Science.gov

Sample records for rapid genomic characterization

  1. Rapid Genomic Characterization of the Genus Vitis

    PubMed Central

    Hurwitz, Bonnie; Simon, Charles; Zhong, Gan Yuan; Buckler, Edward; Ware, Doreen

    2010-01-01

    Next-generation sequencing technologies promise to dramatically accelerate the use of genetic information for crop improvement by facilitating the genetic mapping of agriculturally important phenotypes. The first step in optimizing the design of genetic mapping studies involves large-scale polymorphism discovery and a subsequent genome-wide assessment of the population structure and pattern of linkage disequilibrium (LD) in the species of interest. In the present study, we provide such an assessment for the grapevine (genus Vitis), the world's most economically important fruit crop. Reduced representation libraries (RRLs) from 17 grape DNA samples (10 cultivated V. vinifera and 7 wild Vitis species) were sequenced with sequencing-by-synthesis technology. We developed heuristic approaches for SNP calling, identified hundreds of thousands of SNPs and validated a subset of these SNPs on a 9K genotyping array. We demonstrate that the 9K SNP array provides sufficient resolution to distinguish among V. vinifera cultivars, between V. vinifera and wild Vitis species, and even among diverse wild Vitis species. We show that there is substantial sharing of polymorphism between V. vinifera and wild Vitis species and find that genetic relationships among V. vinifera cultivars agree well with their proposed geographic origins using principal components analysis (PCA). Levels of LD in the domesticated grapevine are low even at short ranges, but LD persists above background levels to 3 kb. While genotyping arrays are useful for assessing population structure and the decay of LD across large numbers of samples, we suggest that whole-genome sequencing will become the genotyping method of choice for genome-wide genetic mapping studies in high-diversity plant species. This study demonstrates that we can move quickly towards genome-wide studies of crop species using next-generation sequencing. Our study sets the stage for future work in other high diversity crop species, and provides a

  2. Rapid and efficient genome-wide characterization of Xanthomonas TAL effector genes

    PubMed Central

    Yu, Yan-Hua; Lu, Ye; He, Yong-Qiang; Huang, Sheng; Tang, Ji-Liang

    2015-01-01

    Xanthomonas TALE transcriptional activators act as virulence or avirulence factors by activating host disease susceptibility or resistance genes. Their specificity is determined by a tandem repeat domain. Some Xanthomonas pathogens contain 10–30 TALEs per strain. Although TALEs play critical roles in pathogenesis, their studies have so far been limited to a few examples, due to their highly repetitive gene structure and extreme similarity among different members, which constrict sequencing and assembling. To facilitate TALE studies, we developed an efficient and rapid pipeline for genome-wide cloning of tal genes as many as possible from a strain. Here, we report the pipeline and its use to identify all 18 tal genes from a newly isolated strain of the rice pathogen Xathomonas oryzae. Target prediction revealed a number of potential rice targets including several notable genes such as genes encoding SWEET, WRKY, Hen1, and BAK1 proteins, which provide candidates for further experimental functional analysis of the TALEs. PMID:26271455

  3. Genomic Epidemiology of the Haitian Cholera Outbreak: a Single Introduction Followed by Rapid, Extensive, and Continued Spread Characterized the Onset of the Epidemic

    PubMed Central

    Pearson, Talima; Koenig, Sara S. K.; Pearson, Ofori; Hicks, Nathan; Agrawal, Sonia; Sanjar, Fatemeh; Galens, Kevin; Daugherty, Sean; Crabtree, Jonathan; Hendriksen, Rene S.; Price, Lance B.; Upadhyay, Bishnu P.; Shakya, Geeta; Fraser, Claire M.; Ravel, Jacques

    2014-01-01

    ABSTRACT For centuries, cholera has been one of the most feared diseases. The causative agent Vibrio cholerae is a waterborne Gram-negative enteric pathogen eliciting a severe watery diarrheal disease. In October 2010, the seventh pandemic reached Haiti, a country that had not experienced cholera for more than a century. By using whole-genome sequence typing and mapping strategies of 116 serotype O1 strains from global sources, including 44 Haitian genomes, we present a detailed reconstructed evolutionary history of the seventh pandemic with a focus on the Haitian outbreak. We catalogued subtle genomic alterations at the nucleotide level in the genome core and architectural rearrangements from whole-genome map comparisons. Isolates closely related to the Haitian isolates caused several recent outbreaks in southern Asia. This study provides evidence for a single-source introduction of cholera from Nepal into Haiti followed by rapid, extensive, and continued clonal expansion. The phylogeographic patterns in both southern Asia and Haiti argue for the rapid dissemination of V. cholerae across the landscape necessitating real-time surveillance efforts to complement the whole-genome epidemiological analysis. As eradication efforts move forward, phylogeographic knowledge will be important for identifying persistent sources and monitoring success at regional levels. The results of molecular and epidemiological analyses of this outbreak suggest that an indigenous Haitian source of V. cholerae is unlikely and that an indigenous source has not contributed to the genomic evolution of this clade. PMID:25370488

  4. Whole-genome Sequencing for Surveillance of Invasive Pneumococcal Diseases in Ontario, Canada: Rapid Prediction of Genotype, Antibiotic Resistance and Characterization of Emerging Serotype 22F.

    PubMed

    Deng, Xianding; Memari, Nader; Teatero, Sarah; Athey, Taryn; Isabel, Marc; Mazzulli, Tony; Fittipaldi, Nahuel; Gubbay, Jonathan B

    2016-01-01

    Background: Molecular typing is essential for inferring genetic relatedness between bacterial pathogens. In this study, we applied whole genome sequencing (WGS) for rapid prediction of sequence type and antibiotic resistance for invasive pneumococcal isolates. Methods: 240 isolates from adults (≥50 years old) in Ontario, Canada during 2009 to 2013 were subjected to WGS. Sequence type, antibiotic susceptibility and resistance were predicted directly from short reads. Emerging non-vaccine serotype 22F was further characterized by WGS. Results: Sequence type was successfully determined for 98.3% of isolates. The overall sensitivity and specificity for antibiotic resistance prediction were 95 and 100% respectively, compared to standard susceptibility testing methods. WGS-based phylogeny divided emerging 22F (ST433) strains into two distinct clades: clade A harboring a 23 kb-prophage and anti-phage PhD/Doc system and clade B with virulence-related proteases. Five isolates in clade A developed macrolide resistance via 5.1 kb mega element recombination (encoding mefE and msrD), while one isolate in clade B displayed quinolone resistance via a gyrA mutation. Conclusions: WGS is valuable for routine surveillance of pneumococcal clinical isolates and facilitates prediction of genotype and antibiotic resistance. The emergence of 22F in Ontario in the post-vaccine era and evidence of evolution and divergence of the 22F population warrants heightened pneumococcal molecular surveillance.

  5. Whole-genome Sequencing for Surveillance of Invasive Pneumococcal Diseases in Ontario, Canada: Rapid Prediction of Genotype, Antibiotic Resistance and Characterization of Emerging Serotype 22F

    PubMed Central

    Deng, Xianding; Memari, Nader; Teatero, Sarah; Athey, Taryn; Isabel, Marc; Mazzulli, Tony; Fittipaldi, Nahuel; Gubbay, Jonathan B.

    2016-01-01

    Background: Molecular typing is essential for inferring genetic relatedness between bacterial pathogens. In this study, we applied whole genome sequencing (WGS) for rapid prediction of sequence type and antibiotic resistance for invasive pneumococcal isolates. Methods: 240 isolates from adults (≥50 years old) in Ontario, Canada during 2009 to 2013 were subjected to WGS. Sequence type, antibiotic susceptibility and resistance were predicted directly from short reads. Emerging non-vaccine serotype 22F was further characterized by WGS. Results: Sequence type was successfully determined for 98.3% of isolates. The overall sensitivity and specificity for antibiotic resistance prediction were 95 and 100% respectively, compared to standard susceptibility testing methods. WGS-based phylogeny divided emerging 22F (ST433) strains into two distinct clades: clade A harboring a 23 kb-prophage and anti-phage PhD/Doc system and clade B with virulence-related proteases. Five isolates in clade A developed macrolide resistance via 5.1 kb mega element recombination (encoding mefE and msrD), while one isolate in clade B displayed quinolone resistance via a gyrA mutation. Conclusions: WGS is valuable for routine surveillance of pneumococcal clinical isolates and facilitates prediction of genotype and antibiotic resistance. The emergence of 22F in Ontario in the post-vaccine era and evidence of evolution and divergence of the 22F population warrants heightened pneumococcal molecular surveillance. PMID:28082965

  6. Genomic epidemiology of the Haitian cholera outbreak: a single introduction followed by rapid, extensive, and continued spread characterized the onset of the epidemic.

    PubMed

    Eppinger, Mark; Pearson, Talima; Koenig, Sara S K; Pearson, Ofori; Hicks, Nathan; Agrawal, Sonia; Sanjar, Fatemeh; Galens, Kevin; Daugherty, Sean; Crabtree, Jonathan; Hendriksen, Rene S; Price, Lance B; Upadhyay, Bishnu P; Shakya, Geeta; Fraser, Claire M; Ravel, Jacques; Keim, Paul S

    2014-11-04

    For centuries, cholera has been one of the most feared diseases. The causative agent Vibrio cholerae is a waterborne Gram-negative enteric pathogen eliciting a severe watery diarrheal disease. In October 2010, the seventh pandemic reached Haiti, a country that had not experienced cholera for more than a century. By using whole-genome sequence typing and mapping strategies of 116 serotype O1 strains from global sources, including 44 Haitian genomes, we present a detailed reconstructed evolutionary history of the seventh pandemic with a focus on the Haitian outbreak. We catalogued subtle genomic alterations at the nucleotide level in the genome core and architectural rearrangements from whole-genome map comparisons. Isolates closely related to the Haitian isolates caused several recent outbreaks in southern Asia. This study provides evidence for a single-source introduction of cholera from Nepal into Haiti followed by rapid, extensive, and continued clonal expansion. The phylogeographic patterns in both southern Asia and Haiti argue for the rapid dissemination of V. cholerae across the landscape necessitating real-time surveillance efforts to complement the whole-genome epidemiological analysis. As eradication efforts move forward, phylogeographic knowledge will be important for identifying persistent sources and monitoring success at regional levels. The results of molecular and epidemiological analyses of this outbreak suggest that an indigenous Haitian source of V. cholerae is unlikely and that an indigenous source has not contributed to the genomic evolution of this clade. In this genomic epidemiology study, we have applied high-resolution whole-genome-based sequence typing methodologies on a comprehensive set of genome sequences that have become available in the aftermath of the Haitian cholera epidemic. These sequence resources enabled us to reassess the degree of genomic heterogeneity within the Vibrio cholerae O1 serotype and to refine boundaries and

  7. The genomic landscape of rapid repeated evolutionary ...

    EPA Pesticide Factsheets

    Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl hydrocarbon receptor–based signaling pathway as a shared target of selection. This suggests evolutionary constraint on adaptive solutions to complex toxicant mixtures at each site. However, distinct molecular variants apparently contribute to adaptive pathway modification among tolerant populations. Selection also targets other toxicity-mediatinggenes and genes of connected signaling pathways; this indicates complex tolerance phenotypes and potentially compensatory adaptations. Molecular changes are consistent with selection on standing genetic variation. In killifish, high nucleotide diversityhas likely been a crucial substrate for selective sweeps to propel rapid adaptation. This manuscript describes genomic evaluations that contribute to our understanding of the ecological and evolutionary risks associated with chronic contaminant exposures to wildlife populations. Here, we assessed genetic patterns associated with long-term response to an important class of highly toxic environmental pollutants. Specifically, chemical-specific tolerance has rapidly and repeatedly evolved in an estuarine fish species resident to estuaries of the Atlantic U.S. coast. We used laboratory studies to ch

  8. Genomic characterization of Nontuberculous Mycobacteria

    PubMed Central

    Fedrizzi, Tarcisio; Meehan, Conor J.; Grottola, Antonella; Giacobazzi, Elisabetta; Fregni Serpini, Giulia; Tagliazucchi, Sara; Fabio, Anna; Bettua, Clotilde; Bertorelli, Roberto; De Sanctis, Veronica; Rumpianesi, Fabio; Pecorari, Monica; Jousson, Olivier; Tortoli, Enrico; Segata, Nicola

    2017-01-01

    Mycobacterium tuberculosis and Mycobacterium leprae have remained, for many years, the primary species of the genus Mycobacterium of clinical and microbiological interest. The other members of the genus, referred to as nontuberculous mycobacteria (NTM), have long been underinvestigated. In the last decades, however, the number of reports linking various NTM species with human diseases has steadily increased and treatment difficulties have emerged. Despite the availability of whole genome sequencing technologies, limited effort has been devoted to the genetic characterization of NTM species. As a consequence, the taxonomic and phylogenetic structure of the genus remains unsettled and genomic information is lacking to support the identification of these organisms in a clinical setting. In this work, we widen the knowledge of NTMs by reconstructing and analyzing the genomes of 41 previously uncharacterized NTM species. We provide the first comprehensive characterization of the genomic diversity of NTMs and open new venues for the clinical identification of opportunistic pathogens from this genus. PMID:28345639

  9. Microfluidic gene arrays for rapid genomic profiling

    NASA Astrophysics Data System (ADS)

    West, Jay A.; Hukari, Kyle W.; Hux, Gary A.; Shepodd, Timothy J.

    2004-12-01

    Genomic analysis tools have recently become an indispensable tool for the evaluation of gene expression in a variety of experiment protocols. Two of the main drawbacks to this technology are the labor and time intensive process for sample preparation and the relatively long times required for target/probe hybridization. In order to overcome these two technological barriers we have developed a microfluidic chip to perform on chip sample purification and labeling, integrated with a high density genearray. Sample purification was performed using a porous polymer monolithic material functionalized with an oligo dT nucleotide sequence for the isolation of high purity mRNA. These purified mRNA"s can then rapidly labeled using a covalent fluorescent molecule which forms a selective covalent bond at the N7 position of guanine residues. These labeled mRNA"s can then released from the polymer monolith to allow for direct hybridization with oligonucletide probes deposited in microfluidic channel. To allow for rapid target/probe hybridization high density microarray were printed in microchannels. The channels can accommodate array densities as high as 4000 probes. When oligonucleotide deposition is complete, these channels are sealed using a polymer film which forms a pressure tight seal to allow sample reagent flow to the arrayed probes. This process will allow for real time target to probe hybridization monitoring using a top mounted CCD fiber bundle combination. Using this process we have been able to perform a multi-step sample preparation to labeled target/probe hybridization in less than 30 minutes. These results demonstrate the capability to perform rapid genomic screening on a high density microfluidic microarray of oligonucleotides.

  10. Rapid whole genome sequencing and precision neonatology.

    PubMed

    Petrikin, Joshua E; Willig, Laurel K; Smith, Laurie D; Kingsmore, Stephen F

    2015-12-01

    Traditionally, genetic testing has been too slow or perceived to be impractical to initial management of the critically ill neonate. Technological advances have led to the ability to sequence and interpret the entire genome of a neonate in as little as 26 h. As the cost and speed of testing decreases, the utility of whole genome sequencing (WGS) of neonates for acute and latent genetic illness increases. Analyzing the entire genome allows for concomitant evaluation of the currently identified 5588 single gene diseases. When applied to a select population of ill infants in a level IV neonatal intensive care unit, WGS yielded a diagnosis of a causative genetic disease in 57% of patients. These diagnoses may lead to clinical management changes ranging from transition to palliative care for uniformly lethal conditions for alteration or initiation of medical or surgical therapy to improve outcomes in others. Thus, institution of 2-day WGS at time of acute presentation opens the possibility of early implementation of precision medicine. This implementation may create opportunities for early interventional, frequently novel or off-label therapies that may alter disease trajectory in infants with what would otherwise be fatal disease. Widespread deployment of rapid WGS and precision medicine will raise ethical issues pertaining to interpretation of variants of unknown significance, discovery of incidental findings related to adult onset conditions and carrier status, and implementation of medical therapies for which little is known in terms of risks and benefits. Despite these challenges, precision neonatology has significant potential both to decrease infant mortality related to genetic diseases with onset in newborns and to facilitate parental decision making regarding transition to palliative care.

  11. Rapid genomic DNA changes in allotetraploid fish hybrids.

    PubMed

    Wang, J; Ye, L H; Liu, Q Z; Peng, L Y; Liu, W; Yi, X G; Wang, Y D; Xiao, J; Xu, K; Hu, F Z; Ren, L; Tao, M; Zhang, C; Liu, Y; Hong, Y H; Liu, S J

    2015-06-01

    Rapid genomic change has been demonstrated in several allopolyploid plant systems; however, few studies focused on animals. We addressed this issue using an allotetraploid lineage (4nAT) of freshwater fish originally derived from the interspecific hybridization of red crucian carp (Carassius auratus red var., ♀, 2n=100) × common carp (Cyprinus carpio L., ♂, 2n=100). We constructed a bacterial artificial chromosome (BAC) library from allotetraploid hybrids in the 20th generation (F20) and sequenced 14 BAC clones representing a total of 592.126 kb, identified 11 functional genes and estimated the guanine-cytosine content (37.10%) and the proportion of repetitive elements (17.46%). The analysis of intron evolution using nine orthologous genes across a number of selected fish species detected a gain of 39 introns and a loss of 30 introns in the 4nAT lineage. A comparative study based on seven functional genes among 4nAT, diploid F1 hybrids (2nF1) (first generation of hybrids) and their original parents revealed that both hybrid types (2nF1 and 4nAT) not only inherited genomic DNA from their parents, but also demonstrated rapid genomic DNA changes (homoeologous recombination, parental DNA fragments loss and formation of novel genes). However, 4nAT presented more genomic variations compared with their parents than 2nF1. Interestingly, novel gene fragments were found for the iqca1 gene in both hybrid types. This study provided a preliminary genomic characterization of allotetraploid F20 hybrids and revealed evolutionary and functional genomic significance of allopolyploid animals.

  12. Rapid extraction and preservation of genomic DNA from human samples

    PubMed Central

    Kalyanasundaram, D.; Kim, J.-H.; Yeo, W.-H.; Oh, K.; Lee, K.-H.; Kim, M.-H.; Ryew, S.-M.; Ahn, S.-G.; Gao, D.; Cangelosi, G. A.; Chung, J.-H.

    2013-01-01

    Simple and rapid extraction of human genomic DNA remains a bottle neck for genome analysis and disease diagnosis. Current methods using microfilters require cumbersome, multiple handling steps in part because salt conditions must be controlled for attraction and elution of DNA in porous silica. We report a novel extraction method of human genomic DNA from buccal swab- and saliva samples. DNA is attracted on to a gold-coated microchip by an electric field and capillary action while the captured DNA is eluted by thermal heating at 70 °C. A prototype device was designed to handle 4 microchips, and a compatible protocol was developed. The extracted DNA using microchips was characterized by qPCR for different sample volumes, using different lengths of PCR amplicon, and nuclear and mitochondrial genes. In comparison with a commercial kit, an equivalent yield of DNA extraction was achieved with fewer steps. Room-temperature preservation for one month was demonstrated for captured DNA, facilitating straightforward collection, delivery and handling of genomic DNA in an environment-friendly protocol. PMID:23307121

  13. Rapid extraction and preservation of genomic DNA from human samples.

    PubMed

    Kalyanasundaram, D; Kim, J-H; Yeo, W-H; Oh, K; Lee, K-H; Kim, M-H; Ryew, S-M; Ahn, S-G; Gao, D; Cangelosi, G A; Chung, J-H

    2013-02-01

    Simple and rapid extraction of human genomic DNA remains a bottleneck for genome analysis and disease diagnosis. Current methods using microfilters require cumbersome, multiple handling steps in part because salt conditions must be controlled for attraction and elution of DNA in porous silica. We report a novel extraction method of human genomic DNA from buccal swab and saliva samples. DNA is attracted onto a gold-coated microchip by an electric field and capillary action while the captured DNA is eluted by thermal heating at 70 °C. A prototype device was designed to handle four microchips, and a compatible protocol was developed. The extracted DNA using microchips was characterized by qPCR for different sample volumes, using different lengths of PCR amplicon, and nuclear and mitochondrial genes. In comparison with a commercial kit, an equivalent yield of DNA extraction was achieved with fewer steps. Room-temperature preservation for 1 month was demonstrated for captured DNA, facilitating straightforward collection, delivery, and handling of genomic DNA in an environment-friendly protocol.

  14. Integrated Field Screening for Rapid Sediment Characterization

    DTIC Science & Technology

    2004-08-01

    Screening for Rapid Sediment Characterization August 2004 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...Integrated Field Screening for Rapid Sediment Characterization 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...acceptance of three field screening techniques to delineate chemical concentrations and potential biological effects of sediment contaminants. Defining

  15. Rapid cycling genomic selection in a multiparental tropical maize population

    USDA-ARS?s Scientific Manuscript database

    Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is th...

  16. Characterization of the genome of bald cypress

    PubMed Central

    2011-01-01

    Background Bald cypress (Taxodium distichum var. distichum) is a coniferous tree of tremendous ecological and economic importance. It is a member of the family Cupressaceae which also includes cypresses, redwoods, sequoias, thujas, and junipers. While the bald cypress genome is more than three times the size of the human genome, its 1C DNA content is amongst the smallest of any conifer. To learn more about the genome of bald cypress and gain insight into the evolution of Cupressaceae genomes, we performed a Cot analysis and used Cot filtration to study Taxodium DNA. Additionally, we constructed a 6.7 genome-equivalent BAC library that we screened with known Taxodium genes and select repeats. Results The bald cypress genome is composed of 90% repetitive DNA with most sequences being found in low to mid copy numbers. The most abundant repeats are found in fewer than 25,000 copies per genome. Approximately 7.4% of the genome is single/low-copy DNA (i.e., sequences found in 1 to 5 copies). Sequencing of highly repetitive Cot clones indicates that most Taxodium repeats are highly diverged from previously characterized plant repeat sequences. The bald cypress BAC library consists of 606,336 clones (average insert size of 113 kb) and collectively provides 6.7-fold genome equivalent coverage of the bald cypress genome. Macroarray screening with known genes produced, on average, about 1.5 positive clones per probe per genome-equivalent. Library screening with Cot-1 DNA revealed that approximately 83% of BAC clones contain repetitive sequences iterated 103 to 104 times per genome. Conclusions The BAC library for bald cypress is the first to be generated for a conifer species outside of the family Pinaceae. The Taxodium BAC library was shown to be useful in gene isolation and genome characterization and should be an important tool in gymnosperm comparative genomics, physical mapping, genome sequencing, and gene/polymorphism discovery. The single/low-copy (SL) component of

  17. Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling.

    PubMed

    Inoue, Jun; Sato, Yukuto; Sinclair, Robert; Tsukamoto, Katsumi; Nishida, Mutsumi

    2015-12-01

    Whole-genome duplication (WGD) is believed to be a significant source of major evolutionary innovation. Redundant genes resulting from WGD are thought to be lost or acquire new functions. However, the rates of gene loss and thus temporal process of genome reshaping after WGD remain unclear. The WGD shared by all teleost fish, one-half of all jawed vertebrates, was more recent than the two ancient WGDs that occurred before the origin of jawed vertebrates, and thus lends itself to analysis of gene loss and genome reshaping. Using a newly developed orthology identification pipeline, we inferred the post-teleost-specific WGD evolutionary histories of 6,892 protein-coding genes from nine phylogenetically representative teleost genomes on a time-calibrated tree. We found that rapid gene loss did occur in the first 60 My, with a loss of more than 70-80% of duplicated genes, and produced similar genomic gene arrangements within teleosts in that relatively short time. Mathematical modeling suggests that rapid gene loss occurred mainly by events involving simultaneous loss of multiple genes. We found that the subsequent 250 My were characterized by slow and steady loss of individual genes. Our pipeline also identified about 1,100 shared single-copy genes that are inferred to have become singletons before the divergence of clupeocephalan teleosts. Therefore, our comparative genome analysis suggests that rapid gene loss just after the WGD reshaped teleost genomes before the major divergence, and provides a useful set of marker genes for future phylogenetic analysis.

  18. Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling

    PubMed Central

    Sato, Yukuto; Tsukamoto, Katsumi; Nishida, Mutsumi

    2015-01-01

    Whole-genome duplication (WGD) is believed to be a significant source of major evolutionary innovation. Redundant genes resulting from WGD are thought to be lost or acquire new functions. However, the rates of gene loss and thus temporal process of genome reshaping after WGD remain unclear. The WGD shared by all teleost fish, one-half of all jawed vertebrates, was more recent than the two ancient WGDs that occurred before the origin of jawed vertebrates, and thus lends itself to analysis of gene loss and genome reshaping. Using a newly developed orthology identification pipeline, we inferred the post–teleost-specific WGD evolutionary histories of 6,892 protein-coding genes from nine phylogenetically representative teleost genomes on a time-calibrated tree. We found that rapid gene loss did occur in the first 60 My, with a loss of more than 70–80% of duplicated genes, and produced similar genomic gene arrangements within teleosts in that relatively short time. Mathematical modeling suggests that rapid gene loss occurred mainly by events involving simultaneous loss of multiple genes. We found that the subsequent 250 My were characterized by slow and steady loss of individual genes. Our pipeline also identified about 1,100 shared single-copy genes that are inferred to have become singletons before the divergence of clupeocephalan teleosts. Therefore, our comparative genome analysis suggests that rapid gene loss just after the WGD reshaped teleost genomes before the major divergence, and provides a useful set of marker genes for future phylogenetic analysis. PMID:26578810

  19. Neutral and adaptive genomic signatures of rapid poleward range expansion.

    PubMed

    Swaegers, J; Mergeay, J; Van Geystelen, A; Therry, L; Larmuseau, M H D; Stoks, R

    2015-12-01

    Many species are expanding their range polewards, and this has been associated with rapid phenotypic change. Yet, it is unclear to what extent this reflects rapid genetic adaptation or neutral processes associated with range expansion, or selection linked to the new thermal conditions encountered. To disentangle these alternatives, we studied the genomic signature of range expansion in the damselfly Coenagrion scitulum using 4950 newly developed genomic SNPs and linked this to the rapidly evolved phenotypic differences between core and (newly established) edge populations. Most edge populations were genetically clearly differentiated from the core populations and all were differentiated from each other indicating independent range expansion events. In addition, evidence for genetic drift in the edge populations, and strong evidence for adaptive genetic variation in association with the range expansion was detected. We identified one SNP under consistent selection in four of the five edge populations and showed that the allele increasing in frequency is associated with increased flight performance. This indicates collateral, non-neutral evolutionary changes in independent edge populations driven by the range expansion process. We also detected a genomic signature of adaptation to the newly encountered thermal regimes, reflecting a pattern of countergradient variation. The latter signature was identified at a single SNP as well as in a set of covarying SNPs using a polygenic multilocus approach to detect selection. Overall, this study highlights how a strategic geographic sampling design and the integration of genomic, phenotypic and environmental data can identify and disentangle the neutral and adaptive processes that are simultaneously operating during range expansions.

  20. Rapid Flow Stress Characterization of Steel

    NASA Astrophysics Data System (ADS)

    Wright, Roger N.; Hale, Peter M.; Vosburgh, Jeremy

    2009-10-01

    This rapid flow stress characterization concept involves rapid heating to an initial test temperature, T 1, followed by loading and short-time stress relaxation measurement, followed by heating to a higher temperature, T 2, followed by loading and short-time stress relaxation measurement, followed by heating to T 3, and so on. This test sequence can generate stress-strain rate-temperature data over a wide spectrum, with a single specimen. The principal advantage of this method of flow stress characterization is its short-time format. The cost of specimen preparation is modest, as well. Beyond this, the test methodology provides very accurate temperature control. It also tests a given metallurgical structure, with minimal complications from structural evolution due to plastic deformation. This study has demonstrated the feasibility of this method on plain carbon and austenitic stainless steels, using a Gleeble testing machine. This includes demonstrated consistency between single-test-per-specimen data and data derived from sequential testing on a single specimen, as well as consistency with conventionally developed flow stress data.

  1. Genomic characterization of the Yersinia genus

    PubMed Central

    2010-01-01

    Background New DNA sequencing technologies have enabled detailed comparative genomic analyses of entire genera of bacterial pathogens. Prior to this study, three species of the enterobacterial genus Yersinia that cause invasive human diseases (Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica) had been sequenced. However, there were no genomic data on the Yersinia species with more limited virulence potential, frequently found in soil and water environments. Results We used high-throughput sequencing-by-synthesis instruments to obtain 25- to 42-fold average redundancy, whole-genome shotgun data from the type strains of eight species: Y. aldovae, Y. bercovieri, Y. frederiksenii, Y. kristensenii, Y. intermedia, Y. mollaretii, Y. rohdei, and Y. ruckeri. The deepest branching species in the genus, Y. ruckeri, causative agent of red mouth disease in fish, has the smallest genome (3.7 Mb), although it shares the same core set of approximately 2,500 genes as the other members of the species, whose genomes range in size from 4.3 to 4.8 Mb. Yersinia genomes had a similar global partition of protein functions, as measured by the distribution of Cluster of Orthologous Groups families. Genome to genome variation in islands with genes encoding functions such as ureases, hydrogeneases and B-12 cofactor metabolite reactions may reflect adaptations to colonizing specific host habitats. Conclusions Rapid high-quality draft sequencing was used successfully to compare pathogenic and non-pathogenic members of the Yersinia genus. This work underscores the importance of the acquisition of horizontally transferred genes in the evolution of Y. pestis and points to virulence determinants that have been gained and lost on multiple occasions in the history of the genus. PMID:20047673

  2. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology.

    PubMed

    Cao, Hongzhi; Hastie, Alex R; Cao, Dandan; Lam, Ernest T; Sun, Yuhui; Huang, Haodong; Liu, Xiao; Lin, Liya; Andrews, Warren; Chan, Saki; Huang, Shujia; Tong, Xin; Requa, Michael; Anantharaman, Thomas; Krogh, Anders; Yang, Huanming; Cao, Han; Xu, Xun

    2014-01-01

    Structural variants (SVs) are less common than single nucleotide polymorphisms and indels in the population, but collectively account for a significant fraction of genetic polymorphism and diseases. Base pair differences arising from SVs are on a much higher order (>100 fold) than point mutations; however, none of the current detection methods are comprehensive, and currently available methodologies are incapable of providing sufficient resolution and unambiguous information across complex regions in the human genome. To address these challenges, we applied a high-throughput, cost-effective genome mapping technology to comprehensively discover genome-wide SVs and characterize complex regions of the YH genome using long single molecules (>150 kb) in a global fashion. Utilizing nanochannel-based genome mapping technology, we obtained 708 insertions/deletions and 17 inversions larger than 1 kb. Excluding the 59 SVs (54 insertions/deletions, 5 inversions) that overlap with N-base gaps in the reference assembly hg19, 666 non-gap SVs remained, and 396 of them (60%) were verified by paired-end data from whole-genome sequencing-based re-sequencing or de novo assembly sequence from fosmid data. Of the remaining 270 SVs, 260 are insertions and 213 overlap known SVs in the Database of Genomic Variants. Overall, 609 out of 666 (90%) variants were supported by experimental orthogonal methods or historical evidence in public databases. At the same time, genome mapping also provides valuable information for complex regions with haplotypes in a straightforward fashion. In addition, with long single-molecule labeling patterns, exogenous viral sequences were mapped on a whole-genome scale, and sample heterogeneity was analyzed at a new level. Our study highlights genome mapping technology as a comprehensive and cost-effective method for detecting structural variation and studying complex regions in the human genome, as well as deciphering viral integration into the host genome.

  3. Rapid evolutionary turnover underlies conserved lncRNA-genome interactions.

    PubMed

    Quinn, Jeffrey J; Zhang, Qiangfeng C; Georgiev, Plamen; Ilik, Ibrahim A; Akhtar, Asifa; Chang, Howard Y

    2016-01-15

    Many long noncoding RNAs (lncRNAs) can regulate chromatin states, but the evolutionary origin and dynamics driving lncRNA-genome interactions are unclear. We adapted an integrative strategy that identifies lncRNA orthologs in different species despite limited sequence similarity, which is applicable to mammalian and insect lncRNAs. Analysis of the roX lncRNAs, which are essential for dosage compensation of the single X chromosome in Drosophila males, revealed 47 new roX orthologs in diverse Drosophilid species across ∼40 million years of evolution. Genetic rescue by roX orthologs and engineered synthetic lncRNAs showed that altering the number of focal, repetitive RNA structures determines roX ortholog function. Genomic occupancy maps of roX RNAs in four species revealed conserved targeting of X chromosome neighborhoods but rapid turnover of individual binding sites. Many new roX-binding sites evolved from DNA encoding a pre-existing RNA splicing signal, effectively linking dosage compensation to transcribed genes. Thus, dynamic change in lncRNAs and their genomic targets underlies conserved and essential lncRNA-genome interactions. © 2016 Quinn et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Rapid evolutionary turnover underlies conserved lncRNA–genome interactions

    PubMed Central

    Quinn, Jeffrey J.; Zhang, Qiangfeng C.; Georgiev, Plamen; Ilik, Ibrahim A.; Akhtar, Asifa; Chang, Howard Y.

    2016-01-01

    Many long noncoding RNAs (lncRNAs) can regulate chromatin states, but the evolutionary origin and dynamics driving lncRNA–genome interactions are unclear. We adapted an integrative strategy that identifies lncRNA orthologs in different species despite limited sequence similarity, which is applicable to mammalian and insect lncRNAs. Analysis of the roX lncRNAs, which are essential for dosage compensation of the single X chromosome in Drosophila males, revealed 47 new roX orthologs in diverse Drosophilid species across ∼40 million years of evolution. Genetic rescue by roX orthologs and engineered synthetic lncRNAs showed that altering the number of focal, repetitive RNA structures determines roX ortholog function. Genomic occupancy maps of roX RNAs in four species revealed conserved targeting of X chromosome neighborhoods but rapid turnover of individual binding sites. Many new roX-binding sites evolved from DNA encoding a pre-existing RNA splicing signal, effectively linking dosage compensation to transcribed genes. Thus, dynamic change in lncRNAs and their genomic targets underlies conserved and essential lncRNA–genome interactions. PMID:26773003

  5. A rapid whole genome sequencing and analysis system supporting genomic epidemiology (7th Annual SFAF Meeting, 2012)

    SciTech Connect

    FitzGerald, Michael

    2012-06-01

    Michael FitzGerald on "A rapid whole genome sequencing and analysis system supporting genomic epidemiology" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  6. A rapid whole genome sequencing and analysis system supporting genomic epidemiology (7th Annual SFAF Meeting, 2012)

    ScienceCinema

    FitzGerald, Michael [Broad Institute

    2016-07-12

    Michael FitzGerald on "A rapid whole genome sequencing and analysis system supporting genomic epidemiology" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  7. Mass Spectrometry for Rapid Characterization of Microorganisms

    NASA Astrophysics Data System (ADS)

    Demirev, Plamen A.; Fenselau, Catherine

    2008-07-01

    Advances in instrumentation, proteomics, and bioinformatics have contributed to the successful applications of mass spectrometry (MS) for detection, identification, and classification of microorganisms. These MS applications are based on the detection of organism-specific biomarker molecules, which allow differentiation between organisms to be made. Intact proteins, their proteolytic peptides, and nonribosomal peptides have been successfully utilized as biomarkers. Sequence-specific fragments for biomarkers are generated by tandem MS of intact proteins or proteolytic peptides, obtained after, for instance, microwave-assisted acid hydrolysis. In combination with proteome database searching, individual biomarker proteins are unambiguously identified from their tandem mass spectra, and from there the source microorganism is also identified. Such top-down or bottom-up proteomics approaches permit rapid, sensitive, and confident characterization of individual microorganisms in mixtures and are reviewed here. Examples of MS-based functional assays for detection of targeted microorganisms, e.g., Bacillus anthracis, in environmental or clinically relevant backgrounds are also reviewed.

  8. Genome Annotation Transfer Utility (GATU): rapid annotation of viral genomes using a closely related reference genome.

    PubMed

    Tcherepanov, Vasily; Ehlers, Angelika; Upton, Chris

    2006-06-13

    Since DNA sequencing has become easier and cheaper, an increasing number of closely related viral genomes have been sequenced. However, many of these have been deposited in GenBank without annotations, severely limiting their value to researchers. While maintaining comprehensive genomic databases for a set of virus families at the Viral Bioinformatics Resource Center http://www.biovirus.org and Viral Bioinformatics - Canada http://www.virology.ca, we found that researchers were unnecessarily spending time annotating viral genomes that were close relatives of already annotated viruses. We have therefore designed and implemented a novel tool, Genome Annotation Transfer Utility (GATU), to transfer annotations from a previously annotated reference genome to a new target genome, thereby greatly reducing this laborious task. GATU transfers annotations from a reference genome to a closely related target genome, while still giving the user final control over which annotations should be included. GATU also detects open reading frames present in the target but not the reference genome and provides the user with a variety of bioinformatics tools to quickly determine if these ORFs should also be included in the annotation. After this process is complete, GATU saves the newly annotated genome as a GenBank, EMBL or XML-format file. The software is coded in Java and runs on a variety of computer platforms. Its user-friendly Graphical User Interface is specifically designed for users trained in the biological sciences. GATU greatly simplifies the initial stages of genome annotation by using a closely related genome as a reference. It is not intended to be a gene prediction tool or a "complete" annotation system, but we have found that it significantly reduces the time required for annotation of genes and mature peptides as well as helping to standardize gene names between related organisms by transferring reference genome annotations to the target genome. The program is freely

  9. Rapid modelling of cooperating genetic events in cancer through somatic genome editing.

    PubMed

    Sánchez-Rivera, Francisco J; Papagiannakopoulos, Thales; Romero, Rodrigo; Tammela, Tuomas; Bauer, Matthew R; Bhutkar, Arjun; Joshi, Nikhil S; Subbaraj, Lakshmipriya; Bronson, Roderick T; Xue, Wen; Jacks, Tyler

    2014-12-18

    Cancer is a multistep process that involves mutations and other alterations in oncogenes and tumour suppressor genes. Genome sequencing studies have identified a large collection of genetic alterations that occur in human cancers. However, the determination of which mutations are causally related to tumorigenesis remains a major challenge. Here we describe a novel CRISPR/Cas9-based approach for rapid functional investigation of candidate genes in well-established autochthonous mouse models of cancer. Using a Kras(G12D)-driven lung cancer model, we performed functional characterization of a panel of tumour suppressor genes with known loss-of-function alterations in human lung cancer. Cre-dependent somatic activation of oncogenic Kras(G12D) combined with CRISPR/Cas9-mediated genome editing of tumour suppressor genes resulted in lung adenocarcinomas with distinct histopathological and molecular features. This rapid somatic genome engineering approach enables functional characterization of putative cancer genes in the lung and other tissues using autochthonous mouse models. We anticipate that this approach can be used to systematically dissect the complex catalogue of mutations identified in cancer genome sequencing studies.

  10. Translating human genetics into mouse: the impact of ultra-rapid in vivo genome editing.

    PubMed

    Aida, Tomomi; Imahashi, Risa; Tanaka, Kohichi

    2014-01-01

    Gene-targeted mutant animals, such as knockout or knockin mice, have dramatically improved our understanding of the functions of genes in vivo and the genetic diversity that characterizes health and disease. However, the generation of targeted mice relies on gene targeting in embryonic stem (ES) cells, which is a time-consuming, laborious, and expensive process. The recent groundbreaking development of several genome editing technologies has enabled the targeted alteration of almost any sequence in any cell or organism. These technologies have now been applied to mouse zygotes (in vivo genome editing), thereby providing new avenues for simple, convenient, and ultra-rapid production of knockout or knockin mice without the need for ES cells. Here, we review recent achievements in the production of gene-targeted mice by in vivo genome editing.

  11. Proteomic profiling of rapid non-genomic and concomitant genomic effects of acute restraint stress on rat thymocytes.

    PubMed

    Billing, Anja M; Revets, Dominique; Hoffmann, Céline; Turner, Jonathan D; Vernocchi, Sara; Muller, Claude P

    2012-04-03

    In order to investigate rapid non-genomic effects of acute stress, rats were restrained for 15 min which was sufficient to activate the hypothalamus-pituitary-adrenal (HPA) axis but too short to induce massive genomic effects of cortisol. Subcellular fractions of thymocytes (cytosol, nucleus, membrane) were investigated using quantitative 2D DIGE with MALDI-TOF/TOF mass spectrometry. In total, 108 proteins with differential subcellular localizations were identified. The specificity of the changes induced by psychological stress was reflected by the prominent modulation of proteins involved in the HPA and sympathoadrenal medullar (SAM) axis such as HMGB1 and NHERF1. Intracellular trafficking was characterized by a dominant protein exodus from the cytosol. Real translocation was observed for 9 proteins with 6 that shuttled from the cytosol to the nucleus (HYOU1, HNRPF, HNRPC, STRAP, PSA1, PPA1) and 3 from the nucleus to the cytosol (HMGB1, NHERF1, PSMA1). Proteins showing subcellular reshuffling were largely involved in transcription and translation processes (39 of 108) with a significant enrichment of RNA splicing factors. Bioinformatics analysis revealed significant enrichment for protein kinase A and 14-3-3 signaling, probably reflecting real non-genomic effects. This is the first study investigating rapid effects of stress-induced HPA activation in vivo at the proteome level. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A Rapid Turnaround Cryogenic Detector Characterization System

    NASA Technical Reports Server (NTRS)

    Benford, Dominic j.; Dipirro, Michael J.; Forgione, Joshua B.; Jackson, Clifton E.; Jackson, Michael L.; Kogut, Al; Moseley, S. Harvey; Shirron, Peter J.

