Sample records for rapid detection method

  1. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations

    PubMed Central

    Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases. PMID:25628612

  2. [Development of sample pretreatment techniques-rapid detection coupling methods for food security analysis].

    PubMed

    Huang, Yichun; Ding, Weiwei; Zhang, Zhuomin; Li, Gongke

    2013-07-01

    This paper summarizes the recent developments of the rapid detection methods for food security, such as sensors, optical techniques, portable spectral analysis, enzyme-linked immunosorbent assay, portable gas chromatograph, etc. Additionally, the applications of these rapid detection methods coupled with sample pretreatment techniques in real food security analysis are reviewed. The coupling technique has the potential to provide references to establish the selective, precise and quantitative rapid detection methods in food security analysis.

  3. Rapid Detection of Urinary Tract Infections via Bacterial Nuclease Activity.

    PubMed

    Flenker, Katie S; Burghardt, Elliot L; Dutta, Nirmal; Burns, William J; Grover, Julia M; Kenkel, Elizabeth J; Weaver, Tyler M; Mills, James; Kim, Hyeon; Huang, Lingyan; Owczarzy, Richard; Musselman, Catherine A; Behlke, Mark A; Ford, Bradley; McNamara, James O

    2017-06-07

    Rapid and accurate bacterial detection methods are needed for clinical diagnostic, water, and food testing applications. The wide diversity of bacterial nucleases provides a rich source of enzymes that could be exploited as signal amplifying biomarkers to enable rapid, selective detection of bacterial species. With the exception of the use of micrococcal nuclease activity to detect Staphylococcus aureus, rapid methods that detect bacterial pathogens via their nuclease activities have not been developed. Here, we identify endonuclease I as a robust biomarker for E. coli and develop a rapid ultrasensitive assay that detects its activity. Comparison of nuclease activities of wild-type and nuclease-knockout E. coli clones revealed that endonuclease I is the predominant DNase in E. coli lysates. Endonuclease I is detectable by immunoblot and activity assays in uropathogenic E. coli strains. A rapid assay that detects endonuclease I activity in patient urine with an oligonucleotide probe exhibited substantially higher sensitivity for urinary tract infections than that reported for rapid urinalysis methods. The 3 hr turnaround time is much shorter than that of culture-based methods, thereby providing a means for expedited administration of appropriate antimicrobial therapy. We suggest this approach could address various unmet needs for rapid detection of E. coli. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  4. Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview.

    PubMed

    Deshmukh, Rehan A; Joshi, Kopal; Bhand, Sunil; Roy, Utpal

    2016-12-01

    Waterborne diseases have emerged as global health problems and their rapid and sensitive detection in environmental water samples is of great importance. Bacterial identification and enumeration in water samples is significant as it helps to maintain safe drinking water for public consumption. Culture-based methods are laborious, time-consuming, and yield false-positive results, whereas viable but nonculturable (VBNCs) microorganisms cannot be recovered. Hence, numerous methods have been developed for rapid detection and quantification of waterborne pathogenic bacteria in water. These rapid methods can be classified into nucleic acid-based, immunology-based, and biosensor-based detection methods. This review summarizes the principle and current state of rapid methods for the monitoring and detection of waterborne bacterial pathogens. Rapid methods outlined are polymerase chain reaction (PCR), digital droplet PCR, real-time PCR, multiplex PCR, DNA microarray, Next-generation sequencing (pyrosequencing, Illumina technology and genomics), and fluorescence in situ hybridization that are categorized as nucleic acid-based methods. Enzyme-linked immunosorbent assay (ELISA) and immunofluorescence are classified into immunology-based methods. Optical, electrochemical, and mass-based biosensors are grouped into biosensor-based methods. Overall, these methods are sensitive, specific, time-effective, and important in prevention and diagnosis of waterborne bacterial diseases. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  5. Reverse transcription strand invasion based amplification (RT-SIBA): a method for rapid detection of influenza A and B.

    PubMed

    Eboigbodin, Kevin; Filén, Sanna; Ojalehto, Tuomas; Brummer, Mirko; Elf, Sonja; Pousi, Kirsi; Hoser, Mark

    2016-06-01

    Rapid and accurate diagnosis of influenza viruses plays an important role in infection control, as well as in preventing the misuse of antibiotics. Isothermal nucleic acid amplification methods offer significant advantages over the polymerase chain reaction (PCR), since they are more rapid and do not require the sophisticated instruments needed for thermal cycling. We previously described a novel isothermal nucleic acid amplification method, 'Strand Invasion Based Amplification' (SIBA®), with high analytical sensitivity and specificity, for the detection of DNA. In this study, we describe the development of a variant of the SIBA method, namely, reverse transcription SIBA (RT-SIBA), for the rapid detection of viral RNA targets. The RT-SIBA method includes a reverse transcriptase enzyme that allows one-step reverse transcription of RNA to complementary DNA (cDNA) and simultaneous amplification and detection of the cDNA by SIBA under isothermal reaction conditions. The RT-SIBA method was found to be more sensitive than PCR for the detection of influenza A and B and could detect 100 copies of influenza RNA within 15 min. The development of RT-SIBA will enable rapid and accurate diagnosis of viral RNA targets within point-of-care or central laboratory settings.

  6. Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Cox, Christopher R.; Voorhees, Kent J.

    Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.

  7. Selective cultivation and rapid detection of Staphylococcus aureus by computer vision.

    PubMed

    Wang, Yong; Yin, Yongguang; Zhang, Chaonan

    2014-03-01

    In this paper, we developed a selective growth medium and a more rapid detection method based on computer vision for selective isolation and identification of Staphylococcus aureus from foods. The selective medium consisted of tryptic soy broth basal medium, 3 inhibitors (NaCl, K2 TeO3 , and phenethyl alcohol), and 2 accelerators (sodium pyruvate and glycine). After 4 h of selective cultivation, bacterial detection was accomplished using computer vision. The total analysis time was 5 h. Compared to the Baird-Parker plate count method, which requires 4 to 5 d, this new detection method offers great time savings. Moreover, our novel method had a correlation coefficient of greater than 0.998 when compared with the Baird-Parker plate count method. The detection range for S. aureus was 10 to 10(7) CFU/mL. Our new, rapid detection method for microorganisms in foods has great potential for routine food safety control and microbiological detection applications. © 2014 Institute of Food Technologists®

  8. Rapid identification of salmonella serotypes with stereo and hyperspectral microscope imaging Methods

    USDA-ARS?s Scientific Manuscript database

    The hyperspectral microscope imaging (HMI) method can reduce detection time within 8 hours including incubation process. The early and rapid detection with this method in conjunction with the high throughput capabilities makes HMI method a prime candidate for implementation for the food industry. Th...

  9. Rapid Identification of Salmonella Serotypes with Stereo and Hyperspectral Microscope Imaging Methods

    USDA-ARS?s Scientific Manuscript database

    The hyperspectral microscope imaging (HMI) method can reduce detection time within 8 hours including incubation process. The early and rapid detection with this method in conjunction with the high throughput capabilities makes HMI method a prime candidate for implementation for the food industry. Th...

  10. Development of a Flow Cytometry-Based Method for Rapid Detection of Escherichia coli and Shigella Spp. Using an Oligonucleotide Probe

    PubMed Central

    Xue, Yong; Wilkes, Jon G.; Moskal, Ted J.; Williams, Anna J.; Cooper, Willie M.; Nayak, Rajesh; Rafii, Fatemeh; Buzatu, Dan A.

    2016-01-01

    Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR) and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC) assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts. PMID:26913737

  11. Development of a Flow Cytometry-Based Method for Rapid Detection of Escherichia coli and Shigella Spp. Using an Oligonucleotide Probe.

    PubMed

    Xue, Yong; Wilkes, Jon G; Moskal, Ted J; Williams, Anna J; Cooper, Willie M; Nayak, Rajesh; Rafii, Fatemeh; Buzatu, Dan A

    2016-01-01

    Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR) and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC) assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts.

  12. Romer Labs RapidChek®Listeria monocytogenes Test System for the Detection of L. monocytogenes on Selected Foods and Environmental Surfaces.

    PubMed

    Juck, Gregory; Gonzalez, Verapaz; Allen, Ann-Christine Olsson; Sutzko, Meredith; Seward, Kody; Muldoon, Mark T

    2018-04-27

    The Romer Labs RapidChek ® Listeria monocytogenes test system (Performance Tested Method ℠ 011805) was validated against the U.S. Department of Agriculture-Food Safety and Inspection Service Microbiology Laboratory Guidebook (USDA-FSIS/MLG), U.S. Food and Drug Association Bacteriological Analytical Manual (FDA/BAM), and AOAC Official Methods of Analysis ℠ (AOAC/OMA) cultural reference methods for the detection of L. monocytogenes on selected foods including hot dogs, frozen cooked breaded chicken, frozen cooked shrimp, cured ham, and ice cream, and environmental surfaces including stainless steel and plastic in an unpaired study design. The RapidChek method uses a proprietary enrichment media system, a 44-48 h enrichment at 30 ± 1°C, and detects L. monocytogenes on an immunochromatographic lateral flow device within 10 min. Different L. monocytogenes strains were used to spike each of the matrixes. Samples were confirmed based on the reference method confirmations and an alternate confirmation method. A total of 140 low-level spiked samples were tested by the RapidChek method after enrichment for 44-48 h in parallel with the cultural reference method. There were 88 RapidChek presumptive positives. One of the presumptive positives was not confirmed culturally. Additionally, one of the culturally confirmed samples did not exhibit a presumptive positive. No difference between the alternate confirmation method and reference confirmation method was observed. The respective cultural reference methods (USDA-FSIS/MLG, FDA/BAM, and AOAC/OMA) produced a total of 63 confirmed positive results. Nonspiked samples from all foods were reported as negative for L. monocytogenes by all methods. Probability of detection analysis demonstrated no significant differences in the number of positive samples detected by the RapidChek method and the respective cultural reference method.

  13. SIMULTANEOUS CONCENTRATION AND REAL-TIME DETECTION OF MULTIPLE CLASSES OF MICROBIAL PATHOGENS FROM DRINKING WATER

    EPA Science Inventory

    Key CCL viruses will be rapidly detected at low levels in water samples concentrated by a rapid HFUF or a new thin-sheet (TSM) electropositive filter adsorption-elution method and compared with the approved EPA method (1MDS VIRADEL). A unified and rapid virus concentration, n...

  14. Evaluation of phage assay for rapid phenotypic detection of rifampicin resistance in Mycobacterium tuberculosis

    PubMed Central

    Yzquierdo, Sergio Luis; Lemus, Dihadenys; Echemendia, Miguel; Montoro, Ernesto; McNerney, Ruth; Martin, Anandi; Palomino, Juan Carlos

    2006-01-01

    Background Conventional methods for susceptibility testing require several months before results can be reported. However, rapid methods to determine drug susceptibility have been developed recently. Phage assay have been reported as a rapid useful tools for antimicrobial susceptibility testing. The aim of this study was to apply the Phage assay for rapid detection of resistance on Mycobacterium tuberculosis strains in Cuba. Methods Phage D29 assay was performed on 102 M. tuberculosis strains to detect rifampicin resistance. The results were compared with the proportion method (gold standard) to evaluate the sensitivity and specificity of Phage assay. Results Phage assay results were available in 2 days whereas Proportion Methods results were obtain in 42 days. A total of 44 strains were detected as rifampicin resistant by both methods. However, one strains deemed resistant by Proportion Methods was susceptible by Phage assay. The sensitivity and specificity of Phage assay were 97.8 % and 100% respectively. Conclusion Phage assay provides rapid and reliable results for susceptibility testing; it's easy to perform, requires no specialized equipment and is applicable to drug susceptibility testing in low income countries where tuberculosis is a major public health problem. PMID:16630356

  15. Comparing rapid methods for detecting Listeria in seafood and environmental samples using the most probably number (MPN) technique.

    PubMed

    Cruz, Cristina D; Win, Jessicah K; Chantarachoti, Jiraporn; Mutukumira, Anthony N; Fletcher, Graham C

    2012-02-15

    The standard Bacteriological Analytical Manual (BAM) protocol for detecting Listeria in food and on environmental surfaces takes about 96 h. Some studies indicate that rapid methods, which produce results within 48 h, may be as sensitive and accurate as the culture protocol. As they only give presence/absence results, it can be difficult to compare the accuracy of results generated. We used the Most Probable Number (MPN) technique to evaluate the performance and detection limits of six rapid kits for detecting Listeria in seafood and on an environmental surface compared with the standard protocol. Three seafood products and an environmental surface were inoculated with similar known cell concentrations of Listeria and analyzed according to the manufacturers' instructions. The MPN was estimated using the MPN-BAM spreadsheet. For the seafood products no differences were observed among the rapid kits and efficiency was similar to the BAM method. On the environmental surface the BAM protocol had a higher recovery rate (sensitivity) than any of the rapid kits tested. Clearview™, Reveal®, TECRA® and VIDAS® LDUO detected the cells but only at high concentrations (>10(2) CFU/10 cm(2)). Two kits (VIP™ and Petrifilm™) failed to detect 10(4) CFU/10 cm(2). The MPN method was a useful tool for comparing the results generated by these presence/absence test kits. There remains a need to develop a rapid and sensitive method for detecting Listeria in environmental samples that performs as well as the BAM protocol, since none of the rapid tests used in this study achieved a satisfactory result. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. [Comparison between rapid detection method of enzyme substrate technique and multiple-tube fermentation technique in water coliform bacteria detection].

    PubMed

    Sun, Zong-ke; Wu, Rong; Ding, Pei; Xue, Jin-Rong

    2006-07-01

    To compare between rapid detection method of enzyme substrate technique and multiple-tube fermentation technique in water coliform bacteria detection. Using inoculated and real water samples to compare the equivalence and false positive rate between two methods. Results demonstrate that enzyme substrate technique shows equivalence with multiple-tube fermentation technique (P = 0.059), false positive rate between the two methods has no statistical difference. It is suggested that enzyme substrate technique can be used as a standard method for water microbiological safety evaluation.

  17. Efficient synthesis of highly fluorescent carbon dots by microreactor method and their application in Fe3+ ion detection.

    PubMed

    Rao, Longshi; Tang, Yong; Li, Zongtao; Ding, Xinrui; Liang, Guanwei; Lu, Hanguang; Yan, Caiman; Tang, Kairui; Yu, Binhai

    2017-12-01

    Rapidly obtaining strong photoluminescence (PL) of carbon dots with high stability is crucial in all practical applications of carbon dots, such as cell imaging and biological detection. In this study, we proposed a rapid, continuous carbon dots synthesis technique by using a microreactor method. By taking advantage of the microreactor, we were able to rapidly synthesized CDs at a large scale in less than 5min, and a high quantum yield of 60.1% was achieved. This method is faster and more efficient than most of the previously reported methods. To explore the relationship between the microreactor structure and CDs PL properties, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were carried out. The results show the surface functional groups and element contents influence the PL emission. Subsequent ion detection experiments indicated that CDs are very suitable for use as nanoprobes for Fe 3+ ion detection, and the lowest detection limit for Fe 3+ is 0.239μM, which is superior to many other research studies. This rapid and simple synthesis method will not only aid the development of the quantum dots industrialization but also provide a powerful and portable tool for the rapid and continuous online synthesis of quantum dots supporting their application in cell imaging and safety detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Rapid Magnetic Nanobiosensor for the detection of Serratia marcescen

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Hussein, Emad; Aljumaili, Omar; Zoubi, Mazhar Al; Altrad, Bahaa; Albatayneh, Khaled; Al-razaq, Mutaz A. Abd

    2018-02-01

    The development of rapid, sensitive, accurate and reliable bacterial detection methods are of keen interest to ensure food safety and hospital security. Therefore, the development of a fast, specific, low-cost and trusted methods is in high demand. Magnetic nanoparticles with their unique material properties have been utilized as a tool for pathogen detection. Here, we present a novel iron oxide nanoparticles labeled with specific targeting antibodies to improve specificity and extend the use of nanoparticles as nanosensors. The results indicated that antibody labeled iron oxide platform that binds specifically to Serriata marcescenst in a straightforward method is very specific and sensitive. The system is capable of rapid and specific detection of various clinically relevant bacterial species, with sensitivity down to single bacteria. The generic platform could be used to identify pathogens for a variety of applications rapidly.

  19. Potential of cross-priming amplification and DNA-based lateral-flow strip biosensor for rapid on-site GMO screening.

    PubMed

    Huang, Xin; Zhai, Congcong; You, Qimin; Chen, Hongjun

    2014-07-01

    The requirement to monitor the presence of genetically modified organisms (GMO) in a variety of marked products has generated an increasing demand for reliable, rapid, and time and cost-effective analytical methods. Here we report an on-site method for rapid detection of cauliflower mosaic virus promoter (CaMV 35S), a common element present in most GMO, using cross-priming amplification (CPA) technology. Detection was achieved using a DNA-based contamination-proof strip biosensor. The limit of detection was 30 copies for the pBI121 plasmid containing the CaMV 35S gene. The certified reference sample of GM maize line MON810 was detectable even at the low relative mass concentration of 0.05%. The developed CPA method had high specificity for the CaMV 35S gene, as compared with other GM lines not containing this gene and non-GM products. The method was further validated using nine real-world samples, and the results were confirmed by real-time PCR analysis. Because of its simplicity, rapidity, and high sensitivity, this method of detecting the CaMV 35S gene has great commercial prospects for rapid GMO screening of high-consumption food and agriculture products.

  20. [Rapid detection of caffeine in blood by freeze-out extraction].

    PubMed

    Bekhterev, V N; Gavrilova, S N; Kozina, E P; Maslakov, I V

    2010-01-01

    A new method for the detection of caffeine in blood has been proposed based on the combination of extraction and freezing-out to eliminate the influence of sample matrix. Metrological characteristics of the method are presented. Selectivity of detection is achieved by optimal conditions of analysis by high performance liquid chromatography. The method is technically simple and cost-efficient, it ensures rapid performance of the studies.

  1. A Rapid Detection Method of Brucella with Quantum Dots and Magnetic Beads Conjugated with Different Polyclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Song, Dandan; Qu, Xiaofeng; Liu, Yushen; Li, Li; Yin, Dehui; Li, Juan; Xu, Kun; Xie, Renguo; Zhai, Yue; Zhang, Huiwen; Bao, Hao; Zhao, Chao; Wang, Juan; Song, Xiuling; Song, Wenzhi

    2017-03-01

    Brucella spp. are facultative intracellular bacteria that cause zoonotic disease of brucellosis worldwide. Traditional methods for detection of Brucella spp. take 48-72 h that does not meet the need of rapid detection. Herein, a new rapid detection method of Brucella was developed based on polyclonal antibody-conjugating quantum dots and antibody-modified magnetic beads. First, polyclonal antibodies IgG and IgY were prepared and then the antibody conjugated with quantum dots (QDs) and immunomagnetic beads (IMB), respectively, which were activated by N-(3-dimethylaminopropyl)- N'-ethylcar-bodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) to form probes. We used the IMB probe to separate the Brucella and labeled by the QD probe, and then detected the fluorescence intensity with a fluorescence spectrometer. The detection method takes 105 min with a limit of detection of 103 CFU/mL and ranges from 10 to 105 CFU/mL ( R 2 = 0.9983), and it can be well used in real samples.

  2. Rapid detection of mecA and spa by the loop-mediated isothermal amplification (LAMP) method.

    PubMed

    Koide, Y; Maeda, H; Yamabe, K; Naruishi, K; Yamamoto, T; Kokeguchi, S; Takashiba, S

    2010-04-01

    To develop a detection assay for staphylococcal mecA and spa by using loop-mediated isothermal amplification (LAMP) method. Staphylococcus aureus and other related species were subjected to the detection of mecA and spa by both PCR and LAMP methods. The LAMP successfully amplified the genes under isothermal conditions at 64 degrees C within 60 min, and demonstrated identical results with the conventional PCR methods. The detection limits of the LAMP for mecA and spa, by gel electrophoresis, were 10(2) and 10 cells per tube, respectively. The naked-eye inspections were possible with 10(3) and 10 cells for detection of mecA and spa, respectively. The LAMP method was then applied to sputum and dental plaque samples. The LAMP and PCR demonstrated identical results for the plaque samples, although frequency in detection of mecA and spa by the LAMP was relatively lower for the sputum samples when compared to the PCR methods. Application of the LAMP enabled a rapid detection assay for mecA and spa. The assay may be applicable to clinical plaque samples. The LAMP offers an alternative detection assay for mecA and spa with a great advantage of the rapidity.

  3. Rapid detection and differentiation of avian infectious bronchitis virus: an application of Mass genotype by melting temperature analysis in RT-qPCR using SYBR Green I

    PubMed Central

    OKINO, Cintia Hiromi; MONTASSIER, Maria de Fátima Silva; de OLIVEIRA, Andressa Peres; MONTASSIER, Helio José

    2018-01-01

    A method based on Melting Temperature analysis of Hypervariable regions (HVR) of S1 gene within a RT-qPCR was developed to detect different genotypes of avian infectious bronchitis virus (IBV) and identify the Mass genotype. The method was able to rapidly identify the Mass genotype among IBV field isolates, vaccine attenuated strains and reference M41 strain in allantoic liquid and also directly in tissues. The RT-qPCR developed detected the virus in both tracheal and pulmonary samples from M41-infected or H120-infected birds, in a larger post-infection period compared to detection by standard method of virus isolation. RT-qPCR method tested provided a sensitivity and rapid approach for screening on IBV detection and Mass genotyping from IBV isolates. PMID:29491226

  4. Field Demonstration of a Multiplexed Point-of-Care Diagnostic Platform for Plant Pathogens.

    PubMed

    Lau, Han Yih; Wang, Yuling; Wee, Eugene J H; Botella, Jose R; Trau, Matt

    2016-08-16

    Effective disease management strategies to prevent catastrophic crop losses require rapid, sensitive, and multiplexed detection methods for timely decision making. To address this need, a rapid, highly specific and sensitive point-of-care method for multiplex detection of plant pathogens was developed by taking advantage of surface-enhanced Raman scattering (SERS) labeled nanotags and recombinase polymerase amplification (RPA), which is a rapid isothermal amplification method with high specificity. In this study, three agriculturally important plant pathogens (Botrytis cinerea, Pseudomonas syringae, and Fusarium oxysporum) were used to demonstrate potential translation into the field. The RPA-SERS method was faster, more sensitive than polymerase chain reaction, and could detect as little as 2 copies of B. cinerea DNA. Furthermore, multiplex detection of the three pathogens was demonstrated for complex systems such as the Arabidopsis thaliana plant and commercial tomato crops. To demonstrate the potential for on-site field applications, a rapid single-tube RPA/SERS assay was further developed and successfully performed for a specific target outside of a laboratory setting.

  5. Rapid concentration and sensitive detection of hookworm ova from wastewater matrices using a real-time PCR method.

    PubMed

    Gyawali, P; Sidhu, J P S; Ahmed, W; Jagals, P; Toze, S

    2015-12-01

    The risk of human hookworm infections from land application of wastewater matrices could be high in regions with high hookworm prevalence. A rapid, sensitive and specific hookworm detection method from wastewater matrices is required in order to assess human health risks. Currently available methods used to identify hookworm ova to the species level are time consuming and lack accuracy. In this study, a real-time PCR method was developed for the rapid, sensitive and specific detection of canine hookworm (Ancylostoma caninum) ova from wastewater matrices. A. caninum was chosen because of its morphological similarity to the human hookworm (Ancylostoma duodenale and Necator americanus). The newly developed PCR method has high detection sensitivity with the ability to detect less than one A. caninum ova from 1 L of secondary treated wastewater at the mean threshold cycle (CT) values ranging from 30.1 to 34.3. The method is also able to detect four A. caninum ova from 1 L of raw wastewater and from ∼4 g of treated sludge with mean CT values ranging from 35.6 to 39.8 and 39.8 to 39.9, respectively. The better detection sensitivity obtained for secondary treated wastewater compared to raw wastewater and sludge samples could be attributed to sample turbidity. The proposed method appears to be rapid, sensitive and specific compared to traditional methods and has potential to aid in the public health risk assessment associated with land application of wastewater matrices. Furthermore, the method can be adapted to detect other helminth ova of interest from wastewater matrices. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  6. Rapid and sensitive detection of human astrovirus in water samples by loop-mediated isothermal amplification with hydroxynaphthol blue dye.

    PubMed

    Yang, Bo-Yun; Liu, Xiao-Lu; Wei, Yu-Mei; Wang, Jing-Qi; He, Xiao-Qing; Jin, Yi; Wang, Zi-Jian

    2014-02-14

    The aim of this paper was to develop a reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for rapid, sensitive and inexpensive detection of astrovirus. The detection limit of LAMP using in vitro RNA transcripts was 3.6 × 10 copies·μL⁻¹, which is as sensitive as the presently used PCR assays. However, the LAMP products could be identified as different colors with the naked eye following staining with hydroxynaphthol blue dye (HNB). No cross-reactivity with other gastroenteric viruses (rotavirus and norovirus) was observed, indicating the relatively high specificity of LAMP. The RT-LAMP method with HNB was used to effectively detect astrovirus in reclaimed water samples. The LAMP technique described in this study is a cheap, sensitive, specific and rapid method for the detection of astrovirus. The RT-LAMP method can be simply applied for the specific detection of astrovirus and has the potential to be utilized in the field as a screening test.

  7. A simple, rapid, cost-effective and sensitive method for detection of Salmonella in environmental and pecan samples.

    PubMed

    Dobhal, S; Zhang, G; Rohla, C; Smith, M W; Ma, L M

    2014-10-01

    PCR is widely used in the routine detection of foodborne human pathogens; however, challenges remain in overcoming PCR inhibitors present in some sample matrices. The objective of this study was to develop a simple, sensitive, cost-effective and rapid method for processing large numbers of environmental and pecan samples for Salmonella detection. This study was also aimed at validation of a new protocol for the detection of Salmonella from in-shell pecans. Different DNA template preparation methods, including direct boiling, prespin, multiple washing and commercial DNA extraction kits, were evaluated with pure cultures of Salmonella Typhimurium and with enriched soil, cattle feces and in-shell pecan each spiked individually with Salmonella Typhimurium. PCR detection of Salmonella was conducted using invA and 16S rRNA gene (internal amplification control) specific primers. The effect of amplification facilitators, including bovine serum albumin (BSA), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and gelatin on PCR sensitivity, was also evaluated. Conducting a prespin of sample matrices in combination with the addition of 0·4% (w/v) BSA and 1% (w/v) PVP in PCR mix was the simplest, most rapid, cost-effective and sensitive method for PCR detection of Salmonella, with up to 40 CFU Salmonella per reaction detectable in the presence of over 10(9 ) CFU ml(-1) of background micro-organisms from enriched feces soil or pecan samples. The developed method is rapid, cost-effective and sensitive for detection of Salmonella from different matrices. This study provides a method with broad applicability for PCR detection of Salmonella in complex sample matrices. This method has a potential for its application in different research arenas and diagnostic laboratories. © 2014 The Society for Applied Microbiology.

  8. Double sampling to estimate density and population trends in birds

    USGS Publications Warehouse

    Bart, Jonathan; Earnst, Susan L.

    2002-01-01

    We present a method for estimating density of nesting birds based on double sampling. The approach involves surveying a large sample of plots using a rapid method such as uncorrected point counts, variable circular plot counts, or the recently suggested double-observer method. A subsample of those plots is also surveyed using intensive methods to determine actual density. The ratio of the mean count on those plots (using the rapid method) to the mean actual density (as determined by the intensive searches) is used to adjust results from the rapid method. The approach works well when results from the rapid method are highly correlated with actual density. We illustrate the method with three years of shorebird surveys from the tundra in northern Alaska. In the rapid method, surveyors covered ~10 ha h-1 and surveyed each plot a single time. The intensive surveys involved three thorough searches, required ~3 h ha-1, and took 20% of the study effort. Surveyors using the rapid method detected an average of 79% of birds present. That detection ratio was used to convert the index obtained in the rapid method into an essentially unbiased estimate of density. Trends estimated from several years of data would also be essentially unbiased. Other advantages of double sampling are that (1) the rapid method can be changed as new methods become available, (2) domains can be compared even if detection rates differ, (3) total population size can be estimated, and (4) valuable ancillary information (e.g. nest success) can be obtained on intensive plots with little additional effort. We suggest that double sampling be used to test the assumption that rapid methods, such as variable circular plot and double-observer methods, yield density estimates that are essentially unbiased. The feasibility of implementing double sampling in a range of habitats needs to be evaluated.

  9. Evaluation of efficiency of nested multiplex allele-specific PCR assay for detection of multidrug resistant tuberculosis directly from sputum samples.

    PubMed

    Mistri, S K; Sultana, M; Kamal, S M M; Alam, M M; Irin, F; Nessa, J; Ahsan, C R; Yasmin, M

    2016-05-01

    For an effective control of tuberculosis, rapid detection of multidrug resistant tuberculosis (MDR-TB) is necessary. Therefore, we developed a modified nested multiplex allele-specific polymerase chain reaction (MAS-PCR) method that enables rapid MDR-TB detection directly from sputum samples. The efficacy of this method was evaluated using 79 sputum samples collected from suspected tuberculosis patients. The performance of nested MAS-PCR method was compared with other MDR-TB detection methods like drug susceptibility testing (DST) and DNA sequencing. As rifampicin (RIF) resistance conforms to MDR-TB in greater than 90% cases, only the presence of RIF-associated mutations in rpoB gene was determined by DNA sequencing and nested MAS-PCR to detect MDR-TB. The concordance between nested MAS-PCR and DNA sequencing results was found to be 96·3%. When compared with DST, the sensitivity and specificity of nested MAS-PCR for RIF-resistance detection were determined to be 92·9 and 100% respectively. For developing- and high-TB burden countries, molecular-based tests have been recommended by the World Health Organization for rapid detection of MDR-TB. The results of this study indicate that, nested MAS-PCR assay might be a practical and relatively cost effective molecular method for rapid detection of MDR-TB from suspected sputum samples in developing countries with resource poor settings. © 2016 The Society for Applied Microbiology.

  10. Rapid Detection of Escherichia coli O157:H7 in Fresh Lettuce Based on Localized Surface Plasmon Resonance Combined with Immunomagnetic Separation.

    PubMed

    Lee, Nari; Choi, Sung-Wook; Chang, Hyun-Joo; Chun, Hyang Sook

    2018-05-01

    This study presents a method for rapid detection of Escherichia coli O157:H7 in fresh lettuce based on the properties of target separation and localized surface plasmon resonance of immunomagnetic nanoparticles. The multifunctional immunomagnetic nanoparticles enabling simultaneous separation and detection were prepared by synthesizing magnetic nanoparticles (ca. 10 nm in diameter) composed of an iron oxide (Fe 3 O 4 ) core and gold shell and then conjugating these nanoparticles with the anti- E. coli O157:H7 antibodies. The application of multifunctional immunomagnetic nanoparticles for detecting E. coli O157:H7 in a lettuce matrix allowed detection of the presence of <1 log CFU mL -1 without prior enrichment. In contrast, the detection limit of the conventional plating method was 2.74 log CFU mL -1 . The method, which requires no preenrichment, provides an alternative to conventional microbiological detection methods and can be used as a rapid screening tool for a large number of food samples.

  11. Rapid detection of human fecal Eubacterium species and related genera by nested PCR method.

    PubMed

    Kageyama, A; Benno, Y

    2001-01-01

    PCR procedures based on 16S rDNA gene sequence specific for seven Eubacterium spp. and Eggerthella lenta that predominate in the human intestinal tract were developed, and used for direct detection of these species in seven human feces samples. Three species of Eggerthella lenta, Eubacterium rectale, and Eubacterium eligens were detected from seven fecal samples. Eubacterium biforme was detected from six samples. It was reported that E. rectale, E. eligens, and E. biforme were difficult to detect by traditional culture method, but the nested PCR method is available for the detection of these species. This result shows that the nested PCR method utilizing a universal primer pair, followed by amplification with species-specific primers, would allow rapid detection of Eubacterium species in human feces.

  12. Rapid screening of toxigenic vibrio cholerae O1 strains from south Iran by PCR-ELISA.

    PubMed

    Mousavi, Seyed Latif; Nazarian, Shahram; Amani, Jafar; Rahgerdi, Ahmad Karimi

    2008-01-01

    The ability to sensitively detect Vibrio cholera with PCR-ELISA method represents a considerable advancement over alternative more time-consuming methods for detection of this pathogen. The aim of this research is to evaluate the suitability of a PCR-enzyme-linked immunosorbent assay for sensitive and rapid detection of V. cholera O1. The 398-bp sequence of a gene that codes for the cholera toxin B subunit was amplified by PCR. The digoxigenin-labeled amplified products were coated on microplates and detected by ELISA. The PCR product was also hybridized with biotin labelled probe and detected by ELISA using streptavidin. The specificity of the PCR was determined using 10 bacterial strains and 50 samples from south Iran. The detection limit was 0.5 pg of the genomic DNA and five bacterial cells. Adaptation of PCR into PCR-ELISA assay format facilitates specific and sensitive detection and diagnosis of human cholera disease. We conclude that this PCR-ELISA is a diagnostic method that specifically detects toxin genes in V. cholera O1 strains. It is more rapid and less cumbersome than other diagnostic methods for detection of toxicity in these strains.

  13. Rapid quantitative detection of glucose content in glucose injection by reaction headspace gas chromatography.

    PubMed

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2017-10-20

    This work investigates an automated technique for rapid detecting the glucose content in glucose injection by reaction headspace gas chromatography (HS-GC). This method is based on the oxidation reaction of glucose in glucose injection with potassium dichromate. The carbon dioxide (CO 2 ) formed from the oxidation reaction can be quantitatively detected by GC. The results show that the relative standard deviation (RSD) of the present method was within 2.91%, and the measured glucose contents in glucose injection closely match those quantified by the reference method (relative differences <6.45%). The new HS-GC technique is rapid, practical and can be used to the batch detection of the glucose content in glucose injection related applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Direct PCR - A rapid method for multiplexed detection of different serotypes of Salmonella in enriched pork meat samples.

    PubMed

    Chin, Wai Hoe; Sun, Yi; Høgberg, Jonas; Quyen, Than Linh; Engelsmann, Pia; Wolff, Anders; Bang, Dang Duong

    2017-04-01

    Salmonellosis, an infectious disease caused by Salmonella spp., is one of the most common foodborne diseases. Isolation and identification of Salmonella by conventional bacterial culture method is time consuming. In response to the demand for rapid on line or at site detection of pathogens, in this study, we developed a multiplex Direct PCR method for rapid detection of different Salmonella serotypes directly from pork meat samples without any DNA purification steps. An inhibitor-resistant Phusion Pfu DNA polymerase was used to overcome PCR inhibition. Four pairs of primers including a pair of newly designed primers targeting Salmonella spp. at subtype level were incorporated in the multiplex Direct PCR. To maximize the efficiency of the Direct PCR, the ratio between sample and dilution buffer was optimized. The sensitivity and specificity of the multiplex Direct PCR were tested using naturally contaminated pork meat samples for detecting and subtyping of Salmonella spp. Conventional bacterial culture methods were used as reference to evaluate the performance of the multiplex Direct PCR. Relative accuracy, sensitivity and specificity of 98.8%; 97.6% and 100%, respectively, were achieved by the method. Application of the multiplex Direct PCR to detect Salmonella in pork meat at slaughter reduces the time of detection from 5 to 6 days by conventional bacterial culture and serotyping methods to 14 h (including 12 h enrichment time). Furthermore, the method poses a possibility of miniaturization and integration into a point-of-need Lab-on-a-chip system for rapid online pathogen detection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A rapid and simple method of detection of Blepharisma japonicum using PCR and immobilisation on FTA paper

    PubMed Central

    Hide, Geoff; Hughes, Jacqueline M; McNuff, Robert

    2003-01-01

    Background The rapid expansion in the availability of genome and DNA sequence information has opened up new possibilities for the development of methods for detecting free-living protozoa in environmental samples. The protozoan Blepharisma japonicum was used to investigate a rapid and simple detection system based on polymerase chain reaction amplification (PCR) from organisms immobilised on FTA paper. Results Using primers designed from the α-tubulin genes of Blepharisma, specific and sensitive detection to the equivalent of a single Blepharisma cell could be achieved. Similar detection levels were found using water samples, containing Blepharisma, which were dried onto Whatman FTA paper. Conclusion This system has potential as a sensitive convenient detection system for Blepharisma and could be applied to other protozoan organisms. PMID:14516472

  16. Rationalizing and advancing the 3-MPBA SERS sandwich assay for rapid detection of bacteria in environmental and food matrices.

    PubMed

    Pearson, Brooke; Mills, Alexander; Tucker, Madeline; Gao, Siyue; McLandsborough, Lynne; He, Lili

    2018-06-01

    Bacterial foodborne illness continues to be a pressing issue in our food supply. Rapid detection methods are needed for perishable foods due to their short shelf lives and significant contribution to foodborne illness. Previously, a sensitive and reliable surface-enhanced Raman spectroscopy (SERS) sandwich assay based on 3-mercaptophenylboronic acid (3-MBPA) as a capturer and indicator molecule was developed for rapid bacteria detection. In this study, we explored the advantages and constraints of this assay over the conventional aerobic plate count (APC) method and further developed methods for detection in real environmental and food matrices. The SERS sandwich assay was able to detect environmental bacteria in pond water and on spinach leaves at higher levels than the APC method. In addition, the SERS assay appeared to have higher sensitivity to quantify bacteria in the stationary phase. On the other hand, the APC method was more sensitive to cell viability. Finally, a method to detect bacteria in a challenging high-sugar juice matrix was developed to enhance bacteria capture. This study advanced the SERS technique for real applications in environment and food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Comparison of methods for the detection of coliphages in recreational water at two California, United States beaches.

    PubMed

    Rodríguez, Roberto A; Love, David C; Stewart, Jill R; Tajuba, Julianne; Knee, Jacqueline; Dickerson, Jerold W; Webster, Laura F; Sobsey, Mark D

    2012-04-01

    Methods for detection of two fecal indicator viruses, F+ and somatic coliphages, were evaluated for application to recreational marine water. Marine water samples were collected during the summer of 2007 in Southern California, United States from transects along Avalon Beach (n=186 samples) and Doheny Beach (n=101 samples). Coliphage detection methods included EPA method 1601 - two-step enrichment (ENR), EPA method 1602 - single agar layer (SAL), and variations of ENR. Variations included comparison of two incubation times (overnight and 5-h incubation) and two final detection steps (lysis zone assay and a rapid latex agglutination assay). A greater number of samples were positive for somatic and F+ coliphages by ENR than by SAL (p<0.01). The standard ENR with overnight incubation and detection by lysis zone assay was the most sensitive method for the detection of F+ and somatic coliphages from marine water, although the method takes up to three days to obtain results. A rapid 5-h enrichment version of ENR also performed well, with more positive samples than SAL, and could be performed in roughly 24h. Latex agglutination-based detection methods require the least amount of time to perform, although the sensitivity was less than lysis zone-based detection methods. Rapid culture-based enrichment of coliphages in marine water may be possible by further optimizing culture-based methods for saline water conditions to generate higher viral titers than currently available, as well as increasing the sensitivity of latex agglutination detection methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25.

    PubMed

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-11-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg(-1) GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25.

  19. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25

    PubMed Central

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-01-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg−1 GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25. PMID:24804053

  20. Biosensors for rapid and sensitive detection of Staphylococcus aureus in food.

    PubMed

    Rubab, Momna; Shahbaz, Hafiz Muhammad; Olaimat, Amin N; Oh, Deog-Hwan

    2018-05-15

    Foodborne illness outbreaks caused by the consumption of food contaminated with harmful bacteria has drastically increased in the past decades. Therefore, detection of harmful bacteria in the food has become an important factor for the recognition and prevention of problems associated with food safety and public health. Staphylococcus aureus is one of the most commonly isolated foodborne pathogen and it is considered as a major cause of foodborne illnesses worldwide. A number of different methods have been developed for the detection and identification of S. aureus in food samples. However, some of these methods are laborious and time-consuming and are not suitable for on-site applications. Therefore, it is highly important to develop rapid and more approachable detection methods. In the last decade, biosensors have gained popularity as an attractive alternative method and now considered as one of most rapid and on-site applicable methods. An overview of the biosensor based methods used for the detection of S. aureus is presented herein. This review focuses on the state-of-the-art biosensor methods towards the detection and quantification of S. aureus, and discusses the most commonly used biosensor methods based on the transducing mode, such as electrochemical, optical, and mass-based biosensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Development of a double-antibody sandwich ELISA for rapid detection of Bacillus Cereus in food

    PubMed Central

    Zhu, Longjiao; He, Jing; Cao, Xiaohan; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-01-01

    Bacillus cereus is increasingly recognized as one of the major causes of food poisoning in the industrialized world. In this paper, we describe a sensitive double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) that was developed for rapid detection of B. cereus in food to minimize the risk of contamination. The polyclonal antibody (pAb) and monoclonal antibodies (mAbs) specific to B. cereus were generated from rabbit antiserum and mouse ascites, respectively, using the octanoic acid/saturated ammonium sulfate precipitation method and protein A-sepharose columns. IgG-isotype mAbs were specially developed to undergo a novel peripheral multiple sites immunization for rapid gain of hybridomas and a subtractive screen was used to eliminate cross reactivity with closely related species such as Bacillus thuringiensis, B. subtilis, B. licheniformis and B. perfringens. The linear detection range of the method was approximately 1 × 104–2.8 × 106 cells/mL with a detection limit (LOD) of 0.9 × 103 cells/mL. The assay was able to detect B. cereus when the samples were prepared in meat with various pathogens. The newly developed analytical method provides a rapid method to sensitively detect B. cereus in food specimens. PMID:26976753

  2. Real-time PCR-based method for the rapid detection of extended RAS mutations using bridged nucleic acids in colorectal cancer.

    PubMed

    Iida, Takao; Mizuno, Yukie; Kaizaki, Yasuharu

    2017-10-27

    Mutations in RAS and BRAF are predictors of the efficacy of anti-epidermal growth factor receptor (EGFR) therapy in patients with metastatic colorectal cancer (mCRC). Therefore, simple, rapid, cost-effective methods to detect these mutations in the clinical setting are greatly needed. In the present study, we evaluated BNA Real-time PCR Mutation Detection Kit Extended RAS (BNA Real-time PCR), a real-time PCR method that uses bridged nucleic acid clamping technology to rapidly detect mutations in RAS exons 2-4 and BRAF exon 15. Genomic DNA was extracted from 54 formalin-fixed paraffin-embedded (FFPE) tissue samples obtained from mCRC patients. Among the 54 FFPE samples, BNA Real-time PCR detected 21 RAS mutations (38.9%) and 5 BRAF mutations (9.3%), and the reference assay (KRAS Mutation Detection Kit and MEBGEN™ RASKET KIT) detected 22 RAS mutations (40.7%). The concordance rate of detected RAS mutations between the BNA Real-time PCR assay and the reference assays was 98.2% (53/54). The BNA Real-time PCR assay proved to be a more simple, rapid, and cost-effective method for detecting KRAS and RAS mutations compared with existing assays. These findings suggest that BNA Real-time PCR is a valuable tool for predicting the efficacy of early anti-EGFR therapy in mCRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Testing Of An Ultraviolet (UV)-Transparent Polymer-Based Passive Sampler for Rapid, Ultra-Low-Cost EDC Screening Applications

    EPA Science Inventory

    A new passive sampling method with rapid low-cost spectral detection has recently been developed. The method makes use of an ultraviolet (UV)-transparent polymer which serves as both a concentrator for dissolved compounds, and an optical cell for UV spectral detection. Because ...

  4. Rapid, Efficient Detection and Drug Susceptibility Testing of Mycobacterium tuberculosis in Sputum by Microscopic Observation of Broth Cultures

    PubMed Central

    Caviedes, Luz; Lee, Tien-Shun; Gilman, Robert H.; Sheen, Patricia; Spellman, Emily; Lee, Ellen H.; Berg, Douglas E.; Montenegro-James, Sonia

    2000-01-01

    Inexpensive, rapid, and reliable methods of detecting infection by and drug susceptibility of Mycobacterium tuberculosis (MTB) are crucial to the control of tuberculosis. The novel microscopic observation broth-drug susceptibility assay (MODS) detects early growth of MTB in liquid medium, allowing more timely diagnosis and drug susceptibility testing. Sputum samples from hospitalized patients in Peru were analyzed by using stains, culture, and PCR. Sensitivity of MODS (92%) compared favorably with the most sensitive of the other culture methods (93%). Sputum samples positive for tuberculosis were tested for susceptibility to isoniazid and rifampin with the microwell alamar blue assay (MABA) and MODS. In 89% of cases, there was concordance between MODS and MABA. Of the diagnostic and susceptibility testing methods used, MODS yielded results most rapidly (median, 9.0 and 9.5 days, respectively). MODS is a rapid, inexpensive, sensitive, and specific method for MTB detection and susceptibility testing; it is particularly appropriate for use in developing countries burdened by significant infection rates and increasing numbers of multiple-drug-resistant cases. PMID:10699023

  5. Rapid, efficient detection and drug susceptibility testing of Mycobacterium tuberculosis in sputum by microscopic observation of broth cultures. The Tuberculosis Working Group in Peru.

    PubMed

    Caviedes, L; Lee, T S; Gilman, R H; Sheen, P; Spellman, E; Lee, E H; Berg, D E; Montenegro-James, S

    2000-03-01

    Inexpensive, rapid, and reliable methods of detecting infection by and drug susceptibility of Mycobacterium tuberculosis (MTB) are crucial to the control of tuberculosis. The novel microscopic observation broth-drug susceptibility assay (MODS) detects early growth of MTB in liquid medium, allowing more timely diagnosis and drug susceptibility testing. Sputum samples from hospitalized patients in Peru were analyzed by using stains, culture, and PCR. Sensitivity of MODS (92%) compared favorably with the most sensitive of the other culture methods (93%). Sputum samples positive for tuberculosis were tested for susceptibility to isoniazid and rifampin with the microwell alamar blue assay (MABA) and MODS. In 89% of cases, there was concordance between MODS and MABA. Of the diagnostic and susceptibility testing methods used, MODS yielded results most rapidly (median, 9.0 and 9.5 days, respectively). MODS is a rapid, inexpensive, sensitive, and specific method for MTB detection and susceptibility testing; it is particularly appropriate for use in developing countries burdened by significant infection rates and increasing numbers of multiple-drug-resistant cases.

  6. A rapid and efficient newly established method to detect COL1A1-PDGFB gene fusion in dermatofibrosarcoma protuberans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, Yoko; Shimizu, Akira; Okada, Etsuko

    Highlights: Black-Right-Pointing-Pointer We developed new method to rapidly identify COL1A1-PDGFB fusion in DFSP. Black-Right-Pointing-Pointer New PCR method using a single primer pair detected COL1A1-PDGFB fusion in DFSP. Black-Right-Pointing-Pointer This is the first report of DFSP with a novel COL1A1 breakpoint in exon 5. -- Abstract: The detection of fusion transcripts of the collagen type 1{alpha}1 (COL1A1) and platelet-derived growth factor-BB (PDGFB) genes by genetic analysis has recognized as a reliable and valuable molecular tool for the diagnosis of dermatofibrosarcoma protuberans (DFSP). To detect the COL1A1-PDGFB fusion, almost previous reports performed reverse transcription polymerase chain reaction (RT-PCR) using multiplex forward primersmore » from COL1A1. However, it has possible technical difficulties with respect to the handling of multiple primers and reagents in the procedure. The objective of this study is to establish a rapid, easy, and efficient one-step method of PCR using only a single primer pair to detect the fusion transcripts of the COL1A1 and PDGFB in DFSP. To validate new method, we compared the results of RT-PCR in five patients of DFSP between the previous method using multiplex primers and our established one-step RT-PCR using a single primer pair. In all cases of DFSP, the COL1A1-PDGFB fusion was detected by both previous method and newly established one-step PCR. Importantly, we detected a novel COL1A1 breakpoint in exon 5. The newly developed method is valuable to rapidly identify COL1A1-PDGFB fusion transcripts in DFSP.« less

  7. Rapid detection of meticillin-resistant Staphylococcus aureus bacteraemia using combined three-hour short-incubation matrix-assisted laser desorption/ionization time-of-flight MS identification and Alere Culture Colony PBP2a detection test.

    PubMed

    Delport, Johannes Andries; Mohorovic, Ivor; Burn, Sandi; McCormick, John Kenneth; Schaus, David; Lannigan, Robert; John, Michael

    2016-07-01

    Meticillin-resistant Staphylococcus aureus (MRSA) bloodstream infection is responsible for significant morbidity, with mortality rates as high as 60 % if not treated appropriately. We describe a rapid method to detect MRSA in blood cultures using a combined three-hour short-incubation BRUKER matrix-assisted laser desorption/ionization time-of-flight MS BioTyper protocol and a qualitative immunochromatographic assay, the Alere Culture Colony Test PBP2a detection test. We compared this combined method with a molecular method detecting the nuc and mecA genes currently performed in our laboratory. One hundred and seventeen S. aureus blood cultures were tested of which 35 were MRSA and 82 were meticillin-sensitive S. aureus (MSSA). The rapid combined test correctly identified 100 % (82/82) of the MSSA and 85.7 % (30/35) of the MRSA after 3 h. There were five false negative results where the isolates were correctly identified as S. aureus, but PBP2a was not detected by the Culture Colony Test. The combined method has a sensitivity of 87.5 %, specificity of 100 %, a positive predictive value of 100 % and a negative predictive value of 94.3 % with the prevalence of MRSA in our S. aureus blood cultures. The combined rapid method offers a significant benefit to early detection of MRSA in positive blood cultures.

  8. Validation of the Applied Biosystems RapidFinder Shiga Toxin-Producing E. coli (STEC) Detection Workflow.

    PubMed

    Cloke, Jonathan; Matheny, Sharon; Swimley, Michelle; Tebbs, Robert; Burrell, Angelia; Flannery, Jonathan; Bastin, Benjamin; Bird, Patrick; Benzinger, M Joseph; Crowley, Erin; Agin, James; Goins, David; Salfinger, Yvonne; Brodsky, Michael; Fernandez, Maria Cristina

    2016-11-01

    The Applied Biosystems™ RapidFinder™ STEC Detection Workflow (Thermo Fisher Scientific) is a complete protocol for the rapid qualitative detection of Escherichia coli (E. coli) O157:H7 and the "Big 6" non-O157 Shiga-like toxin-producing E. coli (STEC) serotypes (defined as serogroups: O26, O45, O103, O111, O121, and O145). The RapidFinder STEC Detection Workflow makes use of either the automated preparation of PCR-ready DNA using the Applied Biosystems PrepSEQ™ Nucleic Acid Extraction Kit in conjunction with the Applied Biosystems MagMAX™ Express 96-well magnetic particle processor or the Applied Biosystems PrepSEQ Rapid Spin kit for manual preparation of PCR-ready DNA. Two separate assays comprise the RapidFinder STEC Detection Workflow, the Applied Biosystems RapidFinder STEC Screening Assay and the Applied Biosystems RapidFinder STEC Confirmation Assay. The RapidFinder STEC Screening Assay includes primers and probes to detect the presence of stx1 (Shiga toxin 1), stx2 (Shiga toxin 2), eae (intimin), and E. coli O157 gene targets. The RapidFinder STEC Confirmation Assay includes primers and probes for the "Big 6" non-O157 STEC and E. coli O157:H7. The use of these two assays in tandem allows a user to detect accurately the presence of the "Big 6" STECs and E. coli O157:H7. The performance of the RapidFinder STEC Detection Workflow was evaluated in a method comparison study, in inclusivity and exclusivity studies, and in a robustness evaluation. The assays were compared to the U.S. Department of Agriculture (USDA), Food Safety and Inspection Service (FSIS) Microbiology Laboratory Guidebook (MLG) 5.09: Detection, Isolation and Identification of Escherichia coli O157:H7 from Meat Products and Carcass and Environmental Sponges for raw ground beef (73% lean) and USDA/FSIS-MLG 5B.05: Detection, Isolation and Identification of Escherichia coli non-O157:H7 from Meat Products and Carcass and Environmental Sponges for raw beef trim. No statistically significant differences were observed between the reference method and the individual or combined kits forming the candidate assay using either of the DNA preparation kits (manual or automated extraction). For the inclusivity and exclusivity evaluation, the RapidFinder STEC Detection Workflow, comprising both RapidFinder STEC screening and confirmation kits, correctly identified all 50 target organism isolates and correctly excluded all 30 nontarget strains for both of the assays evaluated. The results of these studies demonstrate the sensitivity and selectivity of the RapidFinder STEC Detection Workflow for the detection of E. coli O157:H7 and the "Big 6" STEC serotypes in both raw ground beef and beef trim. The robustness testing demonstrated that minor variations in the method parameters did not impact the accuracy of the assay and highlighted the importance of following the correct incubation temperatures.

  9. Validation of a Rapid Bacteria Endospore Enumeration System for Planetary Protection Application

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Kern, Roger; Kazarians, Gayane; Venkateswaran, Kasthuri

    NASA monitors spacecraft surfaces to assure that the presence of bacterial endospores meets strict criteria at launch, to minimize the risk of inadvertent contamination of the surface of Mars. Currently, the only approved method for enumerating the spores is a culture based assay that requires three days to produce results. In order to meet the demanding schedules of spacecraft assembly, a more rapid spore detection assay is being considered as an alternate method to the NASA standard culture-based assay. The Millipore Rapid Microbiology Detection System (RMDS) has been used successfully for rapid bioburden enumeration in the pharmaceutical and food industries. The RMDS is rapid and simple, shows high sensitivity (to 1 colony forming unit [CFU]/sample), and correlates well with traditional culture-based methods. It combines membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and image analysis based on photon detection with a Charge Coupled Device (CCD) camera. In this study, we have optimized the assay conditions and evaluated the use of the RMDS as a rapid spore detection tool for NASA applications. In order to select for spores, the samples were subjected to a heat shock step before proceeding with the RMDS incubation protocol. Seven species of Bacillus (nine strains) that have been repeatedly isolated from clean room environments were assayed. All strains were detected by the RMDS in 5 hours and these assay times were repeatedly demonstrated along with low image background noise. Validation experiments to compare the Rapid Sore Assay (RSA) and NASA standard assay (NSA) were also performed. The evaluation criteria were modeled after the FDA Guideline of Process Validation, and Analytical Test Methods. This body of research demonstrates that the Rapid Spore Assay (RSA) is quick, and of equivalent sensitivity to the NASA standard assay, potentially reducing the assay time for bacterial endospores from over 72 hours to less than 8 hours. Accordingly, JPL has produced a report recommending that NASA adopt the RSA method as a suitable alternative to the NASA standard assay.

  10. Rapid and sensitive detection of human astrovirus in water samples by loop-mediated isothermal amplification with hydroxynaphthol blue dye

    PubMed Central

    2014-01-01

    Background The aim of this paper was to develop a reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for rapid, sensitive and inexpensive detection of astrovirus. Results The detection limit of LAMP using in vitro RNA transcripts was 3.6×10 copies·μL-1, which is as sensitive as the presently used PCR assays. However, the LAMP products could be identified as different colors with the naked eye following staining with hydroxynaphthol blue dye (HNB). No cross-reactivity with other gastroenteric viruses (rotavirus and norovirus) was observed, indicating the relatively high specificity of LAMP. The RT-LAMP method with HNB was used to effectively detect astrovirus in reclaimed water samples. Conclusions The LAMP technique described in this study is a cheap, sensitive, specific and rapid method for the detection of astrovirus. The RT-LAMP method can be simply applied for the specific detection of astrovirus and has the potential to be utilized in the field as a screening test. PMID:24524254

  11. Evaluation of nutrient agar for the culture of Mycobacterium tuberculosis using the microcolony detection method.

    PubMed

    Satti, L; Abbasi, S; Faiz, U

    2012-07-01

    We evaluated nutrient agar using the microcolony detection method for the recovery of Mycobacterium tuberculosis on 37 acid-fast bacilli (AFB) positive sputum specimens, and compared it with conventional Löwenstein-Jensen (LJ) medium. Nutrient agar detected 35 isolates compared to 34 on LJ medium. The mean time to detection of mycobacteria on nutrient agar and LJ medium was respectively 9.6 and 21.4 days. The contamination rate on nutrient agar and LJ medium was respectively 5.4% and 2.7%. Nutrient agar detects M. tuberculosis more rapidly than LJ medium, and could be an economical, rapid culture method in resource-poor settings, provided our findings are confirmed by further studies.

  12. Rapid detection of Listeria monocytogenes in raw milk and soft cheese by a redox potential measurement based method combined with real-time PCR.

    PubMed

    Erdősi, Orsolya; Szakmár, Katalin; Reichart, Olivér; Szili, Zsuzsanna; László, Noémi; Székely Körmöczy, Péter; Laczay, Péter

    2014-09-01

    The incidence of outbreaks of foodborne listeriosis has indicated the need for a reliable and rapid detection of the microbe in different foodstuffs. A method combining redox potential measurement and real-time polymerase chain reaction (PCR) was developed to detect Listeria monocytogenes in artificially contaminated raw milk and soft cheese. Food samples of 25 g or 25 ml were homogenised in 225 ml of Listeria Enrichment Broth (LEB) with Oxford supplement, and the redox potential measurement technique was applied. For Listeria species the measuring time was maximum 34 h. The absence of L. monocytogenes could reliably be proven by the redox potential measurement method, but Listeria innocua and Bacillus subtilis could not be differentiated from L. monocytogenes on the basis of the redox curves. The presence of L. monocytogenes had to be confirmed by real-time PCR. The combination of these two methods proved to detect < 10 cfu/g of L. monocytogenes in a cost- and time-effective manner. This method can potentially be used as an alternative to the standard nutrient method for the rapid detection of L. monocytogenes in food.

  13. Role of re-screening of cervical smears in internal quality control.

    PubMed Central

    Baker, A; Melcher, D; Smith, R

    1995-01-01

    AIMS--To investigate the use of rapid re-screening as a quality control method for previously screened cervical slides; to compare this method with 10% random re-screening and clinically indicated double screening. METHODS--Between June 1990 and December 1994, 117,890 negative smears were subjected to rapid re-screening. RESULTS--This study shows that rapid re-screening detects far greater numbers of false negative cases when compared with both 10% random re-screening and clinically indicated double screening, with no additional demand on human resources. The technique also identifies variation in the performance of screening personnel as an additional benefit. CONCLUSION--Rapid re-screening is an effective method of quality control. Although less sensitive, rapid re-screening should replace 10% random re-screening and selected re-screening as greater numbers of false negative results are detected while consuming less resources. PMID:8543619

  14. Rapid, On-Site, Ultrasensitive Melamine Quantitation Method for Protein Beverages Using Time-Resolved Fluorescence Detection Paper.

    PubMed

    Li, Guanghua; Wang, Du; Zhou, Aijun; Sun, Yimin; Zhang, Qi; Poapolathep, Amnart; Zhang, Li; Fan, Zhiyong; Zhang, Zhaowei; Li, Peiwu

    2018-06-06

    To ensure protein beverage safety and prevent illegal melamine use to artificially increase protein content, a rapid, on-site, ultrasensitive detection method for melamine must be developed because melamine is detrimental to human health. Herein, an ultrasensitive time-resolved fluorescence detection paper (TFDP) was developed to detect melamine in protein beverages within 15 min using a one-step sample preparation. The lower limits of detection were 0.89, 0.94, and 1.05 ng/mL, and the linear ranges were 2.67-150, 2.82-150, and 3.15-150 ng/mL (R 2 > 0.982) for peanut, walnut, and coconut beverages, respectively. The recovery rates were 85.86-110.60% with a coefficient of variation <7.80% in the spiking experiment. A high specificity was observed in the interferent experiment. When detecting real protein beverage samples, the TFDP and ultraperformance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) results were consistent. This method is a promising alternative for rapid, on-site detection of melamine in beverages.

  15. [Demand for and the Development of Detection Techniques for Source of Schistosome Infection in China].

    PubMed

    Wang, Shi-ping; He, Xin; Zhou, Yun-fei

    2015-12-01

    Schistosomiasis is a type of zoonotic parasitosis that severely impairs human health. Rapid detection of infection sources is a key to the control of schistosomiasis. With the effective control of schistosomiasis in China, the detection techniques for infection sources have also been developed. The rate and the intensity of infection among humans and livestocks have been significantly decreased in China, as the control program has entered the transmission control stage in most of the endemic areas. Under this situation, the traditional etiological diagnosing techniques and common immunological methods can not afford rapid detection of infection sources of schistosomiasis. Instead, we are calling for detection methods with higher sensitivity, specificity and stability while being less time-consuming, more convenient and less costing. In recent years, many improved or novel detection methods have been applied for the epidemiological surveillance of schistosomiasis, such as the automatic scanning microscopic image acquisition system, PCR-ELISA, immunosensors, loop-mediated isothermal amplification, etc. The development of new monitoring techniques can facilitate rapid detection of schistosome infection sources in endemic areas.

  16. The Changing Role of the Clinical Microbiology Laboratory in Defining Resistance in Gram-negatives.

    PubMed

    Endimiani, Andrea; Jacobs, Michael R

    2016-06-01

    The evolution of resistance in Gram-negatives has challenged the clinical microbiology laboratory to implement new methods for their detection. Multidrug-resistant strains present major challenges to conventional and new detection methods. More rapid pathogen identification and antimicrobial susceptibility testing have been developed for use directly on specimens, including fluorescence in situ hybridization tests, automated polymerase chain reaction systems, microarrays, mass spectroscopy, next-generation sequencing, and microfluidics. Review of these methods shows the advances that have been made in rapid detection of resistance in cultures, but limited progress in direct detection from specimens. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Rapid Isolation of Phenol Degrading Bacteria by Fourier Transform Infrared (FTIR) Spectroscopy.

    PubMed

    Li, Fei; Song, Wen-jun; Wei, Ji-ping; Wang, Su-ying; Liu, Chong-ji

    2015-05-01

    Phenol is an important chemical engineering material and ubiquitous in industry wastewater, its existence has become a thorny issue in many developed and developing country. More and more stringent standards for effluent all over the world with human realizing the toxicity of phenol have been announced. Many advanced biological methods are applied to industrial wastewater treatment with low cost, high efficiency and no secondary pollution, but the screening of function microorganisms is certain cumbersome process. In our study a rapid procedure devised for screening bacteria on solid medium can degrade phenol coupled with attenuated total reflection fourier transform infrared (ATR-FTIR) which is a detection method has the characteristics of efficient, fast, high fingerprint were used. Principal component analysis (PCA) is a method in common use to extract fingerprint peaks effectively, it couples with partial least squares (PLS) statistical method could establish a credible model. The model we created using PCA-PLS can reach 99. 5% of coefficient determination and validation data get 99. 4%, which shows the promising fitness and forecasting of the model. The high fitting model is used for predicting the concentration of phenol at solid medium where the bacteria were grown. The highly consistent result of two screening methods, solid cultural with ATR-FTIR detected and traditional liquid cultural detected by GC methods, suggests the former can rapid isolate the bacteria which can degrade substrates as well as traditional cumbersome liquid cultural method. Many hazardous substrates widely existed in industry wastewater, most of them has specialize fingerprint peaks detected by ATR-FTIR, thereby this detected method could be used as a rapid detection for isolation of functional microorganisms those can degrade many other toxic substrates.

  18. A rapid Salmonella detection method involving thermophilic helicase-dependent amplification and a lateral flow assay.

    PubMed

    Du, Xin-Jun; Zhou, Tian-Jiao; Li, Ping; Wang, Shuo

    2017-08-01

    Salmonella is a major foodborne pathogen that is widespread in the environment and can cause serious human and animal disease. Since conventional culture methods to detect Salmonella are time-consuming and laborious, rapid and accurate techniques to detect this pathogen are critically important for food safety and diagnosing foodborne illness. In this study, we developed a rapid, simple and portable Salmonella detection strategy that combines thermophilic helicase-dependent amplification (tHDA) with a lateral flow assay to provide a detection result based on visual signals within 90 min. Performance analyses indicated that the method had detection limits for DNA and pure cultured bacteria of 73.4-80.7 fg and 35-40 CFU, respectively. Specificity analyses showed no cross reactions with Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Enterobacter aerogenes, Shigella and Campylobacter jejuni. The results for detection in real food samples showed that 1.3-1.9 CFU/g or 1.3-1.9 CFU/mL of Salmonella in contaminated chicken products and infant nutritional cereal could be detected after 2 h of enrichment. The same amount of Salmonella in contaminated milk could be detected after 4 h of enrichment. This tHDA-strip can be used for the rapid detection of Salmonella in food samples and is particularly suitable for use in areas with limited equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Simultaneous detection of perchlorate and bromate using rapid high-performance ion exchange chromatography-tandem mass spectrometry and perchlorate removal in drinking water.

    PubMed

    West, Danielle M; Mu, Ruipu; Gamagedara, Sanjeewa; Ma, Yinfa; Adams, Craig; Eichholz, Todd; Burken, Joel G; Shi, Honglan

    2015-06-01

    Perchlorate and bromate occurrence in drinking water causes health concerns due to their effects on thyroid function and carcinogenicity, respectively. The purpose of this study was threefold: (1) to advance a sensitive method for simultaneous rapid detection of perchlorate and bromate in drinking water system, (2) to systematically study the occurrence of these two contaminants in Missouri drinking water treatment systems, and (3) to examine effective sorbents for minimizing perchlorate in drinking water. A rapid high-performance ion exchange chromatography-tandem mass spectrometry (HPIC-MS/MS) method was advanced for simultaneous detection of perchlorate and bromate in drinking water. The HPIC-MS/MS method was rapid, required no preconcentration of the water samples, and had detection limits for perchlorate and bromate of 0.04 and 0.01 μg/L, respectively. The method was applied to determine perchlorate and bromate concentrations in total of 23 selected Missouri drinking water treatment systems during differing seasons. The water systems selected include different source waters: groundwater, lake water, river water, and groundwater influenced by surface water. The concentrations of perchlorate and bromate were lower than or near to method detection limits in most of the drinking water samples monitored. The removal of perchlorate by various adsorbents was studied. A cationic organoclay (TC-99) exhibited effective removal of perchlorate from drinking water matrices.

  20. Rapid detection and classification of Salmonella enterica shedding in feedlot cattle utilizing Roka Bioscience Atlas Salmonella detection assay for the analysis of rectoanal mucosal swabs

    USDA-ARS?s Scientific Manuscript database

    With an increasing focus on preharvest food safety, rapid methods are required for the detection and quantification of foodborne pathogens such as Salmonella enterica in beef cattle. We validated the Atlas Salmonella Detection Assay (SEN), a nucleic acid amplification technology that targets Salmone...

  1. A novel strategy for rapid detection of NT-proBNP

    NASA Astrophysics Data System (ADS)

    Cui, Qiyao; Sun, Honghao; Zhu, Hui

    2017-09-01

    In order to establish a simple, rapid, sensitive, and specific quantitative assay to detect the biomarkers of heart failure, in this study, biotin-streptavidin technology was employed with fluorescence immunochromatographic assay to detect the concentration of the biomarkers in serum, and this method was applied to detect NT-proBNP, which is valuable for diagnostic evaluation of heart failure.

  2. Application of Pyrosequencing® in Food Biodefense.

    PubMed

    Amoako, Kingsley Kwaku

    2015-01-01

    The perpetration of a bioterrorism attack poses a significant risk for public health with potential socioeconomic consequences. It is imperative that we possess reliable assays for the rapid and accurate identification of biothreat agents to make rapid risk-informed decisions on emergency response. The development of advanced methodologies for the detection of biothreat agents has been evolving rapidly since the release of the anthrax spores in the mail in 2001, and recent advances in detection and identification techniques could prove to be an essential component in the defense against biological attacks. Sequence-based approaches such as Pyrosequencing(®), which has the capability to determine short DNA stretches in real time using biotinylated PCR amplicons, have potential biodefense applications. Using markers from the virulence plasmids and chromosomal regions, my laboratory has demonstrated the power of this technology in the rapid, specific, and sensitive detection of B. anthracis spores and Yersinia pestis in food. These are the first applications for the detection of the two organisms in food. Furthermore, my lab has developed a rapid assay to characterize the antimicrobial resistance (AMR) gene profiles for Y. pestis using Pyrosequencing. Pyrosequencing is completed in about 60 min (following PCR amplification) and yields accurate and reliable results with an added layer of confidence, thus enabling rapid risk-informed decisions to be made. A typical run yields 40-84 bp reads with 94-100 % identity to the expected sequence. It also provides a rapid method for determining the AMR profile as compared to the conventional plate method which takes several days. The method described is proposed as a novel detection system for potential application in food biodefense.

  3. The use of real-time polymerase chain reaction for rapid diagnosis of skeletal tuberculosis.

    PubMed

    Kobayashi, Naomi; Fraser, Thomas G; Bauer, Thomas W; Joyce, Michael J; Hall, Gerri S; Tuohy, Marion J; Procop, Gary W

    2006-07-01

    We identified Mycobacterium tuberculosis DNA using real-time polymerase chain reaction on a specimen from an osteolytic lesion of a femoral condyle, in which the frozen section demonstrated granulomas. The process was much more rapid than is possible with culture. The rapid detection of M tuberculosis and the concomitant exclusion of granulomatous disease caused by nontuberculous mycobacteria or systemic fungi are necessary to appropriately treat skeletal tuberculosis. The detection and identification of M tuberculosis by culture may require several weeks using traditional methods. The real-time polymerase chain reaction method used has been shown to be rapid and reliable, and is able to detect and differentiate both tuberculous and nontuberculous mycobacteria. Real-time polymerase chain reaction may become a diagnostic standard for the evaluation of clinical specimens for the presence of mycobacteria; this case demonstrates the potential utility of this assay for the rapid diagnosis of skeletal tuberculosis.

  4. Simple Approach for the Rapid Detection of Alternariol in Pear Fruit by Surface-Enhanced Raman Scattering with Pyridine-Modified Silver Nanoparticles.

    PubMed

    Pan, Ting-Tiao; Sun, Da-Wen; Pu, Hongbin; Wei, Qingyi

    2018-03-07

    A simple method based on surface-enhanced Raman scattering (SERS) was developed for the rapid determination of alternariol (AOH) in pear fruits using an easily prepared silver-nanoparticle (AgNP) substrate. The AgNP substrate was modified by pyridine to circumvent the weak affinity of the AOH molecules to the silver surface and to improve the sensitivity of detection. Quantitative analysis was performed in AOH solutions at concentrations ranging from 3.16 to 316.0 μg/L, and the limit of detection was 1.30 μg/L. The novel method was also applied to the detection of AOH residues in pear fruits purchased from the market and in pear fruits that were artificially inoculated with Alternaria alternata. AOH was not found in any of the fresh fruit, whereas it resided in the rotten and inoculated fruits. Finally, the SERS method was cross validated against HPLC. It was revealed that the SERS method has great potential utility in the rapid detection of AOH in pear fruits and other agricultural products.

  5. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles

    PubMed Central

    Chang, Yi-Chung; Yang, Chia-Ying; Sun, Ruei-Lin; Cheng, Yi-Feng; Kao, Wei-Chen; Yang, Pan-Chyr

    2013-01-01

    Staphylococcus aureus is one of the most important human pathogens, causing more than 500,000 infections in the United States each year. Traditional methods for bacterial culture and identification take several days, wasting precious time for patients who are suffering severe bacterial infections. Numerous nucleic acid-based detection methods have been introduced to address this deficiency; however, the costs and requirement for expensive equipment may limit the widespread use of such technologies. Thus, there is an unmet demand of new platform technology to improve the bacterial detection and identification in clinical practice. In this study, we developed a rapid, ultra-sensitive, low cost, and non-polymerase chain reaction (PCR)-based method for bacterial identification. Using this method, which measures the resonance light-scattering signal of aptamer-conjugated gold nanoparticles, we successfully detected single S. aureus cell within 1.5 hours. This new platform technology may have potential to develop a rapid and sensitive bacterial testing at point-of-care. PMID:23689505

  6. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles.

    PubMed

    Chang, Yi-Chung; Yang, Chia-Ying; Sun, Ruei-Lin; Cheng, Yi-Feng; Kao, Wei-Chen; Yang, Pan-Chyr

    2013-01-01

    Staphylococcus aureus is one of the most important human pathogens, causing more than 500,000 infections in the United States each year. Traditional methods for bacterial culture and identification take several days, wasting precious time for patients who are suffering severe bacterial infections. Numerous nucleic acid-based detection methods have been introduced to address this deficiency; however, the costs and requirement for expensive equipment may limit the widespread use of such technologies. Thus, there is an unmet demand of new platform technology to improve the bacterial detection and identification in clinical practice. In this study, we developed a rapid, ultra-sensitive, low cost, and non-polymerase chain reaction (PCR)-based method for bacterial identification. Using this method, which measures the resonance light-scattering signal of aptamer-conjugated gold nanoparticles, we successfully detected single S. aureus cell within 1.5 hours. This new platform technology may have potential to develop a rapid and sensitive bacterial testing at point-of-care.

  7. Interdigitated microelectrode based impedance biosensor for detection of salmonella enteritidis in food samples

    NASA Astrophysics Data System (ADS)

    Kim, G.; Morgan, M.; Hahm, B. K.; Bhunia, A.; Mun, J. H.; Om, A. S.

    2008-03-01

    Salmonella enteritidis outbreaks continue to occur, and S. enteritidis-related outbreaks from various food sources have increased public awareness of this pathogen. Conventional methods for pathogens detection and identification are labor-intensive and take days to complete. Some immunological rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown great potential for the rapid detection of foodborne pathogens. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on avidin-biotin binding on the surface of the IME to form an active sensing layer. To increase the sensitivity of the sensor, three types of sensors that have different electrode gap sizes (2 μm, 5 μm, 10 μm) were fabricated and tested. The impedimetric biosensor could detect 103 CFU/mL of Salmonella in pork meat extract with an incubation time of 5 minutes. This method may provide a simple, rapid and sensitive method to detect foodborne pathogens.

  8. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR.

