11. Neutron Detection via Bubble Chambers

    SciTech Connect

    Jordan, David V.; Ely, James H.; Peurrung, Anthony J.; Bond, Leonard J.; Collar, J. I.; Flake, Matthew; Knopf, Michael A.; Pitts, W. K.; Shaver, Mark W.; Sonnenschein, Andrew; Smart, John E.; Todd, Lindsay C.

    2005-10-06

    The results of a Pacific Northwest National Laboratory (PNNL) exploratory research project investigating the feasibility of fast neutron detection using a suitably prepared and operated, pressure-cycled bubble chamber are described. The research was conducted along two parallel paths. Experiments with a slow pressure-release Halon chamber at the Enrico Fermi Institute at the University of Chicago showed clear bubble nucleation sensitivity to an AmBe neutron source and insensitivity to the 662 keV gammas from a 137Cs source. Bubble formation was documented via high-speed (1000 frames/sec) photography, and the acoustic signature of bubble formation was detected using a piezo-electric transducer element mounted on the base of the chamber. The chamber’s neutron sensitivity as a function of working fluid temperature was mapped out. The second research path consisted of the design, fabrication, and testing of a fast pressure-release Freon-134a chamber at PNNL. The project concluded with successful demonstrations of the PNNL chamber’s AmBe neutron source sensitivity and 137Cs gamma insensitivity. The source response tests of the PNNL chamber were documented with high-speed photography.

  12. 3D noninvasive, high-resolution imaging using a photoacoustic tomography (PAT) system and rapid wavelength-cycling lasers

    NASA Astrophysics Data System (ADS)

    Sampathkumar, Ashwin; Gross, Daniel; Klosner, Marc; Chan, Gary; Wu, Chunbai; Heller, Donald F.

    2015-05-01

    Globally, cancer is a major health issue as advances in modern medicine continue to extend the human life span. Breast cancer ranks second as a cause of cancer death in women in the United States. Photoacoustic (PA) imaging (PAI) provides high molecular contrast at greater depths in tissue without the use of ionizing radiation. In this work, we describe the development of a PA tomography (PAT) system and a rapid wavelength-cycling Alexandrite laser designed for clinical PAI applications. The laser produces 450 mJ/pulse at 25 Hz to illuminate the entire breast, which eliminates the need to scan the laser source. Wavelength cycling provides a pulse sequence in which the output wavelength repeatedly alternates between 755 nm and 797 nm rapidly within milliseconds. We present imaging results of breast phantoms with inclusions of different sizes at varying depths, obtained with this laser source, a 5-MHz 128-element transducer and a 128-channel Verasonics system. Results include PA images and 3D reconstruction of the breast phantom at 755 and 797 nm, delineating the inclusions that mimic tumors in the breast.

  13. Contrail life cycle and properties from 1 year of MSG/SEVIRI rapid-scan images

    NASA Astrophysics Data System (ADS)

    Vázquez-Navarro, M.; Mannstein, H.; Kox, S.

    2015-08-01

    The automatic contrail tracking algorithm (ACTA) - developed to automatically follow contrails as they age, drift and spread - enables the study of a large number of contrails and the evolution of contrail properties with time. In this paper we present a year's worth of tracked contrails, from August 2008 to July 2009 in order to derive statistically significant mean values. The tracking is performed using the 5 min rapid-scan mode of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation (MSG) satellites. The detection is based on the high spatial resolution of the images provided by the Moderate Resolution Imaging Spectroradiometer on board the Terra satellite (Terra/MODIS), where a contrail detection algorithm (CDA) is applied. The results show the satellite-derived average lifetimes of contrails and contrail-cirrus along with the probability density function (PDF) of other geometric characteristics such as mean coverage, distribution and width. In combination with specifically developed algorithms (RRUMS; Rapid Retrieval of Upwelling irradiance from MSG/SEVIRI and COCS (Cirrus Optical properties derived from CALIOP and SEVIRI), explained below) it is possible to derive the radiative forcing (RF), energy forcing (EF), optical thickness (τ) and altitude of the tracked contrails. Mean values here retrieved are duration, 1 h; length, 130 km; width, 8 km; altitude, 11.7 km; optical thickness, 0.34. Radiative forcing and energy forcing are shown for land/water backgrounds in day/night situations.

  14. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial.

    PubMed

    Peterson, L C; Haug, G H; Hughen, K A; Röhl, U

    2000-12-08

    Sedimentary time series of color reflectance and major element chemistry from the anoxic Cariaco Basin off the coast of northern Venezuela record large and abrupt shifts in the hydrologic cycle of the tropical Atlantic during the past 90,000 years. Marine productivity maxima and increased precipitation and riverine discharge from northern South America are closely linked to interstadial (warm) climate events of marine isotope stage 3, as recorded in Greenland ice cores. Increased precipitation at this latitude during interstadials suggests the potential for greater moisture export from the Atlantic to Pacific, which could have affected the salinity balance of the Atlantic and increased thermohaline heat transport to high northern latitudes. This supports the notion that tropical feedbacks played an important role in modulating global climate during the last glacial period.

  15. Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots.

    PubMed

    Coskun, Devrim; Britto, Dev T; Li, Mingyuan; Becker, Alexander; Kronzucker, Herbert J

    2013-12-01

    Futile transmembrane NH3/NH4(+) cycling in plant root cells, characterized by extremely rapid fluxes and high efflux to influx ratios, has been successfully linked to NH3/NH4(+) toxicity. Surprisingly, the fundamental question of which species of the conjugate pair (NH3 or NH4(+)) participates in such fluxes is unresolved. Using flux analyses with the short-lived radioisotope (13)N and electrophysiological, respiratory, and histochemical measurements, we show that futile cycling in roots of barley (Hordeum vulgare) seedlings is predominately of the gaseous NH3 species, rather than the NH4(+) ion. Influx of (13)NH3/(13)NH4(+), which exceeded 200 µmol g(-1) h(-1), was not commensurate with membrane depolarization or increases in root respiration, suggesting electroneutral NH3 transport. Influx followed Michaelis-Menten kinetics for NH3 (but not NH4(+)), as a function of external concentration (Km = 152 µm, Vmax = 205 µmol g(-1) h(-1)). Efflux of (13)NH3/(13)NH4(+) responded with a nearly identical Km. Pharmacological characterization of influx and efflux suggests mediation by aquaporins. Our study fundamentally revises the futile-cycling model by demonstrating that NH3 is the major permeating species across both plasmalemma and tonoplast of root cells under toxicity conditions.

  16. Model for interaction of bubbles in a cloud near a rigid surface

    NASA Astrophysics Data System (ADS)

    Zabolotskaya, Evgenia A.; Ilinskii, Yurii A.; Meegan, G. Douglas; Hamilton, Mark F.

    2001-05-01

    Bubble clouds produced during lithotripsy undergo complicated motions including bubble interactions that may inhibit kidney stone comminution. Our study of bubble interactions is motivated by high-speed photographs reported by Pishchalnikov et al. [J. Acoust. Soc. Am. 114, 2386 (2003)]. In the work reported here, we simulated the observed bubble motion with a model based on the equations derived by Zabolotskaya [Sov. Phys. Acoust. 30, 365 (1984)]. The equations for interaction of two bubbles were generalized and solved numerically for a cluster of n bubbles near a rigid boundary, which represents the stone. The initial spatial distribution of bubbles in three dimensions was assumed to be random. When a short negative pressure pulse was applied, the simulated bubbles grew in size. When two bubbles touched each other, they were merged into a single bubble that conserved mass of the gas. Results are presented in selected planes intersecting the bubble cloud for different instants of time. Bubble interaction was found to reduce the maximum sizes to which the bubbles grow. The bubbles near the rigid boundary are constrained by neighboring bubbles and grow less rapidly, and to smaller sizes, than other bubbles. Interactions within the cloud thus suppress bubble growth and cavitation. [Work supported by ARL:UT IR&D.

  17. Rapid and repeatable redox cycling of an insoluble dietary antioxidant: electrochemical analysis.

    PubMed

    Lee, Morgan E; Kim, Eunkyoung; Liu, Yi; March, John C; Bentley, William E; Payne, Gregory F

    2014-10-08

    There are many unresolved questions concerning the health benefits of dietary antioxidants due in part to the complexity of the materials and mechanisms of action. We applied a new electrochemical method and report new observations for one of the richest sources of dietary antioxidants. We observed that the insoluble fraction of clove is redox-active and can be rapidly and repeatedly switched between oxidized and reduced states. Also, the radical scavenging antioxidant properties of insoluble clove are largely independent of this reversible redox activity, which is similar to observations made with the natural phenolic melanin. In contrast to melanin, insoluble clove was observed to have little pro-oxidant activity (as measured by H2O2 generation) irrelevant to whether it was poised in an oxidized or reduced state. These results suggest that dietary antioxidants, even when insoluble and nonabsorbed, can undergo important redox interactions in the intestinal tract.

  18. Acoustic bubble traps

    NASA Astrophysics Data System (ADS)

    Geisler, Reinhard; Kurz, Thomas; Lauterborn, Werner

    2000-07-01

    A small, oscillating bubble in a liquid can be trapped in the antinode of an acoustic standing wave field. Bubble stability is required for the study of single bubble sonoluminescence (SBSL). The properties of the acoustic resonator are essential for the stable trapping of sonoluminescing bubbles. Resonators can be chosen according to the intended application: size and geometry can be varied in a wide range. In this work, the acoustic responses of different resonators were measured by means of holographic interferometry, hydrophones and a laser vibrometer. Also, high-speed photography was used to observe the bubble dynamics. Several single, stable sonoluminescent bubbles were trapped simultaneously within an acoustic resonator in the pressure antinodes of a higher harmonic mode (few bubble sonoluminescence, FBSL).

  19. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest.

    PubMed

    Leff, Jonathan W; Wieder, William R; Taylor, Philip G; Townsend, Alan R; Nemergut, Diana R; Grandy, A Stuart; Cleveland, Cory C

    2012-09-01

    Global changes such as variations in plant net primary production are likely to drive shifts in leaf litterfall inputs to forest soils, but the effects of such changes on soil carbon (C) cycling and storage remain largely unknown, especially in C-rich tropical forest ecosystems. We initiated a leaf litterfall manipulation experiment in a tropical rain forest in Costa Rica to test the sensitivity of surface soil C pools and fluxes to different litter inputs. After only 2 years of treatment, doubling litterfall inputs increased surface soil C concentrations by 31%, removing litter from the forest floor drove a 26% reduction over the same time period, and these changes in soil C concentrations were associated with variations in dissolved organic matter fluxes, fine root biomass, microbial biomass, soil moisture, and nutrient fluxes. However, the litter manipulations had only small effects on soil organic C (SOC) chemistry, suggesting that changes in C cycling, nutrient cycling, and microbial processes in response to litter manipulation reflect shifts in the quantity rather than quality of SOC. The manipulation also affected soil CO 2 fluxes; the relative decline in CO 2 production was greater in the litter removal plots (-22%) than the increase in the litter addition plots (+15%). Our analysis showed that variations in CO 2 fluxes were strongly correlated with microbial biomass pools, soil C and nitrogen (N) pools, soil inorganic P fluxes, dissolved organic C fluxes, and fine root biomass. Together, our data suggest that shifts in leaf litter inputs in response to localized human disturbances and global environmental change could have rapid and important consequences for belowground C storage and fluxes in tropical rain forests, and highlight differences between tropical and temperate ecosystems, where belowground C cycling responses to changes in litterfall are generally slower and more subtle.

  20. Structural changes of active materials and failure mode of a valve-regulated lead-acid battery in rapid-charge and conventional-charge cycling

    NASA Astrophysics Data System (ADS)

    Chang, T. G.; Jochim, D. M.

    Spirally wound 12-V valve-regulated lead-acid batteries were subjected to conventional-charge and rapid-charge cycling tests. The cycle life was 250 cycles for the conventional-charge regime and 1000 cycles for the rapid-charge regime. In conventional-charge cycling, the positive active material quickly expanded and developed a coralloid structure in association with lowered utilisation and integrity. In rapid-charge cycling, no coralloid structure developed and the expansion was smaller and much slower. Correspondingly, the particle size of the negative active material grew in both cycling tests, but at a much slower rate in rapid-charge cycling. With the expansion of the positive active material, the negative active material was compressed. In the failed batteries, about one-third of the negative active material in the centre of the electrode was compressed almost into a solid non-porous mass. This densification process also occurred at a much slower rate in rapid-charge cycling. At the point of failure, the discharge capacity of all test batteries was limited by the negative electrode, although it was limited by the positive electrode at the beginning of the cycling tests. The cause of failure for most of the batteries, regardless of the charging regime, was the occurrence of "soak-through" shorts caused by numerous minute lead dendrites formed in the separator. This might have been encouraged by the formation of shorter distances between the two electrodes, created by the compression of the separator as a result of the expansion of the positive active material.

  1. Chemical Reactions in a Sonoluminescing Bubble

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi

    1997-09-01

    Rates of chemical reactions in an air bubble are calculatednumerically under a condition of the single-bubble sonoluminescence(SBSL) and that of non-light-emission. In the calculations, effect of non-equilibrium evaporation and condensationof water vapor at the bubble wall andthat of thermal conduction both inside and outside the bubbleare taken into account.Numerical calculations reveal that appreciable amounts of OH, H2O2, HO2, O3, H2, H, and O moleculesare created in a bubble under the condition of SBSL.The amounts of chemical products containing nitrogen such as NOx, NHx, and HNOx are much less than those of the above products at least in the first few acoustic cycles.Numerical calculations also reveal that no chemical reactionstake place under a condition of non-light-emission.Connection with sonoluminescence is also discussed.

  2. Maintaining Adequate CO2 Washout for an Advanced EMU via a New Rapid Cycle Amine Technology

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2011-01-01

    Over the past several years, NASA has realized tremendous progress in Extravehicular Activity (EVA) technology development. This has been evidenced by the progressive development of a new Rapic Cycle Amine (RCA) system for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support Subsystem (PLSS). The PLSS is responsible for the life support of the crew member in the spacesuit. The RCA technology is responsible for carbon dioxide (CO2) and humidity control. Another aspect of the RCA is that it is on-back vacuum-regenerable, efficient, and reliable. The RCA also simplifies the PLSS schematic by eliminating the need for a condensing heat exchanger for humidity control in the current EMU. As development progresses on the RCA, it is important that the sizing be optimized so that the demand on the PLSS battery is minimized. As well, maintaining the CO2 washout at adequate levels during an EVA is an absolute requirement of the RCA and associated ventilation system. Testing has been underway in-house at NASA Johnson Space Center and analysis has been initiated to evaluate whether the technology provides exemplary performance in ensuring that the CO2 is removed sufficiently enough and the ventilation flow is adequate enough to maintain CO2 1 Project Engineer, Space Suit and Crew Survival Systems Branch, Crew and Thermal Systems Division, 2101 NASA Parkway, Houston, TX 77058/EC5. washout in the AEMU spacesuit helmet of the crew member during an EVA. This paper will review the recent developments of the RCA unit, the testing results performed in-house with a spacesuit simulator, and the associated analytical work along with insights from the medical aspect on the testing.

  3. The acoustic emissions of cavitation bubbles in stretched vortices.

    PubMed

    Chang, Natasha A; Ceccio, Steven L

    2011-11-01

    Pairs of unequal strength, counter-rotating vortices were produced in order to examine the inception, dynamics, and acoustic emission of cavitation bubbles in rapidly stretching vortices. The acoustic signatures of these cavitation bubbles were characterized during their inception, growth, and collapse. Growing and collapsing bubbles often produced a sharp, broadband, pop sound. The spectrum of these bubbles, and the peak resonant frequency can generally be related to quiescent flow bubble dynamics and corresponding resonant frequencies. However, some elongated cavitation bubbles produced a short tonal burst, or chirp, with frequencies on the order of a few kilohertz. Theses frequencies are too low to be related to resonant frequencies of a bubble in a quiescent flow. Instead, the frequency content of the acoustic signal during bubble inception and growth is related to the volumetric oscillations of the bubble while it interacted with vortical flow that surrounds the bubble (i.e., the resonant frequency of the vortex-bubble system). A relationship was determined between the observed peak frequency of the oscillations, the highly stretched vortex properties, and the water nuclei content. It was found that different cavitation spectra could relate to different flow and fluid properties and therefore would not scale in the same manner.

  4. Radio Bubbles in Clusters of Galaxies

    SciTech Connect

    Dunn, Robert J.H.; Fabian, A.C.; Taylor, G.B.; /NRAO, Socorro /KIPAC, Menlo Park

    2005-12-14

    We extend our earlier work on cluster cores with distinct radio bubbles, adding more active bubbles, i.e. those with GHz radio emission, to our sample, and also investigating ''ghost bubbles'', i.e. those without GHz radio emission. We have determined k, which is the ratio of the total particle energy to that of the electrons radiating between 10MHz and 10GHz. Constraints on the ages of the active bubbles confirm that the ratio of the energy factor, k, to the volume filling factor, f lies within the range 1 {approx}< k/f {approx}< 1000. In the assumption that there is pressure equilibrium between the radio-emitting plasma and the surrounding thermal X-ray gas, none of the radio lobes has equipartition between the relativistic particles and the magnetic field. A Monte-Carlo simulation of the data led to the conclusion that there are not enough bubbles present in the current sample to be able to determine the shape of the population. An analysis of the ghost bubbles in our sample showed that on the whole they have higher upper limits on k/f than the active bubbles, especially when compared to those in the same cluster. A study of the Brightest 55 cluster sample shows that 17, possibly 20, clusters required some form of heating as they have a short central cooling time, t{sub cool} {approx}< 3 Gyr, and a large central temperature drop, T{sub centre}/T{sub outer} < 1/2. Of these between 12 (70 per cent) and 15 (75 per cent), contain bubbles. This indicates that the duty cycle of bubbles is large in such clusters and that they can play a major role in the heating process.

  5. Bubble collisions and measures of the multiverse

    SciTech Connect

    Salem, Michael P.

    2012-01-01

    To compute the spectrum of bubble collisions seen by an observer in an eternally-inflating multiverse, one must choose a measure over the diverging spacetime volume, including choosing an ''initial'' hypersurface below which there are no bubble nucleations. Previous calculations focused on the case where the initial hypersurface is pushed arbitrarily deep into the past. Interestingly, the observed spectrum depends on the orientation of the initial hypersurface, however one's ability observe the effect rapidly decreases with the ratio of inflationary Hubble rates inside and outside one's bubble. We investigate whether this conclusion might be avoided under more general circumstances, including placing the observer's bubble near the initial hypersurface. We find that it is not. As a point of reference, a substantial appendix reviews relevant aspects of the measure problem of eternal inflation.

  6. Breakage-fusion-bridge cycles and large insertions contribute to the rapid evolution of accessory chromosomes in a fungal pathogen.

    PubMed

    Croll, Daniel; Zala, Marcello; McDonald, Bruce A

    2013-06-01

    Chromosomal rearrangements are a major driver of eukaryotic genome evolution, affecting speciation, pathogenicity and cancer progression. Changes in chromosome structure are often initiated by mis-repair of double-strand breaks in the DNA. Mis-repair is particularly likely when telomeres are lost or when dispersed repeats misalign during crossing-over. Fungi carry highly polymorphic chromosomal complements showing substantial variation in chromosome length and number. The mechanisms driving chromosome polymorphism in fungi are poorly understood. We aimed to identify mechanisms of chromosomal rearrangements in the fungal wheat pathogen Zymoseptoria tritici. We combined population genomic resequencing and chromosomal segment PCR assays with electrophoretic karyotyping and resequencing of parents and offspring from experimental crosses to show that this pathogen harbors a highly diverse complement of accessory chromosomes that exhibits strong global geographic differentiation in numbers and lengths of chromosomes. Homologous chromosomes carried highly differentiated gene contents due to numerous insertions and deletions. The largest accessory chromosome recently doubled in length through insertions totaling 380 kb. Based on comparative genomics, we identified the precise breakpoint locations of these insertions. Nondisjunction during meiosis led to chromosome losses in progeny of three different crosses. We showed that a new accessory chromosome emerged in two viable offspring through a fusion between sister chromatids. Such chromosome fusion is likely to initiate a breakage-fusion-bridge (BFB) cycle that can rapidly degenerate chromosomal structure. We suggest that the accessory chromosomes of Z. tritici originated mainly from ancient core chromosomes through a degeneration process that included BFB cycles, nondisjunction and mutational decay of duplicated sequences. The rapidly evolving accessory chromosome complement may serve as a cradle for adaptive evolution in

  7. Etiology of gas bubble disease

    SciTech Connect

    Bouck, G.R.

    1980-11-01

    Gas bubble disease is a noninfectious, physically induced process caused by uncompensated hyperbaric pressure of total dissolved gases. When pressure compensation is inadequate, dissolved gases may form emboli (in blood) and emphysema (in tissues). The resulting abnormal physical presence of gases can block blood vessels (hemostasis) or tear tissues, and may result in death. Population mortality is generally skewed, in that the median time to death occurs well before the average time to death. Judged from mortality curves, three stages occur in gas bubble disease: (1) a period of gas pressure equilibrium, nonlethal cavitation, and increasing morbidity; (2) a period of rapid and heavy mortality; and (3) a period of protracted survival, despite lesions, and dysfunction that eventually terminates in total mortality. Safe limits for gas supersaturation depend on species tolerance and on factors that differ among hatcheries and rivers, between continuous and intermittent exposures, and across ranges of temperature and salinity.

  8. Gas bubble detector

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Burchfield, David E. (Inventor); Hagey, John M. (Inventor)

    1995-01-01

    A gas bubble detector having a modulated IR source focused through a bandpass filter onto a venturi, formed in a sample tube, to illuminate the venturi with modulated filtered IR to detect the presence of gas bubbles as small as 0.01 cm or about 0.004 in diameter in liquid flowing through the venturi. Means are provided to determine the size of any detected bubble and to provide an alarm in the absence of liquid in the sample tube.

  9. Tightrope walking bubbles

    NASA Astrophysics Data System (ADS)

    de Maleprade, Helene; Clanet, Christophe; Quere, David

    2016-11-01

    A fiber can hold a certain amount of liquid, which allows us to capture flying drops and control their motion. Immersed in water, a fiber can efficiently capture air bubbles only if it is hydrophobic. Using a superhydrophobic coating on an inclined wire, we experimentally control the rising velocity of air bubbles walking along the tightrope. We discuss the nature of the friction around the walker, and the resulting speed of bubbles.

  10. Rapid changes in the seasonal sea level cycle along the US Gulf coast in the early 21st century

    NASA Astrophysics Data System (ADS)

    Wahl, T.; Calafat, F. M.; Luther, M. E.

    2013-12-01

    annual amplitude and the rapid increase over the last decade in the eastern GOM. We have developed several multiple regression models (MRM) with a varying number of independent predictors to reconstruct the temporal changes back to the mid and early 20th century (depending on data availability of the predictors). The models are able to explain up to 85% of the observed variability (70% on average across sites) and major parts of the rapid increase in the early 21st century. Multicollinearity between the predictors makes it difficult to quantify the contribution of individual parameters to the increase but sensitivity tests outline that changes in the annual cycle of the air surface temperature (which in turn directly propagates into the sea surface temperature) played a dominant role. The MRMs allow us to reconstruct the seasonal sea level cycle back to the early 20th century at all tide gauge sites and will be used in a follow-up study in combination with regional climate model output to assess potential future changes.

  11. Bubble formation in a quiescent pool of gold nanoparticle suspension.

    PubMed

    Vafaei, Saeid; Wen, Dongsheng

    2010-08-11

    This paper begins with an extensive review of the formation of gas bubbles, with a particular focus on the dynamics of triple lines, in a pure liquid and progresses into an experimental study of bubble formation on a micrometer-sized nozzle immersed in a quiescent pool of aqueous gold nanofluid. Unlike previous studies of triple line dynamics in a nanofluid under evaporation or boiling conditions, which are mainly caused by the solid surface modification due to particle sedimentation, this work focuses on the roles of nanoparticles suspended in the liquid phase. The experiments are conducted under a wide range of flow rates and nanoparticle concentrations, and many interesting phenomena are revealed. It is observed that nanofluids prevent the spreading of the triple line during bubble formation, i.e. the triple line is pinned somewhere around the middle of the tube wall during the rapid bubble formation stage whereas it spreads to the outer edge of the tube for pure water. A unique 'stick-slip' movement of the triple line is also observed for bubbles forming in nanofluids. At a given bubble volume, the radius of the contact line is found to be smaller for higher particle concentrations, but a reverse trend is found for the dynamic bubble contact angle. With the increase of particle concentration, the bubble frequency is raised and the bubble departure volume is decreased. The bubble shape is found to be in a good agreement with the prediction from Young-Laplace equation for given flow rates. The influence of nanoparticles on other detailed characteristics related to bubble growth inside, including the variation of bubble volume expansion rate, the radius of the curvature at the apex, the bubble height and bubble volume, is revealed. It is suggested that the variation of surface tensions and the resultant force balance at the triple line might be responsible for the modified dynamics of the triple line.

  12. Conditions for bubble elongation in cold ice-sheet ice

    USGS Publications Warehouse

    Alley, R.B.; Fitzpatrick, J.J.

    1999-01-01

    Highly elongated bubbles are sometimes observed in ice-sheet ice. Elongation is favored by rapid ice deformation, and opposed by diffusive processes. We use simple models to show that vapor transport dominates diffusion except possibly very close to the melting point, and that latent-heat effects are insignificant. Elongation is favored by larger bubbles at pore close-off, but is nearly independent of bubble compression below close-off. The simple presence of highly elongated bubbles indicates only that a critical ice-strain rate has been exceeded for significant time, and provides no information on possible disruption of stratigraphic continuity by ice deformation.

  13. A candidate mechanism for exciting sound during bubble coalescence.

    PubMed

    Czerski, Helen

    2011-03-01

    Coalescing bubbles are known to produce a pulse of sound at the moment of coalescence, but the mechanism driving the sound production is uncertain. A candidate mechanism for the acoustic forcing is the rapid increase in the bubble volume, as the neck of air joining the two parent bubbles expands. A simple model is presented here for the volume forcing caused by the coalescence dynamics, and its predictions are tested against the available data. The model predicts the right order of magnitude for the acoustic amplitude, and the predicted amplitudes also scale correctly with the radius of the smaller parent bubble.

  14. Development and optimization of acoustic bubble structures at high frequencies.

    PubMed

    Lee, Judy; Ashokkumar, Muthupandian; Yasui, Kyuichi; Tuziuti, Toru; Kozuka, Teruyuki; Towata, Atsuya; Iida, Yasuo

    2011-01-01

    At high ultrasound frequencies, active bubble structures are difficult to capture due to the decrease in timescale per acoustic cycle and size of bubbles with increasing frequencies. However the current study demonstrates an association between the spatial distribution of visible bubbles and that of the active bubble structure established in the path of the propagating acoustic wave. By monitoring the occurrence of these visible bubbles, the development of active bubbles can be inferred for high frequencies. A series of still images depicting the formation of visible bubble structures suggest that a strong standing wave field exists at early stages of wave propagation and weakens by the increase in the attenuation of the acoustic wave, caused by the formation of large coalesced bubbles. This attenuation is clearly demonstrated by the occurrence of a force which causes bubbles to be driven toward the liquid surface and limit standing wave fields to near the surface. This force is explained in terms of the acoustic streaming and traveling wave force. It is found that a strong standing wave field is established at 168 kHz. At 448 kHz, large coalesced bubbles can significantly attenuate the acoustic pressure amplitude and weaken the standing wave field. When the frequency is increased to 726 kHz, acoustic streaming becomes significant and is the dominant force behind the disruption of the standing wave structure. The disruption of the standing wave structure can be minimized under certain pulse ON and OFF ratios.

  15. Prospects for bubble fusion

    SciTech Connect

    Nigmatulin, R.I.; Lahey, R.T. Jr.

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  16. Micro-bubbles seeding for flow characterization

    NASA Astrophysics Data System (ADS)

    Aumelas, V.; Lecoffre, Y.; Maj, G.; Franc, J.-P.

    2016-11-01

    Micro-bubbles injection has long been used in hydrodynamic facilities for the control of dissolved and free air. In some cavitation tunnels [9], very large quantities of microbubbles (billions per second) are injected for rapid degassing and, in smaller quantities (millions per second), for cavitation nuclei seeding. Micro-bubbles can also be used as tracers for optical measurements including visualization, LDV or PIV. For these applications, bubbles must be sufficiently small to faithfully follow the flow. Depending on the quality and spatial characteristics of the micro-bubbles seeding, several optical methods can be applied: simple visualization gives access to semi-quantitative information on the behaviour of flows; LASER velocimetry provides information on the mean velocity and other temporal local characteristics of the flow. This paper presents some new micro-bubbles seeding devices recently developed by YLEC Consultants. These devices have been designed to fulfill specific requirements related to integration into cavitation tunnels and permit optical velocimetry measurement techniques such as Particle Image Velocimetry (PIV). The LEGI cavitation tunnel is the first tunnel which has been equipped with these microbubbles seeding systems dedicated to optical velocimetry. This paper presents the final integration schemes selected for micro-bubbles seeding into LEGI tunnel and discuss about practical concerns related to the use of the injection system for optical velocimetry.

  17. Mining Available Data from the United States Environmental Protection Agency to Support Rapid Life Cycle Inventory Modeling of Chemical Manufacturing.

    PubMed

    Cashman, Sarah A; Meyer, David E; Edelen, Ashley N; Ingwersen, Wesley W; Abraham, John P; Barrett, William M; Gonzalez, Michael A; Randall, Paul M; Ruiz-Mercado, Gerardo; Smith, Raymond L

    2016-09-06

    Demands for quick and accurate life cycle assessments create a need for methods to rapidly generate reliable life cycle inventories (LCI). Data mining is a suitable tool for this purpose, especially given the large amount of available governmental data. These data are typically applied to LCIs on a case-by-case basis. As linked open data becomes more prevalent, it may be possible to automate LCI using data mining by establishing a reproducible approach for identifying, extracting, and processing the data. This work proposes a method for standardizing and eventually automating the discovery and use of publicly available data at the United States Environmental Protection Agency for chemical-manufacturing LCI. The method is developed using a case study of acetic acid. The data quality and gap analyses for the generated inventory found that the selected data sources can provide information with equal or better reliability and representativeness on air, water, hazardous waste, on-site energy usage, and production volumes but with key data gaps including material inputs, water usage, purchased electricity, and transportation requirements. A comparison of the generated LCI with existing data revealed that the data mining inventory is in reasonable agreement with existing data and may provide a more-comprehensive inventory of air emissions and water discharges. The case study highlighted challenges for current data management practices that must be overcome to successfully automate the method using semantic technology. Benefits of the method are that the openly available data can be compiled in a standardized and transparent approach that supports potential automation with flexibility to incorporate new data sources as needed.

  18. Rapid freeze-drying cycle optimization using computer programs developed based on heat and mass transfer models and facilitated by tunable diode laser absorption spectroscopy (TDLAS).

    PubMed

    Kuu, Wei Y; Nail, Steven L

    2009-09-01

    Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.

  19. Acoustical emission from bubbles

    NASA Astrophysics Data System (ADS)

    Longuet-Higgins, Michael S.

    1991-12-01

    The scientific objectives of this report are to investigate the dynamics of bubbles formed from a free surface (particularly the upper surface of the ocean) by breaking waves, and the resulting emission of underwater sound. The chief natural source of underwater sound in the ocean at frequencies from 0.5 to 50 kHz is known to be the acoustical emission from newly-formed bubbles and bubble clouds, particularly those created by breaking waves and rain. Attention has been drawn to the occurrence of high-speed jets directed into the bubble just after bubble closure. They have been observed both in rain-drop impacts and in the release of bubbles from an underwater nozzle. Qualitatively they are similar to the inward jets seen in the collapse of a cavitation bubble. There is also a similarity to the highly-accelerated upward jets in standing water waves (accelerations greater than 20g) or in bubbles bursting at a free surface. We have adopted a theoretical approach based on the dynamics of incompressible fluids with a free surface.

  20. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  1. Let Them Blow Bubbles.

    ERIC Educational Resources Information Center

    Korenic, Eileen

    1988-01-01

    Describes a series of activities and demonstrations involving the science of soap bubbles. Starts with a recipe for bubble solution and gives instructions for several activities on topics such as density, interference colors, optics, static electricity, and galaxy formation. Contains some background information to help explain some of the effects.…

  2. Simulating Surfzone Bubbles

    DTIC Science & Technology

    2012-09-30

    D (Ripple) and 3-D ( Truchas ) Navier- Stokes solvers. In the continuation of this work, our objectives are to: 1) Implement a physics-based...a bubble phase with multiple bubble size (or, more accurately, mass) bins. The existing 3-D model Truchas has been extended to include Carrica et al

  3. Beer tapping: dynamics of bubbles after impact

    NASA Astrophysics Data System (ADS)

    Mantič-Lugo, V.; Cayron, A.; Brun, P.-T.; Gallaire, F.

    2015-12-01

    Beer tapping is a well known prank where a bottle of beer is impacted from the top by a solid object, usually another bottle, leading to a sudden foam overflow. A description of the shock-driven bubble dynamics leading to foaming is presented based on an experimental and numerical study evoking the following physical picture. First, the solid impact produces a sudden downwards acceleration of the bottle creating a strong depression in the liquid bulk. The existing bubbles undergo a strong expansion and a sudden contraction ending in their collapse and fragmentation into a large amount of small bubbles. Second, the bubble clouds present a large surface area to volume ratio, enhancing the CO2 diffusion from the supersaturated liquid, hence growing rapidly and depleting the CO2. The clouds of bubbles migrate upwards in the form of plumes pulling the surrounding liquid with them and eventually resulting in the foam overflow. The sudden pressure drop that triggers the bubble dynamics with a collapse and oscillations is modelled by the Rayleigh-Plesset equation. The bubble dynamics from impact to collapse occurs over a time (tb ≃ 800 μs) much larger than the acoustic time scale of the liquid bulk (tac = 2H/c ≃ 80 μs), for the experimental container of height H = 6 cm and a speed of sound around c ≃ 1500 m/s. This scale separation, together with the comparison of numerical and experimental results, suggests that the pressure drop is controlled by two parameters: the acceleration of the container and the distance from the bubble to the free surface.

  4. Assimilation of GOES Land Surface Data Within a Rapid Update Cycle Format: Impact on MM5 Warm Season QPF

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Suggs, Ron; Jedlovec, Gary; McNider, Richard T.; Dembek, Scott; Arnold, James E. (Technical Monitor)

    2001-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The focus of this paper is to examine how the satellite assimilation technique impacts simulations of near-surface meteorology on the 0-to 12-hour time scale when implemented within a local rapid update cycle (LRUC) format. The PSU/NCAR MM5 V34 is used and configured with a 36-km CONUS domain and a 12-km nest centered over the southeastern US. The LRUC format consists of a sequence of 12-hour forecasts initialized every hour between 12 and 18 UTC seven days a week. GOES skin temperature tendencies and solar insolation are assimilated in a 1-hour period prior to the start of each twelve-hour forecast. A unique aspect of the LRUC is the satellite assimilation and the continuous recycling of the adjusted moisture availability field from one forecast cycle to the next. Preliminary results for a seven-day trial period indicate that hourly LST tendencies assimilated in a 1 hour LRUC showed improved simulated air and dewpoint

  5. Quantitative characterization of xenon bubbles in silicon: Correlation of bubble size with the damage generated during implantation

    NASA Astrophysics Data System (ADS)

    Wittmaack, Klaus; Oppolzer, Helmut

    2011-02-01

    Making use of Fresnel fringe contrast under different focusing conditions in transmission electron microscopy (TEM), we present a detailed evaluation of the depth dependent size distribution of gas bubbles contained in a stationary profile of 40 keV Xe implanted in Si. Voids generated during sample preparation by ion milling were also characterized carefully. The largest bubbles, with mean and maximum sizes of 5 and 7 nm, respectively, were observed at depths <22 nm. However, the first 2 nm of the sample did not contain any bubbles. Towards the end of range the bubble size decreased rapidly. No bubbles were found beyond 45 nm (the minimum size of detectable bubbles was estimated to be about 1.8 nm). Some observations suggest that the bubbles were over-pressurized. The derived data could be converted to a depth dependence of the Xe concentration contained in bubbles, nXe,b. Comparison with the previously reported depth distribution of Xe measured by Rutherford backscattering spectrometry (RBS), nXe,b turned out to be depth dependent, with a maximum of ˜28% in the region of maximum bubble size. nXe,b is shown to correlate closely with the damage density generated during Xe implantation. The findings lead to a model of bubble formation which involves the idea that the redistribution and transport processes initiated by ion impact take place mostly during the lifetime of the collision cascade.

  6. Bubble collision with gravitation

    SciTech Connect

    Hwang, Dong-il; Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han E-mail: bhl@sogang.ac.kr E-mail: innocent.yeom@gmail.com

    2012-07-01

    In this paper, we study vacuum bubble collisions with various potentials including gravitation, assuming spherical, planar, and hyperbolic symmetry. We use numerical calculations from double-null formalism. Spherical symmetry can mimic the formation of a black hole via multiple bubble collisions. Planar and especially hyperbolic symmetry describes two bubble collisions. We study both cases, when two true vacuum regions have the same field value or different field values, by varying tensions. For the latter case, we also test symmetric and asymmetric bubble collisions, and see details of causal structures. If the colliding energy is sufficient, then the vacuum can be destabilized, and it is also demonstrated. This double-null formalism can be a complementary approach in the context of bubble collisions.

  7. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  8. Theory of bubble dynamics in condensed explosive during start-up transient

    NASA Technical Reports Server (NTRS)

    Benreuven, M.; Summerfield, M.

    1980-01-01

    Test firings with experimental liquid propellant gun systems indicate that the main concern standing in the way of practical application of LPG's is the possibility of unexpected explosions during start up when pressure is rapidly applied to the liquid monopropellant in the chamber. The phenomenon of many collapse-rebound cycles of imploding bubbles is theorized as the probable cause of explosions in LP systems. It may be concluded that LPG safety would be enhanced by choosing an LP with low bulk modulus, as well as low decomposition reaction rate, and that a benign looking DTA trace is not a sufficient quarantee of insensitivity to a pressure induced explosion. It is also shown that pre-pressurizing an LP charge, thus pre-compressing the bubbles near-isothermally, makes the system relatively insensitive to such pressure induced explosions. The applicability of this analysis to the question of acceleration induced explosion of explosive filled warheads is indicated.

  9. Personal and Societal Construction of Illness Among Individuals With Rapid-Cycling Bipolar Disorder: A Life-Trajectory Perspective

    PubMed Central

    Sajatovic, Martha; Jenkins, Janis H.; Safavi, Roknedin; West, Jane A.; Cassidy, Kristin A.; Meyer, William J.; Calabrese, Joseph R.

    2011-01-01

    Objective Bipolar disorder is a chronic mental illness associated with substantial impairment in quality of life and function. Although there has been tremendous growth in understanding bipolar disorder with respect to treatments, very little study has focused on the viewpoint of affected individuals. The purpose of this study was to examine the subjective experience of illness among 19 men and women with rapid cycling bipolar disorder receiving treatment at an academic psychiatry clinic. Methods Personal constructs of illness with respect to life-trajectory and societal reaction to the individual, specifically the issue of stigma, were evaluated using a semistructured, open-ended anthropological interview. Results Participants perceived bipolar disorder as a disease with biologic underpinnings. Stigma was a major issue for all individuals. In common with individuals without serious mental illness, individuals with bipolar disorder work at mastering developmental tasks appropriate for their life stage. At times, younger individuals appeared to have difficulty separating their own identity from the effects of illness. For older individuals with bipolar disorder, life was perceived to be disrupted by bipolar disorder, with early plans and dreams often “derailed.” Conclusion Although bipolar disorder may severely alter an individual’s planned life trajectory, accomplishment of life goals can at least partially offset the sense of loss that is often seen in bipolar illness. PMID:18070834

  10. DNA-Based Genetic Markers for Rapid Cycling Brassica Rapa (Fast Plants Type) Designed for the Teaching Laboratory.

    PubMed

    Slankster, Eryn E; Chase, Jillian M; Jones, Lauren A; Wendell, Douglas L

    2012-01-01

    We have developed DNA-based genetic markers for rapid cycling Brassica rapa (RCBr), also known as Fast Plants. Although markers for B. rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP) based markers and 14 variable number tandem repeat (VNTR)-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a non-genic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology.

  11. DNA-Based Genetic Markers for Rapid Cycling Brassica Rapa (Fast Plants Type) Designed for the Teaching Laboratory

    PubMed Central

    Slankster, Eryn E.; Chase, Jillian M.; Jones, Lauren A.; Wendell, Douglas L.

    2012-01-01

    We have developed DNA-based genetic markers for rapid cycling Brassica rapa (RCBr), also known as Fast Plants. Although markers for B. rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP) based markers and 14 variable number tandem repeat (VNTR)-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a non-genic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology. PMID:22675329

  12. Tribonucleation of bubbles

    PubMed Central

    Wildeman, Sander; Lhuissier, Henri; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea

    2014-01-01

    We report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rubbing force and velocity exceed a certain threshold. Direct observation through a transparent solid shows that each bubble in the trail results from the early coalescence of several microscopic bubbles, themselves detaching from microscopic gas pockets forming between the solids. From a detailed study of the wear tracks, with atomic force and scanning electron microscopy imaging, we conclude that these microscopic gas pockets originate from a local fracturing of the surface asperities, possibly enhanced by chemical reactions at the freshly created surfaces. Our findings will be useful either for preventing undesired bubble formation or, on the contrary, for “writing with bubbles,” i.e., creating controlled patterns of microscopic bubbles. PMID:24982169

  13. Bubble core field modification by residual electrons inside the bubble

    SciTech Connect

    Wu Haicheng; Xie Baisong; Zhao Xueyan; Zhang Shan; Hong Xueren; Liu Mingping

    2010-11-15

    Bubble core field modification due to the nondepleted electrons present inside the bubble is investigated theoretically. These residual electrons induce charge and current densities that can induce the bubble core field modification as well as the bubble shape change. It is found that the electrons entering into the bubble move backward at almost light speed and would weaken the transverse bubble fields. This reduces the ratio of longitudinal to transverse radius of the bubble. For the longitudinal bubble field, two effects compensate with each other because of their competition between the enhancement by the shortening of bubble shape and the reduction by the residual electrons. Therefore the longitudinal field is hardly changeable. As a comparison we perform particle-in-cell simulations and it is found that the results from theoretical consideration are consistent with simulation results. Implication of the modification of fields on bubble electron acceleration is also discussed briefly.