    2004-01-01

    Upcoming major NASA missions such as the Einstein Inflation Probe and the Single Aperture Far-Infrared Observatory require arrays of detectors with thousands of elements, operating at temperatures near l00 mK and sensitive to wavelengths from approx. 100 microns to approx. 3 mm. Such detectors represent a substantial enabling technology for these missions, and must be demonstrated soon in order for them to proceed. In order to make rapid progress on detector development, the cryogenic testing cycle must be made convenient and quick. We have developed a cryogenic detector characterization system capable of testing superconducting detector arrays in formats up to 8 x 32, read out by SQUID multiplexers. The system relies on the cooling of a two-stage adiabatic demagnetization refrigerator immersed in a liquid helium bath. This approach permits a detector to be cooled from 300K to 50 mK in about 4 hours, so that a test cycle begun in the morning will be over by the end of the day. Tine system is modular, with two identical immersible units, so that while one unit is cooling, the second can be reconfigured for the next battery of tests. We describe the design, construction, and performance of this cryogenic detector testing facility.

  13. A Rapid Turnaround Cryogenic Detector Characterization System

    NASA Technical Reports Server (NTRS)

    Benford, Dominic j.; Dipirro, Michael J.; Forgione, Joshua B.; Jackson, Clifton E.; Jackson, Michael L.; Kogut, Al; Moseley, S. Harvey; Shirron, Peter J.

    2004-01-01

    Upcoming major NASA missions such as the Einstein Inflation Probe and the Single Aperture Far-Infrared Observatory require arrays of detectors with thousands of elements, operating at temperatures near l00 mK and sensitive to wavelengths from approx. 100 microns to approx. 3 mm. Such detectors represent a substantial enabling technology for these missions, and must be demonstrated soon in order for them to proceed. In order to make rapid progress on detector development, the cryogenic testing cycle must be made convenient and quick. We have developed a cryogenic detector characterization system capable of testing superconducting detector arrays in formats up to 8 x 32, read out by SQUID multiplexers. The system relies on the cooling of a two-stage adiabatic demagnetization refrigerator immersed in a liquid helium bath. This approach permits a detector to be cooled from 300K to 50 mK in about 4 hours, so that a test cycle begun in the morning will be over by the end of the day. Tine system is modular, with two identical immersible units, so that while one unit is cooling, the second can be reconfigured for the next battery of tests. We describe the design, construction, and performance of this cryogenic detector testing facility.

  14. How rapidly does the human mitochondrial genome evolve?

    SciTech Connect

    Howell, N.; Kubacka, I.; Mackey, D.A. |

    1996-09-01

    The results of an empirical nucleotide-sequencing approach indicate that the evolution of the human mitochondrial noncoding D-loop is both more rapid and more complex than is revealed by standard phylogenetic approaches. The nucleotide sequence of the D-loop region of the mitochondrial genome was determined for 45 members of a large matrilineal Leber hereditary optic neuropathy pedigree. Two germ-line mutations have arisen in members of one branch of the family, thereby leading to triplasmic descendants with three mitochondrial genotypes. Segregation toward the homoplasmic state can occur within a single generation in some of these descendants, a result that suggests rapid fixation of mitochondrial mutations as a result of developmental bottlenecking. However, slow segregation was observed in other offspring, and therefore no single or simple pattern of segregation can be generalized from the available data. Evidence for rare mtDNA recombination within the D-loop was obtained for one family member. In addition to these germ-line mutations, a somatic mutation was found in the D-loop of one family member. When this genealogical approach was applied to the nucleotide sequences of mitochondrial coding regions, the results again indicated a very rapid rate of evolution. 44 refs., 2 figs., 2 tabs.

  15. Integrated genomic characterization of endometrial carcinoma.

    PubMed

    Kandoth, Cyriac; Schultz, Nikolaus; Cherniack, Andrew D; Akbani, Rehan; Liu, Yuexin; Shen, Hui; Robertson, A Gordon; Pashtan, Itai; Shen, Ronglai; Benz, Christopher C; Yau, Christina; Laird, Peter W; Ding, Li; Zhang, Wei; Mills, Gordon B; Kucherlapati, Raju; Mardis, Elaine R; Levine, Douglas A

    2013-05-02

    We performed an integrated genomic, transcriptomic and proteomic characterization of 373 endometrial carcinomas using array- and sequencing-based technologies. Uterine serous tumours and ∼25% of high-grade endometrioid tumours had extensive copy number alterations, few DNA methylation changes, low oestrogen receptor/progesterone receptor levels, and frequent TP53 mutations. Most endometrioid tumours had few copy number alterations or TP53 mutations, but frequent mutations in PTEN, CTNNB1, PIK3CA, ARID1A and KRAS and novel mutations in the SWI/SNF chromatin remodelling complex gene ARID5B. A subset of endometrioid tumours that we identified had a markedly increased transversion mutation frequency and newly identified hotspot mutations in POLE. Our results classified endometrial cancers into four categories: POLE ultramutated, microsatellite instability hypermutated, copy-number low, and copy-number high. Uterine serous carcinomas share genomic features with ovarian serous and basal-like breast carcinomas. We demonstrated that the genomic features of endometrial carcinomas permit a reclassification that may affect post-surgical adjuvant treatment for women with aggressive tumours.

  16. Integrated Genomic Characterization of Endometrial Carcinoma

    PubMed Central

    2013-01-01

    Summary We performed an integrated genomic, transcriptomic, and proteomic characterization of 373 endometrial carcinomas using array- and sequencing-based technologies. Uterine serous tumors and ~25% of high-grade endometrioid tumors have extensive copy number alterations, few DNA methylation changes, low ER/PR levels, and frequent TP53 mutations. Most endometrioid tumors have few copy number alterations or TP53 mutations but frequent mutations in PTEN, CTNNB1, PIK3CA, ARID1A, KRAS and novel mutations in the SWI/SNF gene ARID5B. A subset of endometrioid tumors we identified had a dramatically increased transversion mutation frequency, and newly identified hotspot mutations in POLE. Our results classified endometrial cancers into four categories: POLE ultramutated, microsatellite instability hypermutated, copy number low, and copy number high. Uterine serous carcinomas share genomic features with ovarian serous and basal-like breast carcinomas. We demonstrated that the genomic features of endometrial carcinomas permit a reclassification that may impact post-surgical adjuvant treatment for women with aggressive tumors. PMID:23636398

  17. Simultaneous rapid sequencing of multiple RNA virus genomes.

    PubMed

    Neill, John D; Bayles, Darrell O; Ridpath, Julia F

    2014-06-01

    Comparing sequences of archived viruses collected over many years to the present allows the study of viral evolution and contributes to the design of new vaccines. However, the difficulty, time and expense of generating full-length sequences individually from each archived sample have hampered these studies. Next generation sequencing technologies have been utilized for analysis of clinical and environmental samples to identify viral pathogens that may be present. This has led to the discovery of many new, uncharacterized viruses from a number of viral families. Use of these sequencing technologies would be advantageous in examining viral evolution. In this study, a sequencing procedure was used to sequence simultaneously and rapidly multiple archived samples using a single standard protocol. This procedure utilized primers composed of 20 bases of known sequence with 8 random bases at the 3'-end that also served as an identifying barcode that allowed the differentiation each viral library following pooling and sequencing. This conferred sequence independence by random priming both first and second strand cDNA synthesis. Viral stocks were treated with a nuclease cocktail to reduce the presence of host nucleic acids. Viral RNA was extracted, followed by single tube random-primed double-stranded cDNA synthesis. The resultant cDNAs were amplified by primer-specific PCR, pooled, size fractionated and sequenced on the Ion Torrent PGM platform. The individual virus genomes were readily assembled by both de novo and template-assisted assembly methods. This procedure consistently resulted in near full length, if not full-length, genomic sequences and was used to sequence multiple bovine pestivirus and coronavirus isolates simultaneously.

  18. Genomics spurs rapid advances in our understanding of the biology of vascular wilt pathogens in the genus Verticillium.

    PubMed

    Klimes, Anna; Dobinson, Katherine F; Thomma, Bart P H J; Klosterman, Steven J

    2015-01-01

    The availability of genomic sequences of several Verticillium species triggered an explosion of genome-scale investigations of mechanisms fundamental to the Verticillium life cycle and disease process. Comparative genomics studies have revealed evolutionary mechanisms, such as hybridization and interchromosomal rearrangements, that have shaped these genomes. Functional analyses of a diverse group of genes encoding virulence factors indicate that successful host xylem colonization relies on specific Verticillium responses to various stresses, including nutrient deficiency and host defense-derived oxidative stress. Regulatory pathways that control responses to changes in nutrient availability also appear to positively control resting structure development. Conversely, resting structure development seems to be repressed by pathways, such as those involving effector secretion, which promote responses to host defenses. The genomics-enabled functional characterization of responses to the challenges presented by the xylem environment, accompanied by identification of novel virulence factors, has rapidly expanded our understanding of niche adaptation in Verticillium species.

  19. Genomic Characterization of the Taylorella Genus

    PubMed Central

    Hébert, Laurent; Moumen, Bouziane; Pons, Nicolas; Duquesne, Fabien; Breuil, Marie-France; Goux, Didier; Batto, Jean-Michel; Laugier, Claire; Renault, Pierre; Petry, Sandrine

    2012-01-01

    The Taylorella genus comprises two species: Taylorella equigenitalis, which causes contagious equine metritis, and Taylorella asinigenitalis, a closely-related species mainly found in donkeys. We herein report on the first genome sequence of T. asinigenitalis, analyzing and comparing it with the recently-sequenced T. equigenitalis genome. The T. asinigenitalis genome contains a single circular chromosome of 1,638,559 bp with a 38.3% GC content and 1,534 coding sequences (CDS). While 212 CDSs were T. asinigenitalis-specific, 1,322 had orthologs in T. equigenitalis. Two hundred and thirty-four T. equigenitalis CDSs had no orthologs in T. asinigenitalis. Analysis of the basic nutrition metabolism of both Taylorella species showed that malate, glutamate and alpha-ketoglutarate may be their main carbon and energy sources. For both species, we identified four different secretion systems and several proteins potentially involved in binding and colonization of host cells, suggesting a strong potential for interaction with their host. T. equigenitalis seems better-equipped than T. asinigenitalis in terms of virulence since we identified numerous proteins potentially involved in pathogenicity, including hemagluttinin-related proteins, a type IV secretion system, TonB-dependent lactoferrin and transferrin receptors, and YadA and Hep_Hag domains containing proteins. This is the first molecular characterization of Taylorella genus members, and the first molecular identification of factors potentially involved in T. asinigenitalis and T. equigenitalis pathogenicity and host colonization. This study facilitates a genetic understanding of growth phenotypes, animal host preference and pathogenic capacity, paving the way for future functional investigations into this largely unknown genus. PMID:22235352

  20. gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances

    PubMed Central

    Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav

    2016-01-01

    Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos). PMID:27846272

  1. gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances.

    PubMed

    Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav

    2016-01-01

    Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos).

  2. Seismogeodesy for rapid earthquake and tsunami characterization

    NASA Astrophysics Data System (ADS)

    Bock, Y.

    2016-12-01

    Rapid estimation of earthquake magnitude and fault mechanism is critical for earthquake and tsunami warning systems. Traditionally, the monitoring of earthquakes and tsunamis has been based on seismic networks for estimating earthquake magnitude and slip, and tide gauges and deep-ocean buoys for direct measurement of tsunami waves. These methods are well developed for ocean basin-wide warnings but are not timely enough to protect vulnerable populations and infrastructure from the effects of local tsunamis, where waves may arrive within 15-30 minutes of earthquake onset time. Direct measurements of displacements by GPS networks at subduction zones allow for rapid magnitude and slip estimation in the near-source region, that are not affected by instrumental limitations and magnitude saturation experienced by local seismic networks. However, GPS displacements by themselves are too noisy for strict earthquake early warning (P-wave detection). Optimally combining high-rate GPS and seismic data (in particular, accelerometers that do not clip), referred to as seismogeodesy, provides a broadband instrument that does not clip in the near field, is impervious to magnitude saturation, and provides accurate real-time static and dynamic displacements and velocities in real time. Here we describe a NASA-funded effort to integrate GPS and seismogeodetic observations as part of NOAA's Tsunami Warning Centers in Alaska and Hawaii. It consists of a series of plug-in modules that allow for a hierarchy of rapid seismogeodetic products, including automatic P-wave picking, hypocenter estimation, S-wave prediction, magnitude scaling relationships based on P-wave amplitude (Pd) and peak ground displacement (PGD), finite-source CMT solutions and fault slip models as input for tsunami warnings and models. For the NOAA/NASA project, the modules are being integrated into an existing USGS Earthworm environment, currently limited to traditional seismic data. We are focused on a network of

  3. Rapid Sequencing of the Bamboo Mitochondrial Genome Using Illumina Technology and Parallel Episodic Evolution of Organelle Genomes in Grasses

    PubMed Central

    Ma, Peng-Fei; Guo, Zhen-Hua; Li, De-Zhu

    2012-01-01

    Background Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. Methodology/Principal Findings We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. Conclusions/Significance Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing

  4. Rapid Virulence Annotation (RVA): identification of virulence factors using a bacterial genome library and multiple invertebrate hosts.

    PubMed

    Waterfield, Nicholas R; Sanchez-Contreras, Maria; Eleftherianos, Ioannis; Dowling, Andrea; Yang, Guowei; Wilkinson, Paul; Parkhill, Julian; Thomson, Nicholas; Reynolds, Stuart E; Bode, Helge B; Dorus, Steven; Ffrench-Constant, Richard H

    2008-10-14

    Current sequence databases now contain numerous whole genome sequences of pathogenic bacteria. However, many of the predicted genes lack any functional annotation. We describe an assumption-free approach, Rapid Virulence Annotation (RVA), for the high-throughput parallel screening of genomic libraries against four different taxa: insects, nematodes, amoeba, and mammalian macrophages. These hosts represent different aspects of both the vertebrate and invertebrate immune system. Here, we apply RVA to the emerging human pathogen Photorhabdus asymbiotica using "gain of toxicity" assays of recombinant Escherichia coli clones. We describe a wealth of potential virulence loci and attribute biological function to several putative genomic islands, which may then be further characterized using conventional molecular techniques. The application of RVA to other pathogen genomes promises to ascribe biological function to otherwise uncharacterized virulence genes.

  5. Rapid identification of heterozygous mutations in Drosophila melanogaster using genomic capture sequencing.

    PubMed

    Wang, Hui; Chattopadhyay, Abanti; Li, Zhe; Daines, Bryce; Li, Yumei; Gao, Chunxu; Gibbs, Richard; Zhang, Kun; Chen, Rui

    2010-07-01

    One of the key advantages of using Drosophila melanogaster as a genetic model organism is the ability to conduct saturation mutagenesis screens to identify genes and pathways underlying a given phenotype. Despite the large number of genetic tools developed to facilitate downstream cloning of mutations obtained from such screens, the current procedure remains labor intensive, time consuming, and costly. To address this issue, we designed an efficient strategy for rapid identification of heterozygous mutations in the fly genome by combining rough genetic mapping, targeted DNA capture, and second generation sequencing technology. We first tested this method on heterozygous flies carrying either a previously characterized dac(5) or sens(E2) mutation. Targeted amplification of genomic regions near these two loci was used to enrich DNA for sequencing, and both point mutations were successfully identified. When this method was applied to uncharacterized twr mutant flies, the underlying mutation was identified as a single-base mutation in the gene Spase18-21. This targeted-genome-sequencing method reduces time and effort required for mutation cloning by up to 80% compared with the current approach and lowers the cost to <$1000 for each mutant. Introduction of this and other sequencing-based methods for mutation cloning will enable broader usage of forward genetics screens and have significant impacts in the field of model organisms such as Drosophila.

  6. Genomic diversity, population structure, and migration following rapid range expansion in the Balsam poplar, Populus balsamifera.

    PubMed

    Keller, Stephen R; Olson, Matthew S; Silim, Salim; Schroeder, William; Tiffin, Peter

    2010-03-01

    Rapid range expansions can cause pervasive changes in the genetic diversity and structure of populations. The postglacial history of the Balsam Poplar, Populus balsamifera, involved the colonization of most of northern North America, an area largely covered by continental ice sheets during the last glacial maximum. To characterize how this expansion shaped genomic diversity within and among populations, we developed 412 SNP markers that we assayed for a range-wide sample of 474 individuals sampled from 34 populations. We complemented the SNP data set with DNA sequence data from 11 nuclear loci from 94 individuals, and used coalescent analyses to estimate historical population size, demographic growth, and patterns of migration. Bayesian clustering identified three geographically separated demes found in the Northern, Central, and Eastern portions of the species' range. These demes varied significantly in nucleotide diversity, the abundance of private polymorphisms, and population substructure. Most measures supported the Central deme as descended from the primary refuge of diversity. Both SNPs and sequence data suggested recent population growth, and coalescent analyses of historical migration suggested a massive expansion from the Centre to the North and East. Collectively, these data demonstrate the strong influence that range expansions exert on genomic diversity, both within local populations and across the range. Our results suggest that an in-depth knowledge of nucleotide diversity following expansion requires sampling within multiple populations, and highlight the utility of combining insights from different data types in population genomic studies.

  7. Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback.

    PubMed

    Marques, David A; Lucek, Kay; Meier, Joana I; Mwaiko, Salome; Wagner, Catherine E; Excoffier, Laurent; Seehausen, Ole

    2016-02-01

    Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this.

  8. Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback

    PubMed Central

    Marques, David A.; Lucek, Kay; Meier, Joana I.; Mwaiko, Salome; Wagner, Catherine E.; Excoffier, Laurent; Seehausen, Ole

    2016-01-01

    Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this. PMID:26925837

  9. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish

    EPA Science Inventory

    Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl h...

  10. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish

    EPA Science Inventory

    Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl h...

  11. Rapid Whole-Genome Sequencing for Investigation of a Neonatal MRSA Outbreak

    PubMed Central

    Köser, Claudio U.; Holden, Matthew T.G.; Ellington, Matthew J.; Cartwright, Edward J.P.; Brown, Nicholas M.; Ogilvy-Stuart, Amanda L.; Hsu, Li Yang; Chewapreecha, Claire; Croucher, Nicholas J.; Harris, Simon R.; Sanders, Mandy; Enright, Mark C.; Dougan, Gordon; Bentley, Stephen D.; Parkhill, Julian; Fraser, Louise J.; Betley, Jason R.; Schulz-Trieglaff, Ole B.; Smith, Geoffrey P.; Peacock, Sharon J.

    2013-01-01

    Background Isolates of methicillin-resistant Staphylococcus aureus (MRSA) belonging to a single lineage are often indistinguishable by means of current typing techniques. Whole-genome sequencing may provide improved resolution to define transmission pathways and characterize outbreaks. Methods We investigated a putative MRSA outbreak in a neonatal intensive care unit. By using rapid high-throughput sequencing technology with a clinically relevant turnaround time, we retrospectively sequenced the DNA from seven isolates associated with the outbreak and another seven MRSA isolates associated with carriage of MRSA or bacteremia in the same hospital. Results We constructed a phylogenetic tree by comparing single-nucleotide polymorphisms (SNPs) in the core genome to a reference genome (an epidemic MRSA clone, EMRSA-15 [sequence type 22]). This revealed a distinct cluster of outbreak isolates and clear separation between these and the nonoutbreak isolates. A previously missed transmission event was detected between two patients with bacteremia who were not part of the outbreak. We created an artificial “resistome” of antibiotic-resistance genes and demonstrated concordance between it and the results of phenotypic susceptibility testing; we also created a “toxome” consisting of toxin genes. One outbreak isolate had a hypermutator phenotype with a higher number of SNPs than the other outbreak isolates, highlighting the difficulty of imposing a simple threshold for the number of SNPs between isolates to decide whether they are part of a recent transmission chain. Conclusions Whole-genome sequencing can provide clinically relevant data within a time frame that can influence patient care. The need for automated data interpretation and the provision of clinically meaningful reports represent hurdles to clinical implementation. (Funded by the U.K. Clinical Research Collaboration Translational Infection Research Initiative and others.) PMID:22693998

  12. The population genomics of rapid adaptation: disentangling signatures of selection and demography in white sands lizards.

    PubMed

    Laurent, Stefan; Pfeifer, Susanne P; Settles, Matthew L; Hunter, Samuel S; Hardwick, Kayla M; Ormond, Louise; Sousa, Vitor C; Jensen, Jeffrey D; Rosenblum, Erica Bree

    2016-01-01

    Understanding the process of adaptation during rapid environmental change remains one of the central focal points of evolutionary biology. The recently formed White Sands system of southern New Mexico offers an outstanding example of rapid adaptation, with a variety of species having rapidly evolved blanched forms on the dunes that contrast with their close relatives in the surrounding dark soil habitat. In this study, we focus on two of the White Sands lizard species, Sceloporus cowlesi and Aspidoscelis inornata, for which previous research has linked mutations in the melanocortin-1 receptor gene (Mc1r) to blanched coloration. We sampled populations both on and off the dunes and used a custom sequence capture assay based on probed fosmid libraries to obtain >50 kb of sequence around Mc1r and hundreds of other random genomic locations. We then used model-based statistical inference methods to describe the demographic and adaptive history characterizing the colonization of White Sands. We identified a number of similarities between the two focal species, including strong evidence of selection in the blanched populations in the Mc1r region. We also found important differences between the species, suggesting different colonization times, different genetic architecture underlying the blanched phenotype and different ages of the beneficial alleles. Finally, the beneficial allele is dominant in S. cowlesi and recessive in A. inornata, allowing for a rare empirical test of theoretically expected patterns of selective sweeps under these differing models.

  13. Genome Sequence of Rapid Beer-Spoiling Isolate Lactobacillus brevis BSO 464

    PubMed Central

    Bergsveinson, Jordyn; Pittet, Vanessa; Ewen, Emily; Baecker, Nina

    2015-01-01

    The genome of brewery-isolate Lactobacillus brevis BSO 464 was sequenced and assembly produced a chromosome and eight plasmids. This bacterium tolerates dissolved CO2/pressure and can rapidly spoil packaged beer. This genome is useful for analyzing the genetics associated with beer spoilage by lactic acid bacteria. PMID:26634759

  14. Genome Sequence of Rapid Beer-Spoiling Isolate Lactobacillus brevis BSO 464.

    PubMed

    Bergsveinson, Jordyn; Pittet, Vanessa; Ewen, Emily; Baecker, Nina; Ziola, Barry

    2015-12-03

    The genome of brewery-isolate Lactobacillus brevis BSO 464 was sequenced and assembly produced a chromosome and eight plasmids. This bacterium tolerates dissolved CO2/pressure and can rapidly spoil packaged beer. This genome is useful for analyzing the genetics associated with beer spoilage by lactic acid bacteria. Copyright © 2015 Bergsveinson et al.

  15. Genomic Characterization of Metformin Hepatic Response

    PubMed Central

    Jones, Stacy L.; Smith, Robin P.; Lin, Lawrence; Gallins, Paul J.; Etheridge, Amy S.; Wright, Fred; Zhou, Yihui; Innocenti, Federico; Yee, Sook Wah; Giacomini, Kathleen M.; Ahituv, Nadav

    2016-01-01

    Metformin is used as a first-line therapy for type 2 diabetes (T2D) and prescribed for numerous other diseases. However, its mechanism of action in the liver has yet to be characterized in a systematic manner. To comprehensively identify genes and regulatory elements associated with metformin treatment, we carried out RNA-seq and ChIP-seq (H3K27ac, H3K27me3) on primary human hepatocytes from the same donor treated with vehicle control, metformin or metformin and compound C, an AMP-activated protein kinase (AMPK) inhibitor (allowing to identify AMPK-independent pathways). We identified thousands of metformin responsive AMPK-dependent and AMPK-independent differentially expressed genes and regulatory elements. We functionally validated several elements for metformin-induced promoter and enhancer activity. These include an enhancer in an ataxia telangiectasia mutated (ATM) intron that has SNPs in linkage disequilibrium with a metformin treatment response GWAS lead SNP (rs11212617) that showed increased enhancer activity for the associated haplotype. Expression quantitative trait locus (eQTL) liver analysis and CRISPR activation suggest that this enhancer could be regulating ATM, which has a known role in AMPK activation, and potentially also EXPH5 and DDX10, its neighboring genes. Using ChIP-seq and siRNA knockdown, we further show that activating transcription factor 3 (ATF3), our top metformin upregulated AMPK-dependent gene, could have an important role in gluconeogenesis repression. Our findings provide a genome-wide representation of metformin hepatic response, highlight important sequences that could be associated with interindividual variability in glycemic response to metformin and identify novel T2D treatment candidates. PMID:27902686

  16. Characterization of the complete chloroplast genome of Platycarya strobilacea (Juglandaceae)

    Treesearch

    Jing Yan; Kai Han; Shuyun Zeng; Peng Zhao; Keith Woeste; Jianfang Li; Zhan-Lin Liu

    2017-01-01

    The whole chloroplast genome (cp genome) sequence of Platycarya strobilacea was characterized from Illumina pair-end sequencing data. The complete cp genome was 160,994 bp in length and contained a large single copy region (LSC) of 90,225 bp and a small single copy region (SSC) of 18,371 bp, which were separated by a pair of inverted repeat regions...

  17. Clinical implementation of comprehensive strategies to characterize cancer genomes: opportunities and challenges

    PubMed Central

    MacConaill, Laura E.; Van Hummelen, Paul; Meyerson, Matthew; Hahn, William C.

    2011-01-01

    An increasing number of anti-cancer therapeutic agents target specific mutant proteins that are expressed by many different tumor types. Recent evidence suggests that the selection of patients whose tumors harbor specific genetic alterations identifies the subset of patients that are most likely to benefit from the use of such agents. As the number of genetic alterations that provide diagnostic and/or therapeutic information increases, the comprehensive characterization of cancer genomes will be necessary to understand the spectrum of distinct genomic alterations in cancer, to identify patients who are likely to respond to particular therapies and to facilitate the selection of treatment modalities. Rapid developments in new technologies for genomic analysis now provide the means to perform comprehensive analyses of cancer genomes. Here we review the current state of cancer genome analysis and discuss the challenges and opportunities necessary to implement these technologies in a clinical setting. PMID:21935500

  18. Rapid genome resequencing of an atoxigenic strain of Aspergillus carbonarius

    DOE PAGES

    Cabañes, F. Javier; Sanseverino, Walter; Castellá, Gemma; ...

    2015-03-13

    In microorganisms, Ion Torrent sequencing technology has been proved to be useful in whole-genome sequencing of bacterial genomes (5 Mbp). In our study, for the first time we used this technology to perform a resequencing approach in a whole fungal genome (36 Mbp), a non-ochratoxin A producing strain of Aspergillus carbonarius. Ochratoxin A (OTA) is a potent nephrotoxin which is found mainly in cereals and their products, but it also occurs in a variety of common foods and beverages. Due to the fact that this strain does not produce OTA, we focused some of the bioinformatics analyses in genes involvedmore » in OTA biosynthesis, using a reference genome of an OTA producing strain of the same species. This study revealed that in the atoxigenic strain there is a high accumulation of nonsense and missense mutations in several genes. Importantly, a two fold increase in gene mutation ratio was observed in PKS and NRPS encoding genes which are suggested to be involved in OTA biosynthesis.« less

  19. A primer on rapid prototyping of genomic databases in Prolog

    SciTech Connect

    Yoshida, Kaoru; Smith, C.L.; Overbeek, R.

    1992-01-01

    This report presents a tutorial on how one might create an integrated database of genomic information. We outline the required steps for implementation, give a brief introduction to Prolog, and discuss the query facility supported by our system. Our goal is to enable researchers to being constructing their own biological information system.

  20. Rapid calculation of genomic evaluations for new animals

    USDA-ARS?s Scientific Manuscript database

    A method was developed to calculate preliminary genomic evaluations daily or weekly before the release of official monthly evaluations by processing only newly genotyped animals using estimates of SNP effects from the previous official evaluation. To minimize computing time, reliabilities and genomi...

  1. CONTRAILS: A tool for rapid identification of transgene integration sites in complex, repetitive genomes using low-coverage paired-end sequencing

    PubMed Central

    Lambirth, Kevin C.; Whaley, Adam M.; Schlueter, Jessica A.; Bost, Kenneth L.; Piller, Kenneth J.

    2015-01-01

    Transgenic crops have become a staple in modern agriculture, and are typically characterized using a variety of molecular techniques involving proteomics and metabolomics. Characterization of the transgene insertion site is of great interest, as disruptions, deletions, and genomic location can affect product selection and fitness, and identification of these regions and their integrity is required for regulatory agencies. Here, we present CONTRAILS (Characterization of Transgene Insertion Locations with Sequencing), a straightforward, rapid and reproducible method for the identification of transgene insertion sites in highly complex and repetitive genomes using low coverage paired-end Illumina sequencing and traditional PCR. This pipeline requires little to no troubleshooting and is not restricted to any genome type, allowing use for many molecular applications. Using whole genome sequencing of in-house transgenic Glycine max, a legume with a highly repetitive and complex genome, we used CONTRAILS to successfully identify the location of a single T-DNA insertion to single base resolution. PMID:26697366

  2. DPS - a rapid method for genome sequencing of DNA-containing bacteriophages directly from a single plaque.

    PubMed

    Kot, Witold; Vogensen, Finn K; Sørensen, Søren J; Hansen, Lars H

    2014-02-01

    Bacteriophages (phages) coexist with bacteria in all environments and influence microbial diversity, evolution and industrial production processes. As a result of this major impact of phages on microbes, tools that allow rapid characterization of phages are needed. Today, one of the most powerful methods for characterization of phages is determination of the whole genome using high throughput sequencing approaches. Here a direct plaque sequencing (DPS) is described, which is a rapid method that allows easy full genome sequencing of DNA-containing phages using the Nextera XT™ kit. A combination of host-DNA removal followed by purification and concentration of the viral DNA, allowed the construction of Illumina-compatible sequencing libraries using the Nextera™ XT technology directly from single phage plaques without any whole genome amplification step. This method was tested on three Caudovirales phages; ϕ29 Podoviridae, P113g Siphoviridae and T4 Myovirdae, which are representative of >96% of all known phages, and were sequenced using the Illumina MiSeq platform. Successful de novo assembly of the viral genomes was possible. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change

    SciTech Connect

    Hu, Tina T.; Pattyn, Pedro; Bakker, Erica G.; Cao, Jun; Cheng, Jan-Fang; Clark, Richard M.; Fahlgren, Noah; Fawcett, Jeffrey A.; Grimwood, Jane; Gundlach, Heidrun; Haberer, Georg; Hollister, Jesse D.; Ossowski, Stephan; Ottilar, Robert P.; Salamov, Asaf A.; Schneeberger, Korbinian; Spannagl, Manuel; Wang, Xi; Yang, Liang; Nasrallah, Mikhail E.; Bergelson, Joy; Carrington, James C.; Gaut, Brandon S.; Schmutz, Jeremy; Mayer, Klaus F. X.; Van de Peer, Yves; Grigoriev, Igor V.; Nordborg, Magnus; Weigel, Detlef; Guo, Ya-Long

    2011-04-29

    In our manuscript, we present a high-quality genome sequence of the Arabidopsis thaliana relative, Arabidopsis lyrata, produced by dideoxy sequencing. We have performed the usual types of genome analysis (gene annotation, dN/dS studies etc. etc.), but this is relegated to the Supporting Information. Instead, we focus on what was a major motivation for sequencing this genome, namely to understand how A. thaliana lost half its genome in a few million years and lived to tell the tale. The rather surprising conclusion is that there is not a single genomic feature that accounts for the reduced genome, but that every aspect centromeres, intergenic regions, transposable elements, gene family number is affected through hundreds of thousands of cuts. This strongly suggests that overall genome size in itself is what has been under selection, a suggestion that is strongly supported by our demonstration (using population genetics data from A. thaliana) that new deletions seem to be driven to fixation.

  4. Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate

    PubMed Central

    Denoeud, France; Henriet, Simon; Mungpakdee, Sutada; Aury, Jean-Marc; Da Silva, Corinne; Brinkmann, Henner; Mikhaleva, Jana; Olsen, Lisbeth Charlotte; Jubin, Claire; Cañestro, Cristian; Bouquet, Jean-Marie; Danks, Gemma; Poulain, Julie; Campsteijn, Coen; Adamski, Marcin; Cross, Ismael; Yadetie, Fekadu; Muffato, Matthieu; Louis, Alexandra; Butcher, Stephen; Tsagkogeorga, Georgia; Konrad, Anke; Singh, Sarabdeep; Jensen, Marit Flo; Cong, Evelyne Huynh; Eikeseth-Otteraa, Helen; Noel, Benjamin; Anthouard, Véronique; Porcel, Betina M.; Kachouri-Lafond, Rym; Nishino, Atsuo; Ugolini, Matteo; Chourrout, Pascal; Nishida, Hiroki; Aasland, Rein; Huzurbazar, Snehalata; Westhof, Eric; Delsuc, Frédéric; Lehrach, Hans; Reinhardt, Richard; Weissenbach, Jean; Roy, Scott W.; Artiguenave, François; Postlethwait, John H.; Manak, J. Robert; Thompson, Eric M.; Jaillon, Olivier; Pasquier, Louis Du; Boudinot, Pierre; Liberles, David A.; Volff, Jean-Nicolas; Philippe, Hervé; Lenhard, Boris; Crollius, Hugues Roest; Wincker, Patrick; Chourrout, Daniel

    2012-01-01

    Genomes of animals as different as sponges and humans show conservation of global architecture. Here we show that multiple genomic features including transposon diversity, developmental gene repertoire, physical gene order, and intron-exon organization are shattered in the tunicate Oikopleura, belonging to the sister group of vertebrates and retaining chordate morphology. Ancestral architecture of animal genomes can be deeply modified and may therefore be largely nonadaptive. This rapidly evolving animal lineage thus offers unique perspectives on the level of genome plasticity. It also illuminates issues as fundamental as the mechanisms of intron gain. PMID:21097902

  5. Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate.

    PubMed

    Denoeud, France; Henriet, Simon; Mungpakdee, Sutada; Aury, Jean-Marc; Da Silva, Corinne; Brinkmann, Henner; Mikhaleva, Jana; Olsen, Lisbeth Charlotte; Jubin, Claire; Cañestro, Cristian; Bouquet, Jean-Marie; Danks, Gemma; Poulain, Julie; Campsteijn, Coen; Adamski, Marcin; Cross, Ismael; Yadetie, Fekadu; Muffato, Matthieu; Louis, Alexandra; Butcher, Stephen; Tsagkogeorga, Georgia; Konrad, Anke; Singh, Sarabdeep; Jensen, Marit Flo; Huynh Cong, Evelyne; Eikeseth-Otteraa, Helen; Noel, Benjamin; Anthouard, Véronique; Porcel, Betina M; Kachouri-Lafond, Rym; Nishino, Atsuo; Ugolini, Matteo; Chourrout, Pascal; Nishida, Hiroki; Aasland, Rein; Huzurbazar, Snehalata; Westhof, Eric; Delsuc, Frédéric; Lehrach, Hans; Reinhardt, Richard; Weissenbach, Jean; Roy, Scott W; Artiguenave, François; Postlethwait, John H; Manak, J Robert; Thompson, Eric M; Jaillon, Olivier; Du Pasquier, Louis; Boudinot, Pierre; Liberles, David A; Volff, Jean-Nicolas; Philippe, Hervé; Lenhard, Boris; Roest Crollius, Hugues; Wincker, Patrick; Chourrout, Daniel

    2010-12-03

    Genomes of animals as different as sponges and humans show conservation of global architecture. Here we show that multiple genomic features including transposon diversity, developmental gene repertoire, physical gene order, and intron-exon organization are shattered in the tunicate Oikopleura, belonging to the sister group of vertebrates and retaining chordate morphology. Ancestral architecture of animal genomes can be deeply modified and may therefore be largely nonadaptive. This rapidly evolving animal lineage thus offers unique perspectives on the level of genome plasticity. It also illuminates issues as fundamental as the mechanisms of intron gain.

  6. Tool for rapid annotation of microbial SNPs (TRAMS): a simple program for rapid annotation of genomic variation in prokaryotes.

    PubMed

    Reumerman, Richard A; Tucker, Nicholas P; Herron, Paul R; Hoskisson, Paul A; Sangal, Vartul

    2013-09-01

    Next generation sequencing (NGS) has been widely used to study genomic variation in a variety of prokaryotes. Single nucleotide polymorphisms (SNPs) resulting from genomic comparisons need to be annotated for their functional impact on the coding sequences. We have developed a program, TRAMS, for functional annotation of genomic SNPs which is available to download as a single file executable for WINDOWS users with limited computational experience and as a Python script for Mac OS and Linux users. TRAMS needs a tab delimited text file containing SNP locations, reference nucleotide and SNPs in variant strains along with a reference genome sequence in GenBank or EMBL format. SNPs are annotated as synonymous, nonsynonymous or nonsense. Nonsynonymous SNPs in start and stop codons are separated as non-start and non-stop SNPs, respectively. SNPs in multiple overlapping features are annotated separately for each feature and multiple nucleotide polymorphisms within a codon are combined before annotation. We have also developed a workflow for Galaxy, a highly used tool for analysing NGS data, to map short reads to a reference genome and extract and annotate the SNPs. TRAMS is a simple program for rapid and accurate annotation of SNPs that will be very useful for microbiologists in analysing genomic diversity in microbial populations.

  7. Genome size reduction can trigger rapid phenotypic evolution in invasive plants

    PubMed Central

    Lavergne, Sébastien; Muenke, Nikolas J.; Molofsky, Jane

    2010-01-01

    Background and Aims The study of rapid evolution in invasive species has highlighted the fundamental role played by founder events, emergence of genetic novelties through recombination and rapid response to new selective pressures. However, whether rapid adaptation of introduced species can be driven by punctual changes in genome organization has received little attention. In plants, variation in genome size, i.e. variation in the amount of DNA per monoploid set of chromosomes through loss or gain of repeated DNA sequences, is known to influence a number of physiological, phenological and life-history features. The present study investigated whether change in genome size has contributed to the evolution of greater potential of vegetative growth in invasive populations of an introduced grass. Methods The study was based on the recent demonstration that invasive genotypes of reed canarygrass (Phalaris arundinacea) occurring in North America have emerged from recombination between introduced European strains. The genome sizes of more than 200 invasive and native genotypes were measured and their genome size was related to their phenotypic traits measured in a common glasshouse environment. Population genetics data were used to infer phylogeographical relationships between study populations, and the evolutionary history of genome size within the study species was inferred. Key Results Invasive genotypes had a smaller genome than European native genotypes from which they are derived. This smaller genome size had phenotypic effects that increased the species' invasive potential, including a higher early growth rate, due to a negative relationship between genome size and rate of stem elongation. Based on inferred phylogeographical relationships of invasive and native populations, evolutionary models were consistent with a scenario of genome reduction by natural selection during the invasion process, rather than a scenario of stochastic change. Conclusions Punctual

  8. A BIOINFORMATIC STRATEGY TO RAPIDLY CHARACTERIZE CDNA LIBRARIES

    EPA Science Inventory

    A Bioinformatic Strategy to Rapidly Characterize cDNA Libraries

    G. Charles Ostermeier1, David J. Dix2 and Stephen A. Krawetz1.
    1Departments of Obstetrics and Gynecology, Center for Molecular Medicine and Genetics, & Institute for Scientific Computing, Wayne State Univer...

  9. A BIOINFORMATIC STRATEGY TO RAPIDLY CHARACTERIZE CDNA LIBRARIES

    EPA Science Inventory

    A Bioinformatic Strategy to Rapidly Characterize cDNA Libraries

    G. Charles Ostermeier1, David J. Dix2 and Stephen A. Krawetz1.
    1Departments of Obstetrics and Gynecology, Center for Molecular Medicine and Genetics, & Institute for Scientific Computing, Wayne State Univer...

  10. Use of Unamplified RNA/cDNA–Hybrid Nanopore Sequencing for Rapid Detection and Characterization of RNA Viruses

    PubMed Central

    Kilianski, Andy; Roth, Pierce A.; Liem, Alvin T.; Hill, Jessica M.; Willis, Kristen L.; Rossmaier, Rebecca D.; Marinich, Andrew V.; Maughan, Michele N.; Karavis, Mark A.; Kuhn, Jens H.; Honko, Anna N.

    2016-01-01

    Nanopore sequencing, a novel genomics technology, has potential applications for routine biosurveillance, clinical diagnosis, and outbreak investigation of virus infections. Using rapid sequencing of unamplified RNA/cDNA hybrids, we identified Venezuelan equine encephalitis virus and Ebola virus in 3 hours from sample receipt to data acquisition, demonstrating a fieldable technique for RNA virus characterization. PMID:27191483

  11. Eight new genomes and synthetic controls increase the accessibility of rapid melt-MAMA SNP typing of Coxiella burnetii.