    PubMed

    Sergueev, Kirill V; He, Yunxiu; Borschel, Richard H; Nikolich, Mikeljon P; Filippov, Andrey A

    2010-06-28

    Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3) CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.

  9. Rapid Detection of Methicillin-Resistant Staphylococcus aureus Isolates by Turanose Fermentation Method

    PubMed Central

    Raeisi, Javad; Saifi, Mahnaz; Pourshafie, Mohammad Reza; Asadi Karam, Mohammad Reza; Mohajerani, Hamid Reza

    2015-01-01

    Background: Methicillin-Resistant Staphylococcus aureus (MRSA) is a major pathogen in the hospital and community settings. Rapid methods to diagnose S. aureus infections are sought by many researchers worldwide. The current study aimed to utilize a phenotypic method of turanose fermentation to identify methicillin-susceptible and resistant S. aureus. Objectives: The current study aimed to assay the turanose metabolism at different dilutions as a rapid phenotypic method to identify MRSA isolates. Materials and Methods: A total of 150 Staphylococcus isolates were collected from Tehran health centers. Staphylococcus aureus isolates were identified based on cultural characteristics, biochemical reactions and positive tube coagulase test. Methicillin resistance was determined by the disk diffusion method. The Polymerase Chain Reaction amplification was used to detect the mecA gene in MRSA isolates. All the methicillin-resistant and susceptible isolates were evaluated for turanose metabolism with 1%, 0.7% and 0.5% dilutions using the microplate method. Results: Out of the 150 staphylococcal isolates, 80 were identified as S. aureus. Among which 40 (50%) of the isolates were MRSA. The mecA gene was present in all S. aureus isolates resistant to methicillin. A considerable difference was also observed between susceptible and resistant isolates of S. aureus at a 0.7% dilution of turanose. Conclusions: Since it is highly important to rapidly detect MRSA isolates, especially in nosocomial infections, phenotypic methods may certainly be useful for this purpose. Resistance to methicillin in S. aureus shows a substantially increased ability in turanose metabolism. It is concluded that fermentation of turanose at 0.7% dilution could be a rapid detection method for primary screening of MRSA isolates. PMID:26495105

  10. Microwave-Accelerated Method for Ultra-Rapid Extraction of Neisseria gonorrhoeae DNA for Downstream Detection

    PubMed Central

    Melendez, Johan H.; Santaus, Tonya M.; Brinsley, Gregory; Kiang, Daniel; Mali, Buddha; Hardick, Justin; Gaydos, Charlotte A.; Geddes, Chris D.

    2016-01-01

    Nucleic acid-based detection of gonorrhea infections typically require a two-step process involving isolation of the nucleic acid, followed by the detection of the genomic target often involving PCR-based approaches. In an effort to improve on current detection approaches, we have developed a unique two-step microwave-accelerated approach for rapid extraction and detection of Neisseria gonorrhoeae (GC) DNA. Our approach is based on the use of highly-focused microwave radiation to rapidly lyse bacterial cells, release, and subsequently fragment microbial DNA. The DNA target is then detected by a process known as microwave-accelerated metal-enhanced fluorescence (MAMEF), an ultra-sensitive direct DNA detection analytical technique. In the present study, we show that highly focused microwaves at 2.45 GHz, using 12.3 mm gold film equilateral triangles, are able to rapidly lyse both bacteria cells and fragment DNA in a time- and microwave power-dependent manner. Detection of the extracted DNA can be performed by MAMEF, without the need for DNA amplification in less than 10 minutes total time or by other PCR-based approaches. Collectively, the use of a microwave-accelerated method for the release and detection of DNA represents a significant step forward towards the development of a point-of-care (POC) platform for detection of gonorrhea infections. PMID:27325503

  11. Rapid detection of carbapenemase-producing Klebsiella pneumoniae strains derived from blood cultures by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS).

    PubMed

    Sakarikou, Christina; Ciotti, Marco; Dolfa, Camilla; Angeletti, Silvia; Favalli, Cartesio

    2017-03-08

    Carbapenemase-producing Enterobacteriaceae (CPE), particularly carbapenemase-producing Klebsiella pneumoniae isolates, are important causative agents of nosocomial infections associated with significant mortality rates mostly in critical wards. The rapid detection and typing of these strains is critical either for surveillance purposes and to prevent outbreaks and optimize antibiotic therapy. In this study, the MALDI-TOF MS method was used to detect rapidly these isolates from blood cultures (BCs) and to obtain proteomic profiles enable to discriminate between carbapenemase-producing and non-carbapenemase-producing strains. Fifty-five K. pneumoniae strains were tested. Identification and carbapenemase-production detection assay using Ertapenem were performed both from bacterial pellets extracted directly from BCs flasks and from subcultures of these strains. For all isolates, a complete antimicrobial susceptibility testing and a genotypic characterization were performed. We found 100% agreement between the carbapenemase-producing profile generated by MALDI TOF MS and that obtained using conventional methods. The assay detected and discriminated different carbapenemase-producing K. pneumoniae isolates within 30 min to 3 h after incubation with Ertapenem. MALDI-TOF MS is a promising, rapid and economical method for the detection of carbapenemase-producing K. pneumoniae strains that could be successfully introduced into the routine diagnostic workflow of clinical microbiology laboratories.

  12. A Rapid and Simple Real-Time PCR Assay for Detecting Foodborne Pathogenic Bacteria in Human Feces.

    PubMed

    Hanabara, Yutaro; Ueda, Yutaka

    2016-11-22

    A rapid, simple method for detecting foodborne pathogenic bacteria in human feces is greatly needed. Here, we examined the efficacy of a method that employs a combination of a commercial PCR master mix, which is insensitive to PCR inhibitors, and a DNA extraction method which used sodium dodecyl benzene sulfonate (SDBS), and Tween 20 to counteract the inhibitory effects of SDBS on the PCR assay. This method could detect the target genes (stx1 and stx2 of enterohemorrhagic Escherichia coli, invA of Salmonella Enteritidis, tdh of Vibrio parahaemolyticus, gyrA of Campylobacter jejuni, ceuE of Campylobacter coli, SEA of Staphylococcus aureus, ces of Bacillus cereus, and cpe of Clostridium perfringens) in a fecal suspension containing 1.0 × 10 1 to 1.0 × 10 3 CFU/ml. Furthermore, the assay was neither inhibited nor influenced by individual differences among the fecal samples of 10 subjects or fecal concentration (40-160 mg/ml in the fecal suspension). When we attempted to detect the genes of pathogenic bacteria in 4 actual clinical cases, we found that this method was more sensitive than standard culture method. These results showed that this assay is a rapid, simple detection method for foodborne pathogenic bacteria in human feces.

  13. Rapid molecular diagnostics for multi-drug resistant tuberculosis in India.

    PubMed

    Ramachandran, Rajeswari; Muniyandi, M

    2018-03-01

    Rapid molecular diagnostic methods help in the detection of TB and Rifampicin resistance. These methods detect TB early, are accurate and play a crucial role in reducing the burden of drug resistant tuberculosis. Areas covered: This review analyses rapid molecular diagnostic tools used in the diagnosis of MDR-TB in India, such as the Line Probe Assay and GeneXpert. We have discussed the burden of MDR-TB and the impact of recent diagnostic tools on case detection and treatment outcomes. This review also discusses the costs involved in establishing these new techniques in India. Expert commentary: Molecular methods have considerable advantages for the programmatic management of drug resistant TB. These include speed, standardization of testing, potentially high throughput and reduced laboratory biosafety requirements. There is a desperate need for India to adopt modern, rapid, molecular tools with point-of-care tests being currently evaluated. New molecular diagnostic tests appear to be cost effective and also help in detecting missing cases. There is enough evidence to support the scaling up of these new tools in India.

  14. Lab on a chip sensor for rapid detection and antibiotic resistance determination of Staphylococcus aureus.

    PubMed

    Abeyrathne, Chathurika D; Huynh, Duc H; Mcintire, Thomas W; Nguyen, Thanh C; Nasr, Babak; Zantomio, Daniela; Chana, Gursharan; Abbott, Iain; Choong, Peter; Catton, Mike; Skafidas, Efstratios

    2016-03-21

    The Gram-positive bacterium, Staphylococcus aureus (S. aureus), is a major pathogen responsible for a variety of infectious diseases ranging from cellulitis to more serious conditions such as septic arthritis and septicaemia. Timely treatment with appropriate antibiotic therapy is essential to ensure clinical defervescence and to prevent further complications such as infective endocarditis or organ impairment due to septic shock. To date, initial antibiotic choice is empirical, using a "best guess" of likely organism and sensitivity- an approach adopted due to the lack of rapid identification methods for bacteria. Current culture based methods take up to 5 days to identify the causative bacterial pathogen and its antibiotic sensitivity. This paper provides proof of concept for a biosensor, based on interdigitated electrodes, to detect the presence of S. aureus and ascertain its sensitivity to flucloxacillin rapidly (within 2 hours) in a cost effective manner. The proposed method is label-free and uses non-faradic measurements. This is the first study to successfully employ interdigitated electrodes for the rapid detection of antibiotic resistance. The method described has important potential outcomes of faster definitive antibiotic treatment and more rapid clinical response to treatment.

  15. [Microbiology--laboratory examinations for bacterias].

    PubMed

    Hen, Renjun; Imafuku, Yuji; Yoshida, Hiroshi

    2002-11-01

    As it has been required to identify pathogenic microbes in shorter times, simple and rapid methods have been developed and used. Here, we summarized the present situation of rapid diagnostic testing in clinical microbiology in Japan, and also presented our results on PBP2' detection. The rapid test kits available in Japan for E. coli, Helicobacter pylori, Salmonella, Streptococcus and Staphylococcus aureus were described. Rapid examination methods are based mainly on immunologic reactions, which included slide agglutination using latex particle, immunochromatography and ELISA. Times required for the identification are 10 to 15 minutes. Moreover, rapid test kits employing PCR are also marketed. Further, we evaluated MRSA-LA "Seiken" which is a rapid detection kit for PBP2' produced by MRSA. The test was shown to be highly sensitive and specific. For the rapid identification of pathogenic microbes, simple and rapid test kits described here will be used more in clinical diagnosis.

  16. Detection of Salmonella enterica in Meat in Less than 5 Hours by a Low-Cost and Noncomplex Sample Preparation Method

    PubMed Central

    Hoorfar, J.; Hansen, F.; Christensen, J.; Mansdal, S.; Josefsen, M. H.

    2016-01-01

    ABSTRACT Salmonella is recognized as one of the most important foodborne bacteria and has wide health and socioeconomic impacts worldwide. Fresh pork meat is one of the main sources of Salmonella, and efficient and fast methods for detection are therefore necessary. Current methods for Salmonella detection in fresh meat usually include >16 h of culture enrichment, in a few cases <12 h, thus requiring at least two working shifts. Here, we report a rapid (<5 h) and high-throughput method for screening of Salmonella in samples from fresh pork meat, consisting of a 3-h enrichment in standard buffered peptone water and a real-time PCR-compatible sample preparation method based on filtration, centrifugation, and enzymatic digestion, followed by fast-cycling real-time PCR detection. The method was validated in an unpaired comparative study against the Nordic Committee on Food Analysis (NMKL) reference culture method 187. Pork meat samples (n = 140) were either artificially contaminated with Salmonella at 0, 1 to 10, or 10 to 100 CFU/25 g of meat or naturally contaminated. Cohen's kappa for the degree of agreement between the rapid method and the reference was 0.64, and the relative accuracy, sensitivity, and specificity for the rapid method were 81.4, 95.1, and 97.9%, respectively. The 50% limit of detections (LOD50s) were 8.8 CFU/25 g for the rapid method and 7.7 CFU/25 g for the reference method. Implementation of this method will enable faster release of Salmonella low-risk meat, providing savings for meat producers, and it will help contribute to improved food safety. IMPORTANCE While the cost of analysis and hands-on time of the presented rapid method were comparable to those of reference culture methods, the fast product release by this method can provide the meat industry with a competitive advantage. Not only will the abattoirs save costs for work hours and cold storage, but consumers and retailers will also benefit from fresher meat with a longer shelf life. Furthermore, the presented sample preparation might be adjusted for application in the detection of other pathogenic bacteria in different sample types. PMID:27986726

  17. Detection of Salmonella enterica in Meat in Less than 5 Hours by a Low-Cost and Noncomplex Sample Preparation Method.

    PubMed

    Fachmann, M S R; Löfström, C; Hoorfar, J; Hansen, F; Christensen, J; Mansdal, S; Josefsen, M H

    2017-03-01

    Salmonella is recognized as one of the most important foodborne bacteria and has wide health and socioeconomic impacts worldwide. Fresh pork meat is one of the main sources of Salmonella , and efficient and fast methods for detection are therefore necessary. Current methods for Salmonella detection in fresh meat usually include >16 h of culture enrichment, in a few cases <12 h, thus requiring at least two working shifts. Here, we report a rapid (<5 h) and high-throughput method for screening of Salmonella in samples from fresh pork meat, consisting of a 3-h enrichment in standard buffered peptone water and a real-time PCR-compatible sample preparation method based on filtration, centrifugation, and enzymatic digestion, followed by fast-cycling real-time PCR detection. The method was validated in an unpaired comparative study against the Nordic Committee on Food Analysis (NMKL) reference culture method 187. Pork meat samples ( n = 140) were either artificially contaminated with Salmonella at 0, 1 to 10, or 10 to 100 CFU/25 g of meat or naturally contaminated. Cohen's kappa for the degree of agreement between the rapid method and the reference was 0.64, and the relative accuracy, sensitivity, and specificity for the rapid method were 81.4, 95.1, and 97.9%, respectively. The 50% limit of detections (LOD 50 s) were 8.8 CFU/25 g for the rapid method and 7.7 CFU/25 g for the reference method. Implementation of this method will enable faster release of Salmonella low-risk meat, providing savings for meat producers, and it will help contribute to improved food safety. IMPORTANCE While the cost of analysis and hands-on time of the presented rapid method were comparable to those of reference culture methods, the fast product release by this method can provide the meat industry with a competitive advantage. Not only will the abattoirs save costs for work hours and cold storage, but consumers and retailers will also benefit from fresher meat with a longer shelf life. Furthermore, the presented sample preparation might be adjusted for application in the detection of other pathogenic bacteria in different sample types. Copyright © 2017 American Society for Microbiology.

  18. Detection of dopamine in dopaminergic cell using nanoparticles-based barcode DNA analysis.

    PubMed

    An, Jeung Hee; Kim, Tae-Hyung; Oh, Byung-Keun; Choi, Jeong Woo

    2012-01-01

    Nanotechnology-based bio-barcode-amplification analysis may be an innovative approach to dopamine detection. In this study, we evaluated the efficacy of this bio-barcode DNA method in detecting dopamine from dopaminergic cells. Herein, a combination DNA barcode and bead-based immunoassay for neurotransmitter detection with PCR-like sensitivity is described. This method relies on magnetic nanoparticles with antibodies and nanoparticles that are encoded with DNA, and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated in order to remove the conjugated barcode DNA. The DNA barcodes were then identified via PCR analysis. The dopamine concentration in dopaminergic cells can be readily and rapidly detected via the bio-barcode assay method. The bio-barcode assay method is, therefore, a rapid and high-throughput screening tool for the detection of neurotransmitters such as dopamine.

  19. A semi-automated method for rapid detection of ripple events on interictal voltage discharges in the scalp electroencephalogram

    PubMed Central

    Chu, Catherine. J.; Chan, Arthur; Song, Dan; Staley, Kevin J.; Stufflebeam, Steven M.; Kramer, Mark A.

    2017-01-01

    Summary Background High frequency oscillations are emerging as a clinically important indicator of epileptic networks. However, manual detection of these high frequency oscillations is difficult, time consuming, and subjective, especially in the scalp EEG, thus hindering further clinical exploration and application. Semi-automated detection methods augment manual detection by reducing inspection to a subset of time intervals. We propose a new method to detect high frequency oscillations that co-occur with interictal epileptiform discharges. New Method The new method proceeds in two steps. The first step identifies candidate time intervals during which high frequency activity is increased. The second step computes a set of seven features for each candidate interval. These features require that the candidate event contain a high frequency oscillation approximately sinusoidal in shape, with at least three cycles, that co-occurs with a large amplitude discharge. Candidate events that satisfy these features are stored for validation through visual analysis. Results We evaluate the detector performance in simulation and on ten examples of scalp EEG data, and show that the proposed method successfully detects spike-ripple events, with high positive predictive value, low false positive rate, and high intra-rater reliability. Comparison with Existing Method The proposed method is less sensitive than the existing method of visual inspection, but much faster and much more reliable. Conclusions Accurate and rapid detection of high frequency activity increases the clinical viability of this rhythmic biomarker of epilepsy. The proposed spike-ripple detector rapidly identifies candidate spike-ripple events, thus making clinical analysis of prolonged, multielectrode scalp EEG recordings tractable. PMID:27988323

  20. Rapid epidemiologic assessment of glucose-6-phosphate dehydrogenase deficiency in malaria-endemic areas in Southeast Asia using a novel diagnostic kit.

    PubMed

    Jalloh, A; Tantular, I S; Pusarawati, S; Kawilarang, A P; Kerong, H; Lin, K; Ferreira, M U; Matsuoka, H; Arai, M; Kita, K; Kawamoto, F

    2004-05-01

    We recently reported a new rapid screening method for glucose-6-phosphate dehydrogenase (G6PD) deficiency. This method incorporates a new formazan substrate (WST-8) and is capable of detecting heterozygous females both qualitatively and quantitatively. Here, we report its evaluation during field surveys at three malaria centres and in malaria-endemic villages of Myanmar and Indonesia, either alone or in combination with a rapid on-site diagnosis of malaria. A total of 57 severe (45 males and 12 females) and 34 mild (five males and 29 females) cases of G6PD deficiency were detected among 855 subjects in Myanmar whilst 30 severe (25 males and five females) and 23 mild (six males and 17 females) cases were found among 1286 subjects in Indonesia. In all cases, severe deficiency was confirmed with another formazan method but due to limitations in its detection threshold, mild cases were misdiagnosed as G6PD-normal by this latter method. Our results indicate that the novel method can qualitatively detect both severely deficient subjects as well as heterozygous females in the field. The antimalarial drug, primaquine, was safely prescribed to Plasmodium vivax-infected patients in Myanmar. Our new, rapid screening method may be essential for the diagnosis of G6PD deficiency particularly in rural areas without electricity, and can be recommended for use in malaria control programmes.

  1. Facile and Rapid Growth of Nanostructured Ln-BTC Metal-Organic Framework Films by Electrophoretic Deposition for Explosives sensing in Gas and Cr 3+ Detection in Solution.

    PubMed

    Feng, Ji-Fei; Yang, Xue; Gao, Shui-Ying; Shi, Jianlin; Cao, Rong

    2017-12-19

    Until now, it has been a challenge to prepare lanthanide metal-organic framework films on traditional substrates, like zinc plate, indium oxide (ITO), and fluorine-doped tin oxide (FTO) glasses in a rapid and facile method. In this paper, continuous and dense Ln-BTC MOFs films on unmodified low-cost substrates have been rapidly and easily fabricated though the newly developed electrophoretic deposition (EPD) method in 5 min. Moreover, the as-prepared luminescent films were successfully used for the detection of nitrobenzene (NB), trinitrotoluene (TNT) in gas phases, as well as NB, Cr 3+ ions for detection in solution.

  2. Drinking water test methods in crisis-afflicted areas: comparison of methods under field conditions.

    PubMed

    Merle, Roswitha; Bleul, Ingo; Schulenburg, Jörg; Kreienbrock, Lothar; Klein, Günter

    2011-11-01

    To simplify the testing of drinking water in crisis-afflicted areas (as in Kosovo in 2007), rapid test methods were compared with the standard test. For Escherichia coli and coliform pathogens, rapid tests were made available: Colilert(®)-18, P/A test with 4-methylumbelliferyl-β-D-glucoronid, and m-Endo Broth. Biochemical differentiation was carried out by Enterotube™ II. Enterococci were determined following the standard ISO test and by means of Enterolert™. Four hundred ninety-nine water samples were tested for E. coli and coliforms using four methods. Following the standard method, 20.8% (n=104) of the samples contained E. coli, whereas the rapid tests detected between 19.6% (m-Endo Broth, 92.0% concordance) and 20.0% (concordance: 93.6% Colilert-18 and 94.8% P/A-test) positive samples. Regarding coliforms, the percentage of concordant results ranged from 98.4% (P/A-test) to 99.0% (Colilert-18). Colilert-18 and m-Endo Broth detected even more positive samples than the standard method did. Enterococci were detected in 93 of 573 samples by the standard method, but in 92 samples by Enterolert (concordance: 99.5%). Considering the high-quality equipment and time requirements of the standard method, the use of rapid tests in crisis-afflicted areas is sufficiently reliable.

  3. Rapid Methods for the Detection of General Fecal Indicators

    EPA Science Inventory

    Specified that EPA should develop: appropriate and effective indicators for improving detection in a timely manner of pathogens in coastal waters appropriate, accurate, expeditious and cost-effective methods for the timely detection of pathogens in coastal waters

  4. Rapid Microcystin Determination Using a Paper Spray Ionization Method with a Time-of-Flight Mass Spectrometry System.

    PubMed

    Zhu, Xiaoqiang; Huang, Zhengxu; Gao, Wei; Li, Xue; Li, Lei; Zhu, Hui; Mo, Ting; Huang, Bao; Zhou, Zhen

    2016-07-13

    The eutrophication of surface water sources and climate changes have resulted in an annual explosion of cyanobacterial blooms in many irrigating and drinking water resources. To decrease health risks to the public, a rapid real time method for the synchronous determination of two usually harmful microcystins (MC-RR and MC-LR) in environmental water samples was built by employing a paper spray ionization method coupled with a time-of-flight mass spectrometer system. With this approach, direct analysis of microcystin mixtures without sample preparation has been achieved. Rapid detection was performed, simulating the release process of microcystins in reservoir water samples, and the routine detection frequency was every three minutes. The identification time of microcystins was reduced from several hours to a few minutes. The limit of detection is 1 μg/L, and the limit of quantitation is 3 μg/L. This method displays the ability for carrying out rapid, direct, and high-throughput experiments for determination of microcystins, and it would be of significant interest for environmental and food safety applications.

  5. A method for the rapid detection of urinary tract infections.

    PubMed

    Olsson, Carl; Kapoor, Deepak; Howard, Glenn

    2012-04-01

    To determine the reliability of a rapid detection method compared with the reference standard streaked agar plate in diagnosing the presence of urinary tract infection (UTI). De-identified clean catch urine specimens from 980 office visit patients were processed during a 30-day period. Classic 1-μL and 10-μL streaked agar plates were used in parallel with the new CultureStat Rapid UTI Detection System (CSRUDS). Urine results were evaluated using the CSRUDS at 30 and 90 minutes after collection. A comparative analysis of the subsequent plate results versus the CSRUDS results was achieved for 973 of these samples. Positive UTI conditions were accurately identified by both CSRUDS and agar streak plate methods. CSRUDS accurately identified UTI negative conditions with 99.3% reliability at 90 minutes. The negative predictive value of CSRUDS was 99.2% at 30 minutes. Current agar plating for first-round UTI screening has substantial documented problems that can negatively affect an accurate and timely UTI diagnosis. A novel rapid detection system, the CSRUDS provides UTI negative/positive same-day results in ≤ 90 minutes from the start of test. Such rapidly available results will enable more accurate and timely clinical decisions to be made in the urology office, particularly regarding infection status before urologic instrumentation. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Transversely Excited Atmospheric CO2 Laser-Induced Plasma Spectroscopy for the Detection of Heavy Metals in Soil

    NASA Astrophysics Data System (ADS)

    Khumaeni, A.; Sugito, H.; Setia Budi, W.; Yoyo Wardaya, A.

    2018-01-01

    A rapid detection of heavy metals in soil was presented by the metal-assisted gas plasma method using specific characteristics of a pulsed, transversely excited atmospheric (TEA) CO2 laser. The soil particles were placed in a hole made of acrylic plate. The sample was covered by a to prevent the soil particles from being blown off. The mesh also functioned to initiate a luminous plasma. When a TEA CO2 laser (1500 mJ, 200 ns) was focused on the soil sample, passing through the metal mesh, some of the laser energy was used to generate the gas plasma on the mesh surface, and the remaining laser energy was employed to ablate the soil particles. The fine, ablated soil particles moved into the gas plasma region to be dissociated and excited. Using this technique, analysis can be made with reduced sample pretreatment, and therefore a rapid analysis can be performed efficiently. The results proved that the signal to noise ratio (S/N) of the emission spectral lines is much better for the case of the present method (mesh method) compared to the case of standard laser-induced breakdown spectroscopy using the pellet method. Rapid detection of heavy metal elements in soil has been successfully carried out. The detection limits of Cu and Hg in soil were estimated to be 3 and 10 mg/kg, respectively. The present method has good potential for rapid and sensitive detection of heavy metals in soil samples.

  7. Broad-range PCR coupled with mass-spectrometry for the detection of Mycobacterium tuberculosis drug resistance

    PubMed Central

    Florea, Dragoş; Oţelea, Dan; Olaru, Ioana D.; Hristea, Adriana

    2016-01-01

    Background The need to limit the spread of drug-resistant Mycobacterium tuberculosis requires rapid detection of resistant strains. The present study aimed to evaluate a commercial assay using broad-range PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) for the rapid detection of isoniazid (INH) and rifampin (RIF) resistance in M. tuberculosis strains isolated from Romanian patients with pulmonary tuberculosis. Methods PCR/ESI-MS was used to detect genotypic resistance to RIF and INH in a panel of 63 M. tuberculosis isolates phenotypically characterized using the absolute concentration method on Löwenstein-Jensen medium. Results Thirty-eight (60%) strains were susceptible to both drugs, 22 (35%) were RIF and INH resistant, one was INH mono-resistant and two were RIF mono-resistant. The sensitivity for INH and RIF resistance mutations detection were 100% and 92% respectively, with a specificity of more than 95% for each drug. Conclusion PCR/ESI-MS is a good method for the detection of RIF and INH resistance and might represent an alternative to other rapid diagnostic tests for the detection of genetic markers of resistance in M. tuberculosis isolates. PMID:27019827

  8. Recombinase Polymerase Amplification (RPA) of CaMV-35S Promoter and nos Terminator for Rapid Detection of Genetically Modified Crops

    PubMed Central

    Xu, Chao; Li, Liang; Jin, Wujun; Wan, Yusong

    2014-01-01

    Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37–42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15–25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops. PMID:25310647

  9. [Rapid detection of four antipertensive chemicals adulterated in traditional Chinese medicine for hypertension using TLC-SERS].

    PubMed

    Zhu, Qing-Xia; Cao, Yong-Bing; Cao, Ying-Ying; Lu, Feng

    2014-04-01

    A novel facile method for on-site detection of antipertensive chemicals (e. g. nicardipine hydrochloride, doxazosin mesylate, propranolol hydrochloride, and hydrochlorothiazide) adulterated in traditional Chinese medicine for hypertension using thin layer chromatography (TLC) combined with surface enhanced Raman spectroscopy (SERS) was reported in the present paper. Analytes and pharmaceutical matrices was separated by TLC, then SERS method was used to complete qualitative identification of trace substances on TLC plate. By optimizing colloidal silver concentration and developing solvent, as well as exploring the optimal limits of detection (LOD), the initially established TLC-SERS method was used to detect real hypertension Chinese pharmaceuticals. The results showed that this method had good specificity for the four chemicals and high sensitivity with a limit of detection as lower as to 0.005 microg. Finally, two of the ten antipertensive drugs were detected to be adulterated with chemicals. This simple and fast method can realize rapid detection of chemicals illegally for doping in antipertensive Chinese pharmaceuticals, and would have good prospects in on-site detection of chemicals for doping in Chinese pharmaceuticals.

  10. Recombinase polymerase amplification (RPA) of CaMV-35S promoter and nos terminator for rapid detection of genetically modified crops.

    PubMed

    Xu, Chao; Li, Liang; Jin, Wujun; Wan, Yusong

    2014-10-10

    Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37-42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15-25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops.

  11. Rapid detection of Ganoderma-infected oil palms by microwave ergosterol extraction with HPLC and TLC.

    PubMed

    Muniroh, M S; Sariah, M; Zainal Abidin, M A; Lima, N; Paterson, R R M

    2014-05-01

    Detection of basal stem rot (BSR) by Ganoderma of oil palms was based on foliar symptoms and production of basidiomata. Enzyme-Linked Immunosorbent Assays-Polyclonal Antibody (ELISA-PAB) and PCR have been proposed as early detection methods for the disease. These techniques are complex, time consuming and have accuracy limitations. An ergosterol method was developed which correlated well with the degree of infection in oil palms, including samples growing in plantations. However, the method was capable of being optimised. This current study was designed to develop a simpler, more rapid and efficient ergosterol method with utility in the field that involved the use of microwave extraction. The optimised procedure involved extracting a small amount of Ganoderma, or Ganoderma-infected oil palm suspended in low volumes of solvent followed by irradiation in a conventional microwave oven at 70°C and medium high power for 30s, resulting in simultaneous extraction and saponification. Ergosterol was detected by thin layer chromatography (TLC) and quantified using high performance liquid chromatography with diode array detection. The TLC method was novel and provided a simple, inexpensive method with utility in the field. The new method was particularly effective at extracting high yields of ergosterol from infected oil palm and enables rapid analysis of field samples on site, allowing infected oil palms to be treated or culled very rapidly. Some limitations of the method are discussed herein. The procedures lend themselves to controlling the disease more effectively and allowing more effective use of land currently employed to grow oil palms, thereby reducing pressure to develop new plantations. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Rapid quantification of viable Legionella in nuclear cooling tower waters using filter cultivation, fluorescent in situ hybridization and solid-phase cytometry.

    PubMed

    Baudart, J; Guillaume, C; Mercier, A; Lebaron, P; Binet, M

    2015-05-01

    To develop a rapid and sensitive method to quantify viable Legionella spp. in cooling tower water samples. A rapid, culture-based method capable of quantifying as few as 600 Legionella microcolonies per litre within 2 days in industrial waters was developed. The method combines a short cultivation step of microcolonies on GVPC agar plate, specific detection of Legionella cells by a fluorescent in situ hybridization (FISH) approach, and a sensitive enumeration using a solid-phase cytometer. Following optimization of the cultivation conditions, the qualitative and quantitative performance of the method was assessed and the method was applied to 262 nuclear power plant cooling water samples. The performance of this method was in accordance with the culture method (NF-T 90-431) for Legionella enumeration. The rapid detection of viable Legionella in water is a major concern to the effective monitoring of this pathogenic bacterium in the main water sources involved in the transmission of legionellosis infection (Legionnaires' disease). The new method proposed here appears to be a robust, efficient and innovative means for rapidly quantifying cultivable Legionella in cooling tower water samples within 48 h. © 2015 The Society for Applied Microbiology.

  13. Development of a loop-mediated isothermal amplification method for rapid campylobacter jejuni detection

    USDA-ARS?s Scientific Manuscript database

    Introduction: Campylobacter jejuni is the leading foodborne pathogen that causes human bacterial gastroenteritis worldwide. Poultry products are regarded as a major source for human infection. Early, rapid detection of this microorganism in poultry products is necessary for contamination control ...

  14. Establishment and application of cross-priming isothermal amplification coupled with lateral flow dipstick (CPA-LFD) for rapid and specific detection of red-spotted grouper nervous necrosis virus.

    PubMed

    Su, Zi Dan; Shi, Cheng Yin; Huang, Jie; Shen, Gui Ming; Li, Jin; Wang, Sheng Qiang; Fan, Chao

    2015-09-26

    Red-spotted grouper nervous necrosis virus (RGNNV) is an important pathogen that causes diseases in many species of fish in marine aquaculture. The larvae and juveniles are more easily infected by RGNNV and the cumulative mortality is as high as 100 % after being infected with RGNNV. This virus imposes a serious threat to aquaculture of grouper fry. This study aimed to establish a simple, accurate and highly sensitive method for rapid detection of RGNNV on the spot. In this study, the primers specifically targeting RGNNV were designed and cross-priming isothermal amplification (CPA) system was established. The product amplified by CPA was detected through visualization with lateral flow dipstick (LFD). Three important parameters, including the amplification temperature, the concentration of dNTPs and the concentration of Mg(2+) for the CPA system, were optimized. The sensitivity and specificity of this method for RGNNV were tested and compared with those of the conventional RT-PCR and real-time quantitative RT-PCR (qRT-PCR). The optimized conditions for the CPA amplification system were determined as follows: the optimal amplification temperature, the optimized concentration of dNTPs and the concentration for Mg(2+) were 69 °C, 1.2 mmol/L and 5 mmol/L, respectively. The lowest limit of detection (LLOD) of this method for RGNNV was 10(1) copies/μL of RNA sample, which was 10 times lower than that of conventional RT-PCR and comparable to that of RT-qPCR. This method was specific for RGNNV in combination with SJNNV and had no cross-reactions with 8 types of virus and bacterial strains tested. This method was successfully applied to detect RGNNV in fish samples. This study established a CPA-LFD method for detection of RGNNV. This method is simple and rapid with high sensitivity and good specificity and can be widely applied for rapid detection of this virus on the spot.

  15. Apparatus and method for rapid separation and detection of hydrocarbon fractions in a fluid stream

    DOEpatents

    Sluder, Charles S.; Storey, John M.; Lewis, Sr., Samuel A.

    2013-01-22

    An apparatus and method for rapid fractionation of hydrocarbon phases in a sample fluid stream are disclosed. Examples of the disclosed apparatus and method include an assembly of elements in fluid communication with one another including one or more valves and at least one sorbent chamber for removing certain classifications of hydrocarbons and detecting the remaining fractions using a detector. The respective ratios of hydrocarbons are determined by comparison with a non separated fluid stream.

  16. Rapid and Highly Sensitive Detection of Lead Ions in Drinking Water Based on a Strip Immunosensor

    PubMed Central

    Kuang, Hua; Xing, Changrui; Hao, Changlong; Liu, Liqiang; Wang, Libing; Xu, Chuanlai

    2013-01-01

    In this study, we have first developed a rapid and sensitive strip immunosensor based on two heterogeneously-sized gold nanoparticles (Au NPs) probes for the detection of trace lead ions in drinking water. The sensitivity was 4-fold higher than that of the conventional LFA under the optimized conditions. The visual limit of detection (LOD) of the amplified method for qualitative detection lead ions was 2 ng/mL and the LOD for semi-quantitative detection could go down to 0.19 ng/mL using a scanning reader. The method suffered from no interference from other metal ions and could be used to detect trace lead ions in drinking water without sample enrichment. The recovery of the test samples ranged from 96% to 103%. As the detection method could be accomplished within 15 min, this method could be used as a potential tool for preliminary monitoring of lead contamination in drinking water. PMID:23539028

  17. A photometric high-throughput method for identification of electrochemically active bacteria using a WO3 nanocluster probe.

    PubMed

    Yuan, Shi-Jie; He, Hui; Sheng, Guo-Ping; Chen, Jie-Jie; Tong, Zhong-Hua; Cheng, Yuan-Yuan; Li, Wen-Wei; Lin, Zhi-Qi; Zhang, Feng; Yu, Han-Qing

    2013-01-01

    Electrochemically active bacteria (EAB) are ubiquitous in environment and have important application in the fields of biogeochemistry, environment, microbiology and bioenergy. However, rapid and sensitive methods for EAB identification and evaluation of their extracellular electron transfer ability are still lacking. Herein we report a novel photometric method for visual detection of EAB by using an electrochromic material, WO(3) nanoclusters, as the probe. This method allowed a rapid identification of EAB within 5 min and a quantitative evaluation of their extracellular electron transfer abilities. In addition, it was also successfully applied for isolation of EAB from environmental samples. Attributed to its rapidness, high reliability, easy operation and low cost, this method has high potential for practical implementation of EAB detection and investigations.

  18. Microwave-accelerated method for ultra-rapid extraction of Neisseria gonorrhoeae DNA for downstream detection.

    PubMed

    Melendez, Johan H; Santaus, Tonya M; Brinsley, Gregory; Kiang, Daniel; Mali, Buddha; Hardick, Justin; Gaydos, Charlotte A; Geddes, Chris D

    2016-10-01

    Nucleic acid-based detection of gonorrhea infections typically require a two-step process involving isolation of the nucleic acid, followed by detection of the genomic target often involving polymerase chain reaction (PCR)-based approaches. In an effort to improve on current detection approaches, we have developed a unique two-step microwave-accelerated approach for rapid extraction and detection of Neisseria gonorrhoeae (gonorrhea, GC) DNA. Our approach is based on the use of highly focused microwave radiation to rapidly lyse bacterial cells, release, and subsequently fragment microbial DNA. The DNA target is then detected by a process known as microwave-accelerated metal-enhanced fluorescence (MAMEF), an ultra-sensitive direct DNA detection analytical technique. In the current study, we show that highly focused microwaves at 2.45 GHz, using 12.3-mm gold film equilateral triangles, are able to rapidly lyse both bacteria cells and fragment DNA in a time- and microwave power-dependent manner. Detection of the extracted DNA can be performed by MAMEF, without the need for DNA amplification, in less than 10 min total time or by other PCR-based approaches. Collectively, the use of a microwave-accelerated method for the release and detection of DNA represents a significant step forward toward the development of a point-of-care (POC) platform for detection of gonorrhea infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A Direct and Rapid Method to Determine Cyanide in Urine by Capillary Electrophoresis

    PubMed Central

    Zhang, Qiyang; Maddukuri, Naveen; Gong, Maojun

    2015-01-01

    Cyanides are poisonous chemicals that widely exist in nature and industrial processes as well as accidental fires. Rapid and accurate determination of cyanide exposure would facilitate forensic investigation, medical diagnosis, and chronic cyanide monitoring. Here, a rapid and direct method was developed for the determination of cyanide ions in urinary samples. This technique was based on an integrated capillary electrophoresis system coupled with laser-induced fluorescence (LIF) detection. Cyanide ions were derivatized with naphthalene-2,3-dicarboxaldehyde (NDA) and a primary amine (glycine) for LIF detection. Three separate reagents, NDA, glycine, and cyanide sample, were mixed online, which secured uniform conditions between samples for cyanide derivatization and reduced the risk of precipitation formation of mixtures. Conditions were optimized; the derivatization was completed in 2-4 minutes, and the separation was observed in 25 s. The limit of detection (LOD) was 4.0 nM at 3-fold signal-to-noise ratio for standard cyanide in buffer. The cyanide levels in urine samples from smokers and non-smokers were determined by using the method of standard addition, which demonstrated significant difference of cyanide levels in urinary samples from the two groups of people. The developed method was rapid and accurate, and is anticipated to be applicable to cyanide detection in waste water with appropriate modification. PMID:26342870

  20. A Rapid Protocol of Crude RNA/DNA Extraction for RT-qPCR Detection and Quantification of 'Candidatus Phytoplasma prunorum'

    PubMed Central

    Minguzzi, Stefano; Terlizzi, Federica; Lanzoni, Chiara; Poggi Pollini, Carlo; Ratti, Claudio

    2016-01-01

    Many efforts have been made to develop a rapid and sensitive method for phytoplasma and virus detection. Taking our cue from previous works, different rapid sample preparation methods have been tested and applied to Candidatus Phytoplasma prunorum (‘Ca. P. prunorum’) detection by RT-qPCR. A duplex RT-qPCR has been optimized using the crude sap as a template to simultaneously amplify a fragment of 16S rRNA of the pathogen and 18S rRNA of the host plant. The specific plant 18S rRNA internal control allows comparison and relative quantification of samples. A comparison between DNA and RNA contribution to qPCR detection is provided, showing higher contribution of the latter. The method presented here has been validated on more than a hundred samples of apricot, plum and peach trees. Since 2013, this method has been successfully applied to monitor ‘Ca. P. prunorum’ infections in field and nursery. A triplex RT-qPCR assay has also been optimized to simultaneously detect ‘Ca. P. prunorum’ and Plum pox virus (PPV) in Prunus. PMID:26742106

  1. A Rapid, Presumptive Procedure for the Detection of Salmonella in Foods and Food Ingredients

    PubMed Central

    Hoben, D. A.; Ashton, D. H.; Peterson, A. C.

    1973-01-01

    A rapid detection procedure was developed in which a lysine-iron-cystine-neutral red (LICNR) broth medium, originally described by Hargrove et al. in 1971, was modified and used to detect the presence of viable Salmonella organisms in a variety of foods, food ingredients, and feed materials by using a two-step enrichment technique. Tetrathionate broth was used to enrich samples with incubation at 41 C for 20 hr, followed by transfer to LICNR broth and incubation at 37 C for 24 hr for further enrichment and for the detection of Salmonella organisms by color change. One hundred ten samples representing 18 different sample types were evaluated for the presence of viable Salmonella. Ninety-four percent of the samples found to be presumptive positive by this method were confirmed as positive by a culture method. Fluorescent-antibody results also compared closely. A second study was conducted under quality-control laboratory conditions by using procedures currently employed for Salmonella detection. One hundred forty-three samples representing 19 different sample types were evaluated for the presence of viable Salmonella. No false negatives were observed with the rapid-detection method. The usefulness of the LICNR broth procedure as a screening technique to eliminate negative samples rapidly and to identify presumptive positive samples for the presence of viable Salmonella organisms was established in this laboratory. PMID:4568884

  2. Development of a Novel, Rapid Multiplex Polymerase Chain Reaction Assay for the Detection and Differentiation of Salmonella enterica Serovars Enteritidis and Typhimurium Using Ultra-Fast Convection Polymerase Chain Reaction.

    PubMed

    Kim, Tae-Hoon; Hwang, Hyun Jin; Kim, Jeong Hee

    2017-10-01

    Salmonella enterica serovars Enteritidis and Typhimurium are the most common causative agents of human nontyphoidal salmonellosis. The rapid detection and timely treatment of salmonellosis are important to increase the curative ratio and prevent spreading of the disease. In this study, we developed a rapid multiplex convection polymerase chain reaction (PCR) method to detect Salmonella spp. and differentiate Salmonella Enteritidis and Salmonella Typhimurium. We used the invA gene for Salmonella spp. detection. Salmonella Enteritidis-specific primers and Salmonella Typhimurium-specific primers were designed using the insertion element (IE) and spy genes, respectively. The primer set for Salmonella spp. detection clearly detected both Salmonella Enteritidis and Salmonella Typhimurium after a 21-min amplification reaction. Serovar-specific primer sets for Salmonella Enteritidis and Salmonella Typhimurium specifically detected each target species in a 21-min amplification reaction. We were able to detect Salmonella spp. at a single copy level in the singleplex mode. The limits of detection for Salmonella Enteritidis and Salmonella Typhimurium were 30 copies in both the singleplex and multiplex modes. The PCR run time could be reduced to 10.5 min/15 cycles. The multiplex convection PCR method developed in this study could detect the Salmonella spp. Salmonella Enteritidis and Salmonella Typhimurium in artificially contaminated milk with as few as 10 0 colony-forming unit/mL after 4-h enrichment. The PCR assay developed in this study provides a rapid, specific, and sensitive method for the detection of Salmonella spp. and the differentiation of Salmonella Enteritidis and Salmonella Typhimurium.

  3. Rapid Detection of Pathogenic Bacteria from Fresh Produce by Filtration and Surface-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xiaomeng; Han, Caiqin; Chen, Jing; Huang, Yao-Wen; Zhao, Yiping

    2016-04-01

    The detection of Salmonella Poona from cantaloupe cubes and E. coli O157:H7 from lettuce has been explored by using a filtration method and surface-enhanced Raman spectroscopy (SERS) based on vancomycin-functionalized silver nanorod array substrates. It is found that with a two-step filtration process, the limit of detection (LOD) of Salmonella Poona from cantaloupe cubes can be as low as 100 CFU/mL in less than 4 h, whereas the chlorophyll in the lettuce causes severe SERS spectral interference. To improve the LOD of lettuce, a three-step filtration method with a hydrophobic filter is proposed. The hydrophobic filter can effectively eliminate the interferences from chlorophyll and achieve a LOD of 1000 CFU/mL detection of E. coli O157:H7 from lettuce samples within 5 h. With the low LODs and rapid detection time, the SERS biosensing platform has demonstrated its potential as a rapid, simple, and inexpensive means for pathogenic bacteria detection from fresh produce.

  4. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOEpatents

    Funsten, Herbert O.; McComas, David J.

    1997-01-01

    Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the optical emission produced thereby is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

  5. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOEpatents

    Funsten, Herbert O.; McComas, David J.

    1999-01-01

    Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

  6. A semi-automated method for rapid detection of ripple events on interictal voltage discharges in the scalp electroencephalogram.

    PubMed

    Chu, Catherine J; Chan, Arthur; Song, Dan; Staley, Kevin J; Stufflebeam, Steven M; Kramer, Mark A

    2017-02-01

    High frequency oscillations are emerging as a clinically important indicator of epileptic networks. However, manual detection of these high frequency oscillations is difficult, time consuming, and subjective, especially in the scalp EEG, thus hindering further clinical exploration and application. Semi-automated detection methods augment manual detection by reducing inspection to a subset of time intervals. We propose a new method to detect high frequency oscillations that co-occur with interictal epileptiform discharges. The new method proceeds in two steps. The first step identifies candidate time intervals during which high frequency activity is increased. The second step computes a set of seven features for each candidate interval. These features require that the candidate event contain a high frequency oscillation approximately sinusoidal in shape, with at least three cycles, that co-occurs with a large amplitude discharge. Candidate events that satisfy these features are stored for validation through visual analysis. We evaluate the detector performance in simulation and on ten examples of scalp EEG data, and show that the proposed method successfully detects spike-ripple events, with high positive predictive value, low false positive rate, and high intra-rater reliability. The proposed method is less sensitive than the existing method of visual inspection, but much faster and much more reliable. Accurate and rapid detection of high frequency activity increases the clinical viability of this rhythmic biomarker of epilepsy. The proposed spike-ripple detector rapidly identifies candidate spike-ripple events, thus making clinical analysis of prolonged, multielectrode scalp EEG recordings tractable. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Rapid-viability PCR method for detection of live, virulent Bacillus anthracis in environmental samples.

    PubMed

    Létant, Sonia E; Murphy, Gloria A; Alfaro, Teneile M; Avila, Julie R; Kane, Staci R; Raber, Ellen; Bunt, Thomas M; Shah, Sanjiv R

    2011-09-01

    In the event of a biothreat agent release, hundreds of samples would need to be rapidly processed to characterize the extent of contamination and determine the efficacy of remediation activities. Current biological agent identification and viability determination methods are both labor- and time-intensive such that turnaround time for confirmed results is typically several days. In order to alleviate this issue, automated, high-throughput sample processing methods were developed in which real-time PCR analysis is conducted on samples before and after incubation. The method, referred to as rapid-viability (RV)-PCR, uses the change in cycle threshold after incubation to detect the presence of live organisms. In this article, we report a novel RV-PCR method for detection of live, virulent Bacillus anthracis, in which the incubation time was reduced from 14 h to 9 h, bringing the total turnaround time for results below 15 h. The method incorporates a magnetic bead-based DNA extraction and purification step prior to PCR analysis, as well as specific real-time PCR assays for the B. anthracis chromosome and pXO1 and pXO2 plasmids. A single laboratory verification of the optimized method applied to the detection of virulent B. anthracis in environmental samples was conducted and showed a detection level of 10 to 99 CFU/sample with both manual and automated RV-PCR methods in the presence of various challenges. Experiments exploring the relationship between the incubation time and the limit of detection suggest that the method could be further shortened by an additional 2 to 3 h for relatively clean samples.

  8. Evaluation of a rapid immunodiagnostic test kit for rabies virus.

    PubMed

    Kang, BoKyu; Oh, JinSik; Lee, ChulSeung; Park, Bong-Kyun; Park, YoungNam; Hong, KyungSoo; Lee, KyungGi; Cho, ByungKi; Song, DaeSub

    2007-10-01

    A rapid immunodiagnostic test kit for rabies virus detection was evaluated using 51 clinical samples and 4 isolates of rabies virus. The quick detection of rabies virus under field conditions may be helpful in determining if post-exposure prophylaxis is needed, thereby avoiding unnecessary treatments, as well as undue economic burden. There are several widely used diagnostic methods for rabies, including fluorescent antibody tests, reverse transcription polymerase chain reaction, and electron microscopy; however, these methods include time-consuming, intricate, and costly procedures. The rapid immunodiagnostic test was able to detect rabies virus in clinical samples, including brain tissue and saliva, in addition to 10(3.2) 50% lethal dose (LD(50))/mL cell-adapted rabies virus. The assay was not cross-reactive with non-rabies virus microbes. When the performance of the rapid immunodiagnostic test was compared to a fluorescent antibody test, the rapid immunodiagnostic test had a sensitivity of 91.7% and specificity of 100% (95.8% CI).

  9. Loop-mediated isothermal amplification for detection of Staphylococcus aureus in dairy cow suffering from mastitis.

    PubMed

    Tie, Zhang; Chunguang, Wang; Xiaoyuan, Wei; Xinghua, Zhao; Xiuhui, Zhong

    2012-01-01

    To develop a rapid detection method of Staphylococcus aureus using loop-mediated isothermal amplification (LAMP), four specific primers were designed according to six distinct sequences of the nuc gene. In addition, the specificity and sensitivity of LAMP were verified and compared with those of PCR. Results showed that the LAMP reaction was completed within 45 min at 62.5°C, and ladder bands were appeared in LAMP products analyzed by gel electrophoresis. After adding 1x SYBR Green l, the positive reaction tube showed green color and the negative reaction tube remained orange, indicating that the LAMP has high specificity. The minimal detectable concentration of LAMP was 1 × 10² CFU/mL and that of PCR was 1 × 10⁴ CFU/mL, indicating that the LAMP was 100 times more sensitive than the PCR. The LAMP method for detection of Staphylococcus aureus has many advantages, such as simple operation, high sensitivity, high specificity, and rapid analysis. Therefore, this method is more suitable for the rapid on-site detection of Staphylococcus aureus.

  10. Development of a reverse transcription loop-mediated isothermal amplification method for the rapid detection of avian influenza virus subtype H7.

    PubMed

    Bao, Hongmei; Wang, Xiurong; Zhao, Yuhui; Sun, Xiaodong; Li, Yanbing; Xiong, Yongzhong; Chen, Hualan

    2012-01-01

    A rapid and sensitive reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the detection of the H7 avian influenza virus (H7 AIV) isotype was developed. The minimum detection limit of the RT-LAMP assay was 0.1-0.01 PFU per reaction for H7 AIV RNA, making this assay 100-fold more sensitive than the conventional RT-PCR method. This RT-LAMP assay also has the capacity to detect both high- and low-pathogenic H7 AIV strains. Using a pool of RNAs extracted from influenza viruses corresponding to all 15 HA subtypes (in addition to other avian pathogenic viruses), the RT-LAMP system was confirmed to amplify only H7 AIV RNA. Furthermore, specific pathogen free (SPF) chickens were infected artificially with H7 AIV, throat and cloacal swabs were collected, and viral shedding was examined using viral isolation, RT-PCR and RT-LAMP. Shedding was detected following viral isolation and RT-LAMP one day after infection, whereas viral detection using RT-PCR was effective only on day 3 post-infection. These results indicate that the RT-LAMP method could facilitate epidemiological surveillance and the rapid diagnosis of the avian influenza subtype H7. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Rapid detection of Escherichia coli and enterococci in recreational water using an immunomagnetic separation/adenosine triphosphate technique

    USGS Publications Warehouse

    Bushon, R.N.; Brady, A.M.; Likirdopulos, C.A.; Cireddu, J.V.

    2009-01-01

    Aims: The aim of this study was to examine a rapid method for detecting Escherichia coli and enterococci in recreational water. Methods and Results: Water samples were assayed for E. coli and enterococci by traditional and immunomagnetic separation/adenosine triphosphate (IMS/ATP) methods. Three sample treatments were evaluated for the IMS/ATP method: double filtration, single filtration, and direct analysis. Pearson's correlation analysis showed strong, significant, linear relations between IMS/ATP and traditional methods for all sample treatments; strongest linear correlations were with the direct analysis (r = 0.62 and 0.77 for E. coli and enterococci, respectively). Additionally, simple linear regression was used to estimate bacteria concentrations as a function of IMS/ATP results. The correct classification of water-quality criteria was 67% for E. coli and 80% for enterococci. Conclusions: The IMS/ATP method is a viable alternative to traditional methods for faecal-indicator bacteria. Significance and Impact of the Study: The IMS/ATP method addresses critical public health needs for the rapid detection of faecal-indicator contamination and has potential for satisfying US legislative mandates requiring methods to detect bathing water contamination in 2 h or less. Moreover, IMS/ATP equipment is considerably less costly and more portable than that for molecular methods, making the method suitable for field applications. ?? 2009 The Authors.

  12. Rapid Molecular Detection Methods for Arboviruses of Livestock of Importance to Northern Europe

    PubMed Central

    Johnson, Nicholas; Voller, Katja; Phipps, L. Paul; Mansfield, Karen; Fooks, Anthony R.

    2012-01-01

    Arthropod-borne viruses (arboviruses) have been responsible for some of the most explosive epidemics of emerging infectious diseases over the past decade. Their impact on both human and livestock populations has been dramatic. The early detection either through surveillance or diagnosis of virus will be a critical feature in responding and resolving the emergence of such epidemics in the future. Although some of the most important emerging arboviruses are human pathogens, this paper aims to highlight those diseases that primarily affect livestock, although many are zoonotic and some occasionally cause human mortality. This paper also highlights the molecular detection methods specific to each virus and identifies those emerging diseases for which a rapid detection methods are not yet developed. PMID:22219660

  13. Irradiation influence on the detection of genetic-modified soybeans

    NASA Astrophysics Data System (ADS)

    Villavicencio, A. L. C. H.; Araújo, M. M.; Baldasso, J. G.; Aquino, S.; Konietzny, U.; Greiner, R.

    2004-09-01

    Three soybean varieties were analyzed to evaluate the irradiation influence on the detection of genetic modification. Samples were treated in a 60Co facility at dose levels of 0, 500, 800, and 1000Gy. The seeds were at first analyzed by Comet Assay as a rapid screening irradiation detection method. Secondly, germination test was performed to detect the viability of irradiated soybeans. Finally, because of its high sensitivity, its specificity and rapidity the polimerase chain reaction was the method applied for genetic modified organism detection. The analysis of DNA by the single technique of microgel electrophoresis of single cells (DNA Comet Assay) showed that DNA damage increased with increasing radiation doses. No negative influence of irradiation on the genetic modification detection was found.

  14. Validation of a rapid bacteria endospore enumeration system for use with spacecraft assembly

    NASA Astrophysics Data System (ADS)

    Chen, F.; Kuhlman, G.; Kirschner, L.; Kazarians, G.; Matsuyama, A.; Pickett, M.; Venkateswaran, K.; Kastner, J.; Kern, R.

    NASA planetary protection policy sets forth strict limits on the number of bacterial endospores that can be present on a spacecraft at launch Currently the only approved method for counting the spores is a culture based assay that requires three days to produce results a timeframe that can be at odds with the rapid pace and rigorous deadlines of spacecraft assembly A possible alternative to the traditional culture based approach is the Millipore Rapid Microbiology Detection System RMDS which has previously been used for process and contamination control in the pharmaceutical and food industries The RMDS is rapid and simple shows high sensitivity 1 colony forming unit CFU sample and correlates well with traditional culture-based methods It combines membrane filtration adenosine triphosphate ATP bioluminescence chemistry and image analysis based on photon detection with a Charge Coupled Device CCD camera In this study we have optimized the assay condition and evaluated the use of the RMDS as a rapid spore detection tool for NASA applications Seven species of Bacillus nine strains that have been repeatedly isolated from clean room environments were assayed In order to select for spores the samples were subjected to a heat shock step before proceeding with the RMDS incubation protocol All strains were detected by the RMDS in sim 5 hours and these assay times were repeatedly demonstrated along with low image background noise The RMDS-based spore detection method is undergoing the final stages of validation and is

  15. Rapid detection of undesired cosmetic ingredients by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Ouyang, Jie; An, Dongli; Chen, Tengteng; Lin, Zhiwei

    2017-10-01

    In recent years, cosmetic industry profits soared due to the widespread use of cosmetics, which resulted in illicit manufacturers and products of poor quality. Therefore, the rapid and accurate detection of the composition of cosmetics has become crucial. At present, numerous methods, such as gas chromatography and liquid chromatography-mass spectrometry, were available for the analysis of cosmetic ingredients. However, these methods present several limitations, such as failure to perform comprehensive and rapid analysis of the samples. Compared with other techniques, matrix-assisted laser desorption ionization time-of-flight mass spectrometry offered the advantages of wide detection range, fast speed and high accuracy. In this article, we briefly summarized how to select a suitable matrix and adjust the appropriate laser energy. We also discussed the rapid identification of undesired ingredients, focusing on antibiotics and hormones in cosmetics.

  16. PCR-Based Method for the Detection of Toxic Mushrooms Causing Food-Poisoning Incidents.

    PubMed

    Nomura, Chie; Masayama, Atsushi; Yamaguchi, Mizuka; Sakuma, Daisuke; Kajimura, Keiji

    2017-01-01

    In this study, species-specific identification of five toxic mushrooms, Chlorophyllum molybdites, Gymnopilus junonius, Hypholoma fasciculare, Pleurocybella porrigens, and Tricholoma ustale, which have been involved in food-poisoning incidents in Japan, was investigated. Specific primer pairs targeting internal transcribed spacer (ITS) regions were designed for PCR detection. The specific amplicons were obtained from fresh, cooked, and simulated gastric fluid (SGF)-treated samples. No amplicons were detected from other mushrooms with similar morphology. Our method using one-step extraction of mushrooms allows rapid detection within 2.5 hr. It could be utilized for rapid identification or screening of toxic mushrooms.

  17. Adapting and Evaluating a Rapid, Low-Cost Method to Enumerate Flies in the Household Setting

    PubMed Central

    Wolfe, Marlene K.; Dentz, Holly N.; Achando, Beryl; Mureithi, MaryAnne; Wolfe, Tim; Null, Clair; Pickering, Amy J.

    2017-01-01

    Diarrhea is a leading cause of death among children under 5 years of age worldwide. Flies are important vectors of diarrheal pathogens in settings lacking networked sanitation services. There is no standardized method for measuring fly density in households; many methods are cumbersome and unvalidated. We adapted a rapid, low-cost fly enumeration technique previously developed for industrial settings, the Scudder fly grill, for field use in household settings. We evaluated its performance in comparison to a sticky tape fly trapping method at latrine and food preparation areas among households in rural Kenya. The grill method was more sensitive; it detected the presence of any flies at 80% (433/543) of sampling locations versus 64% (348/543) of locations by the sticky tape. We found poor concordance between the two methods, suggesting that standardizing protocols is important for comparison of fly densities between studies. Fly species identification was feasible with both methods; however, the sticky tape trap allowed for more nuanced identification. Both methods detected a greater presence of bottle flies near latrines compared with food preparation areas (P < 0.01). The grill method detected more flies at the food preparation area compared with near the latrine (P = 0.014) while the sticky tape method detected no difference. We recommend the Scudder grill as a sensitive fly enumeration tool that is rapid and low cost to implement. PMID:27956654

  18. Development of a Reverse Transcription Loop-Mediated Isothermal Amplification Method for the Rapid Detection of Subtype H7N9 Avian Influenza Virus

    PubMed Central

    Bao, Hongmei; Zhao, Yuhui; Wang, Yunhe; Xu, Xiaolong; Shi, Jianzhong; Zeng, Xianying; Wang, Xiurong; Chen, Hualan

    2014-01-01

    A novel influenza A (H7N9) virus has emerged in China. To rapidly detect this virus from clinical samples, we developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the detection of the H7N9 virus. The minimum detection limit of the RT-LAMP assay was 0.01 PFU H7N9 virus, making this method 100-fold more sensitive to the detection of the H7N9 virus than conventional RT-PCR. The H7N9 virus RT-LAMP assays can efficiently detect different sources of H7N9 influenza virus RNA (from chickens, pigeons, the environment, and humans). No cross-reactive amplification with the RNA of other subtype influenza viruses or of other avian respiratory viruses was observed. The assays can effectively detect H7N9 influenza virus RNA in drinking water, soil, cloacal swab, and tracheal swab samples that were collected from live poultry markets, as well as human H7N9 virus, in less than 30 min. These results suggest that the H7N9 virus RT-LAMP assays were efficient, practical, and rapid diagnostic methods for the epidemiological surveillance and diagnosis of influenza A (H7N9) virus from different resource samples. PMID:24689044

  19. Rapid and potentially portable detection and quantification technologies for foodborne pathogens

    USDA-ARS?s Scientific Manuscript database

    Introduction Traditional microbial culture methods are able to detect and identify a single specific bacterium, but may require days or weeks and typically do not produce quantitative data. The quest for faster, quantitative results has spurred development of “rapid methods” which usually employ bio...

  20. Multiplex surface plasmon resonance imaging platform for label-free detection of foodborne pathogens

    USDA-ARS?s Scientific Manuscript database

    Salmonellae are among the leading causes of foodborne outbreaks in the United States, and more rapid and efficient detection methods are needed. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multiple targets simultaneous...

  1. Surface plasmon resonance imaging for label-free detection of foodborne pathogens and toxins

    USDA-ARS?s Scientific Manuscript database

    More rapid and efficient detection methods for foodborne pathogenic bacteria and toxins are needed to address the long assay time and limitations in multiplex capacity. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multi...

  2. RAPID PCR-BASED MONITORING OF INFECTIOUS ENTEROVIRUSES IN DRINKING WATER. (R824756)

    EPA Science Inventory

    Abstract

    Currently, the standard method for the detection of enteroviruses and hepatitis A virus in water involves cell culture assay which is expensive and time consuming. Direct RT-PCR offers a rapid and sensitive alternative to virus detection but sensitivity is oft...

  3. Rapid, Potentially Automatable, Method Extract Biomarkers for HPLC/ESI/MS/MS to Detect and Identify BW Agents

    DTIC Science & Technology

    1997-11-01

    status can sometimes be reflected in the infectious potential or drug resistance of those pathogens. For example, in Mycobacterium tuberculosis ... Mycobacterium tuberculosis , its antibiotic resistance and prediction of pathogenicity amongst Mycobacterium spp. based on signature lipid biomarkers ...TITLE AND SUBTITLE Rapid, Potentially Automatable, Method Extract Biomarkers for HPLC/ESI/MS/MS to Detect and Identify BW Agents 5a. CONTRACT NUMBER 5b

  4. Generation and characterization of biological aerosols for laser measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yung-Sung; Barr, E.B.

    1995-12-01

    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system hasmore » been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.« less

  5. Electrochemical biosensors for Salmonella: State of the art and challenges in food safety assessment.

    PubMed

    Silva, Nádia F D; Magalhães, Júlia M C S; Freire, Cristina; Delerue-Matos, Cristina

    2018-01-15

    According to the recent statistics, Salmonella is still an important public health issue in the whole world. Legislated reference methods, based on counting plate methods, are sensitive enough but are inadequate as an effective emergency response tool, and are far from a rapid device, simple to use out of lab. An overview of the commercially available rapid methods for Salmonella detection is provided along with a critical discussion of their limitations, benefits and potential use in a real context. The distinguished potentialities of electrochemical biosensors for the development of rapid devices are highlighted. The state-of-art and the newest technologic approaches in electrochemical biosensors for Salmonella detection are presented and a critical analysis of the literature is made in an attempt to identify the current challenges towards a complete solution for Salmonella detection in microbial food control based on electrochemical biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Rapid Authentication of Ginkgo biloba Herbal Products Using the Recombinase Polymerase Amplification Assay.

    PubMed

    Liu, Yang; Wang, Xiao-Yue; Wei, Xue-Min; Gao, Zi-Tong; Han, Jian-Ping

    2018-05-22

    Species adulteration in herbal products (HPs) exposes consumers to health risks. Chemical and morphological methods have their own deficiencies when dealing with the detection of species containing the same active compounds in HPs. In this study, we developed a rapid identification method using the recombinase polymerase amplification (RPA) assay to detect two species, Ginkgo biloba and Sophora japonica (as adulteration), in Ginkgo biloba HPs. Among 36 Ginkgo biloba HP samples, 34 were found to have Ginkgo biloba sequences, and 9 were found to have Sophora japonica sequences. During the authentication process, the RPA-LFS assay showed a higher specificity, sensitivity and efficiency than PCR-based methods. We initially applied the RPA-LSF technique to detect plant species in HPs, demonstrating that this assay can be developed into an efficient tool for the rapid on-site authentication of plant species in Ginkgo biloba HPs.

  7. Rapid and accurate detection of KRAS mutations in colorectal cancers using the isothermal-based optical sensor for companion diagnostics

    PubMed Central

    Koo, Bonhan; Lee, Tae Yoon; Lee, Jeong Hoon; Shin, Yong; Lim, Seok-Byung

    2017-01-01

    Although KRAS mutational status testing is becoming a companion diagnostic tool for managing patients with colorectal cancer (CRC), there are still several difficulties when analyzing KRAS mutations using the existing assays, particularly with regard to low sensitivity, its time-consuming, and the need for large instruments. We developed a rapid, sensitive, and specific mutation detection assay based on the bio-photonic sensor termed ISAD (isothermal solid-phase amplification/detection), and used it to analyze KRAS gene mutations in human clinical samples. To validate the ISAD-KRAS assay for use in clinical diagnostics, we examined for hotspot KRAS mutations (codon 12 and codon 13) in 70 CRC specimens using PCR and direct sequencing methods. In a serial dilution study, ISAD-KRAS could detect mutations in a sample containing only 1% of the mutant allele in a mixture of wild-type DNA, whereas both PCR and direct sequencing methods could detect mutations in a sample containing approximately 30% of mutant cells. The results of the ISAD-KRAS assay from 70 clinical samples matched those from PCR and direct sequencing, except in 5 cases, wherein ISAD-KRAS could detect mutations that were not detected by PCR and direct sequencing. We also found that the sensitivity and specificity of ISAD-KRAS were 100% within 30 min. The ISAD-KRAS assay provides a rapid, highly sensitive, and label-free method for KRAS mutation testing, and can serve as a robust and near patient testing approach for the rapid detection of patients most likely to respond to anti-EGFR drugs. PMID:29137388

  8. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus.

    PubMed

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-10-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium , has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium . The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  9. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    PubMed Central

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-01-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products. PMID:27721691

  10. A novel, colorimetric method for biogenic amine detection based on arylalkylamine N-acetyltransferase.

    PubMed

    Leng, Pei-Qiang; Zhao, Feng-Lan; Yin, Bin-Cheng; Ye, Bang-Ce

    2015-05-21

    We developed a novel colorimetric method for rapid detection of biogenic amines based on arylalkylamine N-acetyltransferase (aaNAT). The proposed method offers distinct advantages including simple handling, high speed, low cost, good sensitivity and selectivity.

  11. Rapid detection of Vibrio parahaemolyticus in raw oysters using immunomagnetic separation combined with loop-mediated isothermal amplification.

    PubMed

    Zeng, Jing; Wei, Haiyan; Zhang, Lei; Liu, Xuefeng; Zhang, Haiyu; Cheng, Jinxia; Ma, Dan; Zhang, Ximeng; Fu, Pubo; Liu, Li

    2014-03-17

    The objective of this study was to develop a method that combined nanoparticle-based immunomagnetic separation (IMS) with real-time loop-mediated isothermal amplification (LAMP) for the rapid detection of Vibrio parahaemolyticus. Magnetic nanoparticles were functionalized with monoclonal antibodies that were produced against flagella from V. parahaemolyticus to capture and separate the target cells from raw oysters. After optimization, the immunomagnetic nanoparticles (IMNPs) presented a capture efficiency of 87.3% for 10(5) colony-forming unit (CFU)/mL of V. parahaemolyticus using 2.5μg of IMNPs within 30min. Although a very low level of non-specific binding was seen among 8 non-V. parahaemolyticus Vibrio spp. and 5 non-Vibrio strains, the IMS-LAMP method identified 133 V. parahaemolyticus strains correctly without the amplification from 54 other strains. The detection limit was about 1.4×10(2)CFU/mL in pure culture and was unaffected by the presence of 10(8)CFU/mL of competing microflora. When applied in spiked oysters, the sensitivity was found to be 1.9×10(3)CFU/g without enrichment. After enrichment for 6-8h, the limit of detectability could be improved to 1.9 to 0.19CFU/g. Hence, the IMS-LAMP assay provided a rapid, simple, and cost-effective method for total V. parahaemolyticus detection. This method will have important implications in the rapid detection of contaminated food in the early stage before distribution. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Rapid detection of Escherichia coli O157:H7 using tunneling magnetoresistance biosensor

    NASA Astrophysics Data System (ADS)

    Wu, Yuanzhao; Liu, Yiwei; Zhan, Qingfeng; Liu, J. Ping; Li, Run-Wei

    2017-05-01

    A rapid method for the sensitive detection of bacteria using magnetic immunoassay, which are measured with a tunneling magnetoresistance (TMR) sensor, is described. For the measurement of Escherichia coli O157:H7 (E. coli O157:H7) bacteria, the target was labeled by magnetic beads through magnetic immunoassay. The magnetic beads produce a weak magnetic fringe field when external field is applied, thus induce the magnetoresistance change of TMR sensor. A detection limit of 100 CFU/mL E. coli O157:H7 bacteria in 5 hours was obtained. With its high sensitive and rapid detection scheme based on the TMR biosensor, the detection system is an excellent candidate suitable and promising for food safety and biomedical detection.

  13. A colloidal gold nanoparticle-based immunochromatographic test strip for rapid and convenient detection of Staphylococcus aureus.

    PubMed

    Niu, Kaili; Zheng, Xiaoping; Huang, Chusen; Xul, Kuan; Zhi, Yuan; Shen, Hebai; Jia, Nengqin

    2014-07-01

    An immunochromatographic test strip using gold nanoparticles-staphylococcus aureus monoclonal antibody conjugates was developed for the rapid and convenient detection of staphylococcus aureus based on a double-antibody sandwich format. The detection limit and the detection rate of this test strip is 10(3) CFU /mL and 98.7%, respectively. It could be used for the rapid detection of staphylococcus aureus in food and the results can be visually identified by the naked eye within 10 min. Compared with conventional bacterial detection methods, this developed immunochromatographic assay based test strip has several advantages including simple, fast, low-cost, favorable sensitivity and specificity, exhibiting a great potential for application in food safety control systems and clinical diagnosis.

  14. Simple, Rapid, Sensitive, and Versatile SWNT-Paper Sensor for Environmental Toxin Detection Competitive with ELISA

    PubMed Central

    Wang, Libing; Chen, Wei; Xu, Dinghua; Shim, Bong Sup; Zhu, Yingyue; Sun, Fengxia; Liu, Liqiang; Peng, Chifang; Jin, Zhengyu; Xu, Chuanlai; Kotov, Nicholas A.

    2009-01-01

    Safety of water was for a long time and still is one of the most pressing needs for many countries and different communities. Despite the fact that there are potentially many methods to evaluate water safety, finding a simple, rapid, versatile, and inexpensive method for detection of toxins in everyday items is still a great challenge. In this study, we extend the concept of composites obtained impregnation of porous fibrous materials, such as fabrics and papers, by single walled carbon-nanotubes (SWNTs) toward very simple but high-performance biosensors. They utilize the strong dependence of electrical conductivity through nanotubes percolation network on the width of nanotubes-nanotube tunneling gap and can potentially satisfy all the requirements outlined above for the routine toxin monitoring. An antibody to the microcystin-LR (MC-LR), one of the common culprits in mass poisonings, was dispersed together with SWNTs. This dispersion was used to dip-coat the paper rendering it conductive. The change in conductivity of the paper was used to sense the MC-LR in the water rapidly and accurately. The method has the linear detection range up to 10 nmol/L and non-linear detection up to 40 nmol/L. The limit of detection was found to be 0.6 nmol/L (0.6 ng/mL), which satisfies the strictest World Health Organization standard for MC-LR content in drinking water (1 ng/mL), and is comparable to the detection limit of traditional ELISA method of MC-LR detection, while drastically reducing the time of analysis by more than an order of magnitude, which is one of the major hurdles in practical applications. Similar technology of sensor preparation can also be used for a variety of other rapid environmental sensors. PMID:19928776

  15. Development of loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Penicillium nordicum in dry-cured meat products.

    PubMed

    Ferrara, M; Perrone, G; Gallo, A; Epifani, F; Visconti, A; Susca, A

    2015-06-02

    The need of powerful diagnostic tools for rapid, simple, and cost-effective detection of food-borne fungi has become very important in the area of food safety. Currently, several isothermal nucleic acid amplification methods have been developed as an alternative to PCR-based analyses. Loop-mediated isothermal amplification (LAMP) is one of these innovative methods; it requires neither gel electrophoresis to separate and visualize the products nor expensive laboratory equipment and it has been applied already for detection of pathogenic organisms. In the current study, we developed a LAMP assay for the specific detection of Penicillium nordicum, the major causative agent of ochratoxin A contamination in protein-rich food, especially dry-cured meat products. The assay was based on targeting otapksPN gene, a key gene in the biosynthesis of ochratoxin A (OTA) in P. nordicum. Amplification of DNA during the reaction was detected directly in-tube by color transition of hydroxynaphthol blue from violet to sky blue, visible to the naked eye, avoiding further post amplification analyses. Only DNAs isolated from several P. nordicum strains led to positive results and no amplification was observed from non-target OTA and non OTA-producing strains. The assay was able to detect down to 100 fg of purified targeted genomic DNA or 10(2) conidia/reaction within 60 min. The LAMP assay for detection and identification of P. nordicum was combined with a rapid DNA extraction method set up on serially diluted conidia, providing an alternative rapid, specific and sensitive DNA-based method suitable for application directly "on-site", notably in key steps of dry-cured meat production. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Rapid combined assay for Salmonella detection in food samples.