  14. Teaching Human Genetics with Mustard: Rapid Cycling "Brassica rapa" (Fast Plants Type) as a Model for Human Genetics in the Classroom Laboratory

    ERIC Educational Resources Information Center

    Wendell, Douglas L.; Pickard, Dawn

    2007-01-01

    We have developed experiments and materials to model human genetics using rapid cycling "Brassica rapa", also known as Fast Plants. Because of their self-incompatibility for pollination and the genetic diversity within strains, "B. rapa" can serve as a relevant model for human genetics in teaching laboratory experiments. The experiment presented…

  15. Bubble cloud dynamics in a high-pressure spherical resonator

    NASA Astrophysics Data System (ADS)

    Anderson, Phillip Andrew

    A bubble cloud is a population of bubbles confined to a region within a fluid. Bubble clouds play a large role in a variety of naturally occurring phenomena and man-made applications (e.g., ocean noise, cavitation damage, sonoluminescence, ultrasonic cleaning, drug delivery, lithotripsy). It is important, therefore, to understand the behavior of bubble clouds so that their effects may be enhanced or diminished as desired. This work explores and characterizes the properties of bubble clouds nucleated inside a high-pressure spherical acoustic resonator, in connection with recent interest in acoustic inertial confinement fusion (acoustic ICF). A laser system was developed to repeatably nucleate a cloud of bubbles inside the resonator. The resulting events were then observed, primarily with schlieren imaging methods. Preliminary studies of the bubble cloud dynamics showed the sensitivity of the initial cloud to nucleation parameters including the phase of nucleation, the laser energy, and the acoustic power. After many acoustic cycles, some bubble clouds are observed to evolve into a tight cluster. The formation of these clusters correlates with initial bubble distributions which have a large cloud interaction parameter, β. Cluster dynamics are seen to be largely driven by reconverging shock waves from previous collapses reflected from the resonator's interior surface. Initial expansion of the cluster boundary is on the order of 8 mm/µs and the maximum radius approaches 3 mm. Shock pressures are estimated to be > 10 GPa at a radius of 100 µm using weak shock theory.

  16. Estrous cycle variations in GABAA receptor phosphorylation enable rapid modulation by anabolic androgenic steroids in the medial preoptic area

    PubMed Central

    Oberlander, JG; Porter, DM; Onakomaiya, MM; Penatti, CAA; Vithlani, M; Moss, SJ; Clark, AS; Henderson, LP

    2012-01-01

    Anabolic androgenic steroids (AAS), synthetic testosterone derivatives that are used for ergogenic purposes, alter neurotransmission and behaviors mediated by GABAA receptors. Some of these effects may reflect direct and rapid action of these synthetic steroids at the receptor. The ability of other natural allosteric steroid modulators to alter GABAA receptor-mediated currents is dependent upon the phosphorylation state of the receptor complex. Here we show that phosphorylation of the GABAA receptor complex immunoprecipitated by β2/β3 subunit-specific antibodies from the medial preoptic area (mPOA) of the mouse varies across the estrous cycle; with levels being significantly lower in estrus. Acute exposure to the AAS, 17α-testosterone (17α-MeT), had no effect on the amplitude or kinetics of inhibitory postsynaptic currents in the mPOA of estrous mice when phosphorylation was low, but increased the amplitude of these currents from mice in diestrus, when it was high. Inclusion of the protein kinase C (PKC) inhibitor, calphostin, in the recording pipette eliminated the ability of 17α-MeT to enhance currents from diestrous animals, suggesting that PKC-receptor phosphorylation is critical for the allosteric modulation elicited by AAS during this phase. In addition, a single injection of 17α-MeT was found to impair an mPOA-mediated behavior (nest-building) in diestrus, but not in estrus. PKC is known to target specific serine residues in the β3 subunit of the GABAA receptor. Although phosphorylation of these β3 serine residues showed a similar profile across the cycle, as did phosphoserine in mPOA lysates immunoprecipitated with β2/β3 antibody (lower in estrus than in diestrus or proestrus), the differences were not significant. These data suggest that the phosphorylation state of the receptor complex regulates both the ability of AAS to modulate receptor function in the mPOA and the expression of a simple mPOA-dependent behavior through PKC-dependent mechanism

  17. Viscosity Destabilizes Sonoluminescing Bubbles

    NASA Astrophysics Data System (ADS)

    Toegel, Ruediger; Luther, Stefan; Lohse, Detlef

    2006-03-01

    In single-bubble sonoluminescence (SBSL) microbubbles are trapped in a standing sound wave, typically in water or water-glycerol mixtures. However, in viscous liquids such as glycol, methylformamide, or sulphuric acid it is not possible to trap the bubble in a stable position. This is very peculiar as larger viscosity normally stabilizes the dynamics. Suslick and co-workers call this new mysterious state of SBSL “moving-SBSL.” We identify the history force (a force nonlocal in time) as the origin of this destabilization and show that the instability is parametric. A force balance model quantitatively accounts for the observed quasiperiodic bubble trajectories.

  18. Viscosity destabilizes sonoluminescing bubbles.

    PubMed

    Toegel, Ruediger; Luther, Stefan; Lohse, Detlef

    2006-03-24

    In single-bubble sonoluminescence (SBSL) microbubbles are trapped in a standing sound wave, typically in water or water-glycerol mixtures. However, in viscous liquids such as glycol, methylformamide, or sulphuric acid it is not possible to trap the bubble in a stable position. This is very peculiar as larger viscosity normally stabilizes the dynamics. Suslick and co-workers call this new mysterious state of SBSL "moving-SBSL." We identify the history force (a force nonlocal in time) as the origin of this destabilization and show that the instability is parametric. A force balance model quantitatively accounts for the observed quasiperiodic bubble trajectories.

  19. Rotating bubble membrane radiator

    DOEpatents

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  20. Cardiovascular bubble dynamics.

    PubMed

    Bull, Joseph L

    2005-01-01

    Gas bubbles can form in the cardiovascular system as a result of patho-physiological conditions or can be intentionally introduced for diagnostic or therapeutic reasons. The dynamic behavior of these bubbles is caused by a variety of mechanisms, such as inertia, pressure, interfacial tension, viscosity, and gravity. We review recent advances in the fundamental mechanics and applications of cardiovascular bubbles, including air embolism, ultrasound contrast agents, targeted microbubbles for drug delivery and molecular imaging, cavitation-induced tissue erosion for ultrasonic surgery, microbubble-induced angiogenesis and arteriogenesis, and gas embolotherapy.

  1. Geyser preplay and eruption in a laboratory model with a bubble trap

    NASA Astrophysics Data System (ADS)

    Adelstein, Esther; Tran, Aaron; Saez, Carolina Muñoz; Shteinberg, Alexander; Manga, Michael

    2014-09-01

    We present visual observations and temperature measurements from a laboratory model of a geyser. Our model incorporates a bubble trap, a zone in which vapor can accumulate in the geyser's subsurface plumbing, in a vertical conduit connected to a basal chamber. Analogous features have been identified at several natural geysers. We observe three types of eruptions: 1) rising bubbles eject a small volume of liquid in a weak spout (small eruption); 2) boiling occurs in the conduit above the bubble trap (medium eruption); and 3) boiling occurs in the conduit and chamber (large eruption). In the last two cases, boiling in the conduit causes a rapid hydrostatic pressure drop that allows for the rise and eruption of liquid water in a vigorous spout. Boiling initiates at depth rather than propagating downward from the surface. In a single eruption cycle, multiple small eruptions precede every medium and large eruption. At least one eruption cycle that culminates in a medium eruption (i.e., a quiescent period followed by a series of small eruptions leading up to a medium eruption) precedes every eruption cycle that culminates in a large eruption. We find that the transfer of fluid with high enthalpy to the upper conduit during small and medium eruptions is necessary to heat the upper conduit and prepare the system for the full boiling required for a large eruption. The placement of the bubble trap midway up the conduit allows for more efficient heating of the upper conduit. Our model provides insight into the influence of conduit geometry on eruption style and the importance of heat transfer by smaller events in preparing the geyser system for eruption.

  2. Linear and nonlinear studies at RHIC interaction regions and optical design of the rapid cycling medical synchrotron

    NASA Astrophysics Data System (ADS)

    Cardona, Javier Fernando

    Development and application of the action and phase technique used to evaluate and correct local errors, linear and non linear (skew quadrupole errors, gradient errors and sextupole errors), at RHIC interaction regions is presented in the first part of this thesis. The skew quadrupole errors have their origin on the roll angles of the quadrupoles. It is then possible to estimate the skew quadrupole error present in a RHIC triplet if all the roll angles of the quadrupoles of a particular triplet are known. These values were estimated with the measured roll angles during the 2002 RHIC shutdown period and compared to the measured skew quadrupole errors obtained with the action and phase technique. The agreement is fairly good validating the action and phase technique for at least skew quadrupole errors. Another way of validating the action and phase technique is by intentionally introducing known values of errors while attempting to measure the values with the technique. This was done for skew quadrupole errors and gradient errors with excellent results. Analysis of some of the experiments shows that the set errors can be reproduced by the technique with accuracies below 5 percent. Same experiments were repeated for sextupole errors an a clear correlation between the measured and the set error was found but the precision in this case is not as good as for the linear errors case. The optical design of the Rapid Cycling Medical Synchrotron and related efforts to optimize the design are presented in the second part of this thesis. An interesting outcome of this work is the development of the so called IBEFUMFO technique which allow a better understanding of the optical parameters involved in a lattice design and hence facilitate the task of the designer. The rapid repetition frequency of the RCMS has raised concerns about the sextupole components induced in the beam due to strong Eddy currents. Tracking simulations with Marylie have been done in order to evaluate the

  3. Cumulative frequency-dependent selective episodes allow for rapid morph cycles and rock-paper-scissors dynamics in species with overlapping generations

    PubMed Central

    San-Jose, Luis M.; Peñalver-Alcázar, Miguel; Milá, Borja; Gonzalez-Jimena, Virginia; Fitze, Patrick S.

    2014-01-01

    Rock-paper-scissors (RPS) dynamics, which maintain genetic polymorphisms over time through negative frequency-dependent (FD) selection, can evolve in short-lived species with no generational overlap, where they produce rapid morph frequency cycles. However, most species have overlapping generations and thus, rapid RPS dynamics are thought to require stronger FD selection, the existence of which yet needs to be proved. Here, we experimentally demonstrate that two cumulative selective episodes, FD sexual selection reinforced by FD selection on offspring survival, generate sufficiently strong selection to generate rapid morph frequency cycles in the European common lizard Zootoca vivipara, a multi-annual species with major generational overlap. These findings show that the conditions required for the evolution of RPS games are fulfilled by almost all species exhibiting genetic polymorphisms and suggest that RPS games may be responsible for the maintenance of genetic diversity in a wide range of species. PMID:24943372

  4. Cumulative frequency-dependent selective episodes allow for rapid morph cycles and rock-paper-scissors dynamics in species with overlapping generations.

    PubMed

    San-Jose, Luis M; Peñalver-Alcázar, Miguel; Milá, Borja; Gonzalez-Jimena, Virginia; Fitze, Patrick S

    2014-08-07

    Rock-paper-scissors (RPS) dynamics, which maintain genetic polymorphisms over time through negative frequency-dependent (FD) selection, can evolve in short-lived species with no generational overlap, where they produce rapid morph frequency cycles. However, most species have overlapping generations and thus, rapid RPS dynamics are thought to require stronger FD selection, the existence of which yet needs to be proved. Here, we experimentally demonstrate that two cumulative selective episodes, FD sexual selection reinforced by FD selection on offspring survival, generate sufficiently strong selection to generate rapid morph frequency cycles in the European common lizard Zootoca vivipara, a multi-annual species with major generational overlap. These findings show that the conditions required for the evolution of RPS games are fulfilled by almost all species exhibiting genetic polymorphisms and suggest that RPS games may be responsible for the maintenance of genetic diversity in a wide range of species.

  5. Bubble evolution and properties in homogeneous nucleation simulations

    NASA Astrophysics Data System (ADS)

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K.; Tanaka, Hidekazu

    2014-12-01

    We analyze the properties of naturally formed nanobubbles in Lennard-Jones molecular dynamics simulations of liquid-to-vapor nucleation in the boiling and the cavitation regimes. The large computational volumes provide a realistic environment at unchanging average temperature and liquid pressure, which allows us to accurately measure properties of bubbles from their inception as stable, critically sized bubbles, to their continued growth into the constant speed regime. Bubble gas densities are up to 50 % lower than the equilibrium vapor densities at the liquid temperature, yet quite close to the gas equilibrium density at the lower gas temperatures measured in the simulations: The latent heat of transformation results in bubble gas temperatures up to 25 % below those of the surrounding bulk liquid. In the case of rapid bubble growth—typical for the cavitation regime—compression of the liquid outside the bubble leads to local temperature increases of up to 5 %, likely significant enough to alter the surface tension as well as the local viscosity. The liquid-vapor bubble interface is thinner than expected from planar coexistence simulations by up to 50 % . Bubbles near the critical size are extremely nonspherical, yet they quickly become spherical as they grow. The Rayleigh-Plesset description of bubble-growth gives good agreement in the cavitation regime.

  6. Development of a Rapid Cycling CO(sub 2) and H(sub 2)O Removal Sorbent

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Alptekin, Goekhan; Cates, Matthew; Bernal, Casey; Dubovik, Margarita; Gershanovich, Yevgenia

    2007-01-01

    The National Aeronautics and Space Administration (NASA) planned future missions set stringent demands on the design of the Portable Life Support System (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the Extravehicular Mobility Unit (EMU) is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The carbon dioxide and humidity control unit in the existing PLSS design is relatively large, since it has to remove and store 8 hours worth of CO2. If the sorbent regeneration can be carried out during the extravehicular activity (EVA) with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced. The progress of regenerable CO2 and humidity control is leading us towards the use of a rapid cycling amine system. TDA Research, Inc. is developing compact, regenerable sorbent materials to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all carbon dioxide and humidity duration-limiting elements in the life support system. The material also has applications in other areas of space exploration such as the Orion spacecraft and other longer duration exploration missions requiring regenerable technologies. This paper summarizes the results of the sorbent development, testing, and evaluation efforts to date. The results of a preliminary system analysis are also included, showing the size and volume reductions for PLSS provided by the new system.

  7. Bubble migration in a compacting crystal-liquid mush

    NASA Astrophysics Data System (ADS)

    Boudreau, Alan

    2016-04-01

    . Bubbles can also move rapidly by `surfing' on porosity waves that can develop in a compacting mush.

  8. Chemistry in Soap Bubbles.

    ERIC Educational Resources Information Center

    Lee, Albert W. M.; Wong, A.; Lee, H. W.; Lee, H. Y.; Zhou, Ning-Huai

    2002-01-01

    Describes a laboratory experiment in which common chemical gases are trapped inside soap bubbles. Examines the physical and chemical properties of the gases such as relative density and combustion. (Author/MM)

  9. What's in a Bubble?

    ERIC Educational Resources Information Center

    Saunderson, Megan

    2000-01-01

    Describes a unit on detergents and bubbles that establishes an interest in the properties of materials and focuses on active learning involving both hands- and minds-on learning rather than passive learning. (ASK)

  10. Blowing magnetic skyrmion bubbles

    NASA Astrophysics Data System (ADS)

    Jiang, Wanjun; Upadhyaya, Pramey; Zhang, Wei; Yu, Guoqiang; Jungfleisch, M. Benjamin; Fradin, Frank Y.; Pearson, John E.; Tserkovnyak, Yaroslav; Wang, Kang L.; Heinonen, Olle; te Velthuis, Suzanne G. E.; Hoffmann, Axel

    2015-07-01

    The formation of soap bubbles from thin films is accompanied by topological transitions. Here we show how a magnetic topological structure, a skyrmion bubble, can be generated in a solid-state system in a similar manner. Using an inhomogeneous in-plane current in a system with broken inversion symmetry, we experimentally “blow” magnetic skyrmion bubbles from a geometrical constriction. The presence of a spatially divergent spin-orbit torque gives rise to instabilities of the magnetic domain structures that are reminiscent of Rayleigh-Plateau instabilities in fluid flows. We determine a phase diagram for skyrmion formation and reveal the efficient manipulation of these dynamically created skyrmions, including depinning and motion. The demonstrated current-driven transformation from stripe domains to magnetic skyrmion bubbles could lead to progress in skyrmion-based spintronics.

  11. Blowing DNA bubbles.

    PubMed

    Severin, N; Zhuang, W; Ecker, C; Kalachev, A A; Sokolov, I M; Rabe, J P

    2006-11-01

    We report here experimental observations which indicate that topologically or covalently formed polymer loops embedded in an ultrathin liquid film on a solid substrate can be "blown" into circular "bubbles" during scanning force microscopy (SFM) imaging. In particular, supercoiled vector DNA has been unraveled, moved, stretched, and overstretched to two times its B-form length and then torn apart. We attribute the blowing of the DNA bubbles to the interaction of the tapping SFM tip with the ultrathin liquid film.

  12. 2012 Problem 8: Bubbles

    NASA Astrophysics Data System (ADS)

    Zhu, Kejing; Xia, Qing; Wang, Sihui; Zhou, Huijun

    2015-10-01

    When a large number of bubbles exist in the water, an object may float on the surface or sink. The assumption of equivalent density is proposed in this article to explain the concrete example. According to the assumption, an object is floatable only if its density is less than the equivalent density of the water-bubble mixture. This conclusion is supported by the floating experiment and by measuring the pressure underwater to a satisfactory approximation.

  13. Bubble coalescence in magmas

    NASA Technical Reports Server (NTRS)

    Herd, Richard A.; Pinkerton, Harry

    1993-01-01

    The most important factors governing the nature of volcanic eruptions are the primary volatile contents, the ways in which volatiles exsolve, and how the resulting bubbles grow and interact. In this contribution we assess the importance of bubble coalescence. The degree of coalescence in alkali basalts has been measured using Image Analysis techniques and it is suggested to be a process of considerable importance. Binary coalescence events occur every few minutes in basaltic melts with vesicularities greater than around 35 percent.

  14. Clustering in Bubble Suspensions

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto

    2000-11-01

    A monidisperse bubble suspension is studied experimentally for the limit in which the Weber number is small and the Reynolds number is large. For this regime the suspension can be modeled using potential flow theory to describe the dynamics of the interstitial fluid. Complete theoretical descriptions have been composed (Spelt and Sangani, 1998) to model the behavior of these suspensions. Bubble clustering is a natural instability that arises from the potential flow considerations, in which bubbles tend to align in horizontal rafts as they move upwards. The appearance of bubble clusters was recently corroborated experimentally by Zenit et al. (2000), who found that although clusters did appear, their strength was not as strong as the predictions. Experiments involving gravity driven shear flows are used to explain the nature of the clustering observed in these type of flows. Balances of the bubble phase pressure (in terms of a calculated diffusion coefficient) and the Maxwell pressure (from the potential flow description) are presented to predict the stability of the bubble suspension. The predictions are compared with experimental results.

  15. Perturbation of a radially oscillating single-bubble by a micron-sized object.

    PubMed

    Montes-Quiroz, W; Baillon, F; Louisnard, O; Boyer, B; Espitalier, F

    2017-03-01

    A single bubble oscillating in a levitation cell is acoustically monitored by a piezo-ceramics microphone glued on the cell external wall. The correlation of the filtered signal recorded over distant cycles on one hand, and its harmonic content on the other hand, are shown to carry rich information on the bubble stability and existence. For example, the harmonic content of the signal is shown to increase drastically once air is fully dissociated in the bubble, and the resulting pure argon bubble enters into the upper branch of the sonoluminescence regime. As a consequence, the bubble disappearance can be unambiguously detected by a net drop in the harmonic content. On the other hand, we perturb a stable sonoluminescing bubble by approaching a micron-sized fiber. The bubble remains unperturbed until the fiber tip is approached within a critical distance, below which the bubble becomes unstable and disappears. This distance can be easily measured by image treatment, and is shown to scale roughly with 3-4 times the bubble maximal radius. The bubble disappearance is well detected by the drop of the microphone harmonic content, but several thousands of periods after the bubble actually disappeared. The delay is attributed to the slow extinction of higher modes of the levitation cell, excited by the bubble oscillation. The acoustic detection method should however allow the early detection and imaging of non-predictable perturbations of the bubble by foreign micron-sized objects, such as crystals or droplets.

  16. Optical Deflection Technique for Investigation of Laser-Induced Oscillating Bubble on Metal Surface

    NASA Astrophysics Data System (ADS)

    Xu, Rong-Qing; Chen, Xiao; Shen, Zhong-Hua; Lu, Jian; Ni, Xiao-Wu

    2004-08-01

    The oscillation of a laser-generated single cavitation bubble on a metal surface is investigated by a fiber-optic diagnostic technique based on an optical beam deflection (OBD). The sequence of waveforms induced by the bubble pulsation is obtained with respect to detection distance. The maximum and minimum bubble radii for each oscillation cycle are determined from the experimental results. Furthermore, by tracking the arrival time of a bubble wall during its expanding and collapsing stages, the temporal development of a cavitation bubble on the metal surface is obtained.

  17. Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer

    2016-01-01

    The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype was delivered to NASA in 2006 and was notated as RCA 1.0 and sized for the extravehicular activity (EVA). The new RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two- bed design employs a chemisorption process whereby the beds alternate between adsorbtion and desorbsion. This process provides for an efficient operation of the RCA so that while one bed is in adsorb (uptake) mode, the other is in the desorb (regeneration) mode. The RCA has now progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overreview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each.

  18. Major CO2 source and sink perturbations of the global carbon cycle due to rapid emplacement of Continental Flood Basalts

    NASA Astrophysics Data System (ADS)

    Schaller, M. F.; Wright, J. D.; Kent, D. V.

    2011-12-01

    Recent evidence from the ~201.5 Ma Central Atlantic Magmatic Province (CAMP) in the Newark Rift Basin demonstrates that this Large Igneous Province (LIP) produced a transient doubling of atmospheric pCO2, followed by a ~300 kyr falloff to near pre-eruptive concentrations after each major eruptive episode (Schaller, Wright and Kent; Science, 2011). Here we similarly use pedogenic carbonates to test the million-year effects of the CAMP volcanism on Early Jurassic pCO2 in the corollary Hartford Basin of Eastern North America (ENA). In both basins we find a pre-CAMP pCO2 background of ~2000 ± 700 ppm, increasing to ~4500 ± 1600 ppm immediately above the first flow unit, followed by 300 kyr post-extrusive decrease to near background concentrations. The long post-extrusive section of the Hartford Basin shows the same ~300 kyr pCO2 decrease to pre-eruptive background, which continues to levels below pre-CAMP background over the subsequent 1.5 Myr following the final episode of eruptions. We use a geochemical model to demonstrate that the rapidity of the pCO2 decreases, and the fall to concentrations below background may be accounted for by a 1.5-fold amplification of the continental silicate weathering response due to the presence of the more highly weatherable CAMP basalts themselves. This indicates that continental flood basalts capable of producing a short-term perturbation of the carbon system may actually have an overall net-cooling effect on global climates due to a long-term net-decrease in pCO2 to below pre-eruptive levels. Analysis of the effusive potential for various submarine and continental LIPs based on reconstructed volumes suggests that those comparable to, or even larger than the CAMP may have had a significant effect on short term pCO2 concentrations, but this effect is highly dependent on effusive timescale. However, we pose the testable hypothesis that only continental flood basalts participate directly on both the CO2 source and sink side of the

  19. Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer

    2016-01-01

    The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype (RCA 1.0) was delivered to NASA in 2006 and sized for the extravehicular activity (EVA). The RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two-bed design employs a chemisorption process whereby the beds alternate between adsorption and desorption. This process provides for an efficient RCA operation that enables one bed to be in adsorb (uptake) mode, while the other is in the desorb (regeneration) mode. The RCA has progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each. Nomenclature.

  20. The Speed of Axial Propagation of a Cylindrical Bubble Through a Cylindrical Vortex

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    Inspired by the rapid elongation of air columns injected into vortices by dolphins, we present an exact inviscid solution for the axial speed (assumed steady) of propagation of the tip of a semi-infinite cylindrical bubble along the axis of a cylindrical vortex. The bubble is assumed to be held at constant pressure by being connected to a reservoir, the lungs of the dolphin, say. For a given bubble pressure, there is a modest critical rotation rate above which steadily propagating bubbles exist. For a bubble at ambient pressure, the propagation speed of the bubble (relative to axial velocity within the vortex) varies between 0.5 and 0.6 of the maximum rotational speed of the vortex. Surprisingly, the bubble tip can propagate (almost as rapidly) even when the pressure minimum in the vortex core is greater than the bubble pressure; in this case, solutions exhibit a dimple on the nose of the bubble. A situation important for incipient vortex cavitation, and one which dolphins also demonstrate, is elongation of a free bubble, i.e., one whose internal pressure may vary. Under the assumption that the acceleration term is small (checked a posteriori), the steady solution is applied at each instant during the elongation. Three types of behavior are then possible depending on physical parameters and initial conditions: (A) Unabated elongation with slowly increasing bubble pressure, and nearly constant volume. Volume begins to decrease in the late stages. (B1) Elongation with decreasing bubble pressure. A limit point of the steady solution is encountered at a finite bubble length. (B2) Unabated elongation with decreasing bubble pressure and indefinite creation of volume. This is made possible by the existence of propagating solutions at bubble pressures below the minimum vortex pressure. As the bubble stretches, its radius initially decreases but then becomes constant; this is also observed in experiments on incipient vortex cavitation.

  1. Bubble transport in subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Owoeye, Eyitayo James

    Understanding the behavior of bubbles in subcooled flow boiling is important for optimum design and safety in several industrial applications. Bubble dynamics involve a complex combination of multiphase flow, heat transfer, and turbulence. When a vapor bubble is nucleated on a vertical heated wall, it typically slides and grows along the wall until it detaches into the bulk liquid. The bubble transfers heat from the wall into the subcooled liquid during this process. Effective control of this transport phenomenon is important for nuclear reactor cooling and requires the study of interfacial heat and mass transfer in a turbulent flow. Three approaches are commonly used in computational analysis of two-phase flow: Eulerian-Lagrangian, Eulerian-Eulerian, and interface tracking methods. The Eulerian- Lagrangian model assumes a spherical non-deformable bubble in a homogeneous domain. The Eulerian-Eulerian model solves separate conservation equations for each phase using averaging and closure laws. The interface tracking method solves a single set of conservation equations with the interfacial properties computed from the properties of both phases. It is less computationally expensive and does not require empirical relations at the fluid interface. Among the most established interface tracking techniques is the volume-of-fluid (VOF) method. VOF is accurate, conserves mass, captures topology changes, and permits sharp interfaces. This work involves the behavior of vapor bubbles in upward subcooled flow boiling. Both laminar and turbulent flow conditions are considered with corresponding pipe Reynolds number of 0 -- 410,000 using a large eddy simulation (LES) turbulence model and VOF interface tracking method. The study was performed at operating conditions that cover those of boiling water reactors (BWR) and pressurized water reactors (PWR). The analysis focused on the life cycle of vapor bubble after departing from its nucleation site, i.e. growth, slide, lift-off, rise

  2. Colliding with a crunching bubble

    SciTech Connect

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  3. Rapid G0/1 transition and cell cycle progression in CD8(+) T cells compared to CD4(+) T cells following in vitro stimulation.

    PubMed

    Mishima, Takuya; Fukaya, Shotaro; Toda, Shoko; Ando, Yoshiaki; Matsunaga, Tsukasa; Inobe, Manabu

    2017-04-01

    T cell population consists of two major subsets, CD4(+) T cells and CD8(+) T cells, which can be distinguished by the expression of CD4 or CD8 molecules, respectively. Although they play quite different roles in an immune system, many of their basic cellular processes such as proliferation following stimulation are presumably common. In this study, we have carefully analyzed time course of G0/1 transition as well as cell cycle progression in the two subsets of quiescent T cell population following in vitro growth stimulation. We found that CD8(+) T cells promote G0/1 transition more rapidly and drive their cell cycle progression faster compared to CD4(+) T cells. In addition, expression of CD25 and effects of its blockade revealed that IL-2 is implicated in the rapid progression, but not the earlier G0/1 transition, of CD8(+) T cells.

  4. Endothelial dysfunction correlates with decompression bubbles in rats

    PubMed Central

    Zhang, Kun; Wang, Dong; Jiang, Zhongxin; Ning, Xiaowei; Buzzacott, Peter; Xu, Weigang

    2016-01-01

    Previous studies have documented that decompression led to endothelial dysfunction with controversial results. This study aimed to clarify the relationship between endothelial dysfunction, bubble formation and decompression rate. Rats were subjected to simulated air dives with one of four decompression rates: one slow and three rapid. Bubble formation was detected ultrasonically following decompression for two hours, before measurement of endothelial related indices. Bubbles were found in only rapid-decompressed rats and the amount correlated with decompression rate with significant variability. Serum levels of ET-1, 6-keto-PGF1α, ICAM-1, VCAM-1 and MDA, lung Wet/Dry weight ratio and histological score increased, serum NO decreased following rapid decompression. Endothelial-dependent vasodilatation to Ach was reduced in pulmonary artery rings among rapid-decompressed rats. Near all the above changes correlated significantly with bubble amounts. The results suggest that bubbles may be the causative agent of decompression–induced endothelial damage and bubble amount is of clinical significance in assessing decompression stress. Furthermore, serum levels of ET-1 and MDA may serve as sensitive biomarkers with the capacity to indicate endothelial dysfunction and decompression stress following dives. PMID:27615160

  5. A Bubble Bursts

    NASA Technical Reports Server (NTRS)

    2005-01-01

    RCW 79 is seen in the southern Milky Way, 17,200 light-years from Earth in the constellation Centaurus. The bubble is 70-light years in diameter, and probably took about one million years to form from the radiation and winds of hot young stars.

    The balloon of gas and dust is an example of stimulated star formation. Such stars are born when the hot bubble expands into the interstellar gas and dust around it. RCW 79 has spawned at least two groups of new stars along the edge of the large bubble. Some are visible inside the small bubble in the lower left corner. Another group of baby stars appears near the opening at the top.

    NASA's Spitzer Space Telescope easily detects infrared light from the dust particles in RCW 79. The young stars within RCW 79 radiate ultraviolet light that excites molecules of dust within the bubble. This causes the dust grains to emit infrared light that is detected by Spitzer and seen here as the extended red features.

  6. The Dueling Bubble Experiment

    NASA Astrophysics Data System (ADS)

    Roy, Anshuman; Borrell, Marcos; Felts, John; Leal, Gary; Hirsa, Amir

    2007-11-01

    When two drops or bubbles are brought into close proximity to each other, the thin film of the fluid between them drains as they are squeezed together. If the film becomes thin enough that intermolecular forces of attraction overwhelm capillary forces, the drops/bubbles coalesce and the time it takes for this to happen, starting from the point of apparent contact is referred to as the drainage time. One practical version of this scenario occurs during the formation of foams, when the thin film forms between gas bubbles that are growing in volume with time. We performed an experimental study that is intended to mimic this process in which the two drops (or bubbles) in the size range of 50-100 microns diameter are created by oozing a liquid/gas out of two capillaries of diameter less than 100 microns directly facing each other and immersed in a second fluid. We present measurements of drainage times for the cases of very low viscosity ratios PDMS drops in Castor oil (less than 0.05) and bubbles of air in PDMS, and highlight the differences that arise in part due to the different boundary conditions for thin film drainage for liquid-liquid versus gas-liquid systems, and in part due to the different Hamaker constants for the two systems.

  7. Bubbles of Metamorphosis

    NASA Astrophysics Data System (ADS)

    Prakash, Manu

    2011-11-01

    Metamorphosis presents a puzzling challenge where, triggered by a signal, an organism abruptly transforms its entire shape and form. Here I describe the role of physical fluid dynamic processes during pupal metamorphosis in flies. During early stages of pupation of third instar larvae into adult flies, a physical gas bubble nucleates at a precise temporal and spatial location, as part of the normal developmental program in Diptera. Although its existence has been known for the last 100 years, the origin and control of this ``cavitation'' event has remained completely mysterious. Where does the driving negative pressure for bubble nucleation come from? How is the location of the bubble nucleation site encoded in the pupae? How do molecular processes control such a physical event? What is the role of this bubble during development? Via developing in-vivo imaging techniques, direct bio-physical measurements in live insect pupal structures and physical modeling, here I elucidate the physical mechanism for appearance and disappearance of this bubble and predict the site of nucleation and its exact timing. This new physical insight into the process of metamorphosis also allows us to understand the inherent design of pupal shell architectures in various species of insects. Milton Award, Harvard Society of Fellows; Terman Fellowship, Stanford

  8. Helium nano-bubble evolution in aging metal tritides.

    SciTech Connect

    Cowgill, Donald F.

    2004-05-01

    A continuum-scale, evolutionary model of helium (He) nano-bubble nucleation, growth and He release for aging bulk metal tritides is presented which accounts for major features of the experimental database. Bubble nucleation, modeled as self-trapping of interstitially diffusing He atoms, is found to occur during the first few days following tritium introduction into the metal and is sensitive to the He diffusivity and pairing energy. An effective helium diffusivity of 0.3 x 10{sup -16} cm{sup 2}/s at 300 K is required to generate the average bubble density of 5x 1017 bubbles/cm3 observed by transmission electron microscopy (TEM). Early bubble growth by dislocation loop punching with a l/radius bubble pressure dependence produces good agreement with He atomic volumes and bubble pressures determined from swelling data, nuclear magnetic resonance (NMR) measurements, and hydride pressure-composition-temperature (PCT) shifts. The model predicts that later in life neighboring bubble interactions may first lower the loop punching pressure through cooperative stress effects, then raise the pressure by partial blocking of loops. It also accounts for the shape of the bubble spacing distribution obtained from NMR data. This distribution is found to remain fixed with age, justifying the separation of nucleation and growth phases, providing a sensitive test of the growth formulation, and indicating that further significant bubble nucleation does not occur throughout life. Helium generated within the escape depth of surfaces and surface-connected porosity produces the low-level early helium release. Accelerated or rapid release is modeled as inter-bubble fracture using an average ligament stress criterion. Good agreement is found between the predicted onset of fracture and the observed He-metal ratio (HeM) for rapid He release from bulk palladium tritide. An examination of how inter-bubble fracture varies over the bubble spacing distribution shows that the critical Hem will be

  9. Power Laws in Real Estate Prices during Bubble Periods

    NASA Astrophysics Data System (ADS)

    Ohnishi, Takaaki; Mizuno, Takayuki; Shimizu, Chihiro; Watanabe, Tsutomu

    How can we detect real estate bubbles? In this paper, we propose making use of information on the cross-sectional dispersion of real estate prices. During bubble periods, prices tend to go up considerably for some properties, but less so for others, so that price inequality across properties increases. In other words, a key characteristic of real estate bubbles is not the rapid price hike itself but a rise in price dispersion. Given this, the purpose of this paper is to examine whether developments in the dispersion in real estate prices can be used to detect bubbles in property markets as they arise, using data from Japan and the U.S. First, we show that the land price distribution in Tokyo had a power-law tail during the bubble period in the late 1980s, while it was very close to a lognormal before and after the bubble period. Second, in the U.S. data we find that the tail of the house price distribution tends to be heavier in those states which experienced a housing bubble. We also provide evidence suggesting that the power-law tail observed during bubble periods arises due to the lack of price arbitrage across regions.

  10. Microlayer Topology And Bubble Growth In Nucleate Boiling

    NASA Astrophysics Data System (ADS)

    Jawurek, H. H.; Macgregor, H. G.; Bodenheimer, J. S.

    1987-09-01

    During nucleate boiling thin liquid films (nicrolayers) form beneath the base of bubbles and evaporate into the bubble interiors. A technique is presented which permits the simultaneous determination of microlayer topology and the contribution of microlayer evaporation to bubble growth. Isolated-bubble boiling takes place on an electrically heated, transparent tin-oxide coating deposited on a glass plate, the latter forming the floor of a vessel. With coherent Claser) illumination from beneath, the microlayers reflect fringe patterns similar to Newton's rings. Owing to the rapid evaporation of the layers (the process is completed within milliseconds) the fringes are in rapid motion and are recorded by eine photography at some 4 000 frames per second and exposure times of 50 μs. The resulting interferograms provide details of microlayer shape and thickness versus time, and thus evaporation rate. Simultaneously, and on the same film, bubble profiles (and thus volumes) are obtained under white light illumination. The two bubble images are manipulated by mirrors and lenses so as to appear side by side on the same frame of film, the fringes magnified and the profiles reduced. Sample results for methanol boiling at a pressure of 58.5 kPa and with the liquid bulk at saturation temperature, are presented. Under such conditions microlayer evaporation accounts for 37 per cent of the total bubble volume at detachment.

  11. Coalescence In Draining Foams Made of Very Small Bubbles.

    PubMed

    Briceño-Ahumada, Zenaida; Drenckhan, Wiebke; Langevin, Dominique

    2016-03-25

    We studied the stability of foams containing small bubbles (radius ≲ 50  μm). The foams are made from aqueous surfactant solutions containing various amounts of glycerol. The foams start breaking at their top, when the liquid volume fraction has decreased sufficiently during liquid drainage. Unlike in foams with larger bubbles, the liquid fraction at which the foam destabilizes is surprisingly high. In order to interpret this observation we propose that film rupture occurs during reorganization events (T1) induced by bubble coarsening, which is particularly rapid in the case of small bubbles. New films are therefore formed rapidly and if their thickness is too small, they cannot be sufficiently covered by surfactant and they break. Using literature data for the duration of T1 events and the thickness of the new films, we show that this mechanism is consistent with the behavior of the foams studied.

  12. Nitrogen cycling in canopy soils of tropical montane forests responds rapidly to indirect N and P fertilization.

    PubMed

    Matson, Amanda L; Corre, Marife D; Veldkamp, Edzo

    2014-12-01

    Although the canopy can play an important role in forest nutrient cycles, canopy-based processes are often overlooked in studies on nutrient deposition. In areas of nitrogen (N) and phosphorus (P) deposition, canopy soils may retain a significant proportion of atmospheric inputs, and also receive indirect enrichment through root uptake followed by throughfall or recycling of plant litter in the canopy. We measured net and gross rates of N cycling in canopy soils of tropical montane forests along an elevation gradient and assessed indirect effects of elevated nutrient inputs to the forest floor. Net N cycling rates were measured using the buried bag method. Gross N cycling rates were measured using (15) N pool dilution techniques. Measurements took place in the field, in the wet and dry season, using intact cores of canopy soil from three elevations (1000, 2000 and 3000 m). The forest floor had been fertilized biannually with moderate amounts of N and P for 4 years; treatments included control, N, P, and N + P. In control plots, gross rates of NH4 (+) transformations decreased with increasing elevation; gross rates of NO3 (-) transformations did not exhibit a clear elevation trend, but were significantly affected by season. Nutrient-addition effects were different at each elevation, but combined N + P generally increased N cycling rates at all elevations. Results showed that canopy soils could be a significant N source for epiphytes as well as contributing up to 23% of total (canopy + forest floor) mineral N production in our forests. In contrast to theories that canopy soils are decoupled from nutrient cycling in forest floor soil, N cycling in our canopy soils was sensitive to slight changes in forest floor nutrient availability. Long-term atmospheric N and P deposition may lead to increased N cycling, but also increased mineral N losses from the canopy soil system.

  13. Holographic Study Of Bubble Dissolution In Human Plasma

    NASA Astrophysics Data System (ADS)

    Buckles, Richard G.; Cox, M. E.; Eckenhoff, J. B.

    1981-05-01

    When a deep-sea diver returns to the surface, he may suffer decompression sickness (commonly known as the bends). The disease occurs when the excess inert gas that dissolves in tissues during the dive (N2 or He) forms bubbles. The standard treatment is rapid recompression in order to redissolve the bubbles. The diver is placed in a hyperbaric chamber, which is then pressurized to a point where symptoms are relieved; this pressure is maintained for an arbitrary period presumed adequate to fully dissolve all bubbles. The pressure is then reduced gradually until atomospheric pressure is reached. If all has gone well, the diver experiences no residual effects.

  14. Bubbles from nothing

    SciTech Connect

    Blanco-Pillado, Jose J.; Ramadhan, Handhika S.; Shlaer, Benjamin E-mail: handhika@cosmos.phy.tufts.edu

    2012-01-01

    Within the framework of flux compactifications, we construct an instanton describing the quantum creation of an open universe from nothing. The solution has many features in common with the smooth 6d bubble of nothing solutions discussed recently, where the spacetime is described by a 4d compactification of a 6d Einstein-Maxwell theory on S{sup 2} stabilized by flux. The four-dimensional description of this instanton reduces to that of Hawking and Turok. The choice of parameters uniquely determines all future evolution, which we additionally find to be stable against bubble of nothing instabilities.

  15. Multivariate bubbles and antibubbles

    NASA Astrophysics Data System (ADS)

    Fry, John

    2014-08-01

    In this paper we develop models for multivariate financial bubbles and antibubbles based on statistical physics. In particular, we extend a rich set of univariate models to higher dimensions. Changes in market regime can be explicitly shown to represent a phase transition from random to deterministic behaviour in prices. Moreover, our multivariate models are able to capture some of the contagious effects that occur during such episodes. We are able to show that declining lending quality helped fuel a bubble in the US stock market prior to 2008. Further, our approach offers interesting insights into the spatial development of UK house prices.

  16. Bubble Departure from Metal-Graphite Composite Surfaces and Its Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Yang, W-J.; Zhang, Nengli

    2010-01-01

    The formation and growth processes of a bubble in the vicinity of graphite micro-fiber tips on metal-graphite composite boiling surfaces and their effects on boiling behavior are investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the metal matrix in pool boiling. By virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the end of the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each spanning several tips. The necking process of a detaching macro bubble is analyzed. It is revealed that a liquid jet is produced by sudden break-off of the bubble throat. The composite surfaces not only have higher temperatures in micro- and macrolayers but also make higher frequency of the bubble departure, which increase the average heat fluxes in both the bubble growth stage and in the bubble departure period. Based on these analyses, the enhancement mechanism of pool boiling heat transfer on composite surfaces is clearly revealed.

  17. Bubble injected hydrocyclone flotation cell

    SciTech Connect

    Stanley, D.A.; Jordon, C.E.

    1990-11-20

    This patent describes an apparatus for selective separation of a mixture of hydrophobic and hydrophilic mineral particles. It comprises: a bubble-injected hydrocyclone flotation cell and a bubble slurry. The cell comprises an enclosed body section; a mineral pulp feed port; a bubble slurry feed port; and a vortex finder.