    PubMed

    Karlsson, Edvin; Macellaro, Anna; Byström, Mona; Forsman, Mats; Frangoulidis, Dimitrios; Janse, Ingmar; Larsson, Pär; Lindgren, Petter; Ohrman, Caroline; van Rotterdam, Bart; Sjödin, Andreas; Myrtennäs, Kerstin

    2014-01-01

    The case rate of Q fever in Europe has increased dramatically in recent years, mainly because of an epidemic in the Netherlands in 2009. Consequently, there is a need for more extensive genetic characterization of the disease agent Coxiella burnetii in order to better understand the epidemiology and spread of this disease. Genome reference data are essential for this purpose, but only thirteen genome sequences are currently available. Current methods for typing C. burnetii are criticized for having problems in comparing results across laboratories, require the use of genomic control DNA, and/or rely on markers in highly variable regions. We developed in this work a method for single nucleotide polymorphism (SNP) typing of C. burnetii isolates and tissue samples based on new assays targeting ten phylogenetically stable synonymous canonical SNPs (canSNPs). These canSNPs represent previously known phylogenetic branches and were here identified from sequence comparisons of twenty-one C. burnetii genomes, eight of which were sequenced in this work. Importantly, synthetic control templates were developed, to make the method useful to laboratories lacking genomic control DNA. An analysis of twenty-one C. burnetii genomes confirmed that the species exhibits high sequence identity. Most of its SNPs (7,493/7,559 shared by >1 genome) follow a clonal inheritance pattern and are therefore stable phylogenetic typing markers. The assays were validated using twenty-six genetically diverse C. burnetii isolates and three tissue samples from small ruminants infected during the epidemic in the Netherlands. Each sample was assigned to a clade. Synthetic controls (vector and PCR amplified) gave identical results compared to the corresponding genomic controls and are viable alternatives to genomic DNA. The results from the described method indicate that it could be useful for cheap and rapid disease source tracking at non-specialized laboratories, which requires accurate genotyping

  12. Rapid Whole-Genome Sequencing for Genetic Disease Diagnosis in Neonatal Intensive Care Units

    PubMed Central

    Saunders, Carol Jean; Miller, Neil Andrew; Soden, Sarah Elizabeth; Dinwiddie, Darrell Lee; Noll, Aaron; Alnadi, Noor Abu; Andraws, Nevene; Patterson, Melanie LeAnn; Krivohlavek, Lisa Ann; Fellis, Joel; Humphray, Sean; Saffrey, Peter; Kingsbury, Zoya; Weir, Jacqueline Claire; Betley, Jason; Grocock, Russell James; Margulies, Elliott Harrison; Farrow, Emily Gwendolyn; Artman, Michael; Safina, Nicole Pauline; Petrikin, Joshua Erin; Hall, Kevin Peter; Kingsmore, Stephen Francis

    2014-01-01

    Monogenic diseases are frequent causes of neonatal morbidity and mortality, and disease presentations are often undifferentiated at birth. More than 3500 monogenic diseases have been characterized, but clinical testing is available for only some of them and many feature clinical and genetic heterogeneity. Hence, an immense unmet need exists for improved molecular diagnosis in infants. Because disease progression is extremely rapid, albeit heterogeneous, in newborns, molecular diagnoses must occur quickly to be relevant for clinical decision-making. We describe 50-hour differential diagnosis of genetic disorders by whole-genome sequencing (WGS) that features automated bioinformatic analysis and is intended to be a prototype for use in neonatal intensive care units. Retrospective 50-hour WGS identified known molecular diagnoses in two children. Prospective WGS disclosed potential molecular diagnosis of a severe GJB2-related skin disease in one neonate; BRAT1-related lethal neonatal rigidity and multifocal seizure syndrome in another infant; identified BCL9L as a novel, recessive visceral heterotaxy gene (HTX6) in a pedigree; and ruled out known candidate genes in one infant. Sequencing of parents or affected siblings expedited the identification of disease genes in prospective cases. Thus, rapid WGS can potentially broaden and foreshorten differential diagnosis, resulting in fewer empirical treatments and faster progression to genetic and prognostic counseling. PMID:23035047

  13. Rapid characterization of fuel atomizers using an optical patternator

    SciTech Connect

    Sankar, S.V.; Maher, K.E.; Robart, D.M.; Bachalo, W.D.

    1999-07-01

    Planar laser scattering (PLS) and planar laser-induced fluorescence (PLIF) techniques are currently being used for rapid characterization of fuel sprays associated with gas turbine atomizers, diesel injectors, and automotive fuel injectors. These techniques can be used for qualitative, quantitative, and rapid measurement of fuel mass, spray geometry, and Sauter mean diameters in various sprays. The spatial distribution of the fuel mass can be inferred directly from the PLIF image, and the Sauter mean diameter can be measured by simultaneously recording the PLIF and PLS images and then rationing the two. A spray characterization system incorporating the PLS and/or PLIF techniques has been loosely termed an optical patternator, and in this study, it has been used to characterize both steady and pulsed sprays. The results obtained with the optical patternator have been directly validated using a phase Doppler particle analyzer (PDPA).

  14. A rapidly evolving genomic toolkit for Drosophila heterochromatin

    PubMed Central

    Levine, Mia T; Malik, Harmit S

    2013-01-01

    Heterochromatin is the enigmatic eukaryotic genome compartment found mostly at telomeres and centromeres. Conventional approaches to sequence assembly and genetic manipulation fail in this highly repetitive, gene-sparse, and recombinationally silent DNA. In contrast, genetic and molecular analyses of euchromatin-encoded proteins that bind, remodel, and propagate heterochromatin have revealed its vital role in numerous cellular and evolutionary processes. Utilizing the 12 sequenced Drosophila genomes, Levine et al1 took a phylogenomic approach to discover new such protein “surrogates” of heterochromatin function and evolution. This paper reported over 20 new members of what was traditionally believed to be a small and static Heterochromatin Protein 1 (HP1) gene family. The newly identified HP1 proteins are structurally diverse, lineage-restricted, and expressed primarily in the male germline. The birth and death of HP1 genes follows a “revolving door” pattern, where new HP1s appear to replace old HP1s. Here, we address alternative evolutionary models that drive this constant innovation. PMID:23519206

  15. Genomic characterization of chromosome 8 pericentric trisomy

    PubMed Central

    Vander Pluym, Juliana H; O’Sullivan, Julia; Andrew, Gail; Bolduc, Francois V

    2015-01-01

    Key Clinical Message We present a patient with trisomy 8p11.21q11.21 associated with language, gross motor, fine motor, and cognitive delay. Furthermore, using array-based comparative genomic hybridization, we identify the specific genes duplicated in our patient. PMID:26273445

  16. Characterizing the morbid genome of ciliopathies.

    PubMed

    Shaheen, Ranad; Szymanska, Katarzyna; Basu, Basudha; Patel, Nisha; Ewida, Nour; Faqeih, Eissa; Al Hashem, Amal; Derar, Nada; Alsharif, Hadeel; Aldahmesh, Mohammed A; Alazami, Anas M; Hashem, Mais; Ibrahim, Niema; Abdulwahab, Firdous M; Sonbul, Rawda; Alkuraya, Hisham; Alnemer, Maha; Al Tala, Saeed; Al-Husain, Muneera; Morsy, Heba; Seidahmed, Mohammed Zain; Meriki, Neama; Al-Owain, Mohammed; AlShahwan, Saad; Tabarki, Brahim; Salih, Mustafa A; Faquih, Tariq; El-Kalioby, Mohamed; Ueffing, Marius; Boldt, Karsten; Logan, Clare V; Parry, David A; Al Tassan, Nada; Monies, Dorota; Megarbane, Andre; Abouelhoda, Mohamed; Halees, Anason; Johnson, Colin A; Alkuraya, Fowzan S

    2016-11-28

    Ciliopathies are clinically diverse disorders of the primary cilium. Remarkable progress has been made in understanding the molecular basis of these genetically heterogeneous conditions; however, our knowledge of their morbid genome, pleiotropy, and variable expressivity remains incomplete. We applied genomic approaches on a large patient cohort of 371 affected individuals from 265 families, with phenotypes that span the entire ciliopathy spectrum. Likely causal mutations in previously described ciliopathy genes were identified in 85% (225/265) of the families, adding 32 novel alleles. Consistent with a fully penetrant model for these genes, we found no significant difference in their "mutation load" beyond the causal variants between our ciliopathy cohort and a control non-ciliopathy cohort. Genomic analysis of our cohort further identified mutations in a novel morbid gene TXNDC15, encoding a thiol isomerase, based on independent loss of function mutations in individuals with a consistent ciliopathy phenotype (Meckel-Gruber syndrome) and a functional effect of its deficiency on ciliary signaling. Our study also highlighted seven novel candidate genes (TRAPPC3, EXOC3L2, FAM98C, C17orf61, LRRCC1, NEK4, and CELSR2) some of which have established links to ciliogenesis. Finally, we show that the morbid genome of ciliopathies encompasses many founder mutations, the combined carrier frequency of which accounts for a high disease burden in the study population. Our study increases our understanding of the morbid genome of ciliopathies. We also provide the strongest evidence, to date, in support of the classical Mendelian inheritance of Bardet-Biedl syndrome and other ciliopathies.

  17. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change

    PubMed Central

    Hu, Tina T.; Pattyn, Pedro; Bakker, Erica G.; Cao, Jun; Cheng, Jan-Fang; Clark, Richard M.; Fahlgren, Noah; Fawcett, Jeffrey A.; Grimwood, Jane; Gundlach, Heidrun; Haberer, Georg; Hollister, Jesse D.; Ossowski, Stephan; Ottilar, Robert P.; Salamov, Asaf A.; Schneeberger, Korbinian; Spannagl, Manuel; Wang, Xi; Yang, Liang; Nasrallah, Mikhail E.; Bergelson, Joy; Carrington, James C.; Gaut, Brandon S.; Schmutz, Jeremy; Mayer, Klaus F. X.; Van de Peer, Yves; Grigoriev, Igor V.; Nordborg, Magnus; Weigel, Detlef; Guo, Ya-Long

    2011-01-01

    We present the 207 Mb genome sequence of the outcrosser Arabidopsis lyrata, which diverged from the self-fertilizing species A. thaliana about 10 million years ago. It is generally assumed that the much smaller A. thaliana genome, which is only 125 Mb, constitutes the derived state for the family. Apparent genome reduction in this genus can be partially attributed to the loss of DNA from large-scale rearrangements, but the main cause lies in the hundreds of thousands of small deletions found throughout the genome. These occurred primarily in non-coding DNA and transposons, but protein-coding multi-gene families are smaller in A. thaliana as well. Analysis of deletions and insertions still segregating in A. thaliana indicates that the process of DNA loss is ongoing, suggesting pervasive selection for a smaller genome. PMID:21478890

  18. Nuclear DNA content in Sinningia (Gesneriaceae); intraspecific genome size variation and genome characterization in S. speciosa.

    PubMed

    Zaitlin, David; Pierce, Andrew J

    2010-12-01

    The Gesneriaceae (Lamiales) is a family of flowering plants comprising >3000 species of mainly tropical origin, the most familiar of which is the cultivated African violet (Saintpaulia spp.). Species of Gesneriaceae are poorly represented in the lists of taxa sampled for genome size estimation; measurements are available for three species of Ramonda and one each of Haberlea, Saintpaulia, and Streptocarpus, all species of Old World origin. We report here nuclear genome size estimates for 10 species of Sinningia, a neotropical genus largely restricted to Brazil. Flow cytometry of leaf cell nuclei showed that holoploid genome size in Sinningia is very small (approximately two times the size of the Arabidopsis genome), and is small compared to the other six species of Gesneriaceae with genome size estimates. We also documented intraspecific genome size variation of 21%-26% within a group of wild Sinningia speciosa (Lodd.) Hiern collections. In addition, we analyzed 1210 genome survey sequences from S. speciosa to characterize basic features of the nuclear genome such as guanine-cytosine content, types of repetitive elements, numbers of protein-coding sequences, and sequences unique to S. speciosa. We included several other angiosperm species as genome size standards, one of which was the snapdragon (Antirrhinum majus L.; Veronicaceae, Lamiales). Multiple measurements on three accessions indicated that the genome size of A. majus is ~633 × 10⁶ base pairs, which is approximately 40% of the previously published estimate.

  19. Rapid evolution in a fraction of the Drosophila nuclear genome.

    PubMed

    Werman, S D; Davidson, E H; Britten, R J

    1990-03-01

    Previous observations have indicated that Drosophila DNA contains a component that evolves so rapidly that it fails to hybridize between the DNAs of sibling species. To establish the reality of this component and study its properties, the fraction (about 20%) of Drosophila simulans (Dsim) DNA that fails to hybridize to Drosophila melanogaster (Dmel) DNA has been isolated. The majority of the hybridizable part of this isolated fraction (based on control tests on Dsim DNA) fails to hybridize with Dmel DNA under the conditions used for the initial fractionation. Clones of this fraction do hybridize with Dmel DNA at open criterion producing duplexes with greatly reduced thermal stability, indicating that the underlying process is rapid sequence divergence rather than loss of the homologous sequences by relatively large deletions. Cloned fragments from the nonhybridizing fraction from Dsim are more than 15% divergent from the Dmel homologues, whereas the fraction that does hybridize is only 3-5% divergent. In comparison, synonymous substitutions in the coding regions of five genes show a 9% average divergence between Dsim and Dmel. They appear to be intermediate in their degree of divergence between the hybridizing and nonhybridizing components.

  20. Pioglitazone rapidly reduces neuropathic pain through astrocyte and non-genomic PPARγ mechanisms

    PubMed Central

    Griggs, Ryan B.; Donahue, Renee R.; Morgenweck, Jenny; Grace, Peter M.; Sutton, Amanda; Watkins, Linda R.; Taylor, Bradley K.

    2014-01-01

    Repeated administration of peroxisome proliferator-activated receptor gamma (PPARγ) agonists reduces neuropathic pain-like behavior and associated changes in glial activation in the spinal cord dorsal horn. As PPARγ is a nuclear receptor, sustained changes in gene expression are widely believed to be the mechanism of pain reduction. However, we recently reported that a single intrathecal injection of pioglitazone, a PPARγ agonist, reduced hyperalgesia within 30 minutes, a time frame that is typically less than that required for genomic mechanisms. To determine the very rapid anti-hyperalgesic actions of PPARγ activation we administered pioglitazone to rats with spared nerve injury (SNI) and evaluated hyperalgesia. Pioglitazone inhibited hyperalgesia within 5 min of injection, consistent with a non-genomic mechanism. Systemic or intrathecal administration of GW9662, a PPARγ antagonist, inhibited the anti-hyperalgesic actions of intraperitoneal or intrathecal pioglitazone, suggesting a spinal PPARγ-dependent mechanism. To further address the contribution of non-genomic mechanisms, we blocked new protein synthesis in the spinal cord with anisomycin. When co-administered intrathecally, anisomycin did not change pioglitazone anti-hyperalgesia at an early 7.5 min timepoint, further supporting a rapid non-genomic mechanism. At later timepoints anisomycin reduced pioglitazone anti-hyperalgesia, suggesting a delayed recruitment of genomic mechanisms. Pioglitazone reduction of SNI-induced increases in GFAP expression occurred more rapidly than expected, within 60 min. We are the first to show that activation of spinal PPARγ rapidly reduces neuropathic pain independent from canonical genomic activity. We conclude that acute pioglitazone inhibits neuropathic pain in part by reducing astrocyte activation, and via both genomic and non-genomic PPARγ mechanisms. PMID:25599238

  1. Characterizing genomic alterations in cancer by complementary functional associations

    PubMed Central

    Kim, J. W.; Botvinnik, O. B.; Abudayyeh, O.; Birger, C.; Rosenbluh, J.; Shrestha, Y.; Abazeed, M. E.; Hammerman, P. S.; DiCara, D.; Konieczkowski, D. J.; Johannessen, C. M.; Liberzon, A.; Alizad-Rahvar, A. R.; Alexe, G.; Aguirre, A.; Ghandi, M.; Greulich, H.; Vazquez, F.; Weir, B. A.; Van Allen, E. M.; Tsherniak, A.; Shao, D. D.; Zack, T. I.; Noble, M.; Getz, G.; Beroukhim, R.; Garraway, L. A.; Ardakani, M.; Romualdi, C.; Sales, G.; Barbie, D. A.; Boehm, J. S.; Hahn, W. C.; Mesirov, J. P.; Tamayo, P.

    2016-01-01

    Systematic efforts to sequence the cancer genome have identified large numbers of relevant mutations and copy number alterations in human cancers; however, elucidating their functional consequences, and their interactions to drive or maintain oncogenic states, is still a significant challenge. Here we introduce REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene-dependency of oncogenic pathways or the sensitivity to a drug treatment. We use REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes. PMID:27088724

  2. Rapid methods for the extraction and archiving of molecular grade fungal genomic DNA.

    PubMed

    Borman, Andrew M; Palmer, Michael; Johnson, Elizabeth M

    2013-01-01

    The rapid and inexpensive extraction of fungal genomic DNA that is of sufficient quality for molecular approaches is central to the molecular identification, epidemiological analysis, taxonomy, and strain typing of pathogenic fungi. Although many commercially available and in-house extraction procedures do eliminate the majority of contaminants that commonly inhibit molecular approaches, the inherent difficulties in breaking fungal cell walls lead to protocols that are labor intensive and that routinely take several hours to complete. Here we describe several methods that we have developed in our laboratory that allow the extremely rapid and inexpensive preparation of fungal genomic DNA.

  3. PSP: rapid identification of orthologous coding genes under positive selection across multiple closely related prokaryotic genomes.

    PubMed

    Su, Fei; Ou, Hong-Yu; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2013-12-27

    With genomic sequences of many closely related bacterial strains made available by deep sequencing, it is now possible to investigate trends in prokaryotic microevolution. Positive selection is a sub-process of microevolution, in which a particular mutation is favored, causing the allele frequency to continuously shift in one direction. Wide scanning of prokaryotic genomes has shown that positive selection at the molecular level is much more frequent than expected. Genes with significant positive selection may play key roles in bacterial adaption to different environmental pressures. However, selection pressure analyses are computationally intensive and awkward to configure. Here we describe an open access web server, which is designated as PSP (Positive Selection analysis for Prokaryotic genomes) for performing evolutionary analysis on orthologous coding genes, specially designed for rapid comparison of dozens of closely related prokaryotic genomes. Remarkably, PSP facilitates functional exploration at the multiple levels by assignments and enrichments of KO, GO or COG terms. To illustrate this user-friendly tool, we analyzed Escherichia coli and Bacillus cereus genomes and found that several genes, which play key roles in human infection and antibiotic resistance, show significant evidence of positive selection. PSP is freely available to all users without any login requirement at: http://db-mml.sjtu.edu.cn/PSP/. PSP ultimately allows researchers to do genome-scale analysis for evolutionary selection across multiple prokaryotic genomes rapidly and easily, and identify the genes undergoing positive selection, which may play key roles in the interactions of host-pathogen and/or environmental adaptation.

  4. Rapid genome-scale mapping of chromatin accessibility in tissue

    PubMed Central

    2012-01-01

    Background The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant on large amounts of purified nuclei as starting material. This complicates analysis of trace clinical tissue samples that are often stored frozen. We have developed an alternative nuclease based procedure to bypass nuclear preparation to interrogate nuclease accessible regions in frozen tissue samples. Results Here we introduce a novel technique that specifically identifies Tissue Accessible Chromatin (TACh). The TACh method uses pulverized frozen tissue as starting material and employs one of the two robust endonucleases, Benzonase or Cyansase, which are fully active under a range of stringent conditions such as high levels of detergent and DTT. As a proof of principle we applied TACh to frozen mouse liver tissue. Combined with massive parallel sequencing TACh identifies accessible regions that are associated with euchromatic features and accessibility at transcriptional start sites correlates positively with levels of gene transcription. Accessible chromatin identified by TACh overlaps to a large extend with accessible chromatin identified by DNase I using nuclei purified from freshly isolated liver tissue as starting material. The similarities are most pronounced at highly accessible regions, whereas identification of less accessible regions tends to be more divergence between nucleases. Interestingly, we show that some of the differences between DNase I and Benzonase relate to their intrinsic sequence biases and accordingly accessibility of CpG islands is probed more efficiently using TACh. Conclusion The TACh methodology identifies accessible chromatin derived from frozen tissue samples. We propose that this simple, robust approach can be applied across a broad range of

  5. Genomic characterization of Italian Clostridium botulinum group I strains.

    PubMed

    Giordani, Francesco; Fillo, Silvia; Anselmo, Anna; Palozzi, Anna Maria; Fortunato, Antonella; Gentile, Bernardina; Azarnia Tehran, Domenico; Ciammaruconi, Andrea; Spagnolo, Ferdinando; Pittiglio, Valentina; Anniballi, Fabrizio; Auricchio, Bruna; De Medici, Dario; Lista, Florigio

    2015-12-01

    Clostridium botulinum is a gram-positive bacterium capable of producing the botulinum neurotoxin, a powerful poison that causes botulism, a severe neuroparalytic disease. Its genome has been sequenced entirely and its gene content has been analyzed. To date, 19 full genomes and 64 draft genomes are available. The geographical origin of these genomes is predominantly from the US. In the present study, 10 Italian genomes of C. botulinum group I were analyzed and compared with previously sequenced group I genomes, in order to genetically characterize the Italian population of C. botulinum group I and to investigate the phylogenetic relationships among different lineages. Using the suites of software ClonalFrame and ClonalOrigin to perform genomic analysis, we demonstrated that Italian C. botulinum group I population is phylogenetically heterogeneous encompassing different and distant lineages including overseas strains, too. Moreover, a high recombination rate was demonstrated in the evolution of C. botulinum group I species. Finally, genome sequencing of the strain 357 led us to identify a novel botulinum neurotoxin subtype, F8.

  6. Integrated genomic characterization of papillary thyroid carcinoma.

    PubMed

    2014-10-23

    Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Here, we describe the genomic landscape of 496 PTCs. We observed a low frequency of somatic alterations (relative to other carcinomas) and extended the set of known PTC driver alterations to include EIF1AX, PPM1D, and CHEK2 and diverse gene fusions. These discoveries reduced the fraction of PTC cases with unknown oncogenic driver from 25% to 3.5%. Combined analyses of genomic variants, gene expression, and methylation demonstrated that different driver groups lead to different pathologies with distinct signaling and differentiation characteristics. Similarly, we identified distinct molecular subgroups of BRAF-mutant tumors, and multidimensional analyses highlighted a potential involvement of oncomiRs in less-differentiated subgroups. Our results propose a reclassification of thyroid cancers into molecular subtypes that better reflect their underlying signaling and differentiation properties, which has the potential to improve their pathological classification and better inform the management of the disease.

  7. Integrated Genomic Characterization of Papillary Thyroid Carcinoma

    PubMed Central

    Agrawal, Nishant; Akbani, Rehan; Aksoy, B. Arman; Ally, Adrian; Arachchi, Harindra; Asa, Sylvia L.; Auman, J. Todd; Balasundaram, Miruna; Balu, Saianand; Baylin, Stephen B.; Behera, Madhusmita; Bernard, Brady; Beroukhim, Rameen; Bishop, Justin A.; Black, Aaron D.; Bodenheimer, Tom; Boice, Lori; Bootwalla, Moiz S.; Bowen, Jay; Bowlby, Reanne; Bristow, Christopher A.; Brookens, Robin; Brooks, Denise; Bryant, Robert; Buda, Elizabeth; Butterfield, Yaron S.N.; Carling, Tobias; Carlsen, Rebecca; Carter, Scott L.; Carty, Sally E.; Chan, Timothy A.; Chen, Amy Y.; Cherniack, Andrew D.; Cheung, Dorothy; Chin, Lynda; Cho, Juok; Chu, Andy; Chuah, Eric; Cibulskis, Kristian; Ciriello, Giovanni; Clarke, Amanda; Clayman, Gary L.; Cope, Leslie; Copland, John; Covington, Kyle; Danilova, Ludmila; Davidsen, Tanja; Demchok, John A.; DiCara, Daniel; Dhalla, Noreen; Dhir, Rajiv; Dookran, Sheliann S.; Dresdner, Gideon; Eldridge, Jonathan; Eley, Greg; El-Naggar, Adel K.; Eng, Stephanie; Fagin, James A.; Fennell, Timothy; Ferris, Robert L.; Fisher, Sheila; Frazer, Scott; Frick, Jessica; Gabriel, Stacey B.; Ganly, Ian; Gao, Jianjiong; Garraway, Levi A.; Gastier-Foster, Julie M.; Getz, Gad; Gehlenborg, Nils; Ghossein, Ronald; Gibbs, Richard A.; Giordano, Thomas J.; Gomez-Hernandez, Karen; Grimsby, Jonna; Gross, Benjamin; Guin, Ranabir; Hadjipanayis, Angela; Harper, Hollie A.; Hayes, D. Neil; Heiman, David I.; Herman, James G.; Hoadley, Katherine A.; Hofree, Matan; Holt, Robert A.; Hoyle, Alan P.; Huang, Franklin W.; Huang, Mei; Hutter, Carolyn M.; Ideker, Trey; Iype, Lisa; Jacobsen, Anders; Jefferys, Stuart R.; Jones, Corbin D.; Jones, Steven J.M.; Kasaian, Katayoon; Kebebew, Electron; Khuri, Fadlo R.; Kim, Jaegil; Kramer, Roger; Kreisberg, Richard; Kucherlapati, Raju; Kwiatkowski, David J.; Ladanyi, Marc; Lai, Phillip H.; Laird, Peter W.; Lander, Eric; Lawrence, Michael S.; Lee, Darlene; Lee, Eunjung; Lee, Semin; Lee, William; Leraas, Kristen M.; Lichtenberg, Tara M.; Lichtenstein, Lee; Lin, Pei; Ling, Shiyun; Liu, Jinze; Liu, Wenbin; Liu, Yingchun; LiVolsi, Virginia A.; Lu, Yiling; Ma, Yussanne; Mahadeshwar, Harshad S.; Marra, Marco A.; Mayo, Michael; McFadden, David G.; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A.; Miller, Michael; Mills, Gordon; Moore, Richard A.; Mose, Lisle E.; Mungall, Andrew J.; Murray, Bradley A.; Nikiforov, Yuri E.; Noble, Michael S.; Ojesina, Akinyemi I.; Owonikoko, Taofeek K.; Ozenberger, Bradley A.; Pantazi, Angeliki; Parfenov, Michael; Park, Peter J.; Parker, Joel S.; Paull, Evan O.; Pedamallu, Chandra Sekhar; Perou, Charles M.; Prins, Jan F.; Protopopov, Alexei; Ramalingam, Suresh S.; Ramirez, Nilsa C.; Ramirez, Ricardo; Raphael, Benjamin J.; Rathmell, W. Kimryn; Ren, Xiaojia; Reynolds, Sheila M.; Rheinbay, Esther; Ringel, Matthew D.; Rivera, Michael; Roach, Jeffrey; Robertson, A. Gordon; Rosenberg, Mara W.; Rosenthall, Matthew; Sadeghi, Sara; Saksena, Gordon; Sander, Chris; Santoso, Netty; Schein, Jacqueline E.; Schultz, Nikolaus; Schumacher, Steven E.; Seethala, Raja R.; Seidman, Jonathan; Senbabaoglu, Yasin; Seth, Sahil; Sharpe, Samantha; Mills Shaw, Kenna R.; Shen, John P.; Shen, Ronglai; Sherman, Steven; Sheth, Margi; Shi, Yan; Shmulevich, Ilya; Sica, Gabriel L.; Simons, Janae V.; Sipahimalani, Payal; Smallridge, Robert C.; Sofia, Heidi J.; Soloway, Matthew G.; Song, Xingzhi; Sougnez, Carrie; Stewart, Chip; Stojanov, Petar; Stuart, Joshua M.; Tabak, Barbara; Tam, Angela; Tan, Donghui; Tang, Jiabin; Tarnuzzer, Roy; Taylor, Barry S.; Thiessen, Nina; Thorne, Leigh; Thorsson, Vésteinn; Tuttle, R. Michael; Umbricht, Christopher B.; Van Den Berg, David J.; Vandin, Fabio; Veluvolu, Umadevi; Verhaak, Roel G.W.; Vinco, Michelle; Voet, Doug; Walter, Vonn; Wang, Zhining; Waring, Scot; Weinberger, Paul M.; Weinstein, John N.; Weisenberger, Daniel J.; Wheeler, David; Wilkerson, Matthew D.; Wilson, Jocelyn; Williams, Michelle; Winer, Daniel A.; Wise, Lisa; Wu, Junyuan; Xi, Liu; Xu, Andrew W.; Yang, Liming; Yang, Lixing; Zack, Travis I.; Zeiger, Martha A.; Zeng, Dong; Zenklusen, Jean Claude; Zhao, Ni; Zhang, Hailei; Zhang, Jianhua; Zhang, Jiashan (Julia); Zhang, Wei; Zmuda, Erik; Zou., Lihua

    2014-01-01

    Summary Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Here, we describe the genomic landscape of 496 PTCs. We observed a low frequency of somatic alterations (relative to other carcinomas) and extended the set of known PTC driver alterations to include EIF1AX, PPM1D and CHEK2 and diverse gene fusions. These discoveries reduced the fraction of PTC cases with unknown oncogenic driver from 25% to 3.5%. Combined analyses of genomic variants, gene expression, and methylation demonstrated that different driver groups lead to different pathologies with distinct signaling and differentiation characteristics. Similarly, we identified distinct molecular subgroups of BRAF-mutant tumors and multidimensional analyses highlighted a potential involvement of oncomiRs in less-differentiated subgroups. Our results propose a reclassification of thyroid cancers into molecular subtypes that better reflect their underlying signaling and differentiation properties, which has the potential to improve their pathological classification and better inform the management of the disease. PMID:25417114

  8. Rapid Evolution of Manifold CRISPR Systems for Plant Genome Editing

    PubMed Central

    Lowder, Levi; Malzahn, Aimee; Qi, Yiping

    2016-01-01

    Advanced CRISPR-Cas9 based technologies first validated in mammalian cell systems are quickly being adapted for use in plants. These new technologies increase CRISPR-Cas9's utility and effectiveness by diversifying cellular capabilities through expression construct system evolution and enzyme orthogonality, as well as enhanced efficiency through delivery and expression mechanisms. Here, we review the current state of advanced CRISPR-Cas9 and Cpf1 capabilities in plants and cover the rapid evolution of these tools from first generation inducers of double strand breaks for basic genetic manipulations to second and third generation multiplexed systems with myriad functionalities, capabilities, and specialized applications. We offer perspective on how to utilize these tools for currently untested research endeavors and analyze strengths and weaknesses of novel CRISPR systems in plants. Advanced CRISPR functionalities and delivery options demonstrated in plants are primarily reviewed but new technologies just coming to the forefront of CRISPR development, or those on the horizon, are briefly discussed. Topics covered are focused on the expansion of expression and delivery capabilities for CRISPR-Cas9 components and broadening targeting range through orthogonal Cas9 and Cpf1 proteins. PMID:27895652

  9. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma.

    PubMed

    2017-08-14

    We performed integrated genomic, transcriptomic, and proteomic profiling of 150 pancreatic ductal adenocarcinoma (PDAC) specimens, including samples with characteristic low neoplastic cellularity. Deep whole-exome sequencing revealed recurrent somatic mutations in KRAS, TP53, CDKN2A, SMAD4, RNF43, ARID1A, TGFβR2, GNAS, RREB1, and PBRM1. KRAS wild-type tumors harbored alterations in other oncogenic drivers, including GNAS, BRAF, CTNNB1, and additional RAS pathway genes. A subset of tumors harbored multiple KRAS mutations, with some showing evidence of biallelic mutations. Protein profiling identified a favorable prognosis subset with low epithelial-mesenchymal transition and high MTOR pathway scores. Associations of non-coding RNAs with tumor-specific mRNA subtypes were also identified. Our integrated multi-platform analysis reveals a complex molecular landscape of PDAC and provides a roadmap for precision medicine. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Rapid Characterization of Shorelines using a Georeferenced Video Mapping System

    SciTech Connect

    Anderson, Michael G.; Judd, Chaeli; Marcoe, K.

    2012-09-01

    Increased understanding of shoreline conditions is needed, yet current approaches are limited in ability to characterize remote areas or document features at a finer resolution. Documentation using video mapping may provide a rapid and repeatable method for assessing the current state of the environment and determining changes to the shoreline over time. In this study, we compare two studies using boat-based, georeferenced video mapping in coastal Washington and the Columbia River Estuary to map and characterize coastal stressors and functional data. In both areas, mapping multiple features along the shoreline required approximation of the coastline. However, characterization of vertically oriented features such as shoreline armoring and small features such as pilings and large woody debris was possible. In addition, end users noted that geovideo provides a permanent record to allow a user to examine recorded video anywhere along a transect or at discrete points.

  11. Characterizing the citrus cultivar Carrizo genome through 454 shotgun sequencing.

    PubMed

    Belknap, William R; Wang, Yi; Huo, Naxin; Wu, Jiajie; Rockhold, David R; Gu, Yong Q; Stover, Ed

    2011-12-01

    The citrus cultivar Carrizo is the single most important rootstock to the US citrus industry and has resistance or tolerance to a number of major citrus diseases, including citrus tristeza virus, foot rot, and Huanglongbing (HLB, citrus greening). A Carrizo genomic sequence database providing approximately 3.5×genome coverage (haploid genome size approximately 367 Mb) was populated through 454 GS FLX shotgun sequencing. Analysis of the repetitive DNA fraction indicated a total interspersed repeat fraction of 36.5%. Assembly and characterization of abundant citrus Ty3/gypsy elements revealed a novel type of element containing open reading frames encoding a viral RNA-silencing suppressor protein (RNA binding protein, rbp) and a plant cytokinin riboside 5′-monophosphate phosphoribohydrolase-related protein (LONELY GUY, log). Similar gypsy elements were identified in the Populus trichocarpa genome. Gene-coding region analysis indicated that 24.4% of the nonrepetitive reads contained genic regions. The depth of genome coverage was sufficient to allow accurate assembly of constituent genes, including a putative phloem-expressed gene. The development of the Carrizo database (http://citrus.pw.usda.gov/) will contribute to characterization of agronomically significant loci and provide a publicly available genomic resource to the citrus research community.

  12. Integrated genomic characterization of oesophageal carcinoma.

    PubMed

    2017-01-12

    Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies.

  13. Rapid storage and retrieval of genomic intervals from a relational database system using nested containment lists

    PubMed Central

    Wiley, Laura K.; Sivley, R. Michael; Bush, William S.

    2013-01-01

    Efficient storage and retrieval of genomic annotations based on range intervals is necessary, given the amount of data produced by next-generation sequencing studies. The indexing strategies of relational database systems (such as MySQL) greatly inhibit their use in genomic annotation tasks. This has led to the development of stand-alone applications that are dependent on flat-file libraries. In this work, we introduce MyNCList, an implementation of the NCList data structure within a MySQL database. MyNCList enables the storage, update and rapid retrieval of genomic annotations from the convenience of a relational database system. Range-based annotations of 1 million variants are retrieved in under a minute, making this approach feasible for whole-genome annotation tasks. Database URL: https://github.com/bushlab/mynclist PMID:23894185

  14. Evidence from phylogenetic and genome fingerprinting analyses suggests rapidly changing variation in Halorubrum and Haloarcula populations

    PubMed Central

    Ram Mohan, Nikhil; Fullmer, Matthew S.; Makkay, Andrea M.; Wheeler, Ryan; Ventosa, Antonio; Naor, Adit; Gogarten, J. Peter; Papke, R. Thane

    2014-01-01

    Halobacteria require high NaCl concentrations for growth and are the dominant inhabitants of hypersaline environments above 15% NaCl. They are well-documented to be highly recombinogenic, both in frequency and in the range of exchange partners. In this study, we examine the genetic and genomic variation of cultured, naturally co-occurring environmental populations of Halobacteria. Sequence data from multiple loci (~2500 bp) identified many closely and more distantly related strains belonging to the genera Halorubrum and Haloarcula. Genome fingerprinting using a random priming PCR amplification method to analyze these isolates revealed diverse banding patterns across each of the genera and surprisingly even for isolates that are identical at the nucleotide level for five protein coding sequenced loci. This variance in genome structure even between identical multilocus sequence analysis (MLSA) haplotypes indicates that accumulation of genomic variation is rapid: faster than the rate of third codon substitutions. PMID:24782838

  15. Evidence from phylogenetic and genome fingerprinting analyses suggests rapidly changing variation in Halorubrum and Haloarcula populations.

    PubMed

    Ram Mohan, Nikhil; Fullmer, Matthew S; Makkay, Andrea M; Wheeler, Ryan; Ventosa, Antonio; Naor, Adit; Gogarten, J Peter; Papke, R Thane

    2014-01-01

    Halobacteria require high NaCl concentrations for growth and are the dominant inhabitants of hypersaline environments above 15% NaCl. They are well-documented to be highly recombinogenic, both in frequency and in the range of exchange partners. In this study, we examine the genetic and genomic variation of cultured, naturally co-occurring environmental populations of Halobacteria. Sequence data from multiple loci (~2500 bp) identified many closely and more distantly related strains belonging to the genera Halorubrum and Haloarcula. Genome fingerprinting using a random priming PCR amplification method to analyze these isolates revealed diverse banding patterns across each of the genera and surprisingly even for isolates that are identical at the nucleotide level for five protein coding sequenced loci. This variance in genome structure even between identical multilocus sequence analysis (MLSA) haplotypes indicates that accumulation of genomic variation is rapid: faster than the rate of third codon substitutions.

  16. Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen Phytophthora capsici

    SciTech Connect

    Lamour, Kurt H.; Mudge, Joann; Gobena, Daniel; Hurtado-Gonzales, Oscar P.; Schmutz, Jeremy; Kuo, Alan; Miller, Neil A.; Rice, Brandon J.; Raffaele, Sylvain; Cano, Liliana M.; Bharti, Arvind K.; Donahoo, Ryan S.; Finely, Sabra; Huitema, Edgar; Hulvey, Jon; Platt, Darren; Salamov, Asaf; Savidor, Alon; Sharma, Rahul; Stam, Remco; Sotrey, Dylan; Thines, Marco; Win, Joe; Haas, Brian J.; Dinwiddie, Darrell L.; Jenkins, Jerry; Knight, James R.; Affourtit, Jason P.; Han, Cliff S.; Chertkov, Olga; Lindquist, Erika A.; Detter, Chris; Grigoriev, Igor V.; Kamoun, Sophien; Kingsmore, Stephen F.

    2012-02-07

    The oomycete vegetable pathogen Phytophthora capsici has shown remarkable adaptation to fungicides and new hosts. Like other members of this destructive genus, P. capsici has an explosive epidemiology, rapidly producing massive numbers of asexual spores on infected hosts. In addition, P. capsici can remain dormant for years as sexually recombined oospores, making it difficult to produce crops at infested sites, and allowing outcrossing populations to maintain significant genetic variation. Genome sequencing, development of a high-density genetic map, and integrative genomic or genetic characterization of P. capsici field isolates and intercross progeny revealed significant mitotic loss of heterozygosity (LOH) in diverse isolates. LOH was detected in clonally propagated field isolates and sexual progeny, cumulatively affecting >30percent of the genome. LOH altered genotypes for more than 11,000 single-nucleotide variant sites and showed a strong association with changes in mating type and pathogenicity. Overall, it appears that LOH may provide a rapid mechanism for fixing alleles and may be an important component of adaptability for P. capsici.

  17. Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici.

    PubMed

    Lamour, Kurt H; Mudge, Joann; Gobena, Daniel; Hurtado-Gonzales, Oscar P; Schmutz, Jeremy; Kuo, Alan; Miller, Neil A; Rice, Brandon J; Raffaele, Sylvain; Cano, Liliana M; Bharti, Arvind K; Donahoo, Ryan S; Finley, Sabra; Huitema, Edgar; Hulvey, Jon; Platt, Darren; Salamov, Asaf; Savidor, Alon; Sharma, Rahul; Stam, Remco; Storey, Dylan; Thines, Marco; Win, Joe; Haas, Brian J; Dinwiddie, Darrell L; Jenkins, Jerry; Knight, James R; Affourtit, Jason P; Han, Cliff S; Chertkov, Olga; Lindquist, Erika A; Detter, Chris; Grigoriev, Igor V; Kamoun, Sophien; Kingsmore, Stephen F

    2012-10-01

    The oomycete vegetable pathogen Phytophthora capsici has shown remarkable adaptation to fungicides and new hosts. Like other members of this destructive genus, P. capsici has an explosive epidemiology, rapidly producing massive numbers of asexual spores on infected hosts. In addition, P. capsici can remain dormant for years as sexually recombined oospores, making it difficult to produce crops at infested sites, and allowing outcrossing populations to maintain significant genetic variation. Genome sequencing, development of a high-density genetic map, and integrative genomic or genetic characterization of P. capsici field isolates and intercross progeny revealed significant mitotic loss of heterozygosity (LOH) in diverse isolates. LOH was detected in clonally propagated field isolates and sexual progeny, cumulatively affecting >30% of the genome. LOH altered genotypes for more than 11,000 single-nucleotide variant sites and showed a strong association with changes in mating type and pathogenicity. Overall, it appears that LOH may provide a rapid mechanism for fixing alleles and may be an important component of adaptability for P. capsici.

  18. Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici

    PubMed Central

    Lamour, Kurt H.; Mudge, Joann; Gobena, Daniel; Hurtado-Gonzales, Oscar P.; Schmutz, Jeremy; Kuo, Alan; Miller, Neil A.; Rice, Brandon J.; Raffaele, Sylvain; Cano, Liliana M.; Bharti, Arvind K.; Donahoo, Ryan S.; Finley, Sabra; Huitema, Edgar; Hulvey, Jon; Platt, Darren; Salamov, Asaf; Savidor, Alon; Sharma, Rahul; Stam, Remco; Storey, Dylan; Thines, Marco; Win, Joe; Haas, Brian J.; Dinwiddie, Darrell L.; Jenkins, Jerry; Knight, James R.; Affourtit, Jason P.; Han, Cliff S.; Chertkov, Olga; Lindquist, Erika A.; Detter, Chris; Grigoriev, Igor V.; Kamoun, Sophien; Kingsmore, Stephen F.