    PubMed

    Gadó, I; Major, P; Király, M; Pláveczky, M G

    2000-01-01

    A rapid method was developed to detect salmonellae in food samples. The method gave a possibility to obtain results after 28 h 30 min. The preenrichment in buffered peptone water lasted for 6 h, the enrichment in Rappaport-Vassiliadis medium was applied for 18 h followed by PCR with INVA1-INVA2 primer pair, adapting Chiu and Ou's method. This procedure was suitable to demonstrate salmonella contamination at min. 10 cfu/25 g sample. Out of 18 samples there was a good agreement between the results of the conventional and rapid methods in case of 17 samples. PCR with SPVC1-SPVC2 primer pair informing about the presence of virulence plasmid was performed in separate tubes, because decreased sensitivity was observed in case of multiplex PCR.

  17. Rapid detection, characterization, and enumeration of foodborne pathogens.

    PubMed

    Hoorfar, J

    2011-11-01

    As food safety management further develops, microbiological testing will continue to play an important role in assessing whether Food Safety Objectives are achieved. However, traditional microbiological culture-based methods are limited, particularly in their ability to provide timely data. The present review discusses the reasons for the increasing interest in rapid methods, current developments in the field, the research needs, and the future trends. The advent of biotechnology has introduced new technologies that led to the emergence of rapid diagnostic methods and altered food testing practices. Rapid methods are comprised of many different detection technologies, including specialized enzyme substrates, antibodies and DNA, ranging from simple differential plating media to the use of sophisticated instruments. The use of non-invasive sampling techniques for live animals especially came into focus with the 1990s outbreak of bovine spongiform encephalopathy that was linked to the human outbreak of Creutzfeldt Jakob's Disease. Serology is still an important tool in preventing foodborne pathogens to enter the human food supply through meat and milk from animals. One of the primary uses of rapid methods is for fast screening of large number of samples, where most of them are expected to be test-negative, leading to faster product release for sale. This has been the main strength of rapid methods such as real-time Polymerase Chain Reaction (PCR). Enrichment PCR, where a primary culture broth is tested in PCR, is the most common approach in rapid testing. Recent reports show that it is possible both to enrich a sample and enumerate by pathogen-specific real-time PCR, if the enrichment time is short. This can be especially useful in situations where food producers ask for the level of pathogen in a contaminated product. Another key issue is automation, where the key drivers are miniaturization and multiple testing, which mean that not only one instrument is flexible enough to test for many pathogens but also many pathogens can be detected with one test. The review is mainly based on the author's scientific work that has contributed with the following new developments to this field: (i) serologic tests for large-scale screening, surveillance, or eradication programs, (ii) same-day detection of Salmonella that otherwise was considered as difficult to achieve, (iii) pathogen enumeration following a short log-phase enrichment, (iv) detection of foodborne pathogens in air samples, and finally (v) biotracing of pathogens based on mathematical modeling, even in the absence of isolate. Rapid methods are discussed in a broad global health perspective, international food supply, and for improvement of quantitative microbial risk assessments. The need for quantitative sample preparation techniques, culture-independent, metagenomic-based detection, online monitoring, a global validation infrastructure has been emphasized. The cost and ease of use of rapid assays remain challenging obstacles to surmount. © 2011 The Author. APMIS © 2011 APMIS.

  18. Comparison of two commercially available rapid detection methods and a conventional culture method to detect naturally occurring salmonellae on broiler carcasses

    USDA-ARS?s Scientific Manuscript database

    Many different screening devices and sampling methods have been used to detect the presence of naturally occurring Salmonella on commercially processed broiler carcasses. The objective of this study was to compare two commercial screening systems (BAX® and Roka®) to a standard cultural procedure use...

  19. Rapid detection of Naegleria fowleri in water distribution pipeline biofilms and drinking water samples.

    PubMed

    Puzon, Geoffrey J; Lancaster, James A; Wylie, Jason T; Plumb, Iason J

    2009-09-01

    Rapid detection of pathogenic Naegleria fowler in water distribution networks is critical for water utilities. Current detection methods rely on sampling drinking water followed by culturing and molecular identification of purified strains. This culture-based method takes an extended amount of time (days), detects both nonpathogenic and pathogenic species, and does not account for N. fowleri cells associated with pipe wall biofilms. In this study, a total DNA extraction technique coupled with a real-time PCR method using primers specific for N. fowleri was developed and validated. The method readily detected N. fowleri without preculturing with the lowest detection limit for N. fowleri cells spiked in biofilm being one cell (66% detection rate) and five cells (100% detection rate). For drinking water, the detection limit was five cells (66% detection rate) and 10 cells (100% detection rate). By comparison, culture-based methods were less sensitive for detection of cells spiked into both biofilm (66% detection for <10 cells) and drinking water (0% detection for <10 cells). In mixed cultures of N. fowleri and nonpathogenic Naegleria, the method identified N. fowleri in 100% of all replicates, whereastests with the current consensus primers detected N. fowleri in only 5% of all replicates. Application of the new method to drinking water and pipe wall biofilm samples obtained from a distribution network enabled the detection of N. fowleri in under 6 h, versus 3+ daysforthe culture based method. Further, comparison of the real-time PCR data from the field samples and the standard curves enabled an approximation of N. fowleri cells in the biofilm and drinking water. The use of such a method will further aid water utilities in detecting and managing the persistence of N. fowleri in water distribution networks.

  20. Electrochemical Biosensor for Rapid and Sensitive Detection of Magnetically Extracted Bacterial Pathogens

    PubMed Central

    Setterington, Emma B.; Alocilja, Evangelyn C.

    2012-01-01

    Biological defense and security applications demand rapid, sensitive detection of bacterial pathogens. This work presents a novel qualitative electrochemical detection technique which is applied to two representative bacterial pathogens, Bacillus cereus (as a surrogate for B. anthracis) and Escherichia coli O157:H7, resulting in detection limits of 40 CFU/mL and 6 CFU/mL, respectively, from pure culture. Cyclic voltammetry is combined with immunomagnetic separation in a rapid method requiring approximately 1 h for presumptive positive/negative results. An immunofunctionalized magnetic/polyaniline core/shell nano-particle (c/sNP) is employed to extract target cells from the sample solution and magnetically position them on a screen-printed carbon electrode (SPCE) sensor. The presence of target cells significantly inhibits current flow between the electrically active c/sNPs and SPCE. This method has the potential to be adapted for a wide variety of target organisms and sample matrices, and to become a fully portable system for routine monitoring or emergency detection of bacterial pathogens. PMID:25585629

  1. Rapid and sensitive microRNA detection with laminar flow-assisted dendritic amplification on power-free microfluidic chip.

    PubMed

    Arata, Hideyuki; Komatsu, Hiroshi; Hosokawa, Kazuo; Maeda, Mizuo

    2012-01-01

    Detection of microRNAs, small noncoding single-stranded RNAs, is one of the key topics in the new generation of cancer research because cancer in the human body can be detected or even classified by microRNA detection. This report shows rapid and sensitive microRNA detection using a power-free microfluidic device, which is driven by degassed poly(dimethylsiloxane), thus eliminating the need for an external power supply. MicroRNA is detected by sandwich hybridization, and the signal is amplified by laminar flow-assisted dendritic amplification. This method allows us to detect microRNA of specific sequences at a limit of detection of 0.5 pM from a 0.5 µL sample solution with a detection time of 20 min. Together with the advantages of self-reliance of this device, this method might contribute substantially to future point-of-care early-stage cancer diagnosis.

  2. Rapid-Viability PCR Method for Detection of Live, Virulent Bacillus anthracis in Environmental Samples ▿

    PubMed Central

    Létant, Sonia E.; Murphy, Gloria A.; Alfaro, Teneile M.; Avila, Julie R.; Kane, Staci R.; Raber, Ellen; Bunt, Thomas M.; Shah, Sanjiv R.

    2011-01-01

    In the event of a biothreat agent release, hundreds of samples would need to be rapidly processed to characterize the extent of contamination and determine the efficacy of remediation activities. Current biological agent identification and viability determination methods are both labor- and time-intensive such that turnaround time for confirmed results is typically several days. In order to alleviate this issue, automated, high-throughput sample processing methods were developed in which real-time PCR analysis is conducted on samples before and after incubation. The method, referred to as rapid-viability (RV)-PCR, uses the change in cycle threshold after incubation to detect the presence of live organisms. In this article, we report a novel RV-PCR method for detection of live, virulent Bacillus anthracis, in which the incubation time was reduced from 14 h to 9 h, bringing the total turnaround time for results below 15 h. The method incorporates a magnetic bead-based DNA extraction and purification step prior to PCR analysis, as well as specific real-time PCR assays for the B. anthracis chromosome and pXO1 and pXO2 plasmids. A single laboratory verification of the optimized method applied to the detection of virulent B. anthracis in environmental samples was conducted and showed a detection level of 10 to 99 CFU/sample with both manual and automated RV-PCR methods in the presence of various challenges. Experiments exploring the relationship between the incubation time and the limit of detection suggest that the method could be further shortened by an additional 2 to 3 h for relatively clean samples. PMID:21764960

  3. Rapid extraction of virus-contaminated hemocytes from oysters

    USDA-ARS?s Scientific Manuscript database

    Rapid viral detection methods are necessary to employ diagnostic testing for viral contamination in shellfish to prevent and control foodborne illness. Current shellfish viral RNA extraction methods, which are time-consuming and not applicable for routine monitoring, require the testing of whole or ...

  4. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOEpatents

    Funsten, H.O.; McComas, D.J.

    1999-06-15

    Apparatus and method are disclosed for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives. 4 figs.

  5. Rapid detection of methanol in artisanal alcoholic beverages

    NASA Astrophysics Data System (ADS)

    de Goes, R. E.; Muller, M.; Fabris, J. L.

    2015-09-01

    In the industry of artisanal beverages, uncontrolled production processes may result in contaminated products with methanol, leading to risks for consumers. Owing to the similar odor of methanol and ethanol, as well as their common transparency, the distinction between them is a difficult task. Contamination may also occur deliberately due to the lower price of methanol when compared to ethanol. This paper describes a spectroscopic method for methanol detection in beverages based on Raman scattering and Principal Component Analysis. Associated with a refractometric assessment of the alcohol content, the method may be applied in field for a rapid detection of methanol presence.

  6. A direct and rapid method to determine cyanide in urine by capillary electrophoresis.

    PubMed

    Zhang, Qiyang; Maddukuri, Naveen; Gong, Maojun

    2015-10-02

    Cyanides are poisonous chemicals that widely exist in nature and industrial processes as well as accidental fires. Rapid and accurate determination of cyanide exposure would facilitate forensic investigation, medical diagnosis, and chronic cyanide monitoring. Here, a rapid and direct method was developed for the determination of cyanide ions in urinary samples. This technique was based on an integrated capillary electrophoresis system coupled with laser-induced fluorescence (LIF) detection. Cyanide ions were derivatized with naphthalene-2,3-dicarboxaldehyde (NDA) and a primary amine (glycine) for LIF detection. Three separate reagents, NDA, glycine, and cyanide sample, were mixed online, which secured uniform conditions between samples for cyanide derivatization and reduced the risk of precipitation formation of mixtures. Conditions were optimized; the derivatization was completed in 2-4min, and the separation was observed in 25s. The limit of detection (LOD) was 4.0nM at 3-fold signal-to-noise ratio for standard cyanide in buffer. The cyanide levels in urine samples from smokers and non-smokers were determined by using the method of standard addition, which demonstrated significant difference of cyanide levels in urinary samples from the two groups of people. The developed method was rapid and accurate, and is anticipated to be applicable to cyanide detection in waste water with appropriate modification. Published by Elsevier B.V.

  7. Development of a highly sensitive immunochromatographic detection kit for H5 influenza virus hemagglutinin using silver amplification.

    PubMed

    Wada, Atsuhiko; Sakoda, Yoshihiro; Oyamada, Takayoshi; Kida, Hiroshi

    2011-12-01

    H5N1, a highly pathogenic avian influenza virus (HPAIV), has become a serious epizootic threat to the poultry population in Asia. In addition, significant numbers of human cases of HPAIV infection have been reported to date. To prevent the spread of HPAIV among humans and to allow for timely medical intervention, a rapid and high sensitive method is needed to detect and subtype the causative HPAIVs. In the present study, a silver amplification technique used in photographic development was combined with immunochromatography technologies and a highly sensitive and rapid diagnostic test to detect the hemagglutinin of H5 influenza viruses was developed. The sensitivity of the test kit was increased 500 times by silver amplification. The sensitivity of the method was more than 10 times higher than those of conventional rapid influenza diagnostic tests, which detect viral nucleoproteins. The diagnostic system developed in the present study can therefore provide rapid and highly sensitive results and will be useful for diagnosis of H5 HPAIV infection in humans and animals. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Rapid and visual detection of Mycobacterium tuberculosis complex using recombinase polymerase amplification combined with lateral flow strips.

    PubMed

    Ma, Qinglin; Liu, Houming; Ye, Feidi; Xiang, Guangxin; Shan, Wanshui; Xing, Wanli

    2017-12-01

    To definitively diagnose active pulmonary Tuberculosis (TB), Mycobacterium tuberculosis complex (MTBC) bacilli must be identified within clinical specimens from patients. In this study, we introduced a rapid and visual detection method of MTBC using recombinase polymerase amplification (RPA) combined with lateral flow (LF) strips. The LF-RPA assay, read results with naked eyes, could detect as few as 5 genome copies of M. tuberculosis H37Rv (ATCC 27294) per reaction and had no cross-reactions with other control bacteria even using excessive amount of template DNA. The system could work well at a broad range of temperature 25-45 °C and reach detectable level even within 5 min. When testing a total of 137 clinical specimens, the sensitivity and specificity of the LF-RPA assay were 100% (95% CI: 95.94%-100%) and 97.92% (95% CI: 88.93%-99.95%), respectively, compared to culture identification method. Therefore, the LF-RPA system we have demonstrated is a rapid, simple, robust method for MTBC detection which, subject to the availability of a suitable sample extraction method, has the potentiality to diagnose TB at the point-of-care testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Analysis of characteristics of Si in blast furnace pig iron and calibration methods in the detection by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Mei, Yaguang; Cheng, Yuxin; Cheng, Shusen; Hao, Zhongqi; Guo, Lianbo; Li, Xiangyou; Zeng, Xiaoyan

    2017-10-01

    During the iron-making process in blast furnace, the Si content in liquid pig iron was usually used to evaluate the quality of liquid iron and thermal state of blast furnace. None effective method was found for rapid detecting the Si concentration of liquid iron. Laser-induced breakdown spectroscopy (LIBS) is a kind of atomic emission spectrometry technology based on laser ablation. Its obvious advantage is realizing rapid, in-situ, online analysis of element concentration in open air without sample pretreatment. The characteristics of Si in liquid iron were analyzed from the aspect of thermodynamic theory and metallurgical technology. The relationship between Si and C, Mn, S, P or other alloy elements were revealed based on thermodynamic calculation. Subsequently, LIBS was applied on rapid detection of Si of pig iron in this work. During LIBS detection process, several groups of standard pig iron samples were employed in this work to calibrate the Si content in pig iron. The calibration methods including linear, quadratic and cubic internal standard calibration, multivariate linear calibration and partial least squares (PLS) were compared with each other. It revealed that the PLS improved by normalization was the best calibration method for Si detection by LIBS.

  10. Development of rapid hemocyte-based extraction methods for detection of hepatitis A virus and murine norovirus in contaminated oysters

    USDA-ARS?s Scientific Manuscript database

    The human enteric pathogens, hepatitis A virus and human norovirus, have been shown to contaminate molluscan shellfish and cause foodborne disease in consumers. Rapid viral extraction methods are needed to replace current time consuming methods, which use whole oysters or dissected tissues. In our ...

  11. Protein Chips for Detection of Salmonella spp. from Enrichment Culture

    PubMed Central

    Poltronieri, Palmiro; Cimaglia, Fabio; De Lorenzis, Enrico; Chiesa, Maurizio; Mezzolla, Valeria; Reca, Ida Barbara

    2016-01-01

    Food pathogens are the cause of foodborne epidemics, therefore there is a need to detect the pathogens in food productions rapidly. A pre-enrichment culture followed by selective agar plating are standard detection methods. Molecular methods such as qPCR have provided a first rapid protocol for detection of pathogens within 24 h of enrichment culture. Biosensors also may provide a rapid tool to individuate a source of Salmonella contamination at early times of pre-enrichment culture. Forty mL of Salmonella spp. enrichment culture were processed by immunoseparation using the Pathatrix, as in AFNOR validated qPCR protocols. The Salmonella biosensor combined with immunoseparation showed a limit of detection of 100 bacteria/40 mL, with a 400 fold increase to previous results. qPCR analysis requires processing of bead-bound bacteria with lysis buffer and DNA clean up, with a limit of detection of 2 cfu/50 μL. Finally, a protein chip was developed and tested in screening and identification of 5 common pathogen species, Salmonella spp., E. coli, S. aureus, Campylobacter spp. and Listeria spp. The protein chip, with high specificity in species identification, is proposed to be integrated into a Lab-on-Chip system, for rapid and reproducible screening of Salmonella spp. and other pathogen species contaminating food productions. PMID:27110786

  12. A review of Cry protein detection with enzyme-linked immunosorbent assays

    USDA-ARS?s Scientific Manuscript database

    Several detection methods are available to monitor the fate of Cry proteins in the environment, enzyme-linked immunosorbent assays (ELISAs) have emerged as the preferred detection method, due to their cost-effectiveness, ease of use, and rapid results. Validation of ELISAs is necessary to ensure acc...

  13. A rapid method for the detection of foodborne pathogens by extraction of a trace amount of DNA from raw milk based on amino-modified silica-coated magnetic nanoparticles and polymerase chain reaction.

    PubMed

    Bai, Yalong; Song, Minghui; Cui, Yan; Shi, Chunlei; Wang, Dapeng; Paoli, George C; Shi, Xianming

    2013-07-17

    A method based on amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction (PCR) was developed to rapidly and sensitively detect foodborne pathogens in raw milk. After optimizing parameters such as pH, temperature, and time, a trace amount of genomic DNA of pathogens could be extracted directly from complex matrices such as raw milk using ASMNPs. The magnetically separated complexes of genomic DNA and ASMNPs were directly subjected to single PCR (S-PCR) or multiplex PCR (M-PCR) to detect single or multiple pathogens from raw milk samples. Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive) were used as model organisms to artificially contaminate raw milk samples. After magnetic separation and S-PCR, the detection sensitivities were 8 CFU mL(-1) and 13 CFU mL(-1) respectively for these two types of pathogens. Furthermore, this method was successfully used to detect multiple pathogens (S. Enteritidis and L. monocytogenes) from artificially contaminated raw milk using M-PCR at sensitivities of 15 CFU mL(-1) and 25 CFU mL(-1), respectively. This method has great potential to rapidly and sensitively detect pathogens in raw milk or other complex food matrices. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Rapid diagnosis of Theileria annulata by recombinase polymerase amplification combined with a lateral flow strip (LF-RPA) in epidemic regions.

    PubMed

    Yin, Fangyuan; Liu, Junlong; Liu, Aihong; Li, Youquan; Luo, Jianxun; Guan, Guiquan; Yin, Hong

    2017-04-15

    Rapid and accurate diagnosis of Theileria annulata infection contributes to the formulation of strategies to eradicate this parasite. A simple and efficient diagnostic tool, recombinase polymerase amplification (RPA) combined with a lateral flow (LF) strip, was used in detection of Theileria and compared to other methods that require expensive instruments and skilled personnel. Herein, we established and optimized an LF-RPA method to detect the cytochrome b gene of T. annulata mitochondrial DNA from experimentally infected and field-collected blood samples. This method has many unparalleled characteristics, including that it is rapid (clear detection in 5min at constant temperature), sensitive (the limitation of detection is at least 2pg genomic DNA), and specific (no cross-reaction with other piroplasms that infect cattle). The LF-RPA assay was evaluated via testing 17 field blood samples and comparing the results of that of a PCR, showing 100% agreement, which demonstrates the ability of the LF-RPA assay to detect T. annulata infections in small number of samples (n=17). Taken together, the results indicate that this method could be used as an ideal diagnostic tool for detecting T. annulata in endemic regions with limited to fewer and local resources and could also be a potential technique for the surveillance and control of blood protozoa. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Development of Rapid Detection and Genetic Characterization of Salmonella in Poultry Breeder Feeds

    PubMed Central

    Jarquin, Robin; Hanning, Irene; Ahn, Soohyoun; Ricke, Steven C.

    2009-01-01

    Salmonella is a leading cause of foodborne illness in the United States, with poultry and poultry products being a primary source of infection to humans. Poultry may carry some Salmonella serovars without any signs or symptoms of disease and without causing any adverse effects to the health of the bird. Salmonella may be introduced to a flock by multiple environmental sources, but poultry feed is suspected to be a leading source. Detecting Salmonella in feed can be challenging because low levels of the bacteria may not be recovered using traditional culturing techniques. Numerous detection methodologies have been examined over the years for quantifying Salmonella in feeds and many have proven to be effective for Salmonella isolation and detection in a variety of feeds. However, given the potential need for increased detection sensitivity, molecular detection technologies may the best candidate for developing rapid sensitive methods for identifying small numbers of Salmonella in the background of large volumes of feed. Several studies have been done using polymerase chain reaction (PCR) assays and commercial kits to detect Salmonella spp. in a wide variety of feed sources. In addition, DNA array technology has recently been utilized to track the dissemination of a specific Salmonella serotype in feed mills. This review will discuss the processing of feeds and potential points in the process that may introduce Salmonella contamination to the feed. Detection methods currently used and the need for advances in these methods also will be discussed. Finally, implementation of rapid detection for optimizing control methods to prevent and remove any Salmonella contamination of feeds will be considered. PMID:22346699

  16. PCR-Based Method for Detecting Viral Penetration of Medical Exam Gloves

    PubMed Central

    Broyles, John M.; O'Connell, Kevin P.; Korniewicz, Denise M.

    2002-01-01

    The test approved by the U.S. Food and Drug Administration for assessment of the barrier quality of medical exam gloves includes visual inspection and a water leak test. Neither method tests directly the ability of gloves to prevent penetration by microorganisms. Methods that use microorganisms (viruses and bacteria) to test gloves have been developed but require classical culturing of the organism to detect it. We have developed a PCR assay for bacteriophage φX174 that allows the rapid detection of penetration of gloves by this virus. The method is suitable for use with both latex and synthetic gloves. The presence of glove powder on either latex or synthetic gloves had no effect on the ability of the PCR assay to detect bacteriophage DNA. The assay is rapid, sensitive, and inexpensive; requires only small sample volumes; and can be automated. PMID:12149320

  17. [Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].

    PubMed

    Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing

    2012-08-01

    Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.

  18. Rapid detection of acetamiprid in foods using surface-enhanced Raman spectroscopy (SERS).

    PubMed

    Wijaya, Wisiani; Pang, Shintaro; Labuza, Theodore P; He, Lili

    2014-04-01

    Acetamiprid is a neonicotinoid pesticide that is commonly used in modern farming. Acetamiprid residue in food commodities can be a potential harm to human and has been implicated in the honey bee hive die off crisis. In this study, we developed rapid, simple, and sensitive methods to detect acetamiprid in apple juice and on apple surfaces using surface-enhanced Raman spectroscopy (SERS). No pretreatment of apple juice sample was performed. A simple surface swab method was used to recover acetamiprid from the apple surface. Samples were incubated with silver dendrites for several minutes and SERS spectra were taken directly from the silver surface. Detection of a set of 5 apple juice samples can be done within 10 min. The swab-SERS method took 15 min for a set of 5 samples. Resulting spectral data were analyzed using principal component analysis. The highest acetamiprid peak at 634 cm(-1) was used to detect and quantify the amount of acetamiprid spiked in 1:1 water-methanol solvent, apple juice, and on apple surface. The SERS method was able to successfully detect acetamiprid at 0.5 μg/mL (0.5 ppm) in solvent, 3 μg/mL (3 ppm) in apple juice, and 0.125 μg/cm(2) on apple surfaces. The SERS methods provide simple, rapid, and sensitive ways to detect acetamiprid in beverages and on the surfaces of thick skinned fruits and vegetables. © 2014 Institute of Food Technologists®

  19. Detection of the Dinozoans Pfiesteria piscicida and P. shumwayae: a review of detection methods and geographic distribution.

    PubMed

    Rublee, Parke A; Remington, David L; Schaefer, Eric F; Marshall, Michael M

    2005-01-01

    Molecular methods, including conventional PCR, real-time PCR, denaturing gradient gel electrophoresis, fluorescent fragment detection PCR, and fluorescent in situ hybridization, have all been developed for use in identifying and studying the distribution of the toxic dinoflagellates Pfiesteria piscicida and P. shumwayae. Application of the methods has demonstrated a worldwide distribution of both species and provided insight into their environmental tolerance range and temporal changes in distribution. Genetic variability among geographic locations generally appears low in rDNA genes, and detection of the organisms in ballast water is consistent with rapid dispersal or high gene flow among populations, but additional sequence data are needed to verify this hypothesis. The rapid development and application of these tools serves as a model for study of other microbial taxa and provides a basis for future development of tools that can simultaneously detect multiple targets.

  20. A rapid detection method for paralytic shellfish poisoning toxins by cell bioassay.

    PubMed

    Okumura, Masanao; Tsuzuki, Hideaki; Tomita, Ban-Ichi

    2005-07-01

    We report here a rapid detection method for paralytic shellfish poisoning (PSP) toxins using a cultured neuroblastoma cell line, modified from the bioassay system previously established by Manger et al. [Manger, R.L., Leja, L.S., Lee, S.Y., Hungerford, J.M., Kirkpatrick, M.A., Yasumoto, T., Wekell, M.M., 2003. Detection of paralytic shellfish poison by rapid cell bioassay: antagonism of voltage-gated sodium channel active toxins in vitro. J. AOAC Int. 86 (3), 540-543]. In the present study, we made two major modifications to the previous method. The first is the use of maitotoxin, a marine toxin of ciguatera fish poisoning, which enables the incubation period to be reduced to 6 h when applied to the microplate 15 min prior to the end of the incubation. The second is the use of WST-8, a dehydrogenase detecting water-soluble tetrazolium salt for determining the target cell viability, which permits the omission of a washing step and simplifies the counting process. In addition, we attempted to reduce the required materials as much as possible. Thus, our modified method should be useful for screening the PSP-toxins from shellfish.

  1. Rapid detection and differentiation of Clonorchis sinensis and Opisthorchis viverrini using real-time PCR and high resolution melting analysis.

    PubMed

    Cai, Xian-Quan; Yu, Hai-Qiong; Li, Rong; Yue, Qiao-Yun; Liu, Guo-Hua; Bai, Jian-Shan; Deng, Yan; Qiu, De-Yi; Zhu, Xing-Quan

    2014-01-01

    Clonorchis sinensis and Opisthorchis viverrini are both important fish-borne pathogens, causing serious public health problem in Asia. The present study developed an assay integrating real-time PCR and high resolution melting (HRM) analysis for the specific detection and rapid identification of C. sinensis and O. viverrini. Primers targeting COX1 gene were highly specific for these liver flukes, as evidenced by the negative amplification of closely related trematodes. Assays using genomic DNA extracted from the two flukes yielded specific amplification and their identity was confirmed by sequencing, having the accuracy of 100% in reference to conventional methods. The assay was proved to be highly sensitive with a detection limit below 1 pg of purified genomic DNA, 5 EPG, or 1 metacercaria of C. sinensis. Moreover, C. sinensis and O. viverrini were able to be differentiated by their HRM profiles. The method can reduce labor of microscopic examination and the contamination of agarose electrophoresis. Moreover, it can differentiate these two flukes which are difficult to be distinguished using other methods. The established method provides an alternative tool for rapid, simple, and duplex detection of C. sinensis and O. viverrini.

  2. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Morgan; Kim, Jong-Hoon; Lee, Hyun-Boo; Inoue, Shinnosuke; Becker, Annie L.; Weigel, Kris M.; Cangelosi, Gerard A.; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2015-05-01

    Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low-cost detection of Mycobacterium tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected by electric current. According to the numerical study, the current signal on the microtip surface is linearly changed with increasing immersion depth. Using a reference microtip, the immersion depth is compensated for a sensing microtip. On the microtip surface, target bacteria are concentrated and organized by a coffee-ring effect, which amplifies the electric current. To enhance the signal-to-noise ratio, both the sample processing and rinsing steps are presented with the use of deionized water as a medium for the amperometric measurement. When applied to cultured MTB cells spiked into human sputum, the detection limit was 100 CFU mL-1, comparable to a more labor-intensive fluorescence detection method reported previously.

  3. Rapid direct methods for enumeration of specific, active bacteria in water and biofilms

    NASA Technical Reports Server (NTRS)

    McFeters, G. A.; Pyle, B. H.; Lisle, J. T.; Broadaway, S. C.

    1999-01-01

    Conventional methods for detecting indicator and pathogenic bacteria in water may underestimate the actual population due to sublethal environmental injury, inability of the target bacteria to take up nutrients and other physiological factors which reduce bacterial culturability. Rapid and direct methods are needed to more accurately detect and enumerate active bacteria. Such a methodological advance would provide greater sensitivity in assessing the microbiological safety of water and food. The principle goal of this presentation is to describe novel approaches we have formulated for the rapid and simultaneous detection of bacteria plus the determination of their physiological activity in water and other environmental samples. The present version of our method involves the concentration of organisms by membrane filtration or immunomagnetic separation and combines an intracellular fluorochrome (CTC) for assessment of respiratory activity plus fluorescent-labelled antibody detection of specific bacteria. This approach has also been successfully used to demonstrate spatial and temporal heterogeneities of physiological activities in biofilms when coupled with cryosectioning. Candidate physiological stains include those capable of determining respiratory activity, membrane potential, membrane integrity, growth rate and cellular enzymatic activities. Results obtained thus far indicate that immunomagnetic separation can provide a high degree of sensitivity in the recovery of seeded target bacteria (Escherichia coli O157:H7) in water and hamburger. The captured and stained target bacteria are then enumerated by either conventional fluorescence microscopy or ChemScan(R), a new instrument that is very sensitive and rapid. The ChemScan(R) laser scanning instrument (Chemunex, Paris, France) provides the detection of individual fluorescently labelled bacterial cells using three emission channels in less than 5 min. A high degree of correlation has been demonstrated between results obtained with the ChemScan and traditional plate counts of mixed natural bacterial populations in water. The continuing evolution of these methods will be valuable in the rapid and accurate analysis of environmental samples.

  4. Detection of shigella in lettuce by the use of a rapid molecular assay with increased sensitivity

    PubMed Central

    Jiménez, Kenia Barrantes; McCoy², Clyde B.; Achí, Rosario

    2010-01-01

    A Multiplex Polymerase Chain Reaction (PCR) assay to be used as an alternative to the conventional culture method in detecting Shigella and enteroinvasive Escherichia coli (EIEC) virulence genes ipaH and ial in lettuce was developed. Efficacy and rapidity of the molecular method were determined as compared to the conventional culture. Lettuce samples were inoculated with different Shigella flexneri concentrations (from 10 CFU/ml to 107 CFU/ml). DNA was extracted directly from lettuce after inoculation (direct-PCR) and after an enrichment step (enrichment PCR). Multiplex PCR detection limit was 104CFU/ml, diagnostic sensitivity and specificity were 100% accurate. An internal amplification control (IAC) of 100 bp was used in order to avoid false negative results. This method produced results in 1 to 2 days while the conventional culture method required 5 to 6 days. Also, the culture method detection limit was 106 CFU/ml, diagnostic sensitivity was 53% and diagnostic specificity was 100%. In this study a Multiplex PCR method for detection of virulence genes in Shigella and EIEC was shown to be effective in terms of diagnostic sensitivity, detection limit and amount of time as compared to Shigella conventional culture. PMID:24031579

  5. Rapid and label-free bioanalytical method of alpha fetoprotein detection using LSPR chip

    NASA Astrophysics Data System (ADS)

    Kim, Dongjoo; Kim, Jinwoon; Kwak, Cheol Hwan; Heo, Nam Su; Oh, Seo Yeong; Lee, Hoomin; Lee, Go-Woon; Vilian, A. T. Ezhil; Han, Young-Kyu; Kim, Woo-Sik; Kim, Gi-bum; Kwon, Soonjo; Huh, Yun Suk

    2017-07-01

    Alpha fetoprotein (AFP) is a cancer marker, particularly for hepatocellular carcinoma. Normal levels of AFP are less than 20 ng/mL; however, its levels can reach more than 400 ng/mL in patients with HCC. Enzyme linked immunosorbent assay (ELISA) and radioimmunoassay (RIA) have been employed for clinical diagnosis of AFP; however, these methods are time consuming and labor intensive. In this study, we developed a localized surface plasmon resonance (LSPR) based biosensor for simple and rapid detection of AFP. This biosensor consists of a UV-Vis spectrometer, a cuvette cell, and a biosensor chip nanopatterned with gold nanoparticles (AuNPs). In our LSPR biosensor, binding of AFP to the surface of the sensor chip led to an increasing magnitude of the LSPR signals, which was measured by an ultraviolet-visible (UV-Vis) spectrometer. Our LSPR biosensor showed sufficient detectability of AFP at concentrations of 1 ng/mL to 1 μg/mL. Moreover, the overall procedure for detection of AFP was completed within 20 min. This biosensor could also be utilized for a point of care test (POCT) by employing a portable UV-Vis spectrometer. Owing to the simplicity and rapidity of the detection process, our LSPR biosensor is expected to replace traditional diagnostic methods for the early detection of diseases.

  6. Rapid detection method for Bacillus anthracis using a combination of multiplexed real-time PCR and pyrosequencing and its application for food biodefense.

    PubMed

    Janzen, Timothy W; Thomas, Matthew C; Goji, Noriko; Shields, Michael J; Hahn, Kristen R; Amoako, Kingsley K

    2015-02-01

    Bacillus anthracis, the causative agent of anthrax, has the capacity to form highly resilient spores as part of its life cycle. The potential for the dissemination of these spores using food as a vehicle is a huge public health concern and, hence, requires the development of a foodborne bioterrorism response approach. In this work, we address a critical gap in food biodefense by presenting a novel, combined, sequential method involving the use of real-time PCR and pyrosequencing for the rapid, specific detection of B. anthracis spores in three food matrices: milk, apple juice, and bottled water. The food samples were experimentally inoculated with 40 CFU ml(-1), and DNA was extracted from the spores and analyzed after immunomagnetic separation. Applying the combination of multiplex real-time PCR and pyrosequencing, we successfully detected the presence of targets on both of the virulence plasmids and the chromosome. The results showed that DNA amplicons generated from a five-target multiplexed real-time PCR detection using biotin-labeled primers can be used for single-plex pyrosequencing detection. The combined use of multiplexed real-time PCR and pyrosequencing is a novel, rapid detection method for B. anthracis from food and provides a tool for accurate, quantitative identification with potential biodefense applications.

  7. Rapid electrochemical detection of polyaniline-labeled Escherichia coli O157:H7.

    PubMed

    Setterington, Emma B; Alocilja, Evangelyn C

    2011-01-15

    There is a high demand for rapid, sensitive, and field-ready detection methods for Escherichia coli O157:H7, a highly infectious and potentially fatal food and water borne pathogen. In this study, E. coli O157:H7 cells are isolated via immunomagnetic separation (IMS) and labeled with biofunctionalized electroactive polyaniline (immuno-PANI). Labeled cell complexes are deposited onto a disposable screen-printed carbon electrode (SPCE) sensor and pulled to the electrode surface by an external magnetic field, to amplify the electrochemical signal generated by the polyaniline. Cyclic voltammetry is used to detect polyaniline and signal magnitude indicates the presence or absence of E. coli O157:H7. As few as 7CFU of E. coli O157:H7 (corresponding to an original concentration of 70 CFU/ml) were successfully detected on the SPCE sensor. The assay requires 70 min from sampling to detection, giving it a major advantage over standard culture methods in applications requiring high-throughput screening of samples and rapid results. The method can be performed with portable, handheld instrumentation and no biological modification of the sensor surface is required. Potential applications include field-based pathogen detection for food and water safety, environmental monitoring, healthcare, and biodefense. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Compositions, devices and methods for SERS and LSPR

    DOEpatents

    Van Duyne, Richard P; Zhang, Xiaoyu; Zhao, Jing; Whitney, Alyson V; Elam, Jeffrey W; Schatz, George C; Stair, Peter C; Zou, Shengli; Young, Matthew; Lyandres, Olga

    2014-01-14

    The present invention relates to compositions, devices and methods for detecting microorganisms (e.g., anthrax). In particular, the present invention provides portable, surface-enhanced Raman biosensors, and associated substrates, and methods of using the same, for use in rapidly detecting and identifying microorganisms (e.g., anthrax).

  9. Method for rapid base sequencing in DNA and RNA with two base labeling

    DOEpatents

    Jett, J.H.; Keller, R.A.; Martin, J.C.; Posner, R.G.; Marrone, B.L.; Hammond, M.L.; Simpson, D.J.

    1995-04-11

    A method is described for rapid-base sequencing in DNA and RNA with two-base labeling and employing fluorescent detection of single molecules at two wavelengths. Bases modified to accept fluorescent labels are used to replicate a single DNA or RNA strand to be sequenced. The bases are then sequentially cleaved from the replicated strand, excited with a chosen spectrum of electromagnetic radiation, and the fluorescence from individual, tagged bases detected in the order of cleavage from the strand. 4 figures.

  10. Method for rapid base sequencing in DNA and RNA with two base labeling

    DOEpatents

    Jett, James H.; Keller, Richard A.; Martin, John C.; Posner, Richard G.; Marrone, Babetta L.; Hammond, Mark L.; Simpson, Daniel J.

    1995-01-01

    Method for rapid-base sequencing in DNA and RNA with two-base labeling and employing fluorescent detection of single molecules at two wavelengths. Bases modified to accept fluorescent labels are used to replicate a single DNA or RNA strand to be sequenced. The bases are then sequentially cleaved from the replicated strand, excited with a chosen spectrum of electromagnetic radiation, and the fluorescence from individual, tagged bases detected in the order of cleavage from the strand.

  11. [Rapid analysis on phenolic compounds in Rheum palmatum based on UPLC-Q-TOF/MSE combined with diagnostic ions filter].

    PubMed

    Wang, Qing; Lu, Zhi-Wei; Liu, Yue-Hong; Wang, Ming-Ling; Fu, Shuang; Zhang, Qing-Qing; Zhao, Hui-Zhen; Zhang, Zhi-Xin; Xie, Zi-Ye; Huang, Zheng-Hai; Yu, Hong-Hong; Zhou, Wen-Juan; Gao, Xiao-Yan

    2017-05-01

    Diagnostic ions filter method was used to rapidly detect and identify the phenolic compounds in Rheum palmatum based on ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MSE). The representative authentic standards of phenolic compounds, including gallic acid, (+)-catechin, (-)-epicatechin, (-)-epicatechin-3-O-gallate and procyanidin B2, were subjected to analysis by UPLC-Q-TOF/MSE system with negative ion mode. Fragmentation patterns of each standard were summarized based on assigned fragment ions. The prominent product ions were selected as diagnostic ions. Subsequently, diagnostic ions filter was employed to rapidly recognize analogous skeletons. Combined with retention time, accurate mass, characteristic fragments and previous literature data, the structures of the filtered compounds were identified or tentatively characterized. A total 63 phenolic compounds (36 phenolic acid derivatives, 8 flavonoid derivatives and 19 tennis derivatives) in R. palmatum were identified, including 6 potential new compounds. The method of diagnostic ions filter could rapidly detect and identify phenolic compounds in R. palmatum This study provides a method for rapid detection of phenolic compounds in R. palmatum and is expected to complete the material basis of rhubarb. Copyright© by the Chinese Pharmaceutical Association.

  12. Towards Detection and Diagnosis of Ebola Virus Disease at Point-of-Care

    PubMed Central

    Kaushik, Ajeet; Tiwari, Sneham; Jayant, Rahul Dev; Marty, Aileen; Nair, Madhavan

    2015-01-01

    Ebola outbreak-2014 (mainly Zaire strain related Ebola virus) has been declared most widely spread deadly persistent epidemic due to unavailability of rapid diagnostic, detection, and therapeutics. Ebola virus disease (EVD), a severe viral hemorrhagic fever syndrome caused by Ebola virus (EBOV) is transmitted by direct contact with the body fluids of infected person and objects contaminated with virus or infected animals. World Health Organization (WHO) has declared EVD epidemic as public health emergency of international concern with severe global economic burden. At fatal EBOV infection stage, patients usually die before the antibody response. Currently, rapid blood tests to diagnose EBOV infection include the antigen or antibodies capture using ELISA and RNA detection using RT/Q-PCR within 3–10 days after the onset of symptoms. Moreover, few nanotechnology-based colorimetric and paper-based immunoassay methods have been recently reported to detect Ebola virus. Unfortunately, these methods are limited to laboratory only. As state-of-the art (SoA) diagnostics time to confirm Ebola infection, varies from 6 hours to about 3 days, it causes delay in therapeutic approaches. Thus developing a cost-effective, rapid, sensitive, and selective sensor to detect EVD at point-of-care (POC) is certainly worth exploring to establish rapid diagnostics to decide therapeutics. This review highlights SoA of Ebola diagnostics and also a call to develop rapid, selective and sensitive POC detection of EBOV for global health care. We propose that adopting miniaturized electrochemical EBOV immunosensing can detect virus level at pM concentration within ~40 minute compared to 3 days of ELISA test at nM levels. PMID:26319169

  13. Toxin Detection by Surface Plasmon Resonance

    PubMed Central

    Hodnik, Vesna; Anderluh, Gregor

    2009-01-01

    Significant efforts have been invested in the past years for the development of analytical methods for fast toxin detection in food and water. Immunochemical methods like ELISA, spectroscopy and chromatography are the most used in toxin detection. Different methods have been linked, e.g. liquid chromatography and mass spectrometry (LC-MS), in order to detect as low concentrations as possible. Surface plasmon resonance (SPR) is one of the new biophysical methods which enables rapid toxin detection. Moreover, this method was already included in portable sensors for on-site determinations. In this paper we describe some of the most common methods for toxin detection, with an emphasis on SPR. PMID:22573957

  14. Most Probable Number Rapid Viability PCR Method to Detect Viable Spores of Bacillus anthracis in Swab Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letant, S E; Kane, S R; Murphy, G A

    2008-05-30

    This note presents a comparison of Most-Probable-Number Rapid Viability (MPN-RV) PCR and traditional culture methods for the quantification of Bacillus anthracis Sterne spores in macrofoam swabs generated by the Centers for Disease Control and Prevention (CDC) for a multi-center validation study aimed at testing environmental swab processing methods for recovery, detection, and quantification of viable B. anthracis spores from surfaces. Results show that spore numbers provided by the MPN RV-PCR method were in statistical agreement with the CDC conventional culture method for all three levels of spores tested (10{sup 4}, 10{sup 2}, and 10 spores) even in the presence ofmore » dirt. In addition to detecting low levels of spores in environmental conditions, the MPN RV-PCR method is specific, and compatible with automated high-throughput sample processing and analysis protocols.« less

  15. Recent developments and applications of hyperspectral imaging for rapid detection of mycotoxins and mycotoxigenic fungi in food products.

    PubMed

    Xing, Fuguo; Yao, Haibo; Liu, Yang; Dai, Xiaofeng; Brown, Robert L; Bhatnagar, Deepak

    2017-08-28

    Mycotoxins are the foremost naturally occurring contaminants of food products such as corn, peanuts, tree nuts, and wheat. As the secondary metabolites, mycotoxins are mainly synthesized by many species of the genera Aspergillus, Fusarium and Penicillium, and are considered highly toxic and carcinogenic to humans and animals. Most mycotoxins are detected and quantified by analytical chemistry-based methods. While mycotoxigenic fungi are usually identified and quantified by biological methods. However, these methods are time-consuming, laborious, costly, and inconsistent because of the variability of the grain-sampling process. It is desirable to develop rapid, non-destructive and efficient methods that objectively measure and evaluate mycotoxins and mycotoxigenic fungi in food. In recent years, some spectroscopy-based technologies such as hyperspectral imaging (HSI), Raman spectroscopy, and Fourier transform infrared spectroscopy have been extensively investigated for their potential use as tools for the detection, classification, and sorting of mycotoxins and toxigenic fungal contaminants in food. HSI integrates both spatial and spectral information for every pixel in an image, making it suitable for rapid detection of large quantities of samples and more heterogeneous samples and for in-line sorting in the food industry. In order to track the latest research developments in HSI, this paper gives a brief overview of the theories and fundamentals behind the technology and discusses its applications in the field of rapid detection and sorting of mycotoxins and toxigenic fungi in food products. Additionally, advantages and disadvantages of HSI are compared, and its potential use in commercial applications is reported.

  16. Rapid detection of hemagglutination using restrictive microfluidic channels equipped with waveguide-mode sensors

    NASA Astrophysics Data System (ADS)

    Ashiba, Hiroki; Fujimaki, Makoto; Awazu, Koichi; Fu, Mengying; Ohki, Yoshimichi; Tanaka, Torahiko; Makishima, Makoto

    2016-02-01

    Hemagglutination is utilized for various immunological assays, including blood typing and virus detection. Herein, we describe a method of rapid hemagglutination detection based on a microfluidic channel installed on an optical waveguide-mode sensor. Human blood samples mixed with hemagglutinating antibodies associated with different blood groups were injected into the microfluidic channel, and reflectance spectra of the samples were measured after stopping the flow. The agglutinated and nonagglutinated samples were distinguishable by the alterations in their reflectance spectra with time; the microfluidic channels worked as spatial restraints for agglutinated red blood cells. The demonstrated system allowed rapid hemagglutination detection within 1 min. The suitable height of the channels was also discussed.

  17. Rapid and sensitive detection of malachite green in aquaculture water by electrochemical preconcentration and surface-enhanced Raman scattering.

    PubMed

    Xu, Kai-Xuan; Guo, Mei-Hong; Huang, Yu-Ping; Li, Xiao-Dong; Sun, Jian-Jun

    2018-04-01

    A highly sensitive and rapid method of in-situ surface-enhanced Raman spectroscopy (SERS) combining with electrochemical preconcentration (EP) in detecting malachite green (MG) in aquaculture water was established. Ag nanoparticles (AgNPs) were synthesized and spread onto the surface of gold electrodes after centrifuging to produce SERS-active substrates. After optimizing the pH values, preconcentration potentials and times, in-situ EP-SERS detection was carried out. A sensitive and rapid analysis of the low-concentration MG was accomplished within 200s and the limit of detection was 2.4 × 10 -16 M. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. New technologies to detect and monitor Phytophthora ramorum in plant, soil, and water samples

    Treesearch

    Paul Russell; Nathan McOwen; Robert Bohannon

    2013-01-01

    The focus of our research efforts has been to develop methods to quickly identify plants, soil, and water samples infested with Phytophthora spp., and to rapidly confirm the findings using novel isothermal DNA technologies suitable for field use. These efforts have led to the development of a rapid Immunostrip® that reliably detects...

  19. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes

    NASA Astrophysics Data System (ADS)

    Lau, Han Yih; Wu, Haoqi; Wee, Eugene J. H.; Trau, Matt; Wang, Yuling; Botella, Jose R.

    2017-01-01

    Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics.

  20. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes.

    PubMed

    Lau, Han Yih; Wu, Haoqi; Wee, Eugene J H; Trau, Matt; Wang, Yuling; Botella, Jose R

    2017-01-17

    Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics.

  1. R Peak Detection Method Using Wavelet Transform and Modified Shannon Energy Envelope

    PubMed Central

    2017-01-01

    Rapid automatic detection of the fiducial points—namely, the P wave, QRS complex, and T wave—is necessary for early detection of cardiovascular diseases (CVDs). In this paper, we present an R peak detection method using the wavelet transform (WT) and a modified Shannon energy envelope (SEE) for rapid ECG analysis. The proposed WTSEE algorithm performs a wavelet transform to reduce the size and noise of ECG signals and creates SEE after first-order differentiation and amplitude normalization. Subsequently, the peak energy envelope (PEE) is extracted from the SEE. Then, R peaks are estimated from the PEE, and the estimated peaks are adjusted from the input ECG. Finally, the algorithm generates the final R features by validating R-R intervals and updating the extracted R peaks. The proposed R peak detection method was validated using 48 first-channel ECG records of the MIT-BIH arrhythmia database with a sensitivity of 99.93%, positive predictability of 99.91%, detection error rate of 0.16%, and accuracy of 99.84%. Considering the high detection accuracy and fast processing speed due to the wavelet transform applied before calculating SEE, the proposed method is highly effective for real-time applications in early detection of CVDs. PMID:29065613

  2. R Peak Detection Method Using Wavelet Transform and Modified Shannon Energy Envelope.

    PubMed

    Park, Jeong-Seon; Lee, Sang-Woong; Park, Unsang

    2017-01-01

    Rapid automatic detection of the fiducial points-namely, the P wave, QRS complex, and T wave-is necessary for early detection of cardiovascular diseases (CVDs). In this paper, we present an R peak detection method using the wavelet transform (WT) and a modified Shannon energy envelope (SEE) for rapid ECG analysis. The proposed WTSEE algorithm performs a wavelet transform to reduce the size and noise of ECG signals and creates SEE after first-order differentiation and amplitude normalization. Subsequently, the peak energy envelope (PEE) is extracted from the SEE. Then, R peaks are estimated from the PEE, and the estimated peaks are adjusted from the input ECG. Finally, the algorithm generates the final R features by validating R-R intervals and updating the extracted R peaks. The proposed R peak detection method was validated using 48 first-channel ECG records of the MIT-BIH arrhythmia database with a sensitivity of 99.93%, positive predictability of 99.91%, detection error rate of 0.16%, and accuracy of 99.84%. Considering the high detection accuracy and fast processing speed due to the wavelet transform applied before calculating SEE, the proposed method is highly effective for real-time applications in early detection of CVDs.

  3. Validation Study of Rapid Assays of Bioburden, Endotoxins and Other Contamination.

    PubMed

    Shintani, Hideharu

    2016-01-01

    Microbial testing performed in support of pharmaceutical and biopharmaceutical production falls into three main categories: detection (qualitative), enumeration (quantitative), and characterization/identification. Traditional microbiological methods are listed in the compendia and discussed by using the conventional growth-based techniques, which are labor intensive and time consuming. In general, such tests require several days of incubation for microbial contamination (bioburden) to be detected, and therefore management seldom is able to take proactive corrective measures. In addition, microbial growth is limited by the growth medium used and incubation conditions, thus impacting testing sensitivity, accuracy, and reproducibility.  For more than 20 years various technology platforms for rapid microbiological methods (RMM) have been developed, and many have been readily adopted by the food industry and clinical microbiology laboratories. Their use would certainly offer drug companies faster test turnaround times to accommodate the aggressive deadlines for manufacturing processes and product release. Some rapid methods also offer the possibility for real-time microbial analyses, enabling management to respond to microbial contamination events in a more timely fashion, and can provide cost savings and higher efficiencies in quality control testing laboratories. Despite the many proven business and quality benefits and the fact that the FDA's initiative to promote the use of process analytical technology (PAT) includes rapid microbial methods, pharmaceutical and biopharmaceutical industries have been somewhat slow to embrace alternative microbial methodologies for several reasons. The major reason is that the bioburden counts detected by the incubation method and rapid assay are greatly divergent.  The use of rapid methods is a dynamic field in applied microbiology and one that has gained increased attention nationally and internationally over time. This topic has been extensively addressed at conferences and in published documents around the world. More recently, the use of alternative methods for control of the microbiological quality of pharmaceutical products and materials used in pharmaceutical production has been addressed by the compendia in an attempt to facilitate implementation of these technologies by pharmaceutical companies. The author presents some of the rapid method technologies under evaluation or in use by pharmaceutical microbiologists and the current status of the implementation of alternative microbial methods.

  4. A Decision Mixture Model-Based Method for Inshore Ship Detection Using High-Resolution Remote Sensing Images

    PubMed Central

    Bi, Fukun; Chen, Jing; Zhuang, Yin; Bian, Mingming; Zhang, Qingjun

    2017-01-01

    With the rapid development of optical remote sensing satellites, ship detection and identification based on large-scale remote sensing images has become a significant maritime research topic. Compared with traditional ocean-going vessel detection, inshore ship detection has received increasing attention in harbor dynamic surveillance and maritime management. However, because the harbor environment is complex, gray information and texture features between docked ships and their connected dock regions are indistinguishable, most of the popular detection methods are limited by their calculation efficiency and detection accuracy. In this paper, a novel hierarchical method that combines an efficient candidate scanning strategy and an accurate candidate identification mixture model is presented for inshore ship detection in complex harbor areas. First, in the candidate region extraction phase, an omnidirectional intersected two-dimension scanning (OITDS) strategy is designed to rapidly extract candidate regions from the land-water segmented images. In the candidate region identification phase, a decision mixture model (DMM) is proposed to identify real ships from candidate objects. Specifically, to improve the robustness regarding the diversity of ships, a deformable part model (DPM) was employed to train a key part sub-model and a whole ship sub-model. Furthermore, to improve the identification accuracy, a surrounding correlation context sub-model is built. Finally, to increase the accuracy of candidate region identification, these three sub-models are integrated into the proposed DMM. Experiments were performed on numerous large-scale harbor remote sensing images, and the results showed that the proposed method has high detection accuracy and rapid computational efficiency. PMID:28640236

  5. A Decision Mixture Model-Based Method for Inshore Ship Detection Using High-Resolution Remote Sensing Images.

    PubMed

    Bi, Fukun; Chen, Jing; Zhuang, Yin; Bian, Mingming; Zhang, Qingjun

    2017-06-22

    With the rapid development of optical remote sensing satellites, ship detection and identification based on large-scale remote sensing images has become a significant maritime research topic. Compared with traditional ocean-going vessel detection, inshore ship detection has received increasing attention in harbor dynamic surveillance and maritime management. However, because the harbor environment is complex, gray information and texture features between docked ships and their connected dock regions are indistinguishable, most of the popular detection methods are limited by their calculation efficiency and detection accuracy. In this paper, a novel hierarchical method that combines an efficient candidate scanning strategy and an accurate candidate identification mixture model is presented for inshore ship detection in complex harbor areas. First, in the candidate region extraction phase, an omnidirectional intersected two-dimension scanning (OITDS) strategy is designed to rapidly extract candidate regions from the land-water segmented images. In the candidate region identification phase, a decision mixture model (DMM) is proposed to identify real ships from candidate objects. Specifically, to improve the robustness regarding the diversity of ships, a deformable part model (DPM) was employed to train a key part sub-model and a whole ship sub-model. Furthermore, to improve the identification accuracy, a surrounding correlation context sub-model is built. Finally, to increase the accuracy of candidate region identification, these three sub-models are integrated into the proposed DMM. Experiments were performed on numerous large-scale harbor remote sensing images, and the results showed that the proposed method has high detection accuracy and rapid computational efficiency.

  6. Rapid specific and visible detection of porcine circovirus type 3 using loop-mediated isothermal amplification (LAMP).

    PubMed

    Zheng, S; Wu, X; Shi, J; Peng, Z; Gao, M; Xin, C; Liu, Y; Wang, S; Xu, S; Han, H; Yu, J; Sun, W; Cong, X; Li, J; Wang, J

    2018-06-01

    In this study, a rapid and specific assay for the detection of porcine circovirus type 3 (PCV3) was established using loop-mediated isothermal amplification (LAMP). Four primers were specifically designed to amplify PCV3. The LAMP assay was effectively optimized to amplify PCV3 by water bath at 60°C for 60 min. The detection limit was approximately 1 × 10 1 copy in this LAMP assay. Compared to porcine circovirus type 2 (PCV2), both gE and gD genes of pseudorabies virus (PRV) and porcine parvovirus (PPV), the LAMP assay showed a high specific detection of PCV3. A visible detection method was developed using SYBR Green I to recognize the results rapidly. Based on the detection of 20 clinical tissue samples, the LAMP assay was more practical and convenient than classical PCR due to its simplicity, high sensitivity, rapidity, specificity, visibility and cost efficiency. © 2018 Blackwell Verlag GmbH.

  7. Multiplex PCR detection of waterborne intestinal protozoa: microsporidia, Cyclospora, and Cryptosporidium.

    PubMed

    Lee, Seung-Hyun; Joung, Migyo; Yoon, Sejoung; Choi, Kyoungjin; Park, Woo-Yoon; Yu, Jae-Ran

    2010-12-01

    Recently, emerging waterborne protozoa, such as microsporidia, Cyclospora, and Cryptosporidium, have become a challenge to human health worldwide. Rapid, simple, and economical detection methods for these major waterborne protozoa in environmental and clinical samples are necessary to control infection and improve public health. In the present study, we developed a multiplex PCR test that is able to detect all these 3 major waterborne protozoa at the same time. Detection limits of the multiplex PCR method ranged from 10(1) to 10(2) oocysts or spores. The primers for microsporidia or Cryptosporidium used in this study can detect both Enterocytozoon bieneusi and Encephalitozoon intestinalis, or both Cryptosporidium hominis and Cryptosporidium parvum, respectively. Restriction enzyme digestion of PCR products with BsaBI or BsiEI makes it possible to distinguish the 2 species of microsporidia or Cryptosporidium, respectively. This simple, rapid, and cost-effective multiplex PCR method will be useful for detecting outbreaks or sporadic cases of waterborne protozoa infections.

  8. The development of methods for the detection of Salmonella in chickens by a combination of immunomagnetic separation and PCRs.

    PubMed

    Dai, Fengying; Zhang, Miao; Xu, Dixin; Yang, Yin; Wang, Jiaxiao; Li, Mingzhen; Du, Meihong

    2017-11-01

    Micro- and nanoimmunomagnetic beads (MIMBs and NIMBs) used for immunomagnetic separation (IMS) with PCR were studied for the rapid detection of Salmonella. The capture efficiency of the two different IMBs was evaluated by a conventional plate counting method, and the binding pattern was studied using scanning electron microscopy. The specificity of the IMBs was tested with Salmonella, Shigella flexneri, enterohemorrhagic Escherichia coli O157:H7, and Listeria monocytogenes. By comparing the pre-enrichment IMS and the IMS enrichment steps with a 5.5-H enrichment time, this study developed a rapid and sensitive method for the detection of Salmonella in chicken. The method was implemented by IMS enrichment and PCR with MIMBs and NIMBs, with a total analysis time of 8 H. We showed that the method was sensitive based on NIMBs with a detection limit of 10° CFU for Salmonella in 25 g of chicken. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  9. Accurate Detection of Methicillin-Resistant Staphylococcus aureus in Mixtures by Use of Single-Bacterium Duplex Droplet Digital PCR.

    PubMed

    Luo, Jun; Li, Junhua; Yang, Hang; Yu, Junping; Wei, Hongping

    2017-10-01

    Accurate and rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) is needed to screen MRSA carriers and improve treatment. The current widely used duplex PCR methods are not able to differentiate MRSA from coexisting methicillin-susceptible S. aureus (MSSA) or other methicillin-resistant staphylococci. In this study, we aimed to develop a direct method for accurate and rapid detection of MRSA in clinical samples from open environments, such as nasal swabs. The new molecular assay is based on detecting the cooccurrence of nuc and mecA markers in a single bacterial cell by utilizing droplet digital PCR (ddPCR) with the chimeric lysin ClyH for cell lysis. The method consists of (i) dispersion of an intact single bacterium into nanoliter droplets, (ii) temperature-controlled release of genomic DNA (gDNA) by ClyH at 37°C, and (iii) amplification and detection of the markers ( nuc and mecA ) using standard TaqMan chemistries with ddPCR. Results were analyzed based on MRSA index ratios used for indicating the presence of the duplex-positive markers in droplets. The method was able to achieve an absolute limit of detection (LOD) of 2,900 CFU/ml for MRSA in nasal swabs spiked with excess amounts of Escherichia coli , MSSA, and other mecA -positive bacteria within 4 h. Initial testing of 104 nasal swabs showed that the method had 100% agreement with the standard culture method, while the normal duplex qPCR method had only about 87.5% agreement. The single-bacterium duplex ddPCR assay is rapid and powerful for more accurate detection of MRSA directly from clinical specimens. Copyright © 2017 American Society for Microbiology.

  10. Accurate Detection of Methicillin-Resistant Staphylococcus aureus in Mixtures by Use of Single-Bacterium Duplex Droplet Digital PCR

    PubMed Central

    Luo, Jun; Li, Junhua; Yang, Hang; Yu, Junping

    2017-01-01

    ABSTRACT Accurate and rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) is needed to screen MRSA carriers and improve treatment. The current widely used duplex PCR methods are not able to differentiate MRSA from coexisting methicillin-susceptible S. aureus (MSSA) or other methicillin-resistant staphylococci. In this study, we aimed to develop a direct method for accurate and rapid detection of MRSA in clinical samples from open environments, such as nasal swabs. The new molecular assay is based on detecting the cooccurrence of nuc and mecA markers in a single bacterial cell by utilizing droplet digital PCR (ddPCR) with the chimeric lysin ClyH for cell lysis. The method consists of (i) dispersion of an intact single bacterium into nanoliter droplets, (ii) temperature-controlled release of genomic DNA (gDNA) by ClyH at 37°C, and (iii) amplification and detection of the markers (nuc and mecA) using standard TaqMan chemistries with ddPCR. Results were analyzed based on MRSA index ratios used for indicating the presence of the duplex-positive markers in droplets. The method was able to achieve an absolute limit of detection (LOD) of 2,900 CFU/ml for MRSA in nasal swabs spiked with excess amounts of Escherichia coli, MSSA, and other mecA-positive bacteria within 4 h. Initial testing of 104 nasal swabs showed that the method had 100% agreement with the standard culture method, while the normal duplex qPCR method had only about 87.5% agreement. The single-bacterium duplex ddPCR assay is rapid and powerful for more accurate detection of MRSA directly from clinical specimens. PMID:28724560

  11. Loop-mediated isothermal amplification assay targeting the mpb70 gene for rapid differential detection of Mycobacterium bovis.

    PubMed

    Zhang, Hui; Wang, Zhen; Cao, Xudong; Wang, Zhengrong; Sheng, Jinliang; Wang, Yong; Zhang, Jing; Li, Zhiqiang; Gu, Xinli; Chen, Chuangfu

    2016-11-01

    Loop-mediated isothermal amplification (LAMP) is a highly sensitive, rapid, cost-effective nucleic acid amplification method. Tuberculosis (TB) is widely popular in the world and it is difficult to cure. The fundamental treatment is to clear the types of TB pathogens such as Mycobacterium bovis (M. bovis), Mycobacterium tuberculosis (M. tuberculosis). In order to detect and diagnose TB early, we constructed the differential diagnostic method of TB. In this study, we used LAMP for detection of M. bovis, based on amplification of the mpb70 gene which is a unique gene in M. bovis strain. The LAMP assay was able to detect only seven copies of the gene per reaction, whereas for the conventional PCR, it was 70 copies. The LAMP was evaluated for its specificity using six strains of five Mycobacterium species and 18 related non-Mycobacterium microorganism strains as controls. The target three Mycobacterium strains were all amplified, and no cross-reaction was found with 18 non-Mycobacterium microorganism strains. TB was detected by two methods, LAMP and conventional PCR (based on mpb70 gene); the positive rates of the two methods were 9.55 and 7.01 %, respectively. Our results indicate that the LAMP method should be a potential tool with high convenience, rapidity, sensitivity and specificity for the diagnosis of TB caused by M. bovis. Most importance is that the use of LAMP as diagnostic method in association with diagnostic tests based on mpb70 gene would allow the differentiation between M. bovis and other Mycobacterium in humans or animals. The LAMP method is actually in order to detect human TB, and it can be used for differential diagnosis in this paper.

  12. Data fusion algorithm for rapid multi-mode dust concentration measurement system based on MEMS

    NASA Astrophysics Data System (ADS)

    Liao, Maohao; Lou, Wenzhong; Wang, Jinkui; Zhang, Yan

    2018-03-01

    As single measurement method cannot fully meet the technical requirements of dust concentration measurement, the multi-mode detection method is put forward, as well as the new requirements for data processing. This paper presents a new dust concentration measurement system which contains MEMS ultrasonic sensor and MEMS capacitance sensor, and presents a new data fusion algorithm for this multi-mode dust concentration measurement system. After analyzing the relation between the data of the composite measurement method, the data fusion algorithm based on Kalman filtering is established, which effectively improve the measurement accuracy, and ultimately forms a rapid data fusion model of dust concentration measurement. Test results show that the data fusion algorithm is able to realize the rapid and exact concentration detection.

  13. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid and Sensitive Identification of Ostrich Meat

    PubMed Central

    Abdulmawjood, Amir; Grabowski, Nils; Fohler, Svenja; Kittler, Sophie; Nagengast, Helga; Klein, Guenter

    2014-01-01

    Animal species identification is one of the primary duties of official food control. Since ostrich meat is difficult to be differentiated macroscopically from beef, therefore new analytical methods are needed. To enforce labeling regulations for the authentication of ostrich meat, it might be of importance to develop and evaluate a rapid and reliable assay. In the present study, a loop-mediated isothermal amplification (LAMP) assay based on the cytochrome b gene of the mitochondrial DNA of the species Struthio camelus was developed. The LAMP assay was used in combination with a real-time fluorometer. The developed system allowed the detection of 0.01% ostrich meat products. In parallel, a direct swab method without nucleic acid extraction using the HYPLEX LPTV buffer was also evaluated. This rapid processing method allowed detection of ostrich meat without major incubation steps. In summary, the LAMP assay had excellent sensitivity and specificity for detecting ostrich meat and could provide a sampling-to-result identification-time of 15 to 20 minutes. PMID:24963709

  14. Colorimetric and fluorescent detection of hydrazine with high sensitivity and excellent selectivity

    NASA Astrophysics Data System (ADS)

    Shi, Bingjie; Qi, Sujie; Yu, Mingming; Liu, Chunxia; Li, Zhanxian; Wei, Liuhe; Ni, Zhonghai

    2018-01-01

    It is critical to develop probes for rapid, selective, and sensitive detection of the highly toxic hydrazine in both environmental and biological science. In this work, under mild condition, a novel colorimetric and off-on fluorescent probe was synthesized for rapid recognition of hydrazine with excellent selectivity over other various species including some biological species, metal ions and anions. The limit of quantification (LOQ) value was 1.5 × 10- 4 M-3.2 × 10- 3 M (colorimetric method) and 1.5 × 10- 4 M - 3.2 × 10- 3 M (fluorescent method) with as low as detection limit of 46.2 μM.

  15. Rapid detection of Salmonella in pet food: design and evaluation of integrated methods based on real-time PCR detection.

    PubMed

    Balachandran, Priya; Friberg, Maria; Vanlandingham, V; Kozak, K; Manolis, Amanda; Brevnov, Maxim; Crowley, Erin; Bird, Patrick; Goins, David; Furtado, Manohar R; Petrauskene, Olga V; Tebbs, Robert S; Charbonneau, Duane

    2012-02-01

    Reducing the risk of Salmonella contamination in pet food is critical for both companion animals and humans, and its importance is reflected by the substantial increase in the demand for pathogen testing. Accurate and rapid detection of foodborne pathogens improves food safety, protects the public health, and benefits food producers by assuring product quality while facilitating product release in a timely manner. Traditional culture-based methods for Salmonella screening are laborious and can take 5 to 7 days to obtain definitive results. In this study, we developed two methods for the detection of low levels of Salmonella in pet food using real-time PCR: (i) detection of Salmonella in 25 g of dried pet food in less than 14 h with an automated magnetic bead-based nucleic acid extraction method and (ii) detection of Salmonella in 375 g of composite dry pet food matrix in less than 24 h with a manual centrifugation-based nucleic acid preparation method. Both methods included a preclarification step using a novel protocol that removes food matrix-associated debris and PCR inhibitors and improves the sensitivity of detection. Validation studies revealed no significant differences between the two real-time PCR methods and the standard U.S. Food and Drug Administration Bacteriological Analytical Manual (chapter 5) culture confirmation method.

  16. Rapid detection of hepatitis A virus and murine norovirus in hemocytes of contaminated oysters

    USDA-ARS?s Scientific Manuscript database

    The human enteric pathogens, hepatitis A virus and human norovirus, have been shown to contaminate molluscan shellfish and cause foodborne disease in consumers. Rapid viral extraction methods are needed to replace current time consuming methods, which use whole oysters or dissected tissues. In our ...

  17. A method of multiplex PCR for detection of field released Beauveria bassiana, a fungal entomopathogen applied for pest management in jute (Corchorus olitorius).

    PubMed

    Biswas, Chinmay; Dey, Piyali; Gotyal, B S; Satpathy, Subrata

    2015-04-01

    The fungal entomopathogen Beauveria bassiana is a promising biocontrol agent for many pests. Some B. bassiana strains have been found effective against jute pests. To monitor the survival of field released B. bassiana a rapid and efficient detection technique is essential. Conventional methods such as plating method or direct culture method which are based on cultivation on selective media followed by microscopy are time consuming and not so sensitive. PCR based methods are rapid, sensitive and reliable. A single primer PCR may fail to amplify some of the strains. However, multiplex PCR increases the possibility of detection as it uses multiple primers. Therefore, in the present investigation a multiplex PCR protocol was developed by multiplexing three primers SCA 14, SCA 15 and SCB 9 to detect field released B. bassiana strains from soil as well as foliage of jute field. Using our multiplex PCR protocol all the five B. bassiana strains could be detected from soil and three strains viz., ITCC 6063, ITCC 4563 and ITCC 4796 could be detected even from the crop foliage after 45 days of spray.

  18. Rapid Assessment of Genotoxicity by Flow Cytometric Detection of Cell Cycle Alterations.

    PubMed

    Bihari, Nevenka

    2017-01-01

    Flow cytometry is a convenient method for the determination of genotoxic effects of environmental pollution and can reveal genotoxic compounds in unknown environmental mixtures. It is especially suitable for the analyses of large numbers of samples during monitoring programs. The speed of detection is one of the advantages of this technique which permits the acquisition of 10 4 -10 5 cells per sample in 5 min. This method can rapidly detect cell cycle alterations resulting from DNA damage. The outcome of such an analysis is a diagram of DNA content across the cell cycle which indicates cell proliferation, G 2 arrests, G 1 delays, apoptosis, and ploidy.Here, we present the flow cytometric procedure for rapid assessment of genotoxicity via detection of cell cycle alterations. The described protocol simplifies the analysis of genotoxic effects in marine environments and is suitable for monitoring purposes. It uses marine mussel cells in the analysis and can be adapted to investigations on a broad range of marine invertebrates.

  19. Rapid molecular assays for the detection of yellow fever virus in low-resource settings.

    PubMed

    Escadafal, Camille; Faye, Oumar; Sall, Amadou Alpha; Faye, Ousmane; Weidmann, Manfred; Strohmeier, Oliver; von Stetten, Felix; Drexler, Josef; Eberhard, Michael; Niedrig, Matthias; Patel, Pranav

    2014-03-01

    Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in low-resource settings.

  20. Rapid Molecular Assays for the Detection of Yellow Fever Virus in Low-Resource Settings

    PubMed Central

    Escadafal, Camille; Faye, Oumar; Sall, Amadou Alpha; Faye, Ousmane; Weidmann, Manfred; Strohmeier, Oliver; von Stetten, Felix; Drexler, Josef; Eberhard, Michael; Niedrig, Matthias; Patel, Pranav

    2014-01-01

    Background Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. Methodology The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. Conclusion/Significance The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in low-resource settings. PMID:24603874

  1. Development of a nested-PCR assay for the rapid detection of Pilidiella granati in pomegranate fruit

    PubMed Central

    Yang, Xue; Hameed, Uzma; Zhang, Ai-Fang; Zang, Hao-Yu; Gu, Chun-Yan; Chen, Yu; Xu, Yi-Liu

    2017-01-01

    Pilidiella granati, a causal agent of twig blight and crown rot of pomegranate, is an emerging threat that may cause severe risk to the pomegranate industry in the future. Development of a rapid assay for the timely and accurate detection of P. granati will be helpful in the active surveillance and management of the disease caused by this pathogen. In this study, a nested PCR method was established for the detection of P. granati. Comparative analysis of genetic diversity within 5.8S rDNA internal transcribed spacer (ITS) sequences of P. granati and 21 other selected fungal species was performed to design species-specific primers (S1 and S2). This primer pair successfully amplified a 450 bp product exclusively from the genomic DNA of P. granati. The developed method can detect 10 pg genomic DNA of the pathogen in about 6 h. This technique was successfully applied to detect the natural infection of P. granati in the pomegranate fruit. The designed protocol is rapid and precise with a high degree of sensitivity. PMID:28106107

  2. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of Cannabis sativa.

    PubMed

    Kitamura, Masashi; Aragane, Masako; Nakamura, Kou; Watanabe, Kazuhito; Sasaki, Yohei

    2016-07-01

    In many parts of the world, the possession and cultivation of Cannabis sativa L. are restricted by law. As chemical or morphological analyses cannot identify the plant in some cases, a simple yet accurate DNA-based method for identifying C. sativa is desired. We have developed a loop-mediated isothermal amplification (LAMP) assay for the rapid identification of C. sativa. By optimizing the conditions for the LAMP reaction that targets a highly conserved region of tetrahydrocannabinolic acid (THCA) synthase gene, C. sativa was identified within 50 min at 60-66°C. The detection limit was the same as or higher than that of conventional PCR. The LAMP assay detected all 21 specimens of C. sativa, showing high specificity. Using a simple protocol, the identification of C. sativa could be accomplished within 90 min from sample treatment to detection without use of special equipment. A rapid, sensitive, highly specific, and convenient method for detecting and identifying C. sativa has been developed and is applicable to forensic investigations and industrial quality control.