  18. The Early Years: Blowing Bubbles

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2016-01-01

    Blowing bubbles is not only a favorite summer activity for young children. Studying bubbles that are grouped together, or "foam," is fun for children and fascinating to many real-world scientists. Foam is widely used--from the bedroom (mattresses) to outer space (insulating panels on spacecraft). Bubble foam can provide children a…

  19. Cohesion of Bubbles in Foam

    ERIC Educational Resources Information Center

    Ross, Sydney

    1978-01-01

    The free-energy change, or binding energy, of an idealized bubble cluster is calculated on the basis of one mole of gas, and on the basis of a single bubble going from sphere to polyhedron. Some new relations of bubble geometry are developed in the course of the calculation. (BB)

  20. The pulsatile motion of a semi-infinite bubble in a channel: flow fields, and transport of an inactive surface-associated contaminant

    NASA Astrophysics Data System (ADS)

    Zimmer, Maximillian E.; Williams, Harvey A. R.; Gaver, Donald P.

    2005-08-01

    We investigate a theoretical model of the pulsatile motion of a contaminant-doped semi-infinite bubble in a rectangular channel. We examine the fluid mechanical behaviour of the pulsatile bubble, and its influence on the transport of a surface-inactive contaminant (termed surfinactant). This investigation is used to develop a preliminary understanding of surfactant responses during unsteady pulmonary airway reopening. Reopening is modelled as the pulsatile motion of a semi-infinite gas bubble in a horizontal channel of width 2a filled with a Newtonian liquid of viscosity mu and constant surface tension gamma. A modified Langmuir sorption model is assumed, which allows for the creation and respreading of a surface multilayer. The bubble is forced via a time-dependent volume flux Q(t) with mean and oscillatory components (Q_{M} and Q_{omega }, respectively) at frequency omega . The flow behaviour is governed by the dimensionless parameters: Ca_{M} {=} mu Q_{M}/(2agamma ), a steady-state capillary number, which represents the ratio of viscous to surface tension forces; Ca_{Omega } {=} mu Q_{omega }/(2agamma ), an oscillatory forcing magnitude; Omega {=} omega mu a/gamma , a dimensionless frequency that represents the ratio of viscous relaxation to oscillatory-forcing timescales; and A {=} 2Ca_{Omega }/Omega , a dimensionless oscillation amplitude. Our simulations indicate that contaminant deposition and retention in the bubble cap region occurs at moderate frequencies if retrograde bubble motion develops during the oscillation cycle. However, if oscillations are too rapid the ensuing large forward tip velocities cause a net loss of contaminant from the bubble tip. Determination of an optimal oscillation range may be important in reducing ventilator-induced lung injury associated with infant and adult respiratory distress syndromes by increasing surfactant transport to regions of collapsed airways.

  1. Bubble proliferation in the cavitation field of a shock wave lithotripter

    PubMed Central

    Pishchalnikov, Yuri A.; Williams, James C.; McAteer, James A.

    2011-01-01

    Lithotripter shock waves (SWs) generated in non-degassed water at 0.5 and 2 Hz pulse repetition frequency (PRF) were characterized using a fiber-optic hydrophone. High-speed imaging captured the inertial growth-collapse-rebound cycle of cavitation bubbles, and continuous recording with a 60 fps camcorder was used to track bubble proliferation over successive SWs. Microbubbles that seeded the generation of bubble clouds formed by the breakup of cavitation jets and by bubble collapse following rebound. Microbubbles that persisted long enough served as cavitation nuclei for subsequent SWs, as such bubble clouds were enhanced at fast PRF. Visual tracking suggests that bubble clouds can originate from single bubbles. PMID:21877776

  2. The Liberal Arts Bubble

    ERIC Educational Resources Information Center

    Agresto, John

    2011-01-01

    The author expresses his doubt that the general higher education bubble will burst anytime soon. Although tuition, student housing, and book costs have all increased substantially, he believes it is still likely that the federal government will continue to pour billions into higher education, largely because Americans have been persuaded that it…

  3. Bubbly Little Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In this processed Spitzer Space Telescope image, baby star HH 46/47 can be seen blowing two massive 'bubbles.' The star is 1,140 light-years away from Earth.

    The infant star can be seen as a white spot toward the center of the Spitzer image. The two bubbles are shown as hollow elliptical shells of bluish-green material extending from the star. Wisps of green in the image reveal warm molecular hydrogen gas, while the bluish tints are formed by starlight scattered by surrounding dust.

    These bubbles formed when powerful jets of gas, traveling at 200 to 300 kilometers per second, or about 120 to 190 miles per second, smashed into the cosmic cloud of gas and dust that surrounds HH 46/47. The red specks at the end of each bubble show the presence of hot sulfur and iron gas where the star's narrow jets are currently crashing head-on into the cosmic cloud's gas and dust material.

    Whenever astronomers observe a star, or snap a stellar portrait, through the lens of any telescope, they know that what they are seeing is slightly blurred. To clear up the blurring in Spitzer images, astronomers at the Jet Propulsion Laboratory developed an image processing technique for Spitzer called Hi-Res deconvolution.

    This process reduces blurring and makes the image sharper and cleaner, enabling astronomers to see the emissions around forming stars in greater detail. When scientists applied this image processing technique to the Spitzer image of HH 46/47, they were able to see winds from the star and jets of gas that are carving the celestial bubbles.

    This infrared image is a three-color composite, with data at 3.6 microns represented in blue, 4.5 and 5.8 microns shown in green, and 24 microns represented as red.

  4. Bubble dynamics and bubble-induced turbulence of a single-bubble chain

    NASA Astrophysics Data System (ADS)

    Lee, Joohyoung; Park, Hyungmin

    2016-11-01

    In the present study, the bubble dynamics and liquid-phase turbulence induced by a chain of bubbles injected from a single nozzle have been experimentally investigated. Using a high-speed two-phase particle image velociemtry, measurements on the bubbles and liquid-phase velocity field are conducted in a transparent tank filled with water, while varying the bubble release frequency from 0.1 to 35 Hz. The tested bubble size ranges between 2.0-3.2 mm, and the corresponding bubble Reynolds number is 590-1100, indicating that it belongs to the regime of path instability. As the release frequency increases, it is found that the global shape of bubble dispersion can be classified into two regimes: from asymmetric (regular) to axisymmetric (irregular). In particular, at higher frequency, the wake vortices of leading bubbles cause an irregular behaviour of the following bubble. For the liquid phase, it is found that a specific trend on the bubble-induced turbulence appears in a strong relation to the above bubble dynamics. Considering this, we try to provide a theoretical model to estimate the liquid-phase turbulence induced by a chain of bubbles. Supported by a Grant funded by Samsung Electronics, Korea.

  5. Signature of anisotropic bubble collisions

    SciTech Connect

    Salem, Michael P.

    2010-09-15

    Our universe may have formed via bubble nucleation in an eternally inflating background. Furthermore, the background may have a compact dimension--the modulus of which tunnels out of a metastable minimum during bubble nucleation--which subsequently grows to become one of our three large spatial dimensions. When in this scenario our bubble universe collides with other ones like it, the collision geometry is constrained by the reduced symmetry of the tunneling instanton. While the regions affected by such bubble collisions still appear (to leading order) as disks in an observer's sky, the centers of these disks all lie on a single great circle, providing a distinct signature of anisotropic bubble nucleation.

  6. Advanced Mathematical Modeling of Sonar-Induced Bubble Growth and Coalescence in Humans and Marine Mammals

    DTIC Science & Technology

    2008-09-01

    and their temperature dependencies. Our definition of HD corresponds to (jfkH) -1 in Ref. [15], where M is the Avogadro constant and kH is the...is due to the underlying assumption that the gas concentration in the liquid is given by its value for a bubble of constant equilibrium radius. This... constant equilibrium bubble radius. The effect of gas supersaturation level, excitation frequency, duty cycle and sound pressure level on bubble growth were

  7. Ring Bubbles of Dolphins

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since

  8. Intraluminal bubble dynamics induced by lithotripsy shock wave

    NASA Astrophysics Data System (ADS)

    Song, Jie; Bai, Jiaming; Zhou, Yufeng

    2016-12-01

    Extracorporeal shock wave lithotripsy (ESWL) has been the first option in the treatment of calculi in the upper urinary tract since its introduction. ESWL-induced renal injury is also found after treatment and is assumed to associate with intraluminal bubble dynamics. To further understand the interaction of bubble expansion and collapse with the vessel wall, the finite element method (FEM) was used to simulate intraluminal bubble dynamics and calculate the distribution of stress in the vessel wall and surrounding soft tissue during cavitation. The effects of peak pressure, vessel size, and stiffness of soft tissue were investigated. Significant dilation on the vessel wall occurs after contacting with rapid and large bubble expansion, and then vessel deformation propagates in the axial direction. During bubble collapse, large shear stress is found to be applied to the vessel wall at a clinical lithotripter setting (i.e. 40 MPa peak pressure), which may be the mechanism of ESWL-induced vessel rupture. The decrease of vessel size and viscosity of soft tissue would enhance vessel deformation and, consequently, increase the generated shear stress and normal stresses. Meanwhile, a significantly asymmetric bubble boundary is also found due to faster axial bubble expansion and shrinkage than in radial direction, and deformation of the vessel wall may result in the formation of microjets in the axial direction. Therefore, this numerical work would illustrate the mechanism of ESWL-induced tissue injury in order to develop appropriate counteractive strategies for reduced adverse effects.

  9. ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma–lamin A complexes

    PubMed Central

    Rodríguez, Javier; Calvo, Fernando; José; González, M.; Casar, Berta; Andrés, Vicente

    2010-01-01

    As orchestrators of essential cellular processes like proliferation, ERK1/2 mitogen-activated protein kinase signals impact on cell cycle regulation. A-type lamins are major constituents of the nuclear matrix that also control the cell cycle machinery by largely unknown mechanisms. In this paper, we disclose a functional liaison between ERK1/2 and lamin A whereby cell cycle progression is regulated. We demonstrate that lamin A serves as a mutually exclusive dock for ERK1/2 and the retinoblastoma (Rb) protein. Our results reveal that, immediately after their postactivation entrance in the nucleus, ERK1/2 dislodge Rb from its interaction with lamin A, thereby facilitating its rapid phosphorylation and consequently promoting E2F activation and cell cycle entry. Interestingly, these effects are independent of ERK1/2 kinase activity. We also show that cellular transformation and tumor cell proliferation are dependent on the balance between lamin A and nuclear ERK1/2 levels, which determines Rb accessibility for phosphorylation/inactivation. PMID:21115804

  10. ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma-lamin A complexes.

    PubMed

    Rodríguez, Javier; Calvo, Fernando; González, José M; Casar, Berta; Andrés, Vicente; Crespo, Piero

    2010-11-29

    As orchestrators of essential cellular processes like proliferation, ERK1/2 mitogen-activated protein kinase signals impact on cell cycle regulation. A-type lamins are major constituents of the nuclear matrix that also control the cell cycle machinery by largely unknown mechanisms. In this paper, we disclose a functional liaison between ERK1/2 and lamin A whereby cell cycle progression is regulated. We demonstrate that lamin A serves as a mutually exclusive dock for ERK1/2 and the retinoblastoma (Rb) protein. Our results reveal that, immediately after their postactivation entrance in the nucleus, ERK1/2 dislodge Rb from its interaction with lamin A, thereby facilitating its rapid phosphorylation and consequently promoting E2F activation and cell cycle entry. Interestingly, these effects are independent of ERK1/2 kinase activity. We also show that cellular transformation and tumor cell proliferation are dependent on the balance between lamin A and nuclear ERK1/2 levels, which determines Rb accessibility for phosphorylation/inactivation.

  11. A temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    NASA Astrophysics Data System (ADS)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Sørensen, Karen S.; Skov, Julia; Sun, Yi; Duong Bang, Dang; Pedersen, Michael E.; Hansen, Mikkel F.; Wolff, Anders

    2013-07-01

    We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature-dependent fluorescence signal from Rhodamine B. The method was validated with the PCR amplification of mecA gene (162 bp) from methicillin-resistant Staphylococcus aureus bacterium (MRSA), where the time for 30 cycles was reduced from 50 min (without over- and undershooting) to 20 min.

  12. Thermocapillary Flow and Aggregation of Bubbles on a Solid Wall

    NASA Technical Reports Server (NTRS)

    Kasumi, Hiroki; Solomentsev, Yuri E.; Guelcher, Scott A.; Anderson, John L.; Sides, Paul J.

    2000-01-01

    were equated by using a wall hindrance parameter q: U = qu [1] which shows the velocity of bubble is proportional to the entraining velocity. The hindrance parameter q can experimentally be measured independently. q can also be calculated by solving the equations of motion for a bubble translating parallel to a solid wall. The experimental cell is cylindrical with an ID of 10 cm and consists of a 1 cm deep main cell filled with silicone oil and flanked by two thermal reservoirs. The upper thermal reservoir was heated and the lower thermal reservoir was cooled so that the bubbles aggregate. Two types of silicone oil (eta = 0.02 and 0.50 Pa s) were used. Two equal sized air bubbles were injected into the cell with a syringe. The center-to-center distance of bubbles was observed through a microscope. Bubble radius ranged from 0.40 mm to 0.65 mm and the temperature gradients along with the cell ranged from 1400 to 5000 K/m. The bubbles aggregated when heat flows from the wall to the fluid. The velocities of bubbles were in the range of 1 - 10 microns/s. The separation r decreased more quickly when the temperature gradient was higher, bubble size was larger, and the oil viscosity was lower. r decreased more rapidly as the bubbles approached each other. Dimensionless time was arbitrarily set to be zero when the dimensionless center-to-center distance between the bubbles was 4. All the bubble trajectories fall onto one line, especially in the range of dimensionless distance from 4 to 3. This means the relative movement of the bubble pair is proportional to the temperature gradient and bubble size and it is inversely proportional to the viscosity of the oil. This result strongly suggests that the thermocapillary flow-based aggregation mechanism is correct. A value of q can be estimated by fitting the scaled data to Eq. [1]. A best fit value of q was obtained as q = 0.26 with a standard deviation of 0.03. Independent experimental results for q for a 0.5 mm radius bubble, give

  13. Pseudo-Steady Diffusional Growth or Collapse of Bubbles Rising in Time Dependent Pressure Fields

    DTIC Science & Technology

    1990-03-13

    et al. [12], Ishikawa, et al. [13] and Payvar [14] to name a few. Brankovic, et al. collected data for air and carbon dioxide bubbles with a triple...hydrostatic pressure field. Payvar [141 examined the effects, both experimentally and analytically, of a rapid de- compression on bubble growth for C0 2...Furthermore, bubble experimental rise data have only been obtained for a static hydrostatic head, with the exception of Payvar [14], but that was for a

  14. Bubble dynamics in drinks

    NASA Astrophysics Data System (ADS)

    Broučková, Zuzana; Trávníček, Zdeněk; Šafařík, Pavel

    2014-03-01

    This study introduces two physical effects known from beverages: the effect of sinking bubbles and the hot chocolate sound effect. The paper presents two simple "kitchen" experiments. The first and second effects are indicated by means of a flow visualization and microphone measurement, respectively. To quantify the second (acoustic) effect, sound records are analyzed using time-frequency signal processing, and the obtained power spectra and spectrograms are discussed.

  15. Slurry bubble column hydrodynamics

    NASA Astrophysics Data System (ADS)

    Rados, Novica

    Slurry bubble column reactors are presently used for a wide range of reactions in both chemical and biochemical industry. The successful design and scale up of slurry bubble column reactors require a complete understanding of multiphase fluid dynamics, i.e. phase mixing, heat and mass transport characteristics. The primary objective of this thesis is to improve presently limited understanding of the gas-liquid-solid slurry bubble column hydrodynamics. The effect of superficial gas velocity (8 to 45 cm/s), pressure (0.1 to 1.0 MPa) and solids loading (20 and 35 wt.%) on the time-averaged solids velocity and turbulent parameter profiles has been studied using Computer Automated Radioactive Particle Tracking (CARPT). To accomplish this, CARPT technique has been significantly improved for the measurements in highly attenuating systems, such as high pressure, high solids loading stainless steel slurry bubble column. At a similar set of operational conditions time-averaged gas and solids holdup profiles have been evaluated using the developed Computed Tomography (CT)/Overall gas holdup procedure. This procedure is based on the combination of the CT scans and the overall gas holdup measurements. The procedure assumes constant solids loading in the radial direction and axially invariant cross-sectionally averaged gas holdup. The obtained experimental holdup, velocity and turbulent parameters data are correlated and compared with the existing low superficial gas velocities and atmospheric pressure CARPT/CT gas-liquid and gas-liquid-solid slurry data. The obtained solids axial velocity radial profiles are compared with the predictions of the one dimensional (1-D) liquid/slurry recirculation phenomenological model. The obtained solids loading axial profiles are compared with the predictions of the Sedimentation and Dispersion Model (SDM). The overall gas holdup values, gas holdup radial profiles, solids loading axial profiles, solids axial velocity radial profiles and solids

  16. Communications; On the formation of potassium bubbles in tungsten rod

    SciTech Connect

    Briant, C.L. . Corporate Research and Development Center)

    1989-01-01

    The microstructure of tungsten wire that is manufactured for use as lamp filaments has been studied by a number of researchers. The author demonstrates that one of the most important features of the microstructure is the potassium bubbles, approximately 500 A in diameter, that are aligned in rows in the direction of wire drawing. These bubbles pin the grain boundaries as they migrate down the length of the wire, giving rise to an interlocking grain structure in the recrystallized wire. If these bubbles were not present, a bamboo structure would form which would then rapidly fail during operation of the lamp as a result of grain boundary sliding. The potassium which forms these bubbles is incorporated into the tungsten during sintering of the powder metallurgy ingot.

  17. Turning bubbles on and off during boiling using charged surfactants

    NASA Astrophysics Data System (ADS)

    Cho, H. Jeremy; Mizerak, Jordan P.; Wang, Evelyn N.

    2015-10-01

    Boiling--a process that has powered industries since the steam age--is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles `on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications.

  18. Turning bubbles on and off during boiling using charged surfactants

    PubMed Central

    Cho, H. Jeremy; Mizerak, Jordan P.; Wang, Evelyn N.

    2015-01-01

    Boiling—a process that has powered industries since the steam age—is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles ‘on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications. PMID:26486275

  19. Turning bubbles on and off during boiling using charged surfactants.

    PubMed

    Cho, H Jeremy; Mizerak, Jordan P; Wang, Evelyn N

    2015-10-21

    Boiling--a process that has powered industries since the steam age--is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles 'on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications.

  20. Bubble colloidal AFM probes formed from ultrasonically generated bubbles.

    PubMed

    Vakarelski, Ivan U; Lee, Judy; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz

    2008-02-05

    Here we introduce a simple and effective experimental approach to measuring the interaction forces between two small bubbles (approximately 80-140 microm) in aqueous solution during controlled collisions on the scale of micrometers to nanometers. The colloidal probe technique using atomic force microscopy (AFM) was extended to measure interaction forces between a cantilever-attached bubble and surface-attached bubbles of various sizes. By using an ultrasonic source, we generated numerous small bubbles on a mildly hydrophobic surface of a glass slide. A single bubble picked up with a strongly hydrophobized V-shaped cantilever was used as the colloidal probe. Sample force measurements were used to evaluate the pure water bubble cleanliness and the general consistency of the measurements.

  1. Instability of two rising bubbles

    NASA Astrophysics Data System (ADS)

    Galper, Alexander; Miloh, Touvia

    1999-11-01

    We consider the stability of two rising ideal gas spherical bubbles subject of an intrinsic dynamics. The dynamics is prescribed or governed by the Rayleigh-Plesset equation adjusted for the pressure field induced by the other bubble in the center of each. Hence, each bubble exhibits linear (nonlinear) oscillations about a stable equilibrium. In order to treat the Liapunov stability problem of bubbles spatial motion we develop the corresponding Hamiltonian formalism. Thus, we find that the oscillations can stabilize the side-by-side and one-below-the-other bubbles translation. These types of translation are known to be asymptotically stable (unstable) for the motion of a pair of purely spherical rigid bubbles. The stabilization phenomenon depends on the frequency and phase difference in the bubbles fast oscillations. The ``rigid'' bubbles theory of the motion is known to have certain discrepancies with the relevant experiments. In order to remove them it is proposed to account for the vorticity wake behind each bubble. Nevertheless, we are able to explain the experiments remaining within the potential framework. Finally, we consider the case of chaotic pulsations. The motion of the two bubbles can also inherit a chaotic character. It results, in turn, in a certain strange attractor for the spatial motion of a pair.

  2. Rectified growth of histotripsy bubbles

    PubMed Central

    Kreider, Wayne; Maxwell, Adam D.; Khokhlova, Tatiana; Simon, Julianna C.; Khokhlova, Vera A.; Sapozhnikov, Oleg; Bailey, Michael R.

    2015-01-01

    Histotripsy treatments use high-amplitude shock waves to fractionate tissue. Such treatments have been demonstrated using both cavitation bubbles excited with microsecond-long pulses and boiling bubbles excited for milliseconds. A common feature of both approaches is the need for bubble growth, where at 1 MHz cavitation bubbles reach maximum radii on the order of 100 microns and boiling bubbles grow to about 1 mm. To explore how histotripsy bubbles grow, a model of a single, spherical bubble that accounts for heat and mass transport was used to simulate the bubble dynamics. Results suggest that the asymmetry inherent in nonlinearly distorted waveforms can lead to rectified bubble growth, which is enhanced at elevated temperatures. Moreover, the rate of this growth is sensitive to the waveform shape, in particular the transition from the peak negative pressure to the shock front. Current efforts are focused on elucidating this behavior by obtaining an improved calibration of measured histotripsy waveforms with a fiber-optic hydrophone, using a nonlinear propagation model to assess the impact on the focal waveform of higher harmonics present at the source’s surface, and photographically observing bubble growth rates. PMID:26413193

  3. Photon Bubbles and the Vertical Structure of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.

    2006-06-01

    We consider the effects of ``photon bubble'' shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability (MRI). They increase the rate at which radiation escapes from the disk and may allow disks to exceed the Eddington limit by a substantial factor without blowing themselves apart. To refine our earlier analysis of photon bubble transport in accretion disks, we generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low τ tend to ``fill in'' the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities from 10 to >100 times the Eddington limit (LEdd), depending on the mass of the central object, while remaining geometrically thin. However, photon bubble-dominated disks with α-viscosity are subject to the same thermal and viscous instabilities that plague standard radiation pressure-dominated disks, suggesting that they may be intrinsically unsteady. Photon bubbles can lead to a ``core-halo'' vertical disk structure. In super-Eddington disks the halo forms the base of a wind, which carries away substantial energy and mass, but not enough to prevent the luminosity from exceeding LEdd. Photon bubble-dominated disks may have smaller color corrections than standard accretion disks of the same luminosity. They remain viable contenders for some ultraluminous X-ray sources and may play a role in the rapid growth of supermassive black holes at high redshift.

  4. In Search of the Big Bubble

    ERIC Educational Resources Information Center

    Simoson, Andrew; Wentzky, Bethany

    2011-01-01

    Freely rising air bubbles in water sometimes assume the shape of a spherical cap, a shape also known as the "big bubble". Is it possible to find some objective function involving a combination of a bubble's attributes for which the big bubble is the optimal shape? Following the basic idea of the definite integral, we define a bubble's surface as…

  5. Collapse of large vapor bubbles

    NASA Technical Reports Server (NTRS)

    Tegart, J.; Dominick, S.

    1982-01-01

    The refilling of propellant tanks while in a low-gravity environment requires that entrapped vapor bubbles be collapsed by increasing the system pressure. Tests were performed to verify the mechanism of collapse for these large vapor bubbles with the thermodynamic conditions, geometry, and boundary conditions being those applicable to propellant storage systems. For these conditions it was found that conduction heat transfer determined the collapse rate, with the specific bubble geometry having a significant influence.

  6. FLOWERING LOCUS C EXPRESSOR Family Proteins Regulate FLOWERING LOCUS C Expression in Both Winter-Annual and Rapid-Cycling Arabidopsis1[C][W][OPEN

    PubMed Central

    Ding, Lei; Kim, Sang Yeol; Michaels, Scott D.

    2013-01-01

    Many naturally occurring Arabidopsis (Arabidopsis thaliana) are very late flowering, unless flowering is promoted by a prolonged period of cold (e.g. winter) known as vernalization. In these winter-annual strains, flowering prior to winter is blocked by the synergistic interaction of FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FLC acts as a strong floral inhibitor, and FRI is required for high levels of FLC expression. Vernalization, in turn, leads to an epigenetic down-regulation of FLC expression. Most rapid-cycling Arabidopsis carry loss-of-function mutations in FRI, leading to low levels of FLC and rapid flowering in the absence of vernalization. Recent work has shown that FRI acts as a scaffolding protein for the assembly of a FRI complex (FRI-C) that includes both general transcription and chromatin-modifying factors, as well as FRI-specific components such as FRI-LIKE1, FRI ESSENTIAL1 (FES1), SUPPRESSOR OF FRI4 (SUF4), and FLC EXPRESSOR (FLX). Here, we show that FLX-LIKE4 (FLX4) is a novel component of the FRI-C and is essential for the activation of FLC by FRI. Both FLX and FLX4 contain leucine zipper domains that facilitate interaction with FRI. In addition, FLX and FLX4 interact with each other and show synergistic transcription activation activity. Interestingly, we show that FLX, FLX4, FES1, and SUF4 are required for basal levels of FLC expression in the absence of FRI. Thus, components of the FRI-C play a role in the regulation of FLC expression in both FRI-containing winter annuals, as well as fri-null rapid-cycling strains. PMID:23899645

  7. Helium bubble bursting in tungsten

    SciTech Connect

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-12-28

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  8. Droplets, Bubbles and Ultrasound Interactions.

    PubMed

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  9. Bubble measuring instrument and method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2003-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  10. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer. respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  11. Remobilizing the Interfaces of Thermocapillary Driven Bubbles Retarded by the Adsorption of a Surfactant Impurity on the Bubble Surface

    NASA Technical Reports Server (NTRS)

    Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is applied to the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow which propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillarity to direct the movement of bubbles in space is the fact that surfactant impurities which are unavoidably present in the continuous phase can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature tension gradient, and decreases to near zero the thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have been retarded by the adsorption onto the bubble surface of a surfactant impurity, Our remobilization theory proposes to use surfactant molecules which kinetically rapidly exchange between the bulk and the surface and are at high bulk concentrations. Because the remobilizing surfactant is present at much higher

  12. Electrolysis-induced bubbling in soft solids for elastic-wave generation

    NASA Astrophysics Data System (ADS)

    Montalescot, S.; Roger, B.; Zorgani, A.; Souchon, R.; Grasland-Mongrain, P.; Ben Haj Slama, R.; Bera, J.-C.; Catheline, S.

    2016-02-01

    Water electrolysis was discovered in 1800, with the famous experiment investigated here within soft tissue from an elastic-wave point of view. Indeed, we report that the rapid formation of hydrogen bubbles after transient (10 ms) electrolysis in water-based gels produces elastic waves. These bubbles are observed using an ultrafast optical camera. As the bubbles are trapped between the rigid electrode and the soft matter, they act as a source of elastic waves that are measured in the bulk using an ultrafast ultrasound scanner. The elastic-wave amplitude is shown to be in good agreement with a simple bubble model.

  13. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.

    PubMed

    Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi

    2011-11-01

    The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles.

  14. Bubble Size Distribution in a Vibrating Bubble Column

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  15. Visualization of airflow growing soap bubbles

    NASA Astrophysics Data System (ADS)

    Al Rahbi, Hamood; Bock, Matthew; Ryu, Sangjin

    2016-11-01

    Visualizing airflow inside growing soap bubbles can answer questions regarding the fluid dynamics of soap bubble blowing, which is a model system for flows with a gas-liquid-gas interface. Also, understanding the soap bubble blowing process is practical because it can contribute to controlling industrial processes similar to soap bubble blowing. In this study, we visualized airflow which grows soap bubbles using the smoke wire technique to understand how airflow blows soap bubbles. The soap bubble blower setup was built to mimic the human blowing process of soap bubbles, which consists of a blower, a nozzle and a bubble ring. The smoke wire was placed between the nozzle and the bubble ring, and smoke-visualized airflow was captured using a high speed camera. Our visualization shows how air jet flows into the growing soap bubble on the ring and how the airflow interacts with the soap film of growing bubble.

  16. Measurements of the Growth of Air Bubbles by Rectified Diffusion

    DTIC Science & Technology

    1977-08-01

    enough each cycle to cause a significant increase in the amount of gas containea within the bubble. The observations 32 by Liebermann that diffusion rates...32. L. Liebermann , J. Appl. Phys. 28, 205-211 (1957). 33. Lord Rayleiyh, Proc. Roy. Soc. 47, 231-287 (1890). -25- Ii. DISTRIBUTION LIST Director 3

  17. Population genetic evidence for rapid changes in intraspecific diversity and allelic cycling of a specialist defense gene in Zea.

    PubMed

    Tiffin, Peter; Hacker, Robert; Gaut, Brandon S

    2004-09-01

    Two patterns of plant defense gene evolution are emerging from molecular population genetic surveys. One is that specialist defenses experience stronger selection than generalist defenses. The second is that specialist defenses are more likely to be subject to balancing selection, i.e., evolve in a manner consistent with balanced-polymorphism or trench-warfare models of host-parasite coevolution. Because most of the data of specialist defenses come from Arabidopsis thaliana, we examined the genetic diversity and evolutionary history of three defense genes in two outcrossing species, the autotetraploid Zea perennis and its most closely related extant relative the diploid Z. diploperennis. Intraspecific diversity at two generalist defenses, the protease inhibitors wip1 and mpi, were consistent with a neutral model. Like previously studied genes in these taxa, wip1 and mpi harbored similar levels of diversity in Z. diploperennis and Z. perennis. In contrast, the specialist defense hm2 showed strong although distinctly different departures from a neutral model in the two species. Z. diploperennis appears to have experienced a strong and recent selective sweep. Using a rejection-sampling coalescent method, we estimate the strength of selection on Z. diploperennis hm2 to be approximately 3.0%, which is approximately equal to the strength of selection on tb1 during maize domestication. Z. perennis hm2 harbors three highly diverged alleles, two of which are found at high frequency. The distinctly different patterns of diversity may be due to differences in the phase of host-parasite coevolutionary cycles, although higher hm2 diversity in Z. perennis may also reflect reduced efficacy of selection in the autotetraploid relative to its diploid relative.

  18. Experimental magma degassing: The revenge of the deformed bubbles

    NASA Astrophysics Data System (ADS)

    Marxer, H.; Bellucci, P.; Ulmer, S.; Nowak, M.

    2013-12-01

    We performed decompression experiments with a hydrated phonolitic melt at a T of 1323 K in an internally heated pressure vessel to investigate the effect of decompression method and rate on melt degassing. Samples were decompressed from 200 to 75 MPa with step-wise and continuous decompression (SD/CD) at nominal decompression rates (DRs) of 0.0028-1.7 MPa/s. At target P the samples were quenched rapidly under isobaric conditions with 150 K/s. The vesiculated glass products were compared in terms of bubble number density (BND), bubble size distribution (BSD) and residual H2O content. Almost all capsules were deformed after decompression: the initially crimped headspaces were expanded and the walls were inflexed in the capsule center. We postulate that the deformation is primarily due to the change in molar volume V(m) of exsolved H2O during rapid quench. Bubble growth in the melt contributes to the deformation by capsule expansion, but the main problem is the shrinkage and collapse of bubbles during cooling. In first approximation, the texture of the vesiculated melt is not frozen until the glass transition T (~773 K for this composition, [1]) is reached. From 1323 K to T(g) the melt will display viscous behavior. For a final P of 75 MPa, V(m) of the exsolved H2O at T(g) is only ~25% of V(m) at 1323 K [2]. The fluid P in the bubbles is therefore continuously decreasing during quench. In combination with constant external P, the bubbles can either contract isometrically, get deformed (flattened) or even become dented by sucking melt inwards, which can be observed in some glass products. The shrinkage of bigger bubbles in the capsules is sometimes affecting the whole vesicle texture in a sample. FPA-FTIR measurements did not reveal H2O diffusion profiles towards bubbles [3]. H2O concentration gradients around bubbles are expected to be disturbed or annihilated due to melt transport. All derived BSDs of our samples were corrected to resemble the bubble sizes prior to

  19. Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles

    PubMed Central

    Fernandez Rivas, David; Verhaagen, Bram; Seddon, James R. T.; Zijlstra, Aaldert G.; Jiang, Lei-Meng; van der Sluis, Luc W. M.; Versluis, Michel; Lohse, Detlef; Gardeniers, Han J. G. E.

    2012-01-01

    We present an ultrasonic device with the ability to locally remove deposited layers from a glass slide in a controlled and rapid manner. The cleaning takes place as the result of cavitating bubbles near the deposited layers and not due to acoustic streaming. The bubbles are ejected from air-filled cavities micromachined in a silicon surface, which, when vibrated ultrasonically at a frequency of 200 kHz, generate a stream of bubbles that travel to the layer deposited on an opposing glass slide. Depending on the pressure amplitude, the bubble clouds ejected from the micropits attain different shapes as a result of complex bubble interaction forces, leading to distinct shapes of the cleaned areas. We have determined the removal rates for several inorganic and organic materials and obtained an improved efficiency in cleaning when compared to conventional cleaning equipment. We also provide values of the force the bubbles are able to exert on an atomic force microscope tip. PMID:23964308

  20. Stable tridimensional bubble clusters in multi-bubble sonoluminescence (MBSL).

    PubMed

    Rosselló, J M; Dellavale, D; Bonetto, F J

    2015-01-01

    In the present work, stable clusters made of multiple sonoluminescent bubbles are experimentally and theoretically studied. Argon bubbles were acoustically generated and trapped using bi-frequency driving within a cylindrical chamber filled with a sulfuric acid aqueous solution (SA85w/w). The intensity of the acoustic pressure field was strong enough to sustain, during several minutes, a large number of positionally and spatially fixed (without pseudo-orbits) sonoluminescent bubbles over an ellipsoidally-shaped tridimensional array. The dimensions of the ellipsoids were studied as a function of the amplitude of the applied low-frequency acoustic pressure (PAc(LF)) and the static pressure in the fluid (P0). In order to explain the size and shape of the bubble clusters, we performed a series of numerical simulations of the hydrodynamic forces acting over the bubbles. In both cases the observed experimental behavior was in excellent agreement with the numerical results. The simulations revealed that the positionally stable region, mainly determined by the null primary Bjerknes force (F→Bj), is defined as the outer perimeter of an axisymmetric ellipsoidal cluster centered in the acoustic field antinode. The role of the high-frequency component of the pressure field and the influence of the secondary Bjerknes force are discussed. We also investigate the effect of a change in the concentration of dissolved gas on the positional and spatial instabilities through the cluster dimensions. The experimental and numerical results presented in this paper are potentially useful for further understanding and modeling numerous current research topics regarding multi-bubble phenomena, e.g. forces acting on the bubbles in multi-frequency acoustic fields, transient acoustic cavitation, bubble interactions, structure formation processes, atomic and molecular emissions of equal bubbles and nonlinear or unsteady acoustic pressure fields in bubbly media.

  1. The Dynamics of Vapor Bubbles in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Hao, Y.; Prosperetti, A.

    1999-01-01

    In spite of a superficial similarity with gas bubbles, the intimate coupling between dynamical and thermal processes confers to oscillating vapor bubbles some unique characteristics. This paper examines numerically the validity of some asymptotic-theory predictions such as the existence of two resonant radii and a limit size for a given sound amplitude and frequency. It is found that a small vapor bubble in a sound field of sufficient amplitude grows quickly through resonance and continues to grow thereafter at a very slow rate, seemingly indefinitely. Resonance phenomena therefore play a role for a few cycles at most, and reaching a limit size-if one exists at all-is found to require far more than several tens of thousands of cycles. It is also found that some small bubbles may grow or collapse depending on the phase of the sound field. The model accounts in detail for the thermo-fluid-mechanic processes in the vapor. In the second part of the paper, an approximate formulation valid for bubbles small with respect to the thermal penetration length in the vapor is derived and its accuracy examined, The present findings have implications for acoustically enhanced boiling heat transfer and other special applications such as boiling in microgravity.

  2. Temperature-dependent biphasic shrinkage of lipid-coated bubbles in ultrasound.

    PubMed

    Cox, Debra J; Thomas, James L

    2013-04-09

    Lipid-coated microbubbles and emulsions are of interest as possible ultrasound-mediated drug delivery vehicles and for their interesting behaviors and fundamental properties. We and others have noted that bubbles coated with the long chain saturated phospholipid distearoylphosphatidylcholine (DSPC) rapidly shrink to a quasistable size when repeatedly insonated with short ultrasound pulses; such stability may adversely affect the bubble's subsequent ability to deliver its pharmacological cargo. Bubbles coated with the unsaturated lipid dioleoylphosphatidylcholine (DOPC) did not show stability but did undergo an abrupt change from rapid initial shrinkage to a slow persistent shrinkage, leading ultimately to dissolution or dispersion. As DOPC and DSPC differ not only in chain saturation but also phase behavior, we performed additional studies using dimyristoyl PC (DMPC) as a coat lipid and controlled the solution temperature to study bubble behavior on exposure to repeated ultrasound pulses for the same coat, in both fluid and gel phases. We find, first, that essentially all bubbles show an initially rapid shrinkage, in which gas loss exceeds the limit imposed by gas diffusion into the surrounding medium; this rapid shrinkage may be evidence of nanoscopic bubble fragmentation. Second, upon reaching a fraction of their initial size, bubbles begin a slower shrinkage with a shrinkage rate that depends on the resting phase state of the coat lipid: fluid DMPC monolayers give a more rapid shrinkage than gel phase. DOPC-coated bubbles showed no temperature-dependent responses in the same temperature range. The results are especially interesting in that bubble compression during the pulse is likely to adiabatically heat the bubble and fluidize the coat, regardless of its initial phase state; thus, some structural feature of the resting coat, such as defect lines in the gel phase, may be important in the subsequent response to the ~3 μs ultrasound pulse.

  3. Bubble Radiation Detection: Current and Future Capability

    SciTech Connect

    AJ Peurrung; RA Craig

    1999-11-15

    Despite a number of noteworthy achievements in other fields, superheated droplet detectors (SDDs) and bubble chambers (BCs) have not been used for nuclear nonproliferation and arms control. This report examines these two radiation-detection technologies in detail and answers the question of how they can be or should be ''adapted'' for use in national security applications. These technologies involve closely related approaches to radiation detection in which an energetic charged particle deposits sufficient energy to initiate the process of bubble nucleation in a superheated fluid. These detectors offer complete gamma-ray insensitivity when used to detect neutrons. They also provide controllable neutron-energy thresholds and excellent position resolution. SDDs are extraordinarily simple and inexpensive. BCs offer the promise of very high efficiency ({approximately}75%). A notable drawback for both technologies is temperature sensitivity. As a result of this problem, the temperature must be controlled whenever high accuracy is required, or harsh environmental conditions are encountered. The primary findings of this work are listed and briefly summarized below: (1) SDDs are ready to function as electronics-free neutron detectors on demand for arms-control applications. The elimination of electronics at the weapon's location greatly eases the negotiability of radiation-detection technologies in general. (2) As a result of their high efficiency and sharp energy threshold, current BCs are almost ready for use in the development of a next-generation active assay system. Development of an instrument based on appropriately safe materials is warranted. (3) Both kinds of bubble detectors are ready for use whenever very high gamma-ray fields must be confronted. Spent fuel MPC and A is a good example where this need presents itself. (4) Both kinds of bubble detectors have the potential to function as low-cost replacements for conventional neutron detectors such as {sup 3}He

  4. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1996-01-01

    An extensive experimental program was initiated for the purpose of understanding the mechanisms leading to bubble generation during fluid handling procedures in a microgravity environment. Several key fluid handling procedures typical for PCG experiments were identified for analysis in that program. Experiments were designed to specifically understand how such procedures can lead to bubble formation. The experiments were then conducted aboard the NASA KC-135 aircraft which is capable of simulating a low gravity environment by executing a parabolic flight attitude. However, such a flight attitude can only provide a low gravity environment of approximately 10-2go for a maximum period of 30 seconds. Thus all of the tests conducted for these experiments were designed to last no longer than 20 seconds. Several experiments were designed to simulate some of the more relevant fluid handling procedures during protein crystal growth experiments. These include submerged liquid jet cavitation, filling of a cubical vessel, submerged surface scratch, attached drop growth, liquid jet impingement, and geysering experiments. To date, four separate KC-135 flight campaigns were undertaken specifically for performing these experiments. However, different experiments were performed on different flights.

  5. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1994-01-01

    Two KC-135 flight campaigns have been conducted to date which are specifically dedicated to study bubble formation in microgravity. The first flight was conducted during March 14-18, 1994, and the other during June 20-24, 1994. The results from the June 1994 flight have not been analyzed yet, while the results from the March flight have been partially analyzed. In the first flight three different experiments were performed, one with the specific aim at determining whether or not cavitation can take place during any of the fluid handling procedures adopted in the shuttle bioprocessing experiments. The other experiments were concerned with duplicating some of the procedures that resulted in bubble formation, namely the NCS filling procedure and the needle scratch of a solid surface. The results from this set of experiments suggest that cavitation did not take place during any of the fluid handling procedures. The results clearly indicate that almost all were generated as a result of the breakup of the gas/liquid interface. This was convincingly demonstrated in the scratch tests as well as in the liquid fill tests.

  6. Triangular bubble spline surfaces

    PubMed Central

    Kapl, Mario; Byrtus, Marek; Jüttler, Bert

    2011-01-01

    We present a new method for generating a Gn-surface from a triangular network of compatible surface strips. The compatible surface strips are given by a network of polynomial curves with an associated implicitly defined surface, which fulfill certain compatibility conditions. Our construction is based on a new concept, called bubble patches, to represent the single surface patches. The compatible surface strips provide a simple Gn-condition between two neighboring bubble patches, which are used to construct surface patches, connected with Gn-continuity. For n≤2, we describe the obtained Gn-condition in detail. It can be generalized to any n≥3. The construction of a single surface patch is based on Gordon–Coons interpolation for triangles. Our method is a simple local construction scheme, which works uniformly for vertices of arbitrary valency. The resulting surface is a piecewise rational surface, which interpolates the given network of polynomial curves. Several examples of G0, G1 and G2-surfaces are presented, which have been generated by using our method. The obtained surfaces are visualized with reflection lines to demonstrate the order of smoothness. PMID:22267872

  7. Bubble Transport through Micropillar Arrays

    NASA Astrophysics Data System (ADS)

    Lee, Kenneth; Savas, Omer

    2012-11-01

    In current energy research, artificial photosynthetic devices are being designed to split water and harvest hydrogen gas using energy from the sun. In one such design, hydrogen gas bubbles evolve on the catalytic surfaces of arrayed micropillars. If these bubbles are not promptly removed from the surface, they can adversely affect gas evolution rates, water flow rates, sunlight capture, and heat management of the system. Therefore, an efficient method of collecting the evolved gas bubbles is crucial. Preliminary flow visualization has been conducted of bubbles advecting through dense arrays of pillars. Bubbles moving through square and hexagonal arrays are tracked, and the results are qualitatively described. Initial attempts to correlate bubble motion with relevant lengthscales and forces are also presented. These observations suggest how bubble transport within such pillar arrays can be managed, as well as guide subsequent experiments that investigate bubble evolution and collection. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993.