    2013-01-01

    The oomycete vegetable pathogen Phytophthora capsici has shown remarkable adaptation to fungicides and new hosts. Like other members of this destructive genus, P. capsici has an explosive epidemiology, rapidly producing massive numbers of asexual spores on infected hosts. In addition, P. capsici can remain dormant for years as sexually-recombined oospores, making it difficult to produce crops at infested sites, and allowing outcrossing populations to maintain significant genetic variation. Genome sequencing, development of a high-density genetic map, and integrative genomic/genetic characterization of P. capsici field isolates and intercross progeny revealed significant mitotic loss of heterozygosity (LOH) and higher levels of SNVs than those reported for humans, plants, and P. infestans. LOH was detected in clonally propagated field isolates and sexual progeny, cumulatively affecting >30% of the genome. LOH altered genotypes for more than 11,000 single nucleotide variant (SNV) sites and showed a strong association with changes in mating type and pathogenicity. Overall, it appears that LOH may provide a rapid mechanism for fixing alleles and may be an important component of adaptability for P. capsici. PMID:22712506

  19. Genome Wide Characterization of Simple Sequence Repeats in Cucumber

    USDA-ARS?s Scientific Manuscript database

    The whole genome sequence of the cucumber cultivar Gy14 was recently sequenced at 15× coverage with the Roche 454 Titanium technology. The microsatellite DNA sequences (simple sequence repeats, SSRs) in the assembled scaffolds were computationally explored and characterized. A total of 112,073 SSRs ...

  20. Genome-wide characterization of maize miRNA genes

    USDA-ARS?s Scientific Manuscript database

    MicroRNAs (miRNAs) are small non-coding RNAs that play essential roles in plant growth and development. We conducted a genome-wide survey of maize miRNA genes, characterizing their structure, expression, and evolution. Computational approaches based on homology and secondary structure modeling ident...

  1. Genomic characterization of porcine rotaviruses in Italy.

    PubMed

    Martella, V; Pratelli, A; Greco, G; Tempesta, M; Ferrari, M; Losio, M N; Buonavoglia, C

    2001-01-01

    A total of 23 rotavirus strains isolated from pigs were analyzed. Twenty strains had been isolated from diarrheic piglets from an outbreak that occurred in northern Italy in 1983. Three strains had been isolated in 1984 from swine herds located in distinct areas of northern Italy. All 23 strains were characterized as type G6P[5] by PCR. The isolation from piglets of rotaviruses displaying typical bovine G- and P-type specificities points out the high frequency of rotavirus transmission between cattle and pigs.

  2. Integrated Field-Screening for Rapid Sediment Characterization

    DTIC Science & Technology

    2000-09-30

    control response. A scatter plot representing the IC50’ s response for both QwikSed and the sea urchin development test (percent of control) on the same...Rapid Sediment Characterization 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Space and Naval Warfare Systems Center, San Diego,4301 Pacific Hwy,San Diego

  3. Genome scan for cognitive trait loci of dyslexia: Rapid naming and rapid switching of letters, numbers, and colors.

    PubMed

    Rubenstein, Kevin B; Raskind, Wendy H; Berninger, Virginia W; Matsushita, Mark M; Wijsman, Ellen M

    2014-06-01

    Dyslexia, or specific reading disability, is a common developmental disorder that affects 5-12% of school-aged children. Dyslexia and its component phenotypes, assessed categorically or quantitatively, have complex genetic bases. The ability to rapidly name letters, numbers, and colors from rows presented visually correlates strongly with reading in multiple languages and is a valid predictor of reading and spelling impairment. Performance on measures of rapid naming and switching, RAN and RAS, is stable throughout elementary school years, with slowed performance persisting in adults who still manifest dyslexia. Targeted analyses of dyslexia candidate regions have included RAN measures, but only one other genome-wide linkage study has been reported. As part of a broad effort to identify genetic contributors to dyslexia, we performed combined oligogenic segregation and linkage analyses of measures of RAN and RAS in a family-based cohort ascertained through probands with dyslexia. We obtained strong evidence for linkage of RAN letters to the DYX3 locus on chromosome 2p and RAN colors to chromosome 10q, but were unable to confirm the chromosome 6p21 linkage detected for a composite measure of RAN colors and objects in the previous genome-wide study. © 2014 Wiley Periodicals, Inc.

  4. Genome scan for cognitive trait loci of dyslexia: rapid naming and rapid switching of letters, numbers, and colors

    PubMed Central

    Rubenstein, Kevin; Raskind, Wendy H.; Berninger, Virginia W.; Matsushita, Mark M.; Wijsman, Ellen M.

    2014-01-01

    Dyslexia, or specific reading disability, is a common developmental disorder that affects 5–12% of school-aged children. Dyslexia and its component phenotypes, assessed categorically or quantitatively, have complex genetic bases. The ability to rapidly name letters, numbers, and colors from rows presented visually correlates strongly with reading in multiple languages and is a valid predictor of reading and spelling impairment. Performance on measures of rapid naming and switching, RAN and RAS, is stable throughout elementary school years, with slowed performance persisting in adults who still manifest dyslexia. Targeted analyses of dyslexia candidate regions have included RAN measures, but only one other genome-wide linkage study has been reported. As part of a broad effort to identify genetic contributors to dyslexia, we performed combined oligogenic segregation and linkage analyses of measures of RAN and RAS in a family-based cohort ascertained through probands with dyslexia. We obtained strong evidence for linkage of RAN letters to the DYX3 locus on chromosome 2p and RAN colors to chromosome 10q, but were unable to confirm the chromosome 6p21 linkage detected for a composite measure of RAN colors and objects in the previous genome-wide study. PMID:24807833

  5. Genomic Characterization of Upper Tract Urothelial Carcinoma

    PubMed Central

    Sfakianos, John P.; Cha, Eugene K.; Iyer, Gopa; Scott, Sasinya N.; Zabor, Emily C.; Shah, Ronak H.; Ren, Qinghu; Bagrodia, Aditya; Kim, Philip H.; Hakimi, A. Ari; Ostrovnaya, Irina; Ramirez, Ricardo; Hanrahan, Aphrothiti J.; Desai, Neil B.; Sun, Arony; Pinciroli, Patrizia; Rosenberg, Jonathan E.; Dalbagni, Guido; Schultz, Nikolaus; Bajorin, Dean F.; Reuter, Victor E.; Berger, Michael F.; Bochner, Bernard H.; Al-Ahmadie, Hikmat A.; Solit, David B.; Coleman, Jonathan A.

    2015-01-01

    Background Despite a similar histologic appearance, upper tract urothelial carcinoma (UTUC) and urothelial carcinoma of the bladder (UCB) tumors have distinct epidemiologic and clinicopathologic differences. Objective To investigate whether the differences between UTUC and UCB result from intrinsic biological diversity. Design, setting, and participants Tumor and germline DNA from patients with UTUC (n = 83) and UCB (n = 102) were analyzed using a custom next-generation sequencing assay to identify somatic mutations and copy-number alterations in 300 cancer-associated genes. Outcome measurements and statistical analysis We described co-mutation patterns and copy-number alterations in UTUC. We also compared mutation frequencies in high-grade UTUC (n = 59) and high-grade UCB (n = 102). Results and limitations Comparison of high-grade UTUC and UCB revealed significant differences in the prevalence of somatic alterations. Alterations more common in high-grade UTUC included fibroblast growth factor receptor 3 (FGFR3; 35.6% vs 21.6%; p = 0.065), Harvey rat sarcoma viral oncogene homolog (HRAS; 13.6% vs 1.0%; p = 0.001), and cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) (CDKN2B; 15.3% vs 3.9%; p = 0.016). Genes less frequently mutated in high-grade UTUC included tumor protein p53 (TP53; 25.4% vs 57.8%; p < 0.001), retinoblastoma 1 (RB1; 0.0% vs 18.6%; p < 0.001), and AT rich interactive domain 1A (SWI-like) (ARID1A; 13.6% vs 27.5%; p = 0.050). Because our assay was restricted to genomic alterations in a targeted panel, rare mutations and epigenetic changes were not analyzed. Conclusions High-grade UTUC tumors display a spectrum of genetic alterations similar to high-grade UCB. However, there were significant differences in the prevalence of several recurrently mutated genes including HRAS, TP53, and RB1. As relevant targeted inhibitors are being developed and tested, these results may have important implications for the site-specific management of patients

  6. Comprehensive genomic characterization of squamous cell lung cancers.

    PubMed

    2012-09-27

    Lung squamous cell carcinoma is a common type of lung cancer, causing approximately 400,000 deaths per year worldwide. Genomic alterations in squamous cell lung cancers have not been comprehensively characterized, and no molecularly targeted agents have been specifically developed for its treatment. As part of The Cancer Genome Atlas, here we profile 178 lung squamous cell carcinomas to provide a comprehensive landscape of genomic and epigenomic alterations. We show that the tumour type is characterized by complex genomic alterations, with a mean of 360 exonic mutations, 165 genomic rearrangements, and 323 segments of copy number alteration per tumour. We find statistically recurrent mutations in 11 genes, including mutation of TP53 in nearly all specimens. Previously unreported loss-of-function mutations are seen in the HLA-A class I major histocompatibility gene. Significantly altered pathways included NFE2L2 and KEAP1 in 34%, squamous differentiation genes in 44%, phosphatidylinositol-3-OH kinase pathway genes in 47%, and CDKN2A and RB1 in 72% of tumours. We identified a potential therapeutic target in most tumours, offering new avenues of investigation for the treatment of squamous cell lung cancers.

  7. Comprehensive genomic characterization of squamous cell lung cancers

    PubMed Central

    2012-01-01

    Summary Lung squamous cell carcinoma (lung SqCC) is a common type of lung cancer, causing approximately 400,000 deaths per year worldwide. Genomic alterations in lung SqCC have not been comprehensively characterized and no molecularly targeted agents have been developed specifically for its treatment. As part of The Cancer Genome Atlas (TCGA), we profiled 178 lung SqCCs to provide a comprehensive landscape of genomic and epigenomic alterations. Lung SqCC is characterized by complex genomic alterations, with a mean of 360 exonic mutations, 165 genomic rearrangements, and 323 segments of copy number alteration per tumor. We found statistically recurrent mutations in 18 genes in including mutation of TP53 in nearly all specimens. Previously unreported loss-of-function mutations were seen in the HLA-A class I major histocompatibility gene. Significantly altered pathways included NFE2L2/KEAP1 in 34%, squamous differentiation genes in 44%, PI3K/AKT in 47%, and CDKN2A/RB1 in 72% of tumors. We identified a potential therapeutic target in the majority of tumors, offering new avenues of investigation for lung SqCC treatment. PMID:22960745

  8. TALEN or Cas9 - rapid, efficient and specific choices for genome modifications.

    PubMed

    Wei, Chuanxian; Liu, Jiyong; Yu, Zhongsheng; Zhang, Bo; Gao, Guanjun; Jiao, Renjie

    2013-06-20

    Precise modifications of complex genomes at the single nucleotide level have been one of the big goals for scientists working in basic and applied genetics, including biotechnology, drug development, gene therapy and synthetic biology. However, the relevant techniques for making these manipulations in model organisms and human cells have been lagging behind the rapid high throughput studies in the post-genomic era with a bottleneck of low efficiency, time consuming and laborious manipulation, and off-targeting problems. Recent discoveries of TALEs (transcription activator-like effectors) coding system and CRISPR (clusters of regularly interspaced short palindromic repeats) immune system in bacteria have enabled the development of customized TALENs (transcription activator-like effector nucleases) and CRISPR/Cas9 to rapidly edit genomic DNA in a variety of cell types, including human cells, and different model organisms at a very high efficiency and specificity. In this review, we first briefly summarize the development and applications of TALENs and CRISPR/Cas9-mediated genome editing technologies; compare the advantages and constraints of each method; particularly, discuss the expected applications of both techniques in the field of site-specific genome modification and stem cell based gene therapy; finally, propose the future directions and perspectives for readers to make the choices. Copyright © 2013. Published by Elsevier Ltd.

  9. Characterizing polymorphic inversions in human genomes by single-cell sequencing

    PubMed Central

    Sanders, Ashley D.; Hills, Mark; Porubský, David; Guryev, Victor; Falconer, Ester; Lansdorp, Peter M.

    2016-01-01

    Identifying genomic features that differ between individuals and cells can help uncover the functional variants that drive phenotypes and disease susceptibilities. For this, single-cell studies are paramount, as it becomes increasingly clear that the contribution of rare but functional cellular subpopulations is important for disease prognosis, management, and progression. Until now, studying these associations has been challenged by our inability to map structural rearrangements accurately and comprehensively. To overcome this, we coupled single-cell sequencing of DNA template strands (Strand-seq) with custom analysis software to rapidly discover, map, and genotype genomic rearrangements at high resolution. This allowed us to explore the distribution and frequency of inversions in a heterogeneous cell population, identify several polymorphic domains in complex regions of the genome, and locate rare alleles in the reference assembly. We then mapped the entire genomic complement of inversions within two unrelated individuals to characterize their distinct inversion profiles and built a nonredundant global reference of structural rearrangements in the human genome. The work described here provides a powerful new framework to study structural variation and genomic heterogeneity in single-cell samples, whether from individuals for population studies or tissue types for biomarker discovery. PMID:27472961

  10. Characterizing polymorphic inversions in human genomes by single-cell sequencing.

    PubMed

    Sanders, Ashley D; Hills, Mark; Porubský, David; Guryev, Victor; Falconer, Ester; Lansdorp, Peter M

    2016-11-01

    Identifying genomic features that differ between individuals and cells can help uncover the functional variants that drive phenotypes and disease susceptibilities. For this, single-cell studies are paramount, as it becomes increasingly clear that the contribution of rare but functional cellular subpopulations is important for disease prognosis, management, and progression. Until now, studying these associations has been challenged by our inability to map structural rearrangements accurately and comprehensively. To overcome this, we coupled single-cell sequencing of DNA template strands (Strand-seq) with custom analysis software to rapidly discover, map, and genotype genomic rearrangements at high resolution. This allowed us to explore the distribution and frequency of inversions in a heterogeneous cell population, identify several polymorphic domains in complex regions of the genome, and locate rare alleles in the reference assembly. We then mapped the entire genomic complement of inversions within two unrelated individuals to characterize their distinct inversion profiles and built a nonredundant global reference of structural rearrangements in the human genome. The work described here provides a powerful new framework to study structural variation and genomic heterogeneity in single-cell samples, whether from individuals for population studies or tissue types for biomarker discovery.

  11. Genomic Plasticity in Ralstonia eutropha and Ralstonia pickettii: Evidence for Rapid Genomic Change and Adaptation

    SciTech Connect

    Terence L. MArsh

    2007-06-27

    The proposed foci of our investigations were on Ralstonia eutropha and Rasltonia pickettii. We have 18 derived lineages of the former as well as their progenitor and eleven isolates of the latter. Our goal was to measure the level of plasticity in these strains and attempt to derive a mechanistic understanding of how genomic plasticity formed. Extensive attempts to reproducibly induce conformational changes in the genome of R. eutropha were unsuccessful. We thought that we had a reasonable lead on this inasmuch as we had shown that the ancestral strain along with many of the derivative lineages exhibited “temperature induced mutation and mortality akin to R. metallodurans. However we were unable to get subtractive hybridization working to the degree that it revealed differences between the lineages. During this time the R. pickettii analysis was proving quite fruitful and so we concentrated our efforts on our analyses of R. pickettii. These strains were isolated from a copper-contaminated lake sediment and were resistant to copper at 800 µg/ml (CuSO4). Our results in the investigation of R. pickettii permitted a view into the adaptation of a beta-proteobacteria to an extreme environment. Our worked revealed that within the same ecosystem two genomovars with structurally different genomes and genome sizes were present and apparently filling similar if not identical niches. The genomovars were detected with REP & BOX-PCR, pulse field gel electrophoresis, and DNA:DNA hybridizations. Moreover there were different metal resistance patterns associated with the different genomovars, one showing resistance to Zn and Cd while the other had resistance to Ni. Five of the isolates had a high-copy number extrachromosomal element that was identified as the replicative form of a filamentous phage. Mature virions were isolated from culture broth using PEG precipitation and CsCl density centrifugation. The DNA associated with the filamentous particles was single stranded and had

  12. Full Genomic Characterization of a Saffold Virus Isolated in Peru.

    PubMed

    Leguia, Mariana; Loyola, Steev; Rios, Jane; Juarez, Diana; Guevara, Carolina; Silva, Maria; Prieto, Karla; Wiley, Michael; Kasper, Matthew R; Palacios, Gustavo; Bausch, Daniel G

    2015-11-20

    While studying respiratory infections of unknown etiology we detected Saffold virus in an oropharyngeal swab collected from a two-year-old female suffering from diarrhea and respiratory illness. The full viral genome recovered by deep sequencing showed 98% identity to a previously described Saffold strain isolated in Japan. Phylogenetic analysis confirmed the Peruvian Saffold strain belongs to genotype 3 and is most closely related to strains that have circulated in Asia. This is the first documented case report of Saffold virus in Peru and the only complete genomic characterization of a Saffold-3 isolate from the Americas.

  13. Full Genomic Characterization of a Saffold Virus Isolated in Peru

    PubMed Central

    Leguia, Mariana; Loyola, Steev; Rios, Jane; Juarez, Diana; Guevara, Carolina; Silva, Maria; Prieto, Karla; Wiley, Michael; Kasper, Matthew R.; Palacios, Gustavo; Bausch, Daniel G.

    2015-01-01

    While studying respiratory infections of unknown etiology we detected Saffold virus in an oropharyngeal swab collected from a two-year-old female suffering from diarrhea and respiratory illness. The full viral genome recovered by deep sequencing showed 98% identity to a previously described Saffold strain isolated in Japan. Phylogenetic analysis confirmed the Peruvian Saffold strain belongs to genotype 3 and is most closely related to strains that have circulated in Asia. This is the first documented case report of Saffold virus in Peru and the only complete genomic characterization of a Saffold-3 isolate from the Americas. PMID:26610576

  14. Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome.

    PubMed

    Azim, M Kamran; Khan, Ishtaiq A; Zhang, Yong

    2014-05-01

    We characterized mango leaf transcriptome and chloroplast genome using next generation DNA sequencing. The RNA-seq output of mango transcriptome generated >12 million reads (total nucleotides sequenced >1 Gb). De novo transcriptome assembly generated 30,509 unigenes with lengths in the range of 300 to ≥3,000 nt and 67× depth of coverage. Blast searching against nonredundant nucleotide databases and several Viridiplantae genomic datasets annotated 24,593 mango unigenes (80% of total) and identified Citrus sinensis as closest neighbor of mango with 9,141 (37%) matched sequences. The annotation with gene ontology and Clusters of Orthologous Group terms categorized unigene sequences into 57 and 25 classes, respectively. More than 13,500 unigenes were assigned to 293 KEGG pathways. Besides major plant biology related pathways, KEGG based gene annotation pointed out active presence of an array of biochemical pathways involved in (a) biosynthesis of bioactive flavonoids, flavones and flavonols, (b) biosynthesis of terpenoids and lignins and (c) plant hormone signal transduction. The mango transcriptome sequences revealed 235 proteases belonging to five catalytic classes of proteolytic enzymes. The draft genome of mango chloroplast (cp) was obtained by a combination of Sanger and next generation sequencing. The draft mango cp genome size is 151,173 bp with a pair of inverted repeats of 27,093 bp separated by small and large single copy regions, respectively. Out of 139 genes in mango cp genome, 91 found to be protein coding. Sequence analysis revealed cp genome of C. sinensis as closest neighbor of mango. We found 51 short repeats in mango cp genome supposed to be associated with extensive rearrangements. This is the first report of transcriptome and chloroplast genome analysis of any Anacardiaceae family member.

  15. Rapid enrichment of leucocytes and genomic DNA from blood based on bifunctional core shell magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Xie, Xin; Nie, Xiaorong; Yu, Bingbin; Zhang, Xu

    2007-04-01

    A series of protocols are proposed to extract genomic DNA from whole blood at different scales using carboxyl-functionalized magnetic nanoparticles as solid-phase absorbents. The enrichment of leucocytes and the adsorption of genomic DNA can be achieved with the same carboxyl-functionalized magnetic nanoparticles. The DNA bound to the bead surfaces can be used directly as PCR templates. By coupling cell separation and DNA purification, the whole operation can be accomplished in a few minutes. Our simplified protocols proved to be rapid, low cost, and biologically and chemically non-hazardous, and are therefore promising for microfabrication of a DNA-preparation chip and routine laboratory use.

  16. Characterizations of Rapid Sintered Nanosilver Joint for Attaching Power Chips

    PubMed Central

    Feng, Shuang-Tao; Mei, Yun-Hui; Chen, Gang; Li, Xin; Lu, Guo-Quan

    2016-01-01

    Sintering of nanosilver paste has been extensively studied as a lead-free die-attach solution for bonding semiconductor power chips, such as the power insulated gated bipolar transistor (IGBT). However, for the traditional method of bonding IGBT chips, an external pressure of a few MPa is reported necessary for the sintering time of ~1 h. In order to shorten the processing duration time, we developed a rapid way to sinter nanosilver paste for bonding IGBT chips in less than 5 min using pulsed current. In this way, we firstly dried as-printed paste at about 100 °C to get rid of many volatile solvents because they may result in defects or voids during the out-gassing from the paste. Then, the pre-dried paste was further heated by pulse current ranging from 1.2 kA to 2.4 kA for several seconds. The whole procedure was less than 3 min and did not require any gas protection. We could obtain robust sintered joint with shear strength of 30–35 MPa for bonding 1200-V, 25-A IGBT and superior thermal properties. Static and dynamic electrical performance of the as-bonded IGBT assemblies was also characterized to verify the feasibility of this rapid sintering method. The results indicate that the electrical performance is comparable or even partially better than that of commercial IGBT modules. The microstructure evolution of the rapid sintered joints was also studied by scanning electron microscopy (SEM). This work may benefit the wide usage of nanosilver paste for rapid bonding IGBT chips in the future. PMID:28773686

  17. Rapid diversification of five Oryza AA genomes associated with rice adaptation.

    PubMed

    Zhang, Qun-Jie; Zhu, Ting; Xia, En-Hua; Shi, Chao; Liu, Yun-Long; Zhang, Yun; Liu, Yuan; Jiang, Wen-Kai; Zhao, You-Jie; Mao, Shu-Yan; Zhang, Li-Ping; Huang, Hui; Jiao, Jun-Ying; Xu, Ping-Zhen; Yao, Qiu-Yang; Zeng, Fan-Chun; Yang, Li-Li; Gao, Ju; Tao, Da-Yun; Wang, Yue-Ju; Bennetzen, Jeffrey L; Gao, Li-Zhi

    2014-11-18

    Comparative genomic analyses among closely related species can greatly enhance our understanding of plant gene and genome evolution. We report de novo-assembled AA-genome sequences for Oryza nivara, Oryza glaberrima, Oryza barthii, Oryza glumaepatula, and Oryza meridionalis. Our analyses reveal massive levels of genomic structural variation, including segmental duplication and rapid gene family turnover, with particularly high instability in defense-related genes. We show, on a genomic scale, how lineage-specific expansion or contraction of gene families has led to their morphological and reproductive diversification, thus enlightening the evolutionary process of speciation and adaptation. Despite strong purifying selective pressures on most Oryza genes, we documented a large number of positively selected genes, especially those genes involved in flower development, reproduction, and resistance-related processes. These diversifying genes are expected to have played key roles in adaptations to their ecological niches in Asia, South America, Africa and Australia. Extensive variation in noncoding RNA gene numbers, function enrichment, and rates of sequence divergence might also help account for the different genetic adaptations of these rice species. Collectively, these resources provide new opportunities for evolutionary genomics, numerous insights into recent speciation, a valuable database of functional variation for crop improvement, and tools for efficient conservation of wild rice germplasm.

  18. Rapid diversification of five Oryza AA genomes associated with rice adaptation

    PubMed Central

    Zhang, Qun-Jie; Zhu, Ting; Xia, En-Hua; Shi, Chao; Liu, Yun-Long; Zhang, Yun; Liu, Yuan; Jiang, Wen-Kai; Zhao, You-Jie; Mao, Shu-Yan; Zhang, Li-Ping; Huang, Hui; Jiao, Jun-Ying; Xu, Ping-Zhen; Yao, Qiu-Yang; Zeng, Fan-Chun; Yang, Li-Li; Gao, Ju; Tao, Da-Yun; Wang, Yue-Ju; Bennetzen, Jeffrey L.; Gao, Li-Zhi

    2014-01-01

    Comparative genomic analyses among closely related species can greatly enhance our understanding of plant gene and genome evolution. We report de novo-assembled AA-genome sequences for Oryza nivara, Oryza glaberrima, Oryza barthii, Oryza glumaepatula, and Oryza meridionalis. Our analyses reveal massive levels of genomic structural variation, including segmental duplication and rapid gene family turnover, with particularly high instability in defense-related genes. We show, on a genomic scale, how lineage-specific expansion or contraction of gene families has led to their morphological and reproductive diversification, thus enlightening the evolutionary process of speciation and adaptation. Despite strong purifying selective pressures on most Oryza genes, we documented a large number of positively selected genes, especially those genes involved in flower development, reproduction, and resistance-related processes. These diversifying genes are expected to have played key roles in adaptations to their ecological niches in Asia, South America, Africa and Australia. Extensive variation in noncoding RNA gene numbers, function enrichment, and rates of sequence divergence might also help account for the different genetic adaptations of these rice species. Collectively, these resources provide new opportunities for evolutionary genomics, numerous insights into recent speciation, a valuable database of functional variation for crop improvement, and tools for efficient conservation of wild rice germplasm. PMID:25368197

  19. Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma.

    PubMed

    Zheng, Siyuan; Cherniack, Andrew D; Dewal, Ninad; Moffitt, Richard A; Danilova, Ludmila; Murray, Bradley A; Lerario, Antonio M; Else, Tobias; Knijnenburg, Theo A; Ciriello, Giovanni; Kim, Seungchan; Assie, Guillaume; Morozova, Olena; Akbani, Rehan; Shih, Juliann; Hoadley, Katherine A; Choueiri, Toni K; Waldmann, Jens; Mete, Ozgur; Robertson, A Gordon; Wu, Hsin-Ta; Raphael, Benjamin J; Shao, Lina; Meyerson, Matthew; Demeure, Michael J; Beuschlein, Felix; Gill, Anthony J; Sidhu, Stan B; Almeida, Madson Q; Fragoso, Maria C B V; Cope, Leslie M; Kebebew, Electron; Habra, Mouhammed A; Whitsett, Timothy G; Bussey, Kimberly J; Rainey, William E; Asa, Sylvia L; Bertherat, Jérôme; Fassnacht, Martin; Wheeler, David A; Hammer, Gary D; Giordano, Thomas J; Verhaak, Roel G W

    2016-05-09

    We describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Comprehensive Genomic Characterization of Campylobacter Genus Reveals Some Underlying Mechanisms for its Genomic Diversification

    PubMed Central

    Zhou, Yizhuang; Bu, Lijing; Guo, Min; Zhou, Chengran; Wang, Yongdong; Chen, Liyu; Liu, Jie

    2013-01-01

    Campylobacter species.are phenotypically diverse in many aspects including host habitats and pathogenicities, which demands comprehensive characterization of the entire Campylobacter genus to study their underlying genetic diversification. Up to now, 34 Campylobacter strains have been sequenced and published in public databases, providing good opportunity to systemically analyze their genomic diversities. In this study, we first conducted genomic characterization, which includes genome-wide alignments, pan-genome analysis, and phylogenetic identification, to depict the genetic diversity of Campylobacter genus. Afterward, we improved the tetranucleotide usage pattern-based naïve Bayesian classifier to identify the abnormal composition fragments (ACFs, fragments with significantly different tetranucleotide frequency profiles from its genomic tetranucleotide frequency profiles) including horizontal gene transfers (HGTs) to explore the mechanisms for the genetic diversity of this organism. Finally, we analyzed the HGTs transferred via bacteriophage transductions. To our knowledge, this study is the first to use single nucleotide polymorphism information to construct liable microevolution phylogeny of 21 Campylobacter jejuni strains. Combined with the phylogeny of all the collected Campylobacter species based on genome-wide core gene information, comprehensive phylogenetic inference of all 34 Campylobacter organisms was determined. It was found that C. jejuni harbors a high fraction of ACFs possibly through intraspecies recombination, whereas other Campylobacter members possess numerous ACFs possibly via intragenus recombination. Furthermore, some Campylobacter strains have undergone significant ancient viral integration during their evolution process. The improved method is a powerful tool for bacterial genomic analysis. Moreover, the findings would provide useful information for future research on Campylobacter genus. PMID:23940551

  1. Genomic characterization provides new insight into Salmonella phage diversity

    PubMed Central

    2013-01-01

    Background Salmonella is a widely distributed foodborne pathogen that causes tens of millions of salmonellosis cases globally every year. While the genomic diversity of Salmonella is increasingly well studied, our knowledge of Salmonella phage genomic diversity is still rather limited, despite the contributions of both lysogenic and lytic phages to Salmonella virulence, diversity and ecology (e.g., through horizontal gene transfer and Salmonella lysis). To gain a better understanding of phage diversity in a specific ecological niche, we sequenced 22 Salmonella phages isolated from a number of dairy farms from New York State (United States) and analyzed them using a comparative genomics approach. Results Classification of the 22 phages according to the presence/absence of orthologous genes allowed for classification into 8 well supported clusters. In addition to two phage clusters that represent novel virulent Salmonella phages, we also identified four phage clusters that each contained previously characterized phages from multiple continents. Our analyses also identified two clusters of phages that carry putative virulence (e.g., adhesins) and antimicrobial resistance (tellurite and bicyclomycin) genes as well as virulent and temperate transducing phages. Insights into phage evolution from our analyses include (i) identification of DNA metabolism genes that may facilitate nucleotide synthesis in phages with a G+C % distinct from Salmonella, and (ii) evidence of Salmonella phage tailspike and fiber diversity due to both single nucleotide polymorphisms and major re-arrangements, which may affect the host specificity of Salmonella phages. Conclusions Genomics-based characterization of 22 Salmonella phages isolated from dairy farms allowed for identification of a number of novel Salmonella phages. While the comparative genomics analyses of these phages provide a number of new insights in the evolution and diversity of Salmonella phages, they only represent a first

  2. What are the genomic drivers of the rapid evolution of PRDM9?

    PubMed

    Ponting, Chris P

    2011-05-01

    Mammalian Prdm9 has been proposed to be a key determinant of the positioning of chromosome double-strand breaks during meiosis, a contributor to speciation processes, and the most rapidly evolving gene in human, and other animal, genomes. Prdm9 genes often exhibit substantial variation in their numbers of encoded zinc fingers (ZFs), not only between closely related species but also among individuals of a species. The near-identity of these ZF sequences appears to render them very unstable in copy number. The rare sequence differences, however, cluster within ZF sites that determine the DNA-binding specificity of PRDM9, and these substitutions are frequently positively selected. Here, possible drivers of the rapid evolution of Prdm9 are discussed, including selection for efficient pairing of homologous chromosomes or for recombination of deleterious linked alleles, and selection against depletion of recombination hotspots or against disease-associated genome rearrangement.

  3. Genomic characterization of two novel polyomaviruses in Brazilian insectivorous bats.

    PubMed

    de Sales Lima, Francisco Esmaile; Cibulski, Samuel Paulo; Witt, André Alberto; Franco, Ana Cláudia; Roehe, Paulo Michel

    2015-07-01

    Two novel genomes comprising ≈4.9 kb were identified by next-generation sequencing from pooled organs of Tadarida brasiliensis bats. The overall nucleotide sequence identities between the viral genomes characterized here were less than 80% in comparison to other polyomaviruses (PyVs), members of the family Polyomaviridae. The new genomes display the archetypal organization of PyVs, which includes open reading frames for the regulatory proteins small T antigen (STAg) and large T antigen (LTAg), as well as capsid proteins VP1, VP2 and VP3. In addition, an alternate ORF was identified in the early genome region that is conserved in a large monophyletic group of polyomaviruses. Phylogenetic analysis showed similar clustering with group of PyVs detected in Otomops and Chaerephon bats and some species of monkeys. In this study, the genomes of two novel PyVs were detected in bats of a single species, demonstrating that these mammals can harbor genetically diverse polyomaviruses.

  4. Genomic Characterization of Recent Chicken Anemia Virus Isolates in China

    PubMed Central

    Li, Yang; Fang, Lichun; Cui, Shuai; Fu, Jiayuan; Li, Xiaohan; Zhang, Huanmin; Cui, Zhizhong; Chang, Shuang; Shi, Weifeng; Zhao, Peng

    2017-01-01

    Chicken anemia virus (CAV) causes diseases in young chickens, which include increased pathogenicity of secondary infectious agents, generalized lymphoid depletion, and immunodepression. In the present study, we have identified 22 CAV strains isolated from several commercial chicken farms in Northern China during 2014–2015. In addition, two CAVs were also isolated from stray mouse and dog feces, respectively. To our knowledge, this is the first report of identification of CAV from mouse and dog feces. Phylogenetic analysis of 121 full-length CAV genome sequences showed that all available CAV could be classified into eight lineages, supported by phylogenetic trees estimated using different methods. Furthermore, the 24 novel CAV sequences scattered across different branches, lack of clear spatio-temporal distribution characterization. Analysis of the 450 amino acids of VP1 protein identified 33 amino acid substitutions that were specific for CAVs from northern China. Putative gene recombination events were also detected in the genomes of newly isolated CAVs. In particular, a putative recombinant event was detected in the CAV-Dog genome with high statistical support. In summary, we established a robust classification system for CAV, revealed additional genomic diversity of CAV, and therefore, warranted additional efforts to explore CAV genomics and epidemiology. PMID:28344576

  5. Rapid and reliable extraction of genomic DNA from various wild-type and transgenic plants.

    PubMed

    Kang, Tae-Jin; Yang, Moon-Sik

    2004-09-02

    DNA extraction methods for PCR-quality DNA from calluses and plants are not time efficient, since they require that the tissues be ground in liquid nitrogen, followed by precipitation of the DNA pellet in ethanol, washing and drying the pellet, etc. The need for a rapid and simple procedure is urgent, especially when hundreds of samples need to be analyzed. Here, we describe a simple and efficient method of isolating high-quality genomic DNA for PCR amplification and enzyme digestion from calluses, various wild-type and transgenic plants. We developed new rapid and reliable genomic DNA extraction method. With our developed method, plant genomic DNA extraction could be performed within 30 min. The method was as follows. Plant tissue was homogenized with salt DNA extraction buffer using hand-operated homogenizer and extracted by phenol:chloroform:isoamyl alcohol (25:24:1). After centrifugation, the supernatant was directly used for DNA template for PCR, resulting in successful amplification for RAPD from various sources of plants and specific foreign genes from transgenic plants. After precipitating the supernatant, the DNA was completely digested by restriction enzymes. This DNA extraction procedure promises simplicity, speed, and efficiency, both in terms of time and the amount of plant sample required. In addition, this method does not require expensive facilities for plant genomic DNA extraction.

  6. Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat.

    PubMed

    Wicker, Thomas; Yahiaoui, Nabila; Guyot, Romain; Schlagenhauf, Edith; Liu, Zhong-Da; Dubcovsky, Jorge; Keller, Beat

    2003-05-01

    To study genome evolution in wheat, we have sequenced and compared two large physical contigs of 285 and 142 kb covering orthologous low molecular weight (LMW) glutenin loci on chromosome 1AS of a diploid wheat species (Triticum monococcum subsp monococcum) and a tetraploid wheat species (Triticum turgidum subsp durum). Sequence conservation between the two species was restricted to small regions containing the orthologous LMW glutenin genes, whereas >90% of the compared sequences were not conserved. Dramatic sequence rearrangements occurred in the regions rich in repetitive elements. Dating of long terminal repeat retrotransposon insertions revealed different insertion events occurring during the last 5.5 million years in both species. These insertions are partially responsible for the lack of homology between the intergenic regions. In addition, the gene space was conserved only partially, because different predicted genes were identified on both contigs. Duplications and deletions of large fragments that might be attributable to illegitimate recombination also have contributed to the differentiation of this region in both species. The striking differences in the intergenic landscape between the A and A(m) genomes that diverged 1 to 3 million years ago provide evidence for a dynamic and rapid genome evolution in wheat species.

  7. Rapid characterizing of ferromagnetic materials using spin rectification

    SciTech Connect

    Fan, Xiaolong Wang, Wei; Wang, Yutian; Zhou, Hengan; Rao, Jinwei; Zhao, Xiaobing; Gao, Cunxu; Xue, Desheng; Gui, Y. S.; Hu, C.-M.

    2014-12-29

    Spin rectification is a powerful tool for dc electric detections of spin dynamics and electromagnetic waves. Technically, elaborately designed on-chip microwave devices are needed in order to realize that effect. In this letter, we propose a rapid characterizing approach based on spin rectification. By directly sending dynamic current into ferromagnetic films with stripe shape, resonant dc voltages can be detected along the longitudinal or transversal directions. As an example, Fe (010) films with precise crystalline structure and magnetic parameters were used to testify the reliability of such method. We investigated not only the dynamic parameters and the precise anisotropy constants of the Fe crystals but also the principle of spin rectification in this method.

  8. Rapid characterizing of ferromagnetic materials using spin rectification

    NASA Astrophysics Data System (ADS)

    Fan, Xiaolong; Wang, Wei; Wang, Yutian; Zhou, Hengan; Rao, Jinwei; Zhao, Xiaobing; Gao, Cunxu; Gui, Y. S.; Hu, C.-M.; Xue, Desheng

    2014-12-01

    Spin rectification is a powerful tool for dc electric detections of spin dynamics and electromagnetic waves. Technically, elaborately designed on-chip microwave devices are needed in order to realize that effect. In this letter, we propose a rapid characterizing approach based on spin rectification. By directly sending dynamic current into ferromagnetic films with stripe shape, resonant dc voltages can be detected along the longitudinal or transversal directions. As an example, Fe (010) films with precise crystalline structure and magnetic parameters were used to testify the reliability of such method. We investigated not only the dynamic parameters and the precise anisotropy constants of the Fe crystals but also the principle of spin rectification in this method.

  9. A genomic selection component analysis characterizes migration-selection balance.

    PubMed

    Monnahan, Patrick J; Colicchio, Jack; Kelly, John K

    2015-07-01

    The genetic differentiation of populations in response to local selection pressures has long been studied by evolutionary biologists, but key details about the process remain obscure. How rapidly can local adaptation evolve, how extensive is the process across the genome, and how strong are the opposing forces of natural selection and gene flow? Here, we combine direct measurement of survival and reproduction with whole-genome genotyping of a plant species (Mimulus guttatus) that has recently invaded a novel habitat (the Quarry population). We renovate the classic selection component method to accommodate genomic data and observe selection at SNPs throughout the genome. SNPs showing viability selection in Quarry exhibit elevated divergence from neighboring populations relative to neutral SNPs. We also find that nonsignificant SNPs exhibit a subtle, but still significant, change in allele frequency toward neighboring populations, a predicted effect of gene flow. Given that the Quarry population is most probably only 30-40 generations old, the alleles conferring local advantage are almost certainly older than the population itself. Thus, local adaptation owes to the recruitment of standing genetic variation.

  10. Rapid characterization of vegetation structure with a Microsoft Kinect sensor.

    PubMed

    Azzari, George; Goulden, Michael L; Rusu, Radu B

    2013-02-11

    The importance of vegetation structure and biomass in controlling land-atmosphere exchange is widely recognized, but measurements of canopy structure are challenging, time consuming, and often rely on destructive methods. The Microsoft Kinect is an infrared sensor designed for video gaming that outputs synchronized color and depth images and that has the potential to allow rapid characterization of vegetation structure. We compared depth images from a Kinect sensor with manual measurements of plant structure and size for two species growing in a California grassland. The depth images agreed well with the horizontal and vertical measurements of plant size made manually. Similarly, the plant volumes calculated with a three-dimensional convex hulls approach was well related to plant biomass. The Kinect showed some limitations for ecological observation associated with a short measurement range and daytime light contamination. Nonetheless, the Kinect's light weight, fast acquisition time, low power requirement, and cost make it a promising tool for rapid field surveys of canopy structure, especially in small-statured vegetation.

  11. Rapid Characterization of Vegetation Structure with a Microsoft Kinect Sensor

    PubMed Central

    Azzari, George; Goulden, Michael L.; Rusu, Radu B.

    2013-01-01

    The importance of vegetation structure and biomass in controlling land-atmosphere exchange is widely recognized, but measurements of canopy structure are challenging, time consuming, and often rely on destructive methods. The Microsoft Kinect is an infrared sensor designed for video gaming that outputs synchronized color and depth images and that has the potential to allow rapid characterization of vegetation structure. We compared depth images from a Kinect sensor with manual measurements of plant structure and size for two species growing in a California grassland. The depth images agreed well with the horizontal and vertical measurements of plant size made manually. Similarly, the plant volumes calculated with a three-dimensional convex hulls approach was well related to plant biomass. The Kinect showed some limitations for ecological observation associated with a short measurement range and daytime light contamination. Nonetheless, the Kinect's light weight, fast acquisition time, low power requirement, and cost make it a promising tool for rapid field surveys of canopy structure, especially in small-statured vegetation. PMID:23435053

  12. Forward Genetics by Genome Sequencing Reveals That Rapid Cyanide Release Deters Insect Herbivory of Sorghum bicolor

    PubMed Central

    Krothapalli, Kartikeya; Buescher, Elizabeth M.; Li, Xu; Brown, Elliot; Chapple, Clint; Dilkes, Brian P.; Tuinstra, Mitchell R.

    2013-01-01

    Whole genome sequencing has allowed rapid progress in the application of forward genetics in model species. In this study, we demonstrated an application of next-generation sequencing for forward genetics in a complex crop genome. We sequenced an ethyl methanesulfonate-induced mutant of Sorghum bicolor defective in hydrogen cyanide release and identified the causal mutation. A workflow identified the causal polymorphism relative to the reference BTx623 genome by integrating data from single nucleotide polymorphism identification, prior information about candidate gene(s) implicated in cyanogenesis, mutation spectra, and polymorphisms likely to affect phenotypic changes. A point mutation resulting in a premature stop codon in the coding sequence of dhurrinase2, which encodes a protein involved in the dhurrin catabolic pathway, was responsible for the acyanogenic phenotype. Cyanogenic glucosides are not cyanogenic compounds but their cyanohydrins derivatives do release cyanide. The mutant accumulated the glucoside, dhurrin, but failed to efficiently release cyanide upon tissue disruption. Thus, we tested the effects of cyanide release on insect herbivory in a genetic background in which accumulation of cyanogenic glucoside is unchanged. Insect preference choice experiments and herbivory measurements demonstrate a deterrent effect of cyanide release capacity, even in the presence of wild-type levels of cyanogenic glucoside accumulation. Our gene cloning method substantiates the value of (1) a sequenced genome, (2) a strongly penetrant and easily measurable phenotype, and (3) a workflow to pinpoint a causal mutation in crop genomes and accelerate in the discovery of gene function in the postgenomic era. PMID:23893483

  13. Rapid Detection and Characterization of Emerging Foreign Animal Disease Pathogens

    SciTech Connect

    Jaing, C.