  3. Sensitive, Rapid Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Venkateswaran, Kasthuri; Chen, Fei; Pickett, Molly; Matsuyama, Asahi

    2009-01-01

    A method of sensitive detection of bacterial spores within delays of no more than a few hours has been developed to provide an alternative to a prior three-day NASA standard culture-based assay. A capability for relatively rapid detection of bacterial spores would be beneficial for many endeavors, a few examples being agriculture, medicine, public health, defense against biowarfare, water supply, sanitation, hygiene, and the food-packaging and medical-equipment industries. The method involves the use of a commercial rapid microbial detection system (RMDS) that utilizes a combination of membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and analysis of luminescence images detected by a charge-coupled-device camera. This RMDS has been demonstrated to be highly sensitive in enumerating microbes (it can detect as little as one colony-forming unit per sample) and has been found to yield data in excellent correlation with those of culture-based methods. What makes the present method necessary is that the specific RMDS and the original protocols for its use are not designed for discriminating between bacterial spores and other microbes. In this method, a heat-shock procedure is added prior to an incubation procedure that is specified in the original RMDS protocols. In this heat-shock procedure (which was also described in a prior NASA Tech Briefs article on enumerating sporeforming bacteria), a sample is exposed to a temperature of 80 C for 15 minutes. Spores can survive the heat shock, but nonspore- forming bacteria and spore-forming bacteria that are not in spore form cannot survive. Therefore, any colonies that grow during incubation after the heat shock are deemed to have originated as spores.

  4. Rapid Detection and Enumeration of Giardia lamblia Cysts in Water Samples by Immunomagnetic Separation and Flow Cytometric Analysis ▿ †

    PubMed Central

    Keserue, Hans-Anton; Füchslin, Hans Peter; Egli, Thomas

    2011-01-01

    Giardia lamblia is an important waterborne pathogen and is among the most common intestinal parasites of humans worldwide. Its fecal-oral transmission leads to the presence of cysts of this pathogen in the environment, and so far, quantitative rapid screening methods are not available for various matrices, such as surface waters, wastewater, or food. Thus, it is necessary to establish methods that enable reliable rapid detection of a single cyst in 10 to 100 liters of drinking water. Conventional detection relies on cyst concentration, isolation, and confirmation by immunofluorescence microscopy (IFM), resulting in low recoveries and high detection limits. Many different immunomagnetic separation (IMS) procedures have been developed for separation and cyst purification, so far with variable but high losses of cysts. A method was developed that requires less than 100 min and consists of filtration, resuspension, IMS, and flow cytometric (FCM) detection. MACS MicroBeads were used for IMS, and a reliable flow cytometric detection approach was established employing 3 different parameters for discrimination from background signals, i.e., green and red fluorescence (resulting from the distinct pattern emitted by the fluorescein dye) and sideward scatter for size discrimination. With spiked samples, recoveries exceeding 90% were obtained, and false-positive results were never encountered for negative samples. Additionally, the method was applicable to naturally occurring cysts in wastewater and has the potential to be automated. PMID:21685159

  5. Rapid discrimination between buffalo and cow milk and detection of adulteration of buffalo milk with cow milk using synchronous fluorescence spectroscopy in combination with multivariate methods.

    PubMed

    Durakli Velioglu, Serap; Ercioglu, Elif; Boyaci, Ismail Hakki

    2017-05-01

    This research paper describes the potential of synchronous fluorescence (SF) spectroscopy for authentication of buffalo milk, a favourable raw material in the production of some premium dairy products. Buffalo milk is subjected to fraudulent activities like many other high priced foodstuffs. The current methods widely used for the detection of adulteration of buffalo milk have various disadvantages making them unattractive for routine analysis. Thus, the aim of the present study was to assess the potential of SF spectroscopy in combination with multivariate methods for rapid discrimination between buffalo and cow milk and detection of the adulteration of buffalo milk with cow milk. SF spectra of cow and buffalo milk samples were recorded between 400-550 nm excitation range with Δλ of 10-100 nm, in steps of 10 nm. The data obtained for ∆λ = 10 nm were utilised to classify the samples using principal component analysis (PCA), and detect the adulteration level of buffalo milk with cow milk using partial least square (PLS) methods. Successful discrimination of samples and detection of adulteration of buffalo milk with limit of detection value (LOD) of 6% are achieved with the models having root mean square error of calibration (RMSEC) and the root mean square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP) values of 2, 7, and 4%, respectively. The results reveal the potential of SF spectroscopy for rapid authentication of buffalo milk.

  6. [Rapid determination of illicit beta2-agonist additives in health foods and traditional Chinese patent medicines with DCBI-MS/MS method].

    PubMed

    Hou, Yu-Lan; Wu, Shuang; Wang, Hua; Zhao, Yong; Liao, Peng; Tian, Qing-Qing; Sun, Wen-Jian; Chen, Bo

    2013-01-01

    A novel rapid method for detection of the illicit beta2-agonist additives in health foods and traditional Chinese patent medicines was developed with the desorption corona beam ionization mass spectrometry (DCBI-MS) technique. The DCBI conditions including temperature and sample volume were optimized according to the resulting mass spectra intensity. Matrix effect on 9 beta2-agonists additives was not significant in the proposed rapid determination procedure. All of the 9 target molecules were detected within 1 min. Quantification was achieved based on the typical fragment ion in MS2 spectra of each analyte. The method showed good linear coefficients in the range of 1-100 mg x L(-1) for all analytes. The relative deviation values were between 14.29% and 25.13%. Ten claimed antitussive and antiasthmatic health foods and traditional Chinese patent medicines from local pharmacies were analyzed. All of them were negative with the proposed DCBI-MS method. Without tedious sample pretreatments, the developed DCBI-MS is simple, rapid and sensitive for rapid qualification and semi-quantification of the illicit beta2-agonist additives in health foods and traditional Chinese patent medicines.

  7. Quantum Dot-Fullerene Based Molecular Beacon Nanosensors for Rapid, Highly Sensitive Nucleic Acid Detection.

    PubMed

    Liu, Ye; Kannegulla, Akash; Wu, Bo; Cheng, Li-Jing

    2018-05-15

    Spherical fullerene (C 60 ) can quench the fluorescence of a quantum dot (QD) through energy transfer and charge transfer processes, with the quenching efficiency regulated by the number of proximate C 60 on each QD. With the quenching property and its small size compared with other nanoparticle-based quenchers, it is advantageous to group a QD reporter and multiple C 60 -labeled oligonucleotide probes to construct a molecular beacon (MB) probe for sensitive, robust nucleic acid detection. We demonstrated a rapid, high-sensitivity DNA detection method using the nanosensors composed of QD-C 60 based MBs carried by magnetic nanoparticles (MNPs). The assay was accelerated by first dispersing the nanosensors in analytes for highly efficient DNA capture resulting from short-distance 3-dimensional diffusion of targets to the sensor surface and then concentrating the nanosensors to a substrate by magnetic force to amplify the fluorescence signal for target quantification. The enhanced mass transport enabled a rapid detection (< 10 min) with a small sample volume (1-10 µl). The high signal-to-noise ratio produced by the QD-C 60 pairs and magnetic concentration yielded a detection limit of 100 fM (~106 target DNA copies for a 10 µl analyte). The rapid, sensitive, label-free detection method will benefit the applications in point-of-care molecular diagnostic technologies.

  8. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay

    PubMed Central

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-01-01

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 104 CFU mL−1 or 105 CFU mL−1 for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R2) of 0.916–0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water. PMID:26884128

  9. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay.

    PubMed

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-02-17

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 10(4) CFU mL(-1) or 10(5) CFU mL(-1) for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R(2)) of 0.916-0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥ 80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water.

  10. Development of a rapid diagnostic method for identification of Staphylococcus aureus and antimicrobial resistance in positive blood culture bottles using a PCR-DNA-chromatography method.

    PubMed

    Ohshiro, Takeya; Miyagi, Chihiro; Tamaki, Yoshikazu; Mizuno, Takuya; Ezaki, Takayuki

    2016-06-01

    Blood culturing and the rapid reporting of results are essential for infectious disease clinics to obtain bacterial information that can affect patient prognosis. When gram-positive coccoid cells are observed in blood culture bottles, it is important to determine whether the strain is Staphylococcus aureus and whether the strain has resistance genes, such as mecA and blaZ, for proper antibiotic selection. Previous work led to the development of a PCR method that is useful for rapid identification of bacterial species and antimicrobial susceptibility. However, that method has not yet been adopted in community hospitals due to the high cost and methodological complexity. We report here the development of a quick PCR and DNA-chromatography test, based on single-tag hybridization chromatography, that permits detection of S. aureus and the mecA and blaZ genes; results can be obtained within 1 h for positive blood culture bottles. We evaluated this method using 42 clinical isolates. Detection of S. aureus and the resistance genes by the PCR-DNA-chromatography method was compared with that obtained via the conventional identification method and actual antimicrobial susceptibility testing. Our method had a sensitivity of 97.0% and a specificity of 100% for the identification of the bacterial species. For the detection of the mecA gene of S. aureus, the sensitivity was 100% and the specificity was 95.2%. For the detection of the blaZ gene of S. aureus, the sensitivity was 100% and the specificity was 88.9%. The speed and simplicity of this PCR-DNA-chromatography method suggest that our method will facilitate rapid diagnoses. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. A Fluorescence Quenching Assay Based on Molecular Beacon Formation through a Ligase Detection Reaction for Facile and Rapid Detection of Point Mutations.

    PubMed

    Sawamura, Kensuke; Hashimoto, Masahiko

    2017-01-01

    A fluorescence quenching assay based on a ligase detection reaction was developed for facile and rapid detection of point mutations present in a mixed population of non-variant DNA. If the test DNA carried a targeted mutation, then the two allele-specific primers were ligated to form a molecular beacon resulting in the expected fluorescence quenching signatures. Using this method, we successfully detected as low as 5% mutant DNA in a mixture of wild-type DNA (t test at 99% confidence level).

  12. Rapid detection of Streptococcus pneumoniae by real-time fluorescence loop-mediated isothermal amplification

    PubMed Central

    Guo, Xu-Guang; Zhou, Shan

    2014-01-01

    Background and aim of study A significant human pathogenic bacterium, Streptococcus pneumoniae was recognized as a major cause of pneumonia, and is the subject of many humoral immunity studies. Diagnosis is generally made based on clinical suspicion along with a positive culture from a sample from virtually any place in the body. But the testing time is too long. This study is to establish a rapid diagnostic method to identification of Streptococcus pneumoniae. Methods Our laboratory has recently developed a new platform called real-amp, which combines loop-mediated isothermal amplification (LAMP) with a portable tube scanner real-time isothermal instrument for the rapid detection of Streptococcus pneumonia. Two pairs of amplification primers required for this method were derived from a conserved DNA sequence unique to the Streptococcus pneumoniae. The amplification was carried out at 63 degree Celsius using SYBR Green for 60 minutes with the tube scanner set to collect fluorescence signals. Clinical samples of Streptococcus pneumoniae and other bacteria were used to determine the sensitivity and specificity of the primers by comparing with traditional culture method. Results The new set of primers consistently detected in laboratory-maintained isolates of Streptococcus pneumoniae from our hospital. The new primers also proved to be more sensitive than the published species-specific primers specifically developed for the LAMP method in detecting Streptococcus pneumoniae. Conclusions This study demonstrates that the Streptococcus pneumoniae LAMP primers developed here have the ability to accurately detect Streptococcus pneumoniae infections by real-time fluorescence LAMP. PMID:25276360

  13. Rapid Detection of Enterobacter Sakazakii in milk Powder using amino modified chitosan immunomagnetic beads.

    PubMed

    Zhu, Yinglian; Wang, Dongfeng

    2016-12-01

    Chitosan immunomagnetic beads (CIBs) were first prepared through converting hydroxyl groups of natural polymer material-chitosan into amino groups using epichlorohydrin and ethylenediamine as modification agent and then coupling with polyclonal antibodies of Enterobacter sakazakii using glutaraldehyde as cross-linking agent. The beads before coupling with antibodies were characterized by magnetic property measurement, FTIR, SEM and XRD technologies. In the assay a natural polysaccharide-chitosan, which has good biological and chemical properties such as non-toxicity, biocompatibility and high chemical reactivity was first used for synthesis of immunomagnetic beads. The detection method first established in this paper that combined the beads with chromogenic medium together to rapid detect E. sakazakii in milk powder could greatly improve the detection specificity and working efficiency. The beads exhibited a maximum capturing capacity of 1×10 6 cfu/g with the detection sensitivity of 4cfu/g. The results demonstrate that the assay is a straightforward, specific and sensitive alternative for rapid detection of E.sakazakii in food matrix. The total analysis time was as little as about 25h, which greatly shorten the detection time. The method can provides new ideas not only to preparation technique of immunomagnetic beads but to imunne detection technique in food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A RAPID METHOD FOR THE EXTRACTION OF FUNGAL DNA FROM ENVIRONMENTAL SAMPLES: EVALUATION IN THE QUANTITATIVE ANALYSIS OF MEMNONIELLA ECHINATA CONIDIA USING REAL TIME DETECTION OF PCR PRODUCTS

    EPA Science Inventory

    New technologies are creating the potential for using nucleic acid sequence detection to perform routine microbiological analyses of environmental samples. Our laboratory has recently reported on the development of a method for the quantitative detection of Stachybotrys chartarum...

  15. Rapid identification of oral isolates of Aggregatibacter actinomycetemcomitans obtained from humans and primates by an ultrafast super convection based polymerase chain reaction

    PubMed Central

    Karched, M.; Furgang, D.; Sawalha, N.; Fine, D.H.

    2017-01-01

    Aggregatibacter actinomycetemcomitans is a Gram negative oral bacterium associated with localized aggressive periodontitis (LAP). Detection of A. actinomycetemcomitans in clinical samples is routinely done by PCR. Our aim was to develop a rapid and reliable PCR method that can be used as a chair-side tool to detect A. actinomycetemcomitans in clinical samples. Sensitivity and specificity assessment was performed on buccal and plaque samples obtained from 40 adolescents enrolled in an ongoing LAP study by comparing 20 A. actinomycetemcomitans-positive subjects and 20 who were negative. In a second study, A. actinomycetemcomitans presence was tested in oral samples from eighty-six primates that included rhesus monkeys, chimpanzees, marmosets, tamarins and baboons. All samples were processed for detection of A. actinomycetemcomitans by means of culture, conventional PCR (cPCR) and rapid PCR (rPCR) using a Super Convection based AmpXpress thermal cycler (AlphaHelix, Sweden). For human samples, culture, cPCR and rPCR showed perfect agreement. Using this method A. actinomycetemcomitans was detected in 27 of 32 rhesus monkeys, 4 of 8 chimpanzees and 1 of 34 marmosets. Rapidity of AmpXpress thermal cycler, combined with Ready-To-Go PCR beads (GE Life sciences), a quick DNA extraction kit (Epicentre Biotechnologies, Madison, Wisconsin, USA) and a bufferless fast agarose gel system, made it possible to obtain results on A. actinomycetemcomitans detection within 35 min. We conclude that AmpXpress fast PCR can be conveniently used as a chair-side tool for rapid detection of A. actinomycetemcomitans in clinical samples. PMID:22326236

  16. Rapid bacteriological screening of cosmetic raw materials by using bioluminescence.

    PubMed

    Nielsen, P; Van Dellen, E

    1989-01-01

    Incoming cosmetic raw materials are routinely tested for microbial content. Standard plate count methods require up to 72 h. A rapid, sensitive, and inexpensive raw material screening method was developed that detects the presence of bacteria by means of ATP (bioluminescence). With a 24-h broth enrichment, the minimum bacterial ATP detection threshold of 1 cfu/g sample can be achieved using purified firefly luciferin-luciferase and an ATP releasing reagent. By using this rapid screen, microbiologically free material may be released for production within 24 h, while contaminated material undergoes further quantitative and identification testing. In order for a raw material to be validated for this method it must be evaluated for (1) a potential nonmicrobial light-contributing reaction resulting in a false positive or, (2) degradation of the ATP giving a false negative, and (3) confirmation that the raw material has not overwhelmed the buffering capacity of the enrichment broth. The key criteria for a rapid screen was the sensitivity to detect less than one colony forming unit per g product, the speed to do this within 24 h, and cost efficiency. Bioluminescence meets these criteria. With an enrichment step, it can detect less than one cfu/g sample. After the enrichment step, analysis time per sample is approximately 2 min and the cost for material and reagents is less than one dollar per sample.

  17. Rapid and sensitive detection of synthetic cannabinoids AMB-FUBINACA and α-PVP using surface enhanced Raman scattering (SERS)

    NASA Astrophysics Data System (ADS)

    Islam, Syed K.; Cheng, Yin Pak; Birke, Ronald L.; Green, Omar; Kubic, Thomas; Lombardi, John R.

    2018-04-01

    The application of surface enhanced Raman scattering (SERS) has been reported as a fast and sensitive analytical method in the trace detection of the two most commonly known synthetic cannabinoids AMB-FUBINACA and alpha-pyrrolidinovalerophenone (α-PVP). FUBINACA and α-PVP are two of the most dangerous synthetic cannabinoids which have been reported to cause numerous deaths in the United States. While instruments such as GC-MS, LC-MS have been traditionally recognized as analytical tools for the detection of these synthetic drugs, SERS has been recently gaining ground in the analysis of these synthetic drugs due to its sensitivity in trace analysis and its effectiveness as a rapid method of detection. This present study shows the limit of detection of a concentration as low as picomolar for AMB-FUBINACA while for α-PVP, the limit of detection is in nanomolar concentration using SERS.

  18. Rapid detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis by the direct thin-layer agar method.

    PubMed

    Robledo, J; Mejia, G I; Paniagua, L; Martin, A; Guzmán, A

    2008-12-01

    We evaluated thin-layer agar (TLA) for the detection of resistance of Mycobacterium tuberculosis to rifampicin (RMP) and isoniazid (INH) as a direct method in patients at risk of multidrug-resistant tuberculosis (MDR-TB). Quadrant TLA plates contain 7H10 Middlebrook growth control, para-nitrobenzoic acid, INH and RMP. Detection of RMP and INH resistance by TLA was compared to that in indirect conventional drug susceptibility testing (DST) and conventional culture media. Median time for growth was respectively 22, 10 and 7.6 days for Löwenstein-Jensen, TLA and the Mycobacterial Growth Indicator Tube. TLA sensitivity, specificity and predictive values for RMP and INH resistance were 100%. Time to resistance detection was respectively 11 and 11.5 days for RMP and INH. TLA showed a rapid turnaround time and performance comparable to conventional DST methods.

  19. A Rapid and Specific Assay for the Detection of MERS-CoV

    PubMed Central

    Huang, Pei; Wang, Hualei; Cao, Zengguo; Jin, Hongli; Chi, Hang; Zhao, Jincun; Yu, Beibei; Yan, Feihu; Hu, Xingxing; Wu, Fangfang; Jiao, Cuicui; Hou, Pengfei; Xu, Shengnan; Zhao, Yongkun; Feng, Na; Wang, Jianzhong; Sun, Weiyang; Wang, Tiecheng; Gao, Yuwei; Yang, Songtao; Xia, Xianzhu

    2018-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel human coronavirus that can cause human respiratory disease. The development of a detection method for this virus that can lead to rapid and accurate diagnosis would be significant. In this study, we established a nucleic acid visualization technique that combines the reverse transcription loop-mediated isothermal amplification technique and a vertical flow visualization strip (RT-LAMP-VF) to detect the N gene of MERS-CoV. The RT-LAMP-VF assay was performed in a constant temperature water bath for 30 min, and the result was visible by the naked eye within 5 min. The RT-LAMP-VF assay was capable of detecting 2 × 101 copies/μl of synthesized RNA transcript and 1 × 101 copies/μl of MERS-CoV RNA. The method exhibits no cross-reactivities with multiple CoVs including SARS-related (SARSr)-CoV, HKU4, HKU1, OC43 and 229E, and thus exhibits high specificity. Compared to the real-time RT-PCR (rRT-PCR) method recommended by the World Health Organization (WHO), the RT-LAMP-VF assay is easy to handle, does not require expensive equipment and can rapidly complete detection within 35 min. PMID:29896174

  20. Endpoint visual detection of three genetically modified rice events by loop-mediated isothermal amplification.

    PubMed

    Chen, Xiaoyun; Wang, Xiaofu; Jin, Nuo; Zhou, Yu; Huang, Sainan; Miao, Qingmei; Zhu, Qing; Xu, Junfeng

    2012-11-07

    Genetically modified (GM) rice KMD1, TT51-1, and KF6 are three of the most well known transgenic Bt rice lines in China. A rapid and sensitive molecular assay for risk assessment of GM rice is needed. Polymerase chain reaction (PCR), currently the most common method for detecting genetically modified organisms, requires temperature cycling and relatively complex procedures. Here we developed a visual and rapid loop-mediated isothermal amplification (LAMP) method to amplify three GM rice event-specific junction sequences. Target DNA was amplified and visualized by two indicators (SYBR green or hydroxy naphthol blue [HNB]) within 60 min at an isothermal temperature of 63 °C. Different kinds of plants were selected to ensure the specificity of detection and the results of the non-target samples were negative, indicating that the primer sets for the three GM rice varieties had good levels of specificity. The sensitivity of LAMP, with detection limits at low concentration levels (0.01%−0.005% GM), was 10- to 100-fold greater than that of conventional PCR. Additionally, the LAMP assay coupled with an indicator (SYBR green or HNB) facilitated analysis. These findings revealed that the rapid detection method was suitable as a simple field-based test to determine the status of GM crops.

  1. Development and application of loop-mediated isothermal amplification (LAMP) for detection of Plasmopara viticola

    PubMed Central

    Kong, Xiangjiu; Qin, Wentao; Huang, Xiaoqing; Kong, Fanfang; Schoen, Cor D.; Feng, Jie; Wang, Zhongyue; Zhang, Hao

    2016-01-01

    A rapid LAMP (loop-mediated isothermal amplification) detection method was developed on the basis of the ITS sequence of P. viticola, the major causal agent of grape downy mildew. Among the 38 fungal and oomycete species tested, DNA isolated exclusively from P. viticola resulted in a specific product after LAMP amplification. This assay had high sensitivity and was able to detect the presence of less than 33 fg of genomic DNA per 25-μL reaction within 30 min. The infected leaves may produce sporangia that serve as a secondary inoculum. The developed LAMP assay is efficient for estimating the latent infection of grape leaves by P. viticola. When combined with the rapid and simple DNA extraction method, this assay’s total detection time is shortened to approximately one hour; therefore it is suitable for on-site detection of latent infection in the field. The sporangia levels in the air are strongly associated with disease severity. The LAMP method was also demonstrated to be able to estimate the level of sporangia released in the air in a certain period. This assay should make disease forecasting more accurate and rapid and should be helpful in decision-making regarding the control of grape downy mildew. PMID:27363943

  2. Rapid and sensitive detection of mink circovirus by recombinase polymerase amplification.

    PubMed

    Ge, Junwei; Shi, Yunjia; Cui, Xingyang; Gu, Shanshan; Zhao, Lili; Chen, Hongyan

    2018-06-01

    To date, the pathogenic role of mink circovirus (MiCV) remains unclear, and its prevalence and economic importance are unknown. Therefore, a rapid and sensitive molecular diagnosis is necessary for disease management and epidemiological surveillance. However, only PCR methods can identify MiCV infection at present. In this study, we developed a nested PCR and established a novel recombinase polymerase amplification (RPA) assay for MiCV detection. Sensitivity analysis showed that the detection limit of nested PCR and RPA assay was 10 1 copies/reaction, and these methods were more sensitive than conventional PCR, which has a detection limit of 10 5 copies/reaction. The RPA assay had no cross-reactivity with other related viral pathogens, and amplification was completed in less than 20 min with a simple device. Further assessment of clinical samples showed that the two assays were accurate in identifying positive and negative conventional PCR samples. The detection rate of MiCV by the RPA assay in clinical samples was 38.09%, which was 97% consistent with that by the nested PCR. The developed nested PCR is a highly sensitive tool for practical use, and the RPA assay is a simple, sensitive, and potential alternative method for rapid and accurate MiCV diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Early Diagnosis of Breast Cancer.

    PubMed

    Wang, Lulu

    2017-07-05

    Early-stage cancer detection could reduce breast cancer death rates significantly in the long-term. The most critical point for best prognosis is to identify early-stage cancer cells. Investigators have studied many breast diagnostic approaches, including mammography, magnetic resonance imaging, ultrasound, computerized tomography, positron emission tomography and biopsy. However, these techniques have some limitations such as being expensive, time consuming and not suitable for young women. Developing a high-sensitive and rapid early-stage breast cancer diagnostic method is urgent. In recent years, investigators have paid their attention in the development of biosensors to detect breast cancer using different biomarkers. Apart from biosensors and biomarkers, microwave imaging techniques have also been intensely studied as a promising diagnostic tool for rapid and cost-effective early-stage breast cancer detection. This paper aims to provide an overview on recent important achievements in breast screening methods (particularly on microwave imaging) and breast biomarkers along with biosensors for rapidly diagnosing breast cancer.

  4. Heterogeneous asymmetric recombinase polymerase amplification (haRPA) for rapid hygiene control of large-volume water samples.

    PubMed

    Elsäßer, Dennis; Ho, Johannes; Niessner, Reinhard; Tiehm, Andreas; Seidel, Michael

    2018-04-01

    Hygiene of drinking water is periodically controlled by cultivation and enumeration of indicator bacteria. Rapid and comprehensive measurements of emerging pathogens are of increasing interest to improve drinking water safety. In this study, the feasibility to detect bacteriophage PhiX174 as a potential indicator for virus contamination in large volumes of water is demonstrated. Three consecutive concentration methods (continuous ultrafiltration, monolithic adsorption filtration, and centrifugal ultrafiltration) were combined to concentrate phages stepwise from 1250 L drinking water into 1 mL. Heterogeneous asymmetric recombinase polymerase amplification (haRPA) is applied as rapid detection method. Field measurements were conducted to test the developed system for hygiene online monitoring under realistic conditions. We could show that this system allows the detection of artificial contaminations of bacteriophage PhiX174 in drinking water pipelines. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Rapid determination of ampicillin in bovine milk by liquid chromatography with fluorescence detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ang, C.Y.W.; Luo, Wenhong

    1997-01-01

    A rapid and sensitive liquid chromatographic (LC) method was developed for the determination of ampicillin residues in raw bovine milk, processed skim milk, and pasteurized, homogenized whole milk with vitamin D. Milk samples were deproteinized with trichloroacetic acid (TCA) and acetonictrile. After centrifugation, the clear supernatant was reacted with formaldehyde and TCA under heat. The major fluorescent derivative of ampicillin was then determined by reversed-phase LC with fluorescence detection. Average recoveries of ampicillin fortified at 5, 10, and 20 ppb (ng/mL) were all >85% with coefficients of variation <10%. Limits of detection ranged from 0.31 to 0.51 ppb and limitsmore » of quantitation, from 0.66 to 1.2 ppb. After appropriate validation, this method should be suitable for rapid analysis of milk for ampicillin residues at the tolerance level of 10 ppb. 16 refs., 4 figs., 3 tabs.« less

  6. Ricin detection: tracking active toxin.

    PubMed

    Bozza, William P; Tolleson, William H; Rivera Rosado, Leslie A; Zhang, Baolin

    2015-01-01

    Ricin is a plant toxin with high bioterrorism potential due to its natural abundance and potency in inducing cell death. Early detection of the active toxin is essential for developing appropriate countermeasures. Here we review concepts for designing ricin detection methods, including mechanism of action of the toxin, advantages and disadvantages of current detection assays, and perspectives on the future development of rapid and reliable methods for detecting ricin in environmental samples. Published by Elsevier Inc.

  7. Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform.

    PubMed

    Kaushik, Aniruddha M; Hsieh, Kuangwen; Chen, Liben; Shin, Dong Jin; Liao, Joseph C; Wang, Tza-Huei

    2017-11-15

    There remains an urgent need for rapid diagnostic methods that can evaluate antibiotic resistance for pathogenic bacteria in order to deliver targeted antibiotic treatments. Toward this end, we present a rapid and integrated single-cell biosensing platform, termed dropFAST, for bacterial growth detection and antimicrobial susceptibility assessment. DropFAST utilizes a rapid resazurin-based fluorescent growth assay coupled with stochastic confinement of bacteria in 20 pL droplets to detect signal from growing bacteria after 1h incubation, equivalent to 2-3 bacterial replications. Full integration of droplet generation, incubation, and detection into a single, uninterrupted stream also renders this platform uniquely suitable for in-line bacterial phenotypic growth assessment. To illustrate the concept of rapid digital antimicrobial susceptibility assessment, we employ the dropFAST platform to evaluate the antibacterial effect of gentamicin on E. coli growth. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Application of a Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Cow Components Adulterated in Buffalo Milk/Meat.

    PubMed

    Deb, Rajib; Sengar, Gyanendra Singh; Singh, Umesh; Kumar, Sushil; Alyethodi, R R; Alex, Rani; Raja, T V; Das, A K; Prakash, B

    2016-12-01

    Loop-mediated isothermal amplification (LAMP) is a diagnostic method for amplification of DNA with rapid and minimal equipment requirement. In the present study, we applied the LAMP assay for rapid detection of cow components adulteration in buffalo milk/meat samples. The test can be completed within around 1 h 40 min starting from DNA extraction and can be performed in water bath without requirement of thermocycler. The cow DNA in buffalo samples were identified in the developed LAMP assay by either visualizing with SYBR Green I/HNB dyes or observing the typical ladder pattern on gel electrophoresis. The test can detect up to 5 % level of cow milk/meat mixed in buffalo counterparts. Due to the simplicity and specificity, the developed LAMP test can be easily adapted in any laboratory for rapid detection of cow species identification in livestock by products.

  9. Recent advances in rapid pathogen detection method based on biosensors.

    PubMed

    Chen, Ying; Wang, Zhenzhen; Liu, Yingxun; Wang, Xin; Li, Ying; Ma, Ping; Gu, Bing; Li, Hongchun

    2018-06-01

    As strain variation and drug resistance become more pervasive, the prevention and control of infection have been a serious problem in recent years. The detection of pathogen is one of the most important parts of the process of diagnosis. Having a series of advantages, such as rapid response, high sensitivity, ease of use, and low cost, biosensors have received much attention and been studied deeply. Moreover, relying on its characteristics of small size, real time, and multiple analyses, biosensors have developed rapidly and used widely and are expected to be applied for microbiological detection in order to meet higher accuracy required by clinical diagnosis. The main goal of this contribution is not to simply collect and list all papers related to pathogen detection based on biosensors published recently, but to discuss critically the development and application of many kinds of biosensors such as electrochemical (amperometric, impedimetric, potentiometric, and conductometric), optical (fluorescent, fibre optic and surface plasmon resonance), and piezoelectric (quartz crystal microbalances and atomic force microscopy) biosensors in pathogen detection as well as the comparisons with the existing clinical detection methods (traditional culture, enzyme-linked immunosorbent assay, polymerase chain reaction, and mass spectrometry).

  10. Comparison of Conventional PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Arcobacter Species

    PubMed Central

    Wang, Xiaoyu; Seo, Dong Joo; Lee, Min Hwa

    2014-01-01

    This study aimed to develop a loop-mediated isothermal amplification (LAMP) method for the rapid detection of Arcobacter species. Specific primers targeting the 23S ribosomal RNA gene were used to detect Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii. The specificity of the LAMP primer set was assessed using DNA samples from a panel of Arcobacter and Campylobacter species, and the sensitivity was determined using serial dilutions of Arcobacter species cultures. LAMP showed a 10- to 1,000-fold-higher sensitivity than multiplex PCR, with a detection limit of 2 to 20 CFU per reaction in vitro. Whereas multiplex PCR showed cross-reactivity with Campylobacter species, the LAMP method developed in this study was more sensitive and reliable than conventional PCR or multiplex PCR for the detection of Arcobacter species. PMID:24478488

  11. Molecular Viability Testing of UV-Inactivated Bacteria.

    PubMed

    Weigel, Kris M; Nguyen, Felicia K; Kearney, Moira R; Meschke, John S; Cangelosi, Gerard A

    2017-05-15

    PCR is effective in detecting bacterial DNA in samples, but it is unable to differentiate viable bacteria from inactivated cells or free DNA fragments. New PCR-based analytical strategies have been developed to address this limitation. Molecular viability testing (MVT) correlates bacterial viability with the ability to rapidly synthesize species-specific rRNA precursors (pre-rRNA) in response to brief nutritional stimulation. Previous studies demonstrated that MVT can assess bacterial inactivation by chlorine, serum, and low-temperature pasteurization. Here, we demonstrate that MVT can detect inactivation of Escherichia coli , Aeromonas hydrophila , and Enterococcus faecalis cells by UV irradiation. Some UV-inactivated E. coli cells transiently retained the ability to synthesize pre-rRNA postirradiation (generating false-positive MVT results), but this activity ceased within 1 h following UV exposure. Viable but transiently undetectable (by culture) E. coli cells were consistently detected by MVT. An alternative viability testing method, viability PCR (vPCR), correlates viability with cell envelope integrity. This method did not distinguish viable bacteria from UV-inactivated bacteria under some conditions, indicating that the inactivated cells retained intact cell envelopes. MVT holds promise as a means to rapidly assess microbial inactivation by UV treatment. IMPORTANCE UV irradiation is increasingly being used to disinfect water, food, and other materials for human use. Confirming the effectiveness of UV disinfection remains a challenging task. In particular, microbiological methods that rely on rapid detection of microbial DNA can yield misleading results, due to the detection of remnant DNA associated with dead microbial cells. This report describes a novel method that rapidly distinguishes living microbial cells from dead microbial cells after UV disinfection. Copyright © 2017 American Society for Microbiology.

  12. Rapid detection of bacteria with miniaturized pyrolysis-gas chromatographic analysis

    NASA Astrophysics Data System (ADS)

    Mowry, Curtis; Morgan, Catherine H.; Baca, Quentin; Manginell, Ronald P.; Kottenstette, Richard J.; Lewis, Patrick; Frye-Mason, Gregory C.

    2002-02-01

    Rapid detection and identification of bacteria and other pathogens is important for many civilian and military applications. The profiles of biological markers such as fatty acids can be used to characterize biological samples or to distinguish bacteria at the gram-type, genera, and even species level. Common methods for whole cell bacterial analysis are neither portable nor rapid, requiring lengthy, labor intensive sample preparation and bench-scale instrumentation. These methods chemically derivatize fatty acids to produce more volatile fatty acid methyl esters (FAMEs) that can be separated and analyzed by a gas chromatograph (GC)/mass spectrometer. More recent publications demonstrate decreased sample preparation time with in situ derivatization of whole bacterial samples using pyrolysis/derivatization. Ongoing development of miniaturized pyrolysis/GC instrumentation by this department capitalizes on Sandia advances in the field of microfabricated chemical analysis systems ((mu) ChemLab). Microdevices include rapidly heated stages capable of pyrolysis or sample concentration, gas chromatography columns, and surface acoustic wave (SAW) sensor arrays. We will present results demonstrating the capabilities of these devices toward fulfilling the goal of portable, rapid detection and early warning of the presence of pathogens in air or water.

  13. Light Scattering based detection of food pathogens

    USDA-ARS?s Scientific Manuscript database

    The current methods for detecting foodborne pathogens are mostly destructive (i.e., samples need to be pretreated), and require time, personnel, and laboratories for analyses. Optical methods including light scattering based techniques have gained a lot of attention recently due to its their rapid a...

  14. EVALUATION OF QUANTITATIVE REAL TIME PCR FOR THE MEASUREMENT OF HELICOBATER PYLORI AT LOW CONCENTRATIONS IN DRINKING WATER

    EPA Science Inventory

    Aims: To determine the performance of a rapid, real time polymerase chain reaction (PCR) method for the detection and quantitative analysis Helicobacter pylori at low concentrations in drinking water.

    Methods and Results: A rapid DNA extraction and quantitative PCR (QPCR)...

  15. Mini-column assay for rapid detection of malachite green in fish.

    PubMed

    Shalaby, Ali R; Emam, Wafaa H; Anwar, Mervat M

    2017-07-01

    A simple, rapid and economical mini-column method for detecting malachite green (MG) residue in fish was developed. The method used a column with 2mm ID that was tightly packed with silica gel followed by alumina. Detection of MG was performed by viewing the developed mini-column at visible light by naked eye; where MG was seen as compact green band at the confluence of the silica gel layer with alumina layer. The limit of detection of the assay was 2ng which conform the minimum required performance limit (MRPL). Evaluation utility of the method indicated that all blank and spiked samples at levels below MRPL were assessed as accepted. The intensity of the green band increased whenever MG level in the extract increased; indicated that suggested mini-column technique could be used for semi-quantitative determination of MG in fish samples. The method can be used to select the questionable samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Ion mobility spectrometry fingerprints: A rapid detection technology for adulteration of sesame oil.

    PubMed

    Zhang, Liangxiao; Shuai, Qian; Li, Peiwu; Zhang, Qi; Ma, Fei; Zhang, Wen; Ding, Xiaoxia

    2016-02-01

    A simple and rapid detection technology was proposed based on ion mobility spectrometry (IMS) fingerprints to determine potential adulteration of sesame oil. Oil samples were diluted by n-hexane and analyzed by IMS for 20s. Then, chemometric methods were employed to establish discriminant models for sesame oils and four other edible oils, pure and adulterated sesame oils, and pure and counterfeit sesame oils, respectively. Finally, Random Forests (RF) classification model could correctly classify all five types of edible oils. The detection results indicated that the discriminant models built by recursive support vector machine (R-SVM) method could identify adulterated sesame oil samples (⩾ 10%) with an accuracy value of 94.2%. Therefore, IMS was shown to be an effective method to detect the adulterated sesame oils. Meanwhile, IMS fingerprints work well to detect the counterfeit sesame oils produced by adding sesame oil essence into cheaper edible oils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Ultra trace determination of 31 pesticides in water samples by direct injection-rapid resolution liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Díaz, Laura; Llorca-Pórcel, Julio; Valor, Ignacio

    2008-08-22

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for the detection of pesticides in tap and treated wastewater was developed and validated according to the ISO/IEC 17025:1999. Key features of this method include direct injection of 100 microL of sample, an 11 min separation by means of a rapid resolution liquid chromatography system with a 4.6 mm x 50 mm, 1.8 microm particle size reverse phase column and detection by electrospray ionization (ESI) MS-MS. The limits of detection were below 15 ng L(-1) and correlation coefficients for the calibration curves in the range of 30-2000 ng L(-1) were higher than 0.99. Precision was always below 20% and accuracy was confirmed by external evaluation. The main advantages of this method are direct injection of sample without preparative procedures and low limits of detection that fulfill the requirements established by the current European regulations governing pesticide detection.

  18. Rapid and sensitive detection of Zika virus by reverse transcription loop-mediated isothermal amplification.

    PubMed

    Wang, Xuan; Yin, Fenggui; Bi, Yuhai; Cheng, Gong; Li, Jing; Hou, Lidan; Li, Yunlong; Yang, Baozhi; Liu, Wenjun; Yang, Limin

    2016-12-01

    Zika virus (ZIKV) is an arbovirus that recently emerged and has expanded worldwide, causing a global threat and raising international concerns. Current molecular diagnostics, e.g., real-time PCR and reverse transcription PCR (RT-PCR), are time consuming, expensive, and can only be deployed in a laboratory instead of for field diagnostics. This study aimed to develop a one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) platform showing sensitivity, specificity, and more convenience than previous methods, being easily distributed and implemented. Specific primers were designed and screened to target the entire ZIKV genome. The analytical sensitivity and specificity of the assay were evaluated and compared with traditional PCR and quantitative real-time PCR. Three different simulated clinical sample quick preparation protocols were evaluated to establish a rapid and straightforward treatment procedure for clinical specimens in open field detection. The RT-LAMP assay for detection of ZIKV demonstrated superior specificity and sensitivity compared to traditional PCR at the optimum reaction temperature. For the ZIKV RNA standard, the limit of detection was 20 copies/test. For the simulated ZIKV clinical samples, the limit of detection was 0.02 pfu/test, which was one order of magnitude higher than RT-PCR and similar to real-time PCR. The detection limit of simulated ZIKV specimens prepared using a protease quick processing method was consistent with that of samples prepared using commercial nucleic acid extraction kits, indicating that our ZIKV detection method could be used in point-of-care testing. The RT-LAMP assay had excellent sensitivity and specificity for detecting ZIKV and can be deployed together with a rapid specimen processing method, offering the possibility for ZIKV diagnosis outside of the laboratory. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Horseradish peroxidase-labeled oligonucleotides and fluorescent tyramides for rapid detection of chromosome-specific repeat sequences.

    PubMed

    van Gijlswijk, R P; Wiegant, J; Vervenne, R; Lasan, R; Tanke, H J; Raap, A K

    1996-01-01

    We present a sensitive and rapid fluorescence in situ hybridization (FISH) strategy for detecting chromosome-specific repeat sequences. It uses horseradish peroxidase (HRP)-labeled oligonucleotide sequences in combination with fluorescent tyramide-based detection. After in situ hybridization, the HRP conjugated to the oligonucleotide probe is used to deposit fluorescently labeled tyramide molecules at the site of hybridization. The method features full chemical synthesis of probes, strong FISH signals, and short processing periods, as well as multicolor capabilities.

  20. Evaluation of detection methods for screening meat and poultry products for the presence of foodborne pathogens.

    PubMed

    Bohaychuk, Valerie M; Gensler, Gary E; King, Robin K; Wu, John T; McMullen, Lynn M

    2005-12-01

    Rapid and molecular technologies such as enzyme-linked immunosorbent assay (ELISA), PCR, and lateral flow immunoprecipitation can reduce the time and labor involved in screening food products for the presence of pathogens. These technologies were compared with conventional culture methodology for the detection of Salmonella, Campylobacter, Listeria, and Escherichia coli O157:H7 inoculated in raw and processed meat and poultry products. Recommended protocols were modified so that the same enrichment broths used in the culture methods were also used in the ELISA, PCR, and lateral flow immunoprecipitation assays. The percent agreement between the rapid technologies and culture methods ranged from 80 to 100% depending on the pathogen detected and the method used. ELISA, PCR, and lateral flow immunoprecipitation all performed well, with no statistical difference, compared with the culture method for the detection of E. coli O157:H7. ELISA performed better for the detection of Salmonella, with sensitivity and specificity rates of 100%. PCR performed better for the detection of Campylobacter jejuni, with 100% agreement to the culture method. PCR was highly sensitive for the detection of all the foodborne pathogens tested except Listeria monocytogenes. Although the lateral flow immunoprecipitation tests were statistically different from the culture methods for Salmonella and Listeria because of false-positive results, the tests did not produce any false negatives, indicating that this method would be suitable for screening meat and poultry products for these pathogens.

  1. Rapid multiplex PCR and Real-Time TaqMan PCR assays for detection of Salmonella enterica and the highly virulent serovars Choleraesuis and Paratyphi C

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica is a human pathogen with over 2,500 serovars characterized. S. enterica serovars Choleraesuis (Cs) and Paratyphi C (Pc) are two globally distributed serovars. We have developed a rapid molecular typing method to detect Cs and Pc in food samples by using a comparative genomics ap...

  2. Establishment of a multiplex real-time RT-PCR assay for rapid identification of H6 subtype avian influenza viruses.

    PubMed

    Yang, Fan; Wu, Haibo; Liu, Fumin; Lu, Xiangyun; Peng, Xiuming; Wu, Nanping

    2018-06-01

    The H6 subtype avian influenza viruses (AIVs) possess the capacity for zoonotic transmission from avian species to humans. Establishment of a specific, rapid and sensitive method to screen H6 AIVs is necessary. Based on the conserved domain of the matrix and H6 AIV hemagglutinin genes, two TaqMan minor-groove-binder probes and multiplex real-time RT-PCR primers were designed in this study. The multiplex real-time RT-PCR assay developed in this study had high specificity and repeatability and a detection limit of 30 copies per reaction. This rapid diagnostic method will be useful for clinical detection and surveillance of H6 AIVs in China.

  3. Rapid, in situ detection of cocaine residues based on paper spray ionization coupled with ion mobility spectrometry.

    PubMed

    Li, Ming; Zhang, Jingjing; Jiang, Jie; Zhang, Jing; Gao, Jing; Qiao, Xiaolin

    2014-04-07

    In this paper, a novel approach based on paper spray ionization coupled with ion mobility spectrometry (PSI-IMS) was developed for rapid, in situ detection of cocaine residues in liquid samples and on various surfaces (e.g. glass, marble, skin, wood, fingernails), without tedious sample pretreatment. The obvious advantages of PSI are its low cost, easy operation and simple configuration without using nebulizing gas or discharge gas. Compared with mass spectrometry, ion mobility spectrometry (IMS) takes advantage of its low cost, easy operation, and simple configuration without requiring a vacuum system. Therefore, IMS is a more congruous detection method for PSI in the case of rapid, in situ analysis. For the analysis of cocaine residues in liquid samples, dynamic responses from 5 μg mL(-1) to 200 μg mL(-1) with a linear coefficient (R(2)) of 0.992 were obtained. In this case, the limit of detection (LOD) was calculated to be 2 μg mL(-1) as signal to noise (S/N) was 3 with a relative standard deviation (RSD) of 6.5% for 11 measurements (n = 11). Cocaine residues on various surfaces such as metal, glass, marble, wood, skin, and fingernails were also directly analyzed before wiping the surfaces with a piece of paper. The LOD was calculated to be as low as 5 ng (S/N = 3, RSD = 6.3%, n = 11). This demonstrates the capability of the PSI-IMS method for direct detection of cocaine residues at scenes of cocaine administration. Our results show that PSI-IMS is a simple, sensitive, rapid and economical method for in situ detection of this illicit drug, which could help governments to combat drug abuse.

  4. RAPID METHOD FOR DETERMINATION OF RADIOSTRONTIUM IN EMERGENCY MILK SAMPLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, S.; Culligan, B.

    2008-07-17

    A new rapid separation method for radiostrontium in emergency milk samples was developed at the Savannah River Site (SRS) Environmental Bioassay Laboratory (Aiken, SC, USA) that will allow rapid separation and measurement of Sr-90 within 8 hours. The new method uses calcium phosphate precipitation, nitric acid dissolution of the precipitate to coagulate residual fat/proteins and a rapid strontium separation using Sr Resin (Eichrom Technologies, Darien, IL, USA) with vacuum-assisted flow rates. The method is much faster than previous method that use calcination or cation exchange pretreatment, has excellent chemical recovery, and effectively removes beta interferences. When a 100 ml samplemore » aliquot is used, the method has a detection limit of 0.5 Bq/L, well below generic emergency action levels.« less

  5. Detection of influenza A virus subtypes using a solid-phase PCR microplate chip assay.

    PubMed

    Sun, Xin-Cheng; Wang, YunLong; Yang, Liping; Zhang, HuiRu

    2015-01-01

    A rapid and sensitive microplate chip based on solid PCR was developed to identify influenza A subtypes. A simple ultraviolet cross-linking method was used to immobilize DNA probes on pretreated microplates. Solid-phase PCR was proven to be a convenient method for influenza A screening. The sensitivity of the microplate chip was 10(-3) μg/mL for the enzymatic colorimetric method and 10(-4) μg/mL for the fluorescence method. The 10 sets of primers and probes for the microplate chip were highly specific and did not interfere with each other. These results suggest that the microplate chip based on solid PCR can be used to rapidly detect universal influenza A and its subtypes. This platform can also be used to detect other pathogenic microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Rapid determination of isoamyl nitrite in pharmaceutical preparations by flow injection analysis with on-line UV irradiation and luminol chemiluminescence detection.

    PubMed

    Kishikawa, Naoya; Kondo, Naoko; Amponsaa-Karikari, Abena; Kodamatani, Hitoshi; Ohyama, Kaname; Nakashima, Kenichiro; Yamazaki, Shigeo; Kuroda, Naotaka

    2014-02-01

    Isoamyl nitrite is used as a therapeutic reagent for cardiac angina and as an antidote for cyanide poisoning, but it is abused because of its euphoric properties. Therefore, a method to determine isoamyl nitrite is required in many fields, including pharmaceutical and forensic studies. In this study, a simple, rapid and sensitive method for the determination of isoamyl nitrite was developed using a flow injection analysis system equipped with a chemiluminescence detector and on-line photoreactor. This method is based on on-line ultraviolet irradiation of isoamyl nitrite and subsequent luminol chemiluminescence detection without the addition of an oxidant. A linear standard curve was obtained up to 1.0 μM of isoamyl nitrite with a detection limit (blank + 3SD) of 0.03 μM. The method was successfully applied to determine isoamyl nitrite content in pharmaceutical preparations. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing.

    PubMed

    Liébana, Susana; Lermo, Anabel; Campoy, Susana; Cortés, María Pilar; Alegret, Salvador; Pividori, María Isabel

    2009-10-15

    A very simple and rapid method for the detection of Salmonella in milk is reported. In this approach, the bacteria are captured and preconcentrated from milk samples with magnetic beads through an immunological reaction. A second polyclonal antibody labeled with peroxidase is used as serological confirmation with electrochemical detection based on a magneto-electrode. The 'IMS/m-GEC electrochemical immunosensing' approach shows a limit of detection of 5 x 10(3) and 7.5 x 10(3)CFU mL(-1) in LB and in milk diluted 1/10 in LB broth, respectively, in 50 min without any pretreatment. If the skimmed-milk is preenriched for 6h, the method is able to detect as low as 1.4 CFU mL(-1), while if it is preenriched for 8h, as low as 0.108 x CFU mL(-1) (2.7 x CFU in 25 g of milk, in 5 samples of 5 mL) are detected accordingly with the legislation. Moreover, the method is able to clearly distinguish between food pathogenic bacteria such as Salmonella and Escherichia coli. The features of this approach are discussed and compared with classical culture methods.

  8. Non-supervised method for early forest fire detection and rapid mapping

    NASA Astrophysics Data System (ADS)

    Artés, Tomás; Boca, Roberto; Liberta, Giorgio; San-Miguel, Jesús

    2017-09-01

    Natural hazards are a challenge for the society. Scientific community efforts have been severely increased assessing tasks about prevention and damage mitigation. The most important points to minimize natural hazard damages are monitoring and prevention. This work focuses particularly on forest fires. This phenomenon depends on small-scale factors and fire behavior is strongly related to the local weather. Forest fire spread forecast is a complex task because of the scale of the phenomena, the input data uncertainty and time constraints in forest fire monitoring. Forest fire simulators have been improved, including some calibration techniques avoiding data uncertainty and taking into account complex factors as the atmosphere. Such techniques increase dramatically the computational cost in a context where the available time to provide a forecast is a hard constraint. Furthermore, an early mapping of the fire becomes crucial to assess it. In this work, a non-supervised method for forest fire early detection and mapping is proposed. As main sources, the method uses daily thermal anomalies from MODIS and VIIRS combined with land cover map to identify and monitor forest fires with very few resources. This method relies on a clustering technique (DBSCAN algorithm) and on filtering thermal anomalies to detect the forest fires. In addition, a concave hull (alpha shape algorithm) is applied to obtain rapid mapping of the fire area (very coarse accuracy mapping). Therefore, the method leads to a potential use for high-resolution forest fire rapid mapping based on satellite imagery using the extent of each early fire detection. It shows the way to an automatic rapid mapping of the fire at high resolution processing as few data as possible.

  9. Simple, Rapid, and Highly Sensitive Detection of Diphosgene and Triphosgene by Spectrophotometric Methods

    PubMed Central

    Joy, Abraham; Anim-Danso, Emmanuel; Kohn, Joachim

    2009-01-01

    Methods for the detection and estimation of diphosgene and triphosgene are described. These compounds are widely used phosgene precursors which produce an intensely colored purple pentamethine oxonol dye when reacted with 1,3-dimethylbarbituric acid (DBA) and pyridine (or a pyridine derivative). Two quantitative methods are described, based on either UV absorbance or fluorescence of the oxonol dye. Detection limits are ~ 4 µmol/L by UV and <0.4 µmol/L by fluorescence. The third method is a test strip for the simple and rapid detection and semi-quantitative estimation of diphosgene and triphosgene, using a filter paper embedded with dimethylbarbituric acid and poly(4-vinylpyridine). Addition of a test solution to the paper causes a color change from white to light blue at low concentrations and to pink at higher concentrations of triphosgene. The test strip is useful for quick on-site detection of triphosgene and diphosgene in reaction mixtures. The test strip is easy to perform and provides clear signal readouts indicative of the presence of phosgene precursors. The utility of this method was demonstrated by the qualitative determination of residual triphosgene during the production of poly(Bisphenol A carbonate). PMID:19782219

  10. A multiplex PCR assay for the rapid and sensitive detection of methicillin-resistant Staphylococcus aureus and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci.

    PubMed

    Xu, Benjin; Liu, Ling; Liu, Li; Li, Xinping; Li, Xiaofang; Wang, Xin

    2012-11-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a global health concern, which had been detected in food and food production animals. Conventional testing for detection of MRSA takes 3 to 5 d to yield complete information of the organism and its antibiotic sensitivity pattern. So, a rapid method is needed to diagnose and treat the MRSA infections. The present study focused on the development of a multiplex PCR assay for the rapid and sensitive detection of MRSA. The assay simultaneously detected 4 genes, namely, 16S rRNA of the Staphylococcus genus, femA of S. aureus, mecA that encodes methicillin resistance, and one internal control. It was rapid and yielded results within 4 h. The analytical sensitivity and specificity of the multiplex PCR assay was evaluated by comparing it with the conventional method. The analytical sensitivity of the multiplex PCR assay at the DNA level was 10 ng DNA. The analytical specificity was evaluated with 10 reference staphylococci strains and was 100%. The diagnostic evaluation of MRSA was carried out using 360 foodborne staphylococci isolates, and showed 99.1% of specificity, 96.4% of sensitivity, 97.5% of positive predictive value, and 97.3% of negative predictive value compared to the conventional method. The inclusion of an internal control in the multiplex PCR assay is important to exclude false-negative cases. This test can be used as an effective diagnostic and surveillance tool to investigate the spread and emergence of MRSA. © 2012 Institute of Food Technologists®

  11. Rapid Change Detection Algorithm for Disaster Management

    NASA Astrophysics Data System (ADS)

    Michel, U.; Thunig, H.; Ehlers, M.; Reinartz, P.

    2012-07-01

    This paper focuses on change detection applications in areas where catastrophic events took place which resulted in rapid destruction especially of manmade objects. Standard methods for automated change detection prove not to be sufficient; therefore a new method was developed and tested. The presented method allows a fast detection and visualization of change in areas of crisis or catastrophes. While often new methods of remote sensing are developed without user oriented aspects, organizations and authorities are not able to use these methods because of absence of remote sensing know how. Therefore a semi-automated procedure was developed. Within a transferable framework, the developed algorithm can be implemented for a set of remote sensing data among different investigation areas. Several case studies are the base for the retrieved results. Within a coarse dividing into statistical parts and the segmentation in meaningful objects, the framework is able to deal with different types of change. By means of an elaborated Temporal Change Index (TCI) only panchromatic datasets are used to extract areas which are destroyed, areas which were not affected and in addition areas where rebuilding has already started.

  12. Multicenter Evaluation of the Solana Group A Streptococcus Assay: Comparison with Culture.

    PubMed

    Uphoff, Timothy S; Buchan, Blake W; Ledeboer, Nathan A; Granato, Paul A; Daly, Judy A; Marti, Tara N

    2016-09-01

    We compared group A Streptococcus (GAS) culture with a rapid helicase-dependent amplification (HDA) method using 1,082 throat swab specimens. The HDA method demonstrated 98.2% sensitivity and 97.2% specificity. GAS prevalence by culture was 20.7%, and it was 22.6% using the HDA method. In 35 min, the HDA method provided rapid, sensitive GAS detection, making culture confirmation unnecessary. Copyright © 2016 Uphoff et al.

  13. Conductive interference in rapid transit signaling systems. volume 2. suggested test procedures

    DOT National Transportation Integrated Search

    1987-05-31

    Methods for detecting and quantifying the levels of conductive electromagnetic interference produced by solid state rapid transit propulsion equipment and for determining the susceptibility of signaling systems to these emissions are presented. These...

  14. Study and evaluation of Wondfo rapid diagnostic kit based on nano-gold immunochromatography assay for diagnosis of Plasmodium falciparum.

    PubMed

    Peng, Yunping; Wu, Junlin; Wang, Jihua; Li, Wenmei; Yu, Shujuan

    2012-04-01

    Malaria has been recognized as a human disease for thousands of years and remains one of the most common diseases affecting humans worldwide. Therefore, a method for rapidly detecting Plasmodium falciparum is necessary and useful. We have developed Wondfo rapid diagnostic kit based on nano-gold immunochromatography assay for the detection of P. falciparum in patient specimen. In the present study, we demonstrated the sensitivity and specificity of the rapid diagnostic kit in which nano-gold labeling techniques and the monoclonal antibodies against histidine-rich protein-2 of P. falciparum were used to establish two-antibody sandwich immunochromatographic assay for detecting P. falciparum. By using microscopic examination of blood smears as control, the sensitivity, specificity, and feasibility of Wondfo rapid diagnostic kit was determined in the prompt and accurate diagnosis of malaria. In this study, 1,558 blood samples were collected from outpatient clinics in China and detected by both Wondfo kit and microscopic examination. The Wondfo kit did not show cross-reaction with microfilaria, Toxoplasma gondii, and other parasites in the blood. The patient samples positive for rheumatoid factor, HIV, tuberculosis, and syphilis did not show false positivity when testing with Wondfo kit. The detection sensitivity and specificity of Wondfo rapid diagnostic kit were 95.49% and 99.53%, respectively. These results indicate that our rapid diagnostic assay may be useful for detecting P. falciparum in patient specimen.

  15. Characterizing the Frequency and Elevation of Rapid Drainage Events in West Greenland

    NASA Astrophysics Data System (ADS)

    Cooley, S.; Christoffersen, P.

    2016-12-01

    Rapid drainage of supraglacial lakes on the Greenland Ice Sheet is critical for the establishment of surface-to-bed hydrologic connections and the subsequent transfer of water from surface to bed. Yet, estimates of the number and spatial distribution of rapidly draining lakes vary widely due to limitations in the temporal frequency of image collection and obscureness by cloud. So far, no study has assessed the impact of these observation biases. In this study, we examine the frequency and elevation of rapidly draining lakes in central West Greenland, from 68°N to 72.6°N, and we make a robust statistical analysis to estimate more accurately the likelihood of lakes draining rapidly. Using MODIS imagery and a fully automated lake detection method, we map more than 500 supraglacial lakes per year over a 63000 km2 study area from 2000-2015. Through testing four different definitions of rapidly draining lakes from previously published studies, we find that the number of rapidly draining lakes varies from 3% to 38%. Logistic regression between rapid drainage events and image sampling frequency demonstrates that the number of rapid drainage events is strongly dependent on cloud-free observation percentage. We then develop three new drainage criteria and apply an observation bias correction that suggests a true rapid drainage probability between 36% and 45%, considerably higher than previous studies without bias assessment have reported. We find rapid-draining lakes are on average larger and disappear earlier than slow-draining lakes, and we also observe no elevation differences for the lakes detected as rapidly draining. We conclude a) that methodological problems in rapid drainage research caused by observation bias and varying detection methods have obscured large-scale rapid drainage characteristics and b) that the lack of evidence for an elevation limit on rapid drainage suggests surface-to-bed hydrologic connections may continue to propagate inland as climate warms.

  16. A New Procedure for Detection of Students' Rapid Guessing Responses Using Response Time

    ERIC Educational Resources Information Center

    Guo, Hongwen; Rios, Joseph A.; Haberman, Shelby; Liu, Ou Lydia; Wang, Jing; Paek, Insu

    2016-01-01

    Unmotivated test takers using rapid guessing in item responses can affect validity studies and teacher and institution performance evaluation negatively, making it critical to identify these test takers. The authors propose a new nonparametric method for finding response-time thresholds for flagging item responses that result from rapid-guessing…

  17. Comparison of two commercial rapid in-clinic serological tests for detection of antibodies against Leishmania spp. in dogs.

    PubMed

    Athanasiou, Labrini V; Petanides, Theodoros A; Chatzis, Manolis K; Kasabalis, Dimitrios; Apostolidis, Kosmas N; Saridomichelakis, Manolis N

    2014-03-01

    Antibodies against Leishmania spp. are detected in most dogs with clinical signs of leishmaniasis due to Leishmania infantum. Accurate, rapid in-clinic serological tests may permit immediate confirmation of the diagnosis and implementation of therapeutic measures. The aim of the current study was to evaluate the diagnostic accuracy of 2 commercial, rapid in-clinic serological tests for the detection of anti-Leishmania antibodies in sera of dogs, the Snap Canine Leishmania Antibody Test kit (IDEXX Laboratories Inc., Westbrook, Maine) and the ImmunoRun Antibody Detection kit (Biogal Galed Labs, Kibbutz Galed, Israel), using indirect fluorescent antibody test (IFAT) as the reference method. A total of 109 sera collected from 65 seropositive and 44 seronegative dogs were used. The sensitivities of the Snap and ImmunoRun kits were 89.23% (95% confidence interval: 79.05-95.54%) and 86.15% (95% confidence interval: 75.33-93.45%), respectively, and the specificity of both tests was 100%. A good agreement between each of the rapid in-clinic serological tests and IFAT and between the 2 rapid in-clinic serological tests was witnessed. Both rapid in-clinic serological tests showed an adequate diagnostic accuracy and can be used for the fast detection of antibodies against L. infantum in dogs.

  18. Rapid visual detection of cyprinid herpesvirus 2 by recombinase polymerase amplification combined with a lateral flow dipstick.

    PubMed

    Wang, H; Sun, M; Xu, D; Podok, P; Xie, J; Jiang, Ys; Lu, Lq

    2018-05-28

    Herpesviral haematopoietic necrosis (HVHN), caused by cyprinid herpesvirus 2 (CyHV-2), causes significant losses in crucian carp (Carassius carassius) aquaculture. Rapid and convenient DNA assay detection of CyHV-2 is useful for field diagnosis. Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that can amplify DNA within 30 min at ~37°C by simulating in vivo DNA recombination. Herein, a rapid and convenient detection assay based on RPA with a lateral flow dipstick (LFD) was developed for detecting CyHV-2. The highly conserved ORF72 of CyHV-2 was targeted by specific and sensitive primers and probes. The optimized assay takes only 15 min at 38°C using a water bath, with analysis of products by 2% agarose gel electrophoresis within 30 min. A simple lateral flow strip based on the unique probe in reaction buffer was developed for visualization. The entire RPA-LFD assay takes 50 min less than the routine PCR method, is 100 times more sensitive and displays no cross-reaction with other aquatic viruses. The combined isothermal RPA and lateral flow assay (RPA-LFD) provides a simple, rapid, reliable method that could improve field diagnosis of CyHV-2 when resources are limited. © 2018 John Wiley & Sons Ltd.

  19. Antibody-Mediated Small Molecule Detection Using Programmable DNA-Switches.

    PubMed

    Rossetti, Marianna; Ippodrino, Rudy; Marini, Bruna; Palleschi, Giuseppe; Porchetta, Alessandro

    2018-06-13

    The development of rapid, cost-effective, and single-step methods for the detection of small molecules is crucial for improving the quality and efficiency of many applications ranging from life science to environmental analysis. Unfortunately, current methodologies still require multiple complex, time-consuming washing and incubation steps, which limit their applicability. In this work we present a competitive DNA-based platform that makes use of both programmable DNA-switches and antibodies to detect small target molecules. The strategy exploits both the advantages of proximity-based methods and structure-switching DNA-probes. The platform is modular and versatile and it can potentially be applied for the detection of any small target molecule that can be conjugated to a nucleic acid sequence. Here the rational design of programmable DNA-switches is discussed, and the sensitive, rapid, and single-step detection of different environmentally relevant small target molecules is demonstrated.

  20. Rapid and Sensitive Detection of Lymphocystis Disease Virus Genotype VII by Loop-Mediated Isothermal Amplification.

    PubMed

    Valverde, Estefanía J; Cano, Irene; Castro, Dolores; Paley, Richard K; Borrego, Juan J

    2017-03-01

    Lymphocystis disease virus (LCDV) infections have been described in gilthead seabream (Sparus aurata L.) and Senegalese sole (Solea senegalensis, Kaup), two of the most important marine fish species in the Mediterranean aquaculture. In this study, a rapid, specific, and sensitive detection method for LCDV genotype VII based on loop-mediated isothermal amplification (LAMP) was developed. The LAMP assay, performed using an apparatus with real-time amplification monitoring, was able to specifically detect LCDV genotype VII from clinically positive samples in less than 12 min. In addition, the assay allowed the detection of LCDV in all asymptomatic carrier fish analysed, identified by qPCR, showing an analytical sensitivity of ten copies of viral DNA per reaction. The LCDV LAMP assay has proven to be a promising diagnostic method that can be used easily in fish farms to detect the presence and spread of this iridovirus.

  1. Potential Impact of Rapid Blood Culture Testing for Gram-Positive Bacteremia in Japan with the Verigene Gram-Positive Blood Culture Test

    PubMed Central

    Matsuda, Mari; Iguchi, Shigekazu; Mizutani, Tomonori; Hiramatsu, Keiichi; Tega-Ishii, Michiru; Sansaka, Kaori; Negishi, Kenta; Shimada, Kimie; Umemura, Jun; Notake, Shigeyuki; Yanagisawa, Hideji; Yabusaki, Reiko; Araoka, Hideki; Yoneyama, Akiko

    2017-01-01

    Background. Early detection of Gram-positive bacteremia and timely appropriate antimicrobial therapy are required for decreasing patient mortality. The purpose of our study was to evaluate the performance of the Verigene Gram-positive blood culture assay (BC-GP) in two special healthcare settings and determine the potential impact of rapid blood culture testing for Gram-positive bacteremia within the Japanese healthcare delivery system. Furthermore, the study included simulated blood cultures, which included a library of well-characterized methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) isolates reflecting different geographical regions in Japan. Methods. A total 347 BC-GP assays were performed on clinical and simulated blood cultures. BC-GP results were compared to results obtained by reference methods for genus/species identification and detection of resistance genes using molecular and MALDI-TOF MS methodologies. Results. For identification and detection of resistance genes at two clinical sites and simulated blood cultures, overall concordance of BC-GP with reference methods was 327/347 (94%). The time for identification and antimicrobial resistance detection by BC-GP was significantly shorter compared to routine testing especially at the cardiology hospital, which does not offer clinical microbiology services on weekends and holidays. Conclusion. BC-GP generated accurate identification and detection of resistance markers compared with routine laboratory methods for Gram-positive organisms in specialized clinical settings providing more rapid results than current routine testing. PMID:28316631

  2. Performance of Traditional and Molecular Methods for Detecting Biological Agents in Drinking Water

    EPA Science Inventory

    USGS Report - To reduce the impact from a possible bioterrorist attack on drinking-water supplies, analytical methods are needed to rapidly detect the presence of biological agents in water. To this end, 13 drinking-water samples were collected at 9 water-treatment plants in Ohio...

  3. Rapid detection of Salmonella spp. in food by use of the ISO-GRID hydrophobic grid membrane filter.

    PubMed Central

    Entis, P; Brodsky, M H; Sharpe, A N; Jarvis, G A

    1982-01-01

    A rapid hydrophobic grid-membrane filter (HGMF) method was developed and compared with the Health Protection Branch cultural method for the detection of Salmonella spp. in 798 spiked samples and 265 naturally contaminated samples of food. With the HGMF method, Salmonella spp. were isolated from 618 of the spiked samples and 190 of the naturally contaminated samples. The conventional method recovered Salmonella spp. from 622 spiked samples and 204 unspiked samples. The isolation rates from Salmonella-positive samples for the two methods were not significantly different (94.6% overall for the HGMF method and 96.7% for the conventional approach), but the HGMF results were available in only 2 to 3 days after sample receipt compared with 3 to 4 days by the conventional method. Images PMID:7059168

  4. Application of loop-mediated isothermal amplification with propidium monoazide treatment to detect live Salmonella in chicken carcasses.

    PubMed

    Youn, S Y; Jeong, O M; Choi, B K; Jung, S C; Kang, M S

    2017-02-01

    Raw chicken products are major causes of human foodborne salmonellosis worldwide. In particular, there is a significant risk of human exposure to Salmonella originating from the chicken slaughtering process. Controlling the contamination of chicken carcasses by Salmonella has been a considerable challenge in chicken-slaughtering facilities and involves routine microbiological monitoring using reliable detection methods. Simple and rapid detection methods, particularly those capable of determining cell viability, will significantly facilitate routine monitoring of Salmonella Here, we report an invA-based loop-mediated isothermal amplification method coupled with a simple propidium monoazide treatment (PMA-LAMP) for simple and rapid detection and quantification of viable Salmonella in rinse water of chicken carcasses. In this study, PMA-LAMP consistently gave negative results for isopropanol-killed Salmonella with concentrations up to 8.0 × 10 6 CFU/reaction. The detection limit of PMA-LAMP was 8.0 × 10 1 CFU/reaction with viable Salmonella in both pure culture and rinse water of chicken carcasses, and 10-fold lower than a conventional polymerase chain reaction coupled with PMA (PMA-PCR) targeting invA There was a high correlation (R 2 = 0.99 to 0.976) between LAMP time threshold (T T ) values and viable Salmonella with a quantification range of 1.0 × 10 3 to 1.0 × 10 8 CFU/mL in pure culture and rinse water of chicken carcasses. The PMA-LAMP assay took less than 2 h to detect Salmonella contaminated in test samples. Therefore, this simple and rapid method will be a very useful tool to detect live Salmonella contamination of chicken carcasses without pre-enrichment at the slaughterhouse where sanitizing treatments are commonly used. © 2016 Poultry Science Association Inc.

  5. Rapid polymerase chain reaction diagnosis of white-nose syndrome in bats

    USGS Publications Warehouse

    Lorch, J.M.; Gargas, A.; Meteyer, C.U.; Berlowski-Zier, B. M.; Green, D.E.; Shearn-Bochsler, V.; Thomas, N.J.; Blehert, D.S.

    2010-01-01

    A newly developed polymerase chain reaction (PCR)-based method to rapidly and specifically detect Geomyces destructans on the wings of infected bats from small quantities (1-2 mg) of tissue is described in the current study (methods for culturing and isolating G. destructans from bat skin are also described). The lower limits of detection for PCR were 5 fg of purified fungal DNA or 100 conidia per 2 mg of wing tissue. By using histology as the standard, the PCR had a diagnostic specificity of 100% and a diagnostic sensitivity of 96%, whereas the diagnostic sensitivity of culture techniques was only 54%. The accuracy and fast turnaround time of PCR provides field biologists with valuable information on infection status more rapidly than traditional methods, and the small amount of tissue required for the test would allow diagnosis of white-nose syndrome in live animals.

  6. An insulated isothermal PCR method on a field-deployable device for rapid and sensitive detection of canine parvovirus type 2 at points of need.

    PubMed

    Wilkes, Rebecca P; Lee, Pei-Yu A; Tsai, Yun-Long; Tsai, Chuan-Fu; Chang, Hsiu-Hui; Chang, Hsiao-Fen G; Wang, Hwa-Tang T

    2015-08-01

    Canine parvovirus type 2 (CPV-2), including subtypes 2a, 2b and 2c, causes an acute enteric disease in both domestic and wild animals. Rapid and sensitive diagnosis aids effective disease management at points of need (PON). A commercially available, field-deployable and user-friendly system, designed with insulated isothermal PCR (iiPCR) technology, displays excellent sensitivity and specificity for nucleic acid detection. An iiPCR method was developed for on-site detection of all circulating CPV-2 strains. Limit of detection was determined using plasmid DNA. CPV-2a, 2b and 2c strains, a feline panleukopenia virus (FPV) strain, and nine canine pathogens were tested to evaluate assay specificity. Reaction sensitivity and performance were compared with an in-house real-time PCR using serial dilutions of a CPV-2b strain and 100 canine fecal clinical samples collected from 2010 to 2014, respectively. The 95% limit of detection of the iiPCR method was 13 copies of standard DNA and detection limits for CPV-2b DNA were equivalent for iiPCR and real-time PCR. The iiPCR reaction detected CPV-2a, 2b and 2c and FPV. Non-targeted pathogens were not detected. Test results of real-time PCR and iiPCR from 99 fecal samples agreed with each other, while one real-time PCR-positive sample tested negative by iiPCR. Therefore, excellent agreement (k = 0.98) with sensitivity of 98.41% and specificity of 100% in detecting CPV-2 in feces was found between the two methods. In conclusion, the iiPCR system has potential to serve as a useful tool for rapid and accurate PON, molecular detection of CPV-2. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Molecular detection assay of five Salmonella serotypes of public interest: Typhimurium, Enteritidis, Newport, Heidelberg, and Hadar.

    PubMed

    Bugarel, M; Tudor, A; Loneragan, G H; Nightingale, K K

    2017-03-01

    Foodborne illnesses due to Salmonella represent an important public-health concern worldwide. In the United States, a majority of Salmonella infections are associated with a small number of serotypes. Furthermore, some serotypes that are overrepresented among human disease are also associated with multi-drug resistance phenotypes. Rapid detection of serotypes of public-health concern might help reduce the burden of salmonellosis cases and limit exposure to multi-drug resistant Salmonella. We developed a two-step real-time PCR-based rapid method for the identification and detection of five Salmonella serotypes that are either overrepresented in human disease or frequently associated with multi-drug resistance, including serotypes Enteritidis, Typhimurium, Newport, Hadar, and Heidelberg. Two sets of four markers were developed to detect and differentiate the five serotypes. The first set of markers was developed as a screening step to detect the five serotypes; whereas, the second set was used to further distinguish serotypes Heidelberg, Newport and Hadar. The utilization of these markers on a two-step investigation strategy provides a diagnostic specificity of 97% for the detection of Typhimurium, Enteritidis, Heidelberg, Infantis, Newport and Hadar. The diagnostic sensitivity of the detection makers is >96%. The availability of this two-step rapid method will facilitate specific detection of Salmonella serotypes that contribute to a significant proportion of human disease and carry antimicrobial resistance. Published by Elsevier B.V.

  8. PCR method for the rapid detection and discrimination of Legionella spp. based on the amplification of pcs, pmtA, and 16S rRNA genes.