  8. Bubble detector investigations in China.

    PubMed

    Guo, Shi-Lun

    2006-01-01

    Investigation on bubble detectors started in China in 1989. Five types of bubble detectors have been developed, with LET thresholds ranging from 0.05 to 6.04 MeV mg(-1) cm(2) at 25 degrees C. The neutron response of bubble detectors made with freon-12 has been investigated with mono-energetic neutrons from 20 keV to 19 MeV. Its effective threshold energy for neutron detection is approximately 100 keV at 28 degrees C. The response above this threshold is approximately 1.5 x 10(-4) (bubble cm(-2))/(n cm(-2)). Bubble detectors are unique not only for neutron dosimetry but also for monitoring and identifying high-energy heavy ions such as cosmic radiation in the space. High-energy heavy ion tracks in large size bubble detectors have been investigated in cooperation with scientists in Japan. The key parameter behind the thresholds of bubble detectors for track registration is the critical rate of energy loss. Three approaches to identify high-energy heavy ions with bubble detectors are suggested.

  9. Sponge Cake or Champagne? Bubbles, Magmatic Degassing and Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Cashman, K.; Pioli, L.; Belien, I.; Wright, H.; Rust, A.

    2007-12-01

    Vesiculation is an unavoidable consequence of magma decompression; the extent to which bubbles travel with ascending magma or leave the system by separated or permeable flow will determine the nature of the ensuing eruption. Bubbles travel with the melt from which they exsolve if the rise time of bubbles through the melt (the 'drift velocity') is much less than the rise rate of the magma (sponge cake). This condition is most likely to be met in viscous melts (where bubble rise velocities are low) and in melts that experience rapid decompression (high ascent velocities). Under these conditions, bubble expansion within the melt continues until sufficient bubble expansion causes coalescence and the development of a permeable network. Typical pumice vesicularities of 70-80% and permeabilities of 10-12 m2 constrain this limit under conditions appropriate for subplinian to plinian eruptions (mass fluxes > 106 kg/s). Slower rise rates (and lower mass fluxes) that characterize effusive eruptions produce silicic lavas with a wider range of vesicularities. In general, permeability decreases with decreasing sample vesicularity as bubbles deform (as evidenced by anisotropy in permeability and electrical conductivity) and pore apertures diminish. Degassing efficiency (and resulting densification of magma within the conduit) under these conditions is determined by permeability and the time allowed for gas escape. Bubbles rise through the melt if the drift velocity exceeds the velocity of magma ascent (champagne). This condition is most easily met in volatile-rich, low viscosity (mafic) melts at low to moderate fluxes. At very low magma flux, magma eruption rate is determined by the extent to which magma is entrained and ejected by rising gases (strombolian eruptions); when bubbles are too small, or are rising too slowly, they may not break the surface at all, but instead may be concentrated in a near-surface layer (surface foam). As the magma flux increases, segregation of

  10. Acoustic bubble: Controlled and selective micropropulsion and chemical waveform generator

    NASA Astrophysics Data System (ADS)

    Ahmed, Daniel

    have offered a higher level of sophistication in terms of liquid manipulation, however, due to low Reynolds number associated with these methods, precise temporal manipulation has remained a challenge. Furthermore, varying the sample concentration rapidly and controllably, an important task for a plethora of chemical and biological studies, has proven to be extremely difficult. Here I demonstrate (Chapter 3) a novel approach for generating chemical waveforms that permits continuous modulation of the signal characteristics including the shape, frequency, amplitude (sample concentration), and duty cycle, with frequencies reaching up to 30 Hz. Furthermore, using multiple bubbles of different sizes in a single microchannel, we show fast switching between multiple distinct stimuli, wherein the waveform of each stimulus is independently controlled. Using our device, we characterized the frequency-dependent activation and internalization of the -adrenergic receptor (beta2-AR), a prototypic G-protein coupled receptors (GPCRs) due to epinephrine. We determined that beta2-AR internalization due to epinephrine occurs on timescales between 100 ms and 5sec. The chemical waveform generation and switching method presented herein is expected to be useful for understanding the dynamics of fast biomolecular processes.

  11. Mechanotransductional Basis of Endothelial Cell Response to Intravascular Bubbles

    PubMed Central

    Klinger, Alexandra L.; Pichette, Benjamin; Sobolewski, Peter; Eckmann, David M.

    2011-01-01

    Vascular air embolism resulting from too rapid decompression is a well-known risk in deep-sea diving, aviation and space travel. It is also a common complication during surgery or other medical procedures when air or other endogenously administered gas is entrained in the circulation. Preventive and post-event treatment options are extremely limited for this dangerous condition, and none of them address the poorly understood pathophysiology of endothelial response to intravascular bubble presence. Using a novel apparatus allowing precise manipulation of microbubbles in real time fluorescence microscopy studies, we directly measure human umbilical vein endothelial cell responses to bubble contact. Strong intracellular calcium transients requiring extracellular calcium are observed upon cell-bubble interaction. The transient is eliminated both by the presence of the stretch activated channel inhibitor, gadolinium, and the transient receptor potential vanilliod family inhibitor, ruthenium red. No bubble induced calcium upsurge occurs if the cells are pretreated with an inhibitor of actin polymerization, cytochalasin-D. This study explores the biomechanical mechanisms at play in bubble interfacial interactions with endothelial surface layer (ESL) macromolecules, reassessing cell response after selective digestion of glycocalyx glycosoaminoglycans, hyaluran (HA) and heparin sulfate (HS). HA digestion causes reduction of cell-bubble adherence and a more rapid induction of calcium influx after contact. HS depletion significantly decreases calcium transient amplitudes, as does pharmacologically induced sydencan ectodomain shedding. The surfactant perfluorocarbon oxycyte abolishes any bubble induced calcium transient, presumably through direct competition with ESL macromolecules for interfacial occupancy, thus attenuating the interactions that trigger potentially deleterious biochemical pathways. PMID:21931900

  12. Integration of BpMADS4 on various linkage groups improves the utilization of the rapid cycle breeding system in apple.

    PubMed

    Weigl, Kathleen; Wenzel, Stephanie; Flachowsky, Henryk; Peil, Andreas; Hanke, Magda-Viola

    2015-02-01

    Rapid cycle breeding in apple is a new approach for the rapid introgression of agronomically relevant traits (e.g. disease resistances) from wild apple species into domestic apple cultivars (Malus × domestica Borkh.). This technique drastically shortens the long-lasting juvenile phase of apple. The utilization of early-flowering apple lines overexpressing the BpMADS4 gene of the European silver birch (Betula pendula Roth.) in hybridization resulted in one breeding cycle per year. Aiming for the selection of non-transgenic null segregants at the end of the breeding process, the flower-inducing transgene and the gene of interest (e.g. resistance gene) that will be introgressed by hybridization need to be located on different chromosomes. To improve the flexibility of the existing approach in apple, this study was focused on the development and characterization of eleven additional BpMADS4 overexpressing lines of four different apple cultivars. In nine lines, the flowering gene was mapped to different linkage groups. The differences in introgressed T-DNA sequences and plant genome deletions post-transformation highlighted the unique molecular character of each line. However, transgenic lines demonstrated no significant differences in flower organ development and pollen functionality compared with non-transgenic plants. Hybridization studies using pollen from the fire blight-resistant wild species accession Malus fusca MAL0045 and the apple scab-resistant cultivar 'Regia' indicated that BpMADS4 introgression had no significant effect on the breeding value of each transgenic line.

  13. The geophysical importance of bubbles in the sea

    NASA Technical Reports Server (NTRS)

    Cirpriano, R. J.

    1982-01-01

    Present knowledge of the mechanisms for production and enrichment and film drops by bursting bubbles is summarized, with particular emphasis on the unsolved problems. Sea salt is by far the major constituent cycled through the Earth's atmosphere each year. Bursting bubbles in the oceans appear to be primarily responsible. These salt particles play a role in the formation of maritime clouds, which in turn affect the Earth's radiation budget. Along with the salt are carried various chemical pollutants and potentially pathogenic microorganisms, often in highly enriched form.

  14. Lamotrigine as add-on treatment to lithium and divalproex: lessons learned from a double-blind, placebo-controlled trial in rapid-cycling bipolar disorder

    PubMed Central

    Kemp, David E; Gao, Keming; Fein, Elizabeth B; Chan, Philip K; Conroy, Carla; Obral, Sarah; Ganocy, Stephen J; Calabrese, Joseph R

    2013-01-01

    Objectives A substantial portion of the morbidity associated with rapid-cycling bipolar disorder (RCBD) stems from refractory depression. This study assessed the antidepressant effects of lamotrigine as compared with placebo when used as add-on therapy for rapid-cycling bipolar depression non-responsive to the combination of lithium plus divalproex. Methods During Phase 1 of this trial, hypomanic, manic, mixed, and/or depressed outpatients (n = 133) aged 18–65 with DSM-IV RCBD type I or II were initially treated with the open combination of lithium and divalproex for up to 16 weeks. During Phase 2, subjects who did not meet the criteria for stabilization (n = 49) (i.e., remained or cycled into the depressed phase) were randomly assigned to double-blind, adjunctive lamotrigine (n = 23) or adjunctive placebo (n = 26). The primary endpoint was the mean change in depression symptom severity from the beginning of Phase 2 to the end of Phase 2 (week 12) on the Montgomery-Åsberg Depression Rating Scale (MADRS) total score. Data were analyzed by analysis of covariance with last observation carried forward and a mixed-models analysis. Results During Phase 1, a high rate of study discontinuations occurred due to intolerable side effects (13/133; 10%) and study non-adherence (22/133; 17%). Only 14% (19/133) stabilized on the open combination of lithium and divalproex. Among the 49 (37%) patients randomized to the double-blind adjunctive treatment phase, mean ± standard error change from baseline on the MADRS total score was −8.5 ± 1.7 points for lamotrigine and −9.1 ± 1.5 points for placebo (p = NS; mixed-models analysis). No significant differences were observed in the rates of response, remission, or bimodal response between lamotrigine and placebo. Conclusions The poor tolerability, lack of efficacy, and high rate of early discontinuation with the combination of lithium and divalproex suggests this regimen was ineffective for the majority of patients with RCBD

  15. Preliminary wall heat transfer measurements and visualization of bubble growth and departure: Saturated nucleate boiling of FC-72

    SciTech Connect

    Bae, S.W.; Kim, J.; Mullen, J.D.; Kim, M.H.

    1999-07-01

    A visualization study of single bubbles growing on a microscale heater array kept at nominally constant temperature was performed. The heater array consisted of 96 heaters each 0.27 mm x 0.27 mm in size. The heater temperatures were kept constant using electronic feedback loops similar to those used in hot-wire anemometry and the power required to do this was measured throughout the bubble departure cycle for each heater in the array. Preliminary data taken at a wall superheat of 29 C resulted in boiling in the isolated bubble regime on the surface. A snapshot of boiling on the surface is seen in Figure A-1. Three types of bubble behavior were observed. The bubbles nucleating in the upper left and lower left corners of the array did not appear to be influenced by bubbles that had departed previously, nor by other bubbles on the heater (Type I behavior). The bubbles nucleating from the single site towards the center of the array were influenced by the wake of the bubble that had departed previously (Type II behavior). The bubbles nucleating in the upper and lower right corners nucleated and grew on separate sites, then merged to form a single large bubble that departed the surface (Type III behavior). Large amounts of heat transfer were associated with three processes during the bubble departure cycle-bubble nucleation, shrinking of the dry spot before departure, and merging of bubbles. The heat transfer mechanisms seen are often not accounted for in many of the current models.

  16. Constrained Vapor Bubble

    NASA Technical Reports Server (NTRS)

    Huang, J.; Karthikeyan, M.; Plawsky, J.; Wayner, P. C., Jr.

    1999-01-01

    The nonisothermal Constrained Vapor Bubble, CVB, is being studied to enhance the understanding of passive systems controlled by interfacial phenomena. The study is multifaceted: 1) it is a basic scientific study in interfacial phenomena, fluid physics and thermodynamics; 2) it is a basic study in thermal transport; and 3) it is a study of a heat exchanger. The research is synergistic in that CVB research requires a microgravity environment and the space program needs thermal control systems like the CVB. Ground based studies are being done as a precursor to flight experiment. The results demonstrate that experimental techniques for the direct measurement of the fundamental operating parameters (temperature, pressure, and interfacial curvature fields) have been developed. Fluid flow and change-of-phase heat transfer are a function of the temperature field and the vapor bubble shape, which can be measured using an Image Analyzing Interferometer. The CVB for a microgravity environment, has various thin film regions that are of both basic and applied interest. Generically, a CVB is formed by underfilling an evacuated enclosure with a liquid. Classification depends on shape and Bond number. The specific CVB discussed herein was formed in a fused silica cell with inside dimensions of 3x3x40 mm and, therefore, can be viewed as a large version of a micro heat pipe. Since the dimensions are relatively large for a passive system, most of the liquid flow occurs under a small capillary pressure difference. Therefore, we can classify the discussed system as a low capillary pressure system. The studies discussed herein were done in a 1-g environment (Bond Number = 3.6) to obtain experience to design a microgravity experiment for a future NASA flight where low capillary pressure systems should prove more useful. The flight experiment is tentatively scheduled for the year 2000. The SCR was passed on September 16, 1997. The RDR is tentatively scheduled for October, 1998.

  17. Doughnut-shaped soap bubbles

    NASA Astrophysics Data System (ADS)

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L . It is well known that the sphere is the solution for V =L3/6 π2 , and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V <α L3/6 π2 , with α ≈0.21 , such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V <α L3/6 π2 cannot be stable and should not exist in foams, for instance.

  18. Bubble Growth in Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  19. Partial coalescence of soap bubbles

    NASA Astrophysics Data System (ADS)

    Harris, Daniel M.; Pucci, Giuseppe; Bush, John W. M.

    2015-11-01

    We present the results of an experimental investigation of the merger of a soap bubble with a planar soap film. When gently deposited onto a horizontal film, a bubble may interact with the underlying film in such a way as to decrease in size, leaving behind a smaller daughter bubble with approximately half the radius of its progenitor. The process repeats up to three times, with each partial coalescence event occurring over a time scale comparable to the inertial-capillary time. Our results are compared to the recent numerical simulations of Martin and Blanchette and to the coalescence cascade of droplets on a fluid bath.

  20. Terminating marine methane bubbles by superhydrophobic sponges.

    PubMed

    Chen, Xiao; Wu, Yuchen; Su, Bin; Wang, Jingming; Song, Yanlin; Jiang, Lei

    2012-11-14

    Marine methane bubbles are absorbed, steadily stored, and continuously transported based on the employment of superhydrophobic sponges. Antiwetting sponges are water-repellent in the atmosphere and absorb gas bubbles under water. Their capacity to store methane bubbles increases with enhanced submerged depth. Significantly, trapped methane bubbles can be continuously transported driven by differential pressure.

  1. Bubble Dynamics and Resulting Noise from Traveling Bubble Cavitation.

    DTIC Science & Technology

    1982-04-13

    has resulted in models which aqree well with bubble dynamics recorded by high speed film . Chahine, et. al. (23) incorporated asymmetric bubble...recording on the tape soundtrack . 3.8 Measurement of Gas Nuclei in Water The role of nuclei density and size in cavitation inception has been the subject...interference between the coherent background and the particle-diffracted radiation exooses photographic film in the far-field of the nuclei. This

  2. Use of an ultrasonic reflectance technique to examine bubble size changes in dough

    NASA Astrophysics Data System (ADS)

    Strybulevych, A.; Leroy, V.; Shum, A. L.; Koksel, H. F.; Scanlon, M. G.; Page, J. H.

    2012-12-01

    Bread quality largely depends on the manner in which bubbles are created and manipulated in the dough during processing. We have developed an ultrasonic reflectance technique to monitor bubbles in dough, even at high volume fractions, where near the bubble resonances it is difficult to make measurements using transmission techniques. A broadband transducer centred at 3.5 MHz in a normal incidence wave reflection set-up is used to measure longitudinal velocity and attenuation from acoustic impedance measurements. The technique is illustrated by examining changes in bubbles in dough due to two very different physical effects. In dough made without yeast, a peak in attenuation due to bubble resonance is observed at approximately 2 MHz. This peak diminishes rapidly and shifts to lower frequencies, indicative of Ostwald ripening of bubbles within the dough. The second effect involves the growth of bubble sizes due to gas generated by yeast during fermentation. This process is experimentally challenging to investigate with ultrasound because of very high attenuation. The reflectance technique allows the changes of the velocity and attenuation during fermentation to be measured as a function of frequency and time, indicating bubble growth effects that can be monitored even at high volume fractions of bubbles.

  3. Aspherical bubble dynamics and oscillation times

    SciTech Connect

    Vogel, A.; Noack, J.; Chapyak, E.J.; Godwin, R.P.

    1999-06-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored by time-resolved photography and numerical simulations. The growth-collapse period of cylindrical bubbles of large aspect ratio (length:diameter {approximately}20) differs only slightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble size and energy even for aspherical bubbles. The change of the oscillation period of bubbles near solid walls and elastic (tissue-like) boundaries relative to that of isolated spherical bubbles is also investigated.

  4. Segregating gas from melt: an experimental study of the Ostwald ripening of vapor bubbles in magmas

    USGS Publications Warehouse

    Lautze, Nicole C.; Sisson, Thomas W.; Mangan, Margaret T.; Grove, Timothy L.

    2011-01-01

    Diffusive coarsening (Ostwald ripening) of H2O and H2O-CO2 bubbles in rhyolite and basaltic andesite melts was studied with elevated temperature–pressure experiments to investigate the rates and time spans over which vapor bubbles may enlarge and attain sufficient buoyancy to segregate in magmatic systems. Bubble growth and segregation are also considered in terms of classical steady-state and transient (non-steady-state) ripening theory. Experimental results are consistent with diffusive coarsening as the dominant mechanism of bubble growth. Ripening is faster in experiments saturated with pure H2O than in those with a CO2-rich mixed vapor probably due to faster diffusion of H2O than CO2 through the melt. None of the experimental series followed the time1/3 increase in mean bubble radius and time-1 decrease in bubble number density predicted by classical steady-state ripening theory. Instead, products are interpreted as resulting from transient regime ripening. Application of transient regime theory suggests that bubbly magmas may require from days to 100 years to reach steady-state ripening conditions. Experimental results, as well as theory for steady-state ripening of bubbles that are immobile or undergoing buoyant ascent, indicate that diffusive coarsening efficiently eliminates micron-sized bubbles and would produce mm-sized bubbles in 102–104 years in crustal magma bodies. Once bubbles attain mm-sizes, their calculated ascent rates are sufficient that they could transit multiple kilometers over hundreds to thousands of years through mafic and silicic melt, respectively. These results show that diffusive coarsening can facilitate transfer of volatiles through, and from, magmatic systems by creating bubbles sufficiently large for rapid ascent.

  5. Transient bubbles, bublets and breakup

    NASA Astrophysics Data System (ADS)

    Keen, Giles; Blake, John

    1999-11-01

    The non-spherical nature of the collapse of bubbles has important ramifications in many practical situations such as ultrasonic cleaning, tanning of leather, and underwater explosions. In particular the high speed liquid jet that can thread a collapsing bubble is central to the functional performance. An impressive photographic record of a liquid jet was obtained by Crum using a bubble situated in the vicinity of a platform oscillating vertically at a frequency of 60 Hz. A boundary integral method is used to model this situation and is found to closely mimic some of the observations. However, a slight variation of parameters or a change in the phase of the driving frequency can lead to dramatically different bubble behaviour, a feature also observed by Crum.

  6. Partial coalescence of soap bubbles

    NASA Astrophysics Data System (ADS)

    Pucci, G.; Harris, D. M.; Bush, J. W. M.

    2015-06-01

    We present the results of an experimental investigation of the merger of a soap bubble with a planar soap film. When gently deposited onto a horizontal film, a bubble may interact with the underlying film in such a way as to decrease in size, leaving behind a smaller daughter bubble with approximately half the radius of its progenitor. The process repeats up to three times, with each partial coalescence event occurring over a time scale comparable to the inertial-capillary time. Our results are compared to the recent numerical simulations of Martin and Blanchette ["Simulations of surfactant effects on the dynamics of coalescing drops and bubbles," Phys. Fluids 27, 012103 (2015)] and to the coalescence cascade of droplets on a fluid bath.

  7. Rapid Cycle Casting of Steel

    DTIC Science & Technology

    1981-07-01

    Figs. 10 and 11 show carbon segregation as a function of a N at casting temperatures of 1185 0 C and 1360°C. 5.7.5 Macrosegregation for non-ideal...casting temperature. Run# T a N Carbon Segregation , % 0 C L 7.5mm L 35mn L =65nm L =90nm R53 1185 .3900 11 -2 -2 -2 R52 1185 .0860 17 -3 -3 -3 R51 1185...superheated shot and melt; superheat = 66cc and casting temperature = 1198 C. Run# tI Carbon segregation , % sL = 29mm L = 43mm L = 80mm L =98mm Rl 0.35

  8. Molecular dynamics simulations of bubble nucleation in dark matter detectors.

    PubMed

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.

  9. Molecular dynamics simulations of bubble nucleation in dark matter detectors

    NASA Astrophysics Data System (ADS)

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958), 10.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α -particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.

  10. Unsteady translation and repetitive jetting of acoustic cavitation bubbles.

    PubMed

    Nowak, Till; Mettin, Robert

    2014-09-01

    High-speed recordings reveal peculiar details of the oscillation and translation behavior of cavitation bubbles in the vicinity of an ultrasonic horn tip driven at 20 kHz. In particular, a forward jump during collapse that is due to the rapid reduction of virtual mass is observed. Furthermore, frequently a jetting in the translation direction during the collapse phase is resolved. In spite of strong aspherical deformations and frequent splitting, these bubbles survive the jetting collapse, and they rebound recollecting fragments. Because of incomplete restoration of the spherical shape within the following driving period, higher periodic volume oscillations can occur. This is recognized as a yet unknown source of subharmonic acoustic emission by cavitation bubbles. Numerical modeling can capture the essentials of the unsteady translation.

  11. Mixing high-viscosity fluids via acoustically driven bubbles

    NASA Astrophysics Data System (ADS)

    Orbay, Sinem; Ozcelik, Adem; Lata, James; Kaynak, Murat; Wu, Mengxi; Huang, Tony Jun

    2017-01-01

    We present an acoustofluidic micromixer which can perform rapid and homogeneous mixing of highly viscous fluids in the presence of an acoustic field. In this device, two high-viscosity polyethylene glycol (PEG) solutions were co-injected into a three-inlet PDMS microchannel with the center inlet containing a constant stream of nitrogen flow which forms bubbles in the device. When these bubbles were excited by an acoustic field generated via a piezoelectric transducer, the two solutions mixed homogenously due to the combination of acoustic streaming, droplet ejection, and bubble eruption effects. The mixing efficiency of this acoustofluidic device was evaluated using PEG-700 solutions which are ~106 times more viscous than deionized (DI) water. Our results indicate homogenous mixing of the PEG-700 solutions with a ~0.93 mixing index. The acoustofluidic micromixer is compact, inexpensive, easy to operate, and has the capacity to mix highly viscous fluids within 50 ms.

  12. UV irradiation/cold shock-mediated apoptosis is switched to bubbling cell death at low temperatures

    PubMed Central

    Lin, Hsin-Ping; Huang, Shenq-Shyang; Sheu, Hamm-Ming; Hsu, Li-Jin; Chang, Nan-Shan

    2015-01-01

    When COS7 fibroblasts and other cells were exposed to UVC irradiation and cold shock at 4°C for 5 min, rapid upregulation and nuclear accumulation of NOS2, p53, WWOX, and TRAF2 occurred in 10–30 min. By time-lapse microscopy, an enlarging gas bubble containing nitric oxide (NO) was formed in the nucleus in each cell that finally popped out to cause “bubbling death”. Bubbling occurred effectively at 4 and 22°C, whereas DNA fragmentation was markedly blocked at 4°C. When temperature was increased to 37°C, bubbling was retarded and DNA fragmentation occurred in 1 hr, suggesting that bubbling death is switched to apoptosis with increasing temperatures. Bubbling occurred prior to nuclear uptake of propidium iodide and DAPI stains. Arginine analog Nω-LAME inhibited NO synthase NOS2 and significantly suppressed the bubbling death. Unlike apoptosis, there were no caspase activation and flip-over of membrane phosphatidylserine (PS) during bubbling death. Bubbling death was significantly retarded in Wwox knockout MEF cells, as well as in cells overexpressing TRAF2 and dominant-negative p53. Together, UV/cold shock induces bubbling death at 4°C and the event is switched to apoptosis at 37°C. Presumably, proapoptotic WWOX and p53 block the protective TRAF2 to execute the bubbling death. PMID:25779665

  13. Slowing down bubbles with sound

    NASA Astrophysics Data System (ADS)

    Poulain, Cedric; Dangla, Remie; Guinard, Marion

    2009-11-01

    We present experimental evidence that a bubble moving in a fluid in which a well-chosen acoustic noise is superimposed can be significantly slowed down even for moderate acoustic pressure. Through mean velocity measurements, we show that a condition for this effect to occur is for the acoustic noise spectrum to match or overlap the bubble's fundamental resonant mode. We render the bubble's oscillations and translational movements using high speed video. We show that radial oscillations (Rayleigh-Plesset type) have no effect on the mean velocity, while above a critical pressure, a parametric type instability (Faraday waves) is triggered and gives rise to nonlinear surface oscillations. We evidence that these surface waves are subharmonic and responsible for the bubble's drag increase. When the acoustic intensity is increased, Faraday modes interact and the strongly nonlinear oscillations behave randomly, leading to a random behavior of the bubble's trajectory and consequently to a higher slow down. Our observations may suggest new strategies for bubbly flow control, or two-phase microfluidic devices. It might also be applicable to other elastic objects, such as globules, cells or vesicles, for medical applications such as elasticity-based sorting.

  14. Temperature measurements in cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Coutier-Delgosha, Olivier

    2016-11-01

    Cavitation is usually a nearly isothermal process in the liquid phase, but in some specific flow conditions like hot water or cryogenic fluids, significant temperature variations are detected. In addition, a large temperature increase happens inside the cavitation bubbles at the very end of their collapse, due to the fast compression of the gas at the bubble core, which is almost adiabatic. This process is of primary interest in various biomedical and pharmaceutical applications, where the mechanisms of bubble collapse plays a major role. To investigate the amplitude and the spatial distribution of these temperature variations inside and outside the cavitation bubbles, a system based on cold wires has been developed. They have been tested in a configuration of a single bubble obtained by submitting a small air bubble to a large amplitude pressure wave. Some promising results have been obtained after the initial validation tests. This work is funded by the Office of Naval Research Global under Grant N62909-16-1-2116, Dr. Salahuddin Ahmed & Ki-Han Kim program managers.

  15. Bubble baths: just splashing around?

    NASA Astrophysics Data System (ADS)

    Robinson, Wesley; Speirs, Nathan; Sharker, Saberul Islam; Hurd, Randy; Williams, Bj; Truscott, Tadd

    2016-11-01

    Soap Bubbles on the water surface would seem to be an intuitive means for splash suppression, but their presence appears to be a double edged sword. We present on the water entry of hydrophilic spheres where the liquid surface is augmented by the presence of a bubble layer, similar to a bubble bath. While the presence of a bubble layer can diminish splashing upon impact at low Weber numbers, it also induces cavity formation at speeds below the critical velocity. The formation of a cavity generally results in larger Worthington jets and thus, larger amounts of ejected liquid. Bubble layers induce cavity formation by wetting the sphere prior to liquid impact, causing them to form cavities similar to those created by hydrophobic spheres. Droplets present on a pre-wetted sphere disrupt the flow of the advancing liquid during entry, pushing it away from the impacting body to form an entrained air cavity. This phenomena was noted by Worthington with pre-wetted stone marbles, and suggests that the application of a bubble layer is generally ineffective as a means of splash suppression.

  16. Numerical modeling of bubble dynamics in viscoelastic media with relaxation.

    PubMed

    Warnez, M T; Johnsen, E

    2015-06-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.

  17. Bubble dynamics in high-amplitude ultrasound therapies

    NASA Astrophysics Data System (ADS)

    Johnsen, Eric; Mancia, Lauren

    2015-11-01

    Cavitation plays an important role in certain therapeutic ultrasound procedures, such as histotripsy in which megahertz pressure pulses are used to destroy tissue. The large tensions (> 25 MPa) nucleate bubbles in the tissue, which rapidly grow to radii on the order of hundreds of microns and subsequently collapse. To better understand potential cavitation-induced damage, we developed a numerical framework for spherical bubble dynamics in soft tissue that includes liquid compressibility and full thermal effects, as well as a comprehensive viscoelastic model with elasticity, relaxation, viscosity and various nonlinearities. This framework has enabled us to understand the effects of the viscoelastic and thermal properties of the tissue on the bubble dynamics, and compute stress and temperature fields in the surroundings. Results indicate that different viscoelastic properties affect the bubble dynamics differently, but that overall the viscoelastic nature of tissue produces larger stresses and increased heating on the surroundings, compared to bubble dynamics in purely viscous liquids. This work was supported by NSF grant number CBET 1253157 and NIH grant number 1R01HL110990-01A1.

  18. Blind Deconvolution on Underwater Images for Gas Bubble Measurement

    NASA Astrophysics Data System (ADS)

    Zelenka, C.; Koch, R.

    2015-04-01

    Marine gas seeps, such as in the Panarea area near Sicily (McGinnis et al., 2011), emit large amounts of methane and carbon-dioxide, greenhouse gases. Better understanding their impact on the climate and the marine environment requires precise measurements of the gas flux. Camera based bubble measurement systems suffer from defocus blur caused by a combination of small depth of field, insufficient lighting and from motion blur due to rapid bubble movement. These adverse conditions are typical for open sea underwater bubble images. As a consequence so called 'bubble boxes' have been built, which use elaborate setups, specialized cameras and high power illumination. A typical value of light power used is 1000W (Leifer et al., 2003). In this paper we propose the compensation of defocus and motion blur in underwater images by using blind deconvolution techniques. The quality of the images can be greatly improved, which will relax requirements on bubble boxes, reduce their energy consumption and widen their usability.

  19. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    PubMed Central

    Warnez, M. T.; Johnsen, E.

    2015-01-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller–Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin–Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time. PMID:26130967

  20. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    NASA Astrophysics Data System (ADS)

    Warnez, M. T.; Johnsen, E.

    2015-06-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.

  1. The Bubble Transport Mechanism: Indications for a bubble-mediated transfer of microorganisms from the sediment into the water column

    NASA Astrophysics Data System (ADS)

    Schmale, Oliver; Stolle, Christian; Schneider von Deimling, Jens; Leifer, Ira; Kießlich, Katrin; Krause, Stefan; Frahm, Andreas; Treude, Tina

    2015-04-01

    Gas releasing seep areas are known to impact the methane biogeochemistry in the surrounding sediment and water column. Due to microbial processes most of the methane is oxidized under anaerobic and aerobic conditions before the greenhouse gas can escape into the atmosphere. However, methane gas bubbles can largely bypass this microbial filter mechanism, enabling highly efficient transport of methane from the sediment towards the sea surface. Studies in the water column surrounding hydrocarbon seeps indicated an elevated abundance of methanotrophic microorganism in the near field of gas bubble plumes. The enhanced methane concentration in the seep-affected water column stimulates the activity of methane oxidizers and leads to a rapid rise in the abundance of methane-oxidizing microorganisms in the aging plume water. In our study we hypothesized that a bubble-mediated transport mechanisms between the benthic and pelagic habitats represents an exchange process, which transfers methanotrophic microorganisms from the sediment into the water column, a process we termed the "Bubble Transport Mechanism". This mechanism could eventually influence the pelagic methanotrophic community, thereby indirectly providing feedback mechanisms for dissolved methane concentrations in the water column and thus impacting the sea/atmosphere methane flux. To test our hypothesis, field studies were conducted at the "Rostocker Seep" site (Coal Oil Point seep area, California, USA). Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) analyzes were performed to determine the abundance of aerobic and anaerobic methanotrophic microorganisms. Aerobic methane oxidizing bacteria were detected in the sediment and the water column, whereas anaerobic methanotrophs were detected exclusively in the sediment. The key device of the project was a newly developed "Bubble Catcher" used to collect naturally emanating gas bubbles at the sea floor together with particles attached to the

  2. Bubble-Pen Lithography.

    PubMed

    Lin, Linhan; Peng, Xiaolei; Mao, Zhangming; Li, Wei; Yogeesh, Maruthi N; Rajeeva, Bharath Bangalore; Perillo, Evan P; Dunn, Andrew K; Akinwande, Deji; Zheng, Yuebing

    2016-01-13

    Current lithography techniques, which employ photon, electron, or ion beams to induce chemical or physical reactions for micro/nano-fabrication, have remained challenging in patterning chemically synthesized colloidal particles, which are emerging as building blocks for functional devices. Herein, we develop a new technique - bubble-pen lithography (BPL) - to pattern colloidal particles on substrates using optically controlled microbubbles. Briefly, a single laser beam generates a microbubble at the interface of colloidal suspension and a plasmonic substrate via plasmon-enhanced photothermal effects. The microbubble captures and immobilizes the colloidal particles on the substrate through coordinated actions of Marangoni convection, surface tension, gas pressure, and substrate adhesion. Through directing the laser beam to move the microbubble, we create arbitrary single-particle patterns and particle assemblies with different resolutions and architectures. Furthermore, we have applied BPL to pattern CdSe/ZnS quantum dots on plasmonic substrates and polystyrene (PS) microparticles on two-dimensional (2D) atomic-layer materials. With the low-power operation, arbitrary patterning and applicability to general colloidal particles, BPL will find a wide range of applications in microelectronics, nanophotonics, and nanomedicine.

  3. Vibration Considerations for Cryogenic Tanks Using Glass Bubbles Insulation

    NASA Technical Reports Server (NTRS)

    Werlink, Rudolph J.; Fesmire, James E.; Sass, Jared P.

    2011-01-01

    The use of glass bubbles as an efficient and practical thermal insulation system has been previously demonstrated in cryogenic storage tanks. One such example is a spherical, vacuum-jacketed liquid hydrogen vessel of 218,000 liter capacity where the boiloff rate has been reduced by approximately 50 percent. Further applications may include non-stationary tanks such as mobile tankers and tanks with extreme duty cycles or exposed to significant vibration environments. Space rocket launch events and mobile tanker life cycles represent two harsh cases of mechanical vibration exposure. A number of bulk fill insulation materials including glass bubbles, perlite powders, and aerogel granules were tested for vibration effects and mechanical behavior using a custom design holding fixture subjected to random vibration on an Electrodynamic Shaker. The settling effects for mixtures of insulation materials were also investigated. The vibration test results and granular particle analysis are presented with considerations and implications for future cryogenic tank applications. A thermal performance update on field demonstration testing of a 218,000 L liquid hydrogen storage tank, retrofitted with glass bubbles, is presented. KEYWORDS: Glass bubble, perlite, aerogel, insulation, liquid hydrogen, storage tank, mobile tanker, vibration.

  4. Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR.

    PubMed

    Steuerwald, N; Barritt, J A; Adler, R; Malter, H; Schimmel, T; Cohen, J; Brenner, C A

    2000-08-01

    Oocytes, in general, are greatly enriched in mitochondria to support higher rates of macromolecular synthesis and critical physiological processes characteristic of early development. An inability of these organelles to amplify and/or to accumulate ATP has been linked to developmental abnormality or arrest. The number of mitochondrial genomes present in mature mouse and human metaphase II oocytes was estimated by fluorescent rapid cycle DNA amplification, which is a highly sensitive technique ideally suited to quantitative mitochondrial DNA (mtDNA) analysis in individual cells. A considerable degree of variability was observed between individual samples. An overall average of 1.59 x 10(5) and 3.14 x 10(5) mtDNA molecules were detected per mouse and human oocyte, respectively. Furthermore, the mtDNA copy number was examined in polar bodies and contrasted with the concentration in their corresponding oocytes. In addition, the density of mtDNA in a cytoplasmic sample was estimated in an attempt to determine the approximate number of mitochondria transferred during clinical cytoplasmic donation procedures as well as to develop a clinical tool for the assessment and selection of oocytes during in vitro fertilisation procedures. However, no correlation was identified between the mtDNA concentration in either polar bodies or cytoplasmic samples and their corresponding oocyte.

  5. The Gene Encoding Dihydroflavonol 4-Reductase Is a Candidate for the anthocyaninless Locus of Rapid Cycling Brassica rapa (Fast Plants Type)

    PubMed Central

    Wendell, Douglas L.; Vaziri, Anoumid; Shergill, Gurbaksh

    2016-01-01

    Rapid cycling Brassica rapa, also known as Wisconsin Fast Plants, are a widely used organism in both K-12 and college science education. They are an excellent system for genetics laboratory instruction because it is very easy to conduct genetic crosses with this organism, there are numerous seed stocks with variation in both Mendelian and quantitative traits, they have a short generation time, and there is a wealth of educational materials for instructors using them. Their main deficiency for genetics education is that none of the genetic variation in RCBr has yet been characterized at the molecular level. Here we present the first molecular characterization of a gene responsible for a trait in Fast Plants. The trait under study is purple/nonpurple variation due to the anthocyaninless locus, which is one of the Mendelian traits most frequently used for genetics education with this organism. We present evidence that the DFR gene, which encodes dihyroflavonol 4-reductase, is the candidate gene for the anthocyaninless (ANL) locus in RCBr. DFR shows complete linkage with ANL in genetic crosses with a total of 948 informative chromosomes, and strains with the recessive nonpurple phenotype have a transposon-related insertion in the DFR which is predicted to disrupt gene function. PMID:27548675

  6. The Gene Encoding Dihydroflavonol 4-Reductase Is a Candidate for the anthocyaninless Locus of Rapid Cycling Brassica rapa (Fast Plants Type).

    PubMed

    Wendell, Douglas L; Vaziri, Anoumid; Shergill, Gurbaksh

    2016-01-01

    Rapid cycling Brassica rapa, also known as Wisconsin Fast Plants, are a widely used organism in both K-12 and college science education. They are an excellent system for genetics laboratory instruction because it is very easy to conduct genetic crosses with this organism, there are numerous seed stocks with variation in both Mendelian and quantitative traits, they have a short generation time, and there is a wealth of educational materials for instructors using them. Their main deficiency for genetics education is that none of the genetic variation in RCBr has yet been characterized at the molecular level. Here we present the first molecular characterization of a gene responsible for a trait in Fast Plants. The trait under study is purple/nonpurple variation due to the anthocyaninless locus, which is one of the Mendelian traits most frequently used for genetics education with this organism. We present evidence that the DFR gene, which encodes dihyroflavonol 4-reductase, is the candidate gene for the anthocyaninless (ANL) locus in RCBr. DFR shows complete linkage with ANL in genetic crosses with a total of 948 informative chromosomes, and strains with the recessive nonpurple phenotype have a transposon-related insertion in the DFR which is predicted to disrupt gene function.

  7. Acoustical Emission from Bubbles and Dynamics of Bubbles and Bubble Clouds.

    DTIC Science & Technology

    1997-01-01

    distribution of bubble sizes from a breaking wave , that is immediately following on the entrainment and disintegration of a given volume of air? In the...experimental confirmation was found by later workers. A simple statistical model has been proposed for the initial bubble sizes from breaking waves ...which also has received experimental support. A direct method of calculating wave -generated ripples has been proposed, which accounts quantitatively

  8. FEASTING BLACK HOLE BLOWS BUBBLES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  9. Remobilizing the Interface of Thermocapillary Driven Bubbles Retarded By the Adsorption of a Surfactant Impurity on the Bubble Surface

    NASA Technical Reports Server (NTRS)

    Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim (Technical Monitor)

    2001-01-01

    molecules which kinetically rapidly exchange between the bulk and the surface and are at high bulk concentrations. Because the remobilizing surfactant is present at much higher concentrations than the impurity, it adsorbs to the bubble surface much faster than the impurity when the bubble is formed, and thereby prevents the impurity from adsorbing onto the surface. In addition, the rapid kinetic exchange and high bulk concentration maintain a saturated surface with uniform surface concentrations. This prevents retarding surface tension gradients and keeps the thermocapillary velocity high. In our reports over the first 2 years, we presented numerical simulations of the bubble motion and surfactant transport which verified theoretically the concept of remobilization, and the development of an apparatus to track and measure the velocity of rising bubbles in a glycerol/water surfactant solution. This year, we detail experimental observations of remobilization. Two polyethylene oxide surfactants were studied, C12E6 (CH3(CH2)11(OCH2)6OH) and C10E8 (CH3(CH2)4(OCH2CH2)8OH). Measurements of the kinetic exchange for these surfactants show that the one with the longer hydrophobe chain C12E6 has a lower rate of kinetic exchange. In addition, this surfactant is much less soluble in the glycerol/water mixture because of the shorter ethoxylate chain. As a result, we found that C12E6 had only a very limited ability to remobilize rising bubbles because of the limited kinetic exchange and reduced solubility. However, C10E8, with its higher solubility and more rapid exchange was found to dramatically remobilize rising bubbles. We also compared our theoretical calculations to the experimental measurements of velocity for both the non-remobilizing and remobilizing surfactants and found excellent agreement. We further observed that for C10E8 at high concentrations, which exceeded the critical micelle concentrations, additional remobilization was measured. In this case the rapid exchange of

  10. Remobilizing the Interface of Thermocapillary Driven Bubbles Retarded By the Adsorption of a Surfactant Impurity on the Bubble Surface

    NASA Technical Reports Server (NTRS)

    Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim (Technical Monitor)

    2001-01-01

    molecules which kinetically rapidly exchange between the bulk and the surface and are at high bulk concentrations. Because the remobilizing surfactant is present at much higher concentrations than the impurity, it adsorbs to the bubble surface much faster than the impurity when the bubble is formed, and thereby prevents the impurity from adsorbing onto the surface. In addition, the rapid kinetic exchange and high bulk concentration maintain a saturated surface with uniform surface concentrations. This prevents retarding surface tension gradients and keeps the thermocapillary velocity high. In our reports over the first 2 years, we presented numerical simulations of the bubble motion and surfactant transport which verified theoretically the concept of remobilization, and the development of an apparatus to track and measure the velocity of rising bubbles in a glycerol/water surfactant solution. This year, we detail experimental observations of remobilization. Two polyethylene oxide surfactants were studied, C12E6 (CH3(CH2)11(OCH2)6OH) and C10E8 (CH3(CH2)4(OCH2CH2)8OH). Measurements of the kinetic exchange for these surfactants show that the one with the longer hydrophobe chain C12E6 has a lower rate of kinetic exchange. In addition, this surfactant is much less soluble in the glycerol/water mixture because of the shorter ethoxylate chain. As a result, we found that C12E6 had only a very limited ability to remobilize rising bubbles because of the limited kinetic exchange and reduced solubility. However, C10E8, with its higher solubility and more rapid exchange was found to dramatically remobilize rising bubbles. We also compared our theoretical calculations to the experimental measurements of velocity for both the non-remobilizing and remobilizing surfactants and found excellent agreement. We further observed that for C10E8 at high concentrations, which exceeded the critical micelle concentrations, additional remobilization was measured. In this case the rapid exchange of

  11. Single-bubble sonoluminescence from hydrogen

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi

    1999-09-01

    Single-bubble sonoluminescence (SBSL) from a hydrogen bubble is studied theoretically based on a quasiadiabatic compression model of a bubble collapse. It is clarified that the maximum temperature in a hydrogen bubble in 20 °C water under conditions of SBSL is always about 6000 K due to the effect of chemical reactions inside the bubble. It is suggested that the light emission at such temperature is by the transition from the lowest stable triplet state of the H2 molecule to the repulsive state resulting from two normal atoms (H2*→2H+hν). It is shown that the number of hydrogen molecules inside the bubble remains almost constant in spite of the high temperature and pressure inside the bubble at the collapse. It is also shown that the addition of argon to a hydrogen bubble results in the higher maximum temperature inside the bubble.