    2016-11-18

    To best safeguard human and animal health requires early detection and characterization of disease events. This must include effective surveillance for emerging infectious diseases. Both deliberate and natural outbreaks have enormous economic and public health impacts, and can present serious threats to national security. In this project, we developed novel next generation detection technologies to protect the agricultural economy and biosecurity. The first technology is a multiplexed assay to simultaneously detection 10 swine viral and bacterial pathogens. The second one is the Lawrence Livermore Microbial Detection Array (LLMDA) which can detect more than 10,000 microbial species including 4219 viruses, 5367 bacteria, 265 fungi, 117 protozoa and 293 archaea. We analyzed a series of swine clinical samples from past disease events to demonstrate the utility of the assays for faster and cheaper detection of emerging and foreign animal disease pathogens, and their utility as s routine diagnosis and surveillance tool. A second goal of the study is to better understand mechanisms of African swine fever virus (ASFV) infection in pigs to aid the development of countermeasures and diagnostics. There is no vaccine available for ASF. ASF outbreak is on the rise on several European countries. Though ASF is not currently in the U.S., a potential outbreak in the U.S. would be detrimental to the swine industry and the US agricultural economy. We pursued a genome-wide approach to characterize the pig immune responses after ASFV infection. We used RNA sequencing and bioinformatics methods to identify genes and pathways that are affected during ASF infection. We have identified a list of most differentially expressed genes that are in the immune response pathways.

  14. Improved rapid amplification of cDNA ends (RACE) for mapping both the 5' and 3' terminal sequences of paramyxovirus genomes.

    PubMed

    Li, Zhuo; Yu, Meng; Zhang, Hong; Wang, Hai-Yan; Wang, Lin-Fa

    2005-12-01

    Rapid amplification of cDNA ends (RACE) is a powerful PCR-based technique for determination of RNA terminal sequences. However, most of the RACE methods reported in the literature are developed specifically for the mapping of eukaryotic transcripts with 3' poly-A tail and 5' cap structure. In this study, an improved RACE strategy was developed which allows both 5' and 3' RACE of paramyxovirus genomic RNA using the same set of common molecular biology reagents without having to rely on expensive RACE kits. Mapping of RNA genome terminal sequences is an essential part of characterizing novel paramyxoviruses since these sequences contain important signals for genome replication and transcription, and are important molecular markers for studying virus evolution. The usefulness of this strategy was demonstrated by rapid characterization of both genome ends for a novel paramyxovirus recently isolated from human kidney primary cells. The RACE strategy described in this paper is simple, cost-effective and can be used to map genome ends of any RNA viruses.

  15. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A

    PubMed Central

    Salzberg, Steven L; Sommer, Daniel D; Schatz, Michael C; Phillippy, Adam M; Rabinowicz, Pablo D; Tsuge, Seiji; Furutani, Ayako; Ochiai, Hirokazu; Delcher, Arthur L; Kelley, David; Madupu, Ramana; Puiu, Daniela; Radune, Diana; Shumway, Martin; Trapnell, Cole; Aparna, Gudlur; Jha, Gopaljee; Pandey, Alok; Patil, Prabhu B; Ishihara, Hiromichi; Meyer, Damien F; Szurek, Boris; Verdier, Valerie; Koebnik, Ralf; Dow, J Maxwell; Ryan, Robert P; Hirata, Hisae; Tsuyumu, Shinji; Won Lee, Sang; Ronald, Pamela C; Sonti, Ramesh V; Van Sluys, Marie-Anne; Leach, Jan E; White, Frank F; Bogdanove, Adam J

    2008-01-01

    Background Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa L.), a major disease that constrains production of this staple crop in many parts of the world. We report here on the complete genome sequence of strain PXO99A and its comparison to two previously sequenced strains, KACC10331 and MAFF311018, which are highly similar to one another. Results The PXO99A genome is a single circular chromosome of 5,240,075 bp, considerably longer than the genomes of the other strains (4,941,439 bp and 4,940,217 bp, respectively), and it contains 5083 protein-coding genes, including 87 not found in KACC10331 or MAFF311018. PXO99A contains a greater number of virulence-associated transcription activator-like effector genes and has at least ten major chromosomal rearrangements relative to KACC10331 and MAFF311018. PXO99A contains numerous copies of diverse insertion sequence elements, members of which are associated with 7 out of 10 of the major rearrangements. A rapidly-evolving CRISPR (clustered regularly interspersed short palindromic repeats) region contains evidence of dozens of phage infections unique to the PXO99A lineage. PXO99A also contains a unique, near-perfect tandem repeat of 212 kilobases close to the replication terminus. Conclusion Our results provide striking evidence of genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae. The comparisons point to sources of genomic variation and candidates for strain-specific adaptations of this pathogen that help to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated from around the world. PMID:18452608

  16. Genomic and rapid effects of aldosterone: what we know and do not know thus far.

    PubMed

    Hermidorff, Milla Marques; de Assis, Leonardo Vinícius Monteiro; Isoldi, Mauro César

    2017-01-01

    Aldosterone is the most known mineralocorticoid hormone synthesized by the adrenal cortex. The genomic pathway displayed by aldosterone is attributed to the mineralocorticoid receptor (MR) signaling. Even though the rapid effects displayed by aldosterone are long known, our knowledge regarding the receptor responsible for such event is still poor. It is intense that the debate whether the MR or another receptor-the "unknown receptor"-is the receptor responsible for the rapid effects of aldosterone. Recently, G protein-coupled estrogen receptor-1 (GPER-1) was elegantly shown to mediate some aldosterone-induced rapid effects in several tissues, a fact that strongly places GPER-1 as the unknown receptor. It has also been suggested that angiotensin receptor type 1 (AT1) also participates in the aldosterone-induced rapid effects. Despite this open question, the relevance of the beneficial effects of aldosterone is clear in the kidneys, colon, and CNS as aldosterone controls the important water reabsorption process; on the other hand, detrimental effects displayed by aldosterone have been reported in the cardiovascular system and in the kidneys. In this line, the MR antagonists are well-known drugs that display beneficial effects in patients with heart failure and hypertension; it has been proposed that MR antagonists could also play an important role in vascular disease, obesity, obesity-related hypertension, and metabolic syndrome. Taken altogether, our goal here was to (1) bring a historical perspective of both genomic and rapid effects of aldosterone in several tissues, and the receptors and signaling pathways involved in such processes; and (2) critically address the controversial points within the literature as regarding which receptor participates in the rapid pathway display by aldosterone.

  17. Genomic characterization of the Atlantic cod sex-locus

    PubMed Central

    Star, Bastiaan; Tørresen, Ole K.; Nederbragt, Alexander J.; Jakobsen, Kjetill S.; Pampoulie, Christophe; Jentoft, Sissel

    2016-01-01

    A variety of sex determination mechanisms can be observed in evolutionary divergent teleosts. Sex determination is genetic in Atlantic cod (Gadus morhua), however the genomic location or size of its sex-locus is unknown. Here, we characterize the sex-locus of Atlantic cod using whole genome sequence (WGS) data of 227 wild-caught specimens. Analyzing more than 55 million polymorphic loci, we identify 166 loci that are associated with sex. These loci are located in six distinct regions on five different linkage groups (LG) in the genome. The largest of these regions, an approximately 55 Kb region on LG11, contains the majority of genotypes that segregate closely according to a XX-XY system. Genotypes in this region can be used genetically determine sex, whereas those in the other regions are inconsistently sex-linked. The identified region on LG11 and its surrounding genes have no clear sequence homology with genes or regulatory elements associated with sex-determination or differentiation in other species. The functionality of this sex-locus therefore remains unknown. The WGS strategy used here proved adequate for detecting the small regions associated with sex in this species. Our results highlight the evolutionary flexibility in genomic architecture underlying teleost sex-determination and allow practical applications to genetically sex Atlantic cod. PMID:27499266

  18. Characterization of the flamenco region of the Drosophila melanogaster genome.

    PubMed Central

    Robert, V; Prud'homme, N; Kim, A; Bucheton, A; Pélisson, A

    2001-01-01

    The flamenco gene, located at 20A1-3 in the beta-heterochromatin of the Drosophila X chromosome, is a major regulator of the gypsy/mdg4 endogenous retrovirus. As a first step to characterize this gene, approximately 100 kb of genomic DNA flanking a P-element-induced mutation of flamenco was isolated. This DNA is located in a sequencing gap of the Celera Genomics project, i.e., one of those parts of the genome in which the "shotgun" sequence could not be assembled, probably because it contains long stretches of repetitive DNA, especially on the proximal side of the P insertion point. Deficiency mapping indicated that sequences required for the normal flamenco function are located >130 kb proximal to the insertion site. The distal part of the cloned DNA does, nevertheless, contain several unique sequences, including at least four different transcription units. Dip1, the closest one to the P-element insertion point, might be a good candidate for a gypsy regulator, since it putatively encodes a nuclear protein containing two double-stranded RNA-binding domains. However, transgenes containing dip1 genomic DNA were not able to rescue flamenco mutant flies. The possible nature of the missing flamenco sequences is discussed. PMID:11404334

  19. Characterization of the flamenco region of the Drosophila melanogaster genome.

    PubMed

    Robert, V; Prud'homme, N; Kim, A; Bucheton, A; Pélisson, A

    2001-06-01

    The flamenco gene, located at 20A1-3 in the beta-heterochromatin of the Drosophila X chromosome, is a major regulator of the gypsy/mdg4 endogenous retrovirus. As a first step to characterize this gene, approximately 100 kb of genomic DNA flanking a P-element-induced mutation of flamenco was isolated. This DNA is located in a sequencing gap of the Celera Genomics project, i.e., one of those parts of the genome in which the "shotgun" sequence could not be assembled, probably because it contains long stretches of repetitive DNA, especially on the proximal side of the P insertion point. Deficiency mapping indicated that sequences required for the normal flamenco function are located >130 kb proximal to the insertion site. The distal part of the cloned DNA does, nevertheless, contain several unique sequences, including at least four different transcription units. Dip1, the closest one to the P-element insertion point, might be a good candidate for a gypsy regulator, since it putatively encodes a nuclear protein containing two double-stranded RNA-binding domains. However, transgenes containing dip1 genomic DNA were not able to rescue flamenco mutant flies. The possible nature of the missing flamenco sequences is discussed.

  20. Characterization of genomic regulatory domains conserved across the genus Drosophila.

    PubMed

    Sahagun, Virginia; Ranz, José M

    2012-01-01

    In both vertebrates and insects, the conservation of local gene order among distantly related species (microsynteny) is higher than expected in the presence of highly conserved noncoding elements (HCNEs). Dense clusters of HCNEs, or HCNE peaks, have been proposed to mediate the regulation of sometimes distantly located genes, which are central for the developmental program of the organism. Thus, the regions encompassing HCNE peaks and their targets in different species would form genomic regulatory domains (GRDs), which should presumably enjoy an enhanced stability over evolutionary time. By leveraging genome rearrangement information from nine Drosophila species and using gene functional and phenotypic information, we performed a comprehensive characterization of the organization of microsynteny blocks harboring HCNE peaks and provide a functional portrait of the putative HCNE targets that reside therein. We found that Drosophila HCNE peaks tend to colocalize more often than expected and to be evenly distributed across chromosomal elements. Putative HCNE peak targets are characterized by a tight association with particular promoter motifs, higher incidence of severe mutant phenotypes, and evidence of a more precise regulation of gene expression during important developmental transitions. As for their physical organization, ~65% of these putative targets are separated by a median of two genes from their nearest HCNE peaks. These observations represent the first functional portrait of this euchromatic fraction of the Drosophila genome with distinctive evolutionary dynamics, which will facilitate future experimental studies on the interactions between HCNE peaks and their targets in a genetically tractable system such as Drosophila melanogaster.

  1. Genomic linkage of male song and female acoustic preference QTL underlying a rapid species radiation

    PubMed Central

    Shaw, Kerry L.; Lesnick, Sky C.

    2009-01-01

    The genetic coupling hypothesis of signal-preference evolution, whereby the same genes control male signal and female preference for that signal, was first inspired by the evolution of cricket acoustic communication nearly 50 years ago. To examine this hypothesis, we compared the genomic location of quantitative trait loci (QTL) underlying male song and female acoustic preference variation in the Hawaiian cricket genus Laupala. We document a QTL underlying female acoustic preference variation between 2 closely related species (Laupala kohalensis and Laupala paranigra). This preference QTL colocalizes with a song QTL identified previously, providing compelling evidence for a genomic linkage of the genes underlying these traits. We show that both song and preference QTL make small to moderate contributions to the behavioral difference between species, suggesting that divergence in mating behavior among Laupala species is due to the fixation of many genes of minor effect. The diversity of acoustic signaling systems in crickets exemplifies the evolution of elaborate male displays by sexual selection through female choice. Our data reveal genetic conditions that would enable functional coordination between song and acoustic preference divergence during speciation, resulting in a behaviorally coupled mode of signal-preference evolution. Interestingly, Laupala exhibits one of the fastest rates of speciation in animals, concomitant with equally rapid evolution in sexual signaling behaviors. Genomic linkage may facilitate rapid speciation by contributing to genetic correlations between sexual signaling behaviors that eventually cause sexual isolation between diverging populations. PMID:19487670

  2. Molecular characterization, genomic distribution and evolutionary dynamics of Short INterspersed Elements in the termite genome.

    PubMed

    Luchetti, Andrea; Mantovani, Barbara

    2011-02-01

    Short INterspersed Elements (SINEs) in invertebrates, and especially in animal inbred genomes such that of termites, are poorly known; in this paper we characterize three new SINE families (Talub, Taluc and Talud) through the analyses of 341 sequences, either isolated from the Reticulitermes lucifugus genome or drawn from EST Genbank collection. We further add new data to the only isopteran element known so far, Talua. These SINEs are tRNA-derived elements, with an average length ranging from 258 to 372 bp. The tails are made up by poly(A) or microsatellite motifs. Their copy number varies from 7.9 × 10(3) to 10(5) copies, well within the range observed for other metazoan genomes. Species distribution, age and target site duplication analysis indicate Talud as the oldest, possibly inactive SINE originated before the onset of Isoptera (~150 Myr ago). Taluc underwent to substantial sequence changes throughout the evolution of termites and data suggest it was silenced and then re-activated in the R. lucifugus lineage. Moreover, Taluc shares a conserved sequence block with other unrelated SINEs, as observed for some vertebrate and cephalopod elements. The study of genomic environment showed that insertions are mainly surrounded by microsatellites and other SINEs, indicating a biased accumulation within non-coding regions. The evolutionary dynamics of Talu~ elements is explained through selective mechanisms acting in an inbred genome; in this respect, the study of termites' SINEs activity may provide an interesting framework to address the (co)evolution of mobile elements and the host genome.

  3. Sequenced genomes and rapidly emerging technologies pave the way for conifer evolutionary developmental biology

    PubMed Central

    Uddenberg, Daniel; Akhter, Shirin; Ramachandran, Prashanth; Sundström, Jens F.; Carlsbecker, Annelie

    2015-01-01

    Conifers, Ginkgo, cycads and gnetophytes comprise the four groups of extant gymnosperms holding a unique position of sharing common ancestry with the angiosperms. Comparative studies of gymnosperms and angiosperms are the key to a better understanding of ancient seed plant morphologies, how they have shifted over evolution to shape modern day species, and how the genes governing these morphologies have evolved. However, conifers and other gymnosperms have been notoriously difficult to study due to their long generation times, inaccessibility to genetic experimentation and unavailable genome sequences. Now, with three draft genomes from spruces and pines, rapid advances in next generation sequencing methods for genome wide expression analyses, and enhanced methods for genetic transformation, we are much better equipped to address a number of key evolutionary questions relating to seed plant evolution. In this mini-review we highlight recent progress in conifer developmental biology relevant to evo-devo questions. We discuss how genome sequence data and novel techniques might allow us to explore genetic variation and naturally occurring conifer mutants, approaches to reduce long generation times to allow for genetic studies in conifers, and other potential upcoming research avenues utilizing current and emergent techniques. Results from developmental studies of conifers and other gymnosperms in comparison to those in angiosperms will provide information to trace core molecular developmental control tool kits of ancestral seed plants, but foremost they will greatly improve our understanding of the biology of conifers and other gymnosperms in their own right. PMID:26579190

  4. Sequenced genomes and rapidly emerging technologies pave the way for conifer evolutionary developmental biology.

    PubMed

    Uddenberg, Daniel; Akhter, Shirin; Ramachandran, Prashanth; Sundström, Jens F; Carlsbecker, Annelie

    2015-01-01

    Conifers, Ginkgo, cycads and gnetophytes comprise the four groups of extant gymnosperms holding a unique position of sharing common ancestry with the angiosperms. Comparative studies of gymnosperms and angiosperms are the key to a better understanding of ancient seed plant morphologies, how they have shifted over evolution to shape modern day species, and how the genes governing these morphologies have evolved. However, conifers and other gymnosperms have been notoriously difficult to study due to their long generation times, inaccessibility to genetic experimentation and unavailable genome sequences. Now, with three draft genomes from spruces and pines, rapid advances in next generation sequencing methods for genome wide expression analyses, and enhanced methods for genetic transformation, we are much better equipped to address a number of key evolutionary questions relating to seed plant evolution. In this mini-review we highlight recent progress in conifer developmental biology relevant to evo-devo questions. We discuss how genome sequence data and novel techniques might allow us to explore genetic variation and naturally occurring conifer mutants, approaches to reduce long generation times to allow for genetic studies in conifers, and other potential upcoming research avenues utilizing current and emergent techniques. Results from developmental studies of conifers and other gymnosperms in comparison to those in angiosperms will provide information to trace core molecular developmental control tool kits of ancestral seed plants, but foremost they will greatly improve our understanding of the biology of conifers and other gymnosperms in their own right.

  5. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.

    PubMed

    Shen, Lan; Hua, Yufeng; Fu, Yaping; Li, Jian; Liu, Qing; Jiao, Xiaozhen; Xin, Gaowei; Wang, Junjie; Wang, Xingchun; Yan, Changjie; Wang, Kejian

    2017-05-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease 9 (CRISPR/Cas9) system has emerged as a promising technology for specific genome editing in many species. Here we constructed one vector targeting eight agronomic genes in rice using the CRISPR/Cas9 multiplex genome editing system. By subsequent genetic transformation and DNA sequencing, we found that the eight target genes have high mutation efficiencies in the T0 generation. Both heterozygous and homozygous mutations of all editing genes were obtained in T0 plants. In addition, homozygous sextuple, septuple, and octuple mutants were identified. As the abundant genotypes in T0 transgenic plants, various phenotypes related to the editing genes were observed. The findings demonstrate the potential of the CRISPR/Cas9 system for rapid introduction of genetic diversity during crop breeding.

  6. Rapid determination of Escherichia coli O157:H7 lineage types and molecular subtypes by using comparative genomic fingerprinting.

    PubMed

    Laing, Chad; Pegg, Crystal; Yawney, Davis; Ziebell, Kim; Steele, Marina; Johnson, Roger; Thomas, James E; Taboada, Eduardo N; Zhang, Yongxiang; Gannon, Victor P J

    2008-11-01

    In this study, variably absent or present (VAP) regions discovered through comparative genomics experiments were targeted for the development of a rapid, PCR-based method to subtype and fingerprint Escherichia coli O157:H7. Forty-four VAP loci were analyzed for discriminatory power among 79 E. coli O157:H7 strains of 13 phage types (PT). Twenty-three loci were found to maximize resolution among strains, generating 54 separate fingerprints, each of which contained strains of unique PT. Strains from the three previously identified major E. coli O157:H7 lineages, LSPA6-LI, LSPA6-LI/II, and LSPA6-LII, formed distinct branches on a dendrogram obtained by hierarchical clustering of comparative genomic fingerprinting (CGF) data. By contrast, pulsed-field gel electrophoresis (PFGE) typing generated 52 XbaI digestion profiles that were not unique to PT and did not cluster according to O157:H7 lineage. Our analysis identified a subpopulation comprised of 25 strains from a closed herd of cattle, all of which were of PT87 and formed a cluster distinct from all other E. coli O157:H7 strains examined. CGF found five related but unique fingerprints among the highly clonal herd strains, with two dominant subtypes characterized by a shift from the presence of locus fprn33 to its absence. CGF had equal resolution to PFGE typing but with greater specificity, generating fingerprints that were unique among phenotypically related E. coli O157:H7 lineages and PT. As a comparative genomics typing method that is amenable for use in high-throughput platforms, CGF may be a valuable tool in outbreak investigations and strain characterization.

  7. Evaluating and Characterizing Ancient Whole-Genome Duplications in Plants with Gene Count Data.

    PubMed

    Tiley, George P; Ané, Cécile; Burleigh, J Gordon

    2016-04-11

    Whole-genome duplications (WGDs) have helped shape the genomes of land plants, and recent evidence suggests that the genomes of all angiosperms have experienced at least two ancient WGDs. In plants, WGDs often are followed by rapid fractionation, in which many homeologous gene copies are lost. Thus, it can be extremely difficult to identify, let alone characterize, ancient WGDs. In this study, we use a new maximum likelihood estimator to test for evidence of ancient WGDs in land plants and estimate the fraction of new genes copies that are retained following a WGD using gene count data, the number of gene copies in gene families. We identified evidence of many putative ancient WGDs in land plants and found that the genome fractionation rates vary tremendously among ancient WGDs. Analyses of WGDs within Brassicales also indicate that background gene duplication and loss rates vary across land plants, and different gene families have different probabilities of being retained following a WGD. Although our analyses are largely robust to errors in duplication and loss rates and the choice of priors, simulations indicate that this method can have trouble detecting multiple WGDs that occur on the same branch, especially when the gene retention rates for ancient WGDs are very low. They also suggest that we should carefully evaluate evidence for some ancient plant WGD hypotheses.

  8. Evaluating and Characterizing Ancient Whole-Genome Duplications in Plants with Gene Count Data

    PubMed Central

    Tiley, George P.; Ané, Cécile; Burleigh, J. Gordon

    2016-01-01

    Whole-genome duplications (WGDs) have helped shape the genomes of land plants, and recent evidence suggests that the genomes of all angiosperms have experienced at least two ancient WGDs. In plants, WGDs often are followed by rapid fractionation, in which many homeologous gene copies are lost. Thus, it can be extremely difficult to identify, let alone characterize, ancient WGDs. In this study, we use a new maximum likelihood estimator to test for evidence of ancient WGDs in land plants and estimate the fraction of new genes copies that are retained following a WGD using gene count data, the number of gene copies in gene families. We identified evidence of many putative ancient WGDs in land plants and found that the genome fractionation rates vary tremendously among ancient WGDs. Analyses of WGDs within Brassicales also indicate that background gene duplication and loss rates vary across land plants, and different gene families have different probabilities of being retained following a WGD. Although our analyses are largely robust to errors in duplication and loss rates and the choice of priors, simulations indicate that this method can have trouble detecting multiple WGDs that occur on the same branch, especially when the gene retention rates for ancient WGDs are very low. They also suggest that we should carefully evaluate evidence for some ancient plant WGD hypotheses. PMID:26988251

  9. Rapid comparative genomic analysis for clinical microbiology: the Francisella tularensis paradigm.

    PubMed

    La Scola, Bernard; Elkarkouri, Khalid; Li, Wenjun; Wahab, Tara; Fournous, Ghislain; Rolain, Jean-Marc; Biswas, Silpak; Drancourt, Michel; Robert, Catherine; Audic, Stéphane; Löfdahl, Sven; Raoult, Didier

    2008-05-01

    It is critical to avoid delays in detecting strain manipulations, such as the addition/deletion of a gene or modification of genes for increased virulence or antibiotic resistance, using genome analysis during an epidemic outbreak or a bioterrorist attack. Our objective was to evaluate the efficiency of genome analysis in such an emergency context by using contigs produced by pyrosequencing without time-consuming finishing processes and comparing them to available genomes for the same species. For this purpose, we analyzed a clinical isolate of Francisella tularensis subspecies holarctica (strain URFT1), a potential biological weapon, and compared the data obtained with available genomic sequences of other strains. The technique provided 1,800,530 bp of assembled sequences, resulting in 480 contigs. We found by comparative analysis with other strains that all the gaps but one in the genome sequence were caused by repeats. No new genes were found, but a deletion was detected that included three putative genes and part of a fourth gene. The set of 35 candidate LVS virulence attenuation genes was identified, as well as a DNA gyrase mutation associated with quinolone resistance. Selection for variable sequences in URFT1 allowed the design of a strain-specific, highly effective typing system that was applied to 74 strains and six clinical specimens. The analysis presented herein may be completed within approximately 6 wk, a duration compatible with that required by an urgent context. In the bioterrorism context, it allows the rapid detection of strain manipulation, including intentionally added virulence genes and genes that support antibiotic resistance.

  10. Genomic Characterization of Large Heterochromatic Gaps in the Human Genome Assembly

    PubMed Central

    Altemose, Nicolas; Miga, Karen H.; Maggioni, Mauro; Willard, Huntington F.

    2014-01-01

    The largest gaps in the human genome assembly correspond to multi-megabase heterochromatic regions composed primarily of two related families of tandem repeats, Human Satellites 2 and 3 (HSat2,3). The abundance of repetitive DNA in these regions challenges standard mapping and assembly algorithms, and as a result, the sequence composition and potential biological functions of these regions remain largely unexplored. Furthermore, existing genomic tools designed to predict consensus-based descriptions of repeat families cannot be readily applied to complex satellite repeats such as HSat2,3, which lack a consistent repeat unit reference sequence. Here we present an alignment-free method to characterize complex satellites using whole-genome shotgun read datasets. Utilizing this approach, we classify HSat2,3 sequences into fourteen subfamilies and predict their chromosomal distributions, resulting in a comprehensive satellite reference database to further enable genomic studies of heterochromatic regions. We also identify 1.3 Mb of non-repetitive sequence interspersed with HSat2,3 across 17 unmapped assembly scaffolds, including eight annotated gene predictions. Finally, we apply our satellite reference database to high-throughput sequence data from 396 males to estimate array size variation of the predominant HSat3 array on the Y chromosome, confirming that satellite array sizes can vary between individuals over an order of magnitude (7 to 98 Mb) and further demonstrating that array sizes are distributed differently within distinct Y haplogroups. In summary, we present a novel framework for generating initial reference databases for unassembled genomic regions enriched with complex satellite DNA, and we further demonstrate the utility of these reference databases for studying patterns of sequence variation within human populations. PMID:24831296

  11. Characterization of copy number variation in genomic regions containing STR loci using array comparative genomic hybridization.

    PubMed

    Repnikova, Elena A; Rosenfeld, Jill A; Bailes, Andrea; Weber, Cecilia; Erdman, Linda; McKinney, Aimee; Ramsey, Sarah; Hashimoto, Sayaka; Lamb Thrush, Devon; Astbury, Caroline; Reshmi, Shalini C; Shaffer, Lisa G; Gastier-Foster, Julie M; Pyatt, Robert E

    2013-09-01

    Short tandem repeat (STR) loci are commonly used in forensic casework, familial analysis for human identification, and for monitoring hematopoietic cell engraftment after bone marrow transplant. Unexpected genetic variation leading to sequence and length differences in STR loci can complicate STR typing, and presents challenges in casework interpretation. Copy number variation (CNV) is a relatively recently identified form of genetic variation consisting of genomic regions present at variable copy numbers within an individual compared to a reference genome. Large scale population studies have demonstrated that likely all individuals carry multiple regions with CNV of 1kb in size or greater in their genome. To date, no study correlating genomic regions containing STR loci with CNV has been conducted. In this study, we analyzed results from 32,850 samples sent for clinical array comparative genomic hybridization (CGH) analysis for the presence of CNV at regions containing the 13 CODIS (Combined DNA Index System) STR, and the Amelogenin X (AMELX) and Amelogenin Y (AMELY) loci. Thirty-two individuals with CNV involving STR loci on chromosomes 2, 4, 7, 11, 12, 13, 16, and 21, and twelve with CNV involving the AMELX/AMELY loci were identified. These results were correlated with data from publicly available databases housing information on CNV identified in normal populations and additional clinical cases. These collective results demonstrate the presence of CNV in regions containing 9 of the 13 CODIS STR and AMELX/Y loci. Further characterization of STR profiles within regions of CNV, additional cataloging of these variants in multiple populations, and contributing such examples to the public domain will provide valuable information for reliable use of these loci.

  12. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish.

    PubMed

    Reid, Noah M; Proestou, Dina A; Clark, Bryan W; Warren, Wesley C; Colbourne, John K; Shaw, Joseph R; Karchner, Sibel I; Hahn, Mark E; Nacci, Diane; Oleksiak, Marjorie F; Crawford, Douglas L; Whitehead, Andrew

    2016-12-09

    Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl hydrocarbon receptor-based signaling pathway as a shared target of selection. This suggests evolutionary constraint on adaptive solutions to complex toxicant mixtures at each site. However, distinct molecular variants apparently contribute to adaptive pathway modification among tolerant populations. Selection also targets other toxicity-mediating genes and genes of connected signaling pathways; this indicates complex tolerance phenotypes and potentially compensatory adaptations. Molecular changes are consistent with selection on standing genetic variation. In killifish, high nucleotide diversity has likely been a crucial substrate for selective sweeps to propel rapid adaptation. Copyright © 2016, American Association for the Advancement of Science.

  13. Genomic characterization of ribitol teichoic acid synthesis in Staphylococcus aureus: genes, genomic organization and gene duplication.

    PubMed

    Qian, Ziliang; Yin, Yanbin; Zhang, Yong; Lu, Lingyi; Li, Yixue; Jiang, Ying

    2006-04-05

    Staphylococcus aureus or MRSA (Methicillin Resistant S. aureus), is an acquired pathogen and the primary cause of nosocomial infections worldwide. In S. aureus, teichoic acid is an essential component of the cell wall, and its biosynthesis is not yet well characterized. Studies in Bacillus subtilis have discovered two different pathways of teichoic acid biosynthesis, in two strains W23 and 168 respectively, namely teichoic acid ribitol (tar) and teichoic acid glycerol (tag). The genes involved in these two pathways are also characterized, tarA, tarB, tarD, tarI, tarJ, tarK, tarL for the tar pathway, and tagA, tagB, tagD, tagE, tagF for the tag pathway. With the genome sequences of several MRSA strains: Mu50, MW2, N315, MRSA252, COL as well as methicillin susceptible strain MSSA476 available, a comparative genomic analysis was performed to characterize teichoic acid biosynthesis in these S. aureus strains. We identified all S. aureus tar and tag gene orthologs in the selected S. aureus strains which would contribute to teichoic acids sythesis. Based on our identification of genes orthologous to tarI, tarJ, tarL, which are specific to tar pathway in B. subtilis W23, we also concluded that tar is the major teichoic acid biogenesis pathway in S. aureus. Further analyses indicated that the S. aureus tar genes, different from the divergon organization in B. subtilis, are organized into several clusters in cis. Most interesting, compared with genes in B. subtilis tar pathway, the S. aureus tar specific genes (tarI,J,L) are duplicated in all six S. aureus genomes. In the S. aureus strains we analyzed, tar (teichoic acid ribitol) is the main teichoic acid biogenesis pathway. The tar genes are organized into several genomic groups in cis and the genes specific to tar (relative to tag): tarI, tarJ, tarL are duplicated. The genomic organization of the S. aureus tar pathway suggests their regulations are different when compared to B. subtilis tar or tag pathway, which are

  14. A rapid noninvasive characterization of CT x-ray sources

    SciTech Connect

    Randazzo, Matt; Tambasco, Mauro

    2015-07-15

    Purpose: The aim of this study is to generate spatially varying half value layers (HVLs) that can be used to construct virtual equivalent source models of computed tomography (CT) x-ray sources for use in Monte Carlo CT dose computations. Methods: To measure the spatially varying HVLs, the authors combined a cylindrical HVL measurement technique with the characterization of bowtie filter relative attenuation (COBRA) geometry. An apparatus given the name “HVL Jig” was fabricated to accurately position a real-time dosimeter off-isocenter while surrounded by concentric cylindrical aluminum filters (CAFs). In this geometry, each projection of the rotating x-ray tube is filtered by an identical amount of high-purity (type 1100 H-14) aluminum while the stationary radiation dose probe records an air kerma rate versus time waveform. The CAFs were progressively nested to acquire exposure data at increasing filtrations to calculate the HVL. Using this dose waveform and known setup geometry, each timestamp was related to its corresponding fan angle. Data were acquired using axial CT protocols (i.e., rotating tube and stationary patient table) at energies of 80, 100, and 120 kVp on a single CT scanner. These measurements were validated against the more laborious conventional step-and-shoot approach (stationary x-ray tube). Results: At each energy, HVL data points from the COBRA-cylinder technique were fit to a trendline and compared with the conventional approach. The average relative difference in HVL between the two techniques was 1.3%. There was a systematic overestimation in HVL due to scatter contamination. Conclusions: The described method is a novel, rapid, accurate, and noninvasive approach that allows one to acquire the spatially varying fluence and HVL data using a single experimental setup in a minimum of three scans. These measurements can be used to characterize the CT beam in terms of the angle-dependent fluence and energy spectra along the bowtie filter

  15. Genomic Sequencing and Characterization of Cynomolgus Macaque Cytomegalovirus▿

    PubMed Central

    Marsh, Angie K.; Willer, David O.; Ambagala, Aruna P. N.; Dzamba, Misko; Chan, Jacqueline K.; Pilon, Richard; Fournier, Jocelyn; Sandstrom, Paul; Brudno, Michael; MacDonald, Kelly S.

    2011-01-01

    Cytomegalovirus (CMV) infection is the most common opportunistic infection in immunosuppressed individuals, such as transplant recipients or people living with HIV/AIDS, and congenital CMV is the leading viral cause of developmental disabilities in infants. Due to the highly species-specific nature of CMV, animal models that closely recapitulate human CMV (HCMV) are of growing importance for vaccine development. Here we present the genomic sequence of a novel nonhuman primate CMV from cynomolgus macaques (Macaca fascicularis; CyCMV). CyCMV (Ottawa strain) was isolated from the urine of a healthy, captive-bred, 4-year-old cynomolgus macaque of Philippine origin, and the viral genome was sequenced using next-generation Illumina sequencing to an average of 516-fold coverage. The CyCMV genome is 218,041 bp in length, with 49.5% G+C content and 84% protein-coding density. We have identified 262 putative open reading frames (ORFs) with an average coding length of 789 bp. The genomic organization of CyCMV is largely colinear with that of rhesus macaque CMV (RhCMV). Of the 262 CyCMV ORFs, 137 are homologous to HCMV genes, 243 are homologous to RhCMV 68.1, and 200 are homologous to RhCMV 180.92. CyCMV encodes four ORFs that are not present in RhCMV strain 68.1 or 180.92 but have homologies with HCMV (UL30, UL74A, UL126, and UL146). Similar to HCMV, CyCMV does not produce the RhCMV-specific viral homologue of cyclooxygenase-2. This newly characterized CMV may provide a novel model in which to study CMV biology and HCMV vaccine development. PMID:21994460

  16. Genomic and phenotypic characterization of the species Acinetobacter venetianus.

    PubMed

    Fondi, Marco; Maida, Isabel; Perrin, Elena; Orlandini, Valerio; La Torre, Laura; Bosi, Emanuele; Negroni, Andrea; Zanaroli, Giulio; Fava, Fabio; Decorosi, Francesca; Giovannetti, Luciana; Viti, Carlo; Vaneechoutte, Mario; Dijkshoorn, Lenie; Fani, Renato

    2016-02-23

    Crude oil is a complex mixture of hydrocarbons and other organic compounds that can produce serious environmental problems and whose removal is highly demanding in terms of human and technological resources. The potential use of microbes as bioremediation agents is one of the most promising fields in this area. Members of the species Acinetobacter venetianus have been previously characterized for their capability to degrade n-alkanes and thus may represent interesting model systems to implement this process. Although a preliminary experimental characterization of the overall hydrocarbon degradation capability has been performed for five of them, to date, the genetic/genomic features underlying such molecular processes have not been identified. Here we have integrated genomic and phenotypic information for six A. venetianus strains, i.e. VE-C3, RAG-1(T), LUH 13518, LUH 7437, LUH 5627 and LUH 8758. Besides providing a thorough description of the A. venetianus species, these data were exploited to infer the genetic features (presence/absence patterns of genes) and the short-term evolutionary events possibly responsible for the variability in n-alkane degradation efficiency of these strains, including the mechanisms of interaction with the fuel droplet and the subsequent catabolism of this pollutant.

  17. Genomic and phenotypic characterization of the species Acinetobacter venetianus

    PubMed Central

    Fondi, Marco; Maida, Isabel; Perrin, Elena; Orlandini, Valerio; La Torre, Laura; Bosi, Emanuele; Negroni, Andrea; Zanaroli, Giulio; Fava, Fabio; Decorosi, Francesca; Giovannetti, Luciana; Viti, Carlo; Vaneechoutte, Mario; Dijkshoorn, Lenie; Fani, Renato

    2016-01-01

    Crude oil is a complex mixture of hydrocarbons and other organic compounds that can produce serious environmental problems and whose removal is highly demanding in terms of human and technological resources. The potential use of microbes as bioremediation agents is one of the most promising fields in this area. Members of the species Acinetobacter venetianus have been previously characterized for their capability to degrade n-alkanes and thus may represent interesting model systems to implement this process. Although a preliminary experimental characterization of the overall hydrocarbon degradation capability has been performed for five of them, to date, the genetic/genomic features underlying such molecular processes have not been identified. Here we have integrated genomic and phenotypic information for six A. venetianus strains, i.e. VE-C3, RAG-1T, LUH 13518, LUH 7437, LUH 5627 and LUH 8758. Besides providing a thorough description of the A. venetianus species, these data were exploited to infer the genetic features (presence/absence patterns of genes) and the short-term evolutionary events possibly responsible for the variability in n-alkane degradation efficiency of these strains, including the mechanisms of interaction with the fuel droplet and the subsequent catabolism of this pollutant. PMID:26902269

  18. Genomic Analysis of the Emergence and Rapid Global Dissemination of the Clonal Group 258 Klebsiella pneumoniae Pandemic.

    PubMed

    Bowers, Jolene R; Kitchel, Brandon; Driebe, Elizabeth M; MacCannell, Duncan R; Roe, Chandler; Lemmer, Darrin; de Man, Tom; Rasheed, J Kamile; Engelthaler, David M; Keim, Paul; Limbago, Brandi M

    2015-01-01

    Multidrug-resistant Klebsiella pneumoniae producing the KPC carbapenemase have rapidly spread throughout the world, causing severe healthcare-associated infections with limited antimicrobial treatment options. Dissemination of KPC-producing K. pneumoniae is largely attributed to expansion of a single dominant strain, ST258. In this study, we explore phylogenetic relationships and evolution within ST258 and its clonal group, CG258, using whole genome sequence analysis of 167 isolates from 20 countries collected over 17 years. Our results show a common ST258 ancestor emerged from its diverse parental clonal group around 1995 and likely acquired blaKPC prior to dissemination. Over the past two decades, ST258 has remained highly clonal despite diversity in accessory elements and divergence in the capsule polysaccharide synthesis locus. Apart from the large recombination event that gave rise to ST258, few mutations set it apart from its clonal group. However, one mutation occurs in a global transcription regulator. Characterization of outer membrane protein sequences revealed a profile in ST258 that includes a truncated OmpK35 and modified OmpK37. Our work illuminates potential genomic contributors to the pathogenic success of ST258, helps us better understand the global dissemination of this strain, and identifies genetic markers unique to ST258.

  19. Genome Scale Evolution of Myxoma Virus Reveals Host-Pathogen Adaptation and Rapid Geographic Spread

    PubMed Central

    Kerr, Peter J.; Rogers, Matthew B.; Fitch, Adam; DePasse, Jay V.; Cattadori, Isabella M.; Twaddle, Alan C.; Hudson, Peter J.; Tscharke, David C.; Read, Andrew F.; Holmes, Edward C.