    PubMed

    Janczarek, Monika; Palusińska-Szysz, Marta

    2016-05-01

    Legionella bacteria are organisms of public health interest due to their ability to cause pneumonia (Legionnaires' disease) in susceptible humans and their ubiquitous presence in water supply systems. Rapid diagnosis of Legionnaires' disease allows the use of therapy specific for the disease. L. pneumophila serogroup 1 is the most common cause of infection acquired in community and hospital environments. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this work, simplex and duplex PCR assays with the use of new molecular markers pcs and pmtA involved in phosphatidylcholine synthesis were specified for rapid and cost-efficient identification and distinguishing Legionella species. The sets of primers developed were found to be sensitive and specific for reliable detection of Legionella belonging to the eight most clinically relevant species. Among these, four primer sets I, II, VI, and VII used for duplex-PCRs proved to have the highest identification power and reliability in the detection of the bacteria. Application of this PCR-based method should improve detection of Legionella spp. in both clinical and environmental settings and facilitate molecular typing of these organisms.

  9. [Rapid identification of 22 abused drugs and organophosphorus pesticides in blood by LC-MS/MS].

    PubMed

    Liu, Hong-tao; Ma, An-de

    2009-08-01

    To develop a method for rapid identification of 22 abused drugs and organophosphorus pesticides in the blood. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple-reaction monitoring mode (MRM) was employed for detecting the drugs and pesticides in the blood. The MRM database and criteria for identification were established, and ethyl acetate was used for extraction of the drugs. After 3 rounds of extractions of the blood sample (1 mL) using 2 mL ethyl acetate, the extract was vortexed for 3 min and centrifuged at 5000 r/min. Each organic phase was combined and evaporated by gentle N2 gas. The residue was re-dissolved in 100 L mobile phase, from which 5 L was taken for LC-MS/MS detection. The detection of the 22 target compounds could be completed within 10 min. The limit of detection of the target compound ranged from 0.03 to 6.00 ng/ml. Satisfactory results were obtained in proficiency testing program organized by China National Accreditation Service for Conformity Assessment. The method we established is rapid, selective and sensitive for detecting the 22 abused drugs and organophosphorus pesticides.

  10. Single-layer MnO2 nanosheets for sensitive and selective detection of glutathione by a colorimetric method

    NASA Astrophysics Data System (ADS)

    Di, Weihua; Zhang, Xiang; Qin, Weiping

    2017-04-01

    The rapid, sensitive and selective detection of glutathione (GSH) is of great importance in the biological systems. In this work, a template-free and one-step method was used to synthesize the single-layer MnO2 nanosheets via a redox reaction. The resulting product was characterized by XRD, TEM, FTIR, XPS and UV-vis absorption. The addition of GSH results in the change of solution color depth owing to the occurrence of a redox reaction between MnO2 and GSH, enabling colorimetric detection of GSH. At a pH of 3.6, the proposed sensor gives a linear calibration over a GSH concentration range of 10-100 μM, with a rapid response of less than 2 min and a low detection limit of 0.5 μM. The relative standard deviation for seven repeated determinations of GSH is lower than 5.6%. Furthermore, the chemical response of the synthesized MnO2 nanosheets toward GSH is selective. Owing to the advantages with good water solubility, rapid response, high sensitivity, good biocompatibility and operation simplicity, this two-dimensional MnO2-based sensing material might be potential for detecting GSH in biological applications.

  11. Rapid and Quantitative Detection of Vibrio parahemolyticus by the Mixed-Dye-Based Loop-Mediated Isothermal Amplification Assay on a Self-Priming Compartmentalization Microfluidic Chip.

    PubMed

    Pang, Bo; Ding, Xiong; Wang, Guoping; Zhao, Chao; Xu, Yanan; Fu, Kaiyue; Sun, Jingjing; Song, Xiuling; Wu, Wenshuai; Liu, Yushen; Song, Qi; Hu, Jiumei; Li, Juan; Mu, Ying

    2017-12-27

    Vibrio parahemolyticus (VP) mostly isolated from aquatic products is one of the major causes of bacterial food-poisoning events worldwide, which could be reduced using a promising on-site detection method. Herein, a rapid and quantitative method for VP detection was developed by applying a mixed-dye-loaded loop-mediated isothermal amplification (LAMP) assay on a self-priming compartmentalization (SPC) microfluidic chip, termed on-chip mixed-dye-based LAMP (CMD-LAMP). In comparison to conventional approaches, CMD-LAMP was advantageous on the limit of detection, which reached down to 1 × 10 3 CFU/mL in food-contaminated samples without the pre-enrichment of bacteria. Additionally, as a result of the use of a mixed dye and SPC chip, the quantitative result could be easily acquired, avoiding the requirement of sophisticated instruments and tedious operation. Also, CMD-LAMP was rapid and cost-effective. Conclusively, CMD-LAMP has great potential in realizing the on-site quantitative analysis of VP for food safety.

  12. Rapid and reliable detection and identification of GM events using multiplex PCR coupled with oligonucleotide microarray.

    PubMed

    Xu, Xiaodan; Li, Yingcong; Zhao, Heng; Wen, Si-yuan; Wang, Sheng-qi; Huang, Jian; Huang, Kun-lun; Luo, Yun-bo

    2005-05-18

    To devise a rapid and reliable method for the detection and identification of genetically modified (GM) events, we developed a multiplex polymerase chain reaction (PCR) coupled with a DNA microarray system simultaneously aiming at many targets in a single reaction. The system included probes for screening gene, species reference gene, specific gene, construct-specific gene, event-specific gene, and internal and negative control genes. 18S rRNA was combined with species reference genes as internal controls to assess the efficiency of all reactions and to eliminate false negatives. Two sets of the multiplex PCR system were used to amplify four and five targets, respectively. Eight different structure genes could be detected and identified simultaneously for Roundup Ready soybean in a single microarray. The microarray specificity was validated by its ability to discriminate two GM maizes Bt176 and Bt11. The advantages of this method are its high specificity and greatly reduced false-positives and -negatives. The multiplex PCR coupled with microarray technology presented here is a rapid and reliable tool for the simultaneous detection of GM organism ingredients.

  13. A new methodology for rapid detection of Lactobacillus delbrueckii subsp. bulgaricus based on multiplex PCR.

    PubMed

    Nikolaou, Anastasios; Saxami, Georgia; Kourkoutas, Yiannis; Galanis, Alex

    2011-02-01

    In this study we present a novel multiplex PCR assay for rapid and efficient detection of Lactobacillus delbrueckii subsp. bulgaricus. The accuracy of our method was confirmed by the successful identification of L. delbrueckii subsp. bulgaricus in commercial yoghurts and food supplements and it may be readily applied to the food industry. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. A magnetic particles-based chemiluminescence enzyme immunoassay for rapid detection of ovalbumin.

    PubMed

    Feng, Xiao-Li; Ren, Hong-Lin; Li, Yan-Song; Hu, Pan; Zhou, Yu; Liu, Zeng-Shan; Yan, Dong-Ming; Hui, Qi; Liu, Dong; Lin, Chao; Liu, Nan-Nan; Liu, Yan-Yan; Lu, Shi-Ying

    2014-08-15

    Egg allergy is an important public health and safety concern, so quantification and administration of food or vaccines containing ovalbumin (OVA) are urgently needed. This study aimed to establish a rapid and sensitive magnetic particles-chemiluminescence enzyme immunoassay (MPs-CLEIA) for the determination of OVA. The proposed method was developed on the basis of a double antibodies sandwich immunoreaction and luminol-H2O2 chemiluminescence system. The MPs served as both the solid phase and separator, the anti-OVA MPs-coated polyclonal antibodies (pAbs) were used as capturing antibody, and the horseradish peroxidase (HRP)-labeled monoclonal antibody (mAb) was taken as detecting antibody. The parameters of the method were evaluated and optimized. The established MPs-CLEIA method had a linear range from 0.31 to 100ng/ml with a detection limit of 0.24ng/ml. The assays showed low reactivities and less than 5% of intraassay and interassay coefficients of variation (CVs), and the average recoveries were between 92 and 97%. Furthermore, the developed method was applied in real samples analysis successfully, and the correlation coefficient with the commercially available OVA kit was 0.9976. Moreover, it was more rapid and sensitive compared with the other methods for testing OVA. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Solid-phase microextraction of organophosphate pesticides in source waters for drinking water treatment facilities.

    PubMed

    Flynt, Elizabeth; Dupuy, Aubry; Kennedy, Charles; Bennett, Shanda

    2006-09-01

    The rapid detection of contaminants in our nation's drinking water has become a top homeland security priority in this time of increased national vigilance. Real-time monitoring of drinking water for deliberate or accidental contamination is key to national security. One method that can be employed for the rapid screening of pollutants in water is solid-phase microextraction (SPME). SPME is a rapid, sensitive, solvent-free system that can be used to screen for contaminants that have been accidentally or intentionally introduced into a water system. A method using SPME has been developed and optimized for the detection of seven organophosphate pesticides in drinking water treatment facility source waters. The method is tested in source waters for drinking water treatment facilities in Mississippi and Alabama. Water is collected from a deepwater well at Stennis Space Center (SSC), MS, the drinking water source for SSC, and from the Converse Reservoir, the main drinking water supply for Mobile, AL. Also tested are samples of water collected from the Mobile Alabama Water and Sewer System drinking water treatment plant prior to chlorination. The method limits of detection for the seven organophosphates were comparable to those described in several Environmental Protection Agency standard methods. They range from 0.25 to 0.94 microg/L.

  16. Detection of Biomarkers of Pathogenic Naegleria fowleri Through Mass Spectrometry and Proteomics

    PubMed Central

    Moura, Hercules; Izquierdo, Fernando; Woolfitt, Adrian R.; Wagner, Glauber; Pinto, Tatiana; del Aguila, Carmen; Barr, John R.

    2017-01-01

    Emerging methods based on mass spectrometry (MS) can be used in the rapid identification of microorganisms. Thus far, these practical and rapidly evolving methods have mainly been applied to characterize prokaryotes. We applied matrix-assisted laser-desorption-ionization-time-of-flight mass spectrometry MALDI-TOF MS in the analysis of whole cells of 18 N. fowleri isolates belonging to three genotypes. Fourteen originated from the cerebrospinal fluid or brain tissue of primary amoebic meningoencephalitis patients and four originated from water samples of hot springs, rivers, lakes or municipal water supplies. Whole Naegleria trophozoites grown in axenic cultures were washed and mixed with MALDI matrix. Mass spectra were acquired with a 4700 TOF-TOF instrument. MALDI-TOF MS yielded consistent patterns for all isolates examined. Using a combination of novel data processing methods for visual peak comparison, statistical analysis and proteomics database searching we were able to detect several biomarkers that can differentiate all species and isolates studied, along with common biomarkers for all N. fowleri isolates. Naegleria fowleri could be easily separated from other species within the genus Naegleria. A number of peaks detected were tentatively identified. MALDI-TOF MS fingerprinting is a rapid, reproducible, high-throughput alternative method for identifying Naegleria isolates. This method has potential for studying eukaryotic agents. PMID:25231600

  17. Rapid and sensitive detection of Lily symptomless virus by reverse transcription loop-mediated isothermal amplification.

    PubMed

    He, Xiangfeng; Xue, Fei; Xu, Shufa; Wang, Wenhe

    2016-12-01

    Lily symptomless virus (LSV) is one of the most prevalent viruses that infect lily plants worldwide. A rapid and sensitive reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for detection of LSV, using two primer pairs that specifically amplified the conserved sequence of LSV coat protein. The optimum reaction conditions were as follows: 4mM MgCl 2 and 0.8M betaine with incubation at 64°C for 30min. The limit of detection of LSV from infected lily leaves was 10-fold higher for RT-LAMP than for conventional RT-PCR. Moreover, RT-LAMP detected LSV in not only symptomatic, but also in symptomless tissues of infected plants. These findings indicate that our RT-LAMP method for LSV can serve as a low-cost, simple, and rapid alternative to conventional detection assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Recombinase polymerase amplification applied to plant virus detection and potential implications.

    PubMed

    Babu, Binoy; Ochoa-Corona, Francisco M; Paret, Mathews L

    2018-04-01

    Several isothermal techniques for the detection of plant pathogens have been developed with the advent of molecular techniques. Among them, Recombinase Polymerase Amplification (RPA) is becoming an important technique for the rapid, sensitive and cost-effective detection of plant viruses. The RPA technology has the advantage to be implemented in field-based scenarios because the method requires a minimal sample preparation, and is performed at constant low temperature (37-42 °C). The RPA technique is rapidly becoming a promising tool for use in rapid detection and further diagnostics in plant clinics and monitoring quarantine services. This paper presents a review of studies conducted using RPA for detection/diagnosis of plant viruses with either DNA genomes (Banana bunchy top virus, Bean golden yellow mosaic virus, Tomato mottle virus, Tomato yellow leaf curl virus) or RNA genomes (Little Cherry virus 2, Plum pox virus and Rose rosette virus). Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Evaluation of a Method for Rapid Detection of Listeria monocytogenes in Dry-Cured Ham Based on Impedanciometry Combined with Chromogenic Agar.

    PubMed

    Labrador, Mirian; Rota, María C; Pérez, Consuelo; Herrera, Antonio; Bayarri, Susana

    2018-05-01

    The food industry is in need of rapid, reliable methodologies for the detection of Listeria monocytogenes in ready-to-eat products, as an alternative to the International Organization of Standardization (ISO) 11290-1 reference method. The aim of this study was to evaluate impedanciometry combined with chromogenic agar culture for the detection of L. monocytogenes in dry-cured ham. The experimental setup consisted in assaying four strains of L. monocytogenes and two strains of Listeria innocua in pure culture. The method was evaluated according to the ISO 16140:2003 standard through a comparative study with the ISO reference method with 119 samples of dry-cured ham. Significant determination coefficients ( R 2 of up to 0.99) for all strains assayed in pure culture were obtained. The comparative study results had 100% accuracy, 100% specificity, and 100% sensitivity. Impedanciometry followed by chromogenic agar culture was capable of detecting 1 CFU/25 g of food. L. monocytogenes was not detected in the 65 commercial samples tested. The method evaluated herein represents a promising alternative for the food industry in its efforts to control L. monocytogenes. Overall analysis time is shorter and the method permits a straightforward analysis of a large number of samples with reliable results.

  20. The Rapid-Heat LAMPellet Method: A Potential Diagnostic Method for Human Urogenital Schistosomiasis

    PubMed Central

    Carranza-Rodríguez, Cristina; Pérez-Arellano, José Luis; Vicente, Belén; López-Abán, Julio; Muro, Antonio

    2015-01-01

    Background Urogenital schistosomiasis due to Schistosoma haematobium is a serious underestimated public health problem affecting 112 million people - particularly in sub-Saharan Africa. Microscopic examination of urine samples to detect parasite eggs still remains as definitive diagnosis. This work was focussed on developing a novel loop-mediated isothermal amplification (LAMP) assay for detection of S. haematobium DNA in human urine samples as a high-throughput, simple, accurate and affordable diagnostic tool to use in diagnosis of urogenital schistosomiasis. Methodology/Principal Findings A LAMP assay targeting a species specific sequence of S. haematobium ribosomal intergenic spacer was designed. The effectiveness of our LAMP was assessed in a number of patients´ urine samples with microscopy confirmed S. haematobium infection. For potentially large-scale application in field conditions, different DNA extraction methods, including a commercial kit, a modified NaOH extraction method and a rapid heating method were tested using small volumes of urine fractions (whole urine, supernatants and pellets). The heating of pellets from clinical samples was the most efficient method to obtain good-quality DNA detectable by LAMP. The detection limit of our LAMP was 1 fg/µL of S. haematobium DNA in urine samples. When testing all patients´ urine samples included in our study, diagnostic parameters for sensitivity and specificity were calculated for LAMP assay, 100% sensitivity (95% CI: 81.32%-100%) and 86.67% specificity (95% CI: 75.40%-94.05%), and also for microscopy detection of eggs in urine samples, 69.23% sensitivity (95% CI: 48.21% -85.63%) and 100% specificity (95% CI: 93.08%-100%). Conclusions/Significance We have developed and evaluated, for the first time, a LAMP assay for detection of S. haematobium DNA in heated pellets from patients´ urine samples using no complicated requirement procedure for DNA extraction. The procedure has been named the Rapid-Heat LAMPellet method and has the potential to be developed further as a field diagnostic tool for use in urogenital schistosomiasis-endemic areas. PMID:26230990

  1. Rapid enantiomeric separation and simultaneous determination of phenethylamines by ultra high performance liquid chromatography with fluorescence and mass spectrometric detection: application to the analysis of illicit drugs distributed in the Japanese market and biological samples.

    PubMed

    Inagaki, Shinsuke; Hirashima, Haruo; Taniguchi, Sayuri; Higashi, Tatsuya; Min, Jun Zhe; Kikura-Hanajiri, Ruri; Goda, Yukihiro; Toyo'oka, Toshimasa

    2012-12-01

    A rapid enantiomeric separation and simultaneous determination method based on ultra high performance liquid chromatography (UHPLC) was developed for phenethylamine-type abused drugs using (R)-(-)-4-(N,N-dimethylaminosulfonyl)-7-(3-isothiocyanatopyrrolidin-1-yl)-2,1,3-benzoxadiazole ((R)-(-)-DBD-Py-NCS) as the chiral fluorescent derivatization reagent. The derivatives were rapidly enantiomerically separated by reversed-phase UHPLC using a column of 2.3-µm octadecylsilica (ODS) particles by isocratic elution with water-methanol or water-acetonitrile systems as the mobile phase. The proposed method was applied to the analysis of products containing illicit drugs distributed in the Japanese market. Among the products, 1-(3,4-methylenedioxyphenyl)butan-2-amine (BDB) and 1-(2-methoxy4,5-methylenedioxyphenyl)propan-2-amine (MMDA-2) were detected in racemic form. Furthermore, the method was successfully applied to the analysis of hair specimens from rats that were continuously dosed with diphenyl(pyrrolidin-2-yl)methanol (D2PM). Using UHPLC-fluorescence (FL) detection, (R)- and (S)-D2PM from hair specimens were enantiomerically separated and detected with high sensitivity. The detection limits of (R)- and (S)-D2PM were 0.12 and 0.21 ng/mg hair, respectively (signal-to-noise ratio (S/N) = 3). Copyright © 2012 John Wiley & Sons, Ltd.

  2. Establishment and Application of a Loop-Mediated Isothermal Amplification Method for Simple, Specific, Sensitive and Rapid Detection of Toxoplasma gondii

    PubMed Central

    CAO, Lili; CHENG, Ronghua; YAO, Lin; YUAN, Shuxian; YAO, Xinhua

    2013-01-01

    ABSTRACT The Loop-mediated isothermal amplification (LAMP) method amplifies DNA with high simply, specificity, sensitivity and rapidity. In this study, A LAMP assay with 6 primers targeting a highly conserved region of the GRA1 gene was developed to diagnose Toxoplasma gondii. The reaction time of the LAMP assay was shortened to 30 min after optimizing the reaction system. The LAMP assay was found to be highly specific and stable. The detection limit of the LAMP assay was 10 copies, the same as that of the conventional PCR. We used the LAMP assay to develop a real-time fluorogenic protocol to quantitate T. gondii DNA and generated a log-linear regression plot by plotting the time-to-threshold values against genomic equivalent copies. Furthermore, the LAMP assay was applied to detect T. gondii DNA in 423 blood samples and 380 lymph node samples from 10 pig farms, and positive results were obtained for 7.8% and 8.2% of samples, respectively. The results showed that the LAMP method is slightly more sensitive than conventional PCR (6.1% and 7.6%). Positive samples obtained from 6 pig farms. The LAMP assay established in this study resulted in simple, specific, sensitive and rapid detection of T. gondii DNA and is expected to play an important role in clinical detection of T. gondii. PMID:23965849

  3. Rapid detection of Listeria monocytogenes in foods, by a combination of PCR and DNA probe.

    PubMed

    Ingianni, A; Floris, M; Palomba, P; Madeddu, M A; Quartuccio, M; Pompei, R

    2001-10-01

    Listeria monocytogenes is a frequent contaminant of water and foods. Its rapid detection is needed before some foods can be prepared for marketing. In this work L. monocytogenes has been searched for in foods, by a combination of polymerase chain reaction (PCR) and a DNA probe. Both PCR and the probe were prepared for recognizing a specific region of the internalin gene, which is responsible for the production of one of the most important pathogenic factors of Listeria. The combined use of PCR and the DNA probe was used for the detection of L. monocytogenes in over 180 environmental and food samples. Several detection methods were compared in this study, namely conventional culture methods; direct PCR; PCR after an enrichment step; a DNA probe alone; a DNA probe after enrichment and another commercially available gene-probe. Finally PCR and the DNA probe were used in series on all the samples collected. When the DNA probe was associated with the PCR, specific and accurate detection of listeria in the samples could be obtained in about a working-day. The present molecular method showed some advantages in terms of rapidity and specificity in comparison to the other aforementioned tests. In addition, it resulted as being easy to handle, even for non-specialized personnel in small diagnostic microbiology laboratories. Copyright 2001 Academic Press.

  4. Loop-Mediated Isothermal Amplification of the sefA Gene for Rapid Detection of Salmonella Enteritidis and Salmonella Gallinarum in Chickens.

    PubMed

    Gong, Jiansen; Zhuang, Linlin; Zhu, Chunhong; Shi, Shourong; Zhang, Di; Zhang, Linji; Yu, Yan; Dou, Xinhong; Xu, Bu; Wang, Chengming

    2016-04-01

    Salmonella spp. pose a threat to both human and animal health, with more than 2600 serovars having been reported to date. Salmonella serovars are usually identified by slide agglutination tests, which are labor intensive and time consuming. In an attempt to develop a more rapid screening method for the major poultry Salmonella serovars, we developed a loop-mediated isothermal amplification (LAMP) assay, which directly detected the sefA gene, a fimbrial operon gene existing in several specific serovars of Salmonella enterica including the major poultry serovars, namely Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) and Salmonella enterica serovar Gallinarum (Salmonella Gallinarum). With the 177 bacterial strains we tested, positive reactions were only observed with 85 strains of serovar Salmonella Enteritidis and Salmonella Gallinarum. The detection limit of the LAMP assay was 4 CFU/reaction with genomic DNAs of Salmonella Enteritidis (ATCC 13076) from pure culture and 400 CFU/ reaction with DNA extracted from spiked chicken feces. The LAMP assay was more sensitive than conventional culture, especially without enrichment, in detecting Salmonella Enteritidis (CMCC 50041) in the spiked fecal samples. The results show the sefA LAMP method is a rapid, sensitive, specific, and practical method for directly detection of Salmonella Enteritidis and Salmonella Gallinarum in chickens. The sefA LAMP assay can potentially serve as new on-site diagnostics in the poultry industry.

  5. A homogeneous biochemiluminescent assay for detection of influenza

    NASA Astrophysics Data System (ADS)

    Hui, Kwok Min; Li, Xiao Jing; Pan, Lu; Li, X. J.

    2015-05-01

    Current methods of rapid detection of influenza are based on detection of the nucleic acids or antigens of influenza viruses. Since influenza viruses constantly mutate leading to appearance of new strains or variants of viruses, these detection methods are susceptible to genetic changes in influenza viruses. Type A and B influenza viruses contain neuraminidase, an essential enzyme for virus replication which enables progeny influenza viruses leave the host cells to infect new cells. Here we describe an assay method, the homogeneous biochemiluminescent assay (HBA), for rapid detection of influenza by detecting viral neuraminidase activity. The assay mimics the light production process of a firefly: a viral neuraminidase specific substrate containing a luciferin moiety is cleaved in the presence of influenza virus to release luciferin, which becomes a substrate to firefly luciferase in a light production system. All reagents can be formulated in a single reaction mix so that the assay involves only one manual step, i.e., sample addition. Presence of Type A or B influenza virus in the sample leads to production of strong, stable and easily detectable light signal, which lasts for hours. Thus, this influenza virus assay is suitable for use in point-of-care settings.

  6. Comparison of Gram stain with DNA probe for detection of Neisseria gonorrhoeae in urethras of symptomatic males.

    PubMed Central

    Juchau, S V; Nackman, R; Ruppart, D

    1995-01-01

    The comparison of Gram-stained urethral smears with Gen-Probe for the detection of Neisseria Gonorrhoeae in the urethras of males with symptomatic urethritis revealed a 99.6% correlation between the two methods. A simple Gram stain would appear to be the method of choice for the detection of gonorrhea in symptomatic males, because it is much less expensive and much more rapid than the Gen-Probe method. PMID:8576380

  7. Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals.

    PubMed

    Mitchell, Deborah G; Rosen, Gerald M; Tseitlin, Mark; Symmes, Breanna; Eaton, Sandra S; Eaton, Gareth R

    2013-07-16

    The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1-6.0 μM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Next day Salmonella spp. detection method based on real-time PCR for meat, dairy and vegetable food products.

    PubMed

    Rodriguez-Lazaro, David; Gonzalez-García, Patricia; Delibato, Elisabetta; De Medici, Dario; García-Gimeno, Rosa Maria; Valero, Antonio; Hernandez, Marta

    2014-08-01

    The microbiological standard for detection of Salmonella relies on several cultural steps and requires more than 5 days for final confirmation, and as consequence there is a need for an alternative rapid methodology for its detection. The aim of this study was to compare different detection strategies based on real-time PCR for a rapid and sensitive detection in an ample range of food products: raw pork and poultry meat, ready to eat lettuce salad and raw sheep milk cured cheese. Three main parameters were evaluated to reduce the time and cost for final results: the initial sample size (25 and 50 g), the incubation times (6, 10 and 18 h) and the bacterial DNA extraction (simple boiling of the culture after washing the bacterial pellet, the use of the Chelex resin, and a commercial silica column). The results obtained demonstrate that a combination of an incubation in buffered peptone water for 18 h of a 25 g-sample coupled to a DNA extraction by boiling and a real-time PCR assay detected down to 2-4 Salmonella spp.CFU per sample in less than 21 h in different types of food products. This RTi-PCR-based method is fully compatible with the ISO standard, providing results more rapidly and cost-effectively. The results were confirmed in a large number of naturally contaminated food samples with at least the same analytical performance as the reference method. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Electrochemical Biosensors for Rapid Detection of Foodborne Salmonella: A Critical Overview

    PubMed Central

    Cinti, Stefano; Volpe, Giulia; Piermarini, Silvia; Delibato, Elisabetta; Palleschi, Giuseppe

    2017-01-01

    Salmonella has represented the most common and primary cause of food poisoning in many countries for at least over 100 years. Its detection is still primarily based on traditional microbiological culture methods which are labor-intensive, extremely time consuming, and not suitable for testing a large number of samples. Accordingly, great efforts to develop rapid, sensitive and specific methods, easy to use, and suitable for multi-sample analysis, have been made and continue. Biosensor-based technology has all the potentialities to meet these requirements. In this paper, we review the features of the electrochemical immunosensors, genosensors, aptasensors and phagosensors developed in the last five years for Salmonella detection, focusing on the critical aspects of their application in food analysis. PMID:28820458

  10. Rapid colorimetric assay for detection of Listeria monocytogenes in food samples using LAMP formation of DNA concatemers and gold nanoparticle-DNA probe complex

    NASA Astrophysics Data System (ADS)

    Wachiralurpan, Sirirat; Sriyapai, Thayat; Areekit, Supatra; Sriyapai, Pichapak; Augkarawaritsawong, Suphitcha; Santiwatanakul, Somchai; Chansiri, Kosum

    2018-04-01

    ABSTRACT Listeria monocytogenes is a major foodborne pathogen of global health concern. Herein, the rapid diagnosis of L. monocytogenes has been achieved using loop-mediated isothermal amplification (LAMP) based on the phosphatidylcholine-phospholipase C gene (plcB). Colorimetric detection was then performed through the formation of DNA concatemers and a gold nanoparticle/DNA probe complex (GNP/DNA probe). The overall detection process was accomplished within approximately 1 h with no need for complicated equipment. The limits of detection for L. monocytogenes in the forms of purified genomic DNA and pure culture were 800 fg and 2.82 CFU mL-1, respectively. No cross reactions were observed from closely related bacteria species. The LAMP-GNP/DNA probe assay was applied to the detection of 200 raw chicken meat samples and compared to routine standard methods. The data revealed that the specificity, sensitivity and accuracy were 100%, 90.20% and 97.50%, respectively. The present assay was 100% in conformity with LAMP-agarose gel electrophoresis assay. Five samples that were negative by both assays appeared to have the pathogen at below the level of detection. The assay can be applied as a rapid direct screening method for L. monocytogenes.

  11. DNA-based authentication method for detection of yak (Bos grunniens) in meat products.

    PubMed

    Wang, Ping; Hu, Yue; Yang, Hairong; Han, Jiangxun; Zhao, Yongsheng; Chen, Ying

    2013-01-01

    A TaqMan probe real-time PCR method was developed for rapid detection of yak component in raw and cooked meat products. Specific primers and TaqMan probes of yak (Bos grunniens) were designed in the cytochrome b gene. The specificity of the method was evaluated using pure meat of eight yak breeds (Jiulong, Qinghai plateau, Maiwa, Gannan, Bazhou, Sibu, Zhongdian, and Jiali) samples and nine non-Bos grunniens animals (sheep, goat, pig, chicken, cattle, water buffalo, donkey, horse, and rabbit). DNA showed no cross-reaction with non-Bos grunniens animal DNA. This method proved to be sensitive in detecting the presence of low levels of target DNA obtained from 0.001% (w/w) component in a mixed meat sample. The method also successfully identified commercial yak meat products. The results showed that some yak meat might be involved in business fraud by using cattle meat (in this paper, cattle meat means meat of Bos taurus) instead of yak meat. In conclusion, real-time PCR assay used in this study was shown to be a rapid and sensitive method for detection of yak DNA in fresh meat and cooked meat products.

  12. Diagnosis of toxic alcohols: limitations of present methods.

    PubMed

    Kraut, Jeffrey A

    2015-01-01

    Methanol, ethylene glycol, diethylene glycol, and propylene glycol intoxications are associated with cellular dysfunction and an increased risk of death. Adverse effects can develop quickly; thus, there is a need for methods for rapidly detecting their presence. To examine the value and limitations of present methods to diagnose patients with possible toxic alcohol exposure. I searched MEDLINE for articles published between 1969 and 2014 using the terms: toxic alcohols, serum osmolality, serum osmol gap, serum anion gap, metabolic acidosis, methanol, ethylene glycol, diethylene glycol, propylene glycol, and fomepizole. Each article was reviewed for additional references. The diagnosis of toxic alcohol exposure is often made on the basis of this history and physical findings along with an increase in the serum osmol and anion gaps. However, an increase in the osmol and/or anion gaps is not always present. Definitive detection in blood requires gas or liquid chromatography, laborious and expensive procedures which are not always available. Newer methods including a qualitative colorimetric test for detection of all alcohols or enzymatic tests for a specific alcohol might allow for more rapid diagnosis. Exposure to toxic alcohols is associated with cellular dysfunction and increased risk of death. Treatment, if initiated early, can markedly improve outcome, but present methods of diagnosis including changes in serum osmol and anion gap, and use of gas or liquid chromatography have important limitations. Development of more rapid and effective tests for detection of these intoxications is essential for optimal care of patients.

  13. Rapid detection of total and viable Legionella pneumophila in tap water by immunomagnetic separation, double fluorescent staining and flow cytometry.

    PubMed

    Keserue, Hans-Anton; Baumgartner, Andreas; Felleisen, Richard; Egli, Thomas

    2012-11-01

    We developed a rapid detection method for Legionella pneumophila (Lp) by filtration, immunomagnetic separation, double fluorescent staining, and flow cytometry (IMS-FCM method). The method requires 120 min and can discriminate 'viable' and 'membrane-damaged' cells. The recovery is over 85% of spiked Lp SG 1 cells in 1 l of tap water and detection limits are around 50 and 15 cells per litre for total and viable Lp, respectively. The method was compared using water samples from house installations in a blind study with three environmental laboratories performing the ISO 11731 plating method. In 53% of the water samples from different taps and showers significantly higher concentrations of Lp were detected by flow cytometry. No correlation to the plate culture method was found. Since also 'viable but not culturable' (VNBC) cells are detected by our method, this result was expected. The IMS-FCM method is limited by the specificity of the used antibodies; in the presented case they target Lp serogroups 1-12. This and the fact that no Lp-containing amoebae are detected may explain why in 21% of all samples higher counts were observed using the plate culture method. Though the IMS-FCM method is not yet fit to completely displace the established plating method (ISO 11731) for routine Lp monitoring, it has major advantages to plating and can quickly provide important insights into the ecology of this pathogen in water distribution systems. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Surface plasmon resonance (SPR) detection of Staphylococcal Enterotoxin A in food samples

    USDA-ARS?s Scientific Manuscript database

    An automated and rapid method for detection of staphylococcal enterotoxins (SE) is needed. A sandwich assay was developed using a surface plasmon resonance (SPR) biosensor for detection of staphylococcal enterotoxin A (SEA) at subpicomolar concentration. Assay conditions were optimized for capturing...

  15. A rapid method of accurate detection and differentiation of Newcastle disease virus pathotypes by demonstrating multiple bands in degenerate primer based nested RT-PCR.

    PubMed

    Desingu, P A; Singh, S D; Dhama, K; Kumar, O R Vinodh; Singh, R; Singh, R K

    2015-02-01

    A rapid and accurate method of detection and differentiation of virulent and avirulent Newcastle disease virus (NDV) pathotypes was developed. The NDV detection was carried out for different domestic avian field isolates and pigeon paramyxo virus-1 (25 field isolates and 9 vaccine strains) by using APMV-I "fusion" (F) gene Class II specific external primer A and B (535bp), internal primer C and D (238bp) based reverses transcriptase PCR (RT-PCR). The internal degenerative reverse primer D is specific for F gene cleavage position of virulent strain of NDV. The nested RT-PCR products of avirulent strains showed two bands (535bp and 424bp) while virulent strains showed four bands (535bp, 424bp, 349bp and 238bp) on agar gel electrophoresis. This is the first report regarding development and use of degenerate primer based nested RT-PCR for accurate detection and differentiation of NDV pathotypes by demonstrating multiple PCR band patterns. Being a rapid, simple, and economical test, the developed method could serve as a valuable alternate diagnostic tool for characterizing NDV isolates and carrying out molecular epidemiological surveillance studies for this important pathogen of poultry. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. One-tube loop-mediated isothermal amplification combined with restriction endonuclease digestion and ELISA for colorimetric detection of resistance to isoniazid, ethambutol and streptomycin in Mycobacterium tuberculosis isolates.

    PubMed

    Lee, Mei-Feng; Chen, Yen-Hsu; Hsu, Hui-Jine; Peng, Chien-Fang

    2010-10-01

    In this study, we designed a simple and rapid colorimetric detection method, a one-tube loop-mediated isothermal amplification (LAMP)-PCR-hybridization-restriction endonuclease-ELISA [one-tube LAMP-PCR-HY-RE-ELISA] system, to detect resistance to isoniazid, ethambutol and streptomycin in strains of Mycobacterium tuberculosis isolated from clinical specimens. The clinical performance of this method for detecting isoniazid-resistant, ethambutol-resistant and streptomycin-resistant isolates of M. tuberculosis showed 98.9%, 94.3% and 93.8%, respectively. This assay is rapid and convenient that can be performed within one working day. One-tube LAMP-PCR-HY-RE-ELISA system was designed based on hot spot point mutations in target drug-resistant genes, using LAMP-PCR, hybridization, digestion with restriction endonuclease and colorimetric method of ELISA. In this study, LAMP assay was used to amplify DNA from drug-resistant M. tuberculosis, and ELISA was used for colorimetrical determination. This assay will be a useful tool for rapid diagnosis of mutant codons in strains of M. tuberculosis for isoniazid at katG 315 and katG 463, ethambutol at embB 306 and embB 497, and streptomycin at rpsL 43. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  17. Small acid soluble proteins for rapid spore identification.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescencemore » detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.« less

  18. Research on conflict detection algorithm in 3D visualization environment of urban rail transit line

    NASA Astrophysics Data System (ADS)

    Wang, Li; Xiong, Jing; You, Kuokuo

    2017-03-01

    In this paper, a method of collision detection is introduced, and the theory of three-dimensional modeling of underground buildings and urban rail lines is realized by rapidly extracting the buildings that are in conflict with the track area in the 3D visualization environment. According to the characteristics of the buildings, CSG and B-rep are used to model the buildings based on CSG and B-rep. On the basis of studying the modeling characteristics, this paper proposes to use the AABB level bounding volume method to detect the first conflict and improve the detection efficiency, and then use the triangular rapid intersection detection algorithm to detect the conflict, and finally determine whether the building collides with the track area. Through the algorithm of this paper, we can quickly extract buildings colliding with the influence area of the track line, so as to help the line design, choose the best route and calculate the cost of land acquisition in the three-dimensional visualization environment.

  19. Detection of tyrosine hydroxylase in dopaminergic neuron cell using gold nanoparticles-based barcode DNA.

    PubMed

    An, Jeung Hee; Oh, Byung-Keun; Choi, Jeong Woo

    2013-04-01

    Tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosysthesis, is predominantly expressed in several cell groups within the brain, including the dopaminergic neurons of the substantia nigra and ventral tegmental area. We evaluated the efficacy of this protein-detection method in detecting tyrosine hydroxylase in normal and oxidative stress damaged dopaminergic cells. In this study, a coupling of DNA barcode and bead-based immnunoassay for detecting tyrosine hydroxylaser with PCR-like sensitivity is reported. The method relies on magnetic nanoparticles with antibodies and nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated to remove the conjugated barcode DNA. The DNA barcodes were identified by PCR analysis. The concentration of tyrosine hydroxylase in dopaminergic cell can be easily and rapidly detected using bio-barcode assay. The bio-barcode assay is a rapid and high-throughput screening tool to detect of neurotransmitter such as dopamine.

  20. Real-time PCR detection of Listeria monocytogenes in infant formula and lettuce following macrophage-based isolation and enrichment.

    PubMed

    Day, J B; Basavanna, U

    2015-01-01

    To develop a rapid detection procedure for Listeria monocytogenes in infant formula and lettuce using a macrophage-based enrichment protocol and real-time PCR. A macrophage cell culture system was employed for the isolation and enrichment of L. monocytogenes from infant formula and lettuce for subsequent identification using real-time PCR. Macrophage monolayers were exposed to infant formula and lettuce contaminated with a serial dilution series of L. monocytogenes. As few as approx. 10 CFU ml(-1) or g(-1) of L. monocytogenes were detected in infant formula and lettuce after 16 h postinfection by real-time PCR. Internal positive PCR controls were utilized to eliminate the possibility of false-negative results. Co-inoculation with Listeria innocua did not reduce the L. monocytogenes detection sensitivity. Intracellular L. monocytogenes could also be isolated on Listeria selective media from infected macrophage lysates for subsequent confirmation. The detection method is highly sensitive and specific for L. monocytogenes in infant formula and lettuce and establishes a rapid identification time of 20 and 48 h for presumptive and confirmatory identification, respectively. The method is a promising alternative to many currently used q-PCR detection methods which employ traditional selective media for enrichment of contaminated food samples. Macrophage enrichment of L. monocytogenes eliminates PCR inhibitory food elements and contaminating food microflora which produce cleaner samples that increase the rapidity and sensitivity of detection. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  1. [Rapid Detection of Adenovirus in Fecal Samples by Capillary Electrophoresis-laser Induced Fluorescence and Microchip Capillary Electrophoresis-laser Induced Fluorescence].

    PubMed

    Ruan, Jia; Ren, Dong-xia; Yang, Dan-ni; Long, Pin-pin; Zhao, Hong-yue; Wang, Yi-qi; Li, Yong-xin

    2015-07-01

    To establish a rapid and sensitive method based on polymerase chain reaction (PCR) combined with capillary electrophoresis-laser induced fluorescence (CE-LIF) and microchip capillary electrophoresis-laser induced fluorescence (MCE-LIF) for detecting adenoviruses in fecal samples. The DNA of adenovirus in fecal samples were extracted by the commercial kits and the conserved region of hexon gene was selected as the target gene and amplified by PCR reaction. After labeling highly sensitive nucleic acid fluorescent dye SYBR Gold and SYBR Orange respectively, PCR amplification products were separated by CE and MCE under the optimized condition and detected by LIF detector. PCR amplification products could be detected within 9 min by CE-LIF and 6 min by MCE-LIF under the optimized separation condition. The sequenced PCR product showed good specificity in comparison with the prototype sequences from NCBI. The intraday and inter-day relative standard deviation (RSD) of the size (bp) of the target DNA was in the range of 1.14%-1.34% and 1.27%- 2.76%, respectively, for CE-LIF, and 1.18%-1.48% and 2.85%-4.06%, respectively, for MCE-LIF. The detection limits was 2.33 x 10(2) copies/mL for CE-LIF and 2.33 x 10(3) copies/mL for MCE-LIF. The two proposed methods were applied to detect fecal samples, both showing high accuracy. The two proposed methods of PCR-CE-LIF and PCR-MCE-LIF can detect adenovirus in fecal samples rapidly, sensitively and specifically.

  2. [Molecular characterization of resistance mechanisms: methicillin resistance Staphylococcus aureus, extended spectrum β-lactamases and carbapenemases].

    PubMed

    Oteo, Jesús; Belén Aracil, María

    2015-07-01

    Multi-drug resistance in bacterial pathogens increases morbidity and mortality in infected patients and it is a threat to public health concern by their high capacity to spread. For both reasons, the rapid detection of multi-drug resistant bacteria is critical. Standard microbiological procedures require 48-72 h to provide the antimicrobial susceptibility results, thus there is emerging interest in the development of rapid detection techniques. In recent years, the use of selective and differential culture-based methods has widely spread. However, the capacity for detecting antibiotic resistance genes and their low turnaround times has made molecular methods a reference for diagnosis of multidrug resistance. This review focusses on the molecular methods for detecting some mechanisms of antibiotic resistance with a high clinical and epidemiological impact: a) Enzymatic resistance to broad spectrum β-lactam antibiotics in Enterobacteriaceae, mainly extended spectrum β-lactamases (ESBL) and carbapenemases; and b) methicillin resistance in Staphylococcus aureus. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  3. Rapid analysis of 3,4-methylenedioxymethamphetamine: a comparison of nonaqueous capillary electrophoresis/fluorescence detection with GC/MS.

    PubMed

    Fang, Ching; Chung, Yu-Lin; Liu, Ju-Tsung; Lin, Cheng-Huang

    2002-02-18

    Because of the increasing use of 3,4-methylenedioxymethamphetamine (3,4-MDMA), a rapid and sensitive analytical technique is required for its detection and determination. Using nonaqueous capillary electrophoresis/fluorescence spectroscopy (NACE/FS) detection, it is possible to determine this drug at the level 0.5 ppm without any pre-treatment in less than 5 min. After liquid-liquid extraction, the sample can be condensed and a detection limit of 3,4-MDMA in urine of 50 ppb (S/N = 3) can be achieved. The precision of the method was evaluated by measuring the repeatability and intermediate precision of migration time and the corrected peak height by comparison with a 3,4-MDMA-D5 internal standard. With the conventional GC/MS method, it is necessary to derivatize the 3,4-MDMA before injection and the GC migration time also is in excess of 20 min. Therefore, NACE/FS represents a good complementary method to GC/MS for use in forensic analysis.

  4. Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid.

    PubMed

    Koizumi, Noriaki; Harada, Yoshinori; Minamikawa, Takeo; Tanaka, Hideo; Otsuji, Eigo; Takamatsu, Tetsuro

    2016-01-21

    Photodynamic diagnosis based on 5-aminolevulinic acid-induced protoporphyrin IX has been clinically applied in many fields based upon its evidenced efficacy and adequate safety. In order to establish a personalized medicine approach for treating gastric cancer patients, rapid intraoperative detection of malignant lesions has become important. Feasibility of photodynamic diagnosis using 5-aminolevulinic acid for gastric cancer patients has been investigated, especially for the detection of peritoneal dissemination and lymph node metastasis. This method enables intraoperative real-time fluorescence detection of peritoneal dissemination, exhibiting higher sensitivity than white light observation without histopathological examination. The method also enables detection of metastatic foci within excised lymph nodes, exhibiting a diagnostic accuracy comparable to that of a current molecular diagnostics technique. Although several complicating issues still need to be resolved, such as the effect of tissue autofluorescence and the insufficient depth penetration of excitation light, this simple and rapid method has the potential to become a useful diagnostic tool for gastric cancer, as well as urinary bladder cancer and glioma.

  5. Rapid detection of bacterial pathogens using flourescence spectroscopy and chemometrics

    USDA-ARS?s Scientific Manuscript database

    This work presents the development of a method for rapid bacterial identification based on the fluorescence spectroscopy combined with multivariate analysis. Fluorescence spectra of pure three different genera of bacteria (Escherichia coli, Salmonella, and Campylobacter) were collected from 200...

  6. Flow Injection Analysis with Electrochemical Detection for Rapid Identification of Platinum-Based Cytostatics and Platinum Chlorides in Water

    PubMed Central

    Kominkova, Marketa; Heger, Zbynek; Zitka, Ondrej; Kynicky, Jindrich; Pohanka, Miroslav; Beklova, Miroslava; Adam, Vojtech; Kizek, Rene

    2014-01-01

    Platinum-based cytostatics, such as cisplatin, carboplatin or oxaliplatin are widely used agents in the treatment of various types of tumors. Large amounts of these drugs are excreted through the urine of patients into wastewaters in unmetabolised forms. This phenomenon leads to increased amounts of platinum ions in the water environment. The impacts of these pollutants on the water ecosystem are not sufficiently investigated as well as their content in water sources. In order to facilitate the detection of various types of platinum, we have developed a new, rapid, screening flow injection analysis method with electrochemical detection (FIA-ED). Our method, based on monitoring of the changes in electrochemical behavior of analytes, maintained by various pH buffers (Britton-Robinson and phosphate buffer) and potential changes (1,000, 1,100 and 1,200 mV) offers rapid and cheap selective determination of platinum-based cytostatics and platinum chlorides, which can also be present as contaminants in water environments. PMID:24499878

  7. Rapid Detection and Simultaneous Genotyping of Cronobacter spp. (formerly Enterobacter sakazakii) in Powdered Infant Formula Using Real-time PCR and High Resolution Melting (HRM) Analysis

    PubMed Central

    Cai, Xian-Quan; Yu, Hai-Qiong; Ruan, Zhou-Xi; Yang, Lei-Liang; Bai, Jian-Shan; Qiu, De-Yi; Jian, Zhi-Hua; Xiao, Yi-Qian; Yang, Jie-Yang; Le, Thanh Hoa; Zhu, Xing-Quan

    2013-01-01

    Cronobacter spp. is an emerging pathogen that causes meningitis, sepsis, bacteremia, and necrotizing enterocolitis in neonates and children. The present study developed an assay integrating real-time PCR and high resolution melting (HRM) analysis targeting the OmpA gene for the specific detection and rapid identification of Cronobacter spp. (formerly Enterobacter sakazakii) in powdered infant formula. Eleven Cronobacter field isolates and 25 reference strains were examined using one pair of primers, having the accuracy of 100% in reference to conventional methods. The assay was proved to be highly sensitive with a detection limit of 102 CFU/ml without pre-enrichment, and highly concordant (100%) when compared with ISO-IDF 22964 in 89 actual samples. The method performed for Cronobacter spp. detection was less than 24 h, drastically shortened, compared to several days using standard culturing method, it is probe-free and reduces a risk of PCR carryover. Moreover, all Cronobacter strains examined in this study were genotyped into two species according to their HRM profiles. The established method should provide a molecular tool for direct detection and simultaneous genotyping of Cronobacter spp. in powdered infant formula. PMID:23825624

  8. Rapid detection and simultaneous genotyping of Cronobacter spp. (formerly Enterobacter sakazakii) in powdered infant formula using real-time PCR and high resolution melting (HRM) analysis.

    PubMed

    Cai, Xian-Quan; Yu, Hai-Qiong; Ruan, Zhou-Xi; Yang, Lei-Liang; Bai, Jian-Shan; Qiu, De-Yi; Jian, Zhi-Hua; Xiao, Yi-Qian; Yang, Jie-Yang; Le, Thanh Hoa; Zhu, Xing-Quan

    2013-01-01

    Cronobacter spp. is an emerging pathogen that causes meningitis, sepsis, bacteremia, and necrotizing enterocolitis in neonates and children. The present study developed an assay integrating real-time PCR and high resolution melting (HRM) analysis targeting the OmpA gene for the specific detection and rapid identification of Cronobacter spp. (formerly Enterobacter sakazakii) in powdered infant formula. Eleven Cronobacter field isolates and 25 reference strains were examined using one pair of primers, having the accuracy of 100% in reference to conventional methods. The assay was proved to be highly sensitive with a detection limit of 10(2) CFU/ml without pre-enrichment, and highly concordant (100%) when compared with ISO-IDF 22964 in 89 actual samples. The method performed for Cronobacter spp. detection was less than 24 h, drastically shortened, compared to several days using standard culturing method, it is probe-free and reduces a risk of PCR carryover. Moreover, all Cronobacter strains examined in this study were genotyped into two species according to their HRM profiles. The established method should provide a molecular tool for direct detection and simultaneous genotyping of Cronobacter spp. in powdered infant formula.

  9. Genetic methods for detection of antibiotic resistance: focus on extended-spectrum β-lactamases.

    PubMed

    Chroma, Magdalena; Kolar, Milan

    2010-12-01

    In 1928, the first antibiotic, penicillin, was discovered. That was the beginning of a great era in the development and prescription of antibiotics. However, the introduction of these antimicrobial agents into clinical practice was accompanied by the problem of antibiotic resistance. Currently, bacterial resistance to antibiotics poses a major problem in both hospital and community settings throughout the world. This review provides examples of modern genetic methods and their practical application in the field of extended-spectrum β-lactamase detection. Since extended-spectrum β-lactamases are the main mechanism of Gram-negative bacterial resistance to oxyimino-cephalosporins, rapid and accurate detection is requested in common clinical practice. Currently, the detection of extended-spectrum β-lactamases is primarily based on the determination of bacterial phenotypes rather than genotypes. This is because therapeutic decisions are based on assessing the susceptibility rather than presence of resistance genes. One of the main disadvantages of genetic methods is high costs, including those of laboratory equipment. On the other hand, if these modern methods are introduced into diagnostics, they often help in rapid and accurate detection of certain microorganisms or their resistance and pathogenic determinants.

  10. Engineered nanoconstructs for the multiplexed and sensitive detection of high-risk pathogens

    NASA Astrophysics Data System (ADS)

    Seo, Youngmin; Kim, Ji-Eun; Jeong, Yoon; Lee, Kwan Hong; Hwang, Jangsun; Hong, Jongwook; Park, Hansoo; Choi, Jonghoon

    2016-01-01

    Many countries categorize the causative agents of severe infectious diseases as high-risk pathogens. Given their extreme infectivity and potential to be used as biological weapons, a rapid and sensitive method for detection of high-risk pathogens (e.g., Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Vaccinia virus) is highly desirable. Here, we report the construction of a novel detection platform comprising two units: (1) magnetic beads separately conjugated with multiple capturing antibodies against four different high-risk pathogens for simple and rapid isolation, and (2) genetically engineered apoferritin nanoparticles conjugated with multiple quantum dots and detection antibodies against four different high-risk pathogens for signal amplification. For each high-risk pathogen, we demonstrated at least 10-fold increase in sensitivity compared to traditional lateral flow devices that utilize enzyme-based detection methods. Multiplexed detection of high-risk pathogens in a sample was also successful by using the nanoconstructs harboring the dye molecules with fluorescence at different wavelengths. We ultimately envision the use of this novel nanoprobe detection platform in future applications that require highly sensitive on-site detection of high-risk pathogens.

  11. Differentiation of live and dead salmonella cells using fourier transform infrared (FTIR) spectroscopy and principle component analysis (PCA) technique

    USDA-ARS?s Scientific Manuscript database

    Various technologies have been developed for pathogen detection using optical, electrochemical, biochemical and physical properties. Conventional microbiological methods need time from days to week to get the result. Though this method is very sensitive and accurate, a rapid detection of pathogens i...

  12. Rapid detection method for fusaric acid-producing species of Fusarium by PCR

    USDA-ARS?s Scientific Manuscript database

    Fusaric acid is a mycotoxin produced by species of the fungus Fusarium and can act synergistically with other Fusarium toxins. In order to develop a specific detection method for fusaric acid-producing fungus, PCR prim¬ers were designed to amplify FUB10, a transcription factor gene in fusaric acid ...

  13. Development of Untargeted Metabolomics Methods for the Rapid Detection of Pathogenic Naegleria fowleri.

    PubMed

    Yu, Zhihao; Miller, Haylea C; Puzon, Geoffrey J; Clowers, Brian H

    2017-04-18

    Despite comparatively low levels of infection, primary amoebic meningoencephalitis (PAM) induced by Naegleria fowleri is extremely lethal, with mortality rates above 95%. As a thermophile, this organism is often found in moderate-to-warm climates and has the potential to colonize drinking water distribution systems (DWDSs). Current detection approaches require days to obtain results, whereas swift corrective action can maximize the benefit of public health. Presently, there is little information regarding the underlying in situ metabolism for this amoeba but the potential exists to exploit differentially expressed metabolic signatures as a rapid detection technique. This research outlines the biochemical profiles of selected pathogenic and nonpathogenic Naegleria in vitro using an untargeted metabolomics approach to identify a panel of diagnostically meaningful compounds that may enable rapid detection of viable pathogenic N. fowleri and augment results from traditional monitoring approaches.

  14. Rapid multiple immunofluorescent staining for the simultaneous detection of cytokeratin and vimentin in the cytology of canine tumors.

    PubMed

    Sawa, Mariko; Yabuki, Akira; Kohyama, Moeko; Miyoshi, Noriaki; Yamato, Osamu

    2018-06-01

    Immunocytochemistry (ICC) is utilized as an advanced technique in veterinary cytology. In tumor diagnosis, cytokeratin and vimentin are markers used to distinguish the origin of tumor cells. Standard enzyme-based ICC has limitations in clinical use; and therefore, more convenient and reliable methods are needed. The purpose of this study was to develop a rapid multiple immunofluorescent (RMIF) detection method for dual cytokeratin and vimentin staining on cytology slides in dogs. Air-dried smear samples from solid tumors and sediments of pleural effusions were prepared from dogs (n = 14) that were admitted to the Veterinary Teaching Hospital, Kagoshima University, Japan. Mouse monoclonal anti-human cytokeratin (AE1/AE3) and rabbit monoclonal anti-human vimentin (SP20) antibodies were used as primary antibodies, followed by staining with Alexa Fluor-conjugated secondary antibodies. Staining using the RMIF method was compared with enzyme-based ICC staining. Rapid multiple immunofluorescent immunostaining was clear and specific in the evaluated smears, whereas the enzyme-based ICC showed nonspecific signals. By using the RMIF staining method, epithelial cells, mesenchymal cells, and mesothelial cells could be classified on a single smear of a pleural effusion. In smears of lymph nodes with epithelial tumor metastases, the RMIF method successfully detected metastatic epithelial tumor cells. The RMIF method might be a useful tool for diagnostic cytology in veterinary medicine. © 2018 American Society for Veterinary Clinical Pathology.

  15. Real-time PCR for rapidly detecting aniline-degrading bacteria in activated sludge.

    PubMed

    Kayashima, Takakazu; Suzuki, Hisako; Maeda, Toshinari; Ogawa, Hiroaki I

    2013-05-01

    We developed a detection method that uses quantitative real-time PCR (qPCR) and the TaqMan system to easily and rapidly assess the population of aniline-degrading bacteria in activated sludge prior to conducting a biodegradability test on a chemical compound. A primer and probe set for qPCR was designed by a multiple alignment of conserved amino acid sequences encoding the large (α) subunit of aniline dioxygenase. PCR amplification tests showed that the designed primer and probe set targeted aniline-degrading strains such as Acidovorax sp., Gordonia sp., Rhodococcus sp., and Pseudomonas putida, thereby suggesting that the developed method can detect a wide variety of aniline-degrading bacteria. There was a strong correlation between the relative copy number of the α-aniline dioxygenase gene in activated sludge obtained with the developed qPCR method and the number of aniline-degrading bacteria measured by the Most Probable Number method, which is the conventional method, and a good correlation with the lag time of the BOD curve for aniline degradation produced by the biodegradability test in activated sludge samples collected from eight different wastewater treatment plants in Japan. The developed method will be valuable for the rapid and accurate evaluation of the activity of inocula prior to conducting a ready biodegradability test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Rapid multislice T1 mapping of mouse myocardium: Application to quantification of manganese uptake in α-Dystrobrevin knockout mice.

    PubMed

    Jiang, Kai; Li, Wen; Li, Wei; Jiao, Sen; Castel, Laurie; Van Wagoner, David R; Yu, Xin

    2015-11-01

    The aim of this study was to develop a rapid, multislice cardiac T1 mapping method in mice and to apply the method to quantify manganese (Mn(2+)) uptake in a mouse model with altered Ca(2+) channel activity. An electrocardiography-triggered multislice saturation-recovery Look-Locker method was developed and validated both in vitro and in vivo. A two-dose study was performed to investigate the kinetics of T1 shortening, Mn(2+) relaxivity in myocardium, and the impact of Mn(2+) on cardiac function. The sensitivity of Mn(2+)-enhanced MRI in detecting subtle changes in altered Ca(2+) channel activity was evaluated in a mouse model with α-dystrobrevin knockout. Validation studies showed strong agreement between the current method and an established method. High Mn(2+) dose led to significantly accelerated T1 shortening. Heart rate decreased during Mn(2+) infusion, while ejection ratio increased slightly at the end of imaging protocol. No statistical difference in cardiac function was detected between the two dose groups. Mice with α-dystrobrevin knockout showed enhanced Mn(2+) uptake in vivo. In vitro patch-clamp study showed increased Ca(2+) channel activity. The saturation recovery method provides rapid T1 mapping in mouse hearts, which allowed sensitive detection of subtle changes in Mn(2+) uptake in α-dystrobrevin knockout mice. © 2014 Wiley Periodicals, Inc.

  17. Rapid and selective detection of E. coli O157:H7 combining phagomagnetic separation with enzymatic colorimetry.

    PubMed

    Zhang, Yun; Yan, Chenghui; Yang, Hang; Yu, Junping; Wei, Hongping

    2017-11-01

    Mammal IgG antibodies are normally used in conventional immunoassays for E. coli O157:H7, which could lead to false positive results from the presence of protein A producing S. aureus. In this study, a natural specific bacteriophage was isolated and then conjugated with magnetic beads as a capture element in a sandwich format for the rapid and selective detection of E. coli O157:H7. To the best of our knowledge, it was the first time to utilize a natural bacteriophage to develop a phagomagnetic separation combined with colorimetric assay for E. coli O157:H7. The method has an overall time less than 2h with a detection limit of 4.9×10 4 CFU/mL. No interference from S. aureus was observed. Furthermore, the proposed method was successfully applied to detect E. coli O157:H7 in spiked skim milk. The proposed detection system provided a potential method for E. coli O157:H7 and other pathogenic bacteria in food samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Development of Multiplex Reverse Transcription-Polymerase Chain Reaction for Simultaneous Detection of Influenza A, B and Adenoviruses

    PubMed Central

    Nakhaie, Mohsen; Soleimanjahi, Hoorieh; Mollaie, Hamid Reza; Arabzadeh, Seyed Mohamad Ali

    2018-01-01

    Background and objective: Millions of people in developing countries lose their lives due to acute respiratory infections, such as Influenza A & B and Adeno viruses. Given the importance of rapid identification of the virus, in this study the researchers attempted to design a method that enables detection of influenza A, B, and adenoviruses, quickly and simultaneously. The Multiplex RT PCR method was the preferred method for the detection of influenza A, B, and adenoviruses in clinical specimens because it is rapid, sensitive, specific, and more cost-effective than alternative methods Methods: After collecting samples from patients with respiratory disease, virus genome was extracted, then Monoplex PCR was used on positive samples and Multiplex RT-PCR on clinical specimens. Finally, by comparing the bands of these samples, the type of virus in the clinical samples was determined. Results: Performing Multiplex RT-PCR on 50 samples of respiratory tract led to following results; flu A: 12.5%, fluB: 50%, adeno: 27.5%, negative: 7.5%, and 2.5% contamination. Conclusion: Reverse transcription-multiplex Polymerase Chain Reaction (PCR) technique, a rapid diagnostic tool, has potential for high-throughput testing. This method has a significant advantage, which provides simultaneous amplification of numerous viruses in a single reaction. This study concentrates on multiplex molecular technologies and their clinical application for the detection and quantification of respiratory pathogens. The improvement in diagnostic testing for viral respiratory pathogens effects patient management, and leads to more cost-effective delivery of care. It limits unnecessary antibiotic use and improves clinical management by use of suitable treatment. PMID:29731796

  19. Detection of Listeria monocytogenes from selective enrichment broth using MALDI-TOF Mass Spectrometry.

    PubMed

    Jadhav, Snehal; Sevior, Danielle; Bhave, Mrinal; Palombo, Enzo A

    2014-01-31

    Conventional methods used for primary detection of Listeria monocytogenes from foods and subsequent confirmation of presumptive positive samples involve prolonged incubation and biochemical testing which generally require four to five days to obtain a result. In the current study, a simple and rapid proteomics-based MALDI-TOF MS approach was developed to detect L. monocytogenes directly from selective enrichment broths. Milk samples spiked with single species and multiple species cultures were incubated in a selective enrichment broth for 24h, followed by an additional 6h secondary enrichment. As few as 1 colony-forming unit (cfu) of L. monocytogenes per mL of initial selective broth culture could be detected within 30h. On applying the same approach to solid foods previously implicated in listeriosis, namely chicken pâté, cantaloupe and Camembert cheese, detection was achieved within the same time interval at inoculation levels of 10cfu/mL. Unlike the routine application of MALDI-TOF MS for identification of bacteria from solid media, this study proposes a cost-effective and time-saving detection scheme for direct identification of L. monocytogenes from broth cultures.This article is part of a Special Issue entitled: Trends in Microbial Proteomics. Globally, foodborne diseases are major causes of illness and fatalities in humans. Hence, there is a continual need for reliable and rapid means for pathogen detection from food samples. Recent applications of MALDI-TOF MS for diagnostic microbiology focused on detection of microbes from clinical specimens. However, the current study has emphasized its use as a tool for detecting the major foodborne pathogen, Listeria monocytogenes, directly from selective enrichment broths. This proof-of-concept study proposes a detection scheme that is more rapid and simple compared to conventional methods of Listeria detection. Very low levels of the pathogen could be identified from different food samples post-enrichment in selective enrichment broths. Use of this scheme will facilitate rapid and cost-effective testing for this important foodborne pathogen. © 2013.

  20. Rapid immunohistochemical detection of tumor cells in gastric carcinoma.

    PubMed

    Mönig, Stefan P; Luebke, Thomas; Soheili, Afsoon; Landsberg, Stephanie; Dienes, H P; Hölscher, Arnulf H; Baldus, Stephan E

    2006-11-01

    The detection of single tumor cells or tumor cell clusters represents an important issue in intraoperative frozen section analysis. For example, surgical margins may be evaluated in order to minimize the number of additional operations. Furthermore, intraoperative diagnosis of lymph node micrometastasis (LNM) may help to define the area of appropriate lymph node dissection. In addition to haematoxylin and eosin (H&E)-stained sections, immunohistochemical detection of single tumor cells or cell clusters may be helpful in this context. The aim of this study was to evaluate the clinical significance, reliability and sensitivity of intraoperative rapid immunostaining of frozen sections. Therefore, we compared the results of rapid immunohistochemical staining of frozen sections and paraffin sections applying the EnVision and Histofine(R) detection systems. In a prospective immunohistochemical study, paraffin and frozen sections of 20 gastric cancer specimens were analyzed. Paraffin as well as frozen sections were stained immunohistochemically applying the EnVision and Histofine detection systems. As primary antibodies, AE1/AE3 (anti-cytokeratin), EMA (anti-MUC1) and B lymphocyte marker anti-CD20 were applied. The rapid immunostaining procedure was able to be completed within 10-13 min. Rapid immunohistochemical staining of frozen and paraffin sections of the same tumors resulted in comparable immunoreactivity. The rapid EnVision and Histofine procedures allowed immunostaining of frozen sections in less than 13 min. These methods can represent useful additional tools in routine surgical pathology and research, enabling a more accurate frozen section diagnosis compared to staining with H&E alone. Intraoperative rapid immunostaining can be a simple and useful technique to detect LNM.

  1. Rapid diagnosis of equine influenza by highly sensitive silver amplification immunochromatography system.

    PubMed

    Yamanaka, Takashi; Nemoto, Manabu; Bannai, Hiroshi; Tsujimura, Koji; Kondo, Takashi; Matsumura, Tomio; Fu, Tao Qi Huang; Fernandez, Charlene Judith; Gildea, Sarah; Cullinane, Ann

    2017-06-16

    Equine influenza (EI) is a respiratory disease caused by equine influenza A virus (EIV, H3N8) infection. Rapid diagnosis is essential to limit the disease spread. We previously reported that some rapid antigen detection (RAD) tests are fit for diagnosing EI although their sensitivity is not optimal. Here, we evaluated the performance of the newly developed RAD test using silver amplification immunochromatography (Quick Chaser Auto Flu A, B: QCA) to diagnose EI. The detection limits of QCA for EIVs were five-fold lower than the conventional RAD tests. The duration of virus antigen detection in the infected horses was longer than the conventional RAD tests. We conclude that QCA could be a valuable diagnostic method for EI.

  2. Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium

    NASA Astrophysics Data System (ADS)

    Wu, Wen-he; Li, Min; Wang, Yue; Ouyang, Hou-xian; Wang, Lin; Li, Ci-xiu; Cao, Yu-chen; Meng, Qing-he; Lu, Jian-xin

    2012-11-01

    Herein we reported the development of aptamer-based biosensors (aptasensors) based on label-free aptamers and gold nanoparticles (AuNPs) for detection of Escherichia coli ( E. coli) O157:H7 and Salmonella typhimurium. Target bacteria binding aptamers are adsorbed on the surface of unmodified AuNPs to capture target bacteria, and the detection was accomplished by target bacteria-induced aggregation of the aptasensor which is associated as red-to-purple color change upon high-salt conditions. By employing anti- E. coli O157:H7 aptamer and anti- S. typhimurium aptamer, we developed a convenient and rapid approach that could selectively detect bacteria without specialized instrumentation and pretreatment steps such as cell lysis. The aptasensor could detect as low as 105colony-forming units (CFU)/ml target bacteria within 20 min or less and its specificity was 100%. This novel method has a great potential application in rapid detection of bacteria in the near future.

  3. A New Method for Blood NT-proBNP Determination Based on a Near-infrared Point of Care Testing Device with High Sensitivity and Wide Scope.

    PubMed

    Zhang, Xiao Guang; Shu, Yao Gen; Gao, Ju; Wang, Xuan; Liu, Li Peng; Wang, Meng; Cao, Yu Xi; Zeng, Yi

    2017-06-01

    To develop a rapid, highly sensitive, and quantitative method for the detection of NT-proBNP levels based on a near-infrared point-of-care diagnostic (POCT) device with wide scope. The lateral flow assay (LFA) strip of NT-proBNP was first prepared to achieve rapid detection. Then, the antibody pairs for NT-proBNP were screened and labeled with the near-infrared fluorescent dye Dylight-800. The capture antibody was fixed on a nitrocellulose membrane by a scribing device. Serial dilutions of serum samples were prepared using NT-proBNP-free serum series. The prepared test strips, combined with a near-infrared POCT device, were validated by known concentrations of clinical samples. The POCT device gave the output of the ratio of the intensity of the fluorescence signal of the detection line to that of the quality control line. The relationship between the ratio value and the concentration of the specimen was plotted as a work curve. The results of 62 clinical specimens obtained from our method were compared in parallel with those obtained from the Roche E411 kit. Based on the log-log plot, the new method demonstrated that there was a good linear relationship between the ratio value and NT-proBNP concentrations ranging from 20 pg/mL to 10 ng/mL. The results of the 62 clinical specimens measured by our method showed a good linear correlation with those measured by the Roche E411 kit. The new LFA detection method of NT-proBNP levels based on the near-infrared POCT device was rapid and highly sensitive with wide scope and was thus suitable for rapid and early clinical diagnosis of cardiac impairment. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  4. Rapid detection of economic adulterants in fresh milk by liquid chromatography-tandem mass spectrometry.

    PubMed

    Abernethy, Grant; Higgs, Kerianne

    2013-05-03

    A method to aid in the detection of the economically driven adulteration of fresh milk with a range of small, nitrogen containing compounds, including melamine, ammeline, ammelide, cyanuric acid, allantoin, thiourea, urea, biuret, triuret, semicarbazide, aminotriazine, 3- and 4-aminotriazole, cyanamide, dicyandiamide, guanidine, choline, hydroxyproline, nitrate, and a range of amino acids, has been developed. (15)N2-Urea is used as an internal standard. The adulteration of milk with exogenous urea has previously been difficult to detect because of the variation in the naturally occurring levels of urea in milk. However, by monitoring the contaminants biuret and triuret, which comprise up to 1% of synthetic urea, the adulteration of milk with urea-based fertilizer can be detected. We estimate that to be economically viable, adulteration of the order of 90-4000ppm of the above adulterants would need to be added to fresh milk. For most of the compounds, an arbitrary detection threshold of 2ppm is therefore more than sufficient. For biuret, a lower detection threshold, better than 0.5ppm, is desirable and the sensitivity for biuret and triuret can be improved by the post-column addition of lithium to create lithium adducts under electrospray ionisation. Sample handling involves a two-step solvent precipitation method that is deployed in a 96-well plate format, and the hydrophilic interaction liquid chromatography uses a rapid gradient (1.2min). Three separate injections, to detect the positively charged compounds, the negatively charged compounds and amino acids and finally the lithium adducts, are used. This rapid and qualitative survey method may be deployed as a second tier screening method to quickly reduce sample numbers indicated as irregular by an FTIR based screening system, and to direct analysis to appropriate quantification methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A colorimetric detection of acrylamide in potato chips based on nucleophile-initiated thiol-ene Michael addition.

    PubMed

    Hu, Qinqin; Fu, Yingchun; Xu, Xiahong; Qiao, Zhaohui; Wang, Ronghui; Zhang, Ying; Li, Yanbin

    2016-02-07

    Acrylamide (AA), a neurotoxin and a potential carcinogen, has been found in various thermally processed foods such as potato chips, biscuits, and coffee. Simple, cost-effective, and sensitive methods for the rapid detection of AA are needed to ensure food safety. Herein, a novel colorimetric method was proposed for the visual detection of AA based on a nucleophile-initiated thiol-ene Michael addition reaction. Gold nanoparticles (AuNPs) were aggregated by glutathione (GSH) because of a ligand-replacement, accompanied by a color change from red to purple. In the presence of AA, after the thiol-ene Michael addition reaction between GSH and AA with the catalysis of a nucleophile, the sulfhydryl group of GSH was consumed by AA, which hindered the subsequent ligand-replacement and the aggregation of AuNPs. Therefore, the concentration of AA could be determined by the visible color change caused by dispersion/aggregation of AuNPs. This new method showed high sensitivity with a linear range from 0.1 μmol L(-1) to 80 μmol L(-1) and a detection limit of 28.6 nmol L(-1), and especially revealed better selectivity than the fluorescence sensing method reported previously. Moreover, this new method was used to detect AA in potato chips with a satisfactory result in comparison with the standard methods based on chromatography, which indicated that the colorimetric method can be expanded for the rapid detection of AA in thermally processed foods.

  6. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens.

    PubMed

    Kant, Krishna; Shahbazi, Mohammad-Ali; Dave, Vivek Priy; Ngo, Tien Anh; Chidambara, Vinayaka Aaydha; Than, Linh Quyen; Bang, Dang Duong; Wolff, Anders

    2018-03-10

    Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner. Lab on chip is a blooming area in diagnosis, which exploits different mechanical and biological techniques to detect very low concentrations of pathogens in food samples. This is achieved through streamlining the sample handling and concentrating procedures, which will subsequently reduce human errors and enhance the accuracy of the sensing methods. Integration of sample preparation techniques into these devices can effectively minimize the impact of complex food matrix on pathogen diagnosis and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods and food production line. Copyright © 2018. Published by Elsevier Inc.

  7. Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging.

    PubMed

    Li, Yuhao; Sun, Yun; Li, Jiachang; Su, Qianqian; Yuan, Wei; Dai, Yu; Han, Chunmiao; Wang, Qiuhong; Feng, Wei; Li, Fuyou

    2015-05-20

    Nitroreductase (NTR) can be overexpressed in hypoxic tumors, thus the selective and efficient detection of NTR is of great importance. To date, although a few optical methods have been reported for the detection of NTR in solution, an effective optical probe for NTR monitoring in vivo is still lacking. Therefore, it is necessary to develop a near-infrared (NIR) fluorescent detection probe for NTR. In this study, five NIR cyanine dyes with fluorescence reporting structure decorated with different nitro aromatic groups, Cy7-1-5, have been designed and explored for possible rapid detection of NTR. Our experimental results presented that only a para-nitro benzoate group modified cyanine probe (Cy7-1) could serve as a rapid NIR fluorescence-enhanced probe for monitoring and bioimaging of NTR. The structure-function relationship has been revealed by theoretical study. The linker connecting the detecting and fluorescence reporting groups and the nitro group position is a key factor for the formation of hydrogen bonds and spatial structure match, inducing the NTR catalytic ability enhancement. The in vitro response and mechanism of the enzyme-catalyzed reduction of Cy7-1 have been investigated through kinetic optical studies and other methods. The results have indicated that an electro-withdrawing group induced electron-transfer process becomes blocked when Cy7-1 is catalytically reduced to Cy7-NH2 by NTR, which is manifested in enhanced fluorescence intensity during the detection process. Confocal fluorescence imaging of hypoxic A549 cells has confirmed the NTR detection ability of Cy7-1 at the cellular level. Importantly, Cy7-1 can detect tumor hypoxia in a murine hypoxic tumor model, showing a rapid and significant enhancement of its NIR fluorescence characteristics suitable for fluorescence bioimaging. This method may potentially be used for tumor hypoxia diagnosis.