  12. The distribution of bubble sizes during reionization

    NASA Astrophysics Data System (ADS)

    Lin, Yin; Oh, S. Peng; Furlanetto, Steven R.; Sutter, P. M.

    2016-09-01

    A key physical quantity during reionization is the size of H II regions. Previous studies found a characteristic bubble size which increases rapidly during reionization, with apparent agreement between simulations and analytic excursion set theory. Using four different methods, we critically examine this claim. In particular, we introduce the use of the watershed algorithm - widely used for void finding in galaxy surveys - which we show to be an unbiased method with the lowest dispersion and best performance on Monte Carlo realizations of a known bubble size probability density function (PDF). We find that a friends-of-friends algorithm declares most of the ionized volume to be occupied by a network of volume-filling regions connected by narrow tunnels. For methods tuned to detect the volume-filling regions, previous apparent agreement between simulations and theory is spurious, and due to a failure to correctly account for the window function of measurement schemes. The discrepancy is already obvious from visual inspection. Instead, H II regions in simulations are significantly larger (by factors of 10-1000 in volume) than analytic predictions. The size PDF is narrower, and evolves more slowly with time, than predicted. It becomes more sharply peaked as reionization progresses. These effects are likely caused by bubble mergers, which are inadequately modelled by analytic theory. Our results have important consequences for high-redshift 21 cm observations, the mean free path of ionizing photons, and the visibility of Lyα emitters, and point to a fundamental failure in our understanding of the characteristic scales of the reionization process.

  13. Simulation of shock-induced bubble collapse with application to vascular injury in shockwave lithotripsy

    NASA Astrophysics Data System (ADS)

    Coralic, Vedran

    Shockwave lithotripsy is a noninvasive medical procedure wherein shockwaves are repeatedly focused at the location of kidney stones in order to pulverize them. Stone comminution is thought to be the product of two mechanisms: the propagation of stress waves within the stone and cavitation erosion. However, the latter mechanism has also been implicated in vascular injury. In the present work, shock-induced bubble collapse is studied in order to understand the role that it might play in inducing vascular injury. A high-order accurate, shock- and interface-capturing numerical scheme is developed to simulate the three-dimensional collapse of the bubble in both the free-field and inside a vessel phantom. The primary contributions of the numerical study are the characterization of the shock-bubble and shock-bubble-vessel interactions across a large parameter space that includes clinical shockwave lithotripsy pressure amplitudes, problem geometry and tissue viscoelasticity, and the subsequent correlation of these interactions to vascular injury. Specifically, measurements of the vessel wall pressures and displacements, as well as the finite strains in the fluid surrounding the bubble, are utilized with available experiments in tissue to evaluate damage potential. Estimates are made of the smallest injurious bubbles in the microvasculature during both the collapse and jetting phases of the bubble's life cycle. The present results suggest that bubbles larger than one micrometer in diameter could rupture blood vessels under clinical SWL conditions.

  14. Controlled permeation of cell membrane by single bubble acoustic cavitation.

    PubMed

    Zhou, Y; Yang, K; Cui, J; Ye, J Y; Deng, C X

    2012-01-10

    Sonoporation is the membrane disruption generated by ultrasound and has been exploited as a non-viral strategy for drug and gene delivery. Acoustic cavitation of microbubbles has been recognized to play an important role in sonoporation. However, due to the lack of adequate techniques for precise control of cavitation activities and real-time assessment of the resulting sub-micron process of sonoporation, limited knowledge has been available regarding the detail processes and correlation of cavitation with membrane disruption at the single cell level. In the current study, we developed a combined approach including optical, acoustical, and electrophysiological techniques to enable synchronized manipulation, imaging, and measurement of cavitation of single bubbles and the resulting cell membrane disruption in real-time. Using a self-focused femtosecond laser and high frequency ultrasound (7.44MHz) pulses, a single microbubble was generated and positioned at a desired distance from the membrane of a Xenopus oocyte. Cavitation of the bubble was achieved by applying a low frequency (1.5MHz) ultrasound pulse (duration 13.3 or 40μs) to induce bubble collapse. Disruption of the cell membrane was assessed by the increase in the transmembrane current (TMC) of the cell under voltage clamp. Simultaneous high-speed bright field imaging of cavitation and measurements of the TMC were obtained to correlate the ultrasound-generated bubble activities with the cell membrane poration. The change in membrane permeability was directly associated with the formation of a sub-micrometer pore from a local membrane rupture generated by bubble collapse or bubble compression depending on ultrasound amplitude and duration. The impact of the bubble collapse on membrane permeation decreased rapidly with increasing distance (D) between the bubble (diameter d) and the cell membrane. The effective range of cavitation impact on membrane poration was determined to be D/d=0.75. The maximum mean

  15. Two-dimensional micro-bubble actuator array to enhance the efficiency of molecular beacon based DNA micro-biosensors.

    PubMed

    Deng, Peigang; Lee, Yi-Kuen; Cheng, Ping

    2006-02-15

    Two-dimensional micro-bubble actuator arrays were developed and studied in detail to enhance the hybridization kinetics of a DNA micro-biosensor. The hybridization between a molecular beacon, a kind of oligonucleotide probe, and its complement was investigated in a millimeter-sized PDMS based reaction chamber, where various 2D micro-heater arrays were distributed on the bottom for micro-bubble generation. The hybridization assay without the micro-bubble actuation revealed that the fluorescence increased fast at the beginning and slowed down after that. However, a uniform fluorescence increase was observed when periodic micro-bubble agitation was introduced in the static hybridization solution. A comparison of hybridization assays with and without micro-bubble agitation revealed that the hybridization time could be effectively shortened by 33% with 10 cycles of micro-bubble agitation from a 2 x 1 bubble actuator array, and by 43% with 10 cycles of micro-bubble agitation from a 2 x 2 bubble actuator array.

  16. Single-Bubble and Multibubble Sonoluminescence

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi

    1999-11-01

    Computer simulations of radiation processes in an air bubble and an argon bubble are performed under a condition of single-bubble sonoluminescence (SBSL) based on a quasiadiabatic compression model of a bubble collapse. It is clarified that emissions from excited molecules are strongly quenched by high pressure and temperature inside a SBSL bubble and SBSL originates in the emissions from plasma. It is pointed out that sonoluminescence from cavitation fields (MBSL) originates in emissions from excited molecules, which is not quenched due to the much lower pressure and temperature inside the MBSL bubbles.

  17. A novel methodology to measure methane bubble sizes in the water column

    NASA Astrophysics Data System (ADS)

    Hemond, H.; Delwiche, K.; Senft-Grupp, S.; Manganello, T.

    2014-12-01

    The fate of methane ebullition from lake sediments is dependent on initial bubble size. Rising bubbles are subject to dissolution, reducing the fraction of methane that ultimately enters the atmosphere while increasing concentrations of aqueous methane. Smaller bubbles not only rise more slowly, but dissolve more rapidly larger bubbles. Thus, understanding methane bubble size distributions in the water column is critical to predicting atmospheric methane emissions from ebullition. However, current methods of measuring methane bubble sizes in-situ are resource-intensive, typically requiring divers, video equipment, sonar, or hydroacoustic instruments. The complexity and cost of these techniques points to the strong need for a simple, autonomous device that can measure bubble size distributions and be deployed unattended over long periods of time. We describe a bubble sizing device that can be moored in the subsurface and can intercept and measure the size of bubbles as they rise. The instrument uses a novel optical measurement technique with infrared LEDs and IR-sensitive photodetectors combined with a custom-designed printed circuit board. An on-board microcomputer handles raw optical signals and stores the relevant information needed to calculate bubble volume. The electronics are housed within a pressure case fabricated from standard PVC fittings and are powered by size C alkaline batteries. The bill of materials cost is less than $200, allowing us to deploy multiple sensors at various locations within Upper Mystic Lake, MA. This novel device will provide information on how methane bubble sizes may vary both spatially and temporally. We present data from tests under controlled laboratory conditions and from deployments in Upper Mystic Lake.

  18. CLASSICAL AREAS OF PHENOMENOLOGY: Growth and collapse of laser-induced bubbles in glycerol water mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Xiu-Mei; He, Jie; Lu, Jian; Ni, Xiao-Wu

    2008-07-01

    Comprehensive numerical and experimental analyses of the effect of viscosity on cavitation oscillations are performed. This numerical approach is based on the Rayleigh-Plesset equation. The model predictions are compared with experimental results obtained by using a fibre-optic diagnostic technique based on optical beam deflection (OBD). The maximum and minimum bubble radii as well as the oscillation times for each oscillation cycle are determined according to the characteristic signals. It is observed that the increasing of viscosity decreases the maximum bubble radii but increases the minimum bubble radii and the oscillation time. These experimental results are consistent with numerical results.

  19. Rapid High Spatial Resolution Chemical Characterization of Soil Structure to Illuminate Nutrient Distribution Mechanisms Related to Carbon Cycling Using Laser Ablation Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hicks, R. K.; Alexander, M. L. L.; Newburn, M. K.

    2015-12-01

    Soils contain approximately half of Earth's terrestrial carbon. As such, it is important to understand the factors that control the cycling of this soil organic carbon between the land and the atmosphere. Models that attribute the persistence of soil organic carbon to the intrinsic properties of the molecules themselves are inconsistent with recent observations— for example, materials that are more thermodynamically stable have been found to have a shorter lifetime in soils than ones that are less stable, and vice versa. A new explanation has therefore been posited that invokes ecosystem properties as a whole, and not just intrinsic molecular properties, as the kinetic factor controlling soil carbon dynamics. Because soil dynamics occur on a small scale, techniques with high spatial resolution are required for their study. Existing techniques such as TOF-SIMS require preparation of the sample and introduction into a high vacuum system, and do not address the need to examine large numbers of sample systems without perturbation of chemical and physical properties. To address this analytical challenge, we have coupled a laser ablation (LA) module to an Aerodyne aerosol mass spectrometer (AMS), thereby enabling sample introduction and subsequent measurement of small amounts of soil organic matter by the laser ablation aerosol mass spectrometer (LA-AMS). Due to the adjustable laser beam width, the LA-AMS can probe spot sizes ranging from 1-150 μm in diameter, liberating from 10-100 ng/pulse. With a detection limit of 1 pM, the AMS allows for chemical characterization of the ablated material in terms of elemental ratios, compound classes, and TOC/TOM ratios. Furthermore, the LA-AMS is capable of rapid, in-situ sampling under ambient conditions, thereby eliminating the need for sample processing or transport before analysis. Here, we will present the first results from systematic studies aimed at validating the LA-AMS method as well as results from initial measurements

  20. Phase diagrams for sonoluminescing bubbles

    NASA Astrophysics Data System (ADS)

    Hilgenfeldt, Sascha; Lohse, Detlef; Brenner, Michael P.

    1996-11-01

    Sound driven gas bubbles in water can emit light pulses. This phenomenon is called sonoluminescence (SL). Two different phases of single bubble SL have been proposed: diffusively stable and diffusively unstable SL. We present phase diagrams in the gas concentration versus forcing pressure state space and also in the ambient radius versus gas concentration and versus forcing pressure state spaces. These phase diagrams are based on the thresholds for energy focusing in the bubble and two kinds of instabilities, namely (i) shape instabilities and (ii) diffusive instabilities. Stable SL only occurs in a tiny parameter window of large forcing pressure amplitude Pa˜1.2-1.5 atm and low gas concentration of less than 0.4% of the saturation. The upper concentration threshold becomes smaller with increased forcing. Our results quantitatively agree with experimental results of Putterman's UCLA group on argon, but not on air. However, air bubbles and other gas mixtures can also successfully be treated in this approach if in addition (iii) chemical instabilities are considered. All statements are based on the Rayleigh-Plesset ODE approximation of the bubble dynamics, extended in an adiabatic approximation to include mass diffusion effects. This approximation is the only way to explore considerable portions of parameter space, as solving the full PDEs is numerically too expensive. Therefore, we checked the adiabatic approximation by comparison with the full numerical solution of the advection diffusion PDE and find good agreement.

  1. Ethnic diversity deflates price bubbles

    PubMed Central

    Levine, Sheen S.; Apfelbaum, Evan P.; Bernard, Mark; Bartelt, Valerie L.; Zajac, Edward J.; Stark, David

    2014-01-01

    Markets are central to modern society, so their failures can be devastating. Here, we examine a prominent failure: price bubbles. Bubbles emerge when traders err collectively in pricing, causing misfit between market prices and the true values of assets. The causes of such collective errors remain elusive. We propose that bubbles are affected by ethnic homogeneity in the market and can be thwarted by diversity. In homogenous markets, traders place undue confidence in the decisions of others. Less likely to scrutinize others’ decisions, traders are more likely to accept prices that deviate from true values. To test this, we constructed experimental markets in Southeast Asia and North America, where participants traded stocks to earn money. We randomly assigned participants to ethnically homogeneous or diverse markets. We find a marked difference: Across markets and locations, market prices fit true values 58% better in diverse markets. The effect is similar across sites, despite sizeable differences in culture and ethnic composition. Specifically, in homogenous markets, overpricing is higher as traders are more likely to accept speculative prices. Their pricing errors are more correlated than in diverse markets. In addition, when bubbles burst, homogenous markets crash more severely. The findings suggest that price bubbles arise not only from individual errors or financial conditions, but also from the social context of decision making. The evidence may inform public discussion on ethnic diversity: it may be beneficial not only for providing variety in perspectives and skills, but also because diversity facilitates friction that enhances deliberation and upends conformity. PMID:25404313

  2. A Study of Micro-bubble Enhanced Sonoporation

    NASA Astrophysics Data System (ADS)

    Okamoto, A.; Tachibana, R.; Yoshinaka, K.; Osada, K.; Takagi, S.; Kataoka, K.; Chung, U.; Matsumoto, Y.

    2011-09-01

    Sonoporation is a recently developed system for gene induction that uses ultrasound. Micro-bubbles are known to aid gene transfection through the introduction of genes into cells by the collapse of cavitation-bubbles (or micro-bubbles). However, the underlying mechanism and optimal introduction conditions have not been clarified in detail. In this research, we improved the gene introduction rate by forming DNA/Block copolymer micelles. Micelle formation compacts the DNA and enhances its stability, thereby facilitating the passage of greater amounts of DNA through holes in the cell surface and improving gene expression. Cells were exposed to ultrasonic plane waves from a piezoceramic transducer with a frequency of 2.0 MHz and a duty cycle of 10% (400/3600). Mouse fibroblast cells (NIH3T3) were cultured on the bottom of 24-well plates. Plasmid DNA and Sonazoid® (micro-bubbles) were added to the culture media and the cells were subsequently exposed to ultrasound. In the system described herein, micelles are formed by combining DNA and block copolymer. Block copolymer is composed of polyethyleneglycol-group and poly-lysine. Naked DNA and polymer micelles are added to culture media with micro-bubbles, and then exposed to ultrasound. The experimental conditions were as follows: plasmid density of 15 μg/ml, micro-bubble density of 1.7×105/mm3, ultrasound intensity of 5.08 W/cm2, ultrasound exposure time of 60 seconds, and a sample number of 12. Our results show that the gene induction ratio is doubled by the formation of polymer micelles (from ˜1% to ˜2%), thereby confirming that the system is capable of generating polymer micelles for introducing DNA into cells.

  3. Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum

    NASA Technical Reports Server (NTRS)

    Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc

    2008-01-01

    Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.

  4. Formation and Growth of Micro and Macro Bubbles on Copper-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Zhang, Nengli

    2007-01-01

    Micro scale boiling behavior in the vicinity of graphite micro-fiber tips on the coppergraphite composite boiling surfaces is investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the copper matrix in pool boiling. In virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each of which sitting on several tips. The growth processes of the micro and macro bubbles are analyzed and formulated followed by an analysis of bubble departure on the composite surfaces. Based on these analyses, the enhancement mechanism of the pool boiling heat transfer on the composite surfaces is clearly revealed. Experimental results of pool boiling heat transfer both for water and Freon-113 on the composite surfaces convincingly demonstrate the enhancement effects of the unique structure of Cu-Gr composite surfaces on boiling heat transfer.

  5. Gravity driven flows of bubble suspensions.

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto; Koch, Donald L.; Sangani, Ashok K.

    1999-11-01

    Experiments on vertical and inclined channels were performed to study the behavior of a mono-dispersed bubble suspension for which the dual limit of large Reynolds number and small Weber number is satisfied. A uniform stream of 1.5 mm diameter bubbles is produced by a bank of identical capillaries and coalescence is inhibited by addition of salt to the water. Measurements of the liquid velocity and bubble-probe collision rate are obtained with a hot wire anemometer. The gas volume fraction, bubble velocity, velocity variance and chord length are measured using a dual impedance probe. Image analysis is used to quantify the distributions of bubble size and aspect ratio. For vertical channels the bubble velocity is observed to decrease as the bubble concentration increases in accord with the predictions of Spelt and Sangani (1998). The bubble velocity variance arises largely due to bubble-wall and bubble-bubble collisions. For inclined channels, the strength of the shear flow is controlled by the extent of bubble segregation and the effective viscosity of the bubble phase. The measurements are compared with solutions of the averaged equations of motion for a range of gas volume fractions and channel inclination angles.

  6. Aspherical bubble dynamics and oscillation times

    SciTech Connect

    Godwin, R.P.; Chapyak, E.J.; Noack, J.; Vogel, A.

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.

  7. Yield and seed oil content response of dwarf, rapid-cycling Brassica to nitrogen treatments, planting density, and carbon dioxide enrichment

    NASA Technical Reports Server (NTRS)

    Frick, J.; Nielsen, S. S.; Mitchell, C. A.

    1994-01-01

    Effects of N level (15 to 30 mM), time of N increase (14 to 28 days after planting), and planting density (1163 to 2093 plants/m2) were determined for crop yield responses of dwarf, rapid-cycling brassica (Brassica napus L., CrGC 5-2, Genome: ACaacc). Crops were grown in solid-matrix hydroponic systems and under controlled-environment conditions, including nonsupplemented (ambient) or elevated CO2 concentrations (998 +/- 12 micromoles mol-1). The highest seed yield rate obtained (4.4 g m-2 day-1) occurred with the lowest N level (15 mM) applied at the latest treatment time (day 28). In all trials, CO2 enrichment reduced seed yield rate and harvest index by delaying the onset of flowering and senescence and stimulating vegetative shoot growth. The highest shoot biomass accumulation rate (55.5 g m-2 day-1) occurred with the highest N level (30 mM) applied at the earliest time (day 14). Seed oil content was not significantly affected by CO2 enrichment. Maximum seed oil content (30% to 34%, dry weight basis) was obtained using the lowest N level (15 mM) initiated at the latest treatment time (day 28). In general, an increase in seed oil content was accompanied by a decrease in seed protein. Seed carbohydrate, moisture, and ash contents did not vary significantly in response to experimental treatments. Effects of N level and time of N increase were consistently significant for most crop responses. Planting density was significant only under elevated CO2 conditions.

  8. Numerical studies of bubble dynamics in laser thrombolysis

    SciTech Connect

    Chapyak, E.J.; Godwin, R.P.

    1996-03-01

    The applicability of modern numerical hydrodynamic methods for modeling the bubble dynamics occurring in Laser Thrombolysis is addressed. An idealized test problem is formulated and comparisons are made between numerical and analytical results. We find that approximately 23% of the available energy is radiated acoustically in one cycle with larger fractions likely to be radiated under more realistic conditions. We conclude that this approach shows promise in helping to optimize design parameters.

  9. Bursting Bubbles and Bilayers

    PubMed Central

    Wrenn, Steven P.; Dicker, Stephen M.; Small, Eleanor F.; Dan, Nily R.; Mleczko, Michał; Schmitz, Georg; Lewin, Peter A.

    2012-01-01

    This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition - in particular, poly (ethylene glyclol) (PEG) - is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the “brush” regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power) with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented, including those

  10. Bubbles Responding to Ultrasound Pressure

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Bubble and Drop Nonlinear Dynamics (BDND) experiment was designed to improve understanding of how the shape and behavior of bubbles respond to ultrasound pressure. By understanding this behavior, it may be possible to counteract complications bubbles cause during materials processing on the ground. This 12-second sequence came from video downlinked from STS-94, July 5 1997, MET:3/19:15 (approximate). The BDND guest investigator was Gary Leal of the University of California, Santa Barbara. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced fluid dynamics experiments will be a part of investigations plarned for the International Space Station. (435KB, 13-second MPEG, screen 160 x 120 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300162.html.

  11. How safe is Bubble Soccer?

    PubMed

    Halani, Sameer H; Riley, Jonathan P; Pradilla, Gustavo; Ahmad, Faiz U

    2016-12-01

    Traumatic neurologic injury in contact sports is a rare but serious consequence for its players. These injuries are most commonly associated with high-impact collisions, for example in football, but are found in a wide variety of sports. In an attempt to minimize these injuries, sports are trying to increase safety by adding protection for participants. Most recently is the seemingly 'safe' sport of Bubble Soccer, which attempts to protect its players with inflatable plastic bubbles. We report a case of a 16-year-old male sustaining a cervical spine burst fracture with incomplete spinal cord injury while playing Bubble Soccer. To our knowledge, this is the first serious neurological injury reported in the sport.

  12. Experimental study of temperature effect on the growth and collapse of cavitation bubbles near a rigid boundary

    NASA Astrophysics Data System (ADS)

    Liu, Xiu-mei; Long, Zheng; He, Jie; Li, Bei-bei; Liu, Xin-hua; Zhao, Ji-yun; Lu, Jian; Ni, Xiao-wu

    2013-07-01

    The effect of temperature on the dynamics of a laser-induced cavitation bubble is studied experimentally. The growth and collapse of the cavitation bubble are measured by two sensitive fiber-optic sensors based on optical beam deflection (OBD). Cavitation bubble tests are performed in water at different temperatures, and the temperature ranges from freezing point (0°C) to near boiling point. The results indicate that both the maximum bubble radius and bubble lifetime are increased with the increase of temperature. During the stage of bubble rapidly collapsing in the vicinity of a solid surface, besides laser ablation effect, both the first and second liquid-jet-induced impulses are also observed. They are both increased with liquid temperature increasing, and then reach a peak, followed by a decrease. The peak appears at the temperature which is approximately the average of freezing and boiling points. The mechanism of liquid temperature influence on cavitation erosion is also discussed.

  13. The dissolution or growth of a gas bubble inside a drop in zero gravity

    NASA Technical Reports Server (NTRS)

    Kondos, Pericles A.; Subramanian, R. Shankar; Weinberg, Michael C.

    1987-01-01

    The radius-time history of a gas bubble located concentrically within a spherical liquid drop in a space laboratory is analyzed within the framework of the quasi-stationary approximation. Illustrative results are calculated from the theory which demonstrate interesting qualitative features. For instance, when a pure gas bubble dissolves within a liquid drop in an environment containing the same gas and some inert species, the dissolution can be more or less rapid than that in an unbounded liquid depending on the initial relative size of the drop. Further, given a similar growth situation, indefinite growth is not possible, and the bubble will initially grow, but always dissolve in the end.

  14. Nanoscale dynamics of Joule heating and bubble nucleation in a solid-state nanopore.

    PubMed

    Levine, Edlyn V; Burns, Michael M; Golovchenko, Jene A

    2016-01-01

    We present a mathematical model for Joule heating of an electrolytic solution in a nanopore. The model couples the electrical and thermal dynamics responsible for rapid and extreme superheating of the electrolyte within the nanopore. The model is implemented numerically with a finite element calculation, yielding a time and spatially resolved temperature distribution in the nanopore region. Temperatures near the thermodynamic limit of superheat are predicted to be attained just before the explosive nucleation of a vapor bubble is observed experimentally. Knowledge of this temperature distribution enables the evaluation of related phenomena including bubble nucleation kinetics, relaxation oscillation, and bubble dynamics.

  15. From rational bubbles to crashes

    NASA Astrophysics Data System (ADS)

    Sornette, D.; Malevergne, Y.

    2001-10-01

    We study and generalize in various ways the model of rational expectation (RE) bubbles introduced by Blanchard and Watson in the economic literature. Bubbles are argued to be the equivalent of Goldstone modes of the fundamental rational pricing equation, associated with the symmetry-breaking introduced by non-vanishing dividends. Generalizing bubbles in terms of multiplicative stochastic maps, we summarize the result of Lux and Sornette that the no-arbitrage condition imposes that the tail of the return distribution is hyperbolic with an exponent μ<1. We then outline the main results of Malevergne and Sornette, who extend the RE bubble model to arbitrary dimensions d: a number d of market time series are made linearly interdependent via d× d stochastic coupling coefficients. We derive the no-arbitrage condition in this context and, with the renewal theory for products of random matrices applied to stochastic recurrence equations, we extend the theorem of Lux and Sornette to demonstrate that the tails of the unconditional distributions associated with such d-dimensional bubble processes follow power laws, with the same asymptotic tail exponent μ<1 for all assets. The distribution of price differences and of returns is dominated by the same power-law over an extended range of large returns. Although power-law tails are a pervasive feature of empirical data, the numerical value μ<1 is in disagreement with the usual empirical estimates μ≈3. We then discuss two extensions (the crash hazard rate model and the non-stationary growth rate model) of the RE bubble model that provide two ways of reconciliation with the stylized facts of financial data.

  16. Cavitation clouds created by shock scattering from bubbles during histotripsy.

    PubMed

    Maxwell, Adam D; Wang, Tzu-Yin; Cain, Charles A; Fowlkes, J Brian; Sapozhnikov, Oleg A; Bailey, Michael R; Xu, Zhen

    2011-10-01

    Histotripsy is a therapy that focuses short-duration, high-amplitude pulses of ultrasound to incite a localized cavitation cloud that mechanically breaks down tissue. To investigate the mechanism of cloud formation, high-speed photography was used to observe clouds generated during single histotripsy pulses. Pulses of 5-20 cycles duration were applied to a transparent tissue phantom by a 1-MHz spherically focused transducer. Clouds initiated from single cavitation bubbles that formed during the initial cycles of the pulse, and grew along the acoustic axis opposite the propagation direction. Based on these observations, we hypothesized that clouds form as a result of large negative pressure generated by the backscattering of shockwaves from a single bubble. The positive-pressure phase of the wave inverts upon scattering and superimposes on the incident negative-pressure phase to create this negative pressure and cavitation. The process repeats with each cycle of the incident wave, and the bubble cloud elongates toward the transducer. Finite-amplitude propagation distorts the incident wave such that the peak-positive pressure is much greater than the peak-negative pressure, which exaggerates the effect. The hypothesis was tested with two modified incident waves that maintained negative pressure but reduced the positive pressure amplitude. These waves suppressed cloud formation which supported the hypothesis.

  17. Removal of hydrogen bubbles from nuclear reactors

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1980-01-01

    Method proposed for removing large hydrogen bubbles from nuclear environment uses, in its simplest form, hollow spheres of palladium or platinum. Methods would result in hydrogen bubble being reduced in size without letting more radioactivity outside reactor.

  18. Electric field observations of equatorial bubbles

    NASA Astrophysics Data System (ADS)

    Aggson, T. L.; Maynard, N. C.; Hanson, W. B.; Saba, Jack L.

    1992-03-01

    Results from the double floating probe experiment performed on the San Marco D satellite are presented, with emphasis on the observation of large incremental changes in the convective electric field vector at the boundary of equatorial plasma bubbles. Attention is given to isolated bubble structures in the upper ionospheric F regions; these observed bubble encounters are divided into two types - type I (live bubbles) and type II (dead bubbles). Type I bubbles show varying degrees of plasma depletion and large upward velocities range up to 1000 km/s. The geometry of these bubbles is such that the spacecraft orbit may cut them where they are tilting either eastward or (more often) westward. Type II bubbles exhibit plasma density depletion but no appreciable upward convection. Both types of events are usually surrounded by a halo of plasma turbulence, which can extend considerably beyond the region of plasma depletion.

  19. Unorthodox bubbles when boiling in cold water

    NASA Astrophysics Data System (ADS)

    Parker, Scott; Granick, Steve

    2014-01-01

    High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

  20. Soap Bubbles on a Cold Day.

    ERIC Educational Resources Information Center

    Waiveris, Charles

    1994-01-01

    Discusses the effects of blowing bubbles in extremely cold weather. Describes the freezing conditions of the bubbles and some physical properties. Suggests using the activity with all ages of students. (MVL)

  1. Electric field observations of equatorial bubbles

    NASA Technical Reports Server (NTRS)

    Aggson, T. L.; Maynard, N. C.; Hanson, W. B.; Saba, Jack L.

    1992-01-01

    Results from the double floating probe experiment performed on the San Marco D satellite are presented, with emphasis on the observation of large incremental changes in the convective electric field vector at the boundary of equatorial plasma bubbles. Attention is given to isolated bubble structures in the upper ionospheric F regions; these observed bubble encounters are divided into two types - type I (live bubbles) and type II (dead bubbles). Type I bubbles show varying degrees of plasma depletion and large upward velocities range up to 1000 km/s. The geometry of these bubbles is such that the spacecraft orbit may cut them where they are tilting either eastward or (more often) westward. Type II bubbles exhibit plasma density depletion but no appreciable upward convection. Both types of events are usually surrounded by a halo of plasma turbulence, which can extend considerably beyond the region of plasma depletion.

  2. Unorthodox bubbles when boiling in cold water.

    PubMed

    Parker, Scott; Granick, Steve

    2014-01-01

    High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

  3. Bubble memory module for spacecraft application

    NASA Technical Reports Server (NTRS)

    Hayes, P. J.; Looney, K. T.; Nichols, C. D.

    1985-01-01

    Bubble domain technology offers an all-solid-state alternative for data storage in onboard data systems. A versatile modular bubble memory concept was developed. The key module is the bubble memory module which contains all of the storage devices and circuitry for accessing these devices. This report documents the bubble memory module design and preliminary hardware designs aimed at memory module functional demonstration with available commercial bubble devices. The system architecture provides simultaneous operation of bubble devices to attain high data rates. Banks of bubble devices are accessed by a given bubble controller to minimize controller parts. A power strobing technique is discussed which could minimize the average system power dissipation. A fast initialization method using EEPROM (electrically erasable, programmable read-only memory) devices promotes fast access. Noise and crosstalk problems and implementations to minimize these are discussed. Flight memory systems which incorporate the concepts and techniques of this work could now be developed for applications.

  4. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Daniele, M.; Renggli, C.; Perugini, D.; De Campos, C.; Hess, K. U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2014-12-01

    Rising bubbles may significantly affect magma mixing paths as has been demonstrated by analogue experiments in the past. Here, bubble-advection experiments are performed for the first time employing natural materials at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears as efficient mechanism to mingle contrasting melt compositions. MicroCT imaging shows bubbles trailing each other and trails of multiple bubbles having converged. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that subsequent bubbles rising are likely to follow the same pathways that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Fundamental implications for the concept of bubble advection in magma mixing are thus a) an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and b) non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse) inside a filament. Inside these filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble filaments are likely to have experienced multiple bubbles passing through

  5. Photodrive of magnetic bubbles via magnetoelastic waves.

    PubMed

    Ogawa, Naoki; Koshibae, Wataru; Beekman, Aron Jonathan; Nagaosa, Naoto; Kubota, Masashi; Kawasaki, Masashi; Tokura, Yoshinori

    2015-07-21

    Precise control of magnetic domain walls continues to be a central topic in the field of spintronics to boost infotech, logic, and memory applications. One way is to drive the domain wall by current in metals. In insulators, the incoherent flow of phonons and magnons induced by the temperature gradient can carry the spins, i.e., spin Seebeck effect, but the spatial and time dependence is difficult to control. Here, we report that coherent phonons hybridized with spin waves, magnetoelastic waves, can drive magnetic bubble domains, or curved domain walls, in an iron garnet, which are excited by ultrafast laser pulses at a nonabsorbing photon energy. These magnetoelastic waves were imaged by time-resolved Faraday microscopy, and the resultant spin transfer force was evaluated to be larger for domain walls with steeper curvature. This will pave a path for the rapid spatiotemporal control of magnetic textures in insulating magnets.

  6. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion

    NASA Astrophysics Data System (ADS)

    Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T.; Taleyarkhan, Rusi P.

    2005-10-01

    This paper provides the theoretical basis for energetic vapor bubble implosions induced by a standing acoustic wave. Its primary goal is to describe, explain, and demonstrate the plausibility of the experimental observations by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] of thermonuclear fusion for imploding cavitation bubbles in chilled deuterated acetone. A detailed description and analysis of these data, including a resolution of the criticisms that have been raised, together with some preliminary HYDRO code simulations, has been given by Nigmatulin et al. [Vestnik ANRB (Ufa, Russia) 4, 3 (2002); J. Power Energy 218-A, 345 (2004)] and Lahey et al. [Adv. Heat Transfer (to be published)]. In this paper a hydrodynamic shock (i.e., HYDRO) code model of the spherically symmetric motion for a vapor bubble in an acoustically forced liquid is presented. This model describes cavitation bubble cluster growth during the expansion period, followed by a violent implosion during the compression period of the acoustic cycle. There are two stages of the bubble dynamics process. The first, low Mach number stage, comprises almost all the time of the acoustic cycle. During this stage, the radial velocities are much less than the sound speeds in the vapor and liquid, the vapor pressure is very close to uniform, and the liquid is practically incompressible. This process is characterized by the inertia of the liquid, heat conduction, and the evaporation or condensation of the vapor. The second, very short, high Mach number stage is when the radial velocities are the same order, or higher, than the sound speeds in the vapor and liquid. In this stage high temperatures, pressures, and densities of the vapor and liquid take place. The model presented herein has realistic equations of state for the compressible liquid and vapor phases, and accounts for nonequilibrium evaporation/condensation kinetics at the liquid/vapor interface. There are interacting

  7. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion

    SciTech Connect

    Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T. Jr.; Taleyarkhan, Rusi P.

    2005-10-01

    This paper provides the theoretical basis for energetic vapor bubble implosions induced by a standing acoustic wave. Its primary goal is to describe, explain, and demonstrate the plausibility of the experimental observations by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] of thermonuclear fusion for imploding cavitation bubbles in chilled deuterated acetone. A detailed description and analysis of these data, including a resolution of the criticisms that have been raised, together with some preliminary HYDRO code simulations, has been given by Nigmatulin et al. [Vestnik ANRB (Ufa, Russia) 4, 3 (2002); J. Power Energy 218-A, 345 (2004)] and Lahey et al. [Adv. Heat Transfer (to be published)]. In this paper a hydrodynamic shock (i.e., HYDRO) code model of the spherically symmetric motion for a vapor bubble in an acoustically forced liquid is presented. This model describes cavitation bubble cluster growth during the expansion period, followed by a violent implosion during the compression period of the acoustic cycle. There are two stages of the bubble dynamics process. The first, low Mach number stage, comprises almost all the time of the acoustic cycle. During this stage, the radial velocities are much less than the sound speeds in the vapor and liquid, the vapor pressure is very close to uniform, and the liquid is practically incompressible. This process is characterized by the inertia of the liquid, heat conduction, and the evaporation or condensation of the vapor. The second, very short, high Mach number stage is when the radial velocities are the same order, or higher, than the sound speeds in the vapor and liquid. In this stage high temperatures, pressures, and densities of the vapor and liquid take place. The model presented herein has realistic equations of state for the compressible liquid and vapor phases, and accounts for nonequilibrium evaporation/condensation kinetics at the liquid/vapor interface. There are interacting

  8. Frictional drag reduction by bubble injection

    NASA Astrophysics Data System (ADS)

    Murai, Yuichi

    2014-07-01

    The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void-drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.

  9. Ice bubbles confirm big chill

    SciTech Connect

    Kerr, R.A.

    1996-06-14

    Clues buried in Greenland`s icesheet indicate that during the last ice age, the climate repeatedly warmed sharply, only to slide into a renewed chill lasting thousands of years. New indicators derived from trapped bubbles of ancient gases, nitrogen and methane, indicate that these were indeed catastrophic events. This article describes the research and adjunct issues.

  10. Bubble-driven inertial micropump

    NASA Astrophysics Data System (ADS)

    Torniainen, Erik D.; Govyadinov, Alexander N.; Markel, David P.; Kornilovitch, Pavel E.

    2012-12-01

    The fundamental action of the bubble-driven inertial micropump is investigated. The pump has no moving parts and consists of a thermal resistor placed asymmetrically within a straight channel connecting two reservoirs. Using numerical simulations, the net flow is studied as a function of channel geometry, resistor location, vapor bubble strength, fluid viscosity, and surface tension. Two major regimes of behavior are identified: axial and non-axial. In the axial regime, the drive bubble either remains inside the channel, or continues to grow axially when it reaches the reservoir. In the non-axial regime, the bubble grows out of the channel and in all three dimensions while inside the reservoir. The net flow in the axial regime is parabolic with respect to the hydraulic diameter of the channel cross-section, but in the non-axial regime it is not. From numerical modeling, it is determined that the net flow is maximal when the axial regime crosses over to the non-axial regime. To elucidate the basic physical principles of the pump, a phenomenological one-dimensional model is developed and solved. A linear array of micropumps has been built using silicon-SU8 fabrication technology that is used to manufacture thermal inkjet printheads. Semi-continuous pumping across a 2 mm-wide channel has been demonstrated experimentally. Measured net flow with respect to viscosity variation is in excellent agreement with simulation results.

  11. Bursting the Taylor cone bubble

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Truscott, Tadd

    2014-11-01

    A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.

  12. Models of cylindrical bubble pulsation

    PubMed Central

    Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.

    2012-01-01

    Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863

  13. Impurity bubbles in a BEC

    NASA Astrophysics Data System (ADS)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  14. Affirmative Discrimination and the Bubble

    ERIC Educational Resources Information Center

    Clegg, Roger

    2011-01-01

    In this essay, the author discusses how affirmative action contributed to an unnatural rise in enrollments in college. In considering the higher education bubble, he makes the case that as the opposition to preferences continues to build, the momentum of this trend will only increase as funding shrinks. He offers some tentative answers to a series…

  15. "Financial Bubbles" and Monetary Policy

    ERIC Educational Resources Information Center

    Tikhonov, Yuriy A.; Pudovkina, Olga E.; Permjakova, Juliana V.

    2016-01-01

    The relevance of this research is caused by the need of strengthening a role of monetary regulators to prevent financial bubbles in the financial markets. The aim of the article is the analysis of a problem of crisis phenomena in the markets of financial assets owing to an inadequate growth of their cost, owing to subjective reasons. The leading…

  16. The effects of bubble-bubble interactions on pressures and temperatures produced by bubbles collapsing near a rigid surface

    NASA Astrophysics Data System (ADS)

    Alahyari Beig, Shahaboddin; Johnsen, Eric

    2016-11-01

    Cavitation occurs in a wide range of hydraulic applications, and one of its most important consequences is structural damage to neighboring surfaces following repeated bubble collapse. A number of studies have been conducted to predict the pressures produced by the collapse of a single bubble. However, the collapse of multiple bubbles is known to lead to enhanced collapse pressures. In this study, we quantify the effects of bubble-bubble interactions on the bubble dynamics and pressures/temperatures produced by the collapse of a pair of bubbles near a rigid surface. For this purpose, we use an in-house, high-order accurate shock- and interface-capturing method to solve the 3D compressible Navier-Stokes equations for gas/liquid flows. The non-spherical bubble dynamics are investigated and the subsequent pressure and temperature fields are characterized based on the relevant parameters entering the problem: stand-off distance, geometrical configuation, collapse strength. We demonstrate that bubble-bubble interactions amplify/reduce pressures and temperatures produced at the collapse, and increase the non-sphericity of the bubbles and the collapse time, depending on the flow parameters.

  17. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T.; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-03-01

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.