    2013-01-01

    The evolutionary interplay between myxoma virus (MYXV) and the European rabbit (Oryctolagus cuniculus) following release of the virus in Australia in 1950 as a biological control is a classic example of host-pathogen coevolution. We present a detailed genomic and phylogeographic analysis of 30 strains of MYXV, including the Australian progenitor strain Standard Laboratory Strain (SLS), 24 Australian viruses isolated from 1951 to 1999, and three isolates from the early radiation in Britain from 1954 and 1955. We show that in Australia MYXV has spread rapidly on a spatial scale, with multiple lineages cocirculating within individual localities, and that both highly virulent and attenuated viruses were still present in the field through the 1990s. In addition, the detection of closely related virus lineages at sites 1,000 km apart suggests that MYXV moves freely in geographic space, with mosquitoes, fleas, and rabbit migration all providing means of transport. Strikingly, despite multiple introductions, all modern viruses appear to be ultimately derived from the original introductions of SLS. The rapidity of MYXV evolution was also apparent at the genomic scale, with gene duplications documented in a number of viruses. Duplication of potential virulence genes may be important in increasing the expression of virulence proteins and provides the basis for the evolution of novel functions. Mutations leading to loss of open reading frames were surprisingly frequent and in some cases may explain attenuation, but no common mutations that correlated with virulence or attenuation were identified. PMID:24067966

  20. Genome scale evolution of myxoma virus reveals host-pathogen adaptation and rapid geographic spread.

    PubMed

    Kerr, Peter J; Rogers, Matthew B; Fitch, Adam; Depasse, Jay V; Cattadori, Isabella M; Twaddle, Alan C; Hudson, Peter J; Tscharke, David C; Read, Andrew F; Holmes, Edward C; Ghedin, Elodie

    2013-12-01

    The evolutionary interplay between myxoma virus (MYXV) and the European rabbit (Oryctolagus cuniculus) following release of the virus in Australia in 1950 as a biological control is a classic example of host-pathogen coevolution. We present a detailed genomic and phylogeographic analysis of 30 strains of MYXV, including the Australian progenitor strain Standard Laboratory Strain (SLS), 24 Australian viruses isolated from 1951 to 1999, and three isolates from the early radiation in Britain from 1954 and 1955. We show that in Australia MYXV has spread rapidly on a spatial scale, with multiple lineages cocirculating within individual localities, and that both highly virulent and attenuated viruses were still present in the field through the 1990s. In addition, the detection of closely related virus lineages at sites 1,000 km apart suggests that MYXV moves freely in geographic space, with mosquitoes, fleas, and rabbit migration all providing means of transport. Strikingly, despite multiple introductions, all modern viruses appear to be ultimately derived from the original introductions of SLS. The rapidity of MYXV evolution was also apparent at the genomic scale, with gene duplications documented in a number of viruses. Duplication of potential virulence genes may be important in increasing the expression of virulence proteins and provides the basis for the evolution of novel functions. Mutations leading to loss of open reading frames were surprisingly frequent and in some cases may explain attenuation, but no common mutations that correlated with virulence or attenuation were identified.

  1. Rapid single-colony whole-genome sequencing of bacterial pathogens

    PubMed Central

    Köser, Claudio U.; Fraser, Louise J.; Ioannou, Avgousta; Becq, Jennifer; Ellington, Matthew J.; Holden, Matthew T. G.; Reuter, Sandra; Török, M. Estée; Bentley, Stephen D.; Parkhill, Julian; Gormley, Niall A.; Smith, Geoffrey P.; Peacock, Sharon J.

    2014-01-01

    Objectives As a result of the introduction of rapid benchtop sequencers, the time required to subculture a bacterial pathogen to extract sufficient DNA for library preparation can now exceed the time to sequence said DNA. We have eliminated this rate-limiting step by developing a protocol to generate DNA libraries for whole-genome sequencing directly from single bacterial colonies grown on primary culture plates. Methods We developed our protocol using single colonies of 17 bacterial pathogens responsible for severe human infection that were grown using standard diagnostic media and incubation conditions. We then applied this method to four clinical scenarios that currently require time-consuming reference laboratory tests: full identification and genotyping of salmonellae; identification of blaNDM-1, a highly transmissible carbapenemase resistance gene, in Klebsiella pneumoniae; detection of genes encoding staphylococcal toxins associated with specific disease syndromes; and monitoring of vaccine targets to detect vaccine escape in Neisseria meningitidis. Results We validated our single-colony whole-genome sequencing protocol for all 40 combinations of pathogen and selective, non-selective or indicator media tested in this study. Moreover, we demonstrated the clinical value of this method compared with current reference laboratory tests. Conclusions This advance will facilitate the implementation of whole-genome sequencing into diagnostic and public health microbiology. PMID:24370932

  2. Rapid Identification of Potential Drugs for Diabetic Nephropathy Using Whole-Genome Expression Profiles of Glomeruli

    PubMed Central

    Shi, Jingsong; Jiang, Song; Qiu, Dandan; Le, Weibo; Wang, Xiao; Lu, Yinhui; Liu, Zhihong

    2016-01-01

    Objective. To investigate potential drugs for diabetic nephropathy (DN) using whole-genome expression profiles and the Connectivity Map (CMAP). Methodology. Eighteen Chinese Han DN patients and six normal controls were included in this study. Whole-genome expression profiles of microdissected glomeruli were measured using the Affymetrix human U133 plus 2.0 chip. Differentially expressed genes (DEGs) between late stage and early stage DN samples and the CMAP database were used to identify potential drugs for DN using bioinformatics methods. Results. (1) A total of 1065 DEGs (FDR < 0.05 and fold change > 1.5) were found in late stage DN patients compared with early stage DN patients. (2) Piperlongumine, 15d-PGJ2 (15-delta prostaglandin J2), vorinostat, and trichostatin A were predicted to be the most promising potential drugs for DN, acting as NF-κB inhibitors, histone deacetylase inhibitors (HDACIs), PI3K pathway inhibitors, or PPARγ agonists, respectively. Conclusion. Using whole-genome expression profiles and the CMAP database, we rapidly predicted potential DN drugs, and therapeutic potential was confirmed by previously published studies. Animal experiments and clinical trials are needed to confirm both the safety and efficacy of these drugs in the treatment of DN. PMID:27069916

  3. Rapid detection, characterization, and enrumeration of food-borne pathogens

    USDA-ARS?s Scientific Manuscript database

    In recent years, there has been much research activity on the development of methodologies that are rapid, accurate, and ultrasensitive for detecting pathogenic microorganisms in food. Rapid methods include immunological systems such as the lateral flow assays and enzyme-linked immunosorbent assays...

  4. Whole-Genome Sequencing of Native Sheep Provides Insights into Rapid Adaptations to Extreme Environments

    PubMed Central

    Yang, Ji; Li, Wen-Rong; Lv, Feng-Hua; He, San-Gang; Tian, Shi-Lin; Peng, Wei-Feng; Sun, Ya-Wei; Zhao, Yong-Xin; Tu, Xiao-Long; Zhang, Min; Xie, Xing-Long; Wang, Yu-Tao; Li, Jin-Quan; Liu, Yong-Gang; Shen, Zhi-Qiang; Wang, Feng; Liu, Guang-Jian; Lu, Hong-Feng; Kantanen, Juha; Han, Jian-Lin; Li, Meng-Hua; Liu, Ming-Jun

    2016-01-01

    Global climate change has a significant effect on extreme environments and a profound influence on species survival. However, little is known of the genome-wide pattern of livestock adaptations to extreme environments over a short time frame following domestication. Sheep (Ovis aries) have become well adapted to a diverse range of agroecological zones, including certain extreme environments (e.g., plateaus and deserts), during their post-domestication (approximately 8–9 kya) migration and differentiation. Here, we generated whole-genome sequences from 77 native sheep, with an average effective sequencing depth of ∼5× for 75 samples and ∼42× for 2 samples. Comparative genomic analyses among sheep in contrasting environments, that is, plateau (>4,000 m above sea level) versus lowland (<100 m), high-altitude region (>1500 m) versus low-altitude region (<1300 m), desert (<10 mm average annual precipitation) versus highly humid region (>600 mm), and arid zone (<400 mm) versus humid zone (>400 mm), detected a novel set of candidate genes as well as pathways and GO categories that are putatively associated with hypoxia responses at high altitudes and water reabsorption in arid environments. In addition, candidate genes and GO terms functionally related to energy metabolism and body size variations were identified. This study offers novel insights into rapid genomic adaptations to extreme environments in sheep and other animals, and provides a valuable resource for future research on livestock breeding in response to climate change. PMID:27401233

  5. Whole-Genome Sequencing of Native Sheep Provides Insights into Rapid Adaptations to Extreme Environments.

    PubMed

    Yang, Ji; Li, Wen-Rong; Lv, Feng-Hua; He, San-Gang; Tian, Shi-Lin; Peng, Wei-Feng; Sun, Ya-Wei; Zhao, Yong-Xin; Tu, Xiao-Long; Zhang, Min; Xie, Xing-Long; Wang, Yu-Tao; Li, Jin-Quan; Liu, Yong-Gang; Shen, Zhi-Qiang; Wang, Feng; Liu, Guang-Jian; Lu, Hong-Feng; Kantanen, Juha; Han, Jian-Lin; Li, Meng-Hua; Liu, Ming-Jun

    2016-10-01

    Global climate change has a significant effect on extreme environments and a profound influence on species survival. However, little is known of the genome-wide pattern of livestock adaptations to extreme environments over a short time frame following domestication. Sheep (Ovis aries) have become well adapted to a diverse range of agroecological zones, including certain extreme environments (e.g., plateaus and deserts), during their post-domestication (approximately 8-9 kya) migration and differentiation. Here, we generated whole-genome sequences from 77 native sheep, with an average effective sequencing depth of ∼5× for 75 samples and ∼42× for 2 samples. Comparative genomic analyses among sheep in contrasting environments, that is, plateau (>4,000 m above sea level) versus lowland (<100 m), high-altitude region (>1500 m) versus low-altitude region (<1300 m), desert (<10 mm average annual precipitation) versus highly humid region (>600 mm), and arid zone (<400 mm) versus humid zone (>400 mm), detected a novel set of candidate genes as well as pathways and GO categories that are putatively associated with hypoxia responses at high altitudes and water reabsorption in arid environments. In addition, candidate genes and GO terms functionally related to energy metabolism and body size variations were identified. This study offers novel insights into rapid genomic adaptations to extreme environments in sheep and other animals, and provides a valuable resource for future research on livestock breeding in response to climate change. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Comparative genomic characterization of citrus-associated Xylella fastidiosa strains

    PubMed Central

    da Silva, Vivian S; Shida, Cláudio S; Rodrigues, Fabiana B; Ribeiro, Diógenes CD; de Souza, Alessandra A; Coletta-Filho, Helvécio D; Machado, Marcos A; Nunes, Luiz R; de Oliveira, Regina Costa

    2007-01-01

    Background The xylem-inhabiting bacterium Xylella fastidiosa (Xf) is the causal agent of Pierce's disease (PD) in vineyards and citrus variegated chlorosis (CVC) in orange trees. Both of these economically-devastating diseases are caused by distinct strains of this complex group of microorganisms, which has motivated researchers to conduct extensive genomic sequencing projects with Xf strains. This sequence information, along with other molecular tools, have been used to estimate the evolutionary history of the group and provide clues to understand the capacity of Xf to infect different hosts, causing a variety of symptoms. Nonetheless, although significant amounts of information have been generated from Xf strains, a large proportion of these efforts has concentrated on the study of North American strains, limiting our understanding about the genomic composition of South American strains – which is particularly important for CVC-associated strains. Results This paper describes the first genome-wide comparison among South American Xf strains, involving 6 distinct citrus-associated bacteria. Comparative analyses performed through a microarray-based approach allowed identification and characterization of large mobile genetic elements that seem to be exclusive to South American strains. Moreover, a large-scale sequencing effort, based on Suppressive Subtraction Hybridization (SSH), identified 290 new ORFs, distributed in 135 Groups of Orthologous Elements, throughout the genomes of these bacteria. Conclusion Results from microarray-based comparisons provide further evidence concerning activity of horizontally transferred elements, reinforcing their importance as major mediators in the evolution of Xf. Moreover, the microarray-based genomic profiles showed similarity between Xf strains 9a5c and Fb7, which is unexpected, given the geographical and chronological differences associated with the isolation of these microorganisms. The newly identified ORFs, obtained by

  7. Characterizing thermal sweeping: a rapid disc dispersal mechanism

    NASA Astrophysics Data System (ADS)

    Owen, James E.; Hudoba de Badyn, Mathias; Clarke, Cathie J.; Robins, Luke

    2013-12-01

    We consider the properties of protoplanetary discs that are undergoing inside-out clearing by photoevaporation. In particular, we aim to characterize the conditions under which a protoplanetary disc may undergo `thermal sweeping', a rapid (≲104 years) disc destruction mechanism proposed to occur when a clearing disc reaches sufficiently low surface density at its inner edge and where the disc is unstable to runaway penetration by the X-rays. We use a large suite of 1D radiation-hydrodynamic simulations to probe the observable parameter space, which is unfeasible in higher dimensions. These models allow us to determine the surface density at which thermal sweeping will take over the disc's evolution and to evaluate this critical surface density as a function of X-ray luminosity, stellar mass and inner hole radius. We find that this critical surface density scales linearly with X-ray luminosity, increases with inner hole radius and decreases with stellar mass, and we develop an analytic model that reproduces these results. This surface density criterion is then used to determine the evolutionary state of protoplanetary discs at the point that they become unstable to destruction by thermal sweeping. We find that transition discs created by photoevaporation will undergo thermal sweeping when their inner holes reach 20-40 au, implying that transition discs with large holes and no accretion (which were previously a predicted outcome of the later stages of all flavours of the photoevaporation model) will not form. Thermal sweeping thus avoids the production of large numbers of large, non-accreting holes (which are not observed) and implies that the majority of holes created by photoevaporation should still be accreting. We emphasize that the surface density criteria that we have developed apply to all situations where the disc develops an inner hole that is optically thin to X-rays. It thus applies not only to the case of holes originally created by photoevaporation but

  8. Comprehensive genomic characterization defines human glioblastoma genes and core pathways

    PubMed Central

    2008-01-01

    Human cancer cells typically harbor multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas (TCGA) pilot project aims to assess the value of large-scale multidimensional analysis of these molecular characteristics in human cancer and to provide the data rapidly to the research community. Here, we report the interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas (GBM), the most common type of adult brain cancer, and nucleotide sequence aberrations in 91 of the 206 GBMs. This analysis provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the PI3 kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered in the development of GBM. Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential clinical implications. Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer. PMID:18772890

  9. Comprehensive genomic characterization defines human glioblastoma genes and core pathways.

    PubMed

    2008-10-23

    Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas (TCGA) pilot project aims to assess the value of large-scale multi-dimensional analysis of these molecular characteristics in human cancer and to provide the data rapidly to the research community. Here we report the interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas--the most common type of adult brain cancer--and nucleotide sequence aberrations in 91 of the 206 glioblastomas. This analysis provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the phosphatidylinositol-3-OH kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered in the development of glioblastoma. Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential clinical implications. Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer.

  10. Testing techniques for mechanical characterization of rapidly solidified materials

    NASA Technical Reports Server (NTRS)

    Koch, C. C.

    1986-01-01

    Mechanical property testing techniques are reviewed for rapidly solidified materials. Mechanical testing of rapidly solidified materials is complicated by the fact that in most cases at least one dimension of the material is very small (less than 100 microns). For some geometries, i.e., powder or thin surface layers, microhardness is the only feasible mechanical test. The ribbon geometry which is obtained by the melt-spinning method, however, has been used for a variety of mechanical property measurements including elastic properties, tensile properties, fracture toughness, creep, and fatigue. These techniques are described with emphasis placed on the precautions required by the restricted geometry of rapidly solidified specimens.

  11. Genomic Characterization of the Genus Nairovirus (Family Bunyaviridae)

    PubMed Central

    Kuhn, Jens H.; Wiley, Michael R.; Rodriguez, Sergio E.; Bào, Yīmíng; Prieto, Karla; Travassos da Rosa, Amelia P. A.; Guzman, Hilda; Savji, Nazir; Ladner, Jason T.; Tesh, Robert B.; Wada, Jiro; Jahrling, Peter B.; Bente, Dennis A.; Palacios, Gustavo

    2016-01-01

    Nairovirus, one of five bunyaviral genera, includes seven species. Genomic sequence information is limited for members of the Dera Ghazi Khan, Hughes, Qalyub, Sakhalin, and Thiafora nairovirus species. We used next-generation sequencing and historical virus-culture samples to determine 14 complete and nine coding-complete nairoviral genome sequences to further characterize these species. Previously unsequenced viruses include Abu Mina, Clo Mor, Great Saltee, Hughes, Raza, Sakhalin, Soldado, and Tillamook viruses. In addition, we present genomic sequence information on additional isolates of previously sequenced Avalon, Dugbe, Sapphire II, and Zirqa viruses. Finally, we identify Tunis virus, previously thought to be a phlebovirus, as an isolate of Abu Hammad virus. Phylogenetic analyses indicate the need for reassignment of Sapphire II virus to Dera Ghazi Khan nairovirus and reassignment of Hazara, Tofla, and Nairobi sheep disease viruses to novel species. We also propose new species for the Kasokero group (Kasokero, Leopards Hill, Yogue viruses), the Ketarah group (Gossas, Issyk-kul, Keterah/soft tick viruses) and the Burana group (Wēnzhōu tick virus, Huángpí tick virus 1, Tǎchéng tick virus 1). Our analyses emphasize the sister relationship of nairoviruses and arenaviruses, and indicate that several nairo-like viruses (Shāyáng spider virus 1, Xīnzhōu spider virus, Sānxiá water strider virus 1, South Bay virus, Wǔhàn millipede virus 2) require establishment of novel genera in a larger nairovirus-arenavirus supergroup. PMID:27294949

  12. A Comprehensive Characterization of Mitochondrial Genome in Papillary Thyroid Cancer

    PubMed Central

    Su, Xingyun; Wang, Weibin; Ruan, Guodong; Liang, Min; Zheng, Jing; Chen, Ye; Wu, Huiling; Fahey, Thomas J.; Guan, Minxin; Teng, Lisong

    2016-01-01

    Nuclear genetic alterations have been widely investigated in papillary thyroid cancer (PTC), however, the characteristics of the mitochondrial genome remain uncertain. We sequenced the entire mitochondrial genome of 66 PTCs, 16 normal thyroid tissues and 376 blood samples of healthy individuals. There were 2508 variations (543 sites) detected in PTCs, among which 33 variations were novel. Nearly half of the PTCs (31/66) had heteroplasmic variations. Among the 31 PTCs, 28 specimens harbored a total of 52 somatic mutations distributed in 44 sites. Thirty-three variations including seven nonsense, 11 frameshift and 15 non-synonymous variations selected by bioinformatic software were regarded as pathogenic. These 33 pathogenic mutations were associated with older age (p = 0.0176) and advanced tumor stage (p = 0.0218). In addition, they tended to be novel (p = 0.0003), heteroplasmic (p = 0.0343) and somatic (p = 0.0018). The mtDNA copy number increased in more than two-third (46/66) of PTCs, and the average content in tumors was nearly four times higher than that in adjacent normal tissues (p < 0.0001). Three sub-haplogroups of N (A4, B4a and B4g) and eight single-nucleotide polymorphisms (mtSNPs) (A16164G, C16266T, G5460A, T6680C, G9123A, A14587G, T16362C, and G709A) were associated with the occurrence of PTC. Here we report a comprehensive characterization of the mitochondrial genome and demonstrate its significance in pathogenesis and progression of PTC. This can help to clarify the molecular mechanisms underlying PTC and offer potential biomarkers or therapeutic targets for future clinical practice. PMID:27735863

  13. A Comprehensive Characterization of Mitochondrial Genome in Papillary Thyroid Cancer.

    PubMed

    Su, Xingyun; Wang, Weibin; Ruan, Guodong; Liang, Min; Zheng, Jing; Chen, Ye; Wu, Huiling; Fahey, Thomas J; Guan, Minxin; Teng, Lisong

    2016-10-10

    Nuclear genetic alterations have been widely investigated in papillary thyroid cancer (PTC), however, the characteristics of the mitochondrial genome remain uncertain. We sequenced the entire mitochondrial genome of 66 PTCs, 16 normal thyroid tissues and 376 blood samples of healthy individuals. There were 2508 variations (543 sites) detected in PTCs, among which 33 variations were novel. Nearly half of the PTCs (31/66) had heteroplasmic variations. Among the 31 PTCs, 28 specimens harbored a total of 52 somatic mutations distributed in 44 sites. Thirty-three variations including seven nonsense, 11 frameshift and 15 non-synonymous variations selected by bioinformatic software were regarded as pathogenic. These 33 pathogenic mutations were associated with older age (p = 0.0176) and advanced tumor stage (p = 0.0218). In addition, they tended to be novel (p = 0.0003), heteroplasmic (p = 0.0343) and somatic (p = 0.0018). The mtDNA copy number increased in more than two-third (46/66) of PTCs, and the average content in tumors was nearly four times higher than that in adjacent normal tissues (p < 0.0001). Three sub-haplogroups of N (A4, B4a and B4g) and eight single-nucleotide polymorphisms (mtSNPs) (A16164G, C16266T, G5460A, T6680C, G9123A, A14587G, T16362C, and G709A) were associated with the occurrence of PTC. Here we report a comprehensive characterization of the mitochondrial genome and demonstrate its significance in pathogenesis and progression of PTC. This can help to clarify the molecular mechanisms underlying PTC and offer potential biomarkers or therapeutic targets for future clinical practice.

  14. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea.

    PubMed

    Tran, Trung D; Cao, Hieu X; Jovtchev, Gabriele; Neumann, Pavel; Novák, Petr; Fojtová, Miloslava; Vu, Giang T H; Macas, Jiří; Fajkus, Jiří; Schubert, Ingo; Fuchs, Joerg

    2015-12-01

    Linear chromosomes of eukaryotic organisms invariably possess centromeres and telomeres to ensure proper chromosome segregation during nuclear divisions and to protect the chromosome ends from deterioration and fusion, respectively. While centromeric sequences may differ between species, with arrays of tandemly repeated sequences and retrotransposons being the most abundant sequence types in plant centromeres, telomeric sequences are usually highly conserved among plants and other organisms. The genome size of the carnivorous genus Genlisea (Lentibulariaceae) is highly variable. Here we study evolutionary sequence plasticity of these chromosomal domains at an intrageneric level. We show that Genlisea nigrocaulis (1C = 86 Mbp; 2n = 40) and G. hispidula (1C = 1550 Mbp; 2n = 40) differ as to their DNA composition at centromeres and telomeres. G. nigrocaulis and its close relative G. pygmaea revealed mainly 161 bp tandem repeats, while G. hispidula and its close relative G. subglabra displayed a combination of four retroelements at centromeric positions. G. nigrocaulis and G. pygmaea chromosome ends are characterized by the Arabidopsis-type telomeric repeats (TTTAGGG); G. hispidula and G. subglabra instead revealed two intermingled sequence variants (TTCAGG and TTTCAGG). These differences in centromeric and, surprisingly, also in telomeric DNA sequences, uncovered between groups with on average a > 9-fold genome size difference, emphasize the fast genome evolution within this genus. Such intrageneric evolutionary alteration of telomeric repeats with cytosine in the guanine-rich strand, not yet known for plants, might impact the epigenetic telomere chromatin modification.

  15. Bayesian model selection for characterizing genomic imprinting effects and patterns

    PubMed Central

    Yang, Runqing; Wang, Xin; Wu, Zeyuan; Prows, Daniel R.; Lin, Min

    2010-01-01

    Motivation: Although imprinted genes have been ubiquitously observed in nature, statistical methodology still has not been systematically developed for jointly characterizing genomic imprinting effects and patterns. To detect imprinting genes influencing quantitative traits, the least square and maximum likelihood approaches for fitting a single quantitative trait loci (QTL) and Bayesian method for simultaneously modeling multiple QTLs have been adopted in various studies. Results: In a widely used F2 reciprocal mating population for mapping imprinting genes, we herein propose a genomic imprinting model which describes additive, dominance and imprinting effects of multiple imprinted quantitative trait loci (iQTL) for traits of interest. Depending upon the estimates of the above genetic effects, we categorized imprinting patterns into seven types, which provides a complete classification scheme for describing imprinting patterns. Bayesian model selection was employed to identify iQTL along with many genetic parameters in a computationally efficient manner. To make statistical inference on the imprinting types of iQTL detected, a set of Bayes factors were formulated using the posterior probabilities for the genetic effects being compared. We demonstrated the performance of the proposed method by computer simulation experiments and then applied this method to two real datasets. Our approach can be generally used to identify inheritance modes and determine the contribution of major genes for quantitative variations. Contact: annie.lin@duke.edu; runqingyang@sjtu.edu.cn PMID:19880366

  16. Toward a Cytological Characterization of the Rice Genome

    PubMed Central

    Cheng, Zhukuan; Buell, C. Robin; Wing, Rod A.; Gu, Minghong; Jiang, Jiming

    2001-01-01

    Rice (Oryza sativa L.) will be the first major crop, as well as the first monocot plant species, to be completely sequenced. Integration of DNA sequence-based maps with cytological maps will be essential to fully characterize the rice genome. We have isolated a set of 24 chromosomal arm-specific bacterial artificial chromosomes to facilitate rice chromosome identification. A standardized rice karyotype was constructed using meiotic pachytene chromosomes of O. sativa spp. japonica rice var. Nipponbare. This karyotype is anchored by centromere-specific and chromosomal arm-specific cytological landmarks and is fully integrated with the most saturated rice genetic linkage maps in which Nipponbare was used as one of the mapping parents. An ideogram depicting the distribution of heterochromatin in the rice genome was developed based on the patterns of 4',6-diamidino-2-phenylindole staining of the Nipponbare pachytene chromosomes. The majority of the heterochromatin is distributed in the pericentric regions with some rice chromosomes containing a significantly higher proportion of heterochromatin than other chromosomes. We showed that pachytene chromosome-based fluorescence in situ hybridization analysis is the most effective approach to integrate DNA sequences with euchromatic and heterochromatic features. PMID:11731505

  17. Karyotype and genome characterization in four cartilaginous fishes.

    PubMed

    Rocco, Lucia; Morescalchi, Maria A; Costagliola, Domenico; Stingo, Vincenzo

    2002-08-07

    Different approaches can be used to elucidate the unsolved questions concerning taxonomic evolution in cartilaginous fish. The study of the karyological characteristics of these vertebrates by combining molecular and traditional techniques of chromosome preparation and banding has been demonstrated to be a very effective method. In this paper we studied the localization and the composition of the constitutive heterochromatin by using C- and restriction endonuclease-banding in four selachian species, belonging to two of the four superorders. We also characterized two different types of repetitive genomic sequences in these species: satellite DNA and (TTAGGG)(n) telomeric sequences. Finally, we analysed the nuclear ribosomal gene to determine the number of the nucleolar organizers and their position on chromosomes by using silver staining, chromomycin A(3), and FISH (fluorescent in situ hybridization). The results showed a prevailingly telomeric localization of constitutive heterochromatin in the Galeomorphii, the presence of additional nucleolar organizer sites in Raja asterias, an exclusively telomeric localization of the (TTAGGG)(n) sequences in Scyliorhinus stellaris and both telomeric and interstitial in Taeniura lymma. These data, together with those concerning the conservation of the satellite DNA, seem to support the hypothesis that Chondrichthyes have an evolutionary history leading them to the acquisition of large genomes rich in highly repeated sequences and subjected to some selective pressures favoring the conservation of this DNA fraction.

  18. Genomic characterization of six novel Bacillus pumilus bacteriophages.

    PubMed

    Lorenz, Laura; Lins, Bridget; Barrett, Jonathan; Montgomery, Andrew; Trapani, Stephanie; Schindler, Anne; Christie, Gail E; Cresawn, Steven G; Temple, Louise

    2013-09-01

    Twenty-eight bacteriophages infecting the local host Bacillus pumilus BL-8 were isolated, purified, and characterized. Nine genomes were sequenced, of which six were annotated and are the first of this host submitted to the public record. The 28 phages were divided into two groups by sequence and morphological similarity, yielding 27 cluster BpA phages and 1 cluster BpB phage, which is a BL-8 prophage. Most of the BpA phages have a host range restricted to distantly related strains, B. pumilus and B. simplex, reflecting the complexities of Bacillus taxonomy. Despite isolation over wide geographic and temporal space, the six cluster BpA phages share most of their 23 functionally annotated protein features and show a high degree of sequence similarity, which is unique among phages of the Bacillus genera. This is the first report of B. pumilus phages since 1981. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Rapid microsatellite identification from illumina paired-end genomic sequencing in two birds and a snake

    USGS Publications Warehouse

    Castoe, T.A.; Poole, A.W.; de Koning, A. P. J.; Jones, K.L.; Tomback, D.F.; Oyler-McCance, S.J.; Fike, J.A.; Lance, S.L.; Streicher, J.W.; Smith, E.N.; Pollock, D.D.

    2012-01-01

    Identification of microsatellites, or simple sequence repeats (SSRs), can be a time-consuming and costly investment requiring enrichment, cloning, and sequencing of candidate loci. Recently, however, high throughput sequencing (with or without prior enrichment for specific SSR loci) has been utilized to identify SSR loci. The direct "Seq-to-SSR" approach has an advantage over enrichment-based strategies in that it does not require a priori selection of particular motifs, or prior knowledge of genomic SSR content. It has been more expensive per SSR locus recovered, however, particularly for genomes with few SSR loci, such as bird genomes. The longer but relatively more expensive 454 reads have been preferred over less expensive Illumina reads. Here, we use Illumina paired-end sequence data to identify potentially amplifiable SSR loci (PALs) from a snake (the Burmese python, Python molurus bivittatus), and directly compare these results to those from 454 data. We also compare the python results to results from Illumina sequencing of two bird genomes (Gunnison Sage-grouse, Centrocercus minimus, and Clark's Nutcracker, Nucifraga columbiana), which have considerably fewer SSRs than the python. We show that direct Illumina Seq-to-SSR can identify and characterize thousands of potentially amplifiable SSR loci for as little as $10 per sample - a fraction of the cost of 454 sequencing. Given that Illumina Seq-to-SSR is effective, inexpensive, and reliable even for species such as birds that have few SSR loci, it seems that there are now few situations for which prior hybridization is justifiable. ?? 2012 Castoe et al.

  20. Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake

    USGS Publications Warehouse

    Castoe, Todd A.; Poole, Alexander W.; de Koning, A. P. Jason; Jones, Kenneth L.; Tomback, Diana F.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Lance, Stacey L.; Streicher, Jeffrey W.; Smith, Eric N.; Pollock, David D.

    2012-01-01

    Identification of microsatellites, or simple sequence repeats (SSRs), can be a time-consuming and costly investment requiring enrichment, cloning, and sequencing of candidate loci. Recently, however, high throughput sequencing (with or without prior enrichment for specific SSR loci) has been utilized to identify SSR loci. The direct "Seq-to-SSR" approach has an advantage over enrichment-based strategies in that it does not require a priori selection of particular motifs, or prior knowledge of genomic SSR content. It has been more expensive per SSR locus recovered, however, particularly for genomes with few SSR loci, such as bird genomes. The longer but relatively more expensive 454 reads have been preferred over less expensive Illumina reads. Here, we use Illumina paired-end sequence data to identify potentially amplifiable SSR loci (PALs) from a snake (the Burmese python, Python molurus bivittatus), and directly compare these results to those from 454 data. We also compare the python results to results from Illumina sequencing of two bird genomes (Gunnison Sage-grouse, Centrocercus minimus, and Clark's Nutcracker, Nucifraga columbiana), which have considerably fewer SSRs than the python. We show that direct Illumina Seq-to-SSR can identify and characterize thousands of potentially amplifiable SSR loci for as little as $10 per sample – a fraction of the cost of 454 sequencing. Given that Illumina Seq-to-SSR is effective, inexpensive, and reliable even for species such as birds that have few SSR loci, it seems that there are now few situations for which prior hybridization is justifiable.

  1. Rapid Microsatellite Identification from Illumina Paired-End Genomic Sequencing in Two Birds and a Snake

    PubMed Central

    Castoe, Todd A.; Poole, Alexander W.; de Koning, A. P. Jason; Jones, Kenneth L.; Tomback, Diana F.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Lance, Stacey L.; Streicher, Jeffrey W.; Smith, Eric N.; Pollock, David D.

    2012-01-01

    Identification of microsatellites, or simple sequence repeats (SSRs), can be a time-consuming and costly investment requiring enrichment, cloning, and sequencing of candidate loci. Recently, however, high throughput sequencing (with or without prior enrichment for specific SSR loci) has been utilized to identify SSR loci. The direct “Seq-to-SSR” approach has an advantage over enrichment-based strategies in that it does not require a priori selection of particular motifs, or prior knowledge of genomic SSR content. It has been more expensive per SSR locus recovered, however, particularly for genomes with few SSR loci, such as bird genomes. The longer but relatively more expensive 454 reads have been preferred over less expensive Illumina reads. Here, we use Illumina paired-end sequence data to identify potentially amplifiable SSR loci (PALs) from a snake (the Burmese python, Python molurus bivittatus), and directly compare these results to those from 454 data. We also compare the python results to results from Illumina sequencing of two bird genomes (Gunnison Sage-grouse, Centrocercus minimus, and Clark's Nutcracker, Nucifraga columbiana), which have considerably fewer SSRs than the python. We show that direct Illumina Seq-to-SSR can identify and characterize thousands of potentially amplifiable SSR loci for as little as $10 per sample – a fraction of the cost of 454 sequencing. Given that Illumina Seq-to-SSR is effective, inexpensive, and reliable even for species such as birds that have few SSR loci, it seems that there are now few situations for which prior hybridization is justifiable. PMID:22348032

  2. Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake.

    PubMed

    Castoe, Todd A; Poole, Alexander W; de Koning, A P Jason; Jones, Kenneth L; Tomback, Diana F; Oyler-McCance, Sara J; Fike, Jennifer A; Lance, Stacey L; Streicher, Jeffrey W; Smith, Eric N; Pollock, David D

    2012-01-01

    Identification of microsatellites, or simple sequence repeats (SSRs), can be a time-consuming and costly investment requiring enrichment, cloning, and sequencing of candidate loci. Recently, however, high throughput sequencing (with or without prior enrichment for specific SSR loci) has been utilized to identify SSR loci. The direct "Seq-to-SSR" approach has an advantage over enrichment-based strategies in that it does not require a priori selection of particular motifs, or prior knowledge of genomic SSR content. It has been more expensive per SSR locus recovered, however, particularly for genomes with few SSR loci, such as bird genomes. The longer but relatively more expensive 454 reads have been preferred over less expensive Illumina reads. Here, we use Illumina paired-end sequence data to identify potentially amplifiable SSR loci (PALs) from a snake (the Burmese python, Python molurus bivittatus), and directly compare these results to those from 454 data. We also compare the python results to results from Illumina sequencing of two bird genomes (Gunnison Sage-grouse, Centrocercus minimus, and Clark's Nutcracker, Nucifraga columbiana), which have considerably fewer SSRs than the python. We show that direct Illumina Seq-to-SSR can identify and characterize thousands of potentially amplifiable SSR loci for as little as $10 per sample--a fraction of the cost of 454 sequencing. Given that Illumina Seq-to-SSR is effective, inexpensive, and reliable even for species such as birds that have few SSR loci, it seems that there are now few situations for which prior hybridization is justifiable.

  3. Genome-Wide Tuning of Protein Expression Levels to Rapidly Engineer Microbial Traits.

    PubMed

    Freed, Emily F; Winkler, James D; Weiss, Sophie J; Garst, Andrew D; Mutalik, Vivek K; Arkin, Adam P; Knight, Rob; Gill, Ryan T

    2015-11-20

    The reliable engineering of biological systems requires quantitative mapping of predictable and context-independent expression over a broad range of protein expression levels. However, current techniques for modifying expression levels are cumbersome and are not amenable to high-throughput approaches. Here we present major improvements to current techniques through the design and construction of E. coli genome-wide libraries using synthetic DNA cassettes that can tune expression over a ∼10(4) range. The cassettes also contain molecular barcodes that are optimized for next-generation sequencing, enabling rapid and quantitative tracking of alleles that have the highest fitness advantage. We show these libraries can be used to determine which genes and expression levels confer greater fitness to E. coli under different growth conditions.

  4. Design of Genomic Signatures of Pathogen Identification & Characterization

    SciTech Connect

    Slezak, T; Gardner, S; Allen, J; Vitalis, E; Jaing, C

    2010-02-09

    This chapter will address some of the many issues associated with the identification of signatures based on genomic DNA/RNA, which can be used to identify and characterize pathogens for biodefense and microbial forensic goals. For the purposes of this chapter, we define a signature as one or more strings of contiguous genomic DNA or RNA bases that are sufficient to identify a pathogenic target of interest at the desired resolution and which could be instantiated with particular detection chemistry on a particular platform. The target may be a whole organism, an individual functional mechanism (e.g., a toxin gene), or simply a nucleic acid indicative of the organism. The desired resolution will vary with each program's goals but could easily range from family to genus to species to strain to isolate. The resolution may not be taxonomically based but rather pan-mechanistic in nature: detecting virulence or antibiotic-resistance genes shared by multiple microbes. Entire industries exist around different detection chemistries and instrument platforms for identification of pathogens, and we will only briefly mention a few of the techniques that we have used at Lawrence Livermore National Laboratory (LLNL) to support our biosecurity-related work since 2000. Most nucleic acid based detection chemistries involve the ability to isolate and amplify the signature target region(s), combined with a technique to detect the amplification. Genomic signature based identification techniques have the advantage of being precise, highly sensitive and relatively fast in comparison to biochemical typing methods and protein signatures. Classical biochemical typing methods were developed long before knowledge of DNA and resulted in dozens of tests (Gram's stain, differential growth characteristics media, etc.) that could be used to roughly characterize the major known pathogens (of course some are uncultivable). These tests could take many days to complete and precise resolution of species

  5. A Rapid Genome-wide Gene-based Association Test with Multivariate Traits

    PubMed Central

    Basu, Saonli; Zhang, Yiwei; Ray, Debashree; Miller, Michael B.; Iacono, William G.; McGueM, Matt

    2013-01-01

    Objectives: A gene-based genome-wide association study (GWAS) provides a powerful alternative to the traditional single SNP association analysis due to its substantial reduction in the multiple testing burden and possible gain in power due to modeling multiple SNPs within a gene. A gene-based association analysis on multivariate traits is often of interest, but imposes substantial analytical as well as computational challenges to implement it at a genome-wide level. Methods: We have proposed a rapid implementation of multivariate multiple linear regression approach (RMMLR) in unrelated individuals as well as in families. Our approach allows for covariates. Moreover the asymptotic distribution of the test statistic is not heavily influenced by the linkage disequilibrium (LD) among the SNPs and hence can be used efficiently to perform a gene-based GWAS. We have developed corresponding R package to implement such multivariate gene-based GWAS with this RMMLR approach. Results: We compare through extensive simulation several approaches for both single and multivariate traits. Our RMMLR maintains correct type-I error level even for set of SNPs in strong LD. It also has substantial gain in power to detect a gene when it is associated with a subset of the traits. We have also studied their performance on Minnesota Center for Twin Family Research dataset. Conclusions: In our overall comparison, our RMMLR approach provides an efficient and powerful tool to perform a gene-based GWAS with single or multivariate traits and maintains the type I error appropriately. PMID:24247328

  6. A rapid and inexpensive one-tube genomic DNA extraction method from Agrobacterium tumefaciens.

    PubMed

    Kamble, Suresh P; Fawade, Madhukar M

    2014-04-01

    Many methods have been used to isolate genomic DNA, but some of them are time-consuming and costly, especially when extracting a large number of samples. Here we described an easy protocol using two simple solutions for DNA extraction from A. tumefaciens cells. Compared with the standard protocol, this protocol allows rapid DNA isolation with comparable yield and purity at negligible cost. Following this protocol, we have demonstrated: (1) gDNA extraction was achieved within 15 min; (2) this method was cost-effective, since it only used calcium chloride and lysozyme; SDS, phenol, chloroform and proteinase K were not necessary; (3) the method gave high yield of gDNA (130 ng/loopful culture) compared with standard protocol that was suitable for restriction analysis; (4) the protocol can be carried out in a single test tube and the cells directly from solid media can be used. Thus, this protocol offers an easy, efficient and economical way to extract genomic DNA from A. tumefaciens.

  7. Rapid construction of a whole-genome transposon insertion collection for Shewanella oneidensis by Knockout Sudoku

    PubMed Central

    Baym, Michael; Shaket, Lev; Anzai, Isao A.; Adesina, Oluwakemi; Barstow, Buz

    2016-01-01

    Whole-genome knockout collections are invaluable for connecting gene sequence to function, yet traditionally, their construction has required an extraordinary technical effort. Here we report a method for the construction and purification of a curated whole-genome collection of single-gene transposon disruption mutants termed Knockout Sudoku. Using simple combinatorial pooling, a highly oversampled collection of mutants is condensed into a next-generation sequencing library in a single day, a 30- to 100-fold improvement over prior methods. The identities of the mutants in the collection are then solved by a probabilistic algorithm that uses internal self-consistency within the sequencing data set, followed by rapid algorithmically guided condensation to a minimal representative set of mutants, validation, and curation. Starting from a progenitor collection of 39,918 mutants, we compile a quality-controlled knockout collection of the electroactive microbe Shewanella oneidensis MR-1 containing representatives for 3,667 genes that is functionally validated by high-throughput kinetic measurements of quinone reduction. PMID:27830751

  8. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins

    PubMed Central

    Croucher, Nicholas J.; Page, Andrew J.; Connor, Thomas R.; Delaney, Aidan J.; Keane, Jacqueline A.; Bentley, Stephen D.; Parkhill, Julian; Harris, Simon R.