  8. Flow cytometry as a rapid test for detection of penicillin resistance directly in bacterial cells in Enterococcus faecalis and Staphylococcus aureus.

    PubMed

    Jarzembowski, T; Wiśniewska, K; Józwik, A; Bryl, E; Witkowski, J

    2008-08-01

    We studied the usefulness of flow cytometry for detection of penicillin resistance in E. faecalis and S. aureus by direct binding of commercially available fluorescent penicillin, Bocillin FL, to cells obtained from culture. There were significantly lower percentages of fluorescent cells and median and mean fluorescence values per particle in penicillin-resistant than in penicillin-sensitive strains of both species observed. The method allows rapid detection of penicillin resistance in S. aureus and E. faecalis. The results encourage further investigations on the detection of antibiotic resistance in bacteria using flow cytometry.

  9. Serine Protease Zymography: Low-Cost, Rapid, and Highly Sensitive RAMA Casein Zymography.

    PubMed

    Yasumitsu, Hidetaro

    2017-01-01

    To detect serine protease activity by zymography, casein and CBB stain have been used as a substrate and a detection procedure, respectively. Casein zymography has been using substrate concentration at 1 mg/mL and employing conventional CBB stain. Although ordinary casein zymography provides reproducible results, it has several disadvantages including time-consuming and relative low sensitivity. Improved casein zymography, RAMA casein zymography, is rapid and highly sensitive. RAMA casein zymography completes the detection process within 1 h after incubation and increases the sensitivity at least by tenfold. In addition to serine protease, the method also detects metalloprotease 7 (MMP7, Matrilysin) with high sensitivity.

  10. Protocol for the use of a rapid real-time PCR method for the detection of HIV-1 proviral DNA using double-stranded primer.

    PubMed

    Pau, Chou-Pong; Wells, Susan K; Granade, Timothy C

    2012-01-01

    This chapter describes a real-time PCR method for the detection of HIV-1 proviral DNA in whole blood samples using a novel double-stranded primer system. The assay utilizes a simple commercially available DNA extraction method and a rapid and easy-to-perform real-time PCR protocol to consistently detect a minimum of four copies of HIV-1 group M proviral DNA in as little as 90 min after sample (whole blood) collection. Co-amplification of the human RNase P gene serves as an internal control to monitor the efficiency of both the DNA extraction and amplification. Once the assay is validated properly, it may be suitable as an alternative confirmation test for HIV-1 infections in a variety of HIV testing venues including the mother-to-child transmission testing sites, clinics, and diagnostic testing centers.

  11. Systematic cloning of human minisatellites from ordered array charomid libraries.

    PubMed

    Armour, J A; Povey, S; Jeremiah, S; Jeffreys, A J

    1990-11-01

    We present a rapid and efficient method for the isolation of minisatellite loci from human DNA. The method combines cloning a size-selected fraction of human MboI DNA fragments in a charomid vector with hybridization screening of the library in ordered array. Size-selection of large MboI fragments enriches for the longer, more variable minisatellites and reduces the size of the library required. The library was screened with a series of multi-locus probes known to detect a large number of hypervariable loci in human DNA. The gridded library allowed both the rapid processing of positive clones and the comparative evaluation of the different multi-locus probes used, in terms of both the relative success in detecting hypervariable loci and the degree of overlap between the sets of loci detected. We report 23 new human minisatellite loci isolated by this method, which map to 14 autosomes and the sex chromosomes.

  12. Rapid detection of potyviruses from crude plant extracts.

    PubMed

    Silva, Gonçalo; Oyekanmi, Joshua; Nkere, Chukwuemeka K; Bömer, Moritz; Kumar, P Lava; Seal, Susan E

    2018-04-01

    Potyviruses (genus Potyvirus; family Potyviridae) are widely distributed and represent one of the most economically important genera of plant viruses. Therefore, their accurate detection is a key factor in developing efficient control strategies. However, this can sometimes be problematic particularly in plant species containing high amounts of polysaccharides and polyphenols such as yam (Dioscorea spp.). Here, we report the development of a reliable, rapid and cost-effective detection method for the two most important potyviruses infecting yam based on reverse transcription-recombinase polymerase amplification (RT-RPA). The developed method, named 'Direct RT-RPA', detects each target virus directly from plant leaf extracts prepared with a simple and inexpensive extraction method avoiding laborious extraction of high-quality RNA. Direct RT-RPA enables the detection of virus-positive samples in under 30 min at a single low operation temperature (37 °C) without the need for any expensive instrumentation. The Direct RT-RPA tests constitute robust, accurate, sensitive and quick methods for detection of potyviruses from recalcitrant plant species. The minimal sample preparation requirements and the possibility of storing RPA reagents without cold chain storage, allow Direct RT-RPA to be adopted in minimally equipped laboratories and with potential use in plant clinic laboratories and seed certification facilities worldwide. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Advances in rapid diagnosis of tuberculosis disease and anti-tuberculous drug resistance.

    PubMed

    Alcaide, Fernando; Coll, Pere

    2011-03-01

    Rapid diagnosis of tuberculosis (TB) and multidrug-resistant (resistance to at least rifampin and isoniazid) Mycobacterium tuberculosis (MDR-TB) is one of the cornerstones for global TB control as it allows early epidemiological and therapeutic interventions. The slow growth of the tubercle bacillus is the greatest obstacle to rapid diagnosis of the disease. However, considerable progress has recently been made in developing novel diagnostic tools, especially molecular methods (commercial and 'in-house'), for direct detection in clinical specimens. These methods, based on nucleic acid amplification (NAA) of different targets, aim to identify the M. tuberculosis complex and detect the specific chromosome mutations that are most frequently associated with phenotypic resistance to multiple drugs. In general, commercial methods are recommended since they have a better level of standardization, reproducibility and automation. Although some aspects such as cost-efficiency and the appropriate setting for the implementation of these techniques are not yet well established, organizations such as the WHO are strongly supporting the implementation and universal use of these new molecular methods. This chapter summarizes current knowledge and the available molecular methods for rapid diagnosis of TB and anti-tuberculous drug resistance in clinical microbiology laboratories. Copyright © 2011 Elsevier España S.L. All rights reserved.

  14. Rapid detection of pandemic influenza in the presence of seasonal influenza

    PubMed Central

    2010-01-01

    Background Key to the control of pandemic influenza are surveillance systems that raise alarms rapidly and sensitively. In addition, they must minimise false alarms during a normal influenza season. We develop a method that uses historical syndromic influenza data from the existing surveillance system 'SERVIS' (Scottish Enhanced Respiratory Virus Infection Surveillance) for influenza-like illness (ILI) in Scotland. Methods We develop an algorithm based on the weekly case ratio (WCR) of reported ILI cases to generate an alarm for pandemic influenza. From the seasonal influenza data from 13 Scottish health boards, we estimate the joint probability distribution of the country-level WCR and the number of health boards showing synchronous increases in reported influenza cases over the previous week. Pandemic cases are sampled with various case reporting rates from simulated pandemic influenza infections and overlaid with seasonal SERVIS data from 2001 to 2007. Using this combined time series we test our method for speed of detection, sensitivity and specificity. Also, the 2008-09 SERVIS ILI cases are used for testing detection performances of the three methods with a real pandemic data. Results We compare our method, based on our simulation study, to the moving-average Cumulative Sums (Mov-Avg Cusum) and ILI rate threshold methods and find it to be more sensitive and rapid. For 1% case reporting and detection specificity of 95%, our method is 100% sensitive and has median detection time (MDT) of 4 weeks while the Mov-Avg Cusum and ILI rate threshold methods are, respectively, 97% and 100% sensitive with MDT of 5 weeks. At 99% specificity, our method remains 100% sensitive with MDT of 5 weeks. Although the threshold method maintains its sensitivity of 100% with MDT of 5 weeks, sensitivity of Mov-Avg Cusum declines to 92% with increased MDT of 6 weeks. For a two-fold decrease in the case reporting rate (0.5%) and 99% specificity, the WCR and threshold methods, respectively, have MDT of 5 and 6 weeks with both having sensitivity close to 100% while the Mov-Avg Cusum method can only manage sensitivity of 77% with MDT of 6 weeks. However, the WCR and Mov-Avg Cusum methods outperform the ILI threshold method by 1 week in retrospective detection of the 2009 pandemic in Scotland. Conclusions While computationally and statistically simple to implement, the WCR algorithm is capable of raising alarms, rapidly and sensitively, for influenza pandemics against a background of seasonal influenza. Although the algorithm was developed using the SERVIS data, it has the capacity to be used at other geographic scales and for different disease systems where buying some early extra time is critical. PMID:21106071

  15. Development of a real-time PCR assay with an internal amplification control for detection of Gram-negative histamine-producing bacteria in fish.

    PubMed

    Bjornsdottir-Butler, Kristin; Jones, Jessica L; Benner, Ronald; Burkhardt, William

    2011-05-01

    Prompt detection of bacteria that contribute to scombrotoxin (histamine) fish poisoning can aid in the detection of potentially toxic fish products and prevent the occurrence of illness. We report development of the first real-time PCR method for rapid detection of Gram-negative histamine-producing bacteria (HPB) in fish. The real-time PCR assay was 100% inclusive for detecting high-histamine producing isolates and did not detect any of the low- or non-histamine producing isolates. The efficiency of the assay with/without internal amplification control ranged from 96-104% and in the presence of background flora and inhibitory matrices was 92/100% and 73-96%, respectively. This assay was used to detect HPB from naturally contaminated yellowfin tuna, bluefish, and false albacore samples. Photobacterium damselae (8), Plesiomonas shigelloides (2), Shewanella sp. (1), and Morganella morganii (1) were subsequently isolated from the real-time PCR positive fish samples. These results indicate that the real-time PCR assay developed in this study is a rapid and sensitive method for detecting high-HPB. The assay may be adapted for quantification of HPB, either directly or with an MPN-PCR method. Copyright © 2010. Published by Elsevier Ltd.

  16. Characterization of constituents in Stellera chamaejasme L. by rapid-resolution liquid chromatography-diode array detection and electrospray ionization time-of-flight mass spectrometry.

    PubMed

    Zhao, Liang; Lou, Zi-Yang; Zhu, Zhen-Yu; Zhang, Guo-Qing; Chai, Yi-Feng

    2008-01-01

    A reliable and rapid method based on rapid-resolution liquid chromatography-diode array detection (RRLC-DAD) and electrospray ionization time-of-flight mass spectrometry (ESI-TOF/MS) has been developed for the isolation and characterization of multiple constituents in the root of Stellera chamaejasme L., which was extracted by sonication with methanol in an optimized procedure. Separation of the multiple constituents was achieved on an Agilent Zorbax XDB-C18 (50x3.0 mm i.d.; 1.8 microm) column using a gradient elution at a flow rate of 0.4 mL/min. The detection wavelength was 210 nm. Mass spectra were acquired in both positive and negative modes. A formula database of the known chemical constituents in the root of Stellera chamaejasme L. was established by an Agilent software. Twenty-two obvious peaks appeared in the total ion chromatogram and nine of them were characterized by TOF/MS. The RRLC-DAD and ESI-TOF/MS method with ultrasonic extraction would be useful for rapid and effective characterization of chemical constituents in the root of Stellera chamaejasme L. Copyright (c) 2007 John Wiley & Sons, Ltd.

  17. Rapid diagnosis of pulmonary tuberculosis

    PubMed Central

    Sarmiento, José Mauricio Hernández; Restrepo, Natalia Builes; Mejía, Gloria Isabel; Zapata, Elsa; Restrepo, Mary Alejandra; Robledo, Jaime

    2014-01-01

    Introduction World Health Organization had estimated 9.4 million tuberculosis cases on 2009, with 1.7 million of deaths as consequence of treatment and diagnosis failures. Improving diagnostic methods for the rapid and timely detection of tuberculosis patients is critical to control the disease. The aim of this study was evaluating the accuracy of the cord factor detection on the solid medium Middlebrook 7H11 thin layer agar compared to the Lowenstein Jensen medium for the rapid tuberculosis diagnosis. Methods Patients with suspected tuberculosis were enrolled and their sputum samples were processed for direct smear and culture on Lowenstein Jensen and BACTEC MGIT 960, from which positive tubes were subcultured on Middlebrook 7H11 thin layer agar. Statistical analysis was performed comparing culture results from Lowenstein Jensen and the thin layer agar, and their corresponding average times for detecting Mycobacterium tuberculosis. The performance of cord factor detection was evaluated determining its sensitivity, specificity, positive and negative predictive value. Results 111 out of 260 patients were positive for M. tuberculosis by Lowenstein Jensen medium with an average time ± standard deviation for its detection of 22.3 ± 8.5 days. 115 patients were positive by the MGIT system identifying the cord factor by the Middlebrook 7H11 thin layer agar which average time ± standard deviation was 5.5 ± 2.6 days. Conclusion The cord factor detection by Middlebrook 7H11 thin layer agar allows early and accurate tuberculosis diagnosis during an average time of 5 days, making this rapid diagnosis particularly important in patients with negative sputum smear. PMID:25419279

  18. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A.

    PubMed

    Wang, Xue; Lu, Xianbo; Wu, Lidong; Chen, Jiping

    2015-03-15

    As is well known, bisphenol A (BPA), usually exists in daily plastic products, is one of the most important endocrine disrupting chemicals. In this work, copper-centered metal-organic framework (Cu-MOF) was synthesized, which was characterized by SEM, TEM, XRD, FTIR and electrochemical method. The resultant Cu-MOF was explored as a robust electrochemical biosensing platform by choosing tyrosinase (Tyr) as a model enzyme for ultrasensitive and rapid detection of BPA. The Cu-MOF provided a 3D structure with a large specific surface area, which was beneficial for enzyme and BPA absorption, and thus improved the sensitivity of the biosensor. Furthermore, Cu-MOF as a novel sorbent could increase the available BPA concentration to react with tyrosinase through π-π stacking interactions between BPA and Cu-MOF. The Tyr biosensor exhibited a high sensitivity of 0.2242A M(-1) for BPA, a wide linear range from 5.0×10(-8) to 3.0×10-6moll(-1), and a low detection limit of 13nmoll(-1). The response time for detection of BPA is less than 11s. The proposed method was successfully applied to rapid and selective detection of BPA in plastic products with satisfactory results. The recoveries are in the range of 94.0-101.6% for practical applications. With those remarkable advantages, MOFs-based 3D structures show great prospect as robust biosensing platform for ultrasensitive and rapid detection of BPA. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  19. Detection of Salmonella enteritidis Using a Miniature Optical Surface Plasmon Resonance Biosensor

    NASA Astrophysics Data System (ADS)

    Son, J. R.; Kim, G.; Kothapalli, A.; Morgan, M. T.; Ess, D.

    2007-04-01

    The frequent outbreaks of foodborne illness demand rapid detection of foodborne pathogens. Unfortunately, conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Biosensors have shown great potential for the rapid detection of foodborne pathogens. Surface plasmon resonance (SPR) sensors have been widely adapted as an analysis tool for the study of various biological binding reactions. SPR biosensors could detect antibody-antigen bindings on the sensor surface by measuring either a resonance angle or refractive index value. In this study, the feasibility of a miniature SPR sensor (Spreeta, TI, USA) for detection of Salmonella enteritidis has been evaluated. Anti-Salmonella antibodies were immobilized on the gold sensor surface by using neutravidin. Salmonella could be detected by the Spreeta biosensor at concentrations down to 105 cfu/ml.

  20. [Principle of LAMP method--a simple and rapid gene amplification method].

    PubMed

    Ushikubo, Hiroshi

    2004-06-01

    So far nucleic acid test (NAT) has been employed in various fields, including infectious disease diagnoses. However, due to its complicated procedures and relatively high cost, it has not been widely utilized in many actual diagnostic applications. We have therefore developed a simple and rapid gene amplification technology, Loop-mediated Isothermal Amplification (LAMP) method, which has shown prominent results of surpassing the performance of the conventional gene amplification methods. LAMP method acquires three main features: (1) all reaction can be carried out under isothermal conditions; (2) the amplification efficiency is extremely high and tremendous amount of amplification products can be obtained; and (3) the reaction is highly specific. Furthermore, developed from the standard LAMP method, a rapid LAMP method, by adding in the loop primers, can reduce the amplification time from the previous 1 hour to less than 30 minutes. Enormous amount of white precipitate of magnesium pyrophosphate is produced as a by-product of the amplification, therefore, direct visual detection is possible without using any reaction indicators and detection equipments. We believe LAMP technology, with the integration of these features, can rightly apply to clinical genetic testing, food and environmental analysis, as well as NAT in different fields.

  1. Rapid Identification of Vancomycin Resistant Enterococcus Faecalis Clinical Isolates using a Sugar Fermentation Method

    PubMed Central

    Raeisi, Javad; Saifi, Mahnaz; Pourshafie, Mohammad Reza; Habibi, Mehri; Mohajerani, Hamid Reza; Akbari, Neda

    2017-01-01

    Introduction Vancomycin Resistant Enterococci (VRE) can be found all over the world. Thus, rapid detection of the isolates could be of high importance in the treatment or prevention of the associated disease. Aim To measure the turanose fermentation in Enterococcus faecalis clinical isolates for rapid differentiation of VRE and Vancomycin-Susceptible E. faecalis (VSE) isolates. Materials and Methods Forty E. faecalis samples were isolated from 200 clinical samples in Tehran Medical Center, Iran, from October 2012 to December 2012. These isolates were detected according to the standard microbial and biochemical tests. Detection of VRE isolates was originally performed by disk diffusion using 1 μg vancomycin disk, followed by Polymerase Chain Reaction (PCR) amplification of the vanA gene. Finally, the turanose consumption in 1%, 0.7% and 0.5% dilutions was detected by a phenotypic method. Results Among the 40 E. faecalis isolates, 20 vancomycin-susceptible and 20 vancomycin-resistant E. faecalis were isolated according to the disk diffusion and PCR of the vanA gene. There was a considerable difference between VRE and VSE isolates in 0.7% dilution of turanose. However, there was no significant difference between VRE and VSE in 1% and 0.5% dilutions of turanose. Conclusion Since detection of VRE isolates is of high importance, especially in nosocomial infections, phenotypic methods may be highly useful for this purpose. In conclusion, our data indicate that VRE isolated from clinical samples could be distinguished from VSE isolates by turanose fermentation at dilution 0.7%. PMID:28511382

  2. High-resolution melting (HRM) assay for the detection of recurrent BRCA1/BRCA2 germline mutations in Tunisian breast/ovarian cancer families.

    PubMed

    Riahi, Aouatef; Kharrat, Maher; Lariani, Imen; Chaabouni-Bouhamed, Habiba

    2014-12-01

    Germline deleterious mutations in the BRCA1/BRCA2 genes are associated with an increased risk for the development of breast and ovarian cancer. Given the large size of these genes the detection of such mutations represents a considerable technical challenge. Therefore, the development of cost-effective and rapid methods to identify these mutations became a necessity. High resolution melting analysis (HRM) is a rapid and efficient technique extensively employed as high-throughput mutation scanning method. The purpose of our study was to assess the specificity and sensitivity of HRM for BRCA1 and BRCA2 genes scanning. As a first step we estimate the ability of HRM for detection mutations in a set of 21 heterozygous samples harboring 8 different known BRCA1/BRCA2 variations, all samples had been preliminarily investigated by direct sequencing, and then we performed a blinded analysis by HRM in a set of 68 further sporadic samples of unknown genotype. All tested heterozygous BRCA1/BRCA2 variants were easily identified. However the HRM assay revealed further alteration that we initially had not searched (one unclassified variant). Furthermore, sequencing confirmed all the HRM detected mutations in the set of unknown samples, including homozygous changes, indicating that in this cohort, with the optimized assays, the mutations detections sensitivity and specificity were 100 %. HRM is a simple, rapid and efficient scanning method for known and unknown BRCA1/BRCA2 germline mutations. Consequently the method will allow for the economical screening of recurrent mutations in Tunisian population.

  3. Evaluation of Colorimetric Methods Using Nicotinamide for Rapid Detection of Pyrazinamide Resistance in Mycobacterium tuberculosis▿

    PubMed Central

    Mirabal, Niuris C.; Yzquierdo, Sergio L.; Lemus, Dihadenys; Madruga, Mariela; Milián, Yoslaine; Echemendía, Miguel; Takiff, Howard; Martin, Anandi; Van der Stuyf, Patrick; Palomino, Juan Carlos; Montoro, Ernesto

    2010-01-01

    The direct detection of pyrazinamide resistance in Mycobacterium tuberculosis is sufficiently difficult that many laboratories do not attempt it. Most pyrazinamide resistance is caused by mutations that inactivate the pyrazinamidase enzyme needed to convert the prodrug pyrazinamide to its active form. We evaluated two newer and simpler methods to assess pyrazinamidase activity, the nitrate reductase and malachite green microtube assays, using nicotinamide in place of pyrazinamide. A total of 102 strains were tested by these methods and the results compared with those obtained by the classic Wayne assay. Mutations in the pncA gene were identified by sequencing the pncA genes from all isolates in which pyrazinamide resistance was detected by any of the three methods. Both the nitrate reductase and malachite green microtube assays showed sensitivities of 93.75% and specificities of 97.67%. Mutations in the pncA gene were found in 14 of 16 strains that were pyrazinamide resistant and in 1 of 4 strains that were sensitive by the Wayne assay. Both of these simple methods, used with nicotinamide, are promising and inexpensive alternatives for the rapid detection of pyrazinamide resistance in limited-resource countries. PMID:20554826

  4. Rapid on-site TLC-SERS detection of four antidiabetes drugs used as adulterants in botanical dietary supplements.

    PubMed

    Zhu, Qingxia; Cao, Yongbing; Cao, Yingying; Chai, Yifeng; Lu, Feng

    2014-03-01

    A novel facile method has been established for rapid on-site detection of antidiabetes chemicals used to adulterate botanical dietary supplements (BDS) for diabetes. Analytes and components of pharmaceutical matrices were separated by thin-layer chromatography (TLC) then surface-enhanced Raman spectroscopy (SERS) was used for qualitative identification of trace substances on the HPTLC plate. Optimization and standardization of the experimental conditions, for example the method used for preparation of silver colloids, the mobile phase, and the concentration of colloidal silver, resulted in a very robust and highly sensitive method which enabled successful detection when the amount of adulteration was as low as 0.001 % (w/w). The method was also highly selective, enabling successful identification of some chemicals in extremely complex herbal matrices. The established TLC-SERS method was used for analysis of real BDS used to treat diabetes, and the results obtained were verified by liquid chromatography-triple quadrupole mass spectrometry (LC-MS-MS). The study showed that TLC-SERS could be used for effective separation and detection of four chemicals used to adulterate BDS, and would have good prospects for on-site qualitative screening of BDS for adulterants.

  5. [Research on the temperature field detection method of hot forging based on long-wavelength infrared spectrum].

    PubMed

    Zhang, Yu-Cun; Wei, Bin; Fu, Xian-Bin

    2014-02-01

    A temperature field detection method based on long-wavelength infrared spectrum for hot forging is proposed in the present paper. This method combines primary spectrum pyrometry and three-stage FP-cavity LCTF. By optimizing the solutions of three group nonlinear equations in the mathematical model of temperature detection, the errors are reduced, thus measuring results will be more objective and accurate. Then the system of three-stage FP-cavity LCTF was designed on the principle of crystal birefringence. The system realized rapid selection of any wavelength in a certain wavelength range. It makes the response of the temperature measuring system rapid and accurate. As a result, without the emissivity of hot forging, the method can acquire exact information of temperature field and effectively suppress the background light radiation around the hot forging and ambient light that impact the temperature detection accuracy. Finally, the results of MATLAB showed that the infrared spectroscopy through the three-stage FP-cavity LCTF could meet the requirements of design. And experiments verified the feasibility of temperature measuring method. Compared with traditional single-band thermal infrared imager, the accuracy of measuring result was improved.

  6. Performance of Traditional and Molecular Methods for Detecting Biological Agents in Drinking Water

    USGS Publications Warehouse

    Francy, Donna S.; Bushon, Rebecca N.; Brady, Amie M.G.; Bertke, Erin E.; Kephart, Christopher M.; Likirdopulos, Christina A.; Mailot, Brian E.; Schaefer, Frank W.; Lindquist, H.D. Alan

    2009-01-01

    To reduce the impact from a possible bioterrorist attack on drinking-water supplies, analytical methods are needed to rapidly detect the presence of biological agents in water. To this end, 13 drinking-water samples were collected at 9 water-treatment plants in Ohio to assess the performance of a molecular method in comparison to traditional analytical methods that take longer to perform. Two 100-liter samples were collected at each site during each sampling event; one was seeded in the laboratory with six biological agents - Bacillus anthracis (B. anthracis), Burkholderia cepacia (as a surrogate for Bu. pseudomallei), Francisella tularensis (F. tularensis), Salmonella Typhi (S. Typhi), Vibrio cholerae (V. cholerae), and Cryptospordium parvum (C. parvum). The seeded and unseeded samples were processed by ultrafiltration and analyzed by use of quantiative polymerase chain reaction (qPCR), a molecular method, and culture methods for bacterial agents or the immunomagnetic separation/fluorescent antibody (IMS/FA) method for C. parvum as traditional methods. Six replicate seeded samples were also processed and analyzed. For traditional methods, recoveries were highly variable between samples and even between some replicate samples, ranging from below detection to greater than 100 percent. Recoveries were significantly related to water pH, specific conductance, and dissolved organic carbon (DOC) for all bacteria combined by culture methods, but none of the water-quality characteristics tested were related to recoveries of C. parvum by IMS/FA. Recoveries were not determined by qPCR because of problems in quantifying organisms by qPCR in the composite seed. Instead, qPCR results were reported as detected, not detected (no qPCR signal), or +/- detected (Cycle Threshold or 'Ct' values were greater than 40). Several sample results by qPCR were omitted from the dataset because of possible problems with qPCR reagents, primers, and probes. For the remaining 14 qPCR results (including some replicate samples), F. tularensis and V. cholerae were detected in all samples after ultrafiltration, B. anthracis was detected in 13 and +/- detected in 1 sample, and C. parvum was detected in 9 and +/- detected in 4 samples. Bu. cepacia was detected in nine samples, +/- detected in two samples, and not detected in three samples (for two out of three samples not detected, a different strain was used). The qPCR assay for V. cholerae provided two false positive - but late - signals in one unseeded sample. Numbers found by qPCR after ultrafiltration were significantly or nearly significantly related to those found by traditional methods for B. anthracis, F. tularensis, and V. cholerae but not for Bu. cepacia and C. parvum. A qPCR assay for S. Typhi was not available. The qPCR method can be used to rapidly detect B. anthracis, F. tularensis, and V. cholerae with some certainty in drinking-water samples, but additional work would be needed to optimize and test qPCR for Bu. cepacia and C. parvum and establish relations to traditional methods. The specificity for the V. cholerae assay needs to be further investigated. Evidence is provided that ultrafiltration and qPCR are promising methods to rapidly detect biological agents in the Nation's drinking-water supplies and thus reduce the impact and consequences from intentional bioterrorist events. To our knowledge, this is the first study to compare the use of traditional and qPCR methods to detect biological agents in large-volume drinking-water samples.

  7. Automated Online Solid-Phase Derivatization for Sensitive Quantification of Endogenous S-Nitrosoglutathione and Rapid Capture of Other Low-Molecular-Mass S-Nitrosothiols.

    PubMed

    Wang, Xin; Garcia, Carlos T; Gong, Guanyu; Wishnok, John S; Tannenbaum, Steven R

    2018-02-06

    S-Nitrosothiols (RSNOs) constitute a circulating endogenous reservoir of nitric oxide and have important biological activities. In this study, an online coupling of solid-phase derivatization (SPD) with liquid chromatography-mass spectrometry (LC-MS) was developed and applied in the analysis of low-molecular-mass RSNOs. A derivatizing-reagent-modified polymer monolithic column was prepared and adapted for online SPD-LC-MS. Analytes from the LC autosampler flowed through the monolithic column for derivatization and then directly into the LC-MS for analysis. This integration of the online derivatization, LC separation, and MS detection facilitated system automation, allowing rapid, laborsaving, and sensitive detection of RSNOs. S-Nitrosoglutathione (GSNO) was quantified using this automated online method with good linearity (R 2 = 0.9994); the limit of detection was 0.015 nM. The online SPD-LC-MS method has been used to determine GSNO levels in mouse samples, 138 ± 13.2 nM of endogenous GSNO was detected in mouse plasma. Besides, the GSNO concentrations in liver (64.8 ± 11.3 pmol/mg protein), kidney (47.2 ± 6.1 pmol/mg protein), heart (8.9 ± 1.8 pmol/mg protein), muscle (1.9 ± 0.3 pmol/mg protein), hippocampus (5.3 ± 0.9 pmol/mg protein), striatum (6.7 ± 0.6 pmol/mg protein), cerebellum (31.4 ± 6.5 pmol/mg protein), and cortex (47.9 ± 4.6 pmol/mg protein) were also successfully quantified. When the derivatization was performed within 8 min, followed by LC-MS detection, samples could be rapidly analyzed compared with the offline manual method. Other low-molecular-mass RSNOs, such as S-nitrosocysteine and S-nitrosocysteinylglycine, were captured by rapid precursor-ion scanning, showing that the proposed method is a potentially powerful tool for capture, identification, and quantification of RSNOs in biological samples.

  8. Rapid, highly sensitive detection of Gram-negative bacteria with lipopolysaccharide based disposable aptasensor.

    PubMed

    Zhang, Jian; Oueslati, Rania; Cheng, Cheng; Zhao, Ling; Chen, Jiangang; Almeida, Raul; Wu, Jayne

    2018-07-30

    Gram-negative bacteria are one of the most common microorganisms in the environment. Their differential detection and recognition from Gram-positive bacteria has been attracting much attention over the years. Using Escherichia coli (E. coli) as a model, we demonstrated on-site detection of Gram-negative bacteria by an AC electrokinetics-based capacitive sensing method using commercial microelectrodes functionalized with an aptamer specific to lipopolysaccharides. Dielectrophoresis effect was utilized to enrich viable bacteria to the microelectrodes rapidly, achieving a detection limit of 10 2 cells/mL within a 30 s' response time. The sensor showed a negligible response to Staphylococcus aureus (S. aureus), a Gram-positive species. The developed sensor showed significant advantages in sensitivity, selectivity, cost, operation simplicity, and response time. Therefore, this sensing method has shown great application potential for environmental monitoring, food safety, and real-time diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Rapid Detection and Identification of a Pathogen's DNA Using Phi29 DNA Polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y.; Dunn, J.; Gao, S.

    2008-10-31

    Zoonotic pathogens including those transmitted by insect vectors are some of the most deadly of all infectious diseases known to mankind. A number of these agents have been further weaponized and are widely recognized as being potentially significant biothreat agents. We describe a novel method based on multiply-primed rolling circle in vitro amplification for profiling genomic DNAs to permit rapid, cultivation-free differential detection and identification of circular plasmids in infectious agents. Using Phi29 DNA polymerase and a two-step priming reaction we could reproducibly detect and characterize by DNA sequencing circular DNA from Borrelia burgdorferi B31 in DNA samples containing asmore » little as 25 pg of Borrelia DNA amongst a vast excess of human DNA. This simple technology can ultimately be adapted as a sensitive method to detect specific DNA from both known and unknown pathogens in a wide variety of complex environments.« less

  10. Simple colorimetric detection of doxycycline and oxytetracycline using unmodified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Jie; Fan, Shumin; Li, Zhigang; Xie, Yuanzhe; Wang, Rui; Ge, Baoyu; Wu, Jing; Wang, Ruiyong

    2014-08-01

    The interaction between tetracycline antibiotics and gold nanoparticles was studied. With citrate-coated gold nanoparticles as colorimetric probe, a simple and rapid detection method for doxycycline and oxytetracycline has been developed. This method relies on the distance-dependent optical properties of gold nanoparticles. In weakly acidic buffer medium, doxycycline and oxytetracycline could rapidly induce the aggregation of gold nanoparticles, resulting in red-to-blue (or purple) colour change. The experimental parameters were optimized with regard to pH, the concentration of the gold nanoparticles and the reaction time. Under optimal experimental conditions, the linear range of the colorimetric sensor for doxycycline/oxytetracycline was 0.06-0.66 and 0.59-8.85 μg mL-1, respectively. The corresponding limit of detection for doxycycline and oxytetracycline was 0.0086 and 0.0838 μg mL-1, respectively. This assay was sensitive, selective, simple and readily used to detect tetracycline antibiotics in food products.

  11. Real-time PCR and NASBA for rapid and sensitive detection of Vibrio cholerae in ballast water.

    PubMed

    Fykse, Else M; Nilsen, Trine; Nielsen, Agnete Dessen; Tryland, Ingun; Delacroix, Stephanie; Blatny, Janet M

    2012-02-01

    Transport of ballast water is one major factor in the transmission of aquatic organisms, including pathogenic bacteria. The IMO-guidelines of the Convention for the Control and Management of Ships' Ballast Water and Sediments, states that ships are to discharge <1 CFU per 100 ml ballast water of toxigenic Vibrio cholerae, emphasizing the need to establish test methods. To our knowledge, there are no methods sensitive and rapid enough available for cholera surveillance of ballast water. In this study real-time PCR and NASBA methods have been evaluated to specifically detect 1 CFU/100ml of V. cholerae in ballast water. Ballast water samples spiked with V. cholerae cells were filtered and enriched in alkaline peptone water before PCR or NASBA detection. The entire method, including sample preparation and analysis was performed within 7 h, and has the potential to be used for analysis of ballast water for inspection and enforcement control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food.

    PubMed

    Yan, Chao; Zhang, Jing; Yao, Li; Xue, Feng; Lu, Jianfeng; Li, Baoguang; Chen, Wei

    2018-09-15

    We report an aptamer-mediated colorimetric method for sensitive detection of chloramphenicol (CAP). The aptamer of CAP is immobilized by the hybridization with pre-immobilized capture probe in the microtiter plate. The horseradish peroxidase (HRP) is covalently attached to the aptamer by the biotin-streptavidin system for signal production. CAP will preferably bind with aptamer due to the high binding affinity, which attributes to the release of aptamer and HRP and thus, affects the optical signal intensity. Quantitative determination of CAP is successfully achieved in the wide range from 0.001 to 1000 ng/mL with detection limit of 0.0031 ng/mL, which is more sensitive than traditional immunoassays. This method is further validated by measuring the recovery of CAP spiked in two different food matrices (honey and fish). The aptamer-mediated colorimetric method can be a useful protocol for rapid and sensitive screening of CAP, and may be used as an alternative means for traditional immunoassays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Loop-mediated isothermal amplification assay for rapid detection of Streptococcus agalactiae (group B streptococcus) in vaginal swabs - a proof of concept study.

    PubMed

    McKenna, James Patrick; Cox, Ciara; Fairley, Derek John; Burke, Rachael; Shields, Michael D; Watt, Alison; Coyle, Peter Valentine

    2017-03-01

    Neonatal sepsis caused by Streptococcus agalactiae [group B streptococcus (GBS)] is a life-threatening condition, which is preventable if colonized mothers are identified and given antibiotic prophylaxis during labour. Conventional culture is time consuming and unreliable, and many available non-culture diagnostics are too complex to implement routinely at point of care. Loop-mediated isothermal amplification (LAMP) is a method that, enables the rapid and specific detection of target nucleic acid sequences in clinical materials without the requirement for extensive sample preparation. A prototype LAMP assay targeting GBS sip gene is described. The assay was 100 % specific for GBS, with a limit of detection of 14 genome copies per reaction. The clinical utility of the LAMP assay for rapid direct molecular detection of GBS was determined by testing a total of 157 vaginal swabs with minimal sample processing using a rapid lysis solution. Compared to a reference quantitative real-time PCR assay, the direct LAMP protocol had a sensitivity and specificity of 95.4 and 100 %, respectively, with positive and negative predictive values of 100 and 98.3 %, respectively. Positive and negative likelihood ratios were infinity and 0.05, respectively. The direct LAMP method required a mean time of 45 min from the receipt of a swab to generation of a confirmed result, compared to 2 h 30 min for the reference quantitative real-time PCR test. The direct LAMP protocol described is easy to perform, facilitating rapid and accurate detection of GBS in vaginal swabs. This test has a potential for use at point of care.

  14. Rapid detection of food-borne Salmonella contamination using IMBs-qPCR method based on pagC gene.

    PubMed

    Wang, Jiashun; Li, Yi; Chen, Jia; Hua, Deping; Li, Yi; Deng, Hui; Li, Ying; Liang, Zhixuan; Huang, Jinhai

    Detection of Salmonella is very important to minimize the food safety risk. In this study, the recombinant PagC protein and PagC antibody were prepared and coupled with immunomagnetic beads (IMBs) to capture Salmonella cells from pork and milk samples. And then the SYBR Green qualitative PCR was developed to detect the pathogenic Salmonella. The results showed that the PagC polyclonal antiserum is of good specificity and the capture rate of 0.1mg IMBs for Salmonella tended to be stable at the range of 70-74% corresponding to the concentrations between 10 1 and 10 4 CFU/mL. The method developed demonstrated high specificity for the positive Salmonella samples when compared to non-specific DNA samples, such as Escherichia coli, Staphylococcus aureus, Yersinia enterocolitica, and Yersinia pseudotuberculosis. The limit of detection of this assay was 18CFU/mL. Detection and quantitative enumeration of Salmonella in samples of pork or milk shows good recoveries of 54.34% and 52.07%. In conclusion, the polyclonal antibody of recombinant PagC protein is effective to capture Salmonella from detected samples. The developed pagC antibody IMBs-qPCR method showed efficiency, sensitivity and specificity for 30 Salmonella detection, enabling detection within 10h, which is a promising rapid method to detect Salmonella in emergency. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. Dual-Quantum-Dots-Labeled Lateral Flow Strip Rapidly Quantifies Procalcitonin and C-reactive Protein

    NASA Astrophysics Data System (ADS)

    Qi, XiaoPing; Huang, YunYe; Lin, ZhongShi; Xu, Liang; Yu, Hao

    2016-03-01

    In the article, a dual-quantum-dots-labeled (dual-QDs-labeled) lateral flow strip (LFS) method was developed for the simultaneous and rapid quantitative detection of procalcitonin (PCT) and C-reactive protein (CRP) in the blood. Two QD-antibody conjugates with different fluorescence emission spectra were produced and sprayed on the LFS to capture PCT and CRP in the blood. Furthermore, a double antibody sandwich method for PCT and, meanwhile, a competitive inhibition method for CRP were employed in the LFS. For PCT and CRP in serum assayed by the dual-QDs-labeled LFS, their detection sensitivities reached 0.1 and 1 ng/mL, respectively, and their linear quantitative detection ranges were from 0.3 to 200 ng/mL and from 50 to 250 μg/mL, respectively. There was little evidence that the PCT and CRP assays would be interfered with each other. The correlations for testing CRP and PCT in clinical samples were 99.75 and 97.02 %, respectively, between the dual-QDs-labeled LFS we developed and commercial methods. The rapid quantification of PCT and CRP on dual-QDs-labeled LFS is of great clinical value to distinguish inflammation, bacterial infection, or viral infection and to provide guidance for the use of antibiotics or other medicines.

  16. Portable Microfluidic Integrated Plasmonic Platform for Pathogen Detection

    PubMed Central

    Tokel, Onur; Yildiz, Umit Hakan; Inci, Fatih; Durmus, Naside Gozde; Ekiz, Okan Oner; Turker, Burak; Cetin, Can; Rao, Shruthi; Sridhar, Kaushik; Natarajan, Nalini; Shafiee, Hadi; Dana, Aykutlu; Demirci, Utkan

    2015-01-01

    Timely detection of infectious agents is critical in early diagnosis and treatment of infectious diseases. Conventional pathogen detection methods, such as enzyme linked immunosorbent assay (ELISA), culturing or polymerase chain reaction (PCR) require long assay times, and complex and expensive instruments, which are not adaptable to point-of-care (POC) needs at resource-constrained as well as primary care settings. Therefore, there is an unmet need to develop simple, rapid, and accurate methods for detection of pathogens at the POC. Here, we present a portable, multiplex, inexpensive microfluidic-integrated surface plasmon resonance (SPR) platform that detects and quantifies bacteria, i.e., Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) rapidly. The platform presented reliable capture and detection of E. coli at concentrations ranging from ~105 to 3.2 × 107 CFUs/mL in phosphate buffered saline (PBS) and peritoneal dialysis (PD) fluid. The multiplexing and specificity capability of the platform was also tested with S. aureus samples. The presented platform technology could potentially be applicable to capture and detect other pathogens at the POC and primary care settings. PMID:25801042

  17. Development of a real-time PCR for the detection of pathogenic Leptospira spp. in California sea lions

    USDA-ARS?s Scientific Manuscript database

    Rapid detection of pathogenic Leptospira spp. in marine mammals is challenging: microbiological culture can take 3-6 months and has low sensitivity, immunohistochemical staining of kidney to detect leptospires is invasive and time consuming, and serological methods, such as the microscopic agglutina...

  18. A biosensor platform for rapid detection of E. coli in drinking water.

    PubMed

    Hesari, Nikou; Alum, Absar; Elzein, Mohamad; Abbaszadegan, Morteza

    2016-02-01

    There remains a need for rapid, specific and sensitive assays for the detection of bacterial indicators for water quality monitoring. In this study, a strategy for rapid detection of Escherichia coli in drinking water has been developed. This strategy is based on the use of the substrate 4-methylumbelliferyl-β-d-glucuronide (MUG), which is hydrolyzed rapidly by the action of E. coli β-d-glucuronidase (GUD) enzyme to yield a fluorogenic 4-methylumbelliferone (4-MU) product that can be quantified and related to the number of E. coli cells present in water samples. In this study, the detection time required for the biosensor response ranged between 20 and 120 min, depending on the number of bacteria in the sample. This approach does not need extensive sample processing with a rapid detection capability. The specificity of the MUG substrate was examined in both, pure cultures of non-target bacterial genera such as Klebsiella, Salmonella, Enterobacter and Bacillus. Non-target substrates that included 4-methylumbelliferyl-β-d-galactopyranoside (MUGal) and l-leucine β-naphthylamide aminopeptidase (LLβ-N) were also investigated to identify nonspecific patterns of enzymatic activities in E. coli. GUD activity was found to be specific for E. coli and no further enzymatic activity was detected by other species. In addition, fluorescence assays were performed for the detection of E. coli to generate standard curves; and the sensitivity of the GUD enzymatic response was measured and repeatedly determined to be less than 10 E. coli cells in a reaction vial. The applicability of the method was tested by performing multiple fluorescence assays under pure and mixed bacterial flora in environmental samples. The results of this study showed that the fluorescence signals generated in samples using specific substrate molecules can be utilized to develop a bio-sensing platform for the detection of E. coli in drinking water. Furthermore, this system can be applied independently or in conjunction with other methods as a part of an array of biochemical assays in order to reliably detect E. coli in water. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Detecting chaos, determining the dimensions of tori and predicting slow diffusion in Fermi-Pasta-Ulam lattices by the Generalized Alignment Index method

    NASA Astrophysics Data System (ADS)

    Skokos, C.; Bountis, T.; Antonopoulos, C.

    2008-12-01

    The recently introduced GALI method is used for rapidly detecting chaos, determining the dimensionality of regular motion and predicting slow diffusion in multi-dimensional Hamiltonian systems. We propose an efficient computation of the GALIk indices, which represent volume elements of k randomly chosen deviation vectors from a given orbit, based on the Singular Value Decomposition (SVD) algorithm. We obtain theoretically and verify numerically asymptotic estimates of GALIs long-time behavior in the case of regular orbits lying on low-dimensional tori. The GALIk indices are applied to rapidly detect chaotic oscillations, identify low-dimensional tori of Fermi-Pasta-Ulam (FPU) lattices at low energies and predict weak diffusion away from quasiperiodic motion, long before it is actually observed in the oscillations.

  20. Detection of designer drugs in human hair by ion mobility spectrometry (IMS).

    PubMed

    Keller, T; Miki, A; Regenscheit, P; Dirnhofer, R; Schneider, A; Tsuchihashi, H

    1998-06-08

    Since its inception in the early 1970s under the name plasma chromatography, ion mobility spectrometry (IMS) has undergone great changes. It is now utilized more and more in forensic science laboratories where it is used to detect explosives and environmental pollutants [1-4] as well as its use in detecting drugs of abuse [5-8]. Although IMS is known for nearly 30 years now [9], relatively few cases of the application of ion mobility spectrometry to the analysis of human hair have been reported [10-12]. The authors report a new and quick method to rapidly screen and determine MDMA ('ecstasy', 'Adam') and MDEA ('Eve') in human hair. The proposed method using trihexylamine as internal standard resulted in a rapid procedure useful in screening human hair specimens for designer drugs.

  1. Automated seamline detection along skeleton for remote sensing image mosaicking

    NASA Astrophysics Data System (ADS)

    Zhang, Hansong; Chen, Jianyu; Liu, Xin

    2015-08-01

    The automatic generation of seamline along the overlap region skeleton is a concerning problem for the mosaicking of Remote Sensing(RS) images. Along with the improvement of RS image resolution, it is necessary to ensure rapid and accurate processing under complex conditions. So an automated seamline detection method for RS image mosaicking based on image object and overlap region contour contraction is introduced. By this means we can ensure universality and efficiency of mosaicking. The experiments also show that this method can select seamline of RS images with great speed and high accuracy over arbitrary overlap regions, and realize RS image rapid mosaicking in surveying and mapping production.

  2. Rapid Differentiation and In Situ Detection of 16 Sourdough Lactobacillus Species by Multiplex PCR

    PubMed Central

    Settanni, Luca; van Sinderen, Douwe; Rossi, Jone; Corsetti, Aldo

    2005-01-01

    A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies. PMID:15933001

  3. Differential fluorescent staining method for detection of bacteria in blood cultures, cerebrospinal fluid and other clinical specimens.

    PubMed

    Fazii, P; Ciancaglini, E; Riario Sforza, G

    2002-05-01

    The aim of this study was to evaluate a differential staining method to distinguish gram-positive from gram-negative bacteria in fluorescence. The method is based on two fluorochromes, one acting in the wavelength of red, i.e. the acridine orange, and another acting in the wavelength of green, i.e. the fluorescein. With this method, gram-positive bacteria appear yellow and gram-negative bacteria appear green. In view of the importance of a rapid aetiological diagnosis in cases of septicaemia, the differential staining method in fluorescence was compared with Gram stain for the detection of bacteria in blood. Of 5,820 blood cultures entered into the study and identified by the Bactec 9120 fluorescent series instrument (Becton Dickinson Europe, France), 774 were positive. Of the 774 positive cultures, 689 yielded only a single organism. The differential staining method in fluorescence detected 626 of the 689 cultures, while Gram stain detected 468. On the basis of these results, the sensitivity of the differential staining method in fluorescence was 90.9%, while that of Gram stain was 67.9%. The difference between the two methods was statistically significant ( P<0.001). The differential fluorescent staining method was more sensitive than Gram stain in the detection of bacteria in blood cultures during the incubation period. This technique provides a rapid, simple and highly sensitive staining method that can be used in conjunction with subculture methods. Whereas subculture requires an incubation period of 18-24 h, the fluorescent staining technique can detect bacteria on the same day that smears are prepared and examined. The differential fluorescent staining method was also evaluated for its ability to detect microorganisms in cerebrospinal fluid and other clinical specimens. The microorganisms were easily detected, even when bacterial counts in the specimens were low.

  4. Simultaneous Detection of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes at a Very Low Level Using Simultaneous Enrichment Broth and Multichannel SPR Biosensor.

    PubMed

    Zhang, Xiaoguang; Tsuji, Sachiko; Kitaoka, Hayato; Kobayashi, Hiroshi; Tamai, Mitsuru; Honjoh, Ken-Ichi; Miyamoto, Takahisa

    2017-10-01

    Detection of foodborne pathogens at very low levels is still a challenge. A custom-built multichannel surface plasmon resonance (SPR) biosensor and simultaneous enrichment broth (SEB) were used to develop a simultaneous detection method for 3 important foodborne pathogens, Escherichia coli O157:H7 (O157:H7), Salmonella enteritidis, and Listeria monocytogenes, at a very low level. These 3 foodborne pathogens at a very low level (14, 6, and 28 CFU/25 g (mL) for O157:H7, S. enteritidis, and L. monocytogenes, respectively) were inoculated in SEB and incubated at 37 ˚C for 24 h. Sample prepared from the simultaneous enrichment culture was analyzed using the multichannel SPR biosensor and sensor chip immobilized with polyclonal antibodies specific to each of the target pathogens. O157:H7, S. enteritidis, and L. monocytogenes in chicken were detected simultaneously at an inoculum dose of 14, 6, and 28 CFU/25 g, respectively. Our method using a custom-built multichannel SPR biosensor and enrichment in SEB is expected as a rapid and simultaneous detection method for low levels of O157:H7, S. enteritidis, and L. monocytogenes in food. Our method is expected as a rapid and simultaneous detection method for pathogens at very low levels. It has great potential for safety control of food and microbiological detection applications. © 2017 Institute of Food Technologists®.

  5. Rapid isothermal detection of Phytophthora species on plant samples using recombinase polymerase amplification

    USDA-ARS?s Scientific Manuscript database

    Recently several isothermal amplification techniques have been developed that are extremely tolerant towards inhibitors present in many plant extracts. Recombinase polymerase amplification (RPA) assays for the genus Phytophthora have been developed which provide a simple and rapid method to macerate...

  6. Identification of insecticide residues with a conducting-polymer electronic nose

    Treesearch

    A.D. Wilson

    2014-01-01

    The identification of insecticide residues on crop foliage is needed to make periodic pest management decisions. Electronic-nose (e-nose) methods were developed and tested as a means of acquiring rapid identifications of insecticide residue types at relatively low cost by detection of headspace volatiles released from inert surfaces in vitro. Detection methods were...

  7. Rapid, cost-effective, sensitive and quantitative detection of Acinetobacter baumannii from pneumonia patients

    PubMed Central

    Nomanpour, B; Ghodousi, A; Babaei, A; Abtahi, HR; Tabrizi, M; Feizabadi, MM

    2011-01-01

    Background and Objectives Pneumonia with Acinetobacter baumannii has a major therapeutic problem in health care settings. Decision to initiate correct antibiotic therapy requires rapid identification and quantification of organism. The aim of this study was to develop a rapid and sensitive method for direct detection of A. baumannii from respiratory specimens. Materials and Methods A Taqman real time PCR based on the sequence of bla oxa-51 was designed and used for direct detection of A. baumannii from 361 respiratory specimens of patients with pneumonia. All specimens were checked by conventional bacteriology in parallel. Results The new real time PCR could detect less than 200 cfu per ml of bacteria in specimens. There was agreement between the results of real time PCR and culture (Kappa value 1.0, p value<0.001). The sensitivity, specificity and predictive values of real time PCR were 100%. The prevalence of A. baumannii in pneumonia patients was 10.53 % (n=38). Poly-microbial infections were detected in 65.71% of specimens. Conclusion Acinetobacter baumannii is the third causative agent in nosocomial pneumonia after Pseudomonas aeroginosa (16%) and Staphylococcus aureus (13%) at Tehran hospitals. We recommend that 104 CFU be the threshold for definition of infection with A. baumannii using real time PCR. PMID:22530083

  8. Establishment and application of a novel isothermal amplification assay for rapid detection of chloroquine resistance (K76T) in Plasmodium falciparum

    PubMed Central

    Chahar, Madhvi; Mishra, Neelima; Anvikar, Anup; Dixit, Rajnikant; Valecha, Neena

    2017-01-01

    Chloroquine (CQ) resistance in Plasmodium falciparum is determined by the mutations in the chloroquine resistance transporter (Pfcrt) gene. The point mutation at codon 76 (K76T), which has been observed in more than 91% of P. falciparum isolates in India, is the major determinant of CQ resistance. To overcome the limitations and challenges of traditional methods, in this investigation we developed an easy to use loop mediated isothermal amplification (LAMP) protocol for rapid detection of the K76T mutation associated with CQ resistance in P. falciparum with naked eye visualization. In- house designed primers were synthesized and optimized to specifically distinguish the CQ resistant mutants of P. falciparum. The LAMP reaction was optimal at 61 °C for 60 min and calcein dye was added prior to amplification to enable visual detection. We demonstrate the detection limit of <2 ng/μl respectively, supporting the high sensitivity of this calcein based LAMP method. To the best of our knowledge this is the first report on the establishment of an easy, reliable and cost effective LAMP assay for rapid and specific detection of highly CQ resistance in P. falciparum malaria. PMID:28134241

  9. Detection of biomarkers of pathogenic Naegleria fowleri through mass spectrometry and proteomics.

    PubMed

    Moura, Hercules; Izquierdo, Fernando; Woolfitt, Adrian R; Wagner, Glauber; Pinto, Tatiana; del Aguila, Carmen; Barr, John R

    2015-01-01

    Emerging methods based on mass spectrometry (MS) can be used in the rapid identification of microorganisms. Thus far, these practical and rapidly evolving methods have mainly been applied to characterize prokaryotes. We applied matrix-assisted laser-desorption-ionization-time-of-flight mass spectrometry MALDI-TOF MS in the analysis of whole cells of 18 N. fowleri isolates belonging to three genotypes. Fourteen originated from the cerebrospinal fluid or brain tissue of primary amoebic meningoencephalitis patients and four originated from water samples of hot springs, rivers, lakes or municipal water supplies. Whole Naegleria trophozoites grown in axenic cultures were washed and mixed with MALDI matrix. Mass spectra were acquired with a 4700 TOF-TOF instrument. MALDI-TOF MS yielded consistent patterns for all isolates examined. Using a combination of novel data processing methods for visual peak comparison, statistical analysis and proteomics database searching we were able to detect several biomarkers that can differentiate all species and isolates studied, along with common biomarkers for all N. fowleri isolates. Naegleria fowleri could be easily separated from other species within the genus Naegleria. A number of peaks detected were tentatively identified. MALDI-TOF MS fingerprinting is a rapid, reproducible, high-throughput alternative method for identifying Naegleria isolates. This method has potential for studying eukaryotic agents. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  10. PCR method of detecting pork in foods for verifying allergen labeling and for identifying hidden pork ingredients in processed foods.

    PubMed

    Tanabe, Soichi; Miyauchi, Eiji; Muneshige, Akemi; Mio, Kazuhiro; Sato, Chikara; Sato, Masahiko

    2007-07-01

    A PCR method to detect porcine DNA was developed for verifying the allergen labeling of foods and for identifying hidden pork ingredients in processed foods. The primer pair, F2/R1, was designed to detect the gene encoding porcine cytochrome b for the specific detection of pork with high sensitivity. The amplified DNA fragment (130 bp) was specifically detected from porcine DNA, while no amplification occurred with other species such as cattle, chicken, sheep, and horse. When the developed PCR method was used for investigating commercial food products, porcine DNA was clearly detected in those containing pork in the list of ingredients. In addition, 100 ppb of pork in heated gyoza (pork and vegetable dumpling) could be detected by this method. This method is rapid, specific and sensitive, making it applicable for detecting trace amounts of pork in processed foods.

  11. A critical evaluation of a flow cytometer used for detecting enterococci in recreational waters.

    PubMed

    King, Dawn N; Brenner, Kristen P; Rodgers, Mark R

    2007-06-01

    The current U. S. Environmental Protection Agency-approved method for enterococci (Method 1600) in recreational water is a membrane filter (MF) method that takes 24 hours to obtain results. If the recreational water is not in compliance with the standard, the risk of exposure to enteric pathogens may occur before the water is identified as hazardous. Because flow cytometry combined with specific fluorescent antibodies has the potential to be used as a rapid detection method for microorganisms, this technology was evaluated as a rapid, same-day method to detect enterococci in bathing beach waters. The flow cytometer chosen for this study was a laser microbial detection system designed to detect labeled antibodies. A comparison of MF counts with flow cytometry counts of enterococci in phosphate buffer and sterile-filtered recreational water showed good agreement between the two methods. However, when flow cytometry was used, the counts were several orders of magnitude higher than the MF counts with no correlation to Enterococcus spike concentrations. The unspiked sample controls frequently had higher counts than the samples spiked with enterococci. Particles within the spiked water samples were probably counted as target cells by the flow cytometer because of autofluorescence or non-specific adsorption of antibody and carryover to subsequent samples. For these reasons, this technology may not be suitable for enterococci detection in recreational waters. Improvements in research and instrument design that will eliminate high background and carryover may make this a viable technology in the

  12. Multifunctional inorganic-organic hybrid nanospheres for rapid and selective luminescence detection of TNT in mixed nitroaromatics via magnetic separation.

    PubMed

    Ma, Yingxin; Huang, Sheng; Wang, Leyu

    2013-11-15

    Rapid, sensitive and selective detection of 2,4,6-trinitrotoluene (TNT) in aqueous solution differentiating from other nitroaromatics and independent of complicated instruments is in high demand for public safety and environmental monitoring. Despite of many methods for TNT detection, it is hard to differentiate TNT from 2,4,6-trinitrophenol (TNP) due to their highly similar structures and properties. In this work, via a simple and versatile method, LaF3ːCe(3+)-Tb(3+)and Fe3O4 nanoparticle-codoped multifunctional nanospheres were prepared through self-assembly of the building blocks. The luminescence of these nanocomposites was dramatically quenched via adding nitroaromatics into the aqueous solution. After the magnetic separation, however, the interference of other nitroaromatics including 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT), and nitrobenzene (NB) was effectively overcome due to the removal of these coexisting nitroaromatics from the surface of nanocomposites. Due to the formation of TNT(-)-RCONH3(+), the TNT was attached to the surface of the nanocomposites and was quantitatively detected by the postexposure luminescence quenching. Meanwhile, the luminescence intensity is negatively proportional to the concentration of TNT in the range of 0.01-5.0 μg/mL with the 3σ limit of detection (LOD) of 10.2 ng/mL. Therefore, the as-developed method provides a novel strategy for rapid and selective detection of TNT in the mixture solution of nitroaromatics by postexposure luminescence quenching. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Rapid detection of tuberculosis using droplet-based microfluidics

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Liat; Cheng, Yunfeng; Rao, Jianghong; Tang, Sindy K. Y.

    2014-03-01

    Tuberculosis is one of the most deadly diseases that kills over one million people each year and infects one-third of the world's population. The disease is spread by infection with Mycobacterium tuberculosis (Mtb). Owing to its airborne transmission, early diagnosis is critical to the prevention and control of TB. Standard diagnostic methods, acid-fast smear from sputum, often do not become positive until after transmission occurs, which allows the spread of the disease. Culture-based techniques are more sensitive, but take weeks to obtain results because of the extremely slow growth rate of Mtb. In this study a new method to detect indicator enzyme based on the isolation of tubercle bacillus in a large number of picoliter droplets combined with a fluorescent probe has been developed. We use BlaC (an enzyme naturally expressed/secreted by tubercle bacilli) as a marker and a designed BlaC-specific fluorogenic substrates as probes for Mtb detection. We present here a new method to detect the indicator enzyme based on the isolation, digitization and concentration of bacteria samples in a large number of picoliter drops. We show that by controlling the size of the droplets we can control the rate of conversion. Hence rapid increase in signal has been observed as the size of the drops has been decreased. Our vision is that this tool will be able to detect tubercle bacilli in a sensitive, rapid, specific and quantitative manner in vitro at a low cost, particularly in resource limited settings where TB is the most prevalent.

  14. Detection of HbsAg and hATIII genetically modified goats (Caprahircus) by loop-mediated isothermal amplification.

    PubMed

    Tao, Chenyu; Zhang, Qingde; Zhai, Shanli; Liu, Bang

    2013-11-01

    In this study, sensitive and rapid detection systems were designed using a loop-mediated isothermal amplification (LAMP) method to detect the genetically modified goats. A set of 4 primers were designed for each exogenous nucleic acids HBsAg and hATIII. The DNA samples were first amplified with the outer and inner primers and released a single-stranded DNA,of which both ends were stem-loop structure. Then one inner primer hybridized with the loop, and initiated displacement synthesis in less than 1 h. The result could be visualized by both agarose gel electrophoresis and unaided eyes directly after adding SYBR GREEN 1. The detection limit of LAMP was ten copies of target molecules, indicating that LAMP was tenfold more sensitive than the classical PCR. Furthermore, all the samples of genetically modified goats were tested positively by LAMP, and the results demonstrated that the LAMP was a rapid and sensitive method for detecting the genetically modified organism.

  15. Recent Trends in Rapid Environmental Monitoring of Pathogens and Toxicants: Potential of Nanoparticle-Based Biosensor and Applications

    PubMed Central

    Koedrith, Preeyaporn; Thasiphu, Thalisa; Weon, Jong-Il; Boonprasert, Rattana; Tuitemwong, Kooranee; Tuitemwong, Pravate

    2015-01-01

    Of global concern, environmental pollution adversely affects human health and socioeconomic development. The presence of environmental contaminants, especially bacterial, viral, and parasitic pathogens and their toxins as well as chemical substances, poses serious public health concerns. Nanoparticle-based biosensors are considered as potential tools for rapid, specific, and highly sensitive detection of the analyte of interest (both biotic and abiotic contaminants). In particular, there are several limitations of conventional detection methods for water-borne pathogens due to low concentrations and interference with various enzymatic inhibitors in the environmental samples. The increase of cells to detection levels requires long incubation time. This review describes current state of biosensor nanotechnology, the advantage over conventional detection methods, and the challenges due to testing of environmental samples. The major approach is to use nanoparticles as signal reporter to increase output rather than spending time to increase cell concentrations. Trends in future development of novel detection devices and their advantages over other environmental monitoring methodologies are also discussed. PMID:25884032

  16. Rapid and Sensitive Enumeration of Viable Diluted Cells of Members of the Family Enterobacteriaceae in Freshwater and Drinking Water

    PubMed Central

    Baudart, Julia; Coallier, Josée; Laurent, Patrick; Prévost, Michèle

    2002-01-01

    Water quality assessment involves the specific, sensitive, and rapid detection of bacterial indicators and pathogens in water samples, including viable but nonculturable (VBNC) cells. This work evaluates the specificity and sensitivity of a new method which combines a fluorescent in situ hybridization (FISH) approach with a physiological assay (direct viable count [DVC]) for the direct enumeration, at the single-cell level, of highly diluted viable cells of members of the family Enterobacteriaceae in freshwater and drinking water after membrane filtration. The approach (DVC-FISH) uses a new direct detection device, the laser scanning cytometer (Scan RDI). Combining the DVC-FISH method on a membrane with Scan RDI detection makes it possible to detect as few as one targeted cell in approximately 108 nontargeted cells spread over the membrane. The ability of this new approach to detect and enumerate VBNC enterobacterial cells in freshwater and drinking water distribution systems was investigated and is discussed. PMID:12324357

  17. A new strategy for fast radiofrequency CW EPR imaging: Direct detection with rapid scan and rotating gradients

    PubMed Central

    Subramanian, Sankaran; Koscielniak, Janusz W.; Devasahayam, Nallathamby; Pursley, Randall H.; Pohida, Thomas J.; Krishna, Murali C.

    2007-01-01

    Rapid field scan on the order of T/s using high frequency sinusoidal or triangular sweep fields superimposed on the main Zeeman field, was used for direct detection of signals without low-frequency field modulation. Simultaneous application of space-encoding rotating field gradients have been employed to perform fast CW EPR imaging using direct detection that could, in principle, approach the speed of pulsed FT EPR imaging. The method takes advantage of the well-known rapid-scan strategy in CW NMR and EPR that allows arbitrarily fast field sweep and the simultaneous application of spinning gradients that allows fast spatial encoding. This leads to fast functional EPR imaging and, depending on the spin concentration, spectrometer sensitivity and detection band width, can provide improved temporal resolution that is important to interrogate dynamics of spin perfusion, pharmacokinetics, spectral spatial imaging, dynamic oxymetry, etc. PMID:17350865

  18. Rapid detection of infectious hypodermal and hematopoietic necrosis virus (IHHNV) by real-time, isothermal recombinase polymerase amplification assay.

    PubMed

    Xia, Xiaoming; Yu, Yongxin; Hu, Linghao; Weidmann, Manfred; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-04-01

    Infectious hypodermal and hematopoietic necrosis virus (IHHNV) causes mortality or runt deformity syndrome in penaeid shrimps and is responsible for significant economic losses in the shrimp aquaculture industry. Here, we describe a novel real-time isothermal recombinase polymerase amplification (RPA) assay developed for IHHNV detection. Using IHHNV plasmid standards and DNA samples from a variety of organisms, we evaluated the ability of the IHHNV-RPA assay to detect IHHNV based on analysis of its sensitivity, specificity, rapidity, and reproducibility. Probit analysis of eight independent experimental replicates indicated satisfactory performance of the RPA assay, which is sufficiently sensitive to detect as few as 4 copies of the IHHNV genome within 7 min at 39 °C with 95 % reliability. Therefore, this rapid RPA method has great potential for applications, either in field use or as a point of care diagnostic technique.

  19. Rapid and Sensitive Salmonella Typhi Detection in Blood and Fecal Samples Using Reverse Transcription Loop-Mediated Isothermal Amplification.

    PubMed

    Fan, Fenxia; Yan, Meiying; Du, Pengcheng; Chen, Chen; Kan, Biao

    2015-09-01

    Typhoid fever caused by Salmonella enterica serovar Typhi remains a significant public health problem in developing countries. Although the main method for diagnosing typhoid fever is blood culture, the test is time consuming and not always able to detect infections. Thus, it is very difficult to distinguish typhoid from other infections in patients with nonspecific symptoms. A simple and sensitive laboratory detection method remains necessary. The purpose of this study is to establish and evaluate a rapid and sensitive reverse transcription-based loop-mediated isothermal amplification (RT-LAMP) method to detect Salmonella Typhi infection. In this study, a new specific gene marker, STY1607, was selected to develop a STY1607-RT-LAMP assay; this is the first report of specific RT-LAMP detection assay for typhoid. Human-simulated and clinical blood/stool samples were used to evaluate the performance of STY1607-RT-LAMP for RNA detection; this method was compared with STY1607-LAMP, reverse transcription real-time polymerase chain reaction (rRT-PCR), and bacterial culture methods for Salmonella Typhi detection. Using mRNA as the template, STY1607-RT-LAMP exhibited 50-fold greater sensitivity than STY1607-LAMP for DNA detection. The STY1607-RT-LAMP detection limit is 3 colony-forming units (CFU)/mL for both the pure Salmonella Typhi samples and Salmonella Typhi-simulated blood samples and was 30 CFU/g for the simulated stool samples, all of which were 10-fold more sensitive than the rRT-PCR method. RT-LAMP exhibited improved Salmonella Typhi detection sensitivity compared to culture methods and to rRT-PCR of clinical blood and stool specimens from suspected typhoid fever patients. Because it can be performed without sophisticated equipment or skilled personnel, RT-LAMP is a valuable tool for clinical laboratories in developing countries. This method can be applied in the clinical diagnosis and care of typhoid fever patients as well as for a quick public health response.

  20. Simple Detection Methods for Antinutritive Factor β-ODAP Present in Lathyrus sativus L. by High Pressure Liquid Chromatography and Thin Layer Chromatography.

    PubMed

    Ghosh, Bidisha; Mitra, Joy; Chakraborty, Saikat; Bhattacharyya, Jagannath; Chakraborty, Anirban; Sen, Soumitra Kumar; Neerathilingam, Muniasamy

    2015-01-01

    Lathyrus sativus L. (Grass pea) is the source for cheap and nutritious food choice in drought and famine susceptible zones in greater part of North India and Africa. The non-protein amino acid β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP) has been known for decades for its potent neurotoxic effect, causing irreversible neurodegenerative disease "neurolathyrism", present in both seed and leaf of Lathyrus sativus L. and other species in varying proportions. It is crucial to establish a rapid as well as reliable detection methodology for β-ODAP content in various Lathyrus plants. Currently available HPLC based methods involve multi-step derivatization of the sample. To overcome this, we have developed β-ODAP analysis method by HPLC without any prior derivatization. This method is statistically significant in the range of 2 to 100μg/ml and exhibited linear response with r2 > 0.99. Limit of detection and quantitation of the later method was determined to be 5.56 μg/ml and 16.86 μg/ml, respectively. In addition to this, a TLC based method has also been developed. The limit of detection of β-ODAP is 0.6μg and for its substrate, L-1,2-diaminopropionic acid is 5μg. Both HPLC and TLC methods were validated by conducting in-vitro bioconversion test to detect the presence of biocatalyst in plant extract. This method is economical, rapid and simple.

  1. Paper-based microfluidic sensing device for label-free immunoassay demonstrated by biotin-avidin binding interaction.

    PubMed

    Lei, Kin Fong; Yang, Shih-I; Tsai, Shiao-Wen; Hsu, Hsiao-Ting

    2015-03-01

    Efficient diagnosis is very important for the prevention and treatment of diseases. Rapid disease screening in ambulatory environment is one of the most pressing needs for disease control. Despite there are many methods to detect the results of immunoassays, quantitative measurement for rapid disease screening is still a great challenge for point-of-care applications. In this study, a fabrication method for depositing carbon nanotube bundles has been successfully developed for realization of functional paper-based microfluidic sensing device. Quantitative detection of label-free immunoassay, i.e., biotin-avidin binding interaction, was demonstrated by direct measurement of the current change of the biosensor after single application of the target analyte. Sensitivity of 0.33 μA/ng mL(-1) and minimal detectable analyte concentration of 25 ng/mL were achieved. The time necessary for the detection was 500 s which is a large reduction compared with the conventional immunoassay. Such paper-based biosensor has the benefits of portability, fast response, simple operation, and low cost and has the potential for the development of rapid disease screening devices. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica.

    PubMed

    Hemadi, Ahmad; Ekrami, Alireza; Oormazdi, Hormozd; Meamar, Ahmad Reza; Akhlaghi, Lame; Samarbaf-Zadeh, Ali Reza; Razmjou, Elham

    2015-05-01

    Rapid detection of Entamoeba histolytica based on fluorescent silica nanoparticle (FSNP) indirect immunofluorescence microscopy was evaluated. Silica nanoparticles were synthesized using Stöber's method, with their surface activated to covalently bind to, and immobilize, protein A. For biolabeling, FSNP was added to conjugated E. histolytica trophozoites with monoclonal anti-E. histolytica IgG1 for microscopic observation of fluorescence. Fluorescent silica nanoparticle sensitivity was determined with axenically cultured E. histolytica serially diluted to seven concentrations. Specificity was evaluated using other intestinal protozoa. Fluorescent silica nanoparticles detected E. histolytica at the lowest tested concentration with no cross-reaction with Entamoeba dispar, Entamoeba moshkovskii, Blastocystis sp., or Giardia lamblia. Visualization of E. histolytica trophozoites with anti-E. histolytica antibody labeled with fluorescein isothiocyanate (FITC) was compared with that using anti-E. histolytica antibody bioconjugated FSNP. Although FITC and FSNP produced similar results, the amount of specific antibody required for FITC to induce fluorescence of similar intensity was fivefold that for FSNP. Fluorescent silica nanoparticles delivered a rapid, simple, cost-effective, and highly sensitive and specific method of detecting E. histolytica. Further study is needed before introducing FSNP for laboratory diagnosis of amoebiasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering.

    PubMed

    Zhang, Yuanyuan; Yu, Wansong; Pei, Lu; Lai, Keqiang; Rasco, Barbara A; Huang, Yiqun

    2015-02-15

    Surface-enhanced resonance Raman scattering (SERRS) coupled with gold nanospheres was applied for rapid analysis of the hazardous substances malachite green (MG) and leucomalachite green (LMG) in fish muscle tissues. The lowest concentration of MG that could be detected was 0.5ngmL(-1) with high linear correlation (R(2)=0.970-0.998) between MG concentration and intensities of characteristic Raman peaks. A simplified sample preparation method taking less than 1h for recovering MG and LMG in fish fillets was developed for SERRS analysis, and 4-8 samples could be handled in parallel. MG and LMG could be detected in extracts of tilapia fish fillets at as low as 2ngg(-1) with SERRS and a simple principle component analysis method. For six other fish species, the lowest detectable concentration of MG ranged from 1ngg(-1) to 10ngg(-1). This study provides a new sensitive approach for the detection of trace amounts of the prohibited drugs MG and LMG in muscle food, which has the potential for rapidly screening a large number of samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Gold Nanoparticles as a Direct and Rapid Sensor for Sensitive Analytical Detection of Biogenic Amines

    NASA Astrophysics Data System (ADS)

    El-Nour, K. M. A.; Salam, E. T. A.; Soliman, H. M.; Orabi, A. S.

    2017-03-01

    A new optical sensor was developed for rapid screening with high sensitivity for the existence of biogenic amines (BAs) in poultry meat samples. Gold nanoparticles (GNPs) with particle size 11-19 nm function as a fast and sensitive biosensor for detection of histamine resulting from bacterial decarboxylation of histidine as a spoilage marker for stored poultry meat. Upon reaction with histamine, the red color of the GNPs converted into deep blue. The appearance of blue color favorably coincides with the concentration of BAs that can induce symptoms of poisoning. This biosensor enables a semi-quantitative detection of analyte in real samples by eye-vision. Quality evaluation is carried out by measuring histamine and histidine using different analytical techniques such as UV-vis, FTIR, and fluorescence spectroscopy as well as TEM. A rapid quantitative readout of samples by UV-vis and fluorescence methods with standard instrumentation were proposed in a short time unlike chromatographic and electrophoretic methods. Sensitivity and limit of detection (LOD) of 6.59 × 10-4 and 0.6 μM, respectively, are determined for histamine as a spoilage marker with a correlation coefficient ( R 2) of 0.993.