  18. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    is created either through flowing gas around the high voltage electrode in the discharge tube or self-generated by the plasma as in the steam discharge. This second method allows for large scale processing of contaminated water and for bulk chemical and optical analysis. Breakdown mechanisms of attached and unattached gas bubbles in liquid water were investigated using the first device. The breakdown scaling relation between breakdown voltage, pressure and dimensions of the discharge was studied. A Paschen-like voltage dependence for air bubbles in liquid water was discovered. The results of high-speed photography suggest the physical charging of the bubble due to a high voltage pulse; this charging can be significant enough to produce rapid kinetic motion of the bubble about the electrode region as the applied electric field changes over a voltage pulse. Physical deformation of the bubble is observed. This charging can also prevent breakdown from occurring, necessitating higher applied voltages to overcome the phenomenon. This dissertation also examines the resulting chemistry from plasma interacting with the bubble-liquid system. Through the use of optical emission spectroscopy, plasma parameters such as electron density, gas temperature, and molecular species production and intensity are found to have a time-dependence over the ac voltage cycle. This dependence is also source gas type dependent. These dependencies afford effective control over plasma-driven decomposition. The effect of plasma-produced radicals on various wastewater simulants is studied. Various organic dyes, halogenated compounds, and algae water are decomposed and assessed. Toxicology studies with melanoma cells exposed to plasma-treated dye solutions are completed, demonstrating the non-cytotoxic quality of the decomposition process. Thirdly, this dissertation examines the steam plasma system, developed through this research to circumvent the acidification associated with gas-feed discharges

  19. A model of bubble growth leading to xylem conduit embolism.

    PubMed

    Hölttä, T; Vesala, T; Nikinmaa, E

    2007-11-07

    The dynamics of a gas bubble inside a water conduit after a cavitation event was modeled. A distinction was made between a typical angiosperm conduit with a homogeneous pit membrane and a typical gymnosperm conduit with a torus-margo pit membrane structure. For conduits with torus-margo type pits pit membrane deflection was also modeled and pit aspiration, the displacement of the pit membrane to the low pressure side of the pit chamber, was found to be possible while the emboli was still small. Concurrent with pit aspiration, the high resistance to water flow out of the conduit through the cell walls or aspirated pits will make the embolism process slow. In case of no pit aspiration and always for conduits with homogeneous pit membranes, embolism growth is more rapid but still much slower than bubble growth in bulk water under similar water tension. The time needed for the embolism to fill a whole conduit was found to be dependent on pit and cell wall conductance, conduit radius, xylem water tension, pressure rise in adjacent conduits due to water freed from the embolising conduit, and the rigidity and structure of the pits in the case of margo-torus type pit membrane. The water pressure in the conduit hosting the bubble was found to occur almost immediately after bubble induction inside a conduit, creating a sudden tension release in the conduit, which can be detected by acoustic and ultra-acoustic monitoring of xylem cavitation.

  20. A Study of Cavitation-Ignition Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Jacqmin, David A.

    2005-01-01

    We present the results of an experimental and computational study of the physics and chemistry of cavitation-ignition bubble combustion (CIBC), a process that occurs when combustible gaseous mixtures are ignited by the high temperatures found inside a rapidly collapsing bubble. The CIBC process was modeled using a time-dependent compressible fluid-dynamics code that includes finite-rate chemistry. The model predicts that gas-phase reactions within the bubble produce CO and other gaseous by-products of combustion. In addition, heat and mechanical energy release through a bubble volume-expansion phase are also predicted by the model. We experimentally demonstrate the CIBC process using an ultrasonically excited cavitation flow reactor with various hydrocarbon-air mixtures in liquid water. Low concentrations (< 160 ppm) of carbon monoxide (CO) emissions from the ultrasonic reactor were measured, and found to be proportional to the acoustic excitation power. The results of the model were consistent with the measured experimental results. Based on the experimental findings, the computational model, and previous reports of the "micro-diesel effect" in industrial hydraulic systems, we conclude that CIBC is indeed possible and exists in ultrasonically- and hydrodynamically-induced cavitation. Finally, estimates of the utility of CIBC process as a means of powering an idealized heat engine are also presented.

  1. Tiny Bubbles in my BEC

    SciTech Connect

    Blinova, Alina A.

    2012-08-01

    Ultracold atomic gases provide a unique way for exploring many-body quantum phenomena that are inaccessible to conventional low-temperature experiments. Nearly two decades ago the Bose-Einstein condensate (BEC) - an ultracold gas of bosons in which almost all bosons occupy the same single-particle state - became experimentally feasible. Because a BEC exhibits superfluid properties, it can provide insights into the behavior of low-temperature helium liquids. We describe the case of a single distinguishable atom (an impurity) embedded in a BEC and strongly coupled to the BEC bosons. Depending on the strength of impurity-boson and boson-boson interactions, the impurity self-localizes into two fundamentally distinct regimes. The impurity atom can behave as a tightly localized 'polaron,' akin to an electron in a dielectric crystal, or as a 'bubble,' an analog to an electron bubble in superfluid helium. We obtain the ground state wavefunctions of the impurity and BEC by numerically solving the two coupled Gross-Pitaevskii equations that characterize the system. We employ the methods of imaginary time propagation and conjugate gradient descent. By appropriately varying the impurity-boson and boson-boson interaction strengths, we focus on the polaron to bubble crossover. Our results confirm analytical predictions for the polaron limit and uncover properties of the bubble regime. With these results we characterize the polaron to bubble crossover. We also summarize our findings in a phase diagram of the BEC-impurity system, which can be used as a guide in future experiments.

  2. Antioscillons from bubble collisions at finite temperature

    NASA Astrophysics Data System (ADS)

    Mersini-Houghton, Laura

    2014-04-01

    We study the role of the topology of bubbles at finite temperatures plays on collisions and the existence of new field configurations. We show that in the case of false vacuum decay at finite temperature, the cylindrical symmetry of bubbles admits a new exotic field with negative energies, the antiperiodic "twisted" field. New field configurations arise generically, not only at finite temperatures but whenever a cluster of bubbles resulting from collisions form nontrivial topologies. The interaction of both configurations induces instabilites on the bubble. Collisions of bubbles occupied by the new fields can lead to the emergence of new structures, named antioscillons.

  3. Asymmetric interface temperature during vapor bubble growth

    NASA Astrophysics Data System (ADS)

    Diana, A.; Castillo, M.; Steinberg, T.; Brutin, D.

    2013-07-01

    We investigate the nucleation, growth, and detachment of single vapor bubbles at the interface microscale. Shear flow is used to investigate pool and convective boiling situations using visible and infrared visualizations. We determine a threshold Reynolds number for the onset of asymmetric interfacial temperatures. Below this threshold, bubble growth is geometrically and thermally symmetric, while above, bubbles no longer grow thermally symmetrically. This is explained by the dominance of convective heat transfer removal over viscous effects at the bubble interface. We experimentally demonstrate asymmetric interfacial temperature profiles that should be taken into account for future bubble growth modeling.

  4. Strombolian explosions: 1. A large bubble breaking at the surface of a lava column as a source of sound

    NASA Astrophysics Data System (ADS)

    Vergniolle, S.; Brandeis, G.

    1996-09-01

    Strombolian activity consists of a series of explosions caused by the breaking of large overpressurized bubbles at the surface of the magma column. Acoustic pressure has been measured for 36 explosions at Stromboli. We propose that sound is generated by the vibration of the bubble before it bursts. Oscillations are driven by an initial overpressure inside the bubble, assumed to be initially at rest, just below the magma-air interface. Inertia effects cause the bubble to overshoot its equilibrium radius. Then the bubble becomes underpressurized and contracts because of gas compressibility. These oscillations are only slightly damped by viscous effects in the magma layer above the bubble. The bubble cannot complete more than one cycle of vibration because of instabilities developing on the magma layer that lead to its breaking, near the minimum radius. Assuming a simple geometry, we model this vibration and constrain the radius and length of the bubble and the initial overpressure by fitting a synthetic waveform to the measured acoustic pressure. The fit between synthetic and observed waveforms is very good, both for frequency, ≈60 rad s-1, and amplitude. The initial bubble radius is ≈1 m, and the length varies between several and a few tens of meters. From the initial overpressure, approximately 105 Pa, we calculate the maximum radial velocity of ejecta, ≈30 m s-1. The generally good agreement between data and predictions of our model leads us to suggest that acoustic measurements are a powerful tool for the understanding of eruption dynamics.

  5. Ultrasound induced bubble clusters and tunnels in tissue-mimicking agar phantoms

    NASA Astrophysics Data System (ADS)

    Movahed, Pooya; Kreider, Wayne; Maxwell, Adam D.; Bailey, Michael R.; Freund, Jonathan B.

    2016-11-01

    Soft tissue fractionation induced by acoustic cavitation is desired for non-invasive tissue removal in histotripsy, while being a potential injury mechanism in other therapeutic ultrasound treatments such as lithotripsy. In this work, we investigate the formation of bubble clusters and tunnels in tissue-mimicking agar phantoms by focused ultrasound bursts to inform a class of damage models. Agar phantoms of different stiffness were subjected to a series of multi-cycle ultrasound bursts, using a burst wave lithotripsy (BWL) protocol, and simultaneously imaged at 200 frames per second (1 image per ultrasound burst). Some bubbles become visible in images ( 200 microns) due to the negative pressure ( 7.5 MPa) in the initial bursts, and the number of visible bubbles increases continuously during the subsequent bursts. A Rayleigh-Plesset-type bubble dynamics model, which accounts for viscoelastic confinement of agar gels, is developed. Material fatigue leading to eventual irreversible fracture-like failure in this model is proposed to explain the key observations. In addition to isolated, approximately spherical bubbles, long tunnel-like features are observed, which are seemingly lines of joined bubbles along a possible fracture or defect. The geometry of these tunnel-like features is quantified, and a physical explanation for tunnel formation is proposed in terms of bubble expansion and unstable collapse. This work was supported by NIH NIDDK Grant P01-DK043881.

  6. Numerical Simulation on Single Bubble Pool Boiling with Influence of Heater Thermal Capacity

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Fu; Zhang, Liang; Li, Zhen-Dong

    The model of single bubble pool boiling is used to simulate nucleate pool boiling phenomenon in the present paper. Local convection and heat transfer around a single vapour bubble which is growing from a nucleus bubble planted artificially on the surface of heaters with different thicknesses, as well as transient heat conduction inside the heater’s wall, are simulated numerically with sharp interface representation. Multi-cycle simulation is adopted to eliminate the effect of un-physical initial conditions. It’s found that the thermal response of wall is found to affect the bubble growth and boiling heat transfer. During the process of bubble growth, a sharp temperature drop inside the solid wall is evident near the contact line underneath the growing bubble because of the strong evaporation in micro-region. The temperature and heat flux profiles change with the move of the contact line, and twice sharp temperature drops at a certain location are observed, which correspond to the expanding and recoiling processes, respectively. During the waiting period after the bubble detached from the wall, the temperature field is recovered by heat conduction inside the solid wall. As a part of preparation of the SOBER project onboard the Chinese recoverable satellite SJ-10, which will be launched in the end of 2015, the gravity influence is also studied.

  7. Measurement of bubble and pellet size distributions: past and current image analysis technology.

    PubMed

    Junker, Beth

    2006-08-01

    Measurements of bubble and pellet size distributions are useful for biochemical process optimizations. The accuracy, representation, and simplicity of these measurements improve when the measurement is performed on-line and in situ rather than off-line using a sample. Historical and currently available measurement systems for photographic methods are summarized for bubble and pellet (morphology) measurement applications. Applications to cells, mycelia, and pellets measurements have driven key technological developments that have been applied for bubble measurements. Measurement trade-offs exist to maximize accuracy, extend range, and attain reasonable cycle times. Mathematical characterization of distributions using standard statistical techniques is straightforward, facilitating data presentation and analysis. For the specific application of bubble size distributions, selected bioreactor operating parameters and physicochemical conditions alter distributions. Empirical relationships have been established in some cases where sufficient data have been collected. In addition, parameters and conditions with substantial effects on bubble size distributions were identified and their relative effects quantified. This information was used to guide required accuracy and precision targets for bubble size distribution measurements from newly developed novel on-line and in situ bubble measurement devices.

  8. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    NASA Astrophysics Data System (ADS)

    Greene, S.; Anthony, K. M. Walter; Archer, D.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.

    2014-12-01

    Microbial methane (CH4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We find that summertime ebullition dominates annual CH4 emissions to the atmosphere. Eighty percent of CH4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH4 dissolution from trapped bubbles, and greater CH4 emissions from northern lakes.

  9. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    NASA Astrophysics Data System (ADS)

    Greene, S.; Anthony, K. M. Walter; Archer, D.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.

    2014-07-01

    Microbial methane (CH4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We find that summertime ebullition dominates annual CH4 emissions to the atmosphere. Eighty percent of CH4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH4 dissolution from trapped bubbles, and greater CH4 emissions from northern lakes.

  10. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    DOE PAGES

    Greene, S.; Walter Anthony, K. M.; Archer, D.; ...

    2014-12-08

    Microbial methane (CH4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We find that summertime ebullition dominatesmore » annual CH4 emissions to the atmosphere. Eighty percent of CH4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH4 dissolution from trapped bubbles, and greater CH4 emissions from northern lakes.« less

  11. Alternative model of single-bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi

    1997-12-01

    A model of single-bubble sonoluminescence (SBSL) is constructed. In the model, the temperature is assumed to be spatially uniform inside the bubble except at the thermal boundary layer near the bubble wall even at the strong collapse based on the theoretical results of Kwak and Na [Phys. Rev. Lett. 77, 4454 (1996)]. In the model, the effect of the kinetic energy of gases inside the bubble is taken into account, which heats up the whole bubble when gases stop their motions at the end of the strong collapse. In the model, a bubble in water containing air is assumed to consist mainly of argon based on the hypothesis of Lohse et al. [Phys. Rev. Lett. 78, 1359 (1997)]. Numerical calculations under a SBSL condition reveal that the kinetic energy of gases heats up the whole bubble considerably. It is also clarified that vapor molecules (H2O) undergo chemical reactions in the heated interior of the bubble at the collapse and that chemical reactions decrease the temperature inside the bubble considerably. It is suggested that SBSL originates in thermal radiation from the whole bubble rather than a local point (the bubble center) heated by a converging spherical shock wave widely suggested in the previous theories of SBSL.

  12. Mechanics of gas-vapor bubbles

    NASA Astrophysics Data System (ADS)

    Hao, Yue; Zhang, Yuhang; Prosperetti, Andrea

    2017-03-01

    Most bubbles contain a mixture of vapor and incondensible gases. While the limit cases of pure vapor and pure gas bubbles are well studied, much less is known about the more realistic case of a mixture. The bubble contents continuously change due to the combined effects of evaporation and condensation and of gas diffusion in the liquid and in the bubble. This paper presents a model for this situation and illustrates by means of examples several physical processes that can occur: a bubble undergoing a temporary pressure reduction, which makes the liquid temporarily superheated; a bubble subjected to a burst of sound; and a bubble continuously growing by rectified diffusion of heat in the presence of an incondensible gas.

  13. Three-Dimensional Bubble Size Distributions From Growth at High Water Supersaturation: X-ray Microtomographic Investigations

    NASA Astrophysics Data System (ADS)

    Robert, G.; Allard, E.; Jeff, L.; Rivers, M.; Baker, D. R.

    2004-05-01

    The growth of bubbles and exsolution of water from molten rocks is responsible for most volcanic eruptions on Earth. Rapid bubble growth without formation of an interconnected, percolating, cluster of bubbles can create a volcanic eruption, whereas slower bubble growth and a high enough (but still quantitatively unknown) bubble density results in more passive volcanic degassing. Understanding the rates and mechanisms of water exsolution provides better insight into volcanic eruptions and can lead to mitigation of their potentially devastating effects. In order to better understand the mechanisms of volcanic eruptions we are investigating the formation of water bubbles by heating previously hydrated silicate melts at 1 atm pressure and using x-ray microtomography to study the bubble size distribution. Hydrous silicate melts spanning a wide range of composition and physical properties were prepared by dissolving water into silicate melts at high temperatures and high pressure by melting glasses with water in sealed capsules at 500 MPa and 1100 oC in a piston-cylinder apparatus followed by rapid quenching to room temperature and pressure. Chips of these glasses were heated at 1 atm and temperatures up to 1000 oC. Most chips of samples were heated under an optical microscope at 1 atm in the laboratory at McGill University to make bubble-bearing samples, whereas a few chips were degassed a custom-designed, boron-nitride furnace on a bending magnet beamline at the Advanced Photon Source and observed with x-rays during bubble growth. In some cases the chips were heated to sufficiently high temperatures and for durations long enough to grow many large bubbles and convert the sample into a foam; in other cases the samples were only partially degassed so that we could observe the development of bubble formation and possible coalescence prior to foam formation. The bubble-bearing glasses formed during the heating experiment were imaged by x-ray microtomography performed on

  14. Bubble absorption by an air-filled helically-supported capillary channel

    NASA Astrophysics Data System (ADS)

    Beheshtipour, Negar; Thiessen, David

    2016-11-01

    Gas-liquid phase separation under microgravity conditions where buoyancy is not active represents a challenge for two-phase liquid-continuous space systems. Similar challenges are present in micro-scale electrochemical systems on Earth that generate gas bubbles in geometries where surface tension prevails over gravity. A possible ground-based application would be the removal of carbon dioxide bubbles from large aspect ratio channels in a direct-methanol fuel cell that could otherwise occlude the channel. In this study we use a 3-mm diameter stretched stainless-steel spring coated with a superhydrophobic layer to create a helically-supported capillary channel. Such a channel that is submerged in water and filled with air while vented to the atmosphere was found to absorb a stream of 2.5-mm diameter air bubbles at a rate of at least 36 bubbles/s. An optical detector and high-speed imaging system have been used to study bubble absorption dynamics. A significant finding is that the initial attachment of the bubble to the channel that involves the rupture of a thin film of water happens in less than 1 ms. The rapid rupture of the water film separating the bubble from the channel might be attributed to the roughness of the hydrophobic coating.

  15. Retinal angiography: noninvasive, real-time bubble assessment from the ocular fundus.

    PubMed

    Parsons, J Travis; Smith, Cameron R; Zhu, Jiepei; Spiess, Bruce D

    2009-01-01

    Formation of bubbles in tissue and vasculature from a sudden reduction in ambient pressure is likely an underlying cause of the clinical symptoms of decompression sickness (DCS). Thus, tools detecting bubbles in the vasculature may be important for evaluating DCS. Sheep were air-compressed to 6.0 ATA (30 minutes bottom time) then rapidly decompressed to the surface. A fundus camera was quickly positioned for continuous observation of the retinal vasculature. Bubbles were observed in the retinal vasculature of 25.8% (n = 31) of the sheep. Bubble onset time ranged from 5-22 minutes post-chamber and lodge time ranged from 0-70+ minutes. Bubbles were visualized mostly in the arteries of the retinal circulation. Severe vasoconstriction was captured using red-free angiography in two sheep. In two other sheep, fluorescein angiography demonstrated occluded blood flow caused by arterial gas emboli. This study demonstrates that retinal angiography is a practical tool for real-time, noninvasive detection of bubbles in the retinal circulation, a visible window to the cerebral circulation. Thus retinal angiography may prove invaluable in the early detection of arterial gas emboli in the cerebral circulation, the resolution of which is imperative to favorable neurological outcomes. This study also presents for the first time images of bubbles in the retinal circulation associated with DCS captured by a fundus camera.

  16. Time Course of Endothelial Dysfunction Induced by Decompression Bubbles in Rats

    PubMed Central

    Zhang, Kun; Wang, Mengmeng; Wang, Haowen; Liu, Yinuo; Buzzacott, Peter; Xu, Weigang

    2017-01-01

    Decompression stress can cause endothelial injury, leading to systematic inflammation and prothrombotic phenomena. Our previous work found that endothelial injury following decompression correlated positively with bubble formation. This study aimed to investigate the time course of endothelial injury and the relationship with bubble amounts. Rats were subjected to a simulated air dive to 7 ATA for 90 min with rapid decompression. Bubbles were detected ultrasonically at the root of pulmonary arteries following decompression. Surviving rats were randomly divided into six groups according to sampling time following decompression (2, 6, 12, 24, 48, and 72 h). Three parameters, serum levels of malondialdehyde (MDA), endothelin-1 (ET-1), and intercellular cell adhesion molecule-1 (ICAM-1) were identified from our previous study and measured. The level of MDA reached a peak level at 12 h post decompression, and then decreased gradually to control level before 72 h. For both ET-1 and ICAM-1, the greatest expression appeared at 24 h following surfacing, and the increases lasted for more than 72 h. These changes correlated positively with bubble counts at most detection time points. This study reveals the progress of endothelial dysfunction following decompression which provides guidance for timing the determination at least for the current model. The results further verify that bubbles are the causative agents of decompression induced endothelial damage and bubble amounts are an objective and suitable parameter to predict endothelial dysfunction. Most importantly, levels of endothelial biomarkers post dive may serve as sensitive parameters for assessing bubble load and decompression stress. PMID:28386238

  17. Suppression of cavitation inception by gas bubble injection: a numerical study focusing on bubble-bubble interaction.

    PubMed

    Ida, Masato; Naoe, Takashi; Futakawa, Masatoshi

    2007-10-01

    The dynamic behavior of cavitation and gas bubbles under negative pressure has been studied numerically to evaluate the effect of gas bubble injection into a liquid on the suppression of cavitation inception. In our previous studies, it was demonstrated by direct observation that cavitation occurs in liquid mercury when mechanical impacts are imposed, and this will cause cavitation damage in spallation neutron sources, in which liquid mercury is bombarded by a high-power proton beam. In the present paper, we describe numerical investigations of the dynamics of cavitation bubbles in liquid mercury using a multibubble model that takes into account the interaction of a cavitation bubble with preexisting gas bubbles through bubble-radiated pressure waves. The numerical results suggest that, if the mercury includes gas bubbles whose equilibrium radius is much larger than that of the cavitation bubble, the explosive expansion of the cavitation bubble (i.e., cavitation inception) is suppressed by the positive-pressure wave radiated by the injected bubbles, which decreases the magnitude of the negative pressure in the mercury.

  18. Experimental investigation of the collapse of laser-generated cavitation bubbles near a solid boundary

    NASA Astrophysics Data System (ADS)

    Zhao, Rui; Xu, Rong-qing; Shen, Zhong-hua; Lu, Jian; Ni, Xiao-wu

    2007-07-01

    The oscillation of a laser-generated single cavitation bubble near a solid boundary is investigated by a fiber-optic diagnostic technique based on optical beam deflection (OBD). The maximum bubble radii and collapse time for each oscillation cycle are determined from a sequence of bubble oscillations. Furthermore, by combining the revised Rayleigh theory, the prolongation factor κ at different dimensionless parameter γ ( γ=L/R, where Rmax is the maximum bubble radius and L is the distance of a cavity inception point from a boundary) is obtained. In addition, the prolongation factor of the collapse time versus laser energy is also derived, which are valuable in the fields of hydraulic cavitation, laser lithotripsy and laser ophthalmology.

  19. Remobilizing the Interfaces of Thermocapillary Driven Bubbles Retarded by the Adsorption of a Surfactant Impurity on the Bubble Surface

    NASA Technical Reports Server (NTRS)

    Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is applied to the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow which propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillarity to direct the movement of bubbles in space is the fact that surfactant impurities which are unavoidably present in the continuous phase can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature tension gradient, and decreases to near zero the thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have been retarded by the adsorption onto the bubble surface of a surfactant impurity, Our remobilization theory proposes to use surfactant molecules which kinetically rapidly exchange between the bulk and the surface and are at high bulk concentrations. Because the remobilizing surfactant is present at much higher

  20. Statics and dynamics of adhesion between two soap bubbles

    NASA Astrophysics Data System (ADS)

    Besson, S.; Debrégeas, G.

    2007-10-01

    An original set-up is used to study the adhesive properties of two hemispherical soap bubbles put into contact. The contact angle at the line connecting the three films is extracted by image analysis of the bubbles profiles. After the initial contact, the angle rapidly reaches a static value slightly larger than the standard 120° angle expected from Plateau rule. This deviation is consistent with previous experimental and theoretical studies: it can be quantitatively predicted by taking into account the finite size of the Plateau border (the liquid volume trapped at the vertex) in the free energy minimization. The visco-elastic adhesion properties of the bubbles are further explored by measuring the deviation Δθd(t) of the contact angle from the static value as the distance between the two bubbles supports is sinusoidally modulated. It is found to linearly increase with Δrc/rc , where rc is the radius of the central film and Δrc the amplitude of modulation of this length induced by the displacement of the supports. The in-phase and out-of-phase components of Δθd(t) with the imposed modulation frequency are systematically probed, which reveals a transition from a viscous to an elastic response of the system with a crossover pulsation of the order 1rad · s^-1. Independent interfacial rheological measurements, obtained from an oscillating bubble experiment, allow us to develop a model of dynamic adhesion which is confronted to our experimental results. The relevance of such adhesive dynamic properties to the rheology of foams is briefly discussed using a perturbative approach to the Princen 2D model of foams.

  1. Statics and dynamics of adhesion between two soap bubbles.

    PubMed

    Besson, S; Debrégeas, G

    2007-10-01

    An original set-up is used to study the adhesive properties of two hemispherical soap bubbles put into contact. The contact angle at the line connecting the three films is extracted by image analysis of the bubbles profiles. After the initial contact, the angle rapidly reaches a static value slightly larger than the standard 120 degrees angle expected from Plateau rule. This deviation is consistent with previous experimental and theoretical studies: it can be quantitatively predicted by taking into account the finite size of the Plateau border (the liquid volume trapped at the vertex) in the free energy minimization. The visco-elastic adhesion properties of the bubbles are further explored by measuring the deviation Delta theta (d)(t) of the contact angle from the static value as the distance between the two bubbles supports is sinusoidally modulated. It is found to linearly increase with Delta r(c) / r(c) , where r(c) is the radius of the central film and Delta r(c) the amplitude of modulation of this length induced by the displacement of the supports. The in-phase and out-of-phase components of Delta theta (d)(t) with the imposed modulation frequency are systematically probed, which reveals a transition from a viscous to an elastic response of the system with a crossover pulsation of the order 1rad x s(-1). Independent interfacial rheological measurements, obtained from an oscillating bubble experiment, allow us to develop a model of dynamic adhesion which is confronted to our experimental results. The relevance of such adhesive dynamic properties to the rheology of foams is briefly discussed using a perturbative approach to the Princen 2D model of foams.

  2. Sonoporation from Jetting Cavitation Bubbles

    PubMed Central

    Ohl, Claus-Dieter; Arora, Manish; Ikink, Roy; de Jong, Nico; Versluis, Michel; Delius, Michael; Lohse, Detlef

    2006-01-01

    The fluid dynamic interaction of cavitation bubbles with adherent cells on a substrate is experimentally investigated. We find that the nonspherical collapse of bubbles near to the boundary is responsible for cell detachment. High-speed photography reveals that a wall bounded flow leads to the detachment of cells. Cells at the edge of the circular area of detachment are found to be permanently porated, whereas cells at some distance from the detachment area undergo viable cell membrane poration (sonoporation). The wall flow field leading to cell detachment is modeled with a self-similar solution for a wall jet, together with a kinetic ansatz of adhesive bond rupture. The self-similar solution for the δ-type wall jet compares very well with the full solution of the Navier-Stokes equation for a jet of finite thickness. Apart from annular sites of sonoporation we also find more homogenous patterns of molecule delivery with no cell detachment. PMID:16950843

  3. Bubble-induced cave collapse.

    PubMed

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned "natural" instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a "collapse". We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor.

  4. Bubble-Induced Cave Collapse

    PubMed Central

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned “natural” instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a “collapse”. We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor. PMID:25849088

  5. Development and interactions of two inert gas bubbles during decompression.

    PubMed

    Jiang, Y; Homer, L D; Thalmann, E D

    1996-09-01

    A mathematical model has been developed to simulate the evolution of two inert gas bubbles in tissue. This is useful for understanding the dynamics of bubbles that presumably arise during decompression. It is assumed that they are spherical and that the tissue volume surrounding them is infinite. The total pressure in each bubble is determined by the barometric and metabolic gas pressures as well as the pressure due to surface tension. Bipolar coordinates are employed to determine the inert gas pressure distribution. Two coupled governing equations for bubble radii are then derived and solved numerically. The results demonstrate how bubble evolution is affected by the distance between bubbles and the initial bubble radii. The existence time and bubble surface flux of two equal-sized bubbles are calculated and compared with those of a single gas bubble model. The results indicate that when two bubbles are very close, it takes 20% more time for two bubbles to dissolve than for a single one, and the total surface flux of two bubbles is nearly 20% less than twice of a single bubble. When the center-to-center distance is 10 times of bubble radius, the effect of bubble interaction on bubble existence time and surface flux are about 6 and 9% changes, respectively. We conclude that if bubbles are not too small, the interactions among bubbles should be included in inert gas bubble models predicting bubble evolution.

  6. Unbounded keyhole collapse and bubble formation during pulsed laser interaction with liquid zinc

    NASA Astrophysics Data System (ADS)

    Kaplan, Alexander F. H.; Mizutani, Masami; Katayama, Seiji; Matsunawa, Akira

    2002-06-01

    Suppression of pore defects in keyhole laser spot welding demands for a theoretical description of the fundamental process. Investigating the unbounded keyhole collapse in liquid Zn instead of a solid provided a simplified situation offering several advantages. Improved high speed x-ray transmission imaging due to an enlarged keyhole in the absence of violent melt motion was enabled, which also facilitated the development of a semi-analytical mathematical model. Good correspondence between the experimentally and theoretically obtained transient keyhole and bubble shape permitted physical analysis by the model. Characteristic timescales were identified for post-vaporization, vapour relaxation, cooling, collapse, bubble contraction, oscillations and buoyancy. Recondensation due to rapid cooling turns out to be responsible for shielding gas flow into the keyhole, finally maintaining a spherical bubble. Creation of a convergent keyhole is a possibility to avoid bubbles.

  7. Armoring confined bubbles in concentrated colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Yu, Yingxian; Khodaparast, Sepideh; Stone, Howard

    2016-11-01

    Encapsulation of a bubble with microparticles is known to significantly improve the stability of the bubble. This phenomenon has recently gained increasing attention due to its application in a variety of technologies such as foam stabilization, drug encapsulation and colloidosomes. Nevertheless, the production of such colloidal armored bubble with controlled size and particle coverage ratio is still a great challenge industrially. We study the coating process of a long air bubble by microparticles in a circular tube filled with a concentrated microparticles colloidal suspension. As the bubble proceeds in the suspension of particles, a monolayer of micro-particles forms on the interface of the bubble, which eventually results in a fully armored bubble. We investigate the phenomenon that triggers and controls the evolution of the particle accumulation on the bubble interface. Moreover, we examine the effects of the mean flow velocity, the size of the colloids and concentration of the suspension on the dynamics of the armored bubble. The results of this study can potentially be applied to production of particle-encapsulated bubbles, surface-cleaning techniques, and gas-assisted injection molding.

  8. Soap bubbles in paintings: Art and science

    NASA Astrophysics Data System (ADS)

    Behroozi, F.

    2008-12-01

    Soap bubbles became popular in 17th century paintings and prints primarily as a metaphor for the impermanence and fragility of life. The Dancing Couple (1663) by the Dutch painter Jan Steen is a good example which, among many other symbols, shows a young boy blowing soap bubbles. In the 18th century the French painter Jean-Simeon Chardin used soap bubbles not only as metaphor but also to express a sense of play and wonder. In his most famous painting, Soap Bubbles (1733/1734) a translucent and quavering soap bubble takes center stage. Chardin's contemporary Charles Van Loo painted his Soap Bubbles (1764) after seeing Chardin's work. In both paintings the soap bubbles have a hint of color and show two bright reflection spots. We discuss the physics involved and explain how keenly the painters have observed the interaction of light and soap bubbles. We show that the two reflection spots on the soap bubbles are images of the light source, one real and one virtual, formed by the curved surface of the bubble. The faint colors are due to thin film interference effects.

  9. Unsteady thermocapillary migration of bubbles

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Balasubramaniam, R.

    1988-01-01

    Upon the introduction of a gas bubble into a liquid possessing a uniform thermal gradient, an unsteady thermo-capillary flow begins. Ultimately, the bubble attains a constant velocity. This theoretical analysis focuses upon the transient period for a bubble in a microgravity environment and is restricted to situations wherein the flow is sufficiently slow such that inertial terms in the Navier-Stokes equation and convective terms in the energy equation may be safely neglected (i.e., both Reynolds and Marangoni numbers are small). The resulting linear equations were solved analytically in the Laplace domain with the Prandtl number of the liquid as a parameter; inversion was accomplished numerically using a standard IMSL routine. In the asymptotic long-time limit, the theory agrees with the steady-state theory of Young, Goldstein, and Block. The theory predicts that more than 90 percent of the terminal steady velocity is achieved when the smallest dimensionless time, i.e., the one based upon the largest time scale-viscous or thermal-equals unity.

  10. Shearing flow from transient bubble oscillations in narrow gaps

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Milad; Li, Fenfang; Ohl, Claus-Dieter

    2017-01-01

    The flow driven by a rapidly expanding and collapsing cavitation bubble in a narrow cylindrical gap is studied with the volume of fluid method. The simulations reveal a developing plug flow during the early expansion followed by flow reversal at later stages. An adverse pressure gradient leads to boundary layer separation and flow reversal, causing large shear stress near the boundaries. Analytical solution to a planar pulsating flow shows qualitative agreement with the CFD results. The shear stress close to boundaries has implications to deformable objects located near the bubble: Experiments reveal that thin, flat biological cells entrained in the boundary layer become stretched, while cells with a larger cross section are mainly transported with the flow.

  11. Fossil Ionized Bubbles around Dead Quasars during Reionization

    NASA Astrophysics Data System (ADS)

    Furlanetto, Steven R.; Haiman, Zoltán; Oh, S. Peng

    2008-10-01

    One of the most dramatic signatures of the reionization era may be the enormous ionized bubbles around luminous quasars (with radii reaching ~40 comoving Mpc), which may survive as "fossil" ionized regions long after their source shuts off. Here we study how the inhomogeneous intergalactic medium (IGM) evolves inside such fossils. The average recombination rate declines rapidly with time, and the brief quasar episode significantly increases the mean free path inside the fossil bubbles. As a result, even a weak ionizing background generated by galaxies inside the fossil can maintain it in a relatively highly and uniformly ionized state. For example, galaxies that would ionize 20%-30% of hydrogen in a random patch of the IGM can maintain 80%-90% ionization inside the fossil for a duration much longer than the average recombination time in the IGM. Quasar fossils at zlesssim 10 thus retain their identity for nearly a Hubble time and appear "gray," distinct from both the average IGM (which has a "Swiss cheese" ionization topology and a lower mean ionized fraction) and the fully ionized bubbles around active quasars. More distant fossils, at zgtrsim 10, have a weaker galaxy-generated ionizing background and a higher gas density, so they can attain a Swiss cheese topology similar to the rest of the IGM, but with a smaller contrast between the ionized bubbles and the partially neutral regions separating them. Analogous He III fossils should exist around the epoch of He II/He III reionization at z ~ 3, although rapid recombination inside the He III fossils is more common. Our model of inhomogeneous recombination also applies to "double-reionization" models and shows that a nonmonotonic reionization history is even more unlikely than previously thought.

  12. Bernoulli Suction Effect on Soap Bubble Blowing?

    NASA Astrophysics Data System (ADS)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  13. Manipulating bubbles with secondary Bjerknes forces

    SciTech Connect

    Lanoy, Maxime; Derec, Caroline; Leroy, Valentin; Tourin, Arnaud

    2015-11-23

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices.

  14. Bubbles Rising Through a Soft Granular Material

    NASA Astrophysics Data System (ADS)

    Le Mestre, Robin; MacMinn, Chris; Lee, Sungyon

    2016-11-01

    Bubble migration through a soft granular material involves a strong coupling between the bubble dynamics and the deformation of the material. This is relevant to a variety of natural processes such as gas venting from sediments and gas exsolution from magma. Here, we study this process experimentally by injecting air bubbles into a quasi-2D packing of soft hydrogel beads and measuring the size, speed, and morphology of the bubbles as they rise due to buoyancy. Whereas previous work has focused on deformation resisted by intergranular friction, we focus on the previously inaccessible regime of deformation resisted by elasticity. At low confining stress, the bubbles are irregular and rounded, migrating via local rearrangement. At high confining stress, the bubbles become unstable and branched, migrating via pathway opening. The authors thank The Royal Society for support (International Exchanges Ref IE150885).

  15. Influence of bubble size on effervescent atomization. Part 1: bubble characterization and mean spray features

    NASA Astrophysics Data System (ADS)

    Lewis, Taylor; Shepard, Thomas; Forliti, David

    2016-11-01

    In the effervescent atomization process a gas-liquid bubbly mixture is ejected from a nozzle with the goal of enhancing liquid break-up. In this work, high speed images are taken of the bubbly flow inside of an effervescent atomizer as well as downstream of the atomizer exit. The use of varying porous plate media grades and channel inserts at the air injection site of the atomizer permitted independent control of mean bubble size. Digital image analyses were used for bubble characterization and measuring mean spray features. The roles of air injection geometry on bubble population parameters inside of the effervescent atomizer are detailed. The effect of bubble size is examined at multiple gas to liquid flow rate ratios for which the bubbly flow regime was maintained. Results are presented demonstrating the influence of bubble size on the average jet width, jet dark core length, and liquid break-up.

  16. Bursting the bubble of melt inclusions

    USGS Publications Warehouse

    Lowenstern, Jacob B.

    2015-01-01

    Most silicate melt inclusions (MI) contain bubbles, whose significance has been alternately calculated, pondered, and ignored, but rarely if ever directly explored. Moore et al. (2015) analyze the bubbles, as well as their host glasses, and conclude that they often hold the preponderance of CO2 in the MI. Their findings entreat future researchers to account for the presence of bubbles in MI when calculating volatile budgets, saturation pressures, and eruptive flux.

  17. Collapse of vacuum bubbles in a vacuum

    SciTech Connect

    Ng, Kin-Wang; Wang, Shang-Yung

    2011-02-15

    We revisit the dynamics of a false vacuum bubble in a background de Sitter spacetime. We find that there exists a large parameter space that allows the bubble to collapse into a black hole or to form a wormhole. This may have interesting implications for the creation of a baby universe in the laboratory, the string landscape where the bubble nucleation takes place among a plenitude of metastable vacua, and the inflationary physics.

  18. Detailed Jet Dynamics in a Collapsing Bubble

    NASA Astrophysics Data System (ADS)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2015-12-01

    We present detailed visualizations of the micro-jet forming inside an aspherically collapsing cavitation bubble near a free surface. The high-quality visualizations of large and strongly deformed bubbles disclose so far unseen features of the dynamics inside the bubble, such as a mushroom-like flattened jet-tip, crown formation and micro-droplets. We also find that jetting near a free surface reduces the collapse time relative to the Rayleigh time.

  19. Buoyancy Driven Shear Flows of Bubble Suspensions

    NASA Astrophysics Data System (ADS)

    Hill, R. J.; Zenit, R.; Chellppannair, T.; Koch, D. L.; Spelt, P. D. M.; Sangani, A.

    1998-11-01

    In this work the gas volume fraction and the root-mean-squared fluid velocity are measured in buoyancy driven shear flows of bubble suspensions in a tall, inclined, rectangular channel. The experiments are performed under conditions where We << 1 and Re >> 1 , so that the bubbles are relatively undeformed and the flow is inviscid and approximately irrotational. Nitrogen is introduced through an array of capillaries at the base of a .2x.02x2 m channel filled with an aqueous electrolyte solution (0.06 molL-1 MgSO_4). The rising bubbles generate a unidirectional shear flow, where the denser suspension at the lower surface of the channel falls, while the less dense suspension at the upper surface rises. Hot-film anemometry is used to measure the resulting gas volume fraction and fluid velocity profiles. The bubble collision rate with the sensor is related to the gas volume fraction and the mean and variance of the bubble velocity using an experimentally measured collision surface area for the sensor. Bubble collisions with the sensor are identified by the characteristic slope of the hot-film anemometer signal when bubbles collide with the sensor. It is observed that the steady shear flow develops a bubble phase pressure gradient across the channel gap as the bubbles interchange momentum through direct collisions. The discrete phase presssure gradient balances the buoyancy force driving bubbles toward the upper surface resulting in a steady void fraction profile across the gap width. The strength of the shear flow is controlled by the extent of bubble segregation and by the effective viscosity of the bubble phase. The measurements are compared with solutions of the averaged equations of motion (Kang et al. 1997; Spelt and Sangani, 1998), for a range of gas volume fractions and channel inclination angles.

  20. Bubble, Drop and Particle Unit (BDPU)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication includes the following articles entitled: (1) Oscillatory Thermocapillary Instability; (2) Thermocapillary Convection in Multilayer Systems; (3) Bubble and Drop Interaction with Solidification Front; (4) A Liquid Electrohydrodynamics Experiment; (5) Boiling on Small Plate Heaters under Microgravity and a Comparison with Earth Gravity; (6) Thermocapillary Migration and Interactions of Bubbles and Drops; and (7) Nonlinear Surface Tension Driven Bubble Migration

  1. Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes.

    PubMed

    Li, Wenyue; Tang, Yongbing; Kang, Wenpei; Zhang, Zhenyu; Yang, Xia; Zhu, Yu; Zhang, Wenjun; Lee, Chun-Sing

    2015-03-18

    Due to its high theoretical capacity and low lithium insertion voltage plateau, silicon has been considered one of the most promising anodes for high energy and high power density lithium ion batteries (LIBs). However, its rapid capacity degradation, mainly caused by huge volume changes during lithium insertion/extraction processes, remains a significant challenge to its practical application. Engineering Si anodes with abundant free spaces and stabilizing them by incorporating carbon materials has been found to be effective to address the above problems. Using sodium chloride (NaCl) as a template, bubble sheet-like carbon film supported core-shell Si/C composites are prepared for the first time by a facile magnesium thermal reduction/glucose carbonization process. The capacity retention achieves up to 93.6% (about 1018 mAh g(-1)) after 200 cycles at 1 A g(-1). The good performance is attributed to synergistic effects of the conductive carbon film and the hollow structure of the core-shell nanospheres, which provide an ideal conductive matrix and buffer spaces for respectively electron transfer and Si expansion during lithiation process. This unique structure decreases the charge transfer resistance and suppresses the cracking/pulverization of Si, leading to the enhanced cycling performance of bubble sheet-like composite.

  2. Some problems of the theory of bubble growth and condensation in bubble chambers

    NASA Technical Reports Server (NTRS)

    Tkachev, L. G.

    1988-01-01

    This work is an attempt to explain the reasons for the discrepancies between the theoretical and experimental values of bubble growth rate in an overheated liquid, and to provide a brief formulation of the main premises of the theory on bubble growth in liquid before making a critical analysis. To simplify the problem, the floating upward of bubbles is not discussed; moreover, the study is based on the results of the theory of the behavior of fixed bubbles.