    2015-01-01

    The emergence of new sequencing technologies has facilitated the use of bacterial whole genome alignments for evolutionary studies and outbreak analyses. These datasets, of increasing size, often include examples of multiple different mechanisms of horizontal sequence transfer resulting in substantial alterations to prokaryotic chromosomes. The impact of these processes demands rapid and flexible approaches able to account for recombination when reconstructing isolates’ recent diversification. Gubbins is an iterative algorithm that uses spatial scanning statistics to identify loci containing elevated densities of base substitutions suggestive of horizontal sequence transfer while concurrently constructing a maximum likelihood phylogeny based on the putative point mutations outside these regions of high sequence diversity. Simulations demonstrate the algorithm generates highly accurate reconstructions under realistically parameterized models of bacterial evolution, and achieves convergence in only a few hours on alignments of hundreds of bacterial genome sequences. Gubbins is appropriate for reconstructing the recent evolutionary history of a variety of haploid genotype alignments, as it makes no assumptions about the underlying mechanism of recombination. The software is freely available for download at github.com/sanger-pathogens/Gubbins, implemented in Python and C and supported on Linux and Mac OS X. PMID:25414349

  9. Rapid dissection of a complex phenotype through genomic-scale mapping of fitness altering genes.

    PubMed

    Warnecke, T E; Lynch, M D; Karimpour-Fard, A; Lipscomb, M L; Handke, P; Mills, T; Ramey, C J; Hoang, T; Gill, R T

    2010-05-01

    The understanding and engineering of complex phenotypes is a critical issue in biotechnology. Conventional approaches for engineering such phenotypes are often resource intensive, marginally effective, and unable to generate the level of biological understanding desired. Here, we report a new approach for rapidly dissecting a complex phenotype that is based upon the combination of genome-scale growth phenotype data, precisely targeted growth selections, and informatic strategies for abstracting and summarizing data onto coherent biological processes. We measured at high resolution (125 NT) and for the entire genome the effect of increased gene copy number on overall biological fitness corresponding to the expression of a complex phenotype (tolerance to 3-hydroxypropionic acid (3-HP) in Escherichia coli). Genetic level fitness data were then mapped according to various definitions of gene-gene interaction in order to generate network-level fitness data. When metabolic pathways were used to define interactions, we observed that genes within the chorismate and threonine super-pathways were disproportionately enriched throughout selections for 3-HP tolerance. Biochemical and genetic studies demonstrated that alleviation of inhibition of either of these super-pathways was sufficient to mitigate 3-HP toxicity. These data enabled the design of combinatorial modifications that almost completely offset 3-HP toxicity in minimal medium resulting in a 20 g/L and 25-fold increase in tolerance and specific growth, respectively. 2009 Elsevier Inc. All rights reserved.

  10. Optical Whole-Genome Restriction Mapping as a Tool for Rapidly Distinguishing and Identifying Bacterial Contaminants in Clinical Samples

    PubMed Central

    Baldwin, James C.

    2015-01-01

    Introduction Optical restriction genome mapping is a technology in which a genome is linearized on a surface and digested with specific restriction enzymes, giving an arrangement of the genome with gaps whose order and size are unique for a given organism. Current applications of this technology include assisting with the correct scaffolding and ordering of genomes in conjunction with whole-genome sequencing, observation of genetic drift and evolution using comparative genomics and epidemiological monitoring of the spread of infections. Here, we investigated the suitability of genome mapping for use in clinical labs as a potential diagnostic tool. Materials and Methods Using whole genome mapping, we investigated the basic performance of the technology for identifying two bacteria of interest for food-safety (Lactobacilli spp. and Enterohemorrhagic Escherichia coli). We further evaluated the performance for identifying multiple organisms from both simple and complex mixtures. Results We were able to successfully generate optical restriction maps of four Lactobacillus species as well as a strain of Enterohemorrhagic Escherichia coli from within a mixed solution, each distinguished using a common compatible restriction enzyme. Finally, we demonstrated that optical restriction maps were successfully obtained and the correct organism identified within a clinical matrix. Conclusion With additional development, whole genome mapping may be a useful clinical tool for rapid invitro diagnostics. PMID:26435946

  11. Optical Whole-Genome Restriction Mapping as a Tool for Rapidly Distinguishing and Identifying Bacterial Contaminants in Clinical Samples.

    PubMed

    Chapleau, Richard R; Baldwin, James C

    2015-08-01

    Optical restriction genome mapping is a technology in which a genome is linearized on a surface and digested with specific restriction enzymes, giving an arrangement of the genome with gaps whose order and size are unique for a given organism. Current applications of this technology include assisting with the correct scaffolding and ordering of genomes in conjunction with whole-genome sequencing, observation of genetic drift and evolution using comparative genomics and epidemiological monitoring of the spread of infections. Here, we investigated the suitability of genome mapping for use in clinical labs as a potential diagnostic tool. Using whole genome mapping, we investigated the basic performance of the technology for identifying two bacteria of interest for food-safety (Lactobacilli spp. and Enterohemorrhagic Escherichia coli). We further evaluated the performance for identifying multiple organisms from both simple and complex mixtures. We were able to successfully generate optical restriction maps of four Lactobacillus species as well as a strain of Enterohemorrhagic Escherichia coli from within a mixed solution, each distinguished using a common compatible restriction enzyme. Finally, we demonstrated that optical restriction maps were successfully obtained and the correct organism identified within a clinical matrix. With additional development, whole genome mapping may be a useful clinical tool for rapid invitro diagnostics.

  12. Genomic Characterization of Phenylalanine Ammonia Lyase Gene in Buckwheat

    PubMed Central

    Thiyagarajan, Karthikeyan; Vitali, Fabio; Tolaini, Valentina; Galeffi, Patrizia; Cantale, Cristina; Vikram, Prashant; Singh, Sukhwinder; De Rossi, Patrizia; Nobili, Chiara; Procacci, Silvia; Del Fiore, Antonella; Antonini, Alessandro; Presenti, Ombretta; Brunori, Andrea

    2016-01-01

    Phenylalanine Ammonia Lyase (PAL) gene which plays a key role in bio-synthesis of medicinally important compounds, Rutin/quercetin was sequence characterized for its efficient genomics application. These compounds possessing anti-diabetic and anti-cancer properties and are predominantly produced by Fagopyrum spp. In the present study, PAL gene was sequenced from three Fagopyrum spp. (F. tataricum, F. esculentum and F. dibotrys) and showed the presence of three SNPs and four insertion/deletions at intra and inter specific level. Among them, the potential SNP (position 949th bp G>C) with Parsimony Informative Site was selected and successfully utilised to individuate the zygosity/allelic variation of 16 F. tataricum varieties. Insertion mutations were identified in coding region, which resulted the change of a stretch of 39 amino acids on the putative protein. Our Study revealed that autogamous species (F. tataricum) has lower frequency of observed SNPs as compared to allogamous species (F. dibotrys and F. esculentum). The identified SNPs in F. tataricum didn’t result to amino acid change, while in other two species it caused both conservative and non-conservative variations. Consistent pattern of SNPs across the species revealed their phylogenetic importance. We found two groups of F. tataricum and one of them was closely related with F. dibotrys. Sequence characterization information of PAL gene reported in present investigation can be utilized in genetic improvement of buckwheat in reference to its medicinal value. PMID:26990297

  13. Cloning, characterization, and genomic structure of the mouse Ikbkap gene.

    PubMed

    Cuajungco, M P; Leyne, M; Mull, J; Gill, S P; Gusella, J F; Slaugenhaupt, S A

    2001-09-01

    Our laboratory recently reported that mutations in the human I-kappaB kinase-associated protein (IKBKAP) gene are responsible for familial dysautonomia (FD). Interestingly, amino acid substitutions in the IKAP correlate with increased risk for childhood bronchial asthma. Here, we report the cloning and genomic characterization of the mouse Ikbkap gene, the homolog of human IKBKAP. Like its human counterpart, Ikbkap encodes a protein of 1332 amino acids with a molecular weight of approximately 150 kDa. The Ikbkap gene product, Ikap, contains 37 exons that span approximately 51 kb. The protein shows 80% amino acid identity with human IKAP. It shows very high conservation across species and is homologous to the yeast Elp1/Iki3p protein, which is a member of the Elongator complex. The Ikbkap gene maps to chromosome 4 in a region that is syntenic to human chromosome 9q31.3. Because no animal model of FD currently exists, cloning of the mouse Ikbkap gene is an important first step toward creating a mouse model for FD. In addition, cloning of Ikbkap is crucial to the characterization of the putative mammalian Elongator complex.

  14. Rapid pair-wise synteny analysis of large bacterial genomes using web-based GeneOrder4.0

    PubMed Central

    2010-01-01

    Background The growing whole genome sequence databases necessitate the development of user-friendly software tools to mine these data. Web-based tools are particularly useful to wet-bench biologists as they enable platform-independent analysis of sequence data, without having to perform complex programming tasks and software compiling. Findings GeneOrder4.0 is a web-based "on-the-fly" synteny and gene order analysis tool for comparative bacterial genomics (ca. 8 Mb). It enables the visualization of synteny by plotting protein similarity scores between two genomes and it also provides visual annotation of "hypothetical" proteins from older archived genomes based on more recent annotations. Conclusions The web-based software tool GeneOrder4.0 is a user-friendly application that has been updated to allow the rapid analysis of synteny and gene order in large bacterial genomes. It is developed with the wet-bench researcher in mind. PMID:20178631

  15. Endometrial and acute myeloid leukemia cancer genomes characterized

    Cancer.gov

    Two studies from The Cancer Genome Atlas (TCGA) program reveal details about the genomic landscapes of acute myeloid leukemia (AML) and endometrial cancer. Both provide new insights into the molecular underpinnings of these cancers.

  16. Rapid detection, characterization, and enumeration of foodborne pathogens.

    PubMed

    Hoorfar, J

    2011-11-01

    As food safety management further develops, microbiological testing will continue to play an important role in assessing whether Food Safety Objectives are achieved. However, traditional microbiological culture-based methods are limited, particularly in their ability to provide timely data. The present review discusses the reasons for the increasing interest in rapid methods, current developments in the field, the research needs, and the future trends. The advent of biotechnology has introduced new technologies that led to the emergence of rapid diagnostic methods and altered food testing practices. Rapid methods are comprised of many different detection technologies, including specialized enzyme substrates, antibodies and DNA, ranging from simple differential plating media to the use of sophisticated instruments. The use of non-invasive sampling techniques for live animals especially came into focus with the 1990s outbreak of bovine spongiform encephalopathy that was linked to the human outbreak of Creutzfeldt Jakob's Disease. Serology is still an important tool in preventing foodborne pathogens to enter the human food supply through meat and milk from animals. One of the primary uses of rapid methods is for fast screening of large number of samples, where most of them are expected to be test-negative, leading to faster product release for sale. This has been the main strength of rapid methods such as real-time Polymerase Chain Reaction (PCR). Enrichment PCR, where a primary culture broth is tested in PCR, is the most common approach in rapid testing. Recent reports show that it is possible both to enrich a sample and enumerate by pathogen-specific real-time PCR, if the enrichment time is short. This can be especially useful in situations where food producers ask for the level of pathogen in a contaminated product. Another key issue is automation, where the key drivers are miniaturization and multiple testing, which mean that not only one instrument is flexible

  17. Use of Sequence-Independent, Single-Primer-Amplification (SISPA) for rapid detection, identification, and characterization of avian RNA viruses.

    PubMed

    Chrzastek, Klaudia; Lee, Dong-Hun; Smith, Diane; Sharma, Poonam; Suarez, David L; Pantin-Jackwood, Mary; Kapczynski, Darrell R

    2017-09-01

    Current technologies with next generation sequencing have revolutionized metagenomics analysis of clinical samples. To achieve the non-selective amplification and recovery of low abundance genetic sequences, a simplified Sequence-Independent, Single-Primer Amplification (SISPA) technique in combination with MiSeq platform was applied to target negative- and positive-sense single-stranded RNA viral sequences. This method allowed successful sequence assembly of full or near full length avian influenza virus (AIV), infectious bronchitis virus (IBV), and Newcastle disease virus (NDV) viral genome. Moreover, SISPA analysis applied to unknown clinical cases of mixed viral infections produced genome assemblies comprising 98% NDV and 99% of IBV genomes. Complete or near complete virus genome sequence was obtained with titers at or above 10(4.5) EID50/ml (50% embryo infectious dose), and virus identification could be detected with titers at or above 10(3) EID50/ml. Taken together, these studies demonstrate a simple template enrichment protocol for rapid detection and accurate characterization of avian RNA viruses. Published by Elsevier Inc.

  18. An integrative characterization of recurrent molecular aberrations in glioblastoma genomes.

    PubMed

    Sintupisut, Nardnisa; Liu, Pei-Ling; Yeang, Chen-Hsiang

    2013-10-01

    10 CNVs manifested strong negative and positive associations with survival times in brain tumors. By aligning the information of association modules with the established GBM subclasses based on transcription or methylation levels, we found each subclass possessed multiple concurrent molecular aberrations. Furthermore, the joint molecular characteristics derived from 16 association modules had prognostic power not explained away by the strong biomarker of CpG island methylator phenotypes. Functional and survival analyses indicated that immune/inflammatory responses and epithelial-mesenchymal transitions were among the most important determining processes of prognosis. Finally, we demonstrated that certain molecular aberrations uniquely recurred in GBM but were relatively rare in non-GBM glioma cells. These results justify the utility of an integrative analysis on cancer genomes and provide testable characterizations of driver aberration events in GBM.

  19. Genome-wide mining, characterization, and development of microsatellite markers in Marsupenaeus japonicus by genome survey sequencing

    NASA Astrophysics Data System (ADS)

    Lu, Xia; Luan, Sheng; Kong, Jie; Hu, Longyang; Mao, Yong; Zhong, Shengping

    2017-01-01

    The kuruma prawn, Marsupenaeus japonicus, is one of the most cultivated and consumed species of shrimp. However, very few molecular genetic/genomic resources are publically available for it. Thus, the characterization and distribution of simple sequence repeats (SSRs) remains ambiguous and the use of SSR markers in genomic studies and marker-assisted selection is limited. The goal of this study is to characterize and develop genome-wide SSR markers in M. japonicus by genome survey sequencing for application in comparative genomics and breeding. A total of 326 945 perfect SSRs were identified, among which dinucleotide repeats were the most frequent class (44.08%), followed by mononucleotides (29.67%), trinucleotides (18.96%), tetranucleotides (5.66%), hexanucleotides (1.07%), and pentanucleotides (0.56%). In total, 151 541 SSR loci primers were successfully designed. A subset of 30 SSR primer pairs were synthesized and tested in 42 individuals from a wild population, of which 27 loci (90.0%) were successfully amplified with specific products and 24 (80.0%) were polymorphic. For the amplified polymorphic loci, the alleles ranged from 5 to 17 (with an average of 9.63), and the average PIC value was 0.796. A total of 58 256 SSR-containing sequences had significant Gene Ontology annotation; these are good functional molecular marker candidates for association studies and comparative genomic analysis. The newly identified SSRs significantly contribute to the M. japonicus genomic resources and will facilitate a number of genetic and genomic studies, including high density linkage mapping, genome-wide association analysis, marker-aided selection, comparative genomics analysis, population genetics, and evolution.

  20. The Salmonella In Silico Typing Resource (SISTR): An Open Web-Accessible Tool for Rapidly Typing and Subtyping Draft Salmonella Genome Assemblies

    PubMed Central

    Laing, Chad R.; Lingohr, Erika J.; Gannon, Victor P. J.; Nash, John H. E.; Taboada, Eduardo N.

    2016-01-01

    For nearly 100 years serotyping has been the gold standard for the identification of Salmonella serovars. Despite the increasing adoption of DNA-based subtyping approaches, serotype information remains a cornerstone in food safety and public health activities aimed at reducing the burden of salmonellosis. At the same time, recent advances in whole-genome sequencing (WGS) promise to revolutionize our ability to perform advanced pathogen characterization in support of improved source attribution and outbreak analysis. We present the Salmonella In Silico Typing Resource (SISTR), a bioinformatics platform for rapidly performing simultaneous in silico analyses for several leading subtyping methods on draft Salmonella genome assemblies. In addition to performing serovar prediction by genoserotyping, this resource integrates sequence-based typing analyses for: Multi-Locus Sequence Typing (MLST), ribosomal MLST (rMLST), and core genome MLST (cgMLST). We show how phylogenetic context from cgMLST analysis can supplement the genoserotyping analysis and increase the accuracy of in silico serovar prediction to over 94.6% on a dataset comprised of 4,188 finished genomes and WGS draft assemblies. In addition to allowing analysis of user-uploaded whole-genome assemblies, the SISTR platform incorporates a database comprising over 4,000 publicly available genomes, allowing users to place their isolates in a broader phylogenetic and epidemiological context. The resource incorporates several metadata driven visualizations to examine the phylogenetic, geospatial and temporal distribution of genome-sequenced isolates. As sequencing of Salmonella isolates at public health laboratories around the world becomes increasingly common, rapid in silico analysis of minimally processed draft genome assemblies provides a powerful approach for molecular epidemiology in support of public health investigations. Moreover, this type of integrated analysis using multiple sequence-based methods of sub

  1. Genomic Characterization of Campylobacter jejuni Strain M1

    PubMed Central

    Friis, Carsten; Wassenaar, Trudy M.; Javed, Muhammad A.; Snipen, Lars; Lagesen, Karin; Hallin, Peter F.; Newell, Diane G.; Toszeghy, Monique; Ridley, Anne; Manning, Georgina; Ussery, David W.

    2010-01-01

    Campylobacter jejuni strain M1 (laboratory designation 99/308) is a rarely documented case of direct transmission of C. jejuni from chicken to a person, resulting in enteritis. We have sequenced the genome of C. jejuni strain M1, and compared this to 12 other C. jejuni sequenced genomes currently publicly available. Compared to these, M1 is closest to strain 81116. Based on the 13 genome sequences, we have identified the C. jejuni pan-genome, as well as the core genome, the auxiliary genes, and genes unique between strains M1 and 81116. The pan-genome contains 2,427 gene families, whilst the core genome comprised 1,295 gene families, or about two-thirds of the gene content of the average of the sequenced C. jejuni genomes. Various comparison and visualization tools were applied to the 13 C. jejuni genome sequences, including a species pan- and core genome plot, a BLAST Matrix and a BLAST Atlas. Trees based on 16S rRNA sequences and on the total gene families in each genome are presented. The findings are discussed in the background of the proven virulence potential of M1. PMID:20865039

  2. An empirical strategy for characterizing bacterial proteomes across species in the absence of genomic sequences

    SciTech Connect

    Turse, Joshua E.; Marshall, Matthew J.; Fredrickson, Jim K.; Lipton, Mary S.; Callister, Stephen J.

    2010-11-12

    Current methods in proteomics are dependent on the availability of sequenced genomes to identify proteins. However, genomic sequences are not always available for bacteria or microbial communities, even with high throughput sequencing technology becoming more readily available. Nevertheless, the homology that exists between related bacteria makes possible the extraction of meaningful biological information from an organism’s, or community’s proteome using the genomic sequence of a near neighbor. Here, a cross-organism search strategy was used to look at the amount of proteomics information obtainable with relative genetic distance from a near neighbor organism and to identify proteins in the proteome of minimally characterized environmental isolates. We conclude that closely related organisms with sequenced genomes, can be used to characterize proteomes of organisms with unsequenced genomes. In general, a cross-organism search strategy demonstrates the first step to use of sequences genomes to evaluate the proteomes of environmental bacteria and microbial communities that have no sequenced genome

  3. Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions

    PubMed Central

    2010-01-01

    Background The pan-genome of a bacterial species consists of a core and an accessory gene pool. The accessory genome is thought to be an important source of genetic variability in bacterial populations and is gained through lateral gene transfer, allowing subpopulations of bacteria to better adapt to specific niches. Low-cost and high-throughput sequencing platforms have created an exponential increase in genome sequence data and an opportunity to study the pan-genomes of many bacterial species. In this study, we describe a new online pan-genome sequence analysis program, Panseq. Results Panseq was used to identify Escherichia coli O157:H7 and E. coli K-12 genomic islands. Within a population of 60 E. coli O157:H7 strains, the existence of 65 accessory genomic regions identified by Panseq analysis was confirmed by PCR. The accessory genome and binary presence/absence data, and core genome and single nucleotide polymorphisms (SNPs) of six L. monocytogenes strains were extracted with Panseq and hierarchically clustered and visualized. The nucleotide core and binary accessory data were also used to construct maximum parsimony (MP) trees, which were compared to the MP tree generated by multi-locus sequence typing (MLST). The topology of the accessory and core trees was identical but differed from the tree produced using seven MLST loci. The Loci Selector module found the most variable and discriminatory combinations of four loci within a 100 loci set among 10 strains in 1 s, compared to the 449 s required to exhaustively search for all possible combinations; it also found the most discriminatory 20 loci from a 96 loci E. coli O157:H7 SNP dataset. Conclusion Panseq determines the core and accessory regions among a collection of genomic sequences based on user-defined parameters. It readily extracts regions unique to a genome or group of genomes, identifies SNPs within shared core genomic regions, constructs files for use in phylogeny programs based on both the presence

  4. Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions.

    PubMed

    Laing, Chad; Buchanan, Cody; Taboada, Eduardo N; Zhang, Yongxiang; Kropinski, Andrew; Villegas, Andre; Thomas, James E; Gannon, Victor P J

    2010-09-15

    The pan-genome of a bacterial species consists of a core and an accessory gene pool. The accessory genome is thought to be an important source of genetic variability in bacterial populations and is gained through lateral gene transfer, allowing subpopulations of bacteria to better adapt to specific niches. Low-cost and high-throughput sequencing platforms have created an exponential increase in genome sequence data and an opportunity to study the pan-genomes of many bacterial species. In this study, we describe a new online pan-genome sequence analysis program, Panseq. Panseq was used to identify Escherichia coli O157:H7 and E. coli K-12 genomic islands. Within a population of 60 E. coli O157:H7 strains, the existence of 65 accessory genomic regions identified by Panseq analysis was confirmed by PCR. The accessory genome and binary presence/absence data, and core genome and single nucleotide polymorphisms (SNPs) of six L. monocytogenes strains were extracted with Panseq and hierarchically clustered and visualized. The nucleotide core and binary accessory data were also used to construct maximum parsimony (MP) trees, which were compared to the MP tree generated by multi-locus sequence typing (MLST). The topology of the accessory and core trees was identical but differed from the tree produced using seven MLST loci. The Loci Selector module found the most variable and discriminatory combinations of four loci within a 100 loci set among 10 strains in 1 s, compared to the 449 s required to exhaustively search for all possible combinations; it also found the most discriminatory 20 loci from a 96 loci E. coli O157:H7 SNP dataset. Panseq determines the core and accessory regions among a collection of genomic sequences based on user-defined parameters. It readily extracts regions unique to a genome or group of genomes, identifies SNPs within shared core genomic regions, constructs files for use in phylogeny programs based on both the presence/absence of accessory regions

  5. UAS Photogrammetry for Rapid Response Characterization of Subaerial Coastal Change

    NASA Astrophysics Data System (ADS)

    Do, C.; Anarde, K.; Figlus, J.; Prouse, W.; Bedient, P. B.

    2016-12-01

    Unmanned aerial systems (UASs) provide an exciting new platform for rapid response measurement of subaerial coastal change. Here we validate the use of a coupled hobbyist UAS and optical photogrammetry framework for high-resolution mapping of portions of a low-lying barrier island along the Texas Gulf Coast. A DJI Phantom 3 Professional was used to capture 2D nadir images of the foreshore and back-beach environments containing both vegetated and non-vegetated features. The images were georeferenced using ground-truth markers surveyed via real-time kinematic (RTK) GPS and were then imported into Agisoft Photoscan, a photo-processing software, to generate 3D point clouds and digital elevation maps (DEMs). The georeferenced elevation models were then compared to RTK measurements to evaluate accuracy and precision. Thus far, DEMs derived from UAS photogrammetry show centimeter resolution for renderings of non-vegetated landforms. High-resolution renderings of vegetated and back-barrier regions have proven more difficult due to interstitial wetlands (surface reflectance) and uneven terrain for GPS backpack surveys. In addition to producing high-quality models, UAS photogrammetry has demonstrated to be more time-efficient than traditional mapping methods, making it advantageous for rapid response deployments. This study is part of a larger effort to relate field measurements of storm hydrodynamics to subaerial evidence of geomorphic change to better understand barrier island response to extreme storms.

  6. Rapid pulsed whole genome sequencing for comprehensive acute diagnostics of inborn errors of metabolism.

    PubMed

    Stranneheim, Henrik; Engvall, Martin; Naess, Karin; Lesko, Nicole; Larsson, Pontus; Dahlberg, Mats; Andeer, Robin; Wredenberg, Anna; Freyer, Chris; Barbaro, Michela; Bruhn, Helene; Emahazion, Tesfail; Magnusson, Måns; Wibom, Rolf; Zetterström, Rolf H; Wirta, Valtteri; von Döbeln, Ulrika; Wedell, Anna

    2014-12-11

    Massively parallel DNA sequencing (MPS) has the potential to revolutionize diagnostics, in particular for monogenic disorders. Inborn errors of metabolism (IEM) constitute a large group of monogenic disorders with highly variable clinical presentation, often with acute, nonspecific initial symptoms. In many cases irreversible damage can be reduced by initiation of specific treatment, provided that a correct molecular diagnosis can be rapidly obtained. MPS thus has the potential to significantly improve both diagnostics and outcome for affected patients in this highly specialized area of medicine. We have developed a conceptually novel approach for acute MPS, by analysing pulsed whole genome sequence data in real time, using automated analysis combined with data reduction and parallelization. We applied this novel methodology to an in-house developed customized work flow enabling clinical-grade analysis of all IEM with a known genetic basis, represented by a database containing 474 disease genes which is continuously updated. As proof-of-concept, two patients were retrospectively analysed in whom diagnostics had previously been performed by conventional methods. The correct disease-causing mutations were identified and presented to the clinical team after 15 and 18 hours from start of sequencing, respectively. With this information available, correct treatment would have been possible significantly sooner, likely improving outcome. We have adapted MPS to fit into the dynamic, multidisciplinary work-flow of acute metabolic medicine. As the extent of irreversible damage in patients with IEM often correlates with timing and accuracy of management in early, critical disease stages, our novel methodology is predicted to improve patient outcome. All procedures have been designed such that they can be implemented in any technical setting and to any genetic disease area. The strategy conforms to international guidelines for clinical MPS, as only validated disease genes are

  7. Characterization of St and Y genome in StStYY Elymus species (Triticeae: Poaceae) using Sequential FISH and GISH

    USDA-ARS?s Scientific Manuscript database

    Tetraploid species possessing StY genome could be donors to hexaploid species having StYH, StYP, or StYW genome constitution in the genus Elymus, and a few of StY species have been intensely studied for inferring the origin of the Y genome. In this study, genome characterization of St and Y genome w...

  8. Complete Genome Sequence of Mycobacterium tuberculosis Strain MtURU-001, Isolated from a Rapidly Progressing Outbreak in Uruguay

    PubMed Central

    Greif, Gonzalo; Iraola, Gregorio; Berná, Luisa; Coitinho, Cecilia; Rivas, Carlos M.; Naya, Hugo

    2014-01-01

    Despite efficient control programs, large clonal outbreaks of tuberculosis (TB) may arise in low-risk populations. Recently, an unusual TB outbreak was reported in Uruguay, reaching an elevated disease attack rate (53 to 69%). Here, we report the genome sequence of the Mycobacterium tuberculosis strain associated with this rapidly progressing outbreak, named MtURU-001. PMID:24459279

  9. Genomic Characterization of Human and Environmental Polioviruses Isolated in Albania

    PubMed Central

    Divizia, Maurizio; Palombi, Leonardo; Buonomo, Ersilia; Donia, Domenica; Ruscio, Vito; Equestre, Michele; Leno, Luljeta; Panà, Augusto; Degener, Anna Marta

    1999-01-01

    Between April and December 1996, a serious outbreak of poliomyelitis occurred in Albania; almost 140 subjects were involved, and the episode presented an unusually high mortality rate (12%). During the outbreak, water samples from the Lana River in Tirana, Albania, and stool samples from two cases of paralytic poliomyelitis were collected and analyzed for the presence of polioviruses. Six polioviruses were isolated from the environmental and human samples, according to standard methods. All the samples were characterized by partial genomic sequencing of 330 bases across the 5′ untranslated region (5′-UTR) (nucleotide positions 200 to 530) and of 300 bases across the VP1 region (nucleotide positions 2474 to 2774). Comparison of these sequences with those present in data banks permitted the identification of environmental isolates Lana A and Lana B as, respectively, a Sabin-like type 2 poliovirus and an intertypic recombinant poliovirus (Sabin-like type 2/wild type 1), both bearing a G instead of an A at nucleotide position 481. The two other environmental polioviruses were similar to the isolates from the paralytic cases. They were characterized by a peculiar 5′-UTR and by a VP1 region showing 98% homology with the Albanian epidemic type 1 isolates reported by other authors. This study confirms the environmental circulation in Albania of recombinant poliovirus strains, likely sustained by a massive vaccination effort and by the presence in the environment of a type 1 poliovirus, as isolated from the Lana River in Tirana about 2 months before the first case of symptomatic acute flaccid paralysis was reported in this town. PMID:10427045

  10. Rapid detection and simultaneous molecular profile characterization of Acanthamoeba infections.

    PubMed

    Goldschmidt, Pablo; Degorge, Sandrine; Benallaoua, Djida; Batellier, Laurence; Di Cave, David; Chaumeil, Christine

    2012-10-01

    Diagnosis of Acanthamoeba by microscopic examination, culture, and polymerase chain reactions (PCRs) has several limitations (sensitivity, specificity, lack of detection of several strains, cost of testing for discrimination among strains). We developed a new high-resolution melting real-time PCR (HRM) to detect and characterize Acanthamoeba infections. HRM performances were evaluated with strains from the American Type Culture Collection (ATCC) and with 20 corneal scrapings. The DNA extracted from specimens were amplified, detected, and characterized in 1 run using 2 original primers diluted in a solution containing an intercalating dye. Detection and molecular characterization of Acanthamoeba infections could be achieved in less than 2.5 h with a dramatic reduction in cost of reactants (postamplification procedures and radioactive or fluorescent-labeled molecular probes were unnecessary). HRM detection limits were 0.1 cyst/μL or less (including genotypes T5 and T11), and its sensitivity and specificity were higher than other molecular tests. For the tested strains from the ATCC, the HRM drafted 4 different profiles: Type I (genotypes T2 and T4), Type II (T5 and T7), Type III (T8), and Type IV (T1, T3, T6, T9, T11, T12, and T13).

  11. Rapid construction of genome map for large yellow croaker (Larimichthys crocea) by the whole-genome mapping in BioNano Genomics Irys system.

    PubMed

    Xiao, Shijun; Li, Jiongtang; Ma, Fengshou; Fang, Lujing; Xu, Shuangbin; Chen, Wei; Wang, Zhi Yong

    2015-09-03

    Large yellow croaker (Larimichthys crocea) is an important commercial fish in China and East-Asia. The annual product of the species from the aqua-farming industry is about 90 thousand tons. In spite of its economic importance, genetic studies of economic traits and genomic selections of the species are hindered by the lack of genomic resources. Specifically, a whole-genome physical map of large yellow croaker is still missing. The traditional BAC-based fingerprint method is extremely time- and labour-consuming. Here we report the first genome map construction using the high-throughput whole-genome mapping technique by nanochannel arrays in BioNano Genomics Irys system. For an optimal marker density of ~10 per 100 kb, the nicking endonuclease Nt.BspQ1 was chosen for the genome map generation. 645,305 DNA molecules with a total length of ~112 Gb were labelled and detected, covering more than 160X of the large yellow croaker genome. Employing IrysView package and signature patterns in raw DNA molecules, a whole-genome map of large yellow croaker was assembled into 686 maps with a total length of 727 Mb, which was consistent with the estimated genome size. The N50 length of the whole-genome map, including 126 maps, was up to 1.7 Mb. The excellent hybrid alignment with large yellow croaker draft genome validated the consensus genome map assembly and highlighted a promising application of whole-genome mapping on draft genome sequence super-scaffolding. The genome map data of large yellow croaker are accessible on lycgenomics.jmu.edu.cn/pm. Using the state-of-the-art whole-genome mapping technique in Irys system, the first whole-genome map for large yellow croaker has been constructed and thus highly facilitates the ongoing genomic and evolutionary studies for the species. To our knowledge, this is the first public report on genome map construction by the whole-genome mapping for aquatic-organisms. Our study demonstrates a promising application of the whole-genome

  12. Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study

    PubMed Central

    Pankhurst, Louise J; del Ojo Elias, Carlos; Votintseva, Antonina A; Walker, Timothy M; Cole, Kevin; Davies, Jim; Fermont, Jilles M; Gascoyne-Binzi, Deborah M; Kohl, Thomas A; Kong, Clare; Lemaitre, Nadine; Niemann, Stefan; Paul, John; Rogers, Thomas R; Roycroft, Emma; Smith, E Grace; Supply, Philip; Tang, Patrick; Wilcox, Mark H; Wordsworth, Sarah; Wyllie, David; Xu, Li; Crook, Derrick W

    2016-01-01

    Summary Background Slow and cumbersome laboratory diagnostics for Mycobacterium tuberculosis complex (MTBC) risk delayed treatment and poor patient outcomes. Whole-genome sequencing (WGS) could potentially provide a rapid and comprehensive diagnostic solution. In this prospective study, we compare real-time WGS with routine MTBC diagnostic workflows. Methods We compared sequencing mycobacteria from all newly positive liquid cultures with routine laboratory diagnostic workflows across eight laboratories in Europe and North America for diagnostic accuracy, processing times, and cost between Sept 6, 2013, and April 14, 2014. We sequenced specimens once using local Illumina MiSeq platforms and processed data centrally using a semi-automated bioinformatics pipeline. We identified species or complex using gene presence or absence, predicted drug susceptibilities from resistance-conferring mutations identified from reference-mapped MTBC genomes, and calculated genetic distance to previously sequenced UK MTBC isolates to detect outbreaks. WGS data processing and analysis was done by staff masked to routine reference laboratory and clinical results. We also did a microcosting analysis to assess the financial viability of WGS-based diagnostics. Findings Compared with routine results, WGS predicted species with 93% (95% CI 90–96; 322 of 345 specimens; 356 mycobacteria specimens submitted) accuracy and drug susceptibility also with 93% (91–95; 628 of 672 specimens; 168 MTBC specimens identified) accuracy, with one sequencing attempt. WGS linked 15 (16% [95% CI 10–26]) of 91 UK patients to an outbreak. WGS diagnosed a case of multidrug-resistant tuberculosis before routine diagnosis was completed and discovered a new multidrug-resistant tuberculosis cluster. Full WGS diagnostics could be generated in a median of 9 days (IQR 6–10), a median of 21 days (IQR 14–32) faster than final reference laboratory reports were produced (median of 31 days [IQR 21–44]), at a cost

  13. Genomic characterization of remission in juvenile idiopathic arthritis

    PubMed Central

    2013-01-01

    Introduction The attainment of remission has become an important end point for clinical trials in juvenile idiopathic arthritis (JIA), although we do not yet have a full understanding of what remission is at the cell and molecular level. Methods Two independent cohorts of patients with JIA and healthy child controls were studied. RNA was prepared separately from peripheral blood mononuclear cells (PBMC) and granulocytes to identify differentially expressed genes using whole genome microarrays. Expression profiling results for selected genes were confirmed by quantitative, real-time polymerase chain reaction (RT-PCR). Results We found that remission in JIA induced by either methotrexate (MTX) or MTX plus a TNF inhibitor (etanercept, Et) (MTX + Et) is characterized by numerous differences in gene expression in peripheral blood mononuclear cells and in granulocytes compared with healthy control children; that is, remission is not a restoration of immunologic normalcy. Network analysis of the differentially expressed genes demonstrated that the steroid hormone receptor superfamily member hepatocyte nuclear factor 4 alpha (HNF4α) is a hub in several of the gene networks that distinguished children with arthritis from controls. Confocal microscopy revealed that HNF4a is present in both T lymphocytes and granulocytes, suggesting a previously unsuspected role for this transcription factor in regulating leukocyte function and therapeutic response in JIA. Conclusions These findings provide a framework from which to understand therapeutic response in JIA and, furthermore, may be used to develop strategies to increase the frequency with which remission is achieved in adult forms of rheumatoid arthritis. PMID:24000795

  14. Integrated genomic and molecular characterization of cervical cancer.

    PubMed

    2017-03-16

    Cervical cancer remains one of the leading causes of cancer-related deaths worldwide. Here we report the extensive molecular characterization of 228 primary cervical cancers, one of the largest comprehensive genomic studies of cervical cancer to date. We observed notable APOBEC mutagenesis patterns and identified SHKBP1, ERBB3, CASP8, HLA-A and TGFBR2 as novel significantly mutated genes in cervical cancer. We also discovered amplifications in immune targets CD274 (also known as PD-L1) and PDCD1LG2 (also known as PD-L2), and the BCAR4 long non-coding RNA, which has been associated with response to lapatinib. Integration of human papilloma virus (HPV) was observed in all HPV18-related samples and 76% of HPV16-related samples, and was associated with structural aberrations and increased target-gene expression. We identified a unique set of endometrial-like cervical cancers, comprised predominantly of HPV-negative tumours with relatively high frequencies of KRAS, ARID1A and PTEN mutations. Integrative clustering of 178 samples identified keratin-low squamous, keratin-high squamous and adenocarcinoma-rich subgroups. These molecular analyses reveal new potential therapeutic targets for cervical cancers.

  15. Development of a genomic metric that can be rapidly used to predict clinical outcome in severely injured trauma patients.

    PubMed

    Cuenca, Alex G; Gentile, Lori F; Lopez, M Cecilia; Ungaro, Ricardo; Liu, Huazhi; Xiao, Wenzhong; Seok, Junhee; Mindrinos, Michael N; Ang, Darwin; Baslanti, Tezcan Ozrazgat; Bihorac, Azra; Efron, Philip A; Cuschieri, Joseph; Warren, H Shaw; Tompkins, Ronald G; Maier, Ronald V; Baker, Henry V; Moldawer, Lyle L

    2013-05-01

    Many patients have complicated recoveries following severe trauma due to the development of organ injury. Physiological and anatomical prognosticators have had limited success in predicting clinical trajectories. We report on the development and retrospective validation of a simple genomic composite score that can be rapidly used to predict clinical outcomes. Retrospective cohort study. Multi-institutional level 1 trauma centers. Data were collected from 167 severely traumatized (injury severity score >15) adult (18-55 yr) patients. Microarray-derived genomic data obtained from 167 severely traumatized patients over 28 days were assessed for differences in messenger RNA abundance among individuals with different clinical trajectories. Once a set of genes was identified based on differences in expression over the entire study period, messenger RNA abundance from these subjects obtained in the first 24 hours was analyzed in a blinded fashion using a rapid multiplex platform, and genomic data reduced to a single metric. From the existing genomic dataset, we identified 63 genes whose leukocyte expression differed between an uncomplicated and complicated clinical outcome over 28 days. Using a multiplex approach that can quantitate messenger RNA abundance in less than 12 hours, we reassessed total messenger RNA abundance from the first 24 hours after trauma and reduced the genomic data to a single composite score using the difference from reference. This composite score showed good discriminatory capacity to distinguish patients with a complicated outcome (area under a receiver-operator curve, 0.811; p <0.001). This was significantly better than the predictive power of either Acute Physiology and Chronic Health Evaluation II or new injury severity score scoring systems. A rapid genomic composite score obtained in the first 24 hours after trauma can retrospectively identify trauma patients who are likely to develop complicated clinical trajectories. A novel platform is

  16. Avian picornaviruses: molecular evolution, genome diversity and unusual genome features of a rapidly expanding group of viruses in birds.

    PubMed

    Boros, Ákos; Pankovics, Péter; Reuter, Gábor

    2014-12-01

    Picornaviridae is one of the most diverse families of viruses infecting vertebrate species. In contrast to the relative small number of mammal species compared to other vertebrates, the abundance of mammal-infecting picornaviruses was significantly overrepresented among the presently known picornaviruses. Therefore most of the current knowledge about the genome diversity/organization patterns and common genome features were based on the analysis of mammal-infecting picornaviruses. Beside the well known reservoir role of birds in case of several emerging viral pathogens, little is known about the diversity of picornaviruses circulating among birds, although in the last decade the number of known avian picornavirus species with complete genome was increased from one to at least 15. However, little is known about the geographic distribution, host spectrum or pathogenic potential of the recently described picornaviruses of birds. Despite the low number of known avian picornaviruses, the phylogenetic and genome organization diversity of these viruses were remarkable. Beside the common L-4-3-4 and 4-3-4 genome layouts unusual genome patterns (3-4-4; 3-5-4, 3-6-4; 3-8-4) with variable, multicistronic 2A genome regions were found among avian picornaviruses. The phylogenetic and genomic analysis revealed the presence of several conserved structures at the untranslated regions among phylogenetically distant avian and non-avian picornaviruses as well as at least five different avian picornavirus phylogenetic clusters located in every main picornavirus lineage with characteristic genome layouts which suggests the complex evolution history of these viruses. Based on the remarkable genetic diversity of the few known avian picornaviruses, the emergence of further divergent picornaviruses causing challenges in the current taxonomy and also in the understanding of the evolution and genome organization of picornaviruses will be strongly expected. In this review we would like to

  17. A rapid and hazardous reagent free protocol for genomic DNA extraction suitable for genetic studies in plants.

    PubMed

    Kotchoni, Simeon O; Gachomo, Emma W

    2009-07-01

    Protocols for genomic DNA extraction from plants are generally lengthy, since they require that tissues be ground in liquid nitrogen, followed by a precipitation step, washing and drying of the DNA pellet, etc. This represents a major challenge especially when several hundred samples must be screened/analyzed within a working day. There is therefore a need for a rapid and simple procedure, which will produce DNA quality suitable for various analyses. Here, we describe a time and cost efficient protocol for genomic DNA isolation from plants suitable for all routine genetic screening/analyses. The protocol is free from hazardous reagents and therefore safe to be executed by non-specialists. With this protocol more than 100 genomic DNA samples could manually be extracted within a working day, making it a promising alternative in genetic studies of large-scale genomic screening projects.

  18. The Genomics, Epigenomics, and Transcriptomics of HPV-Associated Oropharyngeal Cancer--Understanding the Basis of a Rapidly Evolving Disease.