  5. Multiplex nucleic acid sequence-based amplification for simultaneous detection of several enteric viruses in model ready-to-eat foods.

    PubMed

    Jean, Julie; D'Souza, Doris H; Jaykus, Lee-Ann

    2004-11-01

    Human enteric viruses are currently recognized as one of the most important causes of food-borne disease. Implication of enteric viruses in food-borne outbreaks can be difficult to confirm due to the inadequacy of the detection methods available. In this study, a nucleic acid sequence-based amplification (NASBA) method was developed in a multiplex format for the specific, simultaneous, and rapid detection of epidemiologically relevant human enteric viruses. Three previously reported primer sets were used in a single reaction for the amplification of RNA target fragments of 474, 371, and 165 nucleotides for the detection of hepatitis A virus and genogroup I and genogroup II noroviruses, respectively. Amplicons were detected by agarose gel electrophoresis and confirmed by electrochemiluminescence and Northern hybridization. Endpoint detection sensitivity for the multiplex NASBA assay was approximately 10(-1) reverse transcription-PCR-detectable units (or PFU, as appropriate) per reaction. When representative ready-to-eat foods (deli sliced turkey and lettuce) were inoculated with various concentrations of each virus and processed for virus detection with the multiplex NASBA method, all three human enteric viruses were simultaneously detected at initial inoculum levels of 10(0) to 10(2) reverse transcription-PCR-detectable units (or PFU)/9 cm2 in both food commodities. The multiplex NASBA system provides rapid and simultaneous detection of clinically relevant food-borne viruses in a single reaction tube and may be a promising alternative to reverse transcription-PCR for the detection of viral contamination of foods.

  6. Detection of Peanut Allergen Ara h 6 in Commercially Processed Foods using a Single-Walled Carbon Nanotube-Based Biosensor.

    PubMed

    Sobhan, Abdus; Oh, Jun-Hyun; Park, Mi-Kyung; Lee, Jinyoung

    2018-06-12

    Background : The peanut protein Arachis hypogaea (Ara h) 6 is one ofthe most serious food allergens that contributes to food-related, life-threatening problems worldwide. The extremely low allergic dose demands for more selective and rapid methods for detecting Ara h 6. Objective : The goal of this study was to develop a single-walled carbon nanotube (SWCNT)-based biosensor for the rapid detection of Ara h 6 in commercial food products. Methods : The detection principle of this biosensor was based on the binding of Ara h 6 to the anti-Ara h 6 antibody (pAb) through 1-pyrenibutanoic acid succinimidyl ester. The resistance difference (ΔR) was calculated via linear sweep voltammetry using a potentiostat. Results : The ∆R increased as the Ara h 6 concentrations increased above the range of 10 0 -10 7 pg/L. A specificity analysis showed that the anti-Ara h 6 pAb selectively interacted with Ara h 6 molecules in the buffer solution (pH 7.4). Conclusions : This research proposes that an SWCNT-based biosensor in self-assembly with antibodies could be an effective tool for the rapid detection of allergen proteins in food. Highlights : The developed biosensor exhibited higher sensitivity and selectivity. Application studies resulted in precise Ara h 6 detection in peanut-containing processed food.

  7. Detection of respiratory viruses and bacteria in children using a twenty-two target reverse-transcription real-time PCR (RT-qPCR) panel.

    PubMed

    Ellis, Chelsey; Misir, Amita; Hui, Charles; Jabbour, Mona; Barrowman, Nicholas; Langill, Jonathan; Bowes, Jennifer; Slinger, Robert

    2016-05-01

    Rapid detection of the wide range of viruses and bacteria that cause respiratory infection in children is important for patient care and antibiotic stewardship. We therefore designed and evaluated a ready-to-use 22 target respiratory infection reverse-transcription real-time polymerase chain reaction (RT-qPCR) panel to determine if this would improve detection of these agents at our pediatric hospital. RT-qPCR assays for twenty-two target organisms were dried-down in individual wells of 96 well plates and saved at room temperature. Targets included 18 respiratory viruses and 4 bacteria. After automated nucleic acid extraction of nasopharyngeal aspirate (NPA) samples, rapid qPCR was performed. RT-qPCR results were compared with those obtained by the testing methods used at our hospital laboratories. One hundred fifty-nine pediatric NPA samples were tested with the RT-qPCR panel. One or more respiratory pathogens were detected in 132/159 (83%) samples. This was significantly higher than the detection rate of standard methods (94/159, 59%) (P<0.001). This difference was mainly due to improved RT-qPCR detection of rhinoviruses, parainfluenza viruses, bocavirus, and coronaviruses. The panel internal control assay performance remained stable at room temperature storage over a two-month testing period. The RT-qPCR panel was able to identify pathogens in a high proportion of respiratory samples. The panel detected more positive specimens than the methods in use at our hospital. The pre-made panel format was easy to use and rapid, with results available in approximately 90 minutes. We now plan to determine if use of this panel improves patient care and antibiotic stewardship.

  8. A sensitive and innovative detection method for rapid C-reactive proteins analysis based on a micro-fluxgate sensor system

    PubMed Central

    Yang, Zhen; Zhi, Shaotao; Feng, Zhu; Lei, Chong; Zhou, Yong

    2018-01-01

    A sensitive and innovative assay system based on a micro-MEMS-fluxgate sensor and immunomagnetic beads-labels was developed for the rapid analysis of C-reactive proteins (CRP). The fluxgate sensor presented in this study was fabricated through standard micro-electro-mechanical system technology. A multi-loop magnetic core made of Fe-based amorphous ribbon was employed as the sensing element, and 3-D solenoid copper coils were used to control the sensing core. Antibody-conjugated immunomagnetic microbeads were strategically utilized as signal tags to label the CRP via the specific conjugation of CRP to polyclonal CRP antibodies. Separate Au film substrates were applied as immunoplatforms to immobilize CRP-beads labels through classical sandwich assays. Detection and quantification of the CRP at different concentrations were implemented by detecting the stray field of CRP labeled magnetic beads using the newly-developed micro-fluxgate sensor. The resulting system exhibited the required sensitivity, stability, reproducibility, and selectivity. A detection limit as low as 0.002 μg/mL CRP with a linearity range from 0.002 μg/mL to 10 μg/mL was achieved, and this suggested that the proposed biosystem possesses high sensitivity. In addition to the extremely low detection limit, the proposed method can be easily manipulated and possesses a quick response time. The response time of our sensor was less than 5 s, and the entire detection period for CRP analysis can be completed in less than 30 min using the current method. Given the detection performance and other advantages such as miniaturization, excellent stability and specificity, the proposed biosensor can be considered as a potential candidate for the rapid analysis of CRP, especially for point-of-care platforms. PMID:29601593

  9. Rapid method for the determination of 14 isoflavones in food using UHPLC coupled to photo diode array detection.

    PubMed

    Shim, You-Shin; Yoon, Won-Jin; Hwang, Jin-Bong; Park, Hyun-Jin; Seo, Dongwon; Ha, Jaeho

    2015-11-15

    A rapid method for the determination of 14 types of isoflavones in food using ultra-high performance liquid chromatography (UHPLC) was validated in terms of precision, accuracy, sensitivity and linearity. The UHPLC separation was performed on a reverse-phase C18 column (particle size 2 μm, i.d. 2 mm, length 100 mm) using a photo diode array detector that was fixed to 260 nm. The limits of detection and quantification of the UHPLC analyses ranged from 0.03 to 0.33 mg kg(-1). The intra-day and inter-day precision of the individual isoflavones were less than 11.77% and calibration curves exhibited good linearity (r(2) = 0.99) within the tested ranges. These results suggest that the rapid method used in this study could be available to determine of 14 types of isoflavones in a variety of food such as soy bean, black bean, red bean and soybean paste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Convenient Detection of the Citrus Greening (Huanglongbing) Bacterium ‘Candidatus Liberibacter asiaticus’ by Direct PCR from the Midrib Extract

    PubMed Central

    Fujikawa, Takashi; Miyata, Shin-Ichi; Iwanami, Toru

    2013-01-01

    A phloem-limited bacterium, ‘Candidatus Liberibacter asiaticus’ (Las) is a major pathogen of citrus greening (huanglongbing), one of the most destructive citrus diseases worldwide. The rapid identification and culling of infected trees and budwoods in quarantine are the most important control measures. DNA amplification including conventional polymerase chain reaction (PCR) has commonly been used for rapid detection and identification. However, long and laborious procedures for DNA extraction have greatly reduced the applicability of this method. In this study, we found that the Las bacterial cells in the midribs of infected leaves were extracted rapidly and easily by pulverization and centrifugation with mini homogenization tubes. We also found that the Las bacterial cells in the midrib extract were suitable for highly sensitive direct PCR. The performance of direct PCR using this extraction method was not inferior to that of conventional PCR. Thus, the direct PCR method described herein is characterized by its simplicity, sensitivity, and robustness, and is applicable to quarantine testing. PMID:23437295

  11. The impact of commercial rapid respiratory virus diagnostic tests on patient outcomes and health system utilization.

    PubMed

    Ko, Fiona; Drews, Steven J

    2017-10-01

    Acute respiratory tract infections due to influenza A/B and respiratory syncytial virus (RSV) are major causes of morbidity and mortality globally. Rapid tests for detection of these pathogens include antigen detection point of care tests (POC) and newer easy to use molecular tests. From experience, these assays improve both laboratory workflow and assay interpretation issues. However, the question of the benefits of using rapid test technology compared to routine laboratory testing for respiratory viral pathogens is still often asked. Areas covered: Specifically, this review aims to; 1) identify clinical/patient indicators that can be measured prior to and following the implementation of rapid diagnostic test for influenza and RSV, 2) provide multiple perspectives on the extent of impact of a rapid diagnostic test, including direct and indirect outcomes, and 3) identify the technological advancements in the development of rapid testing, demonstrating a timeline that transitions from antigen-based assays to molecular assays. Expert commentary: Key benefits to the use of either antigen-based or molecular rapid tests for patient care, patient flow within institutions, as well as laboratory utilization are identified. Due to improved test characteristics, the authors feel that rapid molecular tests have greater benefits than antigen-based detection methods.

  12. An intelligent detection method for high-field asymmetric waveform ion mobility spectrometry.

    PubMed

    Li, Yue; Yu, Jianwen; Ruan, Zhiming; Chen, Chilai; Chen, Ran; Wang, Han; Liu, Youjiang; Wang, Xiaozhi; Li, Shan

    2018-04-01

    In conventional high-field asymmetric waveform ion mobility spectrometry signal acquisition, multi-cycle detection is time consuming and limits somewhat the technique's scope for rapid field detection. In this study, a novel intelligent detection approach has been developed in which a threshold was set on the relative error of α parameters, which can eliminate unnecessary time spent on detection. In this method, two full-spectrum scans were made in advance to obtain the estimated compensation voltage at different dispersion voltages, resulting in a narrowing down of the whole scan area to just the peak area(s) of interest. This intelligent detection method can reduce the detection time to 5-10% of that of the original full-spectrum scan in a single cycle.

  13. The generation of monoclonal antibodies and their use in rapid diagnostic tests

    USDA-ARS?s Scientific Manuscript database

    Antibodies are the most important component of an immunoassay. In these proceedings we outline novel methods used to generate and select monoclonal antibodies that meet performance criteria for use in rapid lateral flow and microfluidic immunoassay tests for the detection of agricultural pathogens ...

  14. Rapid pretreatment and detection of trace aflatoxin B1 in traditional soybean sauce.

    PubMed

    Xie, Fang; Lai, WeiHua; Saini, Jasdeep; Shan, Shan; Cui, Xi; Liu, DaoFeng

    2014-05-01

    Soybean sauce, a traditional fermented food in China, has different levels of aflatoxin B1 pollution. Two kinds of direct and indirect immunomagnetic bead methods for the pretreatment of aflatoxin B1 were evaluated in this work. A method was established to detect aflatoxin B1 in soybean sauce using an immunomagnetic bead system for pretreatment and ELISA for quantification. The pretreatment method of immunomagnetic beads performed better compared with the conventional extraction and immunoaffinity column method. ELISA exhibited a good linear relationship at an aflatoxin B1 concentration of 0.05-0.3μg/kg (r(2)=0.9842). The average recoveries across spike levels varied from 0.5 to 7μg/kg were 83.6-104% with a relative standard deviation between 4.2% and 11.7%. With the advantages of rapid detection, easy operation, simple equipment, sensitivity, accuracy, and high recovery; this method can be well applied in the trace determination of aflatoxin B1 in soybean sauce samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Rapid gas chromatography with flame photometric detection of multiple organophosphorus pesticides in Salvia miltiorrhizae after ultrasonication assisted one-step extraction.

    PubMed

    Zhang, Shanshan; Liu, Xiaofei; Qin, Jia'an; Yang, Meihua; Zhao, Hongzheng; Wang, Yong; Guo, Weiying; Ma, Zhijie; Kong, Weijun

    2017-11-15

    A simple and rapid gas chromatography-flame photometric detection (GC-FPD) method was developed for the determination of 12 organophosphorus pesticides (OPPs) in Salvia miltiorrhizae by using ultrasonication assisted one-step extraction (USAE) without any clean-up steps. Some crucial parameters such as type of extraction solvent were optimized to improve the method performance for trace analysis. Any clean-up steps were negligent as no interferences were detected in the GC-FPD chromatograms for sensitive detection. Under the optimized conditions, limits of detection (LODs) and quantitation (LOQs) for all pesticides were in the range of 0.001-0.002mg/kg and 0.002-0.01mg/kg and 0.002-0.01mg/kg, respectively, which were all below the regulatory maximum residue limits suggested. RSDs for method precision (intra- and inter-day variations) were lower than 6.8% in approval with international regulations. Average recovery rates for all pesticides at three fortification levels (0.5, 1.0 and 5.0mg/kg) were in the range of 71.2-101.0% with relative standard deviations (RSDs) <13%. The developed method was evaluated for its feasibility in the simultaneous pre-concentration and determination of 12 OPPs in 32 batches of real S. miltiorrhizae samples. Only one pesticide (dimethoate) out of the 12 targets was simultaneously detected in four samples at concentrations of 0.016-0.02mg/kg. Dichlorvos and omethoate were found in the same sample from Sichuan province at 0.004 and 0.027mg/kg, respectively. Malathion and monocrotophos were determined in the other two samples at 0.014 and 0.028mg/kg, respectively. All the positive samples were confirmed by LC-MS/MS. The simple, reliable and rapid USAE-GC-FPD method with many advantages over traditional techniques would be preferred for trace analysis of multiple pesticides in more complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Exploration of the metal coordination region of concanavalin A for its interaction with human norovirus.

    PubMed

    Kim, Duwoon; Lee, Hee-Min; Oh, Kyung-Seo; Ki, Ah Young; Protzman, Rachael A; Kim, Dongkyun; Choi, Jong-Soon; Kim, Min Ji; Kim, Sung Hyun; Vaidya, Bipin; Lee, Seung Jae; Kwon, Joseph

    2017-06-01

    Rapid methods for the detection and clinical treatment of human norovirus (HuNoV) are needed to control foodborne disease outbreaks, but reliable techniques that are fast and sensitive enough to detect small amounts of HuNoV in food and aquatic environments are not yet available. We explore the interactions between HuNoV and concanavalin A (Con A), which could facilitate the development of a sensitive detection tool for HuNoV. Biophysical studies including hydrogen/deuterium exchange (HDX) mass spectrometry and surface plasmon resonance (SPR) revealed that when the metal coordinated region of Con A, which spans Asp16 to His24, is converted to nine alanine residues (mCon A MCR ), the affinity for HuNoV (GII.4) diminishes, demonstrating that this Ca 2+ and Mn 2+ coordinated region is responsible for the observed virus-protein interaction. The mutated carbohydrate binding region of Con A (mCon A CBR ) does not affect binding affinity significantly, indicating that MCR of Con A is a major region of interaction to HuNoV (GII.4). The results further contribute to the development of a HuNoV concentration tool, Con A-immobilized polyacrylate beads (Con A-PAB), for rapid detection of genotypes from genogroups I and II (GI and GII). This method offers many advantages over currently available methods, including a short concentration time. HuNov (GI and GII) can be detected in just 15 min with 90% recovery through Con A-PAB application. In addition, this method can be used over a wide range of pH values (pH 3.0 - 10.0). Overall, this rapid and sensitive detection of HuNoV (GI and GII) will aid in the prevention of virus transmission pathways, and the method developed here may have applicability for other foodborne viral infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Recombinase polymerase amplification combined with a lateral flow dipstick for rapid and visual detection of Schistosoma japonicum.

    PubMed

    Sun, Kui; Xing, Weiwei; Yu, Xinling; Fu, Wenliang; Wang, Yuanyuan; Zou, Minji; Luo, Zhihong; Xu, Donggang

    2016-08-31

    With the continuous decline in prevalence and intensity of Schistosoma japonicum infection in China, more accurate and sensitive methods suitable for field detection become much needed for schistosomiasis control. Here, a novel rapid and visual detection method based on the combination of recombinase polymerase amplification (RPA) and lateral flow dipstick (LFD) was developed to detect S. japonicum DNA in fecal samples. The LFD-RPA assay targeting SjR2 could detect 5 fg S. japonicum DNA, which was identical to qPCR and real-time RPA assay, and showed no cross-reaction with other parasites. The detection could be finished within 15-20 min at a wide temperature range (25-45 °C), and the results could be visualized by naked eye. The diagnostic validity of LFD-RPA assay was further assessed with 14 fecal samples of infected patients diagnosed by Kato-Katz method and 31 fecal samples of healthy persons, and compared with that of Enzyme-linked immunosorbent assay (ELSIA) and Indirect Hemagglutination Assay (IHA). The LFD-RPA assay showed 92.68 % sensitivity, 100 % specificity and excellent diagnostic agreement with the gold standard Kato-Katz test (k = 0.947, Z = 6.36, P < 0.001), whereas ELISA showed 85.71 % sensitivity, 93.55 % specificity, and substantial diagnostic agreement (k = 0.793, Z = 5.31, P < 0.001), and IHA showed 78.57 % sensitivity, 83.87 % specificity, and moderate diagnostic agreement (k = 0.600, Z = 4.05, P < 0.001), indicating that the LFD-RPA was much better than the traditional methods. The LFD-RPA assay established by us is a sensitive, specific, rapid and convenient method for the diagnosis of schistosomiasis, and shows a great potency in field application.

  18. Evaluation of Novel Broad-Range Real-Time PCR Assay for Rapid Detection of Human Pathogenic Fungi in Various Clinical Specimens▿

    PubMed Central

    Vollmer, Tanja; Störmer, Melanie; Kleesiek, Knut; Dreier, Jens

    2008-01-01

    In the present study, a novel broad-range real-time PCR was developed for the rapid detection of human pathogenic fungi. The assay targets a part of the 28S large-subunit ribosomal RNA (rDNA) gene. We investigated its application for the most important human pathogenic fungal genera, including Aspergillus, Candida, Cryptococcus, Mucor, Penicillium, Pichia, Microsporum, Trichophyton, and Scopulariopsis. Species were identified in PCR-positive reactions by direct DNA sequencing. A noncompetitive internal control was applied to prevent false-negative results due to PCR inhibition. The minimum detection limit for the PCR was determined to be one 28S rDNA copy per PCR, and the 95% detection limit was calculated to 15 copies per PCR. To assess the clinical applicability of the PCR method, intensive-care patients with artificial respiration and patients with infective endocarditis were investigated. For this purpose, 76 tracheal secretion samples and 70 heart valve tissues were analyzed in parallel by real-time PCR and cultivation. No discrepancies in results were observed between PCR analysis and cultivation methods. Furthermore, the application of the PCR method was investigated for other clinical specimens, including cervical swabs, nail and horny skin scrapings, and serum, blood, and urine samples. The combination of a broad-range real-time PCR and direct sequencing facilitates rapid screening for fungal infection in various clinical specimens. PMID:18385440

  19. Evaluation of novel broad-range real-time PCR assay for rapid detection of human pathogenic fungi in various clinical specimens.

    PubMed

    Vollmer, Tanja; Störmer, Melanie; Kleesiek, Knut; Dreier, Jens

    2008-06-01

    In the present study, a novel broad-range real-time PCR was developed for the rapid detection of human pathogenic fungi. The assay targets a part of the 28S large-subunit ribosomal RNA (rDNA) gene. We investigated its application for the most important human pathogenic fungal genera, including Aspergillus, Candida, Cryptococcus, Mucor, Penicillium, Pichia, Microsporum, Trichophyton, and Scopulariopsis. Species were identified in PCR-positive reactions by direct DNA sequencing. A noncompetitive internal control was applied to prevent false-negative results due to PCR inhibition. The minimum detection limit for the PCR was determined to be one 28S rDNA copy per PCR, and the 95% detection limit was calculated to 15 copies per PCR. To assess the clinical applicability of the PCR method, intensive-care patients with artificial respiration and patients with infective endocarditis were investigated. For this purpose, 76 tracheal secretion samples and 70 heart valve tissues were analyzed in parallel by real-time PCR and cultivation. No discrepancies in results were observed between PCR analysis and cultivation methods. Furthermore, the application of the PCR method was investigated for other clinical specimens, including cervical swabs, nail and horny skin scrapings, and serum, blood, and urine samples. The combination of a broad-range real-time PCR and direct sequencing facilitates rapid screening for fungal infection in various clinical specimens.

  20. Rapid and sensitive multiplex single-tube nested PCR for the identification of five human Plasmodium species.

    PubMed

    Saito, Takahiro; Kikuchi, Aoi; Kaneko, Akira; Isozumi, Rie; Teramoto, Isao; Kimura, Masatsugu; Hirasawa, Noriyasu; Hiratsuka, Masahiro

    2018-06-01

    Malaria is caused by five species of Plasmodium in humans. Microscopy is currently used for pathogen detection, requiring considerable training and technical expertise as the parasites are often difficult to differentiate morphologically. Rapid diagnostic tests are as reliable as microscopy and offer faster diagnoses but possess lower detection limits and are incapable of distinguishing among the parasitic species. To improve global health efforts towards malaria control, a rapid, sensitive, species-specific, and economically viable diagnostic method is needed. In this study, we designed a malaria diagnostic method involving a multiplex single-tube nested PCR targeting Plasmodium mitochondrial cytochrome c oxidase III and single-stranded tag hybridization chromatographic printed-array strip. The detection sensitivity was found to be at least 40 times higher than that of agarose gel electrophoresis with ethidium bromide. This system also enables the identification of both single- and mixed-species malaria infections. The assay was validated with 152 Kenyan samples; using nested PCR as the standard, the assay's sensitivity and specificity were 88.7% and 100.0%, respectively. The turnaround time required, from PCR preparation to signal detection, is 90min. Our method should improve the diagnostic speed, treatment efficacy, and control of malaria, in addition to facilitating surveillance within global malaria eradication programs. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Development of a rapid DNA extraction method and one-step nested PCR for the detection of Naegleria fowleri from the environment.

    PubMed

    Ahmad, Arine Fadzlun; Lonnen, James; Andrew, Peter W; Kilvington, Simon

    2011-10-15

    Naegleria fowleri is a small free-living amoebo-flagellate found in natural and manmade thermal aquatic habitats worldwide. The organism is pathogenic to man causing fatal primary amoebic meningoencephalitis (PAM). Infection typically results from bathing in contaminated water and is usually fatal. It is, therefore, important to identify sites containing N. fowleri in the interests of preventive public health microbiology. Culture of environmental material is the conventional method for the isolation of N. fowleri but requires several days incubation and subsequent biochemical or molecular tests to confirm identification. Here, a nested one-step PCR test, in conjunction with a direct DNA extraction from water or sediment material, was developed for the rapid and reliable detection of N. fowleri from the environment. Here, the assay detected N, fowleri in 18/109 river water samples associated with a nuclear power plant in South West France and 0/10 from a similar site in the UK. Although culture of samples yielded numerous thermophilic free-living amoebae, none were N. fowleri or other thermophilic Naegleria spp. The availability of a rapid, reliable and sensitive one-step nested PCR method for the direct detection of N. fowleri from the environment may aid ecological studies and enable intervention to prevent PAM cases. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  2. Laboratory diagnosis of Chlamydia pneumoniae infections

    PubMed Central

    Peeling, Rosanna W

    1995-01-01

    Chlamydia pneumoniae is an important cause of respiratory illness. There is a need for accurate and rapid laboratory diagnostic methods that will lead to improved patient care, appropriate use of antimicrobial therapy and a better understanding of the epidemiology of this emerging pathogen. Culture is highly specific but is technically demanding, expensive, has a long turnaround time and its sensitivity is highly dependent on transport conditions. Antigen detection tests such as enzyme immunoassay and direct fluorescent antibody assay, and molecular detection methods such as the polymerase chain reaction assay, may provide a rapid diagnosis without the requirement for stringent transport conditions. The results of these tests should be interpreted with caution until more thorough evaluation is available. Serology remains the method of choice. The limitations of different serological methods for the laboratory diagnosis of C pneumoniae are discussed. PMID:22514397

  3. Enhanced Reliability and Accuracy for Field Deployable Bioforensic Detection and Discrimination of Xylella fastidiosa subsp. pauca, Causal Agent of Citrus Variegated Chlorosis Using Razor Ex Technology and TaqMan Quantitative PCR

    PubMed Central

    Fletcher, Jacqueline; Melcher, Ulrich; Ochoa Corona, Francisco Manuel

    2013-01-01

    A reliable, accurate and rapid multigene-based assay combining real time quantitative PCR (qPCR) and a Razor Ex BioDetection System (Razor Ex) was validated for detection of Xylella fastidiosa subsp. pauca (Xfp, a xylem-limited bacterium that causes citrus variegated chlorosis [CVC]). CVC, which is exotic to the United States, has spread through South and Central America and could significantly impact U.S. citrus if it arrives. A method for early, accurate and sensitive detection of Xfp in plant tissues is needed by plant health officials for inspection of products from quarantined locations, and by extension specialists for detection, identification and management of disease outbreaks and reservoir hosts. Two sets of specific PCR primers and probes, targeting Xfp genes for fimbrillin and the periplasmic iron-binding protein were designed. A third pair of primers targeting the conserved cobalamin synthesis protein gene was designed to detect all possible X. fastidiosa (Xf) strains. All three primer sets detected as little as 1 fg of plasmid DNA carrying X. fastidiosa target sequences and genomic DNA of Xfp at as little as 1 - 10 fg. The use of Razor Ex facilitates a rapid (about 30 min) in-field assay capability for detection of all Xf strains, and for specific detection of Xfp. Combined use of three primer sets targeting different genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a field-deployable rapid and reliable bioforensic detection and discrimination method for a bacterial phytopathogen based on multigene targets. PMID:24312333

  4. Enhanced reliability and accuracy for field deployable bioforensic detection and discrimination of Xylella fastidiosa subsp. pauca, causal agent of citrus variegated chlorosis using razor ex technology and TaqMan quantitative PCR.

    PubMed

    Ouyang, Ping; Arif, Mohammad; Fletcher, Jacqueline; Melcher, Ulrich; Ochoa Corona, Francisco Manuel

    2013-01-01

    A reliable, accurate and rapid multigene-based assay combining real time quantitative PCR (qPCR) and a Razor Ex BioDetection System (Razor Ex) was validated for detection of Xylella fastidiosa subsp. pauca (Xfp, a xylem-limited bacterium that causes citrus variegated chlorosis [CVC]). CVC, which is exotic to the United States, has spread through South and Central America and could significantly impact U.S. citrus if it arrives. A method for early, accurate and sensitive detection of Xfp in plant tissues is needed by plant health officials for inspection of products from quarantined locations, and by extension specialists for detection, identification and management of disease outbreaks and reservoir hosts. Two sets of specific PCR primers and probes, targeting Xfp genes for fimbrillin and the periplasmic iron-binding protein were designed. A third pair of primers targeting the conserved cobalamin synthesis protein gene was designed to detect all possible X. fastidiosa (Xf) strains. All three primer sets detected as little as 1 fg of plasmid DNA carrying X. fastidiosa target sequences and genomic DNA of Xfp at as little as 1 - 10 fg. The use of Razor Ex facilitates a rapid (about 30 min) in-field assay capability for detection of all Xf strains, and for specific detection of Xfp. Combined use of three primer sets targeting different genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a field-deployable rapid and reliable bioforensic detection and discrimination method for a bacterial phytopathogen based on multigene targets.

  5. Microlensing observations rapid search for exoplanets: MORSE code for GPUs

    NASA Astrophysics Data System (ADS)

    McDougall, Alistair; Albrow, Michael D.

    2016-02-01

    The rapid analysis of ongoing gravitational microlensing events has been integral to the successful detection and characterization of cool planets orbiting low-mass stars in the Galaxy. In this paper, we present an implementation of search and fit techniques on graphical processing unit (GPU) hardware. The method allows for the rapid identification of candidate planetary microlensing events and their subsequent follow-up for detailed characterization.

  6. Sensitive detection of viable Escherichia coli O157:H7 from foods using a luciferase-reporter phage phiV10lux.

    PubMed

    Kim, Jinwoo; Kim, Minsik; Kim, Seongmi; Ryu, Sangryeol

    2017-08-02

    Escherichia coli O157:H7, a major foodborne pathogen, is a major public health concern associated with life-threatening diseases such as hemolytic uremic syndrome. To alleviate this burden, a sensitive and rapid system is required to detect this pathogen in various kinds of foods. Herein, we propose a phage-based pathogen detection method to replace laborious and time-consuming conventional methods. We engineered an E. coli O157:H7-specific phage phiV10 to rapidly and sensitively detect this notorious pathogen. The luxCDABE operon was introduced into the phiV10 genome and allowed the engineered phage phiV10lux to generate bioluminescence proportional to the number of viable E. coli O157:H7 cells without any substrate addition. The phage phiV10lux was able to detect at least 1CFU/ml of E. coli O157:H7 in a pure culture within 40min after 5h of pre-incubation. In artificially contaminated romaine lettuce, apple juice (pH3.51), and ground beef, the reporter phage could detect approximately 10CFU/cm 2 , 13CFU/ml, and 17CFU/g of E. coli O157:H7, respectively. Taken together, the constructed reporter phage phiV10lux could be applied as a powerful tool for rapid and sensitive detection of live E. coli O157:H7 in foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Detection of periodontal pathogen Porphyromonas gingivalis by loop-mediated isothermal amplification method.

    PubMed

    Maeda, Hiroshi; Kokeguchi, Susumu; Fujimoto, Chiyo; Tanimoto, Ichiro; Yoshizumi, Wakako; Nishimura, Fusanori; Takashiba, Shogo

    2005-02-01

    A method for nucleic acid amplification, loop-mediated isothermal amplification (LAMP) was employed to develop a rapid and simple detection system for periodontal pathogen, Porphyromonas gingivalis. A set of six primers was designed by targeting the 16S ribosomal RNA gene. By the detection system, target DNA was amplified and visualized on agarose gel within 30 min under isothermal condition at 64 degrees C with a detection limit of 20 cells of P. gingivalis. Without gel electrophoresis, the LAMP amplicon was directly visualized in the reaction tube by addition of SYBR Green I for a naked-eye inspection. The LAMP reaction was also assessed by white turbidity of magnesium pyrophosphate (a by-product of LAMP) in the tube. Detection limits of these naked-eye inspections were 20 cells and 200 cells, respectively. Although false-positive DNA amplification was observed from more than 10(7) cells of Porphyromonas endodontalis, no amplification was observed in other five related oral pathogens. Further, quantitative detection of P. gingivalis was accomplished by a real-time monitoring of the LAMP reaction using SYBR Green I with linearity over a range of 10(2)-10(6) cells. The real-time LAMP was then applied to clinical samples of dental plaque and demonstrated almost identical results to the conventional real-time PCR with an advantage of rapidity. These findings indicate the potential usefulness of LAMP for detecting and quantifying P. gingivalis, especially in its rapidity and simplicity.

  8. A rapid screen for four corticosteroids in equine synovial fluid.

    PubMed

    Agrawal, Karan; Ebel, Joseph G; Bischoff, Karyn

    2014-06-01

    Most antidoping method development in the equine industry has been for plasma and urine, though there has been recent interest in the analysis of synovial fluid for evidence of doping by intra-articular corticosteroid injection. Published methods for corticosteroid analysis in synovial fluid are primarily singleplex methods, do not screen for all corticosteroids of interest and are not adequately sensitive. The purpose of this study is to develop a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) screening method for the detection of four of the most common intra-articularly administered corticosteroids--betamethasone, methylprednisolone, methylprednisolone acetate and triamcinolone acetonide. Sample preparation consisted of protein precipitation followed by a basified liquid-liquid extraction. LC-MS-MS experiments consisted of a six-min isocratic separation using a Phenomenex Polar-RP stationary phase and a mobile phase consisting of 35% acetonitrile, 5 mM ammonium acetate and 0.1% formic acid in nanopure water. The detection system used was a triple quadrupole mass analyzer with thermospray ionization, and compounds were identified using selective reaction monitoring. The method was validated to the ISO/IEC 17025 standard, and real synovial fluid samples were analyzed to demonstrate the application of the method in an antidoping context. The method was highly selective for the four corticosteroids with limits of detection of 1-3 ng/mL. The extraction efficiency was 50-101%, and the matrix effects were 14-31%. These results indicate that the method is a rapid and sensitive screen for the four corticosteroids in equine synovial fluid, fit for purpose for equine antidoping assays.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    A new rapid fusion method for the determination of plutonium in large rice samples has been developed at the Savannah River National Laboratory (Aiken, SC, USA) that can be used to determine very low levels of plutonium isotopes in rice. The recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid, reliable radiochemical analyses for radionuclides in environmental and food samples. Public concern regarding foods, particularly foods such as rice in Japan, highlights the need for analytical techniques that will allow very large sample aliquots of rice to be used for analysis so thatmore » very low levels of plutonium isotopes may be detected. The new method to determine plutonium isotopes in large rice samples utilizes a furnace ashing step, a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a column separation process with TEVA Resin cartridges. The method can be applied to rice sample aliquots as large as 5 kg. Plutonium isotopes can be determined using alpha spectrometry or inductively-coupled plasma mass spectrometry (ICP-MS). The method showed high chemical recoveries and effective removal of interferences. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory plutonium particles are effectively digested. The MDA for a 5 kg rice sample using alpha spectrometry is 7E-5 mBq g{sup -1}. The method can easily be adapted for use by ICP-MS to allow detection of plutonium isotopic ratios.« less

  10. Evaluation of Non-convective Wind Forecasting Methods in the 15th Operational Weather Squadron Area of Responsibility

    DTIC Science & Technology

    2012-03-01

    Planetary Boundary Layer POD—Probability of Detection RCA—Rossby Centre Regional Atmospheric Model RMSE—Root Mean Square Error RUC—Rapid Update Cycle SWW...SIGNIFICANCE ....................................1  B.  NON-CONVECTIVE WINDS DEFINITIONS AND THRESHOLDS ......4  C .  METEOROLOGY ASSOCIATED WITH NON-CONVECTIVE...19  B.  RESULTS FROM PREVIOUS STUDIES ON THE WGE METHOD ....21  C .  RAPID UPDATE CYCLE (RUC) EMPIRICAL METHOD .....................25  III.  DATA AND

  11. Microfluidic biosensor for β-Hydroxybutyrate (βHBA) determination of subclinical ketosis diagnosis.

    PubMed

    Weng, Xuan; Zhao, Wenting; Neethirajan, Suresh; Duffield, Todd

    2015-02-12

    Determination of β-hydroxybutyrate (βHBA) is a gold standard for diagnosis of Subclinical Ketosis (SCK), a common disease in dairy cows that causes significant economic loss. Early detection of SCK can help reduce the risk of the disease progressing into clinical stage, thus minimizing economic losses on dairy cattle. Conventional laboratory methods are time consuming and labor-intensive, requiring expensive and bulky equipment. Development of portable and robust devices for rapid on-site SCK diagnosis is an effective way to prevent and control ketosis and can significantly aid in the management of dairy animal health. Microfluidic technology provides a rapid, cost-effective way to develop handheld devices for on-farm detection of sub-clinical ketosis. In this study, a highly sensitive microfluidics-based biosensor for on-site SCK diagnosis has been developed. A rapid, low-cost microfluidic biosensor with high sensitivity and specificity was developed for SCK diagnosis. Determination of βHBA was employed as the indicator in the diagnosis of SCK. On-chip detection using miniaturized and cost-effective optical sensor can be finished in 1 minute with a detection limit of 0.05 mM concentration. Developed microfluidic biosensor was successfully tested with the serum samples from dairy cows affected by SCK. The results of the developed biosensor agreed well with two other laboratory methods. The biosensor was characterized by high sensitivity and specificity towards βHBA with a detection limit of 0.05 mM. The developed microfluidic biosensor provides a promising prototype for a cost-effective handheld meter for on-site SCK diagnosis. By using microfluidic method, the detection time is significantly decreased compared to other laboratory methods. Here, we demonstrate a field-deployable device to precisely identify and measure subclinical ketosis by specific labeling and quantification of β-hydroxybutyate in cow blood samples. A real-time on-site detection system will maximize convenience for the farmers.

  12. Development of loop-mediated isothermal amplification assay for specific and rapid detection of differential goat pox virus and sheep pox virus.

    PubMed

    Zhao, Zhixun; Fan, Bin; Wu, Guohua; Yan, Xinmin; Li, Yingguo; Zhou, Xiaoli; Yue, Hua; Dai, Xueling; Zhu, Haixia; Tian, Bo; Li, Jian; Zhang, Qiang

    2014-01-17

    Capripox viruses are economically important pathogens in goat and sheep producing areas of the world, with specific focus on goat pox virus (GTPV), sheep pox virus (SPPV) and the Lumpy Skin Disease virus (LSDV). Clinically, sheep pox and goat pox have the same symptoms and cannot be distinguished serologically. This presents a real need for a rapid, inexpensive, and easy to operate and maintain genotyping tool to facilitate accurate disease diagnosis and surveillance for better management of Capripox outbreaks. A LAMP method was developed for the specific differential detection of GTPV and SPPV using three sets of LAMP primers designed on the basis of ITR sequences. Reactions were performed at 62°C for either 45 or 60 min, and specificity confirmed by successful differential detection of several GTPV and SPPV isolates. No cross reactivity with Orf virus, foot-and-mouth disease virus (FMDV), A. marginale Lushi isolate, Mycoplasma mycoides subsp. capri, Chlamydophila psittaci, Theileria ovis, T. luwenshuni, T. uilenbergi or Babesia sp was noted. RFLP-PCR analysis of 135 preserved epidemic materials revealed 48 samples infected with goat pox and 87 infected with sheep pox, with LAMP test results showing a positive detection for all samples. When utilizing GTPV and SPPV genomic DNA, the universal LAMP primers (GSPV) and GTPV LAMP primers displayed a 100% detection rate; while the SPPV LAMP detection rate was 98.8%, consistent with the laboratory tested results. In summary, the three sets of LAMP primers when combined provide an analytically robust method able to fully distinguish between GTPV and SPPV. The presented LAMP method provides a specific, sensitive and rapid diagnostic tool for the distinction of GTPV and SPPV infections, with the potential to be standardized as a detection method for Capripox viruses in endemic areas.

  13. Detection of Legume Protease Inhibitors by the Gel-X-ray Film Contact Print Technique

    ERIC Educational Resources Information Center

    Mulimani, Veerappa H.; Sudheendra, Kulkarni; Giri, Ashok P.

    2002-01-01

    Redgram (Cajanus cajan L.) extracts have been analyzed for the protease inhibitors using a new, sensitive, simple, and rapid method for detection of electrophoretically separated protease inhibitors. The detection involves equilibrating the gel successively in the protease assay buffer and protease solution, rinsing the gel in assay buffer, and…

  14. Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode.

    PubMed

    Ye, Yongkang; Ju, Huangxian

    2005-11-15

    A method for rapid sensitive detection of DNA or RNA was designed using a composite screen-printed carbon electrode modified with multi-walled carbon nanotubes (MWNTs). MWNTs showed catalytic characteristics for the direct electrochemical oxidation of guanine or adenine residues of signal strand DNA (ssDNA) and adenine residues of RNA, leading to indicator-free detection of ssDNA and RNA concentrations. With an accumulation time of 5 min, the proposed method could be used for detection of calf thymus ssDNA ranging from 17.0 to 345 microg ml(-1) with a detection limit of 2.0 microg ml(-1) at 3 sigma and yeast tRNA ranging from 8.2 microg ml(-1) to 4.1 mg ml(-1). AC impedance was employed to characterize the surface of modified electrodes. The advantages of convenient fabrication, low-cost detection, short analysis time and combination with nanotechnology for increasing the sensitivity made the subject worthy of special emphasis in the research programs and sources of new commercial products.

  15. Rapid Detection and Identification of Human Hookworm Infections through High Resolution Melting (HRM) Analysis

    PubMed Central

    Ngui, Romano; Lim, Yvonne A. L.; Chua, Kek Heng

    2012-01-01

    Background Hookworm infections are still endemic in low and middle income tropical countries with greater impact on the socioeconomic and public health of the bottom billion of the world's poorest people. In this study, a real-time polymerase chain reaction (PCR) coupled with high resolution melting-curve (HRM) analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on the five human hookworm species. Methods Real-time PCR coupled with HRM analysis targeting the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA as the genetic marker was used to identify and distinguish hookworm species in human samples. Unique and distinct characteristics of HRM patterns were produced for each of the five hookworm species. The melting curves were characterized by peaks of 79.24±0.05°C and 83.00±0.04°C for Necator americanus, 79.12±0.10°C for Ancylostoma duodenale, 79.40±0.10°C for Ancylostoma ceylanicum, 79.63±0.05°C for Ancylostoma caninum and 79.70±0.14°C for Ancylostoma braziliense. An evaluation of the method's sensitivity and specificity revealed that this assay was able to detect as low as 0.01 ng/µl hookworm DNA and amplification was only recorded for hookworm positive samples. Conclusion The HRM assay developed in this study is a rapid and straightforward method for the diagnosis, identification and discrimination of five human hookworms. This assay is simple compared to other probe-based genotyping methods as it does not require multiplexing, DNA sequencing or post-PCR processing. Therefore, this method offers a new alternative for rapid detection of human hookworm species. PMID:22844538

  16. Bioluminescence methods for enzymatic determinations

    DOEpatents

    Bostick, William D.; Denton, Mark S.; Dinsmore, Stanley R.

    1982-01-01

    An enzymatic method for continuous, on-line and rapid detection of diagnostically useful biomarkers, which are symptomatic of disease or trauma-related tissue damage, is disclosed. The method is characterized by operability on authentic samples of complex biological fluids which contain the biomarkers.

  17. One-Step Immunochromatography Assay Kit for Detecting Antibodies to Canine Parvovirus

    PubMed Central

    Oh, Jin-Sik; Ha, Gun-Woo; Cho, Young-Shik; Kim, Min-Jae; An, Dong-Jun; Hwang, Kyu-Kye; Lim, Yoon-Kyu; Park, Bong-Kyun; Kang, BoKyu; Song, Dae-Sub

    2006-01-01

    This study was performed to determine the feasibility of using whole serum to detect antibodies to canine parvovirus (CPV) under nonlaboratory conditions and to evaluate the performance characteristics of an immunochromatography assay kit. Precise detection of levels of antibody against CPV in puppies can be used to determine a vaccination schedule, because maternal antibodies frequently result in the failure of protective vaccination, and can also be used to determine the antibody levels of infected puppies. Several methods for the titration of CPV antibodies have been reported, including the hemagglutination inhibition (HI) assay, which is considered the “gold standard.” These methods, however, require intricate and time-consuming procedures. In this study, a total of 386 serum specimens were tested. Compared to the HI assay, the rapid assay had a 97.1% sensitivity and a 76.6% specificity (with a cutoff HI titer of 1:80). This single-step assay could be performed rapidly and easily without special equipment. The kit provides a reliable method for detection of anti-CPV antibody where laboratory support and personnel are limited. PMID:16603622

  18. One-step immunochromatography assay kit for detecting antibodies to canine parvovirus.

    PubMed

    Oh, Jin-Sik; Ha, Gun-Woo; Cho, Young-Shik; Kim, Min-Jae; An, Dong-Jun; Hwang, Kyu-Kye; Lim, Yoon-Kyu; Park, Bong-Kyun; Kang, BoKyu; Song, Dae-Sub

    2006-04-01

    This study was performed to determine the feasibility of using whole serum to detect antibodies to canine parvovirus (CPV) under nonlaboratory conditions and to evaluate the performance characteristics of an immunochromatography assay kit. Precise detection of levels of antibody against CPV in puppies can be used to determine a vaccination schedule, because maternal antibodies frequently result in the failure of protective vaccination, and can also be used to determine the antibody levels of infected puppies. Several methods for the titration of CPV antibodies have been reported, including the hemagglutination inhibition (HI) assay, which is considered the "gold standard." These methods, however, require intricate and time-consuming procedures. In this study, a total of 386 serum specimens were tested. Compared to the HI assay, the rapid assay had a 97.1% sensitivity and a 76.6% specificity (with a cutoff HI titer of 1:80). This single-step assay could be performed rapidly and easily without special equipment. The kit provides a reliable method for detection of anti-CPV antibody where laboratory support and personnel are limited.

  19. Subliminal Salience Search Illustrated: EEG Identity and Deception Detection on the Fringe of Awareness

    PubMed Central

    Bowman, Howard; Filetti, Marco; Janssen, Dirk; Su, Li; Alsufyani, Abdulmajeed; Wyble, Brad

    2013-01-01

    We propose a novel deception detection system based on Rapid Serial Visual Presentation (RSVP). One motivation for the new method is to present stimuli on the fringe of awareness, such that it is more difficult for deceivers to confound the deception test using countermeasures. The proposed system is able to detect identity deception (by using the first names of participants) with a 100% hit rate (at an alpha level of 0.05). To achieve this, we extended the classic Event-Related Potential (ERP) techniques (such as peak-to-peak) by applying Randomisation, a form of Monte Carlo resampling, which we used to detect deception at an individual level. In order to make the deployment of the system simple and rapid, we utilised data from three electrodes only: Fz, Cz and Pz. We then combined data from the three electrodes using Fisher's method so that each participant was assigned a single p-value, which represents the combined probability that a specific participant was being deceptive. We also present subliminal salience search as a general method to determine what participants find salient by detecting breakthrough into conscious awareness using EEG. PMID:23372697

  20. PCR-based Methodologies Used to Detect and Differentiate the Burkholderia pseudomallei complex: B. pseudomallei, B. mallei, and B. thailandensis.

    PubMed

    Lowe, Woan; March, Jordon K; Bunnell, Annette J; O'Neill, Kim L; Robison, Richard A

    2014-01-01

    Methods for the rapid detection and differentiation of the Burkholderia pseudomallei complex comprising B. pseudomallei, B. mallei, and B. thailandensis, have been the topic of recent research due to the high degree of phenotypic and genotypic similarities of these species. B. pseudomallei and B. mallei are recognized by the CDC as tier 1 select agents. The high mortality rates of glanders and melioidosis, their potential use as bioweapons, and their low infectious dose, necessitate the need for rapid and accurate detection methods. Although B. thailandensis is generally avirulent in mammals, this species displays very similar phenotypic characteristics to that of B. pseudomallei. Optimal identification of these species remains problematic, due to the difficulty in developing a sensitive, selective, and accurate assay. The development of PCR technologies has revolutionized diagnostic testing and these detection methods have become popular due to their speed, sensitivity, and accuracy. The purpose of this review is to provide a comprehensive overview and evaluation of the advancements in PCR-based detection and differentiation methodologies for the B. pseudomallei complex, and examine their potential uses in diagnostic and environmental testing.

  1. Strain-Level Metagenomic Analysis of the Fermented Dairy Beverage Nunu Highlights Potential Food Safety Risks

    PubMed Central

    Walsh, Aaron M.; Crispie, Fiona; Daari, Kareem; O'Sullivan, Orla; Martin, Jennifer C.; Arthur, Cornelius T.; Claesson, Marcus J.; Scott, Karen P.

    2017-01-01

    ABSTRACT The rapid detection of pathogenic strains in food products is essential for the prevention of disease outbreaks. It has already been demonstrated that whole-metagenome shotgun sequencing can be used to detect pathogens in food but, until recently, strain-level detection of pathogens has relied on whole-metagenome assembly, which is a computationally demanding process. Here we demonstrated that three short-read-alignment-based methods, i.e., MetaMLST, PanPhlAn, and StrainPhlAn, could accurately and rapidly identify pathogenic strains in spinach metagenomes that had been intentionally spiked with Shiga toxin-producing Escherichia coli in a previous study. Subsequently, we employed the methods, in combination with other metagenomics approaches, to assess the safety of nunu, a traditional Ghanaian fermented milk product that is produced by the spontaneous fermentation of raw cow milk. We showed that nunu samples were frequently contaminated with bacteria associated with the bovine gut and, worryingly, we detected putatively pathogenic E. coli and Klebsiella pneumoniae strains in a subset of nunu samples. Ultimately, our work establishes that short-read-alignment-based bioinformatics approaches are suitable food safety tools, and we describe a real-life example of their utilization. IMPORTANCE Foodborne pathogens are responsible for millions of illnesses each year. Here we demonstrate that short-read-alignment-based bioinformatics tools can accurately and rapidly detect pathogenic strains in food products by using shotgun metagenomics data. The methods used here are considerably faster than both traditional culturing methods and alternative bioinformatics approaches that rely on metagenome assembly; therefore, they can potentially be used for more high-throughput food safety testing. Overall, our results suggest that whole-metagenome sequencing can be used as a practical food safety tool to prevent diseases or to link outbreaks to specific food products. PMID:28625983

  2. Loop-Mediated Isothermal Amplification for Detection of Endogenous Sad1 Gene in Cotton: An Internal Control for Rapid Onsite GMO Testing.

    PubMed

    Singh, Monika; Bhoge, Rajesh K; Randhawa, Gurinderjit

    2018-04-20

    Background : Confirming the integrity of seed samples in powdered form is important priorto conducting a genetically modified organism (GMO) test. Rapid onsite methods may provide a technological solution to check for genetically modified (GM) events at ports of entry. In India, Bt cotton is the commercialized GM crop with four approved GM events; however, 59 GM events have been approved globally. GMO screening is required to test for authorized GM events. The identity and amplifiability of test samples could be ensured first by employing endogenous genes as an internal control. Objective : A rapid onsite detection method was developed for an endogenous reference gene, stearoyl acyl carrier protein desaturase ( Sad1 ) of cotton, employing visual and real-time loop-mediated isothermal amplification (LAMP). Methods : The assays were performed at a constant temperature of 63°C for 30 min for visual LAMP and 62ºC for 40 min for real-time LAMP. Positive amplification was visualized as a change in color from orange to green on addition of SYBR ® Green or detected as real-time amplification curves. Results : Specificity of LAMP assays was confirmed using a set of 10 samples. LOD for visual LAMP was up to 0.1%, detecting 40 target copies, and for real-time LAMP up to 0.05%, detecting 20 target copies. Conclusions : The developed methods could be utilized to confirm the integrity of seed powder prior to conducting a GMO test for specific GM events of cotton. Highlights : LAMP assays for the endogenous Sad1 gene of cotton have been developed to be used as an internal control for onsite GMO testing in cotton.

  3. Evaluation of an inhouse rapid ELISA test for detection of giardia in domestic sheep (Ovis aries).

    PubMed

    Wilson, Jolaine M; Hankenson, F Claire

    2010-11-01

    Sheep (Ovis aries) are increasingly used at our institution as models of human disease. Within the research environment, routine husbandry and handling of sheep has potential for transmission of zoonotic agents, including Giardia. The prevalence of Giardia in sheep may approach 68%. Classic diagnostic testing involves microscopic examination for fecal cysts or trophozoites; however, limitations of microscopy include time, labor, and potential false-negative results due to intermittent shedding. We wished to determine whether a commercial rapid ELISA used for Giardia detection in dogs and cats could be used in sheep. Fecal samples collected from sheep (n = 93) were tested with a combination of 6 methods: reference laboratory fecal flotation, reference laboratory ELISA, inhouse fecal flotation, and commercially available tests (enzyme immunoassay, direct fluorescence antibody assay, and rapid ELISA). Prevalence of Giardia infection in facility sheep was 11.8% (11 of 93 animals). Of the 11 samples considered positive, 3 were confirmed by multiple testing methods, and 5 were positive by microscopy alone. Inhouse fecal flotation for 8 samples was positive on only 1 of 2 consecutive testing days. The rapid ELISA test exhibited 0% sensitivity for sheep giardiasis. Overall, the examined methods had low sensitivities and low positive predictive values. Despite limitations, microscopic analysis of repeat fecal samples remained the most accurate diagnostic method for ovine giardiasis among the methods tested.

  4. Rapid detection of bacteriophages in starter culture using water-in-oil-in-water emulsion microdroplets.

    PubMed

    Wang, Min S; Nitin, Nitin

    2014-10-01

    Bacteriophage contamination of starter culture and raw material poses a major problem in the fermentation industry. In this study, a rapid detection of lytic phage contamination in starter culture using water-in-oil-in-water (W/O/W) emulsion microdroplets was described. A model bacteria with varying concentrations of lytic phages were encapsulated in W/O/W emulsion microdroplets using a simple needle-in-tube setup. The detection of lytic phage contamination was accomplished in 1 h using the propidium iodide labeling of the phage-infected bacteria inside the W/O/W emulsion microdroplets. Using this approach, a detection limit of 10(2) PFU/mL of phages was achieved quantitatively, while 10(4) PFU/mL of phages could be detected qualitatively based on visual comparison of the fluorescence images. Given the simplicity and sensitivity of this approach, it is anticipated that this method can be adapted to any strains of bacteria and lytic phages that are commonly used for fermentation, and has potential for a rapid detection of lytic phage contamination in the fermentation industry.

  5. Nanocolloidal gold-based immuno-dip strip assay for rapid detection of Sudan red I in food samples.

    PubMed

    Wang, Jia; Wang, Zhanhui; Liu, Jing; Li, Hao; Li, Qing X; Li, Ji; Xu, Ting

    2013-02-15

    A semiquantitative dip strip assay was developed using nanocolloidal gold-labelled monoclonal antibody (Mab) 8A10 for the rapid detection of Sudan red I in food samples. A protein-Sudan red I conjugate was coated on a nitro cellulose membrane strip in a defined test line. In flow of the complex of nanocolloidal gold labelled-Mab and Sudan red I along the strip, intensive red colour that was formed in the test line reflected the Sudan red I concentration. The test required 10 min and had a visual limit of detection of 10 ng/g Sudan red I in tomato sauce and chilli powder samples. The results of the strip assay agreed well with those of a high performance liquid chromatography method for both spiked and real commercial samples. The strip was stable for at least 2 months at 4°C. The strip assay offers the potential as a useful rapid and simple method for screening of Sudan red I in food samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Rapid test for the detection of hazardous microbiological material

    NASA Astrophysics Data System (ADS)

    Mordmueller, Mario; Bohling, Christian; John, Andreas; Schade, Wolfgang

    2009-09-01

    After attacks with anthrax pathogens have been committed since 2001 all over the world the fast detection and determination of biological samples has attracted interest. A very promising method for a rapid test is Laser Induced Breakdown Spectroscopy (LIBS). LIBS is an optical method which uses time-resolved or time-integrated spectral analysis of optical plasma emission after pulsed laser excitation. Even though LIBS is well established for the determination of metals and other inorganic materials the analysis of microbiological organisms is difficult due to their very similar stoichiometric composition. To analyze similar LIBS-spectra computer assisted chemometrics is a very useful approach. In this paper we report on first results of developing a compact and fully automated rapid test for the detection of hazardous microbiological material. Experiments have been carried out with two setups: A bulky one which is composed of standard laboratory components and a compact one consisting of miniaturized industrial components. Both setups work at an excitation wavelength of λ=1064nm (Nd:YAG). Data analysis is done by Principal Component Analysis (PCA) with an adjacent neural network for fully automated sample identification.

  7. Gold nanoparticle-sensitized quartz crystal microbalance sensor for rapid and highly selective determination of Cu(II) ions.

    PubMed

    Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui

    2013-09-21

    A novel quartz crystal microbalance (QCM) sensor for rapid, highly selective and sensitive detection of copper ions was developed. As a signal amplifier, gold nanoparticles (Au NPs) were self-assembled onto the surface of the sensor. A simple dip-and-dry method enabled the whole detection procedure to be accomplished within 20 min. High selectivity of the sensor towards copper ions is demonstrated by both individual and coexisting assays with interference ions. This gold nanoparticle mediated amplification allowed a detection limit down to 3.1 μM. Together with good repeatability and regeneration, the QCM sensor was also applied to the analysis of copper contamination in drinking water. This work provides a flexible method for fabricating QCM sensors for the analysis of important small molecules in environmental and biological samples.

  8. A PCR detection method for rapid identification of Melissococcus pluton in honeybee larvae.

    PubMed

    Govan, V A; Brözel, V; Allsopp, M H; Davison, S

    1998-05-01

    Melissococcus pluton is the causative agent of European foulbrood, a disease of honeybee larvae. This bacterium is particularly difficult to isolate because of its stringent growth requirements and competition from other bacteria. PCR was used selectively to amplify specific rRNA gene sequences of M. pluton from pure culture, from crude cell lysates, and directly from infected bee larvae. The PCR primers were designed from M. pluton 16S rRNA sequence data. The PCR products were visualized by agarose gel electrophoresis and confirmed as originating from M. pluton by sequencing in both directions. Detection was highly specific, and the probes did not hybridize with DNA from other bacterial species tested. This method enabled the rapid and specific detection and identification of M. pluton from pure cultures and infected bee larvae.

  9. A PCR Detection Method for Rapid Identification of Melissococcus pluton in Honeybee Larvae

    PubMed Central

    Govan, V. A.; Brözel, V.; Allsopp, M. H.; Davison, S.

    1998-01-01

    Melissococcus pluton is the causative agent of European foulbrood, a disease of honeybee larvae. This bacterium is particularly difficult to isolate because of its stringent growth requirements and competition from other bacteria. PCR was used selectively to amplify specific rRNA gene sequences of M. pluton from pure culture, from crude cell lysates, and directly from infected bee larvae. The PCR primers were designed from M. pluton 16S rRNA sequence data. The PCR products were visualized by agarose gel electrophoresis and confirmed as originating from M. pluton by sequencing in both directions. Detection was highly specific, and the probes did not hybridize with DNA from other bacterial species tested. This method enabled the rapid and specific detection and identification of M. pluton from pure cultures and infected bee larvae. PMID:9572987

  10. Highly selective colorimetric bacteria sensing based on protein-capped nanoparticles.

    PubMed

    Qiu, Suyan; Lin, Zhenyu; Zhou, Yaomin; Wang, Donggen; Yuan, Lijuan; Wei, Yihua; Dai, Tingcan; Luo, Linguang; Chen, Guonan

    2015-02-21

    A rapid and cost-effective colorimetric sensor has been developed for the detection of bacteria (Bacillus subtilis was selected as an example). The sensor was designed to rely on lysozyme-capped AuNPs with the advantages of effective amplification and high specificity. In the sensing system, lysozyme was able to bind strongly to Bacillus subtilis, which effectively induced a color change of the solution from light purple to purplish red. The lowest concentration of Bacillus subtilis detectable by the naked eye was 4.5 × 10(3) colony-forming units (CFU) mL(-1). Similar results were discernable from UV-Vis absorption measurements. A good specificity was observed through a statistical analysis method using the SPSS software (version 17.0). This simple colorimetric sensor may therefore be a rapid and specific method for a bacterial detection assay in complex samples.

  11. Rapid visual detection of quaternary ammonium surfactants using citrate-capped silver nanoparticles (Ag NPs) based on hydrophobic effect.

    PubMed

    Zheng, Li-Qing; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2014-01-01

    In this work, a rapid, sensitive and low-cost colorimetric method for detection of quaternary ammonium surfactants using citrate-capped silver nanoparticles (Ag NPs) was developed. The quaternary ammonium surfactants induce the aggregation of Ag NPs through the hydrophobic effect, which is a novel aggregation mechanism of Ag NPs. The addition of cationic surfactant results in color change of Ag NPs solution from yellow to red and finally to colorless, which is due to the broadening of the surface plasmon band. The color change was monitored using a UV-vis spectrophotometer. The LOD of different cationic surfactants was in the range of 0.5-5 µM. More importantly, this detection method was successfully utilized to the disinfectant residual sample. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  12. Rapid detection of multiple class pharmaceuticals in both municipal wastewater and sludge with ultra high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Yuan, Xiangjuan; Qiang, Zhimin; Ben, Weiwei; Zhu, Bing; Liu, Junxin

    2014-09-01

    This work described the development, optimization and validation of an analytical method for rapid detection of multiple-class pharmaceuticals in both municipal wastewater and sludge samples based on ultrasonic solvent extraction, solid-phase extraction, and ultra high performance liquid chromatography-tandem mass spectrometry quantification. The results indicated that the developed method could effectively extract all the target pharmaceuticals (25) in a single process and analyze them within 24min. The recoveries of the target pharmaceuticals were in the range of 69%-131% for wastewater and 54%-130% for sludge at different spiked concentration levels. The method quantification limits in wastewater and sludge ranged from 0.02 to 0.73ng/L and from 0.02 to 1.00μg/kg, respectively. Subsequently, this method was validated and applied for residual pharmaceutical analysis in a wastewater treatment plant located in Beijing, China. All the target pharmaceuticals were detected in the influent samples with concentrations varying from 0.09ng/L (tiamulin) to 15.24μg/L (caffeine); meanwhile, up to 23 pharmaceuticals were detected in sludge samples with concentrations varying from 60ng/kg (sulfamethizole) to 8.55mg/kg (ofloxacin). The developed method demonstrated its selectivity, sensitivity, and reliability for detecting multiple-class pharmaceuticals in complex matrices such as municipal wastewater and sludge. Copyright © 2014. Published by Elsevier B.V.

  13. Procedure for rapid concentration and detection of enteric viruses from berries and vegetables.

    PubMed

    Butot, S; Putallaz, T; Sánchez, G

    2007-01-01

    Several hepatitis A virus (HAV) and norovirus (NV) outbreaks due to consumption of berries and vegetables have been reported during recent years. To facilitate the detection of enteric viruses that may be present on different fresh and frozen products, we developed a rapid and sensitive detection method for HAV, NV, and rotavirus (RV). Initial experiments focused on optimizing the composition of the elution buffer, improving the viral concentration method, and evaluating the performance of various extraction kits. Viruses were extracted from the food surface by a direct elution method in a glycine-Tris (pH 9.5) buffer containing 1% beef extract and concentrated by ultrafiltration. Occasionally, PCR inhibitors were present in the processed berry samples, which gave relatively poor detection limits. However, this problem was overcome by adding a pectinase treatment in the protocol, which markedly improved the sensitivity of the method. After optimization, this concentration method was applied in combination with real-time reverse transcription-PCR (RT-PCR) using specific primers in various types of berries and vegetables. The average detection limits were 1 50% tissue culture infective dose (TCID(50)), 54 RT-PCR units, and 0.02 TCID(50) per 15 g of food for HAV, NV, and RV, respectively. Based on our results, it is concluded that this procedure is suitable to detect and quantify enteric viruses within 6 h and can be applied for surveillance of enteric viruses in fresh and frozen products.

  14. Development of an in situ magnetic beads based RT-PCR method for electrochemiluminescent detection of rotavirus

    NASA Astrophysics Data System (ADS)

    Zhan, Fangfang; Zhou, Xiaoming

    2012-12-01

    Rotaviruses are double-stranded RNA viruses belonging to the family of enteric pathogens. It is a major cause of diarrhoeal disease in infants and young children worldwide. Consequently, rapid and accurate detection of rotaviruses is of great importance in controlling and preventing food- and waterborne diseases and outbreaks. Reverse transcription-polymerase chain reaction (RT-PCR) is a reliable method that possesses high specificity and sensitivity. It has been widely used to detection of viruses. Electrochemiluminescence (ECL) can be considered as an important and powerful tool in analytical and clinical application with high sensitivity, excellent specificity, and low cost. Here we have developed a method for the detection of rotavirus by combining in situ magnetic beads (MBs) based RT-PCR with ECL. RT of rotavirus RNA was carried out in a traditional way and the resulting cDNA was directly amplified on MBs. Forward primers were covalently bounded to MBs and reverse primers were labeled with tris-(2, 2'-bipyridyl) ruthenium (TBR). During the PCR cycling, the TBR labeled products were directly loaded and enriched on the surface of MBs. Then the MBs-TBR complexes could be analyzed by a magnetic ECL platform without any post-modification or post-incubation which avoid some laborious manual operations and achieve rapid yet sensitive detection. In this study, rotavirus from fecal specimens was successfully detected within 2 h, and the limit of detection was estimated to be 104copies/μL. This novel in situ MBs based RT-PCR with ECL detection method can be used for pathogen detection in food safety field and clinical diagnosis.

  15. Improvement of the Raman detection system for pesticide residues on/in fruits and vegetables

    NASA Astrophysics Data System (ADS)

    Li, Yan; Peng, Yankun; Zhai, Chen; Chao, Kuanglin; Qin, Jianwei

    2017-05-01

    Pesticide residue is one of the major challenges to fruits safety, while the traditional detection methods of pesticide residue on fruits and vegetables can't afford the demand of rapid detection in actual production because of timeconsuming. Thus rapid identification and detection methods for pesticide residue are urgently needed at present. While most Raman detection systems in the market are spot detection systems, which limits the range of application. In the study, our lab develops a Raman detection system to achieve area-scan thorough the self-developed spot detection Raman system with a control software and two devices. In the system, the scanning area is composed of many scanning spots, which means every spot needs to be detected and more time will be taken than area-scan Raman system. But lower detection limit will be achieved in this method. And some detection device is needed towards fruits and vegetables in different shape. Two detection devices are developed to detect spherical fruits and leaf vegetables. During the detection, the device will make spherical fruit rotate along its axis of symmetry, and leaf vegetables will be pressed in the test surface smoothly. The detection probe will be set to keep a proper distance to the surface of fruits and vegetables. It should make sure the laser shins on the surface of spherical fruit vertically. And two software are used to detect spherical fruits and leaf vegetables will be integrated to one, which make the operator easier to switch. Accordingly two detection devices for spherical fruits and leaf vegetables will also be portable devices to make it easier to change. In the study, a new way is developed to achieve area-scan result by spot-scan Raman detection system.

  16. Sensing the deadliest toxin: technologies for botulinum neurotoxin detection.

    PubMed

    Capek, Petr; Dickerson, Tobin J

    2010-01-01

    Sensitive and rapid detection of botulinum neurotoxins (BoNTs), the most poisonous substances known to date, is essential for studies of medical applications of BoNTs and detection of poisoned food, as well as for response to potential bioterrorist threats. Currently, the most common method of BoNT detection is the mouse bioassay. While this assay is sensitive, it is slow, quite expensive, has limited throughput and requires sacrificing animals. Herein, we discuss and compare recently developed alternative in vitro detection methods and assess their ability to supplement or replace the mouse bioassay in the analysis of complex matrix samples.

  17. Screening For Alcohol-Producing Microbes

    NASA Technical Reports Server (NTRS)

    Schubert, Wayne W.

    1988-01-01

    Dye reaction rapidly identifies alcohol-producing microbial colonies. Method visually detects alcohol-producing micro-organisms, and distinguishes them from other microbial colonies that do not produce alcohol. Method useful for screening mixed microbial populations in environmental samples.

  18. Immunochemical Detection Methods for Gluten in Food Products: Where Do We Go from Here?

    PubMed

    Slot, I D Bruins; van der Fels-Klerx, H J; Bremer, M G E G; Hamer, R J

    2016-11-17

    Accurate and reliable quantification methods for gluten in food are necessary to ensure proper product labeling and thus safeguard the gluten sensitive consumer against exposure. Immunochemical detection is the method of choice, as it is sensitive, rapid and relatively easy to use. Although a wide range of detection kits are commercially available, there are still many difficulties in gluten detection that have not yet been overcome. This review gives an overview of the currently commercially available immunochemical detection methods, and discusses the problems that still exist in gluten detection in food. The largest problems are encountered in the extraction of gluten from food matrices, the choice of epitopes targeted by the detection method, and the use of a standardized reference material. By comparing the available techniques with the unmet needs in gluten detection, the possible benefit of a new multiplex immunoassay is investigated. This detection method would allow for the detection and quantification of multiple harmful gluten peptides at once and would, therefore, be a logical advancement in gluten detection in food.

  19. Rapid detection of avian influenza virus a and subtype H5N1 by single step multiplex reverse transcription-polymerase chain reaction.

    PubMed

    Wei, Hui-Ling; Bai, Gui-Rong; Mweene, Aaron S; Zhou, Ying-Chun; Cong, Yan-Long; Pu, Juan; Wang, Shuai; Kida, Hiroshi; Liu, Jin-Hua

    2006-06-01

    Outbreaks of H5N1 highly pathogenic avian influenza (HPAI) virus caused great economic losses to the poultry industry and resulted in human deaths in Thailand and Viet Nam in 2004. Rapid typing and subtyping of H5N1 viruses, especially from clinical specimens, are desirable for taking prompt control measures to prevent the spread of the disease. Here, we developed a set of oligonucleotide primers able to detect, type and subtype H5 and N1 influenza viruses in a single step multiplex reverse transcription-polymerase chain reaction (RT-PCR). RNA was extracted from allantoic fluid or from specimens with guanidinium isothiocyanate reagent. Reverse transcription and PCR were carried out with a mixture of primers specific for influenza viruses of type A, subtype H5 and N1 in a single reaction system under identical conditions. The amplified DNA fragments were analyzed by agarose gel electrophoresis. All the H5N1 viruses tested in the study and the experimental specimens presented three specific bands by the method established here. The results presented here suggest that the method described below is rapid and specific and, therefore, could be valuable in the rapid detection of H5N1 influenza viruses in clinics.

  20. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    PubMed

    Deng, Yi-Mo; Caldwell, Natalie; Barr, Ian G

    2011-01-01

    Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  1. Rapid Detection and Subtyping of Human Influenza A Viruses and Reassortants by Pyrosequencing

    PubMed Central

    Deng, Yi-Mo; Caldwell, Natalie; Barr, Ian G.

    2011-01-01

    Background Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. Methodology/Principal Findings A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. Conclusions/Significance In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches. PMID:21886790

  2. Biomagnetic separation of Salmonella Typhimurium with high affine and specific ligand peptides isolated by phage display technique

    NASA Astrophysics Data System (ADS)

    Steingroewer, Juliane; Bley, Thomas; Bergemann, Christian; Boschke, Elke

    2007-04-01

    Analyses of food-borne pathogens are of great importance in order to minimize the health risk for customers. Thus, very sensitive and rapid detection methods are required. Current conventional culture techniques are very time consuming. Modern immunoassays and biochemical analysis also require pre-enrichment steps resulting in a turnaround time of at least 24 h. Biomagnetic separation (BMS) is a promising more rapid method. In this study we describe the isolation of high affine and specific peptides from a phage-peptide library, which combined with BMS allows the detection of Salmonella spp. with a similar sensitivity as that of immunomagnetic separation using antibodies.

  3. An efficient and rapid transgenic pollen screening and detection method using flow cytometry.

    PubMed

    Moon, Hong S; Eda, Shigetoshi; Saxton, Arnold M; Ow, David W; Stewart, C Neal

    2011-01-01

    Assaying for transgenic pollen, a major vector of transgene flow, provides valuable information and essential data for the study of gene flow and assessing the effectiveness of transgene containment. Most studies have employed microscopic screening methods or progeny analyses to estimate the frequency of transgenic pollen. However, these methods are time-consuming and laborious when large numbers of pollen grains must be analyzed to look for rare transgenic pollen grains. Thus, there is an urgent need for the development of a simple, rapid, and high throughput analysis method for transgenic pollen analysis. In this study, our objective was to determine the accuracy of using flow cytometry technology for transgenic pollen quantification in practical application where transgenic pollen is not frequent. A suspension of non-transgenic tobacco pollen was spiked with a known amount of verified transgenic tobacco pollen synthesizing low or high amounts of green fluorescent protein (GFP). The flow cytometric method detected approximately 75% and 100% of pollen grains synthesizing low and high amounts of GFP, respectively. The method is rapid, as it is able to count 5000 pollen grains per minute-long run. Our data indicate that this flow cytometric method is useful to study gene flow and assessment of transgene containment.

  4. Use of next generation sequencing data to develop a qPCR method for specific detection of EU-unauthorized genetically modified Bacillus subtilis overproducing riboflavin.

    PubMed

    Barbau-Piednoir, Elodie; De Keersmaecker, Sigrid C J; Delvoye, Maud; Gau, Céline; Philipp, Patrick; Roosens, Nancy H

    2015-11-11

    Recently, the presence of an unauthorized genetically modified (GM) Bacillus subtilis bacterium overproducing vitamin B2 in a feed additive was notified by the Rapid Alert System for Food and Feed (RASFF). This has demonstrated that a contamination by a GM micro-organism (GMM) may occur in feed additives and has confronted for the first time,the enforcement laboratories with this type of RASFF. As no sequence information of this GMM nor any specific detection or identification method was available, Next GenerationSequencing (NGS) was used to generate sequence information. However, NGS data analysis often requires appropriate tools, involving bioinformatics expertise which is not alwayspresent in the average enforcement laboratory. This hampers the use of this technology to rapidly obtain critical sequence information in order to be able to develop a specific qPCRdetection method. Data generated by NGS were exploited using a simple BLAST approach. A TaqMan® qPCR method was developed and tested on isolated bacterial strains and on the feed additive directly. In this study, a very simple strategy based on the common BLAST tools that can be used by any enforcement lab without profound bioinformatics expertise, was successfully used toanalyse the B. subtilis data generated by NGS. The results were used to design and assess a new TaqMan® qPCR method, specifically detecting this GM vitamin B2 overproducing bacterium. The method complies with EU critical performance parameters for specificity, sensitivity, PCR efficiency and repeatability. The VitB2-UGM method also could detect the B. subtilis strain in genomic DNA extracted from the feed additive, without prior culturing step. The proposed method, provides a crucial tool for specifically and rapidly identifying this unauthorized GM bacterium in food and feed additives by enforcement laboratories. Moreover, this work can be seen as a case study to substantiate how the use of NGS data can offer an added value to easily gain access to sequence information needed to develop qPCR methods to detect unknown andunauthorized GMO in food and feed.