  3. Single-bubble sonoluminescence from noble gases.

    PubMed

    Yasui, K

    2001-03-01

    Single-bubble sonoluminescence (SBSL) from noble gases in water is studied theoretically in order to clarify the reason of the distinguished feature that the luminescence is strong for all noble gases, while the other systems of cavitation luminescence are greatly enhanced by the presence of the heavy noble gas(xenon). It is clarified that in spite of the larger thermal conductivity of lighter noble gases the maximum temperature in a SBSL bubble of lighter noble gases is higher due both to the segregation of water vapor and noble gas inside a SBSL bubble and the stronger acoustic drive of a SBSL bubble of lighter noble gases.

  4. Single-bubble sonoluminescence from noble gases

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi

    2001-03-01

    Single-bubble sonoluminescence (SBSL) from noble gases in water is studied theoretically in order to clarify the reason of the distinguished feature that the luminescence is strong for all noble gases, while the other systems of cavitation luminescence are greatly enhanced by the presence of the heavy noble gas(xenon). It is clarified that in spite of the larger thermal conductivity of lighter noble gases the maximum temperature in a SBSL bubble of lighter noble gases is higher due both to the segregation of water vapor and noble gas inside a SBSL bubble and the stronger acoustic drive of a SBSL bubble of lighter noble gases.

  5. Spectroscopic characteristic of conical bubble luminescence

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Dai; Fu, Li-Min; Ai, Xi-Cheng; Zhang, Jian-Ping; Wang, Long

    2005-04-01

    The conical bubble sonoluminescence (CBSL) from the collapse of the bubble was observed in an improved U-tube apparatus. The emitted light energy of a single CBSL flash was measured to be ~ 1.4mJ. The pulse width was about 100μs. The spectra of luminescence were continuum superimposed with the spectral bands from the excited-state C2, CN and CH. The CBSL provides a link between the light emission of the single-bubble and the multi-bubble sonoluminescence (SBSL and MBSL).

  6. Multiple Spark-Generated Bubble Interactions

    NASA Astrophysics Data System (ADS)

    Khoo, Boo Cheong; Adikhari, Deepak; Fong, Siew Wan; Klaseboer, Evert

    The complex interactions of two and three spark-generated bubbles are studied using high speed photography. The corresponding simulations are performed using a 3D Boundary Element Method (BEM) code. The bubbles generated are between 3 to 5 mm in radius, and they are either in-phase or out-of-phase with one another. The possible interaction phenomena between two identically sized bubbles are summarized. Depending on their relative distances and phase differences, they can coalesce, jet towards or away from one another, split into smaller bubbles, or 'catapult' away from one another. The 'catapult' effect can be utilized to generated high speed jet in the absence of a solid boundary or shockwave. Also three bubble interactions are highlighted. Complicated phenomena such as bubble forming an elliptical shape and bubble splitting are observed. The BEM simulations provide insight into the physics of the phenomena by providing details such as detailed bubble shape changes (experimental observations are limited by the temporal and spatial resolution), and jet velocity. It is noted that the well-tested BEM code [1,2] utilized here is computationally very efficient as compared to other full-domain methods since only the bubble surface is meshed.

  7. Analysis of a deflating soap bubble

    NASA Astrophysics Data System (ADS)

    Jackson, David P.; Sleyman, Sarah

    2010-10-01

    A soap bubble on the end of a cylindrical tube is seen to deflate as the higher pressure air inside the bubble escapes through a tube. We perform an experiment to measure the radius of the slowly deflating bubble and observe that the radius decreases to a minimum before quickly increasing. This behavior reflects the fact that the bubble ends up as a flat surface over the end of the tube. A theoretical analysis reproduces this behavior and compares favorably with the experimental data.

  8. Band gaps in bubble phononic crystals

    NASA Astrophysics Data System (ADS)

    Leroy, V.; Bretagne, A.; Lanoy, M.; Tourin, A.

    2016-12-01

    We investigate the interaction between Bragg and hybridization effects on the band gap properties of bubble phononic crystals. These latter consist of air cavities periodically arranged in an elastomer matrix and are fabricated using soft-lithography techniques. Their transmission properties are affected by Bragg effects due to the periodicity of the structure as well as hybridization between the propagating mode of the embedding medium and bubble resonance. The hybridization gap survives disorder while the Bragg gap requires a periodic distribution of bubbles. The distance between two bubble layers can be tuned to make the two gaps overlap or to create a transmission peak in the hybridization gap.

  9. Electrolytic Bubble Growth on Pillared Arrays

    NASA Astrophysics Data System (ADS)

    Lee, Kenneth; Savas, Omer

    2013-11-01

    In current energy research, artificial photosynthetic (AP) devices are being designed to split water and harvest hydrogen gas using sunlight. In one such design, hydrogen gas bubbles evolve on catalytic surfaces of arrayed micropillars. If these bubbles are not promptly removed from the surface, they can adversely affect gas evolution rates, water flow rates, sunlight capture, and heat management of the system - all of which deteriorate device performance. Therefore, understanding how to remove evolved gas bubbles from the pillar surfaces is crucial. Flow visualization of electrolytic bubble nucleation and detachment from the catalytic pillar surfaces has been conducted. The bubble departure diameter and lift-off frequency are extracted and compared with known correlations from boiling heat transfer. Bubble tracking indicates that bubble detachment is enhanced by local interactions with neighboring bubbles. These observations suggest how hydrogen gas bubbles can be effectively removed from pillared surfaces to prolong AP device longevity. Joint Center for Artificial Photosynthesis, a U.S. Department of Energy (DOE) Energy Innovations Hub.

  10. Sound waves in multifractional liquids with bubbles

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Gafiyatov, R. N.

    2017-01-01

    The propagation of sound waves in multifractional mixtures of liquid with vapor–gas and gas bubbles of different sizes and different compositions with phase transitions is studied. The dispersed phase consists of N+M fractions having various gases in bubbles and different in the bubbles radii. Phase transitions accounted for N fractions. The total bubble volume concentration is small (less than 1%). The dispersion relation is derived and dispersion curves is built. The evolution of the weak pulsed perturbations of the pressure in this mixture was calculated numerically.

  11. Bubble formation in additive manufacturing of glass

    NASA Astrophysics Data System (ADS)

    Luo, Junjie; Gilbert, Luke J.; Peters, Daniel C.; Bristow, Douglas A.; Landers, Robert G.; Goldstein, Jonathan T.; Urbas, Augustine M.; Kinzel, Edward C.

    2016-05-01

    Bubble formation is a common problem in glass manufacturing. The spatial density of bubbles in a piece of glass is a key limiting factor to the optical quality of the glass. Bubble formation is also a common problem in additive manufacturing, leading to anisotropic material properties. In glass Additive Manufacturing (AM) two separate types of bubbles have been observed: a foam layer caused by the reboil of the glass melt and a periodic pattern of bubbles which appears to be unique to glass additive manufacturing. This paper presents a series of studies to relate the periodicity of bubble formation to part scan speed, laser power, and filament feed rate. These experiments suggest that bubbles are formed by the reboil phenomena why periodic bubbles result from air being trapped between the glass filament and the substrate. Reboil can be detected using spectroscopy and avoided by minimizing the laser power while periodic bubbles can be avoided by a two-step laser melting process to first establish good contact between the filament and substrate before reflowing the track with higher laser power.

  12. Dynamics of Vapour Bubbles in Nucleate Boiling. 1; Basic Equations of Bubble Evolution

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)

    1995-01-01

    We consider the behaviour of a vapour bubble formed at a nucleation site on a heated horizontal wall. There is no forced convection of an ambient liquid, and the bubble is presumably separated from the wall by a thin liquid microlayer. The energy conservation law results in a variational equation for the mechanical energy of the whole system consisting of the bubble and liquid. It leads to a set of two strongly nonlinear equations which govern bubble expansion and motion of its centre of mass. A supplementary equation to find out the vapour temperature follows from consideration of heat transfer to the bubble, both from the bulk of surrounding liquid and through the microlayer. The average thickness of the microlayer is shown to increase monotonously with time as the bubble meniscus spreads along the wall. Bubble expansion is driven by the pressure head between vapour inside and liquid far away from the bubble, with due allowance for surface tension and gravity effects. It is resisted by inertia of liquid being placed into motion as the bubble grows. The inertia originates also a force that presses the bubble to the wall. This force is counteracted by the buoyancy and an effective surface tension force that tends to transform the bubble into a sphere. The analysis brings about quite a new formulation of the familiar problem of bubble growth and detachment under conditions of nucleate pool boiling.

  13. Bacterial Inactivation by a Singlet Oxygen Bubbler: Identifying Factors Controlling the Toxicity of 1O2 Bubbles

    PubMed Central

    Bartusik, Dorota; Aebisher, David; Lyons, Alan

    2013-01-01

    A microphotoreactor device was developed to generate bubbles (sized: 1.4 mm diameter, 90 μL) containing singlet oxygen at levels toxic to bacteria and fungus. As singlet oxygen decays rapidly to triplet oxygen, the bubbles leave behind no waste or by-products other than O2. From a comparative study in deaerated, air saturated, and oxygenated solutions, it was reasoned that the singlet oxygen bubbles inactivate Escherichia coli and Aspergillus fumigatus, mainly by an oxygen gradient inside and outside of the bubble such that singlet oxygen is solvated and diffuses through the aqueous solution until it reacts with the target organism. Thus, singlet oxygen bubble toxicity was inversely proportional to the amount of dissolved oxygen in solution. In a second mechanism, singlet oxygen interacts directly with E. coli that accumulate at the gas-liquid interface although this mechanism operates at a rate approximately 10 times slower. Due to encapsulation in the gaseous core of the bubble and a 0.98 ms lifetime, the bubbles can traverse relatively long 0.39 mm distances carrying 1O2 far into the solution; by comparison the diffusion distance of 1O2 fully solvated in H2O is much shorter (~150 nm). Bubbles that reached the outer air/water interface contained no 1O2. The mechanism by which 1O2 deactivated organisms was explored through the addition of detergent molecules and Ca2+ ions. Results indicate that the preferential accumulation of E. coli at the air-water interface of the bubble leads to enhanced toxicity of bubbles containing 1O2. The singlet oxygen device offers intriguing possibilities for creating new types of disinfection strategies based on photodynamic (1O2) bubble carriers. PMID:23075418

  14. Colorful Demos with a Long-Lasting Soap Bubble.

    ERIC Educational Resources Information Center

    Behroozi, F.; Olson, D. W.

    1994-01-01

    Describes several demonstrations that feature interaction of light with soap bubbles. Includes directions about how to produce a long-lasting stationary soap bubble with an easily changeable size and describes the interaction of white light with the bubble. (DDR)

  15. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Renggli, C.; Perugini, D.; De Campos, C. P.; Hess, K.-U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2015-04-01

    That rising bubbles may significantly affect magma mixing paths has already been demon strated by analogue experiments. Here, for the first time, bubble-advection experiments are performed employing volcanic melts at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears to be an efficient mechanism for mingling volcanic melts of highly contrasting compositions and properties. MicroCT imaging reveals bubbles trailing each other and multiple filaments coalescing into bigger ones. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that bubbles rising successively are likely to follow this pathway of low resistance that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Inevitable implications for the concept of bubble advection in magma mixing include thereby both an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse) inside a material. Inside the filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble filaments

  16. Neural basis of economic bubble behavior.

    PubMed

    Ogawa, A; Onozaki, T; Mizuno, T; Asamizuya, T; Ueno, K; Cheng, K; Iriki, A

    2014-04-18

    Throughout human history, economic bubbles have formed and burst. As a bubble grows, microeconomic behavior ceases to be constrained by realistic predictions. This contradicts the basic assumption of economics that agents have rational expectations. To examine the neural basis of behavior during bubbles, we performed functional magnetic resonance imaging while participants traded shares in a virtual stock exchange with two non-bubble stocks and one bubble stock. The price was largely deflected from the fair price in one of the non-bubble stocks, but not in the other. Their fair prices were specified. The price of the bubble stock showed a large increase and battering, as based on a real stock-market bust. The imaging results revealed modulation of the brain circuits that regulate trade behavior under different market conditions. The premotor cortex was activated only under a market condition in which the price was largely deflected from the fair price specified. During the bubble, brain regions associated with the cognitive processing that supports order decisions were identified. The asset preference that might bias the decision was associated with the ventrolateral prefrontal cortex and the dorsolateral prefrontal cortex (DLPFC). The activity of the inferior parietal lobule (IPL) was correlated with the score of future time perspective, which would bias the estimation of future price. These regions were deemed to form a distinctive network during the bubble. A functional connectivity analysis showed that the connectivity between the DLPFC and the IPL was predominant compared with other connectivities only during the bubble. These findings indicate that uncertain and unstable market conditions changed brain modes in traders. These brain mechanisms might lead to a loss of control caused by wishful thinking, and to microeconomic bubbles that expand, on the macroscopic scale, toward bust.

  17. Freeze/Thaw-Induced Embolism: Probability of Critical Bubble Formation Depends on Speed of Ice Formation

    PubMed Central

    Sevanto, Sanna; Holbrook, N. Michele; Ball, Marilyn C.

    2012-01-01

    Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically. PMID:22685446

  18. Bubbles Are Departures from Equilibrium Housing Markets: Evidence from Singapore and Taiwan.

    PubMed

    Tay, Darrell Jiajie; Chou, Chung-I; Li, Sai-Ping; Tee, Shang You; Cheong, Siew Ann

    2016-01-01

    The housing prices in many Asian cities have grown rapidly since mid-2000s, leading to many reports of bubbles. However, such reports remain controversial as there is no widely accepted definition for a housing bubble. Previous studies have focused on indices, or assumed that home prices are lognomally distributed. Recently, Ohnishi et al. showed that the tail-end of the distribution of (Japan/Tokyo) becomes fatter during years where bubbles are suspected, but stop short of using this feature as a rigorous definition of a housing bubble. In this study, we look at housing transactions for Singapore (1995 to 2014) and Taiwan (2012 to 2014), and found strong evidence that the equilibrium home price distribution is a decaying exponential crossing over to a power law, after accounting for different housing types. We found positive deviations from the equilibrium distributions in Singapore condominiums and Zhu Zhai Da Lou in the Greater Taipei Area. These positive deviations are dragon kings, which thus provide us with an unambiguous and quantitative definition of housing bubbles. Also, the spatial-temporal dynamics show that bubble in Singapore is driven by price pulses in two investment districts. This finding provides a valuable insight for policymakers on implementation and evaluation of cooling measures.

  19. Revisiting the potential for bursting bubbles to damage cells below the free surface

    NASA Astrophysics Data System (ADS)

    Walls, Peter; Bird, James

    2016-11-01

    The rapid motion associated with bubbles bursting at the surface of a liquid is known to cause damage to cells in a suspension, which is particularly problematic in bioreactors that require continuous injection of oxygen to sustain the cells. It is generally accepted that cells directly attached to the bubble's interface will experience lethal levels of damage. To prevent cells from initially attaching to the bubble's surface, surfactants are widely used. However, the potential for bursting bubbles to damage nearby, but not directly attached, cells is less clear. Previous numerical studies have predicted maximum energy dissipation rates (EDR) as high as 1010 W/m3 for bubbles with radii less than 1 mm; lethal to the commonly used mammalian CHO cell. Here we show that these studies tend to underestimate the generated EDR levels by several orders of magnitude due to limited numerical mesh resolution. Furthermore, we demonstrate how a downward traveling jet can cause damage away from the interface. We validate our numerical model with high-speed bubble bursting experiments and relate the dynamics of this downward jet to the boundary layer equations. We anticipate our results will be an integral step towards developing more efficient aeration platforms. We acknowledge support from Biogen Inc.

  20. Effect of a soluble surfactant on a finite sized bubble motion in a blood vessel

    PubMed Central

    Swaminathan, T. N.; Mukundakrishnan, K.; Ayyaswamy, P. S.; Eckmann, D. M.

    2009-01-01

    We present detailed results for the motion of a finite sized gas bubble in a blood vessel. The bubble (dispersed phase) size is taken to be such as to nearly occlude the vessel. The bulk medium is treated as a shear thinning Casson fluid and contains a soluble surfactant that adsorbs and desorbs from the interface. Three different vessel sizes, corresponding to a small artery, a large arteriole, and a small arteriole, in normal humans, are considered. The hematocrit (volume fraction of RBCs) has been taken to be 0.45. For arteriolar flow, where relevant, the Fahraeus-Lindqvist effect is taken into account. Bubble motion cause temporal and spatial gradients of shear stress at the cell surface lining the vessel wall as the bubble approaches the cell, moves over it and passes it by. Rapid reversals occur in the sign of the shear stress imparted to the cell surface during this motion. Shear stress gradients together with sign reversals are associated with a recirculation vortex at the rear of the moving bubble. The presence of the surfactant reduces the level of the shear stress gradients imparted to the cell surface as compared to an equivalent surfactant-free system. Our numerical results for bubble shapes and wall shear stresses may help explain phenomena observed in experimental studies related to gas embolism, a significant problem in cardiac surgery and decompression sickness. PMID:20305744

  1. Bubbles Are Departures from Equilibrium Housing Markets: Evidence from Singapore and Taiwan

    PubMed Central

    Chou, Chung-I; Li, Sai-Ping; Tee, Shang You; Cheong, Siew Ann

    2016-01-01

    The housing prices in many Asian cities have grown rapidly since mid-2000s, leading to many reports of bubbles. However, such reports remain controversial as there is no widely accepted definition for a housing bubble. Previous studies have focused on indices, or assumed that home prices are lognomally distributed. Recently, Ohnishi et al. showed that the tail-end of the distribution of (Japan/Tokyo) becomes fatter during years where bubbles are suspected, but stop short of using this feature as a rigorous definition of a housing bubble. In this study, we look at housing transactions for Singapore (1995 to 2014) and Taiwan (2012 to 2014), and found strong evidence that the equilibrium home price distribution is a decaying exponential crossing over to a power law, after accounting for different housing types. We found positive deviations from the equilibrium distributions in Singapore condominiums and Zhu Zhai Da Lou in the Greater Taipei Area. These positive deviations are dragon kings, which thus provide us with an unambiguous and quantitative definition of housing bubbles. Also, the spatial-temporal dynamics show that bubble in Singapore is driven by price pulses in two investment districts. This finding provides a valuable insight for policymakers on implementation and evaluation of cooling measures. PMID:27812187

  2. Shadow imaging in bubbly gas-liquid two-phase flow in porous structures

    NASA Astrophysics Data System (ADS)

    Altheimer, Marco; Häfeli, Richard; Wälchli, Carmen; Rudolf von Rohr, Philipp

    2015-09-01

    Shadow imaging is used for the investigation of bubbly gas-liquid two-phase flow in a porous structure. The porous structure is made of Somos WaterShed XC 11122, a clear epoxy resin used in rapid prototyping. Optical access is provided by using an aqueous solution of sodium iodide and zinc iodide having the same refractive index as the structure material (). Nitrogen is injected into the continuous phase at volumetric transport fractions in the range of resulting in a hold-up of . The obtained images of overlapping bubble shadows are processed to measure the bubble dimensions. Therefore, a new processing sequence is developed to determine bubble dimensions from overlapping bubble shadows by ellipse fitting. The accuracy of the bubble detection and sizing routine is assessed processing synthetic images. It is shown that the developed technique is suitable for volumetric two-phase flow measurements. Important global quantities such as gas hold-up and total interfacial area can be measured with only one camera. Operation parameters for gas-liquid two-phase flows are determined to improve mass and heat transfer between the phases.

  3. Optical nucleation of bubble clouds in a high pressure spherical resonator.

    PubMed

    Anderson, Phillip; Sampathkumar, A; Murray, Todd W; Gaitan, D Felipe; Glynn Holt, R

    2011-11-01

    An experimental setup for nucleating clouds of bubbles in a high-pressure spherical resonator is described. Using nanosecond laser pulses and multiple phase gratings, bubble clouds are optically nucleated in an acoustic field. Dynamics of the clouds are captured using a high-speed CCD camera. The images reveal cloud nucleation, growth, and collapse and the resulting emission of radially expanding shockwaves. These shockwaves are reflected at the interior surface of the resonator and then reconverge to the center of the resonator. As the shocks reconverge upon the center of the resonator, they renucleate and grow the bubble cloud. This process is repeated over many acoustic cycles and with each successive shock reconvergence, the bubble cloud becomes more organized and centralized so that subsequent collapses give rise to stronger, better defined shockwaves. After many acoustic cycles individual bubbles cannot be distinguished and the cloud is then referred to as a cluster. Sustainability of the process is ultimately limited by the detuning of the acoustic field inside the resonator. The nucleation parameter space is studied in terms of laser firing phase, laser energy, and acoustic power used.

  4. Cavitation inception from bubble nuclei

    PubMed Central

    Mørch, K. A.

    2015-01-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure–time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  5. Cavitation inception from bubble nuclei.

    PubMed

    Mørch, K A

    2015-10-06

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes.

  6. Dynamics of Vapour Bubbles in Nucleate Boiling. 2; Evolution of Thermally Controlled Bubbles

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)

    1995-01-01

    The previously developed dynamic theory of growth and detachment of vapour bubbles under conditions of nucleate pool boiling is applied to study motion and deformation of a bubble evolving at a single nucleation site. The bubble growth is presumed to be thermally controlled, and two components of heat transfer to the bubble are accounted of: the one from the bulk of surrounding liquid and the one due to heat conduction across a liquid microlayer formed underneath the bubble. Bubble evolution is governed by the buoyancy and an effective surface tension force, both the forces making the bubble centre of mass move away from the wall and, thus, assisting its detachment. Buoyancy-controlled and surface-tension-controlled regimes are considered separately in a meticulous way. The duration of the whole process of bubble evolution till detachment, the rate of growth, and the bubble departure size are found as functions of time and physical and operating parameters. Some repeatedly observed phenomena, such as an influence of gravity on the growth rate, are explained. Inferences of the model agree qualitatively with available experimental evidence, and conclusions pertaining to the dependence on gravity of the bubble radius at detachment and the whole time of the bubble development when being attached to the wall are confirmed quantitatively.

  7. Measurement of Bubble Size Distribution Based on Acoustic Propagation in Bubbly Medium

    NASA Astrophysics Data System (ADS)

    Wu, Xiongjun; Hsiao, Chao-Tsung; Choi, Jin-Keun; Chahine, Georges

    2013-03-01

    Acoustic properties are strongly affected by bubble size distribution in a bubbly medium. Measurement of the acoustic transmission becomes increasingly difficulty as the void fraction of the bubbly medium increases due to strong attenuation, while acoustic reflection can be measured more easily with increasing void fraction. The ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright, an instrument for bubble size measurement that is under development tries to take full advantage of the properties of acoustic propagation in bubbly media to extract bubble size distribution. Properties of both acoustic transmission and reflection in the bubbly medium from a range of short single-frequency bursts of acoustic waves at different frequencies are measured in an effort to deduce the bubble size distribution. With the combination of both acoustic transmission and reflection, assisted with validations from photography, the ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright has the potential to measure bubble size distributions in a wider void fraction range. This work was sponsored by Department of Energy SBIR program

  8. New approaches to hard bubble suppression

    NASA Technical Reports Server (NTRS)

    Henry, R. D.; Besser, P. J.; Warren, R. G.; Whitcomb, E. C.

    1973-01-01

    Description of a new double-layer method for the suppression of hard bubbles that is more versatile than previously reported suppression techniques. It is shown that it may be possible to prevent hard bubble generation without recourse to exchange coupling of multilayer films.

  9. Simple improvements to classical bubble nucleation models

    NASA Astrophysics Data System (ADS)

    Tanaka, Kyoko K.; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3 σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  10. The Minnaert Bubble: An Acoustic Approach

    ERIC Educational Resources Information Center

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude; Leroy, Valentin

    2008-01-01

    We propose an "ab initio" introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian…

  11. Continuous-data FIFO bubble shift register

    NASA Technical Reports Server (NTRS)

    Chen, T. T.

    1977-01-01

    Simple loop first-in-first-out (FIFO) bubble memory shift register has continuous storage capability. Bubble shift register simplifies chip-control electronics by enabling all control functions to be alined at same bit. FIFO shift register is constructed from passive replicator and annihilator combinations.

  12. Videotaping the Lifespan of a Soap Bubble.

    ERIC Educational Resources Information Center

    Ramme, Goran

    1995-01-01

    Describes how the use of a videotape to record the history of a soap bubble allows a study of many interesting events in considerable detail including interference fringes, convection and turbulence patterns on the surface, formation of black film, and the ultimate explosion of the bubble. (JRH)

  13. Drops and Bubble in Materials Science

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1982-01-01

    The formation of extended p-n junctions in semiconductors by drop migration, mechanisms and morphologies of migrating drops and bubbles in solids and nucleation and corrections to the Volmer-Weber equations are discussed. Bubble shrinkage in the processing of glass, the formation of glass microshells as laser-fusion targets, and radiation-induced voids in nuclear reactors were examined.

  14. The Physics of Foams, Droplets and Bubbles

    ERIC Educational Resources Information Center

    Sarker, Dipak K.

    2013-01-01

    Foams or bubble dispersions are common to milkshakes, bread, champagne froth, shaving mousse, shampoo, crude oil extraction systems, upholstery packing and bubble wrap, whereas the term droplet is often synonymous with either a small drop of water or a drop of oil--a type of coarse dispersion. The latter are seen in butter and milk, household…

  15. Measuring the surface tension of soap bubbles

    NASA Technical Reports Server (NTRS)

    Sorensen, Carl D.

    1992-01-01

    The objectives are for students to gain an understanding of surface tension, to see that pressure inside a small bubble is larger than that inside a large bubble. These concepts can be used to explain the behavior of liquid foams as well as precipitate coarsening and grain growth. Equipment, supplies, and procedures are explained.

  16. Acoustic-Induced Drag on a Bubble.

    DTIC Science & Technology

    1999-03-01

    possibly controlling bubble migration and heat transfer. 14. SUBJECT TERMS: Drag, bubble dynamics, analog to stochastic electrodynamics 15. NUMBER OF...remains constant. The notion that acoustic noise can test, by analogy, predictions due to stochastic electrodynamics and to ZPF effects has been

  17. Structure of nanoscale gas bubbles in metals

    SciTech Connect

    Caro, A. Schwen, D.; Martinez, E.

    2013-11-18

    A usual way to estimate the amount of gas in a bubble inside a metal is to assume thermodynamic equilibrium, i.e., the gas pressure P equals the capillarity force 2γ/R, with γ the surface energy of the host material and R the bubble radius; under this condition there is no driving force for vacancies to be emitted or absorbed by the bubble. In contrast to the common assumption that pressure inside a gas or fluid bubble is constant, we show that at the nanoscale this picture is no longer valid. P and density can no longer be defined as global quantities determined by an equation of state (EOS), but they become functions of position because the bubble develops a core-shell structure. We focus on He in Fe and solve the problem using both continuum mechanics and empirical potentials to find a quantitative measure of this effect. We point to the need of redefining an EOS for nanoscale gas bubbles in metals, which can be obtained via an average pressure inside the bubble. The resulting EOS, which is now size dependent, gives pressures that differ by a factor of two or more from the original EOS for bubble diameters of 1 nm and below.

  18. Gravity Wave Seeding of Equatorial Plasma Bubbles

    NASA Technical Reports Server (NTRS)

    Singh, Sardul; Johnson, F. S.; Power, R. A.

    1997-01-01

    Some examples from the Atmosphere Explorer E data showing plasma bubble development from wavy ion density structures in the bottomside F layer are described. The wavy structures mostly had east-west wavelengths of 150-800 km, in one example it was about 3000 km. The ionization troughs in the wavy structures later broke up into either a multiple-bubble patch or a single bubble, depending upon whether, in the precursor wavy structure, shorter wavelengths were superimposed on the larger scale wavelengths. In the multiple bubble patches, intrabubble spacings vaned from 55 km to 140 km. In a fully developed equatorial spread F case, east-west wavelengths from 690 km down to about 0.5 km were present simultaneously. The spacings between bubble patches or between bubbles in a patch appear to be determined by the wavelengths present in the precursor wave structure. In some cases, deeper bubbles developed on the western edge of a bubble patch, suggesting an east-west asymmetry. Simultaneous horizontal neutral wind measurements showed wavelike perturbations that were closely associated with perturbations in the plasma horizontal drift velocity. We argue that the wave structures observed here that served as the initial seed ion density perturbations were caused by gravity waves, strengthening the view that gravity waves seed equatorial spread F irregularities.

  19. Galactic Teamwork Makes Distant Bubbles

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    During the period of reionization that followed the dark ages of our universe, hydrogen was transformed from a neutral state, which is opaque to radiation, to an ionized one, which is transparent to radiation. But what generated the initial ionizing radiation? The recent discovery of multiple distant galaxies offers evidence for how this process occurred.Two Distant GalaxiesWe believe reionization occurred somewhere between a redshift of z = 6 and 7, because Ly-emitting galaxies drop out at roughly this redshift. Beyond this distance, were generally unable to see the light from these galaxies, because the universe is no longer transparent to their emission. This is not always the case, however: if a bubble of ionized gas exists around a distant galaxy, the radiation can escape, allowing us to see the galaxy.This is true of two recently-discovered Ly-emitting galaxies, confirmed to be at a redshift of z~7 and located near one another in a region known as the Bremer Deep Field. The fact that were able to see the radiation from these galaxies means that they are in an ionized HII region presumably one of the earlier regions to have become reionized in the universe.But on their own, neither of these galaxies is capable of generating an ionized bubble large enough for their light to escape. So what ionized the region around them, and what does this mean for our understanding of how reionization occurred in the universe?A Little Help From FriendsLocation in different filters of the objects in the Hubble Bremer Deep Field catalog. The z~7 selection region is outlined by the grey box. BDF-521 and BDF-3299 were the two originally discovered galaxies; the remaining red markers indicate the additional six galaxies discovered in the same region. [Castellano et al. 2016]A team of scientists led by Marco Castellano (Rome Observatory, INAF) investigated the possibility that there are other, faint galaxies near these two that have helped to ionize the region. Performing a survey

  20. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Renggli, C. J.; Perugini, D.; De Campos, C. P.; Hess, K.-U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2015-08-01

    In order to explore the materials' complexity induced by bubbles rising through mixing magmas, bubble-advection experiments have been performed, employing natural silicate melts at magmatic temperatures. A cylinder of basaltic glass was placed below a cylinder of rhyolitic glass. Upon melting, bubbles formed from interstitial air. During the course of the experimental runs, those bubbles rose via buoyancy forces into the rhyolitic melt, thereby entraining tails of basaltic liquid. In the experimental run products, these plume-like filaments of advected basalt within rhyolite were clearly visible and were characterised by microCT and high-resolution EMP analyses. The entrained filaments of mafic material have been hybridised. Their post-experimental compositions range from the originally basaltic composition through andesitic to rhyolitic composition. Rheological modelling of the compositions of these hybridised filaments yield viscosities up to 2 orders of magnitude lower than that of the host rhyolitic liquid. Importantly, such lowered viscosities inside the filaments implies that rising bubbles can ascend more efficiently through pre-existing filaments that have been generated by earlier ascending bubbles. MicroCT imaging of the run products provides textural confirmation of the phenomenon of bubbles trailing one another through filaments. This phenomenon enhances the relevance of bubble advection in magma mixing scenarios, implying as it does so, an acceleration of bubble ascent due to the decreased viscous resistance facing bubbles inside filaments and yielding enhanced mass flux of mafic melt into felsic melt via entrainment. In magma mixing events involving melts of high volatile content, bubbles may be an essential catalyst for magma mixing. Moreover, the reduced viscosity contrast within filaments implies repeated replenishment of filaments with fresh end-member melt. As a result, complex compositional gradients and therefore diffusion systematics can be

  1. Mechanism of single-bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi

    1999-08-01

    The mechanism of the light emission of single-bubble sonoluminescence (SBSL) is studied theoretically based on the quasiadiabatic compression model. It is concluded that SBSL is not the blackbody radiation but the thermal radiation. It is clarified that the shape of the spectrum is determined by the temperature inside the bubble and the intensity is determined by the rates of the microscopic processes of the light emission. For a noble-gas bubble, radiative recombination of electrons and ions and electron-atom bremsstrahlung are the dominant microscopic processes of the light emission, and the intensity is mainly determined by the degree of ionization of the gas inside the bubble. It is also clarified that for a noble-gas bubble the pulse width of the light is nearly independent of wavelength.

  2. Mechanism of single-bubble sonoluminescence.

    PubMed

    Yasui, K

    1999-08-01

    The mechanism of the light emission of single-bubble sonoluminescence (SBSL) is studied theoretically based on the quasiadiabatic compression model. It is concluded that SBSL is not the blackbody radiation but the thermal radiation. It is clarified that the shape of the spectrum is determined by the temperature inside the bubble and the intensity is determined by the rates of the microscopic processes of the light emission. For a noble-gas bubble, radiative recombination of electrons and ions and electron-atom bremsstrahlung are the dominant microscopic processes of the light emission, and the intensity is mainly determined by the degree of ionization of the gas inside the bubble. It is also clarified that for a noble-gas bubble the pulse width of the light is nearly independent of wavelength.

  3. A simple collision model for small bubbles

    NASA Astrophysics Data System (ADS)

    Heitkam, Sascha; Sommer, Anna-Elisabeth; Drenckhan, Wiebke; Fröhlich, Jochen

    2017-03-01

    In this work, a model for the interaction force between a small bubble and a wall or another bubble is presented. The formulation is especially designed for Lagrangian calculations of bubble or soft sphere trajectories, with or without resolution of the continuous fluid. The force only relies on position and velocity of the bubble. The model does not include any empirical parameter that would have to be calibrated. Therefore, this force model is easy to implement. The formulation of the force is explicit, which means low computational effort. The collision of a small bubble with an inclined top wall is investigated numerically and experimentally. The computational results achieved with the new collision model show good agreement with the experiment.

  4. Towards observable signatures of other bubble universes

    SciTech Connect

    Aguirre, Anthony; Johnson, Matthew C.; Shomer, Assaf

    2007-09-15

    We evaluate the possibility of observable effects arising from collisions between vacuum bubbles in a universe undergoing false-vacuum eternal inflation. Contrary to conventional wisdom, we find that under certain assumptions most positions inside a bubble should have access to a large number of collision events. We calculate the expected number and angular size distribution of such collisions on an observer's 'sky', finding that for typical observers the distribution is anisotropic and includes many bubbles, each of which will affect the majority of the observer's sky. After a qualitative discussion of the physics involved in collisions between arbitrary bubbles, we evaluate the implications of our results, and outline possible detectable effects. In an optimistic sense, then, the present paper constitutes a first step in an assessment of the possible effects of other bubble universes on the cosmic microwave background and other observables.

  5. Bubble chamber as a trace chemical detector.

    PubMed

    Luo, X; McCreary, E I; Atencio, J H; McCown, A W; Sander, R K

    1998-08-20

    A novel concept for trace chemical analysis in liquids has been demonstrated. The technique utilizes light absorption in a superheated liquid. Although a superheated liquid is thermodynamically unstable, a high degree of superheating can be dynamically achieved for a short period of time. During this time the superheated liquid is extremely sensitive to boiling at nucleation sites produced by energy deposition. Observation of bubbles in the superheated liquid in some sense provides amplification of the initial energy deposition. Bubble chambers containing superheated liquids have been used to detect energetic particles; now a bubble chamber is used to detect a trace chemical in superheated liquid propane by observing bubble formation initiated by optical absorption. Crystal violet is used as a test case and can be detected at the subpart-per-10(12) level by using a Nd:YAG laser. The mechanism for bubble formation and ideas for further improvement are discussed.

  6. Mechanism of single-bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    An, Yu

    2006-08-01

    Considering almost all the effective processes of physics and chemical reaction in our numerical computation model, we investigate the mechanism of single bubble sonoluminescence (SBSL). For those sonoluminescing single bubbles in water at its flashing phase, the numerical simulation reveals that if the temperature inside the bubble is not high enough which may result in the plenty oxygen molecules and OH radicals undissociated, such as the case of a single argon bubble in 20°C or 34°C water, the radiative attachment of electrons to oxygen molecules and OH radicals contributes most to the SBSL; if the temperature inside the bubble is higher which makes most of the water vapor inside the bubble dissociate into oxygen and hydrogen atoms, such as the case of an argon bubble or a helium bubble in 0°C water, the radiative attachment of electrons to oxygen and hydrogen atoms dominates the SBSL; if the temperature is still higher, such as the case of a xenon bubble in 0°C water, the contribution from electron-neutral atom bremsstrahlung and electron-ion bremsstrahlung and recombination would be comparable with the contribution from the radiative attachment of electrons to oxygen and hydrogen atoms, and they together dominate the SBSL. For sonoluminescing single bubbles in those low vapor pressure liquids, such as in 85wt.% sulphuric acid, the electron-neutral atom bremsstrahlung and the electron-ion bremsstrahlung and recombination contribute most to the continuous spectrum part of SBSL. The present calculation also provides good interpretations to those observed phenomena, such as emitted photon numbers, the width of optical pulses, the blackbody radiation like spectra. The temperature fitted by the blackbody radiation formula is very different from that calculated by the gas dynamics equations. Besides, the effect of chemical dissociation on the shock wave is also discussed.

  7. Mechanism of single-bubble sonoluminescence.

    PubMed

    An, Yu

    2006-08-01

    Considering almost all the effective processes of physics and chemical reaction in our numerical computation model, we investigate the mechanism of single bubble sonoluminescence (SBSL). For those sonoluminescing single bubbles in water at its flashing phase, the numerical simulation reveals that if the temperature inside the bubble is not high enough which may result in the plenty oxygen molecules and OH radicals undissociated, such as the case of a single argon bubble in 20 degrees C or 34 degrees C water, the radiative attachment of electrons to oxygen molecules and OH radicals contributes most to the SBSL; if the temperature inside the bubble is higher which makes most of the water vapor inside the bubble dissociate into oxygen and hydrogen atoms, such as the case of an argon bubble or a helium bubble in 0 degrees C water, the radiative attachment of electrons to oxygen and hydrogen atoms dominates the SBSL; if the temperature is still higher, such as the case of a xenon bubble in 0 degrees C water, the contribution from electron-neutral atom bremsstrahlung and electron-ion bremsstrahlung and recombination would be comparable with the contribution from the radiative attachment of electrons to oxygen and hydrogen atoms, and they together dominate the SBSL. For sonoluminescing single bubbles in those low vapor pressure liquids, such as in 85 wt.% sulphuric acid, the electron-neutral atom bremsstrahlung and the electron-ion bremsstrahlung and recombination contribute most to the continuous spectrum part of SBSL. The present calculation also provides good interpretations to those observed phenomena, such as emitted photon numbers, the width of optical pulses, the blackbody radiation like spectra. The temperature fitted by the blackbody radiation formula is very different from that calculated by the gas dynamics equations. Besides, the effect of chemical dissociation on the shock wave is also discussed.

  8. Primary Particles from different bubble generation techniques

    NASA Astrophysics Data System (ADS)

    Butcher, A. C.; King, S. M.; Rosenoern, T.; Nilsson, E. D.; Bilde, M.

    2011-12-01

    Sea spray aerosols (SSA) are of major interest to global climate models due to large uncertainty in their emissions and ability to form Cloud Condensation Nuclei (CCN). In general, SSA are produced from wind breaking waves that entrain air and cause bubble bursting on the ocean surface. Preliminary results are presented for bubble generation, bubble size distribution, and CCN activity for laboratory generated SSA. In this study, the major processes of bubble formation are examined with respect to particle emissions. It has been suggested that a plunging jet closely resembles breaking wave bubble entrainment processes and subsequent bubble size distributions (Fuentes, Coe et al. 2010). Figure 1 shows the different particle size distributions obtained from the various bubble generation techniques. In general, frits produce a higher concentration of particles with a stronger bimodal particle size distribution than the various jet configurations used. The experiments consist of a stainless steel cylinder closed at both ends with fittings for aerosol sampling, flow connections for the recirculating jet, and air supply. Bubble generation included a recirculating jet with 16 mm or 4 mm nozzles, a stainless steel frit, or a ceramic frit. The chemical composition of the particles produced via bubble bursting processes has been probed using particle CCN activity. The CCN activity of sodium chloride, artificial sea salt purchased from Tropic Marin, and laboratory grade artificial sea salt (Kester, Duedall et al. 1967) has been compared. Considering the the limits of the shape factor as rough error bars for sodium chloride and bubbled sea salt, the CCN activity of artificial sea salt, Tropic Marin sea salt, and sodium chloride are not significantly different. This work has been supported by the Carlsberg Foundation.

  9. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEWTRON DETECTORS

    SciTech Connect

    FISHER,RK

    2002-10-01

    OAK B202 HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEWTRON DETECTORS. Bubble detectors, which can detect neutrons with a spatial resolution of 5 to 30 {micro}, are a promising approach to high-resolution imaging of NIF target plasmas. Gel bubble detectors were used in successful proof-of-principle imaging experiments on OMEGA. Until recently, bubble detectors appeared to be the only approach capable of achieving neutron images of NIF targets with the desired 5 {micro} spatial resolution in the target plane. In 2001, NIF reduced the required standoff distance from the target, so that diagnostic components can now be placed as close as 10 cm to the target plasma. This will allow neutron imaging with higher magnification and may make it possible to obtain 5 {micro}m resolution images on NIF using deuterated scintillators. Having accomplished all that they can hope to on OMEGA using gel detectors, they suggested that the 2002 NLUF shots be used to allow experimental tests of the spatial resolution of the CEA-built deuterated scintillators. The preliminary CEA data from the June 2002 run appears to show the spatial resolution using the deuterated scintillator detector array is improved over that obtained in earlier experiments using the proton-based scintillators. Gel detectors, which consist of {approx} 10 {micro}m diameter drops of bubble detector liquid suspended in an inactive support gel that occupies {approx} 99% of the detector volume, were chosen for the initial tests on OMEGA since they are easy to use. The bubbles could be photographed several hours after the neutron exposure. Imaging NIF target plasmas at neutron yields of 10{sup 15} will require a higher detection efficiency detector. Using a liquid bubble chamber detector should result in {approx} 1000 times higher neutron detection efficiency which is comparable to that possible using scintillation detectors. A pressure-cycled liquid bubble detector will require a light

  10. Effect of surfactants on single bubble sonoluminescence behavior and bubble surface stability.

    PubMed

    Leong, Thomas; Yasui, Kyuichi; Kato, Kazumi; Harvie, Dalton; Ashokkumar, Muthupandian; Kentish, Sandra

    2014-04-01

    The effect of surfactants on the radial dynamics of a single sonoluminescing bubble has been investigated. Experimentally, it is observed that an increase in the surfactant concentration leads to a decline in the oscillation amplitude and hence light emission intensity. Numerical simulations support this result, showing that under the driving pressures required to achieve single bubble sonoluminescence (SBSL), the surface properties, namely, the surface elasticity and dilatational viscosity, contribute to the damping of the radial amplitude in the bubble oscillation. In most cases this stabilizes the bubble surface, and contributes to a decreased light intensity. A stronger driving pressure is necessary to achieve equivalent light emission to a surfactant-free bubble. However, as the driving pressure is increased, the surface stability also decreases, making it practically very difficult for a bubble to achieve high SBSL intensities in concentrated surfactant solutions. Although more stable owing to more mild pulsations, the instability mechanism for a surfactant-coated bubble at higher ambient radii is more likely to be of the Rayleigh-Taylor type than that of a clean bubble at the same given acoustic parameters, which can lead to bubble disintegration before correcting mechanisms can bring the bubble back into the stable sonoluminescence regime.

  11. Nonlinear ultrasonic waves in bubbly liquids with nonhomogeneous bubble distribution: Numerical experiments.

    PubMed

    Vanhille, Christian; Campos-Pozuelo, Cleofé

    2009-06-01

    This paper deals with the nonlinear propagation of ultrasonic waves in mixtures of air bubbles in water, but for which the bubble distribution is nonhomogeneous. The problem is modelled by means of a set of differential equations which describes the coupling of the acoustic field and bubbles vibration, and solved in the time domain via the use and adaptation of the SNOW-BL code. The attenuation and nonlinear effects are assumed to be due to the bubbles exclusively. The nonhomogeneity of the bubble distribution is introduced by the presence of bubble layers (or clouds) which can act as acoustic screens, and alters the behaviour of the ultrasonic waves. The effect of the spatial distribution of bubbles on the nonlinearity of the acoustic field is analyzed. Depending on the bubble density, dimension, shape, and position of the layers, its effects on the acoustic field change. Effects such as shielding and resonance of the bubbly layers are especially studied. The numerical experiments are carried out in two configurations: linear and nonlinear, i.e. for low and high excitation pressure amplitude, respectively, and the features of the phenomenon are compared. The parameters of the medium are chosen such as to reproduce air bubbly water involved in the stable cavitation process.

  12. Influence of bubble size, diffuser width, and flow rate on the integral behavior of bubble plumes

    NASA Astrophysics Data System (ADS)

    Fraga, Bruño.; Stoesser, Thorsten

    2016-06-01

    A large-eddy simulation based Eulerian-Lagrangian model is employed to quantify the impact of bubble size, diffuser diameter, and gas flow rate on integral properties of bubble plumes, such as the plume's width, centerline velocity, and mass flux. Calculated quantities are compared with experimental data and integral model predictions. Furthermore, the LES data were used to assess the behavior of the entrainment coefficient, the momentum amplification factor, and the bubble-to-momentum spread ratio. It is found that bubble plumes with constant bubble size and smaller diameter behave in accordance with integral plume models. Plumes comprising larger and non-uniform bubble sizes appear to deviate from past observations and model predictions. In multi-diameter bubble plumes, a bubble self-organisation takes place, i.e., small bubbles cluster in the center of the plume whilst large bubbles are found at the periphery of the plume. Multi-diameter bubble plumes also feature a greater entrainment rate than single-size bubble plumes, as well as a higher spread ratio and lower turbulent momentum rate. Once the plume is fully established, the size of the diffuser does not appear to affect integral properties of bubble plumes. However, plume development is affected by the diffuser width, as larger release areas lead to a delayed asymptotic behavior of the plume and consequently to a lower entrainment and higher spread ratio. Finally, the effect of the gas flow rate on the integral plume is studied and is deemed very relevant with regards to most integral plume properties and coefficients. This effect is already fairly well described by integral plume models.

  13. Microwave emission of sonoluminescing bubbles.

    PubMed

    Hammer, Dominik; Frommhold, Lothar

    2002-07-01

    Kordomenos et al. have attempted to measure single bubble sonoluminescence (SBSL) emission in the microwave window of water in a band of frequencies ranging from 1.65 GHz to 2.35 GHz [Phys. Rev. E 59, 1781 (1999)]. The sensitivity of the experiment was such that signals greater than 1 nW would have been detected. We show here that this upper bound is compatible with the radiation processes that we think generate significant emission at optical frequencies, electron-neutral and electron-ion bremsstrahlung. In fact, we argue that, almost independently of the specific assumptions concerning the hydrodynamics or the nature of the radiative processes, SBSL intensities exceeding that upper bound can hardly be expected.

  14. Inert gas bubbles in bcc Fe

    NASA Astrophysics Data System (ADS)

    Gai, Xiao; Smith, Roger; Kenny, S. D.

    2016-03-01

    The properties of inert gas bubbles in bcc Fe is examined using a combination of static energy minimisation, molecular dynamics and barrier searching methods with empirical potentials. Static energy minimisation techniques indicate that for small Ar and Xe bubbles, the preferred gas to vacancy ratio at 0 K is about 1:1 for Ar and varies between 0.5:1 and 0.9:1 for Xe. In contrast to interstitial He atoms and small He interstitial clusters, which are highly mobile in the lattice, Ar and Xe atoms prefer to occupy substitutional sites and any interstitials present in the lattice soon displace Fe atoms and become substitutional. If a pre-existing bubble is present then there is a capture radius around a bubble which extends up to the 6th neighbour position. Collision cascades can also enlarge an existing bubble by the capture of vacancies. Ar and Xe can diffuse through the lattice through vacancy driven mechanisms but with relatively high energy barriers of 1.8 and 2.0 eV respectively. This indicates that Ar and Xe bubbles are much harder to form than bubbles of He and that such gases produced in a nuclear reaction would more likely be dispersed at substitutional sites without the help of increased temperature or radiation-driven mechanisms.

  15. Surfactants for Bubble Removal against Buoyancy.

    PubMed

    Raza, Md Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-08

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications.

  16. Bubbles in live-stranded dolphins

    PubMed Central

    Dennison, S.; Moore, M. J.; Fahlman, A.; Moore, K.; Sharp, S.; Harry, C. T.; Hoppe, J.; Niemeyer, M.; Lentell, B.; Wells, R. S.

    2012-01-01

    Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber–muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness. PMID:21993505

  17. Surfactants for Bubble Removal against Buoyancy

    PubMed Central

    Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications. PMID:26743179

  18. Bubble Growth and Detachment from a Needle

    NASA Astrophysics Data System (ADS)

    Shusser, Michael; Rambod, Edmond; Gharib, Morteza

    1999-11-01

    The release of bubbles from an underwater nozzle or orifice occurs in large number of applications, such as perforated plate columns, blood oxygenators and various methods of water treatment. It is also a widely used method in laboratory research on multiphase flow and acoustics for generating small bubbles in a controlled fashion. We studied experimentally the growth and pinch-off of air bubbles released from a submerged needle into a quiescent liquid or a liquid flowing parallel to the needle. Micron-sized bubbles were generated by an air-liquid dispenser. High-speed imaging was performed to study the formation and detachment of bubbles from the tip of the needle. The impact of the needle diameter was investigated and the size and number of produced bubbles were assessed for different flow rates of air and for different velocities of the imposed upward liquid flow. The results were compared with available theoretical models and numerical computations. The existence of a critical gas flow rate and two regimes of bubble growth were verified.

  19. Bubbles in live-stranded dolphins.

    PubMed

    Dennison, S; Moore, M J; Fahlman, A; Moore, K; Sharp, S; Harry, C T; Hoppe, J; Niemeyer, M; Lentell, B; Wells, R S

    2012-04-07

    Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber-muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness.

  20. Bubbly Suspension Generated in Low Gravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    2000-01-01

    Bubbly suspensions are crucial for mass and heat transport processes on Earth and in space. These processes are relevant to pharmaceutical, chemical, nuclear, and petroleum industries on Earth. They are also relevant to life support, in situ resource utilization, and propulsion processes for long-duration space missions such as the Human Exploration and Development of Space program. Understanding the behavior of the suspension in low gravity is crucial because of factors such as bubble segregation, which could result in coalescence and affect heat and mass transport. Professors A. Sangani and D. Koch, principal investigators in the Microgravity Fluid Physics Program managed by the NASA Glenn Research Center at Lewis Field, are studying the physics of bubbly suspension. They plan to shear a bubbly suspension in a couette cell in microgravity to study bubble segregation and compare the bubble distribution in the couette gap with the one predicted by the suspension-averaged equations of motion. Prior to the Requirement Definition Review of this flight experiment, a technology for generating a bubbly suspension in microgravity has to be established, tested, and verified.

  1. Surfactants for Bubble Removal against Buoyancy

    NASA Astrophysics Data System (ADS)

    Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications.

  2. Acoustic Bubble Removal from Boiling Surfaces

    NASA Technical Reports Server (NTRS)

    Prosperetti, Andrea

    2002-01-01

    The object of the study was the investigation of the forces generated by standing acoustic waves on vapor bubbles, both far and near boundaries. In order to accomplish this objective, in view of the scarcity of publications on the topic, it has been necessary to build an edifice of knowledge about vapor bubbles in sound and flow fields from the ground up, as it were. We have addressed problems of gradually greater difficulty as follows: 1. In the first place, the physics of an stationary isolated bubble subject to a sound field in an unbounded liquid was addressed; 2. The case of bubbles translating in a stationary pressure field was then considered; 3. This was followed by a study of the combined effects of sound and translation, 4. And of a neighboring boundary 5. Finally, a new method to deal with nonspherical bubbles was developed- In addition to the work on vapor bubbles, some studies on gas bubbles were conducted in view of NASA's interest in the phenomenon of sonoluminescence.

  3. Understanding Peat Bubbles: Biogeochemical-Hydrological Linkages

    NASA Astrophysics Data System (ADS)

    Strack, M.

    2009-05-01

    Decomposition of organic matter in peatland ecosystems produces gaseous end-products that can accumulate at depth and result in the build up of free-phase gas below the water table. This free-phase gas, or bubbles, reduces hydraulic conductivity, alters hydrologic and chemical gradients, and affects productivity surface vegetation through its role in peat buoyancy. In terms of greenhouse gas dynamics, these bubbles are likely the dominant subsurface stock of methane (CH4) and release of this CH4 to the atmosphere via ebullition may account for a significant portion of total efflux. Despite the importance of entrapped bubbles for peatland ecohydrological function there is still little known about how the quantity of bubbles varies between peatland types and at smaller scales within a peatland. Profiles of bubbles collected from several locations within four peatlands reveal that bubble volume varies significant among peatlands, between microforms and with depth. Previous studies also suggest that ebullition is spatially and temporally variable. This spatial variability may have important impacts on system ecohydrology and should be incorporated in models of peatland hydrology and development. This requires the difficult task of mapping bubble volume in three dimensions and over large areas. The potential for geophysical methods and the use of surface features to address this task will be discussed.

  4. The Age of the Local Interstellar Bubble

    NASA Astrophysics Data System (ADS)

    Abt, H. A.

    2011-12-01

    The Local Interstellar Bubble is an irregular-shaped region that happens to be centered on the Sun. It has minimum and maximum radii of 50 and 150 pc. The density inside the bubble is 1/200 of that outside and the temperature is about 1 million K. Therefore the density times the temperature at the borders is constant, so the bubble is stable and can be very old. It was evidently cleared of interstellar gas by one or more supernovae. Because of the low density, no new stars could have been formed in the bubble since the supernovae explosions. We looked for the youngest stars within the bubble. In the central region they are B7 so that region is about 160 million years old. The Pleiades lobe has B3 stars so it is about 60 million years old. The lobe toward the galactic center has O9.5 stars so it is about 4 million years old. In fact, it has a pulsar with a spin-down time of 3.76 million years, so that must be the remnant of the supernova that created that region. The bubble has measureable OVI and CII lines, but no HI, confirming its high temperature. The Sun was probably formed elsewhere and happened to drift into the bubble some millions of years ago. The full text of this talk was published in the Astronomical Journal (Abt 2011).

  5. Mean bubble formation time in DNA denaturation

    NASA Astrophysics Data System (ADS)

    Murthy, K. P. N.; Schütz, G. M.

    2011-12-01

    Using the Poland-Scheraga free energy of the bubble size in a double-stranded DNA we propose a discrete stochastic dynamics for the number of base pairs N of an unzipped bubble. We derive a universal subdiffusive growth TN~A/Γ(b+2)N1+b for the mean formation time (MBFT) TN of a bubble of size N. The amplitude A is determined by the bubble initiation rate and time spent in the denaturated state. We examine critically the significance of these results for experiments. We find: i) Our results provide a new method to determine whether the order of the denaturation transition is discontinuous (b>2) or not. ii) The asymptotic growth law of TN is reached with 10% precision already for small bubbles of sizes >20. However, the amplitude is very sensitive to modeling details for small bubbles. iii) In an equilibrium sample of bubbles up to size N the averaged MBFT grows diffusively, TN*~N2, irrespective of b.

  6. Dynamics of two-dimensional bubbles.

    PubMed

    Piedra, Saúl; Ramos, Eduardo; Herrera, J Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  7. Nonlinear Bubble Interactions in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi

    1996-01-01

    The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).

  8. The Minnaert bubble: an acoustic approach

    NASA Astrophysics Data System (ADS)

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude; Leroy, Valentin

    2008-11-01

    We propose an ab initio introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian variables. In unbounded water, the air-water system has a continuum of eigenmodes, some of them correspond to regular Fabry-Pérot resonances. A singular resonance, the lowest one, is shown to coincide with that of Minnaert. In bounded water, the eigenmodes spectrum is discrete, with a finite fundamental frequency. A spectacular quasi-locking of the latter occurs if it happens to exceed the Minnaert frequency, which provides an unforeseen one-bubble alternative version of the famous 'hot chocolate effect'. In the (low) frequency domain in which sound propagation inside the bubble reduces to a simple 'breathing' (i.e. inflation/deflation), the light air bubble can be 'dressed' by the outer water pressure forces, and is turned into the heavy Minnaert bubble. Thanks to this unexpected renormalization process, we demonstrate that the Minnaert bubble definitely behaves like a true harmonic oscillator of the spring-bob type, but with a damping term and a forcing term in apparent disagreement with those commonly admitted in the literature. Finally, we underline the double role played by the water. In order to tell the water motion associated with water compressibility (i.e. the sound) from the simple incompressible accompaniment of the bubble breathing, we introduce a new picture analogous to the electromagnetic radiative picture in Coulomb gauge, which naturally leads us to split the water displacement in an instantaneous and a retarded part. The Minnaert renormalized mass of the dressed bubble is then automatically recovered.

  9. Dynamics of two-dimensional bubbles

    NASA Astrophysics Data System (ADS)

    Piedra, Saúl; Ramos, Eduardo; Herrera, J. Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  10. MAGNETIC TOPOLOGY OF BUBBLES IN QUIESCENT PROMINENCES

    SciTech Connect

    Dudik, J.; Aulanier, G.; Schmieder, B.; Zapior, M.; Heinzel, P.

    2012-12-10

    We study a polar-crown prominence with a bubble and its plume observed in several coronal filters by the SDO/AIA and in H{alpha} by the MSDP spectrograph in Bialkow (Poland) to address the following questions: what is the brightness of prominence bubbles in EUV with respect to the corona outside of the prominence and the prominence coronal cavity? What is the geometry and topology of the magnetic field in the bubble? What is the nature of the vertical threads seen within prominences? We find that the brightness of the bubble and plume is lower than the brightness of the corona outside of the prominence, and is similar to that of the coronal cavity. We constructed linear force-free models of prominences with bubbles, where the flux rope is perturbed by inclusion of parasitic bipoles. The arcade field lines of the bipole create the bubble, which is thus devoid of magnetic dips. Shearing the bipole or adding a second one can lead to cusp-shaped prominences with bubbles similar to the observed ones. The bubbles have complex magnetic topology, with a pair of coronal magnetic null points linked by a separator outlining the boundary between the bubble and the prominence body. We conjecture that plume formation involves magnetic reconnection at the separator. Depending on the viewing angle, the prominence can appear either anvil-shaped with predominantly horizontal structures, or cusp-shaped with predominantly vertical structuring. The latter is an artifact of the alignment of magnetic dips with respect to the prominence axis and the line of sight.

  11. Products of Submarine Fountains and Bubble-burst Eruptive Activity at 1200 m on West Mata Volcano, Lau Basin

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Rubin, K. H.; Keller, N. S.

    2009-12-01

    An eruption was observed and sampled at West Mata Volcano using ROV JASON II for 5 days in May 2009 during the NSF-NOAA eruption response cruise to this region of suspected volcanic activity. Activity was focused near the summit at the Prometheus and Hades vents. Prometheus erupted almost exclusively as low-level fountains. Activity at Hades cycled between vigorous degassing, low fountains, and bubble-bursts, building up and partially collapsing a small spatter/scoria cone and feeding short sheet-like and pillow flows. Fire fountains at Prometheus produced mostly small primary pyroclasts that include Pele's hair and fluidal fragments of highly vesicular volcanic glass. These fragments have mostly shattered and broken surfaces, although smooth spatter-like surfaces also occur. As activity wanes, glow in the vent fades, and denser, sometimes altered volcanic clasts are incorporated into the eruption. The latter are likely from the conduit walls and/or vent-rim ejecta, drawn back into the vent by inrushing seawater that replaces water entrained in the rising volcanic plume. Repeated recycling of previously erupted materials eventually produces rounded clasts resembling beach cobbles and pitted surfaces on broken phenocrysts of pyroxene and olivine. We estimate that roughly 33% of near vent ejecta are recycled. Our best sample of this ejecta type was deposited in the drawer of the JASON II ROV during a particularly large explosion that occurred during plume sampling immediately above the vent. Elemental sulfur spherules up to 5 mm in diameter are common in ejecta from both vents and occur inside some of the lava fragments Hades activity included dramatic bubble-bursts unlike anything previously observed under water. The lava bubbles, sometimes occurring in rapid-fire sequence, collapsed in the water-column, producing fragments that are quenched in less than a second to form Pele's hair, limu o Pele, spatter-like lava blobs, and scoria. All are highly vesicular

  12. Enhanced mycobacterial diagnostics in liquid medium by microaerobic bubble flow in Portable Microbe Enrichment Unit.

    PubMed

    Hakalehto, Elias

    2013-06-01

    Portable Microbe Enrichment Unit (PMEU) method with microaerobic bubbling speeded up the growth of otherwise slowly starting and propagating Mycobacterium sp. Mycobacterium fortuitum growth was detected after 10-11h and Mycobacterium marinum produced clear growth in 4 days. A mycobacterial environmental isolate was verified in 2 days in the PMEU Spectrion(®) equipped with infrared sensors. In parallel static (without gas bubbling) cultures hardly any growth occurred. In conclusion, PMEU technology provided thus a rapid detection of environmental and clinical mycobacterial isolates. It would also help in the field diagnosis of antibiotic resistant Mycobacterium tuberculosis.

  13. Single Bubble Sonoluminescence in Low Gravity and Optical Radiation Pressure Positioning of the Bubble

    NASA Technical Reports Server (NTRS)

    Thiessen, D. B.; Young, J. E.; Marr-Lyon, M. J.; Richardson, S. L.; Breckon, C. D.; Douthit, S. G.; Jian, P. S.; Torruellas, W. E.; Marston, P. L.

    1999-01-01

    Several groups of researchers have demonstrated that high frequency sound in water may be used to cause the regular repeated compression and luminescence of a small bubble of gas in a flask. The phenomenon is known as single bubble sonoluminescence (SBSL). It is potentially important because light emitted by the bubble appears to be associated with a significant concentration of energy within the volume of the bubble. Unfortunately, the detailed physical mechanisms causing the radiation of light by oscillating bubbles are poorly understood and there is some evidence that carrying out experiments in a weightless environment may provide helpful clues. In addition, the radiation pressure of laser beams on the bubble may provide a way of simulating weightless experiments in the laboratory. The standard model of SBSL attributes the light emission to heating within the bubble by a spherically imploding shock wave to achieve temperatures of 50,000 K or greater. In an alternative model, the emission is attributed to the impact of a jet of water which is required to span the bubble and the formation of the jet is linked to the buoyancy of the bubble. The coupling between buoyancy and jet formation is a consequence of the displacement of the bubble from a velocity node (pressure antinode) of the standing acoustic wave that drives the radial bubble oscillations. One objective of this grant is to understand SBSL emission in reduced buoyancy on KC-135 parabolic flights. To optimize the design of those experiments and for other reasons which will help resolve the role of buoyancy, laboratory experiments are planned in simulated low gravity in which the radiation pressure of laser light will be used to position the bubble at the acoustic velocity node of the ultrasonic standing wave. Laser light will also be used to push the bubble away from the velocity node, increasing the effective buoyancy. The original experiments on the optical levitation and radiation pressure on bubbles

  14. Transient Rapid Changes in Nutrient Cycling at the Onset of Terrestrial Colonization by Rooted Plants in the Devonian Caithness Flagstone Group, Orkney Islands

    NASA Astrophysics Data System (ADS)

    Filippelli, G. M.; Beshears, M.; Whiteside, J. H.

    2012-12-01

    these events is transient—barring other changes in erosion, the release/retention fluxes of these elements tends toward a steady state. Nevertheless, these results support a flush of the bio-limiting nutrient P into the ocean at the onset of terrestrial colonization by rooting plants which might have temporarily increased global marine productivity, thus impacting carbon cycling and climate.; Modeled transformations in terrestrial P cycling during incipient soil development

  15. Three-dimensional magnetic bubble memory system

    NASA Technical Reports Server (NTRS)

    Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)

    1994-01-01

    A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.

  16. Mechanism of single-bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi

    2000-07-01

    The mechanism of the light emission of single-bubble sonoluminescence (SBSL) is studied theoretically for an argon bubble based on a quasi-adiabatic compression model. It is clarified that radiative recombination of electrons and ions and electron-atom bremsstrahlung are the dominant microscopic processes of the light emission and the intensity is mainly determined by the degree of ionization of the gas inside the bubble. It is also clarified that the pulse width of the light is nearly independent on wavelength.

  17. Satellites in the inviscid breakup of bubbles.

    PubMed

    Gordillo, J M; Fontelos, M A

    2007-04-06

    In this Letter, we stress the essential role played by gas inertia in the breakup of gas bubbles. Our results reveal that, whenever the gas to liquid density ratio Lambda=rhog/rhol is different from zero, tiny satellite bubbles may be formed as a result of the large gas velocities that are reached close to pinch-off. Moreover, we provide a closed expression for the characteristic satellite diameter, which decreases when decreasing Lambda and which shows order of magnitude agreement with the micron-sized satellite bubbles observed experimentally.

  18. On thermonuclear processes in cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Nigmatulin, R. I.; Lahey, R. T., Jr.; Taleyarkhan, R. P.; West, C. D.; Block, R. C.

    2014-09-01

    The theoretical and experimental foundations of so-called bubble nuclear fusion are reviewed. In the nuclear fusion process, a spherical cavitation cluster ˜ 10-2 m in diameter is produced of spherical bubbles at the center of a cylindrical chamber filled with deuterated acetone using a focused acoustic field having a resonant frequency of about 20 kHz. The acoustically-forced bubbles effectuate volume oscillations with sharp collapses during the compression stage. At the final stages of collapse, the bubble cluster emits 2.5 MeV D-D fusion neutron pulses at a rate of ˜ 2000 per second. The neutron yield is ˜ 10^5 s -1. In parallel, tritium nuclei are produced at the same yield. It is shown numerically that, for bubbles having sufficient molecular mass, spherical shock waves develop in the center of the cluster and that these spherical shock waves (microshocks) produce converging shocks within the interior bubbles, which focus energy on the centers of the bubbles. When these shock waves reflect from the centers of the bubbles, extreme conditions of temperature ( ˜ 10^8 K) and density ( ˜ 10^4 kg m -3) arise in a (nano)spherical region ( ˜ 10-7 m in size) that last for ˜ 10-12 s, during which time about ten D-D fusion neutrons and tritium nuclei are produced in the region. A paradoxical result in our experiments is that it is bubble cluster (not streamer) cavitation and the sufficiently high molecular mass of (and hence the low sound speed in) D-acetone ( C3D6O) vapor (as compared, for example, to deuterated water D2O) which are necessary conditions for the formation of convergent spherical microshock waves in central cluster bubbles. It is these waves that allow the energy to be sufficiently focused in the nanospherical regions near the bubble centers for fusion events to occur. The criticism to which the concept of 'bubble fusion' has been subjected in the literature, in particular, most recently in Uspekhi Fizicheskikh Nauk (Physics - Uspekhi) journal, is

  19. Buoyancy Driven Shear Flows of Bubble Suspensions

    NASA Technical Reports Server (NTRS)

    Koch, D. L.; Hill, R. J.; Chellppannair, T.; Zenit, R.; Zenit, R.; Spelt, P. D. M.

    1999-01-01

    In this work the gas volume fraction and the root-mean-squared fluid velocity are measured in buoyancy driven shear flows of bubble suspensions in a tall, inclined, rectangular channel. The experiments are performed under conditions where We << 1a nd Re >> 1, for which comparisons are made with kinetic theory and numerical simulations. Here Re = gamma(a(exp 2)/nu is the Reynolds number and We = rho(gamma(exp 2))a(exp 3)/sigma is the Weber number; gamma is the shear rate, a is the bubble radius, nu is the kinematic viscosity of the liquid, rho is the density of the liquid, and sigma is the surface tension of the gas/liquid interface. Kang et al. calculated the bubble phase pressure and velocity variance of sheared bubble suspensions under conditions where the bubbles are spherical and the liquid phase velocity field can be approximated using potential flow theory, i.e. We= 0 and Re >> 1. Such conditions can be achieved in an experiment using gas bubbles, with a radius of O(0.5mm), in water. The theory requires that there be no average relative motion of the gas and liquid phases, hence the motivation for an experimental program in microgravity. The necessity of performing preliminary, Earth based experiments, however, requires performing experiments where the gas phase rises in the liquid, which significantly complicates the comparison of experiments with theory. Rather than comparing experimental results with theory for a uniform, homogeneous shear flow, experiments can be compared directly with solutions of the averaged equations of motion for bubble suspensions. This requires accounting for the significant lift force acting on the gas phase when the bubbles rise parallel to the average velocity of the sheared suspension. Shear flows can be produced in which the bubble phase pressure gradient, arising from shear induced collisions amongst the bubbles, balances a body force (centrifugal or gravitational) on the gas phase. A steady, non-uniform gas volume fraction

  20. Screening of liquids for thermocapillary bubble movement

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Subramanian, R. S.; Papazian, J. M.; Smith, H. D.; Mattox, D. M.

    1979-01-01

    Ground-based methods for pretesting qualitatively the thermocapillary movement of gas bubbles in a liquid to be used in space processing are discussed. Theoretical considerations are shown to require the use of a thin, enclosed, horizontal liquid film in order that the bubbles move faster than the bulk convection of the liquid, with insulating boundaries to prevent the onset of instabilities. Experimental realizations of horizontal cells in which to test the thermocapillary movement of bubbles in sheets of molten glass heated from below and organic melts in tubes heated from both ends are briefly described and the results of experiments are indicated.

  1. Gas Bubble Growth in Muddy Sediments

    DTIC Science & Technology

    2016-06-07

    it is fairly easy to show that R ~ eat (a = S/ρg), i.e. exponential growth , which is a far faster than has been suggested previously. We expect this...Gas Bubble Growth in Muddy Sediments Bernard P. Boudreau Department of Oceanography Dalhousie University Halifax, Nova Scotia B3H 4J1, Canada phone...objective is a working model for the growth of a single, isolated bubble in a marine sediment, validated with bubble growth data obtained in laboratory

  2. Burst of Star Formation Drives Galactic Bubble

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's Hubble Space Telescope (HST) captures a lumpy bubble of hot gas rising from a cauldron of glowing matter in Galaxy NGC 3079, located 50 million light-years from Earth in the constellation Ursa Major. Astronomers suspect the bubble is being blown by 'winds' or high speed streams of particles, released during a burst of star formation. The bubble's lumpy surface has four columns of gaseous filaments towering above the galaxy's disc that whirl around in a vortex and are expelled into space. Eventually, this gas will rain down on the disc and may collide with gas clouds, compress them, and form a new generation of stars.

  3. Liquid jet pumped by rising gas bubbles

    NASA Technical Reports Server (NTRS)

    Hussain, N. A.; Siegel, R.

    1975-01-01

    A two-phase mathematical model is proposed for calculating the induced turbulent vertical liquid flow. Bubbles provide a large buoyancy force and the associated drag on the liquid moves the liquid upward. The liquid pumped upward consists of the bubble wakes and the liquid brought into the jet region by turbulent entrainment. The expansion of the gas bubbles as they rise through the liquid is taken into account. The continuity and momentum equations are solved numerically for an axisymmetric air jet submerged in water. Water pumping rates are obtained as a function of air flow rate and depth of submergence. Comparisons are made with limited experimental information in the literature.

  4. Numerical investigation of bubble nonlinear dynamics characteristics

    SciTech Connect

    Shi, Jie Yang, Desen; Shi, Shengguo; Hu, Bo; Zhang, Haoyang; Jiang, Wei

    2015-10-28

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  5. Bubble Formation Modeling in IE-911

    SciTech Connect

    Fondeur, F.F.

    2000-09-27

    The author used diffusion modeling to determine the hydrogen and oxygen concentration inside IE-911. The study revealed gas bubble nucleation will not occur in the bulk solution inside the pore or on the pore wall. This finding results from the fast oxygen and hydrogen gas molecular diffusion and a very confined pore space. The net steady state concentration of these species inside the pore proves too low to drive bubble nucleation. This study did not investigate other gas bubble nucleating mechanism such as suspended particles in solution.

  6. Interactions of multiple spark-generated bubbles with phase differences

    NASA Astrophysics Data System (ADS)

    Fong, Siew Wan; Adhikari, Deepak; Klaseboer, Evert; Khoo, Boo Cheong

    2009-04-01

    This paper aims to study the complex interaction between multiple bubbles, and to provide a summary and physical explanation of the phenomena observed during the interaction of two bubbles. High-speed photography is utilized to observe the experiments involving multiple spark-generated bubbles. Numerical simulations corresponding to the experiments are performed using the Boundary Element Method (BEM). The bubbles are typically between 3 and 5 mm in radius and are generated either in-phase (at the same time) or with phase differences. Complex phenomena are observed such as bubble splitting, and high-speed jetting inside a bubble caused by another collapsing bubble nearby (termed the ‘catapult’ effect). The two-bubble interactions are broadly classified in a graph according to two parameters: the relative inter-bubble distance and the phase difference (a new parameter introduced). The BEM simulations provide insight into the physics, such as bubble shape changes in detail, and jet velocities. Also presented in this paper are the experimental results of three bubble interactions. The interesting and complex observations of multiple bubble interaction are important for a better understanding of real life applications in medical ultrasonic treatment and ultrasonic cleaning. Many of the three bubble interactions can be explained by isolating bubble pairs and classifying their interaction according to the graph for the two bubble case. This graph can be a useful tool to predict the behavior of multiple bubble interactions.

  7. Generation of pulsed discharge plasma in water with fine bubbles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yui; Takada, Noriharu; Kanda, Hideki; Goto, Motonobu; Goto laboratory Team

    2015-09-01

    Recently, some researchers have proposed electric discharge methods with bubbles in water because the discharge plasma inside bubble was easy to be generated compared to that in water. Almost all of these methods introduced bubbles in the order of millimeter size from a nozzle placed in water. In these methods, bubbles rose one after another owing to high rising speed of millibubble, leading to inefficient gas consumption. We proposed fine bubbles introduction at the discharge area in water. A fine bubble is determined a bubble with less than 100 μm in a diameter. Fine bubbles exhibit extremely slow rising speed. Fine bubbles decrease in size during bubble rising and subsequently collapse in water with OH radical generation. Therefore, combining the discharge plasma with fine bubbles is expected to generate more active species with small amount of gas consumption. In this work, fine bubbles were introduced in water and pulsed discharge plasma was generated between two cylindrical electrodes which placed in water. We examined effects of fine bubbles on electric discharge in water when argon or oxygen gas was utilized as feed gas. Fine bubbles enhanced optical emission of hydrogen and oxygen atoms from H2O molecules, but that of feed gas was not observed. The formation mechanism of H2O2 by electric discharge was supposed to be different from that with no bubbling. Dissolved oxygen in water played a role in H2O2 formation by the discharge with fine bubbles.

  8. Bubbles, Bubbles, Tremors & Trouble: The Bayou Corne Sinkhole

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.

    2013-12-01

    In May 2012, thermogenic methane bubbles were first observed in Bayou Corne in Assumption Parish, Louisiana. As of July 2013, ninety one bubbling sites have been identified. Gas was also found in the top of the Mississippi River Alluvial Aquifer (MRAA) about 125 ft below the surface. Vent wells drilled into the MRAA have flared more 16 million SCF of gas. Trace amounts of hydrogen sulfide also have been detected. Bayou Corne flows above the Napoleonville salt dome which has been an active area for oil and gas exploration since the 1920s. The dome is also a site of dissolution salt mining which has produced large caverns with diameters of up to 300 ft and heights of 2000 ft. Some caverns are used for storage of natural gas. Microseismic activity was confirmed by an Earthscope seismic station in White Castle, LA in July 2012. An array of microseismic stations set up in the area recorded more than 60 microseismic events in late July and early August, 2012. These microseismic events were located on the western side of the dome. Estimated focal depths are just above the top of salt. In August 2012, a sinkhole developed overnight just to the northwest of a plugged and abandoned brine filled cavern (see figure below). The sinkhole continues to grow in area to more than 20 acres and has consumed a pipeline right of way. The sinkhole is more than 750 ft deep at its center. Microseismic activity was reduced for several months following the formation of the sinkhole. Microseismic events have reoccurred episodically since then with periods of frequent events preceding slumping of material into the sinkhole or a 'burp' where fluid levels in the sinkhole drop and then rebound followed by a decrease in microseismic activity. Some gas and/or oil may appear at the surface of the sinkhole following a 'burp'. Very long period events also have been observed which are believed to be related to subsurface fluid movement. A relief well drilled into the abandoned brine cavern found that

  9. Brightened single-bubble sonoluminescence by phase-adjusted high-frequency acoustic pulse.

    PubMed

    Ogi, Hirotsugu; Matsuda, Atsushi; Wada, Kayo; Hirao, Masahiko

    2003-05-01

    This paper experimentally and numerically studies the effect of a high-frequency acoustic pulse on brightening single-bubble sonoluminescence (SBSL). A polyvinylidene fluoride point-focusing transducer was driven by a 700-W pulse generator to superimpose the acoustic pulse on the sonoluminescing bubble. The center frequency of the pulse was 10 MHz and the duration was 0.15 micros. The pulse was triggered every 100 cycles of the low-frequency standing wave used to make SBSL. The intensity of SBSL was measured as a function of time lag of superimposed pulse. Only the pulse that arrived at the bubble at the early growing stage could increase the brightness. This trend was confirmed with a numerical calculation based on the Rayleigh-Plesset equation. The increased brightness reached 300% of those of the classical SBSL flashes when the time lag was correctly adjusted.

  10. Brightened single-bubble sonoluminescence by phase-adjusted high-frequency acoustic pulse

    NASA Astrophysics Data System (ADS)

    Ogi, Hirotsugu; Matsuda, Atsushi; Wada, Kayo; Hirao, Masahiko

    2003-05-01

    This paper experimentally and numerically studies the effect of a high-frequency acoustic pulse on brightening single-bubble sonoluminescence (SBSL). A polyvinylidene fluoride point-focusing transducer was driven by a 700-W pulse generator to superimpose the acoustic pulse on the sonoluminescing bubble. The center frequency of the pulse was 10 MHz and the duration was 0.15 μs. The pulse was triggered every 100 cycles of the low-frequency standing wave used to make SBSL. The intensity of SBSL was measured as a function of time lag of superimposed pulse. Only the pulse that arrived at the bubble at the early growing stage could increase the brightness. This trend was confirmed with a numerical calculation based on the Rayleigh-Plesset equation. The increased brightness reached 300% of those of the classical SBSL flashes when the time lag was correctly adjusted.

  11. Propagation and Dissolution of CO2 bubbles in Algae Photo-bioreactors

    NASA Astrophysics Data System (ADS)

    Kosaraju, Srinivas

    2015-11-01

    Research grade photo-bioreactors are used to study and cultivate different algal species for biofuel production. In an attempt to study the growth properties of a local algal species in rain water, a custom made bioreactor is designed and being tested. Bio-algae consumes dissolved CO2 in water and during its growth cycle, the consumed CO2 must be replenished. Conventional methods use supply of air or CO2 bubbles in the growth medium. The propagation and dissolution of the bubbles, however, are strongly dependent on the design parameters of the photo-bioreactor. In this paper, we discuss the numerical modeling of the air and CO2 bubble propagation and dissolution in the photo-bioreactor. Using the results the bioreactor design will be modified for maximum productivity.

  12. Bubbles and mismatches in DNA melting

    NASA Astrophysics Data System (ADS)

    Zeng, Yan

    We obtained the first experimental measurements of the length of the denaturation bubble appearing in the DNA melting transition. This is achieved by working with short oligomers which can form only one bubble per molecule. We used sequences clamped at the ends with GC pairs (strong binding) and possessing AT rich (weaker binding) middle regions in order to have the bubble open in the middle, and sequences with GC pairs at one end and AT pairs at the other end in order to form the bubble at the end. Use a quenching technique to trap the bubble states, we could measure the length of the bubble and the relative weights of the bubble states as a function of temperature. We found that the average bubble size <ℓ> grows for increasing temperature, but reaches a plateau at a length of order B (the length of the AT region). After the plateau, the average bubble length jumps to 1. This jump of the order parameter is a signature of a discontinuous transition, one where the bubble size remains finite up to critical temperature of strand separation. When B increases, the extension of the plateau shrinks. This suggests a continuous transition for a homogenous sequence (e.g. all AT base pairs) in the thermodynamic limit. The presence of the bubble states decreases as B is reduced. By plotting the average statistical weight of the bubble states vs. B, we obtained the first direct measurement of the nucleation size of the bubble. For a bubble flanked by double-stranded regions, the nucleation size is ˜ 3 bases. For bubbles opening at the ends of the molecule there is no nucleation threshold. The measured statistical weights of the bubble states agree with the predictions of the widely used thermodynamic models in the case of unzipping from the ends; however, internal bubble states are not completely described by the model. For the first time we show experimentally that a single mismatch transforms a transition with many intermediates into a nearly two-state transition for

  13. Time-Dependent Changes in a Shampoo Bubble

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Arun

    2000-10-01

    This article demonstrates the fascinating phenomenon of time evolution of a shampoo bubble through experiments that can be performed by undergraduate students. The changes in thickness of the bubble films with time are followed by UV-vis spectroscopy. The change in chemical composition as a bubble film evolves is monitored by FTIR spectroscopy. It is observed that the change in thickness of a typical shampoo bubble film enclosed in a container is gradual and slow, and the hydrocarbon components of the bubble drain from the bubble much more slowly than water. An additional agent, such as acetonitrile, strikingly alters the dynamics of evolution of such a bubble.

  14. Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.

    2000-01-01

    For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.

  15. Evolution of a Collection of Bubbles with Application to Wakes, Bubble Screens, and Cloud Noise

    DTIC Science & Technology

    1994-08-01

    bubble approaches the axis in a spiral fashion. The above reasoning allows one to define a "violent capture radius" around the vortex which is bubble...plane at different instants. The observer is looking down on the XOY plane from very far on the Z axis. The bubble is seen spiraling around the vortex ...a path similar to the classical logarithmic spiral , A and B can follow more complicated paths, even moving away from the vortex axis at some point in

  16. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  17. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  18. Rapid changes and long-term cycles in the benthic megafaunal community observed over 24 years in the abyssal northeast Pacific

    NASA Astrophysics Data System (ADS)

    Kuhnz, Linda A.; Ruhl, Henry A.; Huffard, Christine L.; Smith, Kenneth L.

    2014-05-01

    The abyssal seafloor community in the NE Pacific (Station M, ∼4000 m depth) was studied between 2006 and 2012 using remotely operated vehicles (ROVs) as part of a continuing 24-year time-series study. New patterns continue to emerge showing that the deep-sea can be dynamic on short time scales, rather than static over long periods. In just over 2 years the community shifted from a sessile, suspension-feeding, sponge-dominated community to a mobile, detritus-feeding, sea cucumber-dominated assemblage. In 2006 megafaunal diversity (Simpson’s Diversity Index, SDI) was high, yet the community was depauperate in terms of density compared to later periods. Over an 18-month period beginning in spring 2011, the densities of mobile organisms increased by nearly an order of magnitude while diversity decreased below 2006 levels. In late 2012 four sea cucumbers (two Peniagone spp., Elpidia sp. A, and Scotoplanes globosa) were at the highest densities recorded since investigations began at Station M in 1989. For a group of 10 echinoderms investigated over the entire study period, we saw evidence of a long-term cycle spanning 2 decades. These changes can be tied to a variable food supply originating in shallow water. Large variations over decadal-scales indicate that remote abyssal communities are dynamic and likely subject to impacts from anthropogenic changes like ocean warming, acidification, and pollution manifested in the upper ocean. The degree of dynamism indicates that one-time or short-term investigations are not sufficient for assessing biological community structure in conservation or exploitation studies in the deep sea.

  19. Bubble Shuttle: A newly discovered transport mechanism, which transfers microorganisms from the sediment into the water column

    NASA Astrophysics Data System (ADS)

    Schmale, O.; Stolle, C.; Leifer, I.; Schneider von Deimling, J.; Kiesslich, K.; Krause, S.; Frahm, A.; Treude, T.

    2013-12-01

    The diversity and abundance of methanotrophic microorganisms is well studied in the aquatic environment, indicating their importance in biogeochemical cycling of methane in the sediment and the water column. However, whether methanotrophs are distinct populations in these habitats or are exchanged between benthic and pelagic environments, remains an open question. Therefore, field studies were conducted at the 'Rostocker Seep' site (Coal Oil Point seep area, California, USA) to test our hypothesis that methane-oxidizing microorganisms can be transported by gas bubbles from the sediment into the water column. The natural methane emanating location 'Rostocker Seep' showed a strong surface water oversaturation in methane with respect to the atmospheric equilibrium. Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) analyzes were performed to determine the abundance of aerobic and anaerobic methanotrophic microorganisms. Aerobic methane oxidizing bacteria were detected in the sediment and the water column, whereas anaerobic methanotrophs were detected exclusively in the sediment. The key device of the project was the newly developed "Bubble Catcher" used