  5. Electrochemical characterization of an immunosensor for Salmonella spp. detection

    USDA-ARS?s Scientific Manuscript database

    Immunosensors represent a rapid alternative method for diagnosing Salmonella contamination. The objective of this study was to develop and evaluate the performance of an electrochemical immunosensor for the detection of Salmonella spp., the most common foodborne pathogen worldwide. In the immunosens...

  6. Rapid Determination of Thiabendazole Pesticides in Rape by Surface Enhanced Raman Spectroscopy

    PubMed Central

    Lin, Lei; Nie, Pengcheng; Qu, Fangfang; Chu, Bingquan; Xiao, Shupei

    2018-01-01

    Thiabendazole is widely used in sclerotium blight, downy mildew and black rot prevention and treatment in rape. Accurate monitoring of thiabendazole pesticides in plants will prevent potential adverse effects to the Environment and human health. Surface Enhanced Raman Spectroscopy (SERS) is a highly sensitive fingerprint with the advantages of simple operation, convenient portability and high detection efficiency. In this paper, a rapid determination method of thiabendazole pesticides in rape was conducted combining SERS with chemometric methods. The original SERS were pretreated and the partial least squares (PLS) was applied to establish the prediction model between SERS and thiabendazole pesticides in rape. As a result, the SERS enhancing effect based on silver Nano-substrate was better than that of gold Nano-substrate, where the detection limit of thiabendazole pesticides in rape could reach 0.1 mg/L. Moreover, 782, 1007 and 1576 cm−1 could be determined as thiabendazole pesticides Raman characteristic peaks in rape. The prediction effect of thiabendazole pesticides in rape was the best (Rp2 = 0.94, RMSEP = 3.17 mg/L) after the original spectra preprocessed with 1st-Derivative, and the linear relevance between thiabendazole pesticides concentration and Raman peak intensity at 782 cm−1 was the highest (R2 = 0.91). Furthermore, five rape samples with unknown thiabendazole pesticides concentration were used to verify the accuracy and reliability of this method. It was showed that prediction relative standard deviation was 0.70–9.85%, recovery rate was 94.71–118.92% and t value was −1.489. In conclusion, the thiabendazole pesticides in rape could be rapidly and accurately detected by SERS, which was beneficial to provide a rapid, accurate and reliable scheme for the detection of pesticides residues in agriculture products. PMID:29617288

  7. Rapid Determination of Thiabendazole Pesticides in Rape by Surface Enhanced Raman Spectroscopy.

    PubMed

    Lin, Lei; Dong, Tao; Nie, Pengcheng; Qu, Fangfang; He, Yong; Chu, Bingquan; Xiao, Shupei

    2018-04-04

    Thiabendazole is widely used in sclerotium blight, downy mildew and black rot prevention and treatment in rape. Accurate monitoring of thiabendazole pesticides in plants will prevent potential adverse effects to the Environment and human health. Surface Enhanced Raman Spectroscopy (SERS) is a highly sensitive fingerprint with the advantages of simple operation, convenient portability and high detection efficiency. In this paper, a rapid determination method of thiabendazole pesticides in rape was conducted combining SERS with chemometric methods. The original SERS were pretreated and the partial least squares (PLS) was applied to establish the prediction model between SERS and thiabendazole pesticides in rape. As a result, the SERS enhancing effect based on silver Nano-substrate was better than that of gold Nano-substrate, where the detection limit of thiabendazole pesticides in rape could reach 0.1 mg/L. Moreover, 782, 1007 and 1576 cm −1 could be determined as thiabendazole pesticides Raman characteristic peaks in rape. The prediction effect of thiabendazole pesticides in rape was the best ( R p 2 = 0.94, RMSEP = 3.17 mg/L) after the original spectra preprocessed with 1st-Derivative, and the linear relevance between thiabendazole pesticides concentration and Raman peak intensity at 782 cm −1 was the highest ( R² = 0.91). Furthermore, five rape samples with unknown thiabendazole pesticides concentration were used to verify the accuracy and reliability of this method. It was showed that prediction relative standard deviation was 0.70–9.85%, recovery rate was 94.71–118.92% and t value was −1.489. In conclusion, the thiabendazole pesticides in rape could be rapidly and accurately detected by SERS, which was beneficial to provide a rapid, accurate and reliable scheme for the detection of pesticides residues in agriculture products.

  8. Development of single-step multiplex real-time RT-PCR assays for rapid diagnosis of enterovirus 71, coxsackievirus A6, and A16 in patients with hand, foot, and mouth disease.

    PubMed

    Puenpa, Jiratchaya; Suwannakarn, Kamol; Chansaenroj, Jira; Vongpunsawad, Sompong; Poovorawan, Yong

    2017-10-01

    Real-time reverse-transcription polymerase chain reaction (rRT-PCR) to detect enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) has facilitated the rapid and accurate identification of the two most common etiological agents underlying hand, foot, and mouth disease (HFMD). However, the worldwide emergence of CV-A6 infection in HFMD necessitates development of an improved multiplex rRT-PCR method. To rapidly determine the etiology of HFMD, two rRT-PCR assays using TaqMan probes were developed to differentiate among three selected common enteroviruses (EV-A71, CV-A16 and CV-A6) and to enable broad detection of enteroviruses (pan-enterovirus assay). No cross-reactions were observed with other RNA viruses examined. The detection limits of both assays were 10 copies per microliter for EV-A71, CV-A6 and CV-A16, and pan-enterovirus. The methods showed high accuracy (EV-A71, 90.6%; CV-A6, 92.0%; CV-A16, 100%), sensitivity (EV-A71, 96.5%; CV-A6, 95.8%; CV-A16, 99.0%), and specificity (EV-A71, 100%; CV-A6, 99.9%; CV-A16, 99.9%) in testing clinical specimens (n=1049) during 2014-2016, superior to those of conventional RT-PCR. Overall, the multiplex rRT-PCR assays enabled highly sensitive detection and rapid simultaneous typing of EV-A71, CV-A6 and CV-A16, and enteroviruses, rendering them feasible and attractive methods for large-scale surveillance of enteroviruses associated with HFMD outbreaks. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A rapid and cost-effective fluorescence detection in tube (FDIT) method to analyze protein phosphorylation.

    PubMed

    Jin, Xiao; Gou, Jin-Ying

    2016-01-01

    Protein phosphorylation is one of the most important post-translational modifications catalyzed by protein kinases in living organisms. The advance of genome sequencing provided the information of protein kinase families in many organisms, including both model and non-model plants. The development of proteomics technologies also enabled scientists to efficiently reveal a large number of protein phosphorylations of an organism. However, kinases and phosphorylation targets are still to be connected to illustrate the complicated network in life. Here we adapted Pro-Q ® Diamond (Pro-Q ® Diamond Phosphoprotein Gel Stain), a widely used phosphoprotein gel-staining fluorescence dye, to establish a rapid, economical and non-radioactive fluorescence detection in tube (FDIT) method to analyze phosphorylated proteins. Taking advantages of high sensitivity and specificity of Pro-Q ® diamond, the FDIT method is also demonstrated to be rapid and reliable, with a suitable linear range for in vitro protein phosphorylation. A significant and satisfactory protein kinase reaction was detected as fast as 15 min from Wheat Kinase START 1.1 (WKS1.1) on a thylakoid ascorbate peroxidase (tAPX), an established phosphorylation target in our earlier study. The FDIT method saves up to 95% of the dye consumed in a gel staining method. The FDIT method is remarkably quick, highly reproducible, unambiguous and capable to be scaled up to dozens of samples. The FDIT method could serve as a simple and sensitive alternative procedure to determine protein kinase reactions with zero radiation exposure, as a supplementation to other widely used radioactive and in-gel assays.

  10. Evaluation of a novel immunochromatographic device for rapid and accurate clinical detection of Porphyromonas gingivalis in subgingival plaque.

    PubMed

    Imamura, K; Takayama, S; Saito, A; Inoue, E; Nakayama, Y; Ogata, Y; Shirakawa, S; Nagano, T; Gomi, K; Morozumi, T; Akiishi, K; Watanabe, K; Yoshie, H

    2015-10-01

    An important goal for the improved diagnosis and management of infectious and inflammatory diseases, such as periodontitis, is the development of rapid and accurate technologies for the decentralized detection of bacterial pathogens. The aim of this prospective multicenter study was to evaluate the clinical use of a novel immunochromatographic device with monoclonal antibodies for the rapid point-of-care detection and semi-quantification of Porphyromonas gingivalis in subgingival plaque. Sixty-three patients with chronic periodontitis and 28 periodontally healthy volunteers were subjected to clinical and microbiological examinations. Subgingival plaque samples were analyzed for the presence of P. gingivalis using a novel immunochromatography based device DK13-PG-001, designed to detect the 40k-outer membrane protein of P. gingivalis, and compared with a PCR-Invader method. In the periodontitis group, a significant strong positive correlation in detection results was found between the test device score and the PCR-Invader method (Spearman rank correlation, r=0.737, p<0.0001). The sensitivity, specificity, and positive and negative predictive values of the test device were 96.2%, 91.8%, 90.4% and 96.7%, respectively. The detection threshold of the test device was determined to be approximately 10(4) (per two paper points). There were significant differences in the bacterial counts by the PCR-Invader method among groups with different ranges of device scores. With a cut-off value of ≥0.25 in device score, none of periodontally healthy volunteers were tested positive for the subgingival presence of P. gingivalis, whereas 76% (n=48) of periodontitis subjects were tested positive. There was a significant positive correlation between device scores for P. gingivalis and periodontal parameters including probing pocket depth and clinical attachment level (r=0.317 and 0.281, respectively, p<0.01). The results suggested that the DK13-PG-001 device kit can be effectively used for rapid, chair-side detection and semi-quantification of P. gingivalis in subgingival plaque. UMIN Clinical Trials Registry (UMIN-CTR) UMIN000011943. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Rapid detection of Shigella and enteroinvasive Escherichia coli in produce enrichments by a conventional multiplex PCR assay.

    PubMed

    Binet, Rachel; Deer, Deanne M; Uhlfelder, Samantha J

    2014-06-01

    Faster detection of contaminated foods can prevent adulterated foods from being consumed and minimize the risk of an outbreak of foodborne illness. A sensitive molecular detection method is especially important for Shigella because ingestion of as few as 10 of these bacterial pathogens can cause disease. The objectives of this study were to compare the ability of four DNA extraction methods to detect Shigella in six types of produce, post-enrichment, and to evaluate a new and rapid conventional multiplex assay that targets the Shigella ipaH, virB and mxiC virulence genes. This assay can detect less than two Shigella cells in pure culture, even when the pathogen is mixed with background microflora, and it can also differentiate natural Shigella strains from a control strain and eliminate false positive results due to accidental laboratory contamination. The four DNA extraction methods (boiling, PrepMan Ultra [Applied Biosystems], InstaGene Matrix [Bio-Rad], DNeasy Tissue kit [Qiagen]) detected 1.6 × 10(3)Shigella CFU/ml post-enrichment, requiring ∼18 doublings to one cell in 25 g of produce pre-enrichment. Lower sensitivity was obtained, depending on produce type and extraction method. The InstaGene Matrix was the most consistent and sensitive and the multiplex assay accurately detected Shigella in less than 90 min, outperforming, to the best of our knowledge, molecular assays currently in place for this pathogen. Published by Elsevier Ltd.

  12. A detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum.

    PubMed

    Cheng, Mengzhu; Wang, Lihong; Yang, Qing; Huang, Xiaohua

    2018-08-30

    The pollution of rare earth elements (REEs) in ecosystem is becoming more and more serious, so it is urgent to establish methods for monitoring the pollution of REEs. Monitoring environmental pollution via the response of plants to pollutants has become the most stable and accurate method compared with traditional methods, but scientists still need to find the primary response of plants to pollutants to improve the sensitivity and speed of this method. Based on the facts that the initiation of endocytosis is the primary cellular response of the plant leaf cells to REEs and the detection of endocytosis is complex and expensive, we constructed a detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum [La(III), a representative of REEs] by designing a new immuno-electrochemical method for detecting the content change in extracellular vitronectin-like protein (VN) that are closely related to endocytosis. Results showed that when 30 μM La(III) initiated a small amount of endocytosis, the content of extracellular VN increased by 5.46 times, but the structure and function of plasma membrane were not interfered by La(III); when 80 μM La(III) strongly initiated a large amount of endocytosis, the content of extracellular VN increased by 119 times, meanwhile, the structure and function of plasma membrane were damaged. In summary, the detection method can reflect the response of plants to La(III) via detecting the content change in extracellular VN, which provides an effective and convenient way to monitor the response of plants to exogenous REEs. Copyright © 2018. Published by Elsevier Inc.

  13. Comparison of Xpert Flu rapid nucleic acid testing with rapid antigen testing for the diagnosis of influenza A and B.

    PubMed

    DiMaio, Michael A; Sahoo, Malaya K; Waggoner, Jesse; Pinsky, Benjamin A

    2012-12-01

    Influenza infections are associated with thousands of hospital admissions and deaths each year. Rapid detection of influenza is important for prompt initiation of antiviral therapy and appropriate patient triage. In this study the Cepheid Xpert Flu assay was compared with two rapid antigen tests, BinaxNOW Influenza A & B and BD Directigen EZ Flu A+B, as well as direct fluorescent antibody testing for the rapid detection of influenza A and B. Using real-time, hydrolysis probe-based, reverse transcriptase PCR as the reference method, influenza A sensitivity was 97.3% for Xpert Flu, 95.9% for direct fluorescent antibody testing, 62.2% for BinaxNOW, and 71.6% for BD Directigen. Influenza B sensitivity was 100% for Xpert Flu and direct fluorescent antibody testing, 54.5% for BinaxNOW, and 48.5% for BD Directigen. Specificity for influenza A was 100% for Xpert Flu, BinaxNOW, and BD Directigen, and 99.2% for direct fluorescent antibody testing. All methods demonstrated 100% specificity for influenza B. These findings support the use of the Xpert Flu assay in settings requiring urgent diagnosis of influenza A and B. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Rapid detection of milk adulteration using intact protein flow injection mass spectrometric fingerprints combined with chemometrics.

    PubMed

    Du, Lijuan; Lu, Weiying; Cai, Zhenzhen Julia; Bao, Lei; Hartmann, Christoph; Gao, Boyan; Yu, Liangli Lucy

    2018-02-01

    Flow injection mass spectrometry (FIMS) combined with chemometrics was evaluated for rapidly detecting economically motivated adulteration (EMA) of milk. Twenty-two pure milk and thirty-five counterparts adulterated with soybean, pea, and whey protein isolates at 0.5, 1, 3, 5, and 10% (w/w) levels were analyzed. The principal component analysis (PCA), partial least-squares-discriminant analysis (PLS-DA), and support vector machine (SVM) classification models indicated that the adulterated milks could successfully be classified from the pure milks. FIMS combined with chemometrics might be an effective method to detect possible EMA in milk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Rapid detection of fungal keratitis with DNA-stabilizing FTA filter paper.

    PubMed

    Menassa, Nardine; Bosshard, Philipp P; Kaufmann, Claude; Grimm, Christian; Auffarth, Gerd U; Thiel, Michael A

    2010-04-01

    Purpose. Polymerase chain reaction (PCR) is increasingly important for the rapid detection of fungal keratitis. However, techniques of specimen collection and DNA extraction before PCR may interfere with test sensitivity. The purpose of this study was to investigate the use of DNA-stabilizing FTA filter paper (Indicating FTA filter paper; Whatman International, Ltd., Maidstone, UK) for specimen collection without DNA extraction in a single-step, nonnested PCR for fungal keratitis. Methods. Specimens were collected from ocular surfaces with FTA filter discs, which automatically lyse collected cells and stabilize nucleic acids. Filter discs were directly used in single-step PCR reactions to detect fungal DNA. Test sensitivity was evaluated with serial dilutions of Candida albicans, Fusarium oxysporum, and Aspergillus fumigatus cultures. Test specificity was analyzed by comparing 196 and 155 healthy individuals from Switzerland and Egypt, respectively, with 15 patients with a diagnosis of microbial keratitis. Results. PCR with filter discs detected 3 C. albicans, 25 F. oxysporum, and 125 A. fumigatus organisms. In healthy volunteers, fungal PCR was positive in 1.0% and 8.4% of eyes from Switzerland and Egypt, respectively. Fungal PCR remained negative in 10 cases of culture-proven bacterial keratitis, became positive in 4 cases of fungal keratitis, but missed 1 case of culture-proven A. fumigatus keratitis. Conclusions. FTA filter paper for specimen collection together with direct PCR is a promising method of detecting fungal keratitis. The analytical sensitivity is high without the need for a semi-nested or nested second PCR, the clinical specificity is 91.7% to 99.0%, and the method is rapid and inexpensive.

  16. A rapid, highly accurate method for quantifying CALR mutant allele burden in persons with myeloproliferative neoplasms.

    PubMed

    Yao, Qiu-Mei; Zhou, Jiao; Gale, Robert Peter; Li, Jin-Lan; Li, Ling-Di; Li, Ning; Chen, Shan-Shan; Ruan, Guo-Rui

    2015-10-01

    Calreticulin (CALR) mutations were recently identified in a substantial proportion of persons with essential thrombocythemia (ET) and with primary myelofibrosis (PMF) without JAK2(V617F). Consequently rapid, sensitive, and specific methods to detect and quantify these mutations are needed. We studied samples from 1088 persons with myeloproliferative neoplasms (MPNs) including 421 JAK2(V617F) negative subjects with ET, PMF, polycythemia vera (PV), chronic myeloid leukemia (CML) and hyper-eosinophilic syndrome (HES). Detection of CALR exon 9 mutations was done by PCR amplification followed by fragment length analysis and direct sequencing. Dilution assays were used to determine CALR mutant allele burden. We detected CALR mutations in blood and bone marrow samples from 152 subjects with ET and with PMF but not in samples from normal or persons with PV, CML, or HES. CALR mutant peaks were distinct from wild-type peaks and dilution experiments indicated a sensitivity level of 0.5-5% for a CALR mutant allele in a wild-type background. Diverse types of mutations were detected including deletions, insertions, and complex indels. All mutations were confirmed by direct sequencing. We also used dilution experiments to quantify mutant allele burden. We were able to reproducibly detect mutant allele levels as low 5% (0.5-5%) in a wild-type background. PCR amplification followed by fragment length analysis is a rapid, sensitive, and specific method for screening persons with MPNs for CALR mutations, especially those with ET and PMF and for estimating mutant allele burden.

  17. Multiplex Nucleic Acid Sequence-Based Amplification for Simultaneous Detection of Several Enteric Viruses in Model Ready-To-Eat Foods†

    PubMed Central

    Jean, Julie; D'Souza, Doris H.; Jaykus, Lee-Ann

    2004-01-01

    Human enteric viruses are currently recognized as one of the most important causes of food-borne disease. Implication of enteric viruses in food-borne outbreaks can be difficult to confirm due to the inadequacy of the detection methods available. In this study, a nucleic acid sequence-based amplification (NASBA) method was developed in a multiplex format for the specific, simultaneous, and rapid detection of epidemiologically relevant human enteric viruses. Three previously reported primer sets were used in a single reaction for the amplification of RNA target fragments of 474, 371, and 165 nucleotides for the detection of hepatitis A virus and genogroup I and genogroup II noroviruses, respectively. Amplicons were detected by agarose gel electrophoresis and confirmed by electrochemiluminescence and Northern hybridization. Endpoint detection sensitivity for the multiplex NASBA assay was approximately 10−1 reverse transcription-PCR-detectable units (or PFU, as appropriate) per reaction. When representative ready-to-eat foods (deli sliced turkey and lettuce) were inoculated with various concentrations of each virus and processed for virus detection with the multiplex NASBA method, all three human enteric viruses were simultaneously detected at initial inoculum levels of 100 to 102 reverse transcription-PCR-detectable units (or PFU)/9 cm2 in both food commodities. The multiplex NASBA system provides rapid and simultaneous detection of clinically relevant food-borne viruses in a single reaction tube and may be a promising alternative to reverse transcription-PCR for the detection of viral contamination of foods. PMID:15528524

  18. Product ion filtering with rapid polarity switching for the detection of all fumonisins and AAL-toxins.

    PubMed

    Renaud, Justin B; Kelman, Megan J; Qi, Tianyu F; Seifert, Keith A; Sumarah, Mark W

    2015-11-30

    Fumonisins and AAL-toxins are structurally similar mycotoxins that contaminate agricultural crops and foodstuffs. Traditional analytical screening methods are designed to target the known compounds for which standards are available but there is clear evidence that many other derivatives exist and could be toxic. A fast, semi-targeted method for the detection of all known fumonisins, AAL-toxins and related emerging toxins is required. Strains of Fusarium verticillioides, Alternaria arborescens and Aspergillus welwitschiae were grown on their associated crops (maize, tomatoes, and grapes, respectively). Extracts were first analyzed in negative mode using product ion filtering to detect the tricarballylic ester product ion that is common to fumonisins and AAL-toxins (m/z 157.0142). During the same liquid chromatography (LC) run, rapid polarity switching was then used to collect positive mode tandem mass spectrometric (MS(2) ) data for characterization of the detected compounds. Fumonisin B1 , B2 , B3 and B4 were detected on Fusarium contaminated maize, AAL-toxins TA, TB, TD, TE were detected on Alternaria inoculated tomatoes and fumonisin B2 , B4 and B6 on Aspergillus contaminated grapes. Additionally, over 100 structurally related compounds possessing a tricarballylic ester were detected from the mould inoculated plant material. These included a hydroxyl-FB1 from F. verticillioides inoculated maize, keto derivatives of AAL-toxins from A. arborescens inoculated tomatoes, and two previously unreported classes of non-aminated fumonisins from Asp. welwitschiae contaminated grapes. A semi-targeted method for the detection of all fumonisins and AAL-toxins in foodstuffs was developed. The use of the distinctive tricarballylic ester product anion for detection combined with rapid polarity switching and positive mode MS(2) is an effective strategy for differentiating between known isomers such as FB1 and FB6 . This analytical tool is also effective for the identification of new compounds as evident from the discoveries of the previously unreported hydroxyl-FB1 , keto-AAL-toxins, and the two new families of non-aminated fumonisins. © 2015 Her Majesty the Queen in Right of Canada Rapid Communications in Mass Spectrometry © 2015 John Wiley & Sons Ltd. Reproduced with the permission of the Ministers of Agriculture and Agri-Food Canada.

  19. Monitoring of changes in areas of conflicts: the example of Darfur

    NASA Astrophysics Data System (ADS)

    Thunig, H.; Michel, U.

    2012-10-01

    Rapid change detection is used in cases of natural hazards and disasters. This analysis leads to rapid information on areas of damage. In certain cases the lack of information after catastrophe events is obstructing supporting measures within disaster management. Earthquakes, tsunamis, civil war, volcanic eruption, droughts and floods have much in common: people are directly affected, landscapes and buildings are destroyed. In every case geospatial data is necessary to gain knowledge as basement for decision support. Where to go first? Which infrastructure is usable? How much area is affected? These are essential question which need to be answered before appropriate, eligible help can be established. This paper focuses on change detection applications in areas where catastrophic events took place which resulted in rapid destruction especially of manmade objects. Standard methods for automated change detection prove not to be sufficient; therefore a new method was developed and tested. The presented method allows a fast detection and visualization of change in areas of crisis or catastrophes. While often new methods of remote sensing are developed without user oriented aspects, organizations and authorities are not able to use these methods because of lack of remote sensing knowledge. Therefore a semi-automated procedure was developed. Within a transferable framework, the developed algorithm can be implemented for a set of remote sensing data among different investigation areas. Several case studies are the base for the retrieved results. Within a coarse dividing into statistical parts and the segmentation in meaningful objects, the framework is able to deal with different types of change. By means of an elaborated Temporal Change Index (TCI) only panchromatic datasets are used to extract areas which are destroyed, areas which were not affected and in addition areas where rebuilding has already started.

  20. Extension of platelet shelf life from 4 to 5 days by implementation of a new screening strategy in Germany.

    PubMed

    Sireis, W; Rüster, B; Daiss, C; Hourfar, M K; Capalbo, G; Pfeiffer, H-U; Janetzko, K; Goebel, M; Kempf, V A J; Seifried, E; Schmidt, M

    2011-10-01

    The Paul-Ehrlich-Institute analysed all fatalities due to bacterial infections between 1997 and 2007. Thereafter, the platelet shelf life was reduced to a maximum of 4 days after blood donation because the majority of all cases of severe transfusion-transmitted bacterial infections occurred with day 5 platelets. The current study compares the analytical sensitivity and the diagnostic specificity of four rapid bacterial detection procedures. Nine transfusion-relevant bacterial strains were spiked in pooled platelets or apheresis platelets at a low concentration (10 CFU/bag). Samples were collected after day 3, day 4 and day 5 and investigated by four rapid bacterial detection methods (modified BacT/ALERT, Bactiflow, FACS method and 16s DNA PCR methods). Seven out of nine bacterial strains were adequately detected by BacT/ALERT, Bactiflow and PCR in apheresis platelets and pooled platelets after sample collection at day 3, day 4 and day 5. For three bacterial strains, analytical sensitivity was reduced for the FACS method. Two bacterial strains did not grow under the storage conditions in either pooled or apheresis platelets. A late sample collection on day 3, day 4 or day 5 after blood donation in combination with a rapid bacterial detection method offers a new opportunity to improve blood safety and reduce errors due to sampling., BacT/ALERT, Bactiflow or 16s ID-NAT are feasible for late bacterial screening in platelets may provide data which support the extension of platelet shelf life in Germany to 5 days. © 2011 The Author(s). Vox Sanguinis © 2011 International Society of Blood Transfusion.

  1. Detection of Melanoma Skin Cancer in Dermoscopy Images

    NASA Astrophysics Data System (ADS)

    Eltayef, Khalid; Li, Yongmin; Liu, Xiaohui

    2017-02-01

    Malignant melanoma is the most hazardous type of human skin cancer and its incidence has been rapidly increasing. Early detection of malignant melanoma in dermoscopy images is very important and critical, since its detection in the early stage can be helpful to cure it. Computer Aided Diagnosis systems can be very helpful to facilitate the early detection of cancers for dermatologists. In this paper, we present a novel method for the detection of melanoma skin cancer. To detect the hair and several noises from images, pre-processing step is carried out by applying a bank of directional filters. And therefore, Image inpainting method is implemented to fill in the unknown regions. Fuzzy C-Means and Markov Random Field methods are used to delineate the border of the lesion area in the images. The method was evaluated on a dataset of 200 dermoscopic images, and superior results were produced compared to alternative methods.

  2. Back to basics: an evaluation of NaOH and alternative rapid DNA extraction protocols for DNA barcoding, genotyping, and disease diagnostics from fungal and oomycete samples.

    PubMed

    Osmundson, Todd W; Eyre, Catherine A; Hayden, Katherine M; Dhillon, Jaskirn; Garbelotto, Matteo M

    2013-01-01

    The ubiquity, high diversity and often-cryptic manifestations of fungi and oomycetes frequently necessitate molecular tools for detecting and identifying them in the environment. In applications including DNA barcoding, pathogen detection from plant samples, and genotyping for population genetics and epidemiology, rapid and dependable DNA extraction methods scalable from one to hundreds of samples are desirable. We evaluated several rapid extraction methods (NaOH, Rapid one-step extraction (ROSE), Chelex 100, proteinase K) for their ability to obtain DNA of quantity and quality suitable for the following applications: PCR amplification of the multicopy barcoding locus ITS1/5.8S/ITS2 from various fungal cultures and sporocarps; single-copy microsatellite amplification from cultures of the phytopathogenic oomycete Phytophthora ramorum; probe-based P. ramorum detection from leaves. Several methods were effective for most of the applications, with NaOH extraction favored in terms of success rate, cost, speed and simplicity. Frozen dilutions of ROSE and NaOH extracts maintained PCR viability for over 32 months. DNA from rapid extractions performed poorly compared to CTAB/phenol-chloroform extracts for TaqMan diagnostics from tanoak leaves, suggesting that incomplete removal of PCR inhibitors is an issue for sensitive diagnostic procedures, especially from plants with recalcitrant leaf chemistry. NaOH extracts exhibited lower yield and size than CTAB/phenol-chloroform extracts; however, NaOH extraction facilitated obtaining clean sequence data from sporocarps contaminated by other fungi, perhaps due to dilution resulting from low DNA yield. We conclude that conventional extractions are often unnecessary for routine DNA sequencing or genotyping of fungi and oomycetes, and recommend simpler strategies where source materials and intended applications warrant such use. © 2012 Blackwell Publishing Ltd.

  3. Rapid screening of N-oxides of chemical warfare agents degradation products by ESI-tandem mass spectrometry.

    PubMed

    Sridhar, L; Karthikraj, R; Lakshmi, V V S; Raju, N Prasada; Prabhakar, S

    2014-08-01

    Rapid detection and identification of chemical warfare agents and related precursors/degradation products in various environmental matrices is of paramount importance for verification of standards set by the chemical weapons convention (CWC). Nitrogen mustards, N,N-dialkylaminoethyl-2-chlorides, N,N-dialkylaminoethanols, N-alkyldiethanolamines, and triethanolamine, which are listed CWC scheduled chemicals, are prone to undergo N-oxidation in environmental matrices or during decontamination process. Thus, screening of the oxidized products of these compounds is also an important task in the verification process because the presence of these products reveals alleged use of nitrogen mustards or precursors of VX compounds. The N-oxides of aminoethanols and aminoethylchlorides easily produce [M + H](+) ions under electrospray ionization conditions, and their collision-induced dissociation spectra include a specific neutral loss of 48 u (OH + CH2OH) and 66 u (OH + CH2Cl), respectively. Based on this specific fragmentation, a rapid screening method was developed for screening of the N-oxides by applying neutral loss scan technique. The method was validated and the applicability of the method was demonstrated by analyzing positive and negative samples. The method was useful in the detection of N-oxides of aminoethanols and aminoethylchlorides in environmental matrices at trace levels (LOD, up to 500 ppb), even in the presence of complex masking agents, without the use of time-consuming sample preparation methods and chromatographic steps. This method is advantageous for the off-site verification program and also for participation in official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons (OPCW), the Netherlands. The structure of N-oxides can be confirmed by the MS/MS experiments on the detected peaks. A liquid chromatography-mass spectrometry (LC-MS) method was developed for the separation of isomeric N-oxides of aminoethanols and aminoethylchlorides using a C18 Hilic column. Critical isomeric compounds can be confirmed by LC-MS/MS experiments, after detecting the N-oxides from the neutral loss scanning method.

  4. Rapid detection of protein phosphatase activity using Zn(II)-coordinated gold nanosensors based on His-tagged phosphopeptides.

    PubMed

    Lee, Jin Oh; Kim, Eun-Ji; Lim, Butaek; Kim, Tae-Wuk; Kim, Young-Pil

    2015-01-20

    We report a rapid colorimetric assay to detect protein phosphatase (PP) activity based on the controlled assembly and disassembly of gold nanoparticles (AuNPs) via Zn(II)-specific coordination in the presence of His6-tagged phosphopeptides. Among divalent metal ions including Ni(II), Cu(II), Co(II), Mg(II), Mn(II), and Zn(II), only Zn(II) triggered a strong association between phosphopeptides with hexahistidine at a single end and nitrilotriacetic acid (NTA)-modified AuNPs (21.3 nm in core diameter), leading to the self-assembly of AuNPs and consequently changes in color of the AuNP solution. In contrast, unphosphorylated peptides and His6-deficient phosphopeptides did not change the color of the AuNP solution. As a result, protein phosphatase 1 (PP1) activity and its inhibition were easily quantified with high sensitivity by determining the extinction ratio (E520/E700) of colloidal AuNPs. Most importantly, this method was capable of detecting protein phosphatase 2A (PP2A) activity in immunoprecipitated plant extracts. Because PPs play pivotal roles in mediating diverse signal transduction pathways as primary effectors of protein dephosphorylation, we anticipate that our method will be applied as a rapid format method to analyze the activities of various PPs and their inhibition.

  5. Signal enhancement of carboxylic acids by inclusion with β-cyclodextrin in negative high-voltage-assisted laser desorption ionization mass spectrometry.

    PubMed

    Ren, Xinxin; Liu, Jia; Zhang, Chengsen; Sun, Jiamu; Luo, Hai

    2014-01-15

    It is difficult to directly analyze carboxylic acids in complex mixtures by ambient high-voltage-assisted laser desorption ionization mass spectrometry (HALDI-MS) in negative ion mode due to the low ionization efficiency of carboxylic acids. A method for the rapid detection of carboxylic acids in negative HALDI-MS has been developed based on their inclusion with β-cyclodextrin (β-CD). The negative HALDI-MS signal-to-noise ratios (S/Ns) of aliphatic, aromatic and hetero atom-containing carboxylic acids can all be significantly improved by forming 1:1 complexes with β-CD. These complexes are mainly formed by specific inclusion interactions which are verified by their collision-induced dissociation behaviors in comparison with that of their corresponding maltoheptaose complexes. A HALDI-MS/MS method has been successfully developed for the detection of α-lipoic acid in complex cosmetics and ibuprofen in a viscous drug suspension. The negative HALDI-MS S/Ns of carboxylic acids can be improved up to 30 times via forming non-covalent complexes with β-CD. The developed method shows the advantages of being rapid and simple, and is promising for rapid detection of active ingredients in complex samples or fast screening of drugs and cosmetics. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Rapid determination of gizzerosine in fish meals using microchip capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Xiao, Meng-Wei; Bai, Xiao-Lin; Xu, Pei-Li; Zhao, Yan; Yang, Li; Liu, Yi-Ming; Liao, Xun

    2017-05-01

    Sensitive detection of gizzerosine, a causative agent for deadly gizzard erosion in chicken feeds, is very important to the poultry industry. In this work, a new method was developed based on microchip capillary electrophoresis (MCE) with laser-induced fluorescence (LIF) detection for rapid analysis of gizzerosine, a biogenic amine in fish meals. The MCE separation was performed on a glass microchip using sodium dodecyl sulfate (SDS) as dynamic coating modifier. Separation conditions, including running buffer pH and concentration, SDS concentration, and the separation voltage were investigated to achieve fast and sensitive quantification of gizzerosine. The assay proposed was very quick and could be completed within 65 s. A linear calibration curve was obtained in the range from 0.04 to 1.8 μg ml -1 gizzerosine. The detection limit was 0.025 μg ml -1 (0.025 mg kg -1 ), which was far more sensitive than those previously reported. Gizzerosine was well separated from other endogenous components in fish meal samples. Recovery of gizzerosine from this sample matrix (n = 3) was determined to be 97.2-102.8%. The results from analysing fish meal samples indicated that the present MCE-LIF method might hold the potential for rapid detection of gizzerosine in poultry feeds.

  7. Detection of UV-treatment effects on plankton by rapid analytic tools for ballast water compliance monitoring immediately following treatment

    NASA Astrophysics Data System (ADS)

    Bradie, Johanna; Gianoli, Claudio; He, Jianjun; Lo Curto, Alberto; Stehouwer, Peter; Veldhuis, Marcel; Welschmeyer, Nick; Younan, Lawrence; Zaake, André; Bailey, Sarah

    2018-03-01

    Non-indigenous species seriously threaten native biodiversity. To reduce establishments, the International Maritime Organization established the Convention for the Control and Management of Ships' Ballast Water and Sediments which limits organism concentrations at discharge under regulation D-2. Most ships will comply by using on-board treatment systems to disinfect their ballast water. Port state control officers will need simple, rapid methods to detect compliance. Appropriate monitoring methods may be dependent on treatment type, since different treatments will affect organisms by a variety of mechanisms. Many indicative tools have been developed, but must be examined to ensure the measured variable is an appropriate signal for the response of the organisms to the applied treatment. We assessed the abilities of multiple analytic tools to rapidly detect the effects of a ballast water treatment system based on UV disinfection. All devices detected a large decrease in the concentrations of vital organisms ≥ 50 μm and organisms < 10 μm (mean 82.7-99.7% decrease across devices), but results were more variable for the ≥ 10 to < 50 μm size class (mean 9.0-99.9% decrease across devices). Results confirm the necessity to choose tools capable of detecting the damage inflicted on living organisms, as examined herein for UV-C treatment systems.

  8. Development of Conductive Polymer Analysis for the Rapid Detection and Identification of Phytopathogenic Microbes

    Treesearch

    A. Dan Wilson; D.G. Lester; C.S. Oberle

    2004-01-01

    Conductive polymer analysis, a type of electronic aroma detection technology, was evaluated for its efficacy in the detection, identification, and discrimination of plant-pathogenic microorganisms on standardized media and in diseased plant tissues. The method is based on the acquisition of a diagnostic electronic fingerprint derived from multisensor responses to...

  9. Weld leaks rapidly and safely detected

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Test method detects leaks that occur during hydrostatic pressure testing of welded joints in metal tanks. A strip of aluminum foil and a strip of water-soluble paper are placed over the weld. A voltage applied between the tank wall and the foil strip is monitored to detect a decrease in ohmic resistance caused by water leakage into the paper layer.

  10. Rapid Quantitative Analysis of Multiple Explosive Compound Classes on a Single Instrument via Flow-Injection Analysis Tandem Mass Spectrometry.

    PubMed

    Ostrinskaya, Alla; Kunz, Roderick R; Clark, Michelle; Kingsborough, Richard P; Ong, Ta-Hsuan; Deneault, Sandra

    2018-05-24

    A flow-injection analysis tandem mass spectrometry (FIA MSMS) method was developed for rapid quantitative analysis of 10 different inorganic and organic explosives. Performance is optimized by tailoring the ionization method (APCI/ESI), de-clustering potentials, and collision energies for each specific analyte. In doing so, a single instrument can be used to detect urea nitrate, potassium chlorate, 2,4,6-trinitrotoluene, 2,4,6-trinitrophenylmethylnitramine, triacetone triperoxide, hexamethylene triperoxide diamine, pentaerythritol tetranitrate, 1,3,5-trinitroperhydro-1,3,5-triazine, nitroglycerin, and octohy-dro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine with sensitivities all in the picogram per milliliter range. In conclusion, FIA APCI/ESI MSMS is a fast (<1 min/sample), sensitive (~pg/mL LOQ), and precise (intraday RSD < 10%) method for trace explosive detection that can play an important role in criminal and attributional forensics, counterterrorism, and environmental protection areas, and has the potential to augment or replace several of the existing explosive detection methods. © 2018 American Academy of Forensic Sciences.

  11. Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-01-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  12. Development of a novel hexa-plex PCR method for identification and serotyping of Salmonella species.

    PubMed

    Li, Ruichao; Wang, Yang; Shen, Jianzhong; Wu, Congming

    2014-01-01

    Salmonella is one of the most important foodborne pathogens, which causes a huge economic burden worldwide. To detect Salmonella rapidly is very meaningful in preventing salmonellosis and decreasing economic losses. Currently, isolation of Salmonella is confirmed by biochemical and serobased serotyping methods, which are time consuming, labor intensive, and complicated. To solve this problem, a hexa-plex polymerase chain reaction (PCR) method was developed using comparative genomics analysis and multiplex PCR technology to detect Salmonella and Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Agona, Salmonella Choleraesuis, and Salmonella Pullorum simultaneously. The accuracy of this method was tested by a collection of 142 Salmonella. Furthermore, the strategy described in this article to mine serovar-specific fragments for Salmonella could be used to find specific fragments for other Salmonella serotypes and bacteria. The combination of this strategy and multiplex PCR is promising in the rapid identification of foodborne pathogens.

  13. Rapid and improved gas-liquid chromatography technique for detection of hippurate hydrolysis by Campylobacter jejuni and Campylobacter coli.

    PubMed Central

    Bär, W; Fricke, G

    1987-01-01

    A gas-liquid chromatographic method which requires no chloroform extraction of the split products has been investigated for the detection of hippurate hydrolysis by Campylobacter spp. This technique gave better reproducibility than other tests also used in this study and allows the routine use of the gas-liquid chromatographic method for identification of Campylobacter isolates. PMID:3654950

  14. Melamine detection in infant formula powder using near- and mid-infrared spectroscopy.

    PubMed

    Mauer, Lisa J; Chernyshova, Alona A; Hiatt, Ashley; Deering, Amanda; Davis, Reeta

    2009-05-27

    Near- and mid-infrared spectroscopy methods (NIR, FTIR-ATR, FTIR-DRIFT) were evaluated for the detection and quantification of melamine in infant formula powder. Partial least-squares (PLS) models were established for correlating spectral data to melamine concentration: R(2) > 0.99, RMSECV ≤ 0.9, and RPD ≥ 12. Factorization analysis of spectra was able to differentiate unadulterated infant formula powder from samples containing 1 ppm melamine with no misclassifications, a confidence level of 99.99%, and selectivity > 2. These nondestructive methods require little or no sample preparation. The NIR method has an assay time of 1 min, and a 2 min total time to detection. The FTIR methods require up to 5 min for melamine detection. Therefore, NIR and FTIR methods enable rapid detection of 1 ppm melamine in infant formula powder.

  15. Rapid detection of fumonisin B1 using a colloidal gold immunoassay strip test in corn samples.

    PubMed

    Ling, Sumei; Wang, Rongzhi; Gu, Xiaosong; Wen, Can; Chen, Lingling; Chen, Zhibin; Chen, Qing-Ai; Xiao, Shiwei; Yang, Yanling; Zhuang, Zhenhong; Wang, Shihua

    2015-12-15

    Fumonisin B1 (FB1) is the most common and highest toxic of fumonisins species, exists frequently in corn and corn-based foods, leading to several animal and human diseases. Furthermore, FB1 was reported that it was associated with the human esophageal cancer. In view of the harmful of FB1, it is urgent to develop a feasible and accuracy method for rapid detection of FB1. In this study, a competitive immunoassay for FB1 detection was developed based on colloidal gold-antibody conjugate. The FB1-keyhole limpet hemoeyanin (FB1-KLH) conjugate was embedded in the test line, and goat anti-mouse IgG antibody embedded in the control line. The color density of the test line correlated with the concentration of FB1 in the range from 2.5 to 10 ng/mL, and the visual limit detection of test for FB1 was 2.5 ng/mL. The results indicated that the test strip is specific for FB1, and no cross-reactivity to other toxins. The quantitative detection for FB1 was simple, only needing one step without complicated assay performance and expensive equipment, and the total time of visual evaluation was less than 5 min. Hence, the developed colloidal gold-antibody assay can be used as a feasible method for FB1 rapid and quantitative detection in corn samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. CdSe/ZnS Quantum Dot-Labeled Lateral Flow Strips for Rapid and Quantitative Detection of Gastric Cancer Carbohydrate Antigen 72-4

    NASA Astrophysics Data System (ADS)

    Yan, Xinyu; Wang, Kan; Lu, Wenting; Qin, Weijian; Cui, Daxiang; He, Jinghua

    2016-03-01

    Carbohydrate antigen 72-4 (CA72-4) is an important biomarker associated closely with diagnosis and prognosis of early gastric cancer. How to realize quick, sensitive, specific, and quantitative detection of CA72-4 in clinical specimens has become a great requirement. Herein, we reported a CdSe/ZnS quantum dot-labeled lateral flow test strip combined with a charge-coupled device (CCD)-based reader was developed for rapid, sensitive, and quantitative detection of CA72-4. Two mouse monoclonal antibodies (mAbs) against CA72-4 were employed. One of them was coated as a test line, while another mAb was labeled with quantum dots and coated onto conjugate pad. The goat anti-mouse IgG was immobilized as a control line. After sample was added, a sandwich structure was formed with CA72-4 and these two mAbs. The fluorescent signal from quantum dots (QD)-labeled mAb in sandwich structure was related to the amount of detected CA72-4. A CCD-based reader was used to realize quantitative detection of CA72-4. Results showed that developed QD-labeled lateral flow strips to detect CA72-4 biomarker with the sensitivity of 2 IU/mL and 10 min detection time. One hundred sera samples from clinical patients with gastric cancer and healthy people were used to confirm specificity of this strip method; results showed that established strip method own 100 % reproducibility and 100 % specificity compared with Roche electrochemiluminescence assay results. In conclusion, CdSe/ZnS quantum dot-labeled lateral flow strips for detection of CA72-4 could realize rapid, sensitive, and specific detection of clinical samples and could own great potential in clinical translation in near future.

  17. A rapid TLC autographic method for the detection of glucosidase inhibitors.

    PubMed

    Salazar, Mario O; Furlan, Ricardo L E

    2007-01-01

    A new bioautographic assay suitable for the localisation of beta-glucosidase inhibitors present in a complex matrix is described. Enzyme activity was detected using esculin as the substrate to produce esculetin, which reacts with ferric ion to form a brown complex.

  18. Rapid glucosinolate detection and identification using accurate mass MS-MS

    USDA-ARS?s Scientific Manuscript database

    Currently, there is a demand for accurate evaluation of brassica plat species for their glucosinolate content. An optimized method has been developed for detecting and identifying glucosinolates in plant extracts using MS-MS fragmentation with ion trap collision induced dissociation (CID) and higher...

  19. Rapid and Simple Detection of Hot Spot Point Mutations of Epidermal Growth Factor Receptor, BRAF, and NRAS in Cancers Using the Loop-Hybrid Mobility Shift Assay

    PubMed Central

    Matsukuma, Shoichi; Yoshihara, Mitsuyo; Kasai, Fumio; Kato, Akinori; Yoshida, Akira; Akaike, Makoto; Kobayashi, Osamu; Nakayama, Haruhiko; Sakuma, Yuji; Yoshida, Tsutomu; Kameda, Yoichi; Tsuchiya, Eiju; Miyagi, Yohei

    2006-01-01

    A simple and rapid method to detect the epidermal growth factor receptor hot spot mutation L858R in lung adenocarcinoma was developed based on principles similar to the universal heteroduplex generator technology. A single-stranded oligonucleotide with an internal deletion was used to generate heteroduplexes (loop-hybrids) bearing a loop in the complementary strand derived from the polymerase chain reaction product of the normal or mutant allele. By placing deletion in the oligonucleotide adjacent to the mutational site, difference in electrophoretic mobility between loop-hybrids with normal and mutated DNA was distinguishable in a native polyacrylamide gel. The method was also modified to detect in-frame deletion mutations of epidermal growth factor receptor in lung adenocarcinomas. In addition, the method was adapted to detect hot spot mutations in the B-type Raf kinase (BRAF) at V600 and in a Ras-oncogene (NRAS) at Q61, the mutations commonly found in thyroid carcinomas. Our mutation detection system, designated the loop-hybrid mobility shift assay was sensitive enough to detect mutant DNA comprising 7.5% of the total DNA. As a simple and straightforward mutation detection technique, loop-hybrid mobility shift assay may be useful for the molecular diagnosis of certain types of clinical cancers. Other applications are also discussed. PMID:16931592

  20. Simultaneous determination of ethyl carbamate and urea in Korean rice wine by ultra-performance liquid chromatography coupled with mass spectrometric detection.

    PubMed

    Lee, Gyeong-Hweon; Bang, Dae-Young; Lim, Jung-Hoon; Yoon, Seok-Min; Yea, Myeong-Jai; Chi, Young-Min

    2017-10-15

    In this study, a rapid method for simultaneous detection of ethyl carbamate (EC) and urea in Korean rice wine was developed. To achieve quantitative analysis of EC and urea, the conditions for Ultra-performance liquid chromatography (UPLC) separation and atmospheric-pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) detection were first optimized. Under the established conditions, the detection limit, relative standard deviation and linear range were 2.83μg/L, 3.75-5.96%, and 0.01-10.0mg/L, respectively, for urea; the corresponding values were 0.17μg/L, 1.06-4.01%, and 1.0-50.0μg/L, respectively, for EC. The correlation between the contents of EC and its precursor urea was determined under specific pH (3.5 and 4.5) and temperature (4, 25, and 50°C) conditions using the developed method. As a result, EC content was increased with greater temperature and lower pH. In Korean rice wine, urea was detected 0.19-1.37mg/L and EC was detected 2.0-7.7μg/L. The method developed in this study, which has the advantages of simplified sample preparation, low detection limits, and good selectivity, was successfully applied for the rapid analysis of EC and urea. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Rapid detection of α-thalassaemia variants using droplet digital PCR.

    PubMed

    Lee, T-Y; Lai, M-I; Ramachandran, V; Tan, J A M A; Teh, L-K; Othman, R; Hussein, N H; George, E

    2016-08-01

    Alpha thalassaemia is a highly prevalent disease globally and is a well-known public health problem in Malaysia. The deletional forms of the mutation are the most common forms found in alpha thalassaemia. The three most common deletional alpha thalassaemia found in this region include --(SEA) deletion, -α(3.7) rightward and -α(4.2) leftward deletions. The prevalence rate of triplication alpha cases such as ααα(anti3.7) and ααα(anti4.2) is not known in Malaysia although it plays a role in exacerbating the clinical phenotypes in beta thalassaemia carriers. Recently, there have been more reported cases of rare alpha thalassaemia mutations due to the advancement of molecular techniques involved in thalassaemia detections. Therefore, it is essential to develop a new method which allows the detection of different alpha thalassaemia mutations including the rare ones simultaneously and accurately. The purpose of this study was to design an assay for the detection of triplications, common and rare deletional alpha thalassaemia using droplet digital PCR (ddPCR). This is a quantitative detection method to measure the changes of copy number which can detect deletions, duplications and triplications of the alpha globin gene simultaneously. In conclusion, ddPCR is an alternative method for rapid detection of alpha thalassaemia variants in Malaysia. © 2016 John Wiley & Sons Ltd.

  2. Deoxyribonucleic Acid Probes Analyses for the Detection of Periodontal Pathogens.

    PubMed

    Al Yahfoufi, Zoubeida; Hadchiti, Wahib; Berberi, Antoine

    2015-09-01

    In clinical microbiology several techniques have been used to identify bacteria. Recently, Deoxyribonucleic acid (DNA)-based techniques have been introduced to detect human microbial pathogens in periodontal diseases. Deoxyribonucleic acid probes can detect bacteria at a very low level if we compared with the culture methods. These probes have shown rapid and cost-effective microbial diagnosis, good sensitivity and specificity for some periodontal pathogens in cases of severe periodontitis. Eighty-five patients were recruited for the study. Twenty-one subjects ranging between 22 and 48 years of age fulfilled the inclusion and exclusion criteria. Seventy-eight samples became available for DNA probe analysis from the deepest pockets in each quadrant. All 21 patients showed positive results for Prevotella intermedia; also, Prevotella gingivalis was identified in 19 subjects, Aggregatibacter actinomycetemcomitans in 6 subjects. P. intermedia was diagnosed positive in 82% of the subgingival samples taken, 79% for P. gingivalis, and 23% for A. actinomycetemcomitans. This study shows a high frequency of putative periodontal pathogens by using DNA probe technology, which is semi-quantitative in this study. Deoxyribonucleic acid probes can detect bacteria at very low level about 10(3) which is below the detection level of culture methods. The detection threshold of cultural methods. The three types of bacteria can be detected rapidly with high sensitivity by using the DNA probe by general practitioners, and thus can help in the diagnosis process and the treatment.

  3. Rapid identification and quantification of tumor cells using an electrocatalytic method based on gold nanoparticles.

    PubMed

    de la Escosura-Muñiz, Alfredo; Sánchez-Espinel, Christian; Díaz-Freitas, Belén; González-Fernández, Africa; Maltez-da Costa, Marisa; Merkoçi, Arben

    2009-12-15

    There is a high demand for simple, rapid, efficient, and user-friendly alternative methods for the detection of cells in general and, in particular, for the detection of cancer cells. A biosensor able to detect cells would be an all-in-one dream device for such applications. The successful integration of nanoparticles into cell detection assays could allow for the development of this novel class of cell sensors. Indeed, their application could well have a great future in diagnostics, as well as other fields. As an example of a novel biosensor, we report here an electrocatalytic device for the specific identification of tumor cells that quantifies gold nanoparticles (AuNPs) coupled with an electrotransducing platform/sensor. Proliferation and adherence of tumor cells are achieved on the electrotransducer/detector, which consists of a mass-produced screen-printed carbon electrode (SPCE). In situ identification/quantification of tumor cells is achieved with a detection limit of 4000 cells per 700 microL of suspension. This novel and selective cell-sensing device is based on the reaction of cell surface proteins with specific antibodies conjugated with AuNPs. Final detection requires only a couple of minutes, taking advantage of the catalytic properties of AuNPs on hydrogen evolution. The proposed detection method does not require the chemical agents used in most existing assays for the detection of AuNPs. It allows for the miniaturization of the system and is much cheaper than other expensive and sophisticated methods used for tumor cell detection. We envisage that this device could operate in a simple way as an immunosensor or DNA sensor. Moreover, it could be used, even by inexperienced staff, for the detection of protein molecules or DNA strands.

  4. Rapid fusion method for the determination of Pu, Np, and Am in large soil samples

    DOE PAGES

    Maxwell, Sherrod L.; Culligan, Brian; Hutchison, Jay B.; ...

    2015-02-14

    A new rapid sodium hydroxide fusion method for the preparation of 10-20 g soil samples has been developed by the Savannah River National Laboratory (SRNL). The method enables lower detection limits for plutonium, neptunium, and americium in environmental soil samples. The method also significantly reduces sample processing time and acid fume generation compared to traditional soil digestion techniques using hydrofluoric acid. Ten gram soil aliquots can be ashed and fused using the new method in 1-2 hours, completely dissolving samples, including refractory particles. Pu, Np and Am are separated using stacked 2mL cartridges of TEVA and DGA Resin and measuredmore » using alpha spectrometry. The method can be adapted for measurement by inductively-coupled plasma mass spectrometry (ICP-MS). Two 10 g soil aliquots of fused soil may be combined prior to chromatographic separations to further improve detection limits. Total sample preparation time, including chromatographic separations and alpha spectrometry source preparation, is less than 8 hours.« less

  5. Feasibility of FT-Raman spectroscopy in rapid and routine screening for deoxynivalenol in wheat and barley

    USDA-ARS?s Scientific Manuscript database

    Rapid and routine detection of deoxynivalenol (DON) in cereals-based food and feed has long been a strong desire of regulators and manufacturers. Traditional chemical methods and antibody based biosensors and immunoassays have been developed as viable tools to identify and measure DON. However, thes...

  6. Rapid Screening Assay for the Detection of Nivalenol and Deoxynivalenol using Monoclonal Antibody and Surface Plasmon Resonance

    USDA-ARS?s Scientific Manuscript database

    Nivalenol (NIV) and Deoxynivalenol (DON) are trichothecene mycotoxins produced by Fusarium spp that contaminate mainly cereal crops, such as wheat, barley, and maize. These mycotoxins are serious health hazards to human and domestic animals. The study reports a rapid screening method of NIV and DO...

  7. Development of primer sets for loop-mediated isothermal amplification that enables rapid and specific detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae

    USDA-ARS?s Scientific Manuscript database

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three ...

  8. Clover-Tagged Porcine Reproductive and Respiratory Syndrome Virus Infectious Clones for Rapid Detection of Virus Neutralizing Antibodies.

    PubMed

    Huang, Baicheng; Xiao, Xia; Xue, Biyun; Zhou, En-Min

    2018-06-24

    Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is a widespread disease that affects domestic pigs of all ages. Accurate and rapid detection of PRRSV specific neutralizing antibodies levels in a pig herd is beneficial for the evaluation of the herd's immunity to combat the specific viral infection. However, the current methods for viral detection, including fluorescent focus neutralization (FFN) and cytopathic effect (CPE) reduction neutralizing assays, are subjective and time-consuming. Therefore, a Clover-tagged PRRSV virus neutralization assay were developed that instrumentally measures the fluorescence signal of Clover stably expressing by a PRRSV infectious clone for at least 10 passages. Herein, the results showed that the proposed Clover-tagged PRRSV neutralization assay is reliable using instrumental measurements of the fluorescence signal of Clover and allows for rapid detection of neutralizing antibodies against PRRSV. The assay was evaluated by testing swine sera from experimental and field samples, and comparisons were made with the traditional FFN and CPE reduction assays. These results suggest that the Clover-tagged PRRSV infectious clone offers a fast and reliable testing method for neutralizing antibodies and could permit high-throughput screening of new antiviral agents. Copyright © 2018. Published by Elsevier B.V.

  9. A rapid method for infectivity titration of Andes hantavirus using flow cytometry.

    PubMed

    Barriga, Gonzalo P; Martínez-Valdebenito, Constanza; Galeno, Héctor; Ferrés, Marcela; Lozach, Pierre-Yves; Tischler, Nicole D

    2013-11-01

    The focus assay is currently the most commonly used technique for hantavirus titer determination. This method requires an incubation time of between 5 and 11 days to allow the appearance of foci after several rounds of viral infection. The following work presents a rapid Andes virus (ANDV) titration assay, based on viral nucleocapsid protein (N) detection in infected cells by flow cytometry. To this end, an anti-N monoclonal antibody was used that was developed and characterized previously. ANDV N could be detected as early as 6 h post-infection, while viral release was not observed until 24-48 h post-infection. Given that ANDV detection was performed during its first round of infection, a time reduction for titer determination was possible and provided results in only two days. The viral titer was calculated from the percentage of N positive cells and agreed with focus assay titers. Furthermore, the assay was applied to quantify the inhibition of ANDV cell entry by patient sera and by preventing endosome acidification. This novel hantavirus titration assay is a highly quantitative and sensitive tool that facilitates infectivity titration of virus stocks, rapid screening for antiviral drugs, and may be further used to detect and quantify infectious virus in human samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Development of a multiplex PCR-based rapid typing method for enterohemorrhagic Escherichia coli O157 strains.

    PubMed

    Ooka, Tadasuke; Terajima, Jun; Kusumoto, Masahiro; Iguchi, Atsushi; Kurokawa, Ken; Ogura, Yoshitoshi; Asadulghani, Md; Nakayama, Keisuke; Murase, Kazunori; Ohnishi, Makoto; Iyoda, Sunao; Watanabe, Haruo; Hayashi, Tetsuya

    2009-09-01

    Enterohemorrhagic Escherichia coli O157 (EHEC O157) is a food-borne pathogen that has raised worldwide public health concern. The development of simple and rapid strain-typing methods is crucial for the rapid detection and surveillance of EHEC O157 outbreaks. In the present study, we developed a multiplex PCR-based strain-typing method for EHEC O157, which is based on the variability in genomic location of IS629 among EHEC O157 strains. This method is very simple, in that the procedures are completed within 2 h, the analysis can be performed without the need for special equipment or techniques (requiring only conventional PCR and agarose gel electrophoresis systems), the results can easily be transformed into digital data, and the genes for the major virulence markers of EHEC O157 (the stx(1), stx(2), and eae genes) can be detected simultaneously. Using this method, 201 EHEC O157 strains showing different XbaI digestion patterns in pulsed-field gel electrophoresis (PFGE) analysis were classified into 127 types, and outbreak-related strains showed identical or highly similar banding patterns. Although this method is less discriminatory than PFGE, it may be useful as a primary screening tool for EHEC O157 outbreaks.

  11. Evaluation of growth based rapid microbiological methods for sterility testing of vaccines and other biological products.

    PubMed

    Parveen, Seema; Kaur, Simleen; David, Selwyn A Wilson; Kenney, James L; McCormick, William M; Gupta, Rajesh K

    2011-10-19

    Most biological products, including vaccines, administered by the parenteral route are required to be tested for sterility at the final container and also at various stages during manufacture. The sterility testing method described in the Code of Federal Regulations (21 CFR 610.12) and the United States Pharmacopoeia (USP, Chapter <71>) is based on the observation of turbidity in liquid culture media due to growth of potential contaminants. We evaluated rapid microbiological methods (RMM) based on detection of growth 1) by adenosine triphosphate (ATP) bioluminescence technology (Rapid Milliflex(®) Detection System [RMDS]), and 2) by CO(2) monitoring technologies (BacT/Alert and the BACTEC systems), as alternate sterility methods. Microorganisms representing Gram negative, Gram positive, aerobic, anaerobic, spore forming, slow growing bacteria, yeast, and fungi were prepared in aliquots of Fluid A or a biological matrix (including inactivated influenza vaccines) to contain approximately 0.1, 1, 10 and 100 colony forming units (CFU) in an inoculum of 10 ml. These preparations were inoculated to the specific media required for the various methods: 1) fluid thioglycollate medium (FTM) and tryptic soy broth (TSB) of the compendial sterility method (both membrane filtration and direct inoculation); 2) tryptic soy agar (TSA), Sabouraud dextrose agar (SDA) and Schaedler blood agar (SBA) of the RMDS; 3) iAST and iNST media of the BacT/Alert system and 4) Standard 10 Aerobic/F and Standard Anaerobic/F media of the BACTEC system. RMDS was significantly more sensitive in detecting various microorganisms at 0.1CFU than the compendial methods (p<0.05), whereas the compendial membrane filtration method was significantly more sensitive than the BACTEC and BacT/Alert methods (p<0.05). RMDS detected all microorganisms significantly faster than the compendial method (p<0.05). BacT/Alert and BACTEC methods detected most microorganisms significantly faster than the compendial method (p<0.05), but took almost the same time to detect the slow growing microorganism P. acnes, compared to the compendial method. RMDS using SBA detected all test microorganisms in the presence of a matrix containing preservative 0.01% thimerosal, whereas the BacT/Alert and BACTEC systems did not consistently detect all the test microorganisms in the presence of 0.01% thimerosal. RMDS was compatible with inactivated influenza vaccines and aluminum phosphate or aluminum hydroxide adjuvants at up to 8 mg/ml without any interference in bioluminescence. RMDS was shown to be acceptable as an alternate sterility method taking 5 days as compared to the 14 days required of the compendial method. Isolation of microorganisms from the RMDS was accomplished by re-incubation of membranes with fresh SBA medium and microbial identification was confirmed using the MicroSEQ Identification System. BacT/Alert and BACTEC systems may be applicable as alternate methods to the compendial direct inoculation sterility method for products that do not contain preservatives or anti-microbial agents. Published by Elsevier Ltd.

  12. The use of geoscience methods for terrestrial forensic searches

    NASA Astrophysics Data System (ADS)

    Pringle, J. K.; Ruffell, A.; Jervis, J. R.; Donnelly, L.; McKinley, J.; Hansen, J.; Morgan, R.; Pirrie, D.; Harrison, M.

    2012-08-01

    Geoscience methods are increasingly being utilised in criminal, environmental and humanitarian forensic investigations, and the use of such methods is supported by a growing body of experimental and theoretical research. Geoscience search techniques can complement traditional methodologies in the search for buried objects, including clandestine graves, weapons, explosives, drugs, illegal weapons, hazardous waste and vehicles. This paper details recent advances in search and detection methods, with case studies and reviews. Relevant examples are given, together with a generalised workflow for search and suggested detection technique(s) table. Forensic geoscience techniques are continuing to rapidly evolve to assist search investigators to detect hitherto difficult to locate forensic targets.

  13. Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A.

    PubMed

    Pan, Daodong; Gu, Yuanyuan; Lan, Hangzhen; Sun, Yangying; Gao, Huiju

    2015-01-01

    In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5×10(-3)-3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Rapid detection of chemical hazards (toxins, dioxins, and PCBs) in seafood.

    PubMed

    Arvanitoyannis, Ioannis S; Kotsanopoulos, Konstantinos V; Papadopoulou, Anna

    2014-01-01

    Among the various hazards occurring in fish and seafood chemical hazards and in particular toxins (ciguatera, scombroid fish poisoning, paralytic shellfish poisoning, neurotoxic (brevetoxic) shellfish poisoning, puffer fish poisoning, diarrhetic shellfish poisoning) have an important place in food poisoning cases. On the other hand, some of the chemical hazards are often due to the pollution of the environment (heavy metals, dioxins, polychlorinated biphenyls, and halogenated aromatic hydrocarbons) and their detection is neither rapid nor facile. As a result there was a great need for developing new rapid and effective methods toward the chemical hazards determination mainly because of their high toxicity. The aim of this review is to provide the information about the new up-to-date detection techniques (Immunological, Chemical and Biochemical, and Molecular assays) in conjunction with detection limits. The latter is made possible by means of inclusion of seven comprehensive and, in most case cases, very extended tables. A reference is also made on the risk characterization of toxins as regards their importance to food contamination or poisoning.

  15. Hyperspectral reflectance and fluorescence line-scan imaging system for online detection of fecal contamination on apples

    NASA Astrophysics Data System (ADS)

    Kim, Moon S.; Cho, Byoung-Kwan; Yang, Chun-Chieh; Chao, Kaunglin; Lefcourt, Alan M.; Chen, Yud-Ren

    2006-10-01

    We have developed nondestructive opto-electronic imaging techniques for rapid assessment of safety and wholesomeness of foods. A recently developed fast hyperspectral line-scan imaging system integrated with a commercial apple-sorting machine was evaluated for rapid detection of animal feces matter on apples. Apples obtained from a local orchard were artificially contaminated with cow feces. For the online trial, hyperspectral images with 60 spectral channels, reflectance in the visible to near infrared regions and fluorescence emissions with UV-A excitation, were acquired from apples moving at a processing sorting-line speed of three apples per second. Reflectance and fluorescence imaging required a passive light source, and each method used independent continuous wave (CW) light sources. In this paper, integration of the hyperspectral imaging system with the commercial applesorting machine and preliminary results for detection of fecal contamination on apples, mainly based on the fluorescence method, are presented.

  16. Loop-mediated isothermal amplification (LAMP) assay-A rapid detection tool for identifying red fox (Vulpes vulpes) DNA in the carcasses of harbour porpoises (Phocoena phocoena).

    PubMed

    Heers, Teresa; van Neer, Abbo; Becker, André; Grilo, Miguel Luca; Siebert, Ursula; Abdulmawjood, Amir

    2017-01-01

    Carcasses of wild animals are often visited by different scavengers. However, determining which scavenger caused certain types of bite marks is particularly difficult and knowledge thereof is lacking. Therefore, a loop-mediated isothermal amplification (LAMP) assay (target sequence cytochrome b) was developed to detect red fox DNA in carcasses of harbour porpoises. The MSwab™ method for direct testing without prior DNA isolation was validated. As a detection device, the portable real-time fluorometer Genie® II was used, which yields rapid results and can be used in field studies without huge laboratory equipment. In addition to in vitro evaluation and validation, a stranded and scavenged harbour porpoise carcass was successfully examined for red fox DNA residues. The developed LAMP method is a valuable diagnostic tool for confirming presumable red fox bite wounds in harbour porpoises without further DNA isolation steps.

  17. Rapid detection of coliforms in drinking water of Arak city using multiplex PCR method in comparison with the standard method of culture (Most Probably Number)

    PubMed Central

    Fatemeh, Dehghan; Reza, Zolfaghari Mohammad; Mohammad, Arjomandzadegan; Salomeh, Kalantari; Reza, Ahmari Gholam; Hossein, Sarmadian; Maryam, Sadrnia; Azam, Ahmadi; Mana, Shojapoor; Negin, Najarian; Reza, Kasravi Alii; Saeed, Falahat

    2014-01-01

    Objective To analyse molecular detection of coliforms and shorten the time of PCR. Methods Rapid detection of coliforms by amplification of lacZ and uidA genes in a multiplex PCR reaction was designed and performed in comparison with most probably number (MPN) method for 16 artificial and 101 field samples. The molecular method was also conducted on isolated coliforms from positive MPN samples; standard sample for verification of microbial method certificated reference material; isolated strains from certificated reference material and standard bacteria. The PCR and electrophoresis parameters were changed for reducing the operation time. Results Results of PCR for lacZ and uidA genes were similar in all of standard, operational and artificial samples and showed the 876 bp and 147 bp bands of lacZ and uidA genes by multiplex PCR. PCR results were confirmed by MPN culture method by sensitivity 86% (95% CI: 0.71-0.93). Also the total execution time, with a successful change of factors, was reduced to less than two and a half hour. Conclusions Multiplex PCR method with shortened operation time was used for the simultaneous detection of total coliforms and Escherichia coli in distribution system of Arak city. It's recommended to be used at least as an initial screening test, and then the positive samples could be randomly tested by MPN. PMID:25182727

  18. The sensitivity and the specifity of rapid antigen test in streptococcal upper respiratory tract infections.

    PubMed

    Gurol, Yesim; Akan, Hulya; Izbirak, Guldal; Tekkanat, Zuhal Tazegun; Gunduz, Tehlile Silem; Hayran, Osman; Yilmaz, Gulden

    2010-06-01

    It is aimed to detect the sensitivity and specificity of rapid antigen detection of group A beta hemolytic streptococci from throat specimen compared with throat culture. The other goal of the study is to help in giving clinical decisions in upper respiratory tract infections according to the age group, by detection of sensitivity and positive predictive values of the rapid tests and throat cultures. Rapid antigen detection and throat culture results for group A beta hemolytic streptococci from outpatients attending to our university hospital between the first of November 2005 and 31st of December 2008 were evaluated retrospectively. Throat samples were obtained by swabs from the throat and transported in the Stuart medium and Quickvue Strep A [Quidel, San Diego, USA] cassette test was applied and for culture, specimen was inoculated on 5% blood sheep agar and identified according to bacitracin and trimethoprim-sulphametaxazole susceptibility from beta hemolytic colonies. During the dates between the first of November 2005 and 31st of December 2008, from 453 patients both rapid antigen detection and throat culture were evaluated. Rapid antigen detection sensitivity and specificity were found to be 64.6% and 96.79%, respectively. The positive predictive value was 80.95% whereas negative predictive value was 92.82%. Kappa index was 0.91. When the results were evaluated according to the age groups, the sensitivity and the positive predictive value of rapid antigen detection in children were 70%, 90.3% and in adults 59.4%, 70.4%. When bacterial infection is concerned to prevent unnecessary antibiotic use, rapid streptococcal antigen test (RSAT) is a reliable method to begin immediate treatment. To get the maximum sensitivity of RSAT, the specimen collection technique used and education of the health care workers is important. While giving clinical decision, it must be taken into consideration that the sensitivity and the positive predictive value of the RSAT is quite lower in adult age group than in pediatric age group. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Analysis of cocoa flavanols and procyanidins (DP 1-10) in cocoa-containing ingredients and products by rapid resolution liquid chromatography: single-laboratory validation.

    PubMed

    Machonis, Philip R; Jones, Matthew A; Kwik-Uribe, Catherine

    2014-01-01

    Recently, a multilaboratory validation (MLV) of AOAC Official Method 2012.24 for the determination of cocoa flavanols and procyanidins (CF-CP) in cocoa-based ingredients and products determined that the method was robust, reliable, and transferrable. Due to the complexity of the CF-CP molecules, this method required a run time exceeding 1 h to achieve acceptable separations. To address this issue, a rapid resolution normal phase LC method was developed, and a single-laboratory validation (SLV) study conducted. Flavanols and procyanidins with a degree of polymerization (DP) up to 10 were eluted in 15 min using a binary gradient applied to a diol stationary phase, detected using fluorescence detection, and reported as a total sum of DP 1-10. Quantification was achieved using (-)-epicatechin-based relative response factors for DP 2-10. Spike recovery samples and seven different types of cocoa-based samples were analyzed to evaluate the accuracy, precision, LOD, LOQ, and linearity of the method. The within-day precision of the reported content for the samples was 1.15-5.08%, and overall precision was 3.97-13.61%. Spike-recovery experiments demonstrated recoveries of over 98%. The results of this SLV were compared to those previously obtained in the MLV and found to be consistent. The translation to rapid resolution LC allowed for an 80% reduction in analysis time and solvent usage, while retaining the accuracy and reliability of the original method. The savings in both cost and time of this rapid method make it well-suited for routine laboratory use.

  20. Relative effectiveness of the Bacteriological Analytical Manual method for the recovery of Salmonella from whole cantaloupes and cantaloupe rinses with selected preenrichment media and rapid methods.

    PubMed

    Hammack, Thomas S; Valentin-Bon, Iris E; Jacobson, Andrew P; Andrews, Wallace H

    2004-05-01

    Soak and rinse methods were compared for the recovery of Salmonella from whole cantaloupes. Cantaloupes were surface inoculated with Salmonella cell suspensions and stored for 4 days at 2 to 6 degrees C. Cantaloupes were placed in sterile plastic bags with a nonselective preenrichment broth at a 1:1.5 cantaloupe weight-to-broth volume ratio. The cantaloupe broths were shaken for 5 min at 100 rpm after which 25-ml aliquots (rinse) were removed from the bags. The 25-ml rinses were preenriched in 225-ml portions of the same uninoculated broth type at 35 degrees C for 24 h (rinse method). The remaining cantaloupe broths were incubated at 35 degrees C for 24 h (soak method). The preenrichment broths used were buffered peptone water (BPW), modified BPW, lactose (LAC) broth, and Universal Preenrichment (UP) broth. The Bacteriological Analytical Manual Salmonella culture method was compared with the following rapid methods: the TECRA Unique Salmonella method, the VIDAS ICS/SLM method, and the VIDAS SLM method. The soak method detected significantly more Salmonella-positive cantaloupes (P < 0.05) than did the rinse method: 367 Salmonella-positive cantaloupes of 540 test cantaloupes by the soak method and 24 Salmonella-positive cantaloupes of 540 test cantaloupes by the rinse method. Overall, BPW, LAC, and UP broths were equivalent for the recovery of Salmonella from cantaloupes. Both the VIDAS ICS/SLM and TECRA Unique Salmonella methods detected significantly fewer Salmonella-positive cantaloupes than did the culture method: the VIDAS ICS/SLM method detected 23 of 50 Salmonella-positive cantaloupes (60 tested) and the TECRA Unique Salmonella method detected 16 of 29 Salmonella-positive cantaloupes (60 tested). The VIDAS SLM and culture methods were equivalent: both methods detected 37 of 37 Salmonella-positive cantaloupes (60 tested).

Top