    PubMed

    Lechner, M; Fenton, T R

    2016-01-01

    Human papillomavirus (HPV) has been shown to represent a major independent risk factor for head and neck squamous cell cancer, in particular for oropharyngeal carcinoma. This type of cancer is rapidly evolving in the Western world, with rising trends particularly in the young, and represents a distinct epidemiological, clinical, and molecular entity. It is the aim of this review to give a detailed description of genomic, epigenomic, transcriptomic, and posttranscriptional changes that underlie the phenotype of this deadly disease. The review will also link these changes and examine what is known about the interactions between the host genome and viral genome, and investigate changes specific for the viral genome. These data are then integrated into an updated model of HPV-induced head and neck carcinogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Genomic characterization reconfirms the taxonomic status of Lactobacillus parakefiri

    PubMed Central

    TANIZAWA, Yasuhiro; KOBAYASHI, Hisami; KAMINUMA, Eli; SAKAMOTO, Mitsuo; OHKUMA, Moriya; NAKAMURA, Yasukazu; ARITA, Masanori; TOHNO, Masanori

    2017-01-01

    Whole-genome sequencing was performed for Lactobacillus parakefiri JCM 8573T to confirm its hitherto controversial taxonomic position. Here, we report its first reliable reference genome. Genome-wide metrics, such as average nucleotide identity and digital DNA-DNA hybridization, and phylogenomic analysis based on multiple genes supported its taxonomic status as a distinct species in the genus Lactobacillus. The availability of a reliable genome sequence will aid future investigations on the industrial applications of L. parakefiri in functional foods such as kefir grains. PMID:28748134

  20. Genomic Evidence of Rapid and Stable Adaptive Oscillations over Seasonal Time Scales in Drosophila

    PubMed Central

    Bergland, Alan O.; Behrman, Emily L.; O'Brien, Katherine R.; Schmidt, Paul S.; Petrov, Dmitri A.

    2014-01-01

    In many species, genomic data have revealed pervasive adaptive evolution indicated by the fixation of beneficial alleles. However, when selection pressures are highly variable along a species' range or through time adaptive alleles may persist at intermediate frequencies for long periods. So called “balanced polymorphisms” have long been understood to be an important component of standing genetic variation, yet direct evidence of the strength of balancing selection and the stability and prevalence of balanced polymorphisms has remained elusive. We hypothesized that environmental fluctuations among seasons in a North American orchard would impose temporally variable selection on Drosophila melanogaster that would drive repeatable adaptive oscillations at balanced polymorphisms. We identified hundreds of polymorphisms whose frequency oscillates among seasons and argue that these loci are subject to strong, temporally variable selection. We show that these polymorphisms respond to acute and persistent changes in climate and are associated in predictable ways with seasonally variable phenotypes. In addition, our results suggest that adaptively oscillating polymorphisms are likely millions of years old, with some possibly predating the divergence between D. melanogaster and D. simulans. Taken together, our results are consistent with a model of balancing selection wherein rapid temporal fluctuations in climate over generational time promotes adaptive genetic diversity at loci underlying polygenic variation in fitness related phenotypes. PMID:25375361

  1. Rapid detection of microbial DNA by a novel isothermal genome exponential amplification reaction (GEAR) assay.

    PubMed

    Prithiviraj, Jothikumar; Hill, Vincent; Jothikumar, Narayanan

    2012-04-20

    In this study we report the development of a simple target-specific isothermal nucleic acid amplification technique, termed genome exponential amplification reaction (GEAR). Escherichia coli was selected as the microbial target to demonstrate the GEAR technique as a proof of concept. The GEAR technique uses a set of four primers; in the present study these primers targeted 5 regions on the 16S rRNA gene of E. coli. The outer forward and reverse Tab primer sequences are complementary to each other at their 5' end, whereas their 3' end sequences are complementary to their respective target nucleic acid sequences. The GEAR assay was performed at a constant temperature 60 °C and monitored continuously in a real-time PCR instrument in the presence of an intercalating dye (SYTO 9). The GEAR assay enabled amplification of as few as one colony forming units of E. coli per reaction within 30 min. We also evaluated the GEAR assay for rapid identification of bacterial colonies cultured on agar media directly in the reaction without DNA extraction. Cells from E. coli colonies were picked and added directly to GEAR assay mastermix without prior DNA extraction. DNA in the cells could be amplified, yielding positive results within 15 min.

  2. Mitochondrial Genomes Suggest Rapid Evolution of Dwarf California Channel Islands Foxes (Urocyon littoralis)

    PubMed Central

    Hofman, Courtney A.; Rick, Torben C.; Hawkins, Melissa T. R.; Funk, W. Chris; Ralls, Katherine; Boser, Christina L.; Collins, Paul W.; Coonan, Tim; King, Julie L.; Morrison, Scott A.; Newsome, Seth D.; Sillett, T. Scott; Fleischer, Robert C.; Maldonado, Jesus E.

    2015-01-01

    Island endemics are typically differentiated from their mainland progenitors in behavior, morphology, and genetics, often resulting from long-term evolutionary change. To examine mechanisms for the origins of island endemism, we present a phylogeographic analysis of whole mitochondrial genomes from the endangered island fox (Urocyon littoralis), endemic to California’s Channel Islands, and mainland gray foxes (U. cinereoargenteus). Previous genetic studies suggested that foxes first appeared on the islands >16,000 years ago, before human arrival (~13,000 cal BP), while archaeological and paleontological data supported a colonization >7000 cal BP. Our results are consistent with initial fox colonization of the northern islands probably by rafting or human introduction ~9200–7100 years ago, followed quickly by human translocation of foxes from the northern to southern Channel Islands. Mitogenomes indicate that island foxes are monophyletic and most closely related to gray foxes from northern California that likely experienced a Holocene climate-induced range shift. Our data document rapid morphological evolution of island foxes (in ~2000 years or less). Despite evidence for bottlenecks, island foxes have generated and maintained multiple mitochondrial haplotypes. This study highlights the intertwined evolutionary history of island foxes and humans, and illustrates a new approach for investigating the evolutionary histories of other island endemics. PMID:25714775

  3. Mitochondrial genomes suggest rapid evolution of dwarf California Channel Islands foxes (Urocyon littoralis).

    PubMed

    Hofman, Courtney A; Rick, Torben C; Hawkins, Melissa T R; Funk, W Chris; Ralls, Katherine; Boser, Christina L; Collins, Paul W; Coonan, Tim; King, Julie L; Morrison, Scott A; Newsome, Seth D; Sillett, T Scott; Fleischer, Robert C; Maldonado, Jesus E

    2015-01-01

    Island endemics are typically differentiated from their mainland progenitors in behavior, morphology, and genetics, often resulting from long-term evolutionary change. To examine mechanisms for the origins of island endemism, we present a phylogeographic analysis of whole mitochondrial genomes from the endangered island fox (Urocyon littoralis), endemic to California's Channel Islands, and mainland gray foxes (U. cinereoargenteus). Previous genetic studies suggested that foxes first appeared on the islands >16,000 years ago, before human arrival (~13,000 cal BP), while archaeological and paleontological data supported a colonization >7000 cal BP. Our results are consistent with initial fox colonization of the northern islands probably by rafting or human introduction ~9200-7100 years ago, followed quickly by human translocation of foxes from the northern to southern Channel Islands. Mitogenomes indicate that island foxes are monophyletic and most closely related to gray foxes from northern California that likely experienced a Holocene climate-induced range shift. Our data document rapid morphological evolution of island foxes (in ~2000 years or less). Despite evidence for bottlenecks, island foxes have generated and maintained multiple mitochondrial haplotypes. This study highlights the intertwined evolutionary history of island foxes and humans, and illustrates a new approach for investigating the evolutionary histories of other island endemics.

  4. Genome Wide Analysis for Searching Novel Markers to Rapidly Identify Clostridium Strains.

    PubMed

    Kekre, Anay; Bhushan, Ashish; Kumar, Prasun; Kalia, Vipin Chandra

    2015-09-01

    Microbial classification is based largely on the 16S rRNA (rrs) gene sequence, which is conserved throughout the prokaryotic domain. The Ribosomal Database Project (RDP) has become a reference point for almost all practical purposes. The use of this gene is limited by the fact that it can be used to identify only to the extent to what has been known and is available in the RDP. In order to identify an organism whose rrs is not present in the RDP database, we need to generate novel markers to place the unknown on the evolutionary map. Here, sequenced genomes of 27 Clostridium strains belonging to 9 species have been used to identify two sets of genes: (1) common to most of the species, and (2) unique to a species. Combinations of genes (recN, dnaJ, secA, mutS, and/or grpE) and their unique restriction endonuclease digestion (AluI, BfaI and/or Tru9I) patterns have been established to rapidly identify Clostridium species. This strategy for identifying novel markers can be extended to all other organisms and diagnostic applications.

  5. Characterization of rapidly solidified powder of high-speed steel

    NASA Astrophysics Data System (ADS)

    Miglierini, Marcel; Lančok, Adriana; Kusý, Martin

    2009-04-01

    Rapidly solidified particles of high-speed steel were classified into several granulometric fractions ranging from less than 25 μm up to more than 160 μm in diameter and studied by transmission and conversion electron Mössbauer spectrometry. The former was applied at 300, 77, and 5 K. Presence of magnetic and a non-magnetic crystallographic phase was observed. They were identified by X-ray diffraction as ferrite (bcc-Fe) and austenite (fcc-Fe), respectively. In addition, M4C3 and M2C carbides were found. The magnetic phase diminishes in the bulk of the particles bigger than 63 μm (transmission Mössbauer spectroscopy) and/or 80 μm (X-ray diffraction). Its contribution is higher at the surface of the particles (conversion electron Mössbauer spectrometry). The origin of the non-magnetic phase is not changed even at 5 K. Reasonable agreement is achieved between Mössbauer and X-ray diffraction data as far as the fraction of Fe-containing phases is concerned.

  6. Comprehensive characterization of human genome variation by high coverage whole-genome sequencing of forty four Caucasians.

    PubMed

    Shen, Hui; Li, Jian; Zhang, Jigang; Xu, Chao; Jiang, Yan; Wu, Zikai; Zhao, Fuping; Liao, Li; Chen, Jun; Lin, Yong; Tian, Qing; Papasian, Christopher J; Deng, Hong-Wen

    2013-01-01

    Whole genome sequencing studies are essential to obtain a comprehensive understanding of the vast pattern of human genomic variations. Here we report the results of a high-coverage whole genome sequencing study for 44 unrelated healthy Caucasian adults, each sequenced to over 50-fold coverage (averaging 65.8×). We identified approximately 11 million single nucleotide polymorphisms (SNPs), 2.8 million short insertions and deletions, and over 500,000 block substitutions. We showed that, although previous studies, including the 1000 Genomes Project Phase 1 study, have catalogued the vast majority of common SNPs, many of the low-frequency and rare variants remain undiscovered. For instance, approximately 1.4 million SNPs and 1.3 million short indels that we found were novel to both the dbSNP and the 1000 Genomes Project Phase 1 data sets, and the majority of which (∼96%) have a minor allele frequency less than 5%. On average, each individual genome carried ∼3.3 million SNPs and ∼492,000 indels/block substitutions, including approximately 179 variants that were predicted to cause loss of function of the gene products. Moreover, each individual genome carried an average of 44 such loss-of-function variants in a homozygous state, which would completely "knock out" the corresponding genes. Across all the 44 genomes, a total of 182 genes were "knocked-out" in at least one individual genome, among which 46 genes were "knocked out" in over 30% of our samples, suggesting that a number of genes are commonly "knocked-out" in general populations. Gene ontology analysis suggested that these commonly "knocked-out" genes are enriched in biological process related to antigen processing and immune response. Our results contribute towards a comprehensive characterization of human genomic variation, especially for less-common and rare variants, and provide an invaluable resource for future genetic studies of human variation and diseases.

  7. Genomics-assisted characterization of a breeding collection of Apios americana, an edible tuberous legume.

    PubMed

    Belamkar, Vikas; Farmer, Andrew D; Weeks, Nathan T; Kalberer, Scott R; Blackmon, William J; Cannon, Steven B

    2016-10-10

    For species with potential as new crops, rapid improvement may be facilitated by new genomic methods. Apios (Apios americana Medik.), once a staple food source of Native American Indians, produces protein-rich tubers, tolerates a wide range of soils, and symbiotically fixes nitrogen. We report the first high-quality de novo transcriptome assembly, an expression atlas, and a set of 58,154 SNP and 39,609 gene expression markers (GEMs) for characterization of a breeding collection. Both SNPs and GEMs identify six genotypic clusters in the collection. Transcripts mapped to the Phaseolus vulgaris genome-another phaseoloid legume with the same chromosome number-provide provisional genetic locations for 46,852 SNPs. Linkage disequilibrium decays within 10 kb (based on the provisional genetic locations), consistent with outcrossing reproduction. SNPs and GEMs identify more than 21 marker-trait associations for at least 11 traits. This study demonstrates a holistic approach for mining plant collections to accelerate crop improvement.

  8. An FDA bioinformatics tool for microbial genomics research on molecular characterization of bacterial foodborne pathogens using microarrays.

    PubMed

    Fang, Hong; Xu, Joshua; Ding, Don; Jackson, Scott A; Patel, Isha R; Frye, Jonathan G; Zou, Wen; Nayak, Rajesh; Foley, Steven; Chen, James; Su, Zhenqiang; Ye, Yanbin; Turner, Steve; Harris, Steve; Zhou, Guangxu; Cerniglia, Carl; Tong, Weida

    2010-10-07

    Advances in microbial genomics and bioinformatics are offering greater insights into the emergence and spread of foodborne pathogens in outbreak scenarios. The Food and Drug Administration (FDA) has developed a genomics tool, ArrayTrack™, which provides extensive functionalities to manage, analyze, and interpret genomic data for mammalian species. ArrayTrack™ has been widely adopted by the research community and used for pharmacogenomics data review in the FDA's Voluntary Genomics Data Submission program. ArrayTrack™ has been extended to manage and analyze genomics data from bacterial pathogens of human, animal, and food origin. It was populated with bioinformatics data from public databases such as NCBI, Swiss-Prot, KEGG Pathway, and Gene Ontology to facilitate pathogen detection and characterization. ArrayTrack™'s data processing and visualization tools were enhanced with analysis capabilities designed specifically for microbial genomics including flag-based hierarchical clustering analysis (HCA), flag concordance heat maps, and mixed scatter plots. These specific functionalities were evaluated on data generated from a custom Affymetrix array (FDA-ECSG) previously developed within the FDA. The FDA-ECSG array represents 32 complete genomes of Escherichia coli and Shigella. The new functions were also used to analyze microarray data focusing on antimicrobial resistance genes from Salmonella isolates in a poultry production environment using a universal antimicrobial resistance microarray developed by the United States Department of Agriculture (USDA). The application of ArrayTrack™ to different microarray platforms demonstrates its utility in microbial genomics research, and thus will improve the capabilities of the FDA to rapidly identify foodborne bacteria and their genetic traits (e.g., antimicrobial resistance, virulence, etc.) during outbreak investigations. ArrayTrack™ is free to use and available to public, private, and academic researchers at

  9. Genome skimming: A rapid approach to gaining diverse biological insights into multicellular pathogens

    USDA-ARS?s Scientific Manuscript database

    New genome sequence information can now be generated very quickly and cheaply for virtually any organism. The dive into genomics is increasingly tempting to scientists studying plant pathogens and other eukaryotic species without reference genomes. The ease of data collection, however, is tempered ...

  10. Characterization of polymorphic SSRs among Prunus chloroplast genomes

    USDA-ARS?s Scientific Manuscript database

    An in silico mining process yielded 80, 75, and 78 microsatellites in the chloroplast genome of Prunus persica, P. kansuensis, and P. mume. A and T repeats were predominant in the three genomes, accounting for 67.8% on average and most of them were successful in primer design. For the 80 P. persica ...

  11. Rapid Evolutionary Rates and Unique Genomic Signatures Discovered in the First Reference Genome for the Southern Ocean Salp, Salpa thompsoni (Urochordata, Thaliacea).

    PubMed

    Jue, Nathaniel K; Batta-Lona, Paola G; Trusiak, Sarah; Obergfell, Craig; Bucklin, Ann; O'Neill, Michael J; O'Neill, Rachel J

    2016-10-30

    A preliminary genome sequence has been assembled for the Southern Ocean salp, Salpa thompsoni (Urochordata, Thaliacea). Despite the ecological importance of this species in Antarctic pelagic food webs and its potential role as an indicator of changing Southern Ocean ecosystems in response to climate change, no genomic resources are available for S. thompsoni or any closely related urochordate species. Using a multiple-platform, multiple-individual approach, we have produced a 318,767,936-bp genome sequence, covering >50% of the estimated 602 Mb (±173 Mb) genome size for S. thompsoni Using a nonredundant set of predicted proteins, >50% (16,823) of sequences showed significant homology to known proteins and ∼38% (12,151) of the total protein predictions were associated with Gene Ontology functional information. We have generated 109,958 SNP variant and 9,782 indel predictions for this species, serving as a resource for future phylogenomic and population genetic studies. Comparing the salp genome to available assemblies for four other urochordates, Botryllus schlosseri, Ciona intestinalis, Ciona savignyi and Oikopleura dioica, we found that S. thompsoni shares the previously estimated rapid rates of evolution for these species. High mutation rates are thus independent of genome size, suggesting that rates of evolution >1.5 times that observed for vertebrates are a broad taxonomic characteristic of urochordates. Tests for positive selection implemented in PAML revealed a small number of genes with sites undergoing rapid evolution, including genes involved in ribosome biogenesis and metabolic and immune process that may be reflective of both adaptation to polar, planktonic environments as well as the complex life history of the salps. Finally, we performed an initial survey of small RNAs, revealing the presence of known, conserved miRNAs, as well as novel miRNA genes; unique piRNAs; and mature miRNA signatures for varying developmental stages. Collectively, these

  12. Rapid Evolutionary Rates and Unique Genomic Signatures Discovered in the First Reference Genome for the Southern Ocean Salp, Salpa thompsoni (Urochordata, Thaliacea)

    PubMed Central

    Jue, Nathaniel K.; Batta-Lona, Paola G.; Trusiak, Sarah; Obergfell, Craig; Bucklin, Ann; O’Neill, Michael J.; O’Neill, Rachel J.

    2016-01-01

    A preliminary genome sequence has been assembled for the Southern Ocean salp, Salpa thompsoni (Urochordata, Thaliacea). Despite the ecological importance of this species in Antarctic pelagic food webs and its potential role as an indicator of changing Southern Ocean ecosystems in response to climate change, no genomic resources are available for S. thompsoni or any closely related urochordate species. Using a multiple-platform, multiple-individual approach, we have produced a 318,767,936-bp genome sequence, covering >50% of the estimated 602 Mb (±173 Mb) genome size for S. thompsoni. Using a nonredundant set of predicted proteins, >50% (16,823) of sequences showed significant homology to known proteins and ∼38% (12,151) of the total protein predictions were associated with Gene Ontology functional information. We have generated 109,958 SNP variant and 9,782 indel predictions for this species, serving as a resource for future phylogenomic and population genetic studies. Comparing the salp genome to available assemblies for four other urochordates, Botryllus schlosseri, Ciona intestinalis, Ciona savignyi and Oikopleura dioica, we found that S. thompsoni shares the previously estimated rapid rates of evolution for these species. High mutation rates are thus independent of genome size, suggesting that rates of evolution >1.5 times that observed for vertebrates are a broad taxonomic characteristic of urochordates. Tests for positive selection implemented in PAML revealed a small number of genes with sites undergoing rapid evolution, including genes involved in ribosome biogenesis and metabolic and immune process that may be reflective of both adaptation to polar, planktonic environments as well as the complex life history of the salps. Finally, we performed an initial survey of small RNAs, revealing the presence of known, conserved miRNAs, as well as novel miRNA genes; unique piRNAs; and mature miRNA signatures for varying developmental stages. Collectively, these

  13. Characterization and Genomic Localization of a SMAD4 Processed Pseudogene.

    PubMed

    Watson, Christopher M; Camm, Nick; Crinnion, Laura A; Antanaviciute, Agne; Adlard, Julian; Markham, Alexander F; Carr, Ian M; Charlton, Ruth; Bonthron, David T

    2017-09-01

    Like many clinical diagnostic laboratories, the Yorkshire Regional Genetics Service undertakes routine investigation of cancer-predisposed individuals by high-throughput sequencing of patient DNA that has been target-enriched for genes associated with hereditary cancer. Accurate diagnosis using such reagents requires alertness regarding rare nonpathogenic variants that may interfere with variant calling. In a cohort of 2042 such cases, we identified 5 that initially appeared to be carriers of a 95-bp deletion of SMAD4 intron 6. More detailed analysis indicated that these individuals all carried one copy of a SMAD4 processed gene. Because of its interference with diagnostic analysis, we characterized this processed gene in detail. Whole-genome sequencing and confirmatory Sanger sequencing of junction PCR products were used to show that in each of the 5 cases, the SMAD4 processed gene was integrated at the same position on chromosome 9, located within the last intron of the SCAI gene. This rare polymorphic processed gene therefore reflects the occurrence of a single ancestral retrotransposition event. Compared to the reference SMAD4 mRNA sequence NM_005359.5 (https://www.ncbi.nlm.nih.gov/nucleotide), the 5' and 3' untranslated regions of the processed gene are both truncated, but its open reading frame is unaltered. Our experience leads us to advocate the use of an RNA-seq aligner as part of diagnostic assay quality assurance, since this allows their recognition in a comparatively facile automated fashion. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  14. Faceted Surface Grain Morphology of Rapidly Solidified Alumina: Characterization and Potential Applications

    SciTech Connect

    Harimkar, Sandip; Kenik, Edward A; Shim, Sanghoon; Dahotre, Narendra B

    2009-01-01

    This communication reports on the characterization of novel surface microstructure formed in rapidly solidified porous alumina ceramic. Advanced characterization techniques such as Orientation Imaging Microscopy (OIM) and Atomic Force Microscopy (AFM) are used to understand the crystallographic and morphological aspects of the resultant microstructure. Potential applications of laser surface modified alumina ceramics are presented.

  15. Transcriptome-guided characterization of genomic rearrangements in a breast cancer cell line.

    PubMed

    Zhao, Qi; Caballero, Otavia L; Levy, Samuel; Stevenson, Brian J; Iseli, Christian; de Souza, Sandro J; Galante, Pedro A; Busam, Dana; Leversha, Margaret A; Chadalavada, Kalyani; Rogers, Yu-Hui; Venter, J Craig; Simpson, Andrew J G; Strausberg, Robert L

    2009-02-10

    We have identified new genomic alterations in the breast cancer cell line HCC1954, using high-throughput transcriptome sequencing. With 120 Mb of cDNA sequences, we were able to identify genomic rearrangement events leading to fusions or truncations of genes including MRE11 and NSD1, genes already implicated in oncogenesis, and 7 rearrangements involving other additional genes. This approach demonstrates that high-throughput transcriptome sequencing is an effective strategy for the characterization of genomic rearrangements in cancers.

  16. Genome-Based Selection and Characterization of Fusarium circinatum-Specific Sequences

    PubMed Central

    Maphosa, Mkhululi N.; Steenkamp, Emma T.; Wingfield, Brenda D.

    2016-01-01

    Fusarium circinatum is an important pathogen of pine trees and its management in the commercial forestry environment relies largely on early detection, particularly in seedling nurseries. The fact that the entire genome of this pathogen is available opens new avenues for the development of diagnostic tools for this fungus. In this study we identified open reading frames (ORFs) unique to F. circinatum and determined that they were specific to the pathogen. The ORF identification process involved bioinformatics-based screening of all the putative F. circinatum ORFs against public databases. This was followed by functional characterization of ORFs found to be unique to F. circinatum. We used PCR- and hybridization-based approaches to confirm the presence of selected unique genes in different strains of F. circinatum and their absence from other Fusarium species for which genome sequence data are not yet available. These included species that are closely related to F. circinatum as well as those that are commonly encountered in the forestry environment. Thirty-six ORFs were identified as potentially unique to F. circinatum. Nineteen of these encode proteins with known domains while the other 17 encode proteins of unknown function. The results of our PCR analyses and hybridization assays showed that three of the selected genes were present in all of the strains of F. circinatum tested and absent from the other Fusarium species screened. These data thus indicate that the selected genes are common and unique to F. circinatum. These genes thus could be good candidates for use in rapid, in-the-field diagnostic assays specific to F. circinatum. Our study further demonstrates how genome sequence information can be mined for the identification of new diagnostic markers for the detection of plant pathogens. PMID:26888868

  17. Field methods for rapidly characterizing paint waste during bridge rehabilitation.

    PubMed

    Shu, Zhan; Axe, Lisa; Jahan, Kauser; Ramanujachary, Kandalam V

    2015-09-01

    For Department of Transportation (DOT) agencies, bridge rehabilitation involving paint removal results in waste that is often managed as hazardous. Hence, an approach that provides field characterization of the waste classification would be beneficial. In this study, an analysis of variables critical to the leaching process was conducted to develop a predictive tool for waste classification. This approach first involved identifying mechanistic processes that control leaching. Because steel grit is used to remove paint, elevated iron concentrations remain in the paint waste. As such, iron oxide coatings provide an important surface for metal adsorption. The diffuse layer model was invoked (logKMe=4.65 for Pb and logKMe=2.11 for Cr), where 90% of the data were captured within the 95% confidence level. Based on an understanding of mechanistic processes along with principal component analysis (PCA) of data obtained from field-portable X-ray fluorescence (FP-XRF), statistically-based models for leaching from paint waste were developed. Modeling resulted in 96% of the data falling within the 95% confidence level for Pb (R(2) 0.6-0.9, p ⩽ 0.04), Ba (R(2) 0.5-0.7, p ⩽ 0.1), and Zn (R(2) 0.6-0.7, p ⩽ 0.08). However, the regression model obtained for Cr leaching was not significant (R(2) 0.3-0.5, p ⩽ 0.75). The results of this work may assist DOT agencies with applying a predictive tool in the field that addresses the mobility of trace metals as well as disposal and management of paint waste during bridge rehabilitation.

  18. Ion torrent personal genome machine sequencing for genomic typing of Neisseria meningitidis for rapid determination of multiple layers of typing information.

    PubMed

    Vogel, Ulrich; Szczepanowski, Rafael; Claus, Heike; Jünemann, Sebastian; Prior, Karola; Harmsen, Dag

    2012-06-01

    Neisseria meningitidis causes invasive meningococcal disease in infants, toddlers, and adolescents worldwide. DNA sequence-based typing, including multilocus sequence typing, analysis of genetic determinants of antibiotic resistance, and sequence typing of vaccine antigens, has become the standard for molecular epidemiology of the organism. However, PCR of multiple targets and consecutive Sanger sequencing provide logistic constraints to reference laboratories. Taking advantage of the recent development of benchtop next-generation sequencers (NGSs) and of BIGSdb, a database accommodating and analyzing genome sequence data, we therefore explored the feasibility and accuracy of Ion Torrent Personal Genome Machine (PGM) sequencing for genomic typing of meningococci. Three strains from a previous meningococcus serogroup B community outbreak were selected to compare conventional typing results with data generated by semiconductor chip-based sequencing. In addition, sequencing of the meningococcal type strain MC58 provided information about the general performance of the technology. The PGM technology generated sequence information for all target genes addressed. The results were 100% concordant with conventional typing results, with no further editing being necessary. In addition, the amount of typing information, i.e., nucleotides and target genes analyzed, could be substantially increased by the combined use of genome sequencing and BIGSdb compared to conventional methods. In the near future, affordable and fast benchtop NGS machines like the PGM might enable reference laboratories to switch to genomic typing on a routine basis. This will reduce workloads and rapidly provide information for laboratory surveillance, outbreak investigation, assessment of vaccine preventability, and antibiotic resistance gene monitoring.

  19. Characterization of Mycobacterium chelonae-Like Strains by Comparative Genomics.

    PubMed

    Nogueira, Christiane L; de Almeida, Luiz G P; Menendez, Maria C; Garcia, Maria J; Digiampietri, Luciano A; Chimara, Erica; Cnockaert, Margo; Palomino, Juan C; Portaels, Françoise; Martin, Anandi; Vandamme, Peter; Leão, Sylvia C

    2017-01-01

    Isolates of the Mycobacterium chelonae-M. abscessus complex are subdivided into four clusters (CHI to CHIV) in the INNO-LiPA® Mycobacterium spp DNA strip assay. A considerable phenotypic variability was observed among isolates of the CHII cluster. In this study, we examined the diversity of 26 CHII cluster isolates by phenotypic analysis, drug susceptibility testing, whole genome sequencing and single-gene analysis. Pairwise genome comparisons were performed using several approaches, including average nucleotide identity (ANI) and genome-to-genome distance (GGD) among others. Based on ANI and GGD the isolates were identified as M. chelonae (14 isolates), M. franklinii (2 isolates) and M. salmoniphium (1 isolate). The remaining 9 isolates were subdivided into three novel putative genomospecies. Phenotypic analyses including drug susceptibility testing, as well as whole genome comparison by TETRA and delta differences, were not helpful in separating the groups revealed by ANI and GGD. The analysis of standard four conserved genomic regions showed that rpoB alone and the concatenated sequences clearly distinguished the taxonomic groups delimited by whole genome analyses. In conclusion, the CHII INNO-LiPa is not a homogeneous cluster; on the contrary, it is composed of closely related different species belonging to the M. chelonae-M. abscessus complex and also several unidentified isolates. The detection of these isolates, putatively novel species, indicates a wider inner variability than the presently known in this complex.

  20. Characterization of Mycobacterium chelonae-Like Strains by Comparative Genomics

    PubMed Central

    Nogueira, Christiane L.; de Almeida, Luiz G. P.; Menendez, Maria C.; Garcia, Maria J.; Digiampietri, Luciano A.; Chimara, Erica; Cnockaert, Margo; Palomino, Juan C.; Portaels, Françoise; Martin, Anandi; Vandamme, Peter; Leão, Sylvia C.

    2017-01-01

    Isolates of the Mycobacterium chelonae-M. abscessus complex are subdivided into four clusters (CHI to CHIV) in the INNO-LiPA® Mycobacterium spp DNA strip assay. A considerable phenotypic variability was observed among isolates of the CHII cluster. In this study, we examined the diversity of 26 CHII cluster isolates by phenotypic analysis, drug susceptibility testing, whole genome sequencing and single-gene analysis. Pairwise genome comparisons were performed using several approaches, including average nucleotide identity (ANI) and genome-to-genome distance (GGD) among others. Based on ANI and GGD the isolates were identified as M. chelonae (14 isolates), M. franklinii (2 isolates) and M. salmoniphium (1 isolate). The remaining 9 isolates were subdivided into three novel putative genomospecies. Phenotypic analyses including drug susceptibility testing, as well as whole genome comparison by TETRA and delta differences, were not helpful in separating the groups revealed by ANI and GGD. The analysis of standard four conserved genomic regions showed that rpoB alone and the concatenated sequences clearly distinguished the taxonomic groups delimited by whole genome analyses. In conclusion, the CHII INNO-LiPa is not a homogeneous cluster; on the contrary, it is composed of closely related different species belonging to the M. chelonae-M. abscessus complex and also several unidentified isolates. The detection of these isolates, putatively novel species, indicates a wider inner variability than the presently known in this complex. PMID:28533767

  1. Computational characterization of chromatin domain boundary-associated genomic elements.

    PubMed

    Hong, Seungpyo; Kim, Dongsup

    2017-08-23

    Topologically associated domains (TADs) are 3D genomic structures with high internal interactions that play important roles in genome compaction and gene regulation. Their genomic locations and their association with CCCTC-binding factor (CTCF)-binding sites and transcription start sites (TSSs) were recently reported. However, the relationship between TADs and other genomic elements has not been systematically evaluated. This was addressed in the present study, with a focus on the enrichment of these genomic elements and their ability to predict the TAD boundary region. We found that consensus CTCF-binding sites were strongly associated with TAD boundaries as well as with the transcription factors (TFs) Zinc finger protein (ZNF)143 and Yin Yang (YY)1. TAD boundary-associated genomic elements include DNase I-hypersensitive sites, H3K36 trimethylation, TSSs, RNA polymerase II, and TFs such as Specificity protein 1, ZNF274 and SIX homeobox 5. Computational modeling with these genomic elements suggests that they have distinct roles in TAD boundary formation. We propose a structural model of TAD boundaries based on these findings that provides a basis for studying the mechanism of chromatin structure formation and gene regulation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Comprehensive characterization of the genomic alterations in human gastric cancer

    PubMed Central

    Cui, Juan; Yin, Yanbin; Ma, Qin; Wang, Guoqing; Olman, Victor; Zhang, Yu; Chou, Wen-Chi; Hong, Celine S.; Zhang, Chi; Cao, Sha; Mao, Xizeng; Li, Ying; Qin, Steve; Zhao, Shaying; Jiang, Jing; Hastings, Phil; Li, Fan; Xu, Ying

    2016-01-01

    Gastric cancer is one of the most prevalent and aggressive cancers worldwide, and its molecular mechanism remains largely elusive. Here we report the genomic landscape in primary gastric adenocarcinoma of human, based on the complete genome sequences of five pairs of cancer and matching normal samples. In total, 103,464 somatic point mutations, including 407 nonsynonymous ones, were identified and the most recurrent mutations were harbored by Mucins (MUC3A and MUC12) and transcription factors (ZNF717, ZNF595 and TP53). 679 genomic rearrangements were detected, which affect 355 protein-coding genes; and 76 genes show copy number changes. Through mapping the boundaries of the rearranged regions to the folded three-dimensional structure of human chromosomes, we determined that 79.6% of the chromosomal rearrangements happen among DNA fragments in close spatial proximity, especially when two endpoints stay in a similar replication phase. We demonstrated evidences that microhomology-mediated break-induced replication was utilized as a mechanism in inducing ~40.9% of the identified genomic changes in gastric tumor. Our data analyses revealed potential integrations of Helicobacter pylori DNA into the gastric cancer genomes. Overall a large set of novel genomic variations were detected in these gastric cancer genomes, which may be essential to the study of the genetic basis and molecular mechanism of the gastric tumorigenesis. PMID:25422082

  3. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences

    PubMed Central

    2010-01-01

    Background In today's age of genomic discovery, no attempt has been made to comprehensively sequence a gymnosperm genome. The largest genus in the coniferous family Pinaceae is Pinus, whose 110-120 species have extremely large genomes (c. 20-40 Gb, 2N = 24). The size and complexity of these genomes have prompted much speculation as to the feasibility of completing a conifer genome sequence. Conifer genomes are reputed to be highly repetitive, but there is little information available on the nature and identity of repetitive units in gymnosperms. The pines have extensive genetic resources, with approximately 329000 ESTs from eleven species and genetic maps in eight species, including a dense genetic map of the twelve linkage groups in Pinus taeda. Results We present here the Sanger sequence and annotation of ten P. taeda BAC clones and Genome Analyzer II whole genome shotgun (WGS) sequences representing 7.5% of the genome. Computational annotation of ten BACs predicts three putative protein-coding genes and at least fifteen likely pseudogenes in nearly one megabase of sequence. We found three conifer-specific LTR retroelements in the BACs, and tentatively identified at least 15 others based on evidence from the distantly related angiosperms. Alignment of WGS sequences to the BACs indicates that 80% of BAC sequences have similar copies (≥ 75% nucleotide identity) elsewhere in the genome, but only 23% have identical copies (99% identity). The three most common repetitive elements in the genome were identified and, when combined, represent less than 5% of the genome. Conclusions This study indicates that the majority of repeats in the P. taeda genome are 'novel' and will therefore require additional BAC or genomic sequencing for accurate characterization. The pine genome contains a very large number of diverged and probably defunct repetitive elements. This study also provides new evidence that sequencing a pine genome using a WGS approach is a feasible goal. PMID

  4. Next-generation sequencing strategies for characterizing the turkey genome.

    PubMed

    Dalloul, Rami A; Zimin, Aleksey V; Settlage, Robert E; Kim, Sungwon; Reed, Kent M

    2014-02-01

    The turkey genome sequencing project was initiated in 2008 and has relied primarily on next-generation sequencing (NGS) technologies. Our first efforts used a synergistic combination of 2 NGS platforms (Roche/454 and Illumina GAII), detailed bacterial artificial chromosome (BAC) maps, and unique assembly tools to sequence and assemble the genome of the domesticated turkey, Meleagris gallopavo. Since the first release in 2010, efforts to improve the genome assembly, gene annotation, and genomic analyses continue. The initial assembly build (2.01) represented about 89% of the genome sequence with 17X coverage depth (931 Mb). Sequence contigs were assigned to 30 of the 40 chromosomes with approximately 10% of the assembled sequence corresponding to unassigned chromosomes (ChrUn). The sequence has been refined through both genome-wide and area-focused sequencing, including shotgun and paired-end sequencing, and targeted sequencing of chromosomal regions with low or incomplete coverage. These additional efforts have improved the sequence assembly resulting in 2 subsequent genome builds of higher genome coverage (25X/Build3.0 and 30X/Build4.0) with a current sequence totaling 1,010 Mb. Further, BAC with end sequences assigned to the Z/W and MG18 (MHC) chromosomes, ChrUn, or not placed in the previous build were isolated, deeply sequenced (Hi-Seq), and incorporated into the latest build (5.0). To aid in the annotation and to generate a gene expression atlas of major tissues, a comprehensive set of RNA samples was collected at various developmental stages of female and male turkeys. Transcriptome sequencing data (using Illumina Hi-Seq) will provide information to enhance the final assembly and ultimately improve sequence annotation. The most current sequence covers more than 95% of the turkey genome and should yield a much improved gene level of annotation, making it a valuable resource for studying genetic variations underlying economically important traits in poultry.

  5. Rapid evolutionary divergence of Gossypium barbadense and G. hirsutum mitochondrial genomes.

    PubMed

    Tang, Mingyong; Chen, Zhiwen; Grover, Corrinne E; Wang, Yumei; Li, Shuangshuang; Liu, Guozheng; Ma, Zhiying; Wendel, Jonathan F; Hua, Jinping

    2015-10-12

    The mitochondrial genome from upland cotton, G. hirsutum, was previously sequenced. To elucidate the evolution of mitochondrial genomic diversity within a single genus, we sequenced the mitochondrial genome from Sea Island cotton (Gossypium barbadense L.). Mitochondrial DNA from week-old etiolated seedlings was extracted from isolated organelles using discontinuous sucrose density gradient method. Mitochondrial genome was sequenced with Solexa using paired-end, 90 bp read. The clean reads were assembled into contigs using ABySS and finished via additional fosmid and BAC sequencing. Finally, the genome was annotated and analyzed using different softwares. The G. barbadense (Sea Island cotton) mitochondrial genome was fully sequenced (677,434-bp) and compared to the mitogenome of upland cotton. The G. barbadense mitochondrial DNA contains seven more genes than that of upland cotton, with a total of 40 protein coding genes (excluding possible pseudogenes), 6 rRNA genes, and 29 tRNA genes. Of these 75 genes, atp1, mttB, nad4, nad9, rrn5, rrn18, and trnD(GTC)-cp were each represented by two identical copies. A single 64 kb repeat was largely responsible for the 9 % difference in genome size between the two mtDNAs. Comparison of genome structures between the two mitochondrial genomes revealed 8 rearranged syntenic regions and several large repeats. The largest repeat was missing from the master chromosome in G. hirsutum. Both mitochondrial genomes contain a duplicated copy of rps3 (rps3-2) in conjunction with a duplication of repeated sequences. Phylogenetic and divergence considerations suggest that a 544-bp fragment of rps3 was transferred to the nuclear genome shortly after divergence of the A- and D- genome diploid cottons. These results highlight the insights to the evolution of structural variation between Sea Island and upland cotton mitochondrial genomes.

  6. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing

    PubMed Central

    Staton, Margaret; Best, Teodora; Khodwekar, Sudhir; Owusu, Sandra; Xu, Tao; Xu, Yi; Jennings, Tara; Cronn, Richard; Arumuganathan, A. Kathiravetpilla; Coggeshall, Mark; Gailing, Oliver; Liang, Haiying; Romero-Severson, Jeanne; Schlarbaum, Scott; Carlson, John E.

    2015-01-01

    Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence. PMID:26698853

  7. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing.

    PubMed

    Staton, Margaret; Best, Teodora; Khodwekar, Sudhir; Owusu, Sandra; Xu, Tao; Xu, Yi; Jennings, Tara; Cronn, Richard; Arumuganathan, A Kathiravetpilla; Coggeshall, Mark; Gailing, Oliver; Liang, Haiying; Romero-Severson, Jeanne; Schlarbaum, Scott; Carlson, John E

    2015-01-01

    Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence.

  8. Rapid coastal spread of First Americans: Novel insights from South America's Southern Cone mitochondrial genomes

    PubMed Central

    Bodner, Martin; Perego, Ugo A.; Huber, Gabriela; Fendt, Liane; Röck, Alexander W.; Zimmermann, Bettina; Olivieri, Anna; Gómez-Carballa, Alberto; Lancioni, Hovirag; Angerhofer, Norman; Bobillo, Maria Cecilia; Corach, Daniel; Woodward, Scott R.; Salas, Antonio; Achilli, Alessandro; Torroni, Antonio; Bandelt, Hans-Jürgen; Parson, Walther

    2012-01-01

    It is now widely agreed that the Native American founders originated from a Beringian source population ∼15–18 thousand years ago (kya) and rapidly populated all of the New World, probably mainly following the Pacific coastal route. However, details about the migration into the Americas and the routes pursued on the continent still remain unresolved, despite numerous genetic, archaeological, and linguistic investigations. To examine the pioneering peopling phase of the South American continent, we screened literature and mtDNA databases and identified two novel mitochondrial DNA (mtDNA) clades, here named D1g and D1j, within the pan-American haplogroup D1. They both show overall rare occurrences but local high frequencies, and are essentially restricted to populations from the Southern Cone of South America (Chile and Argentina). We selected and completely sequenced 43 D1g and D1j mtDNA genomes applying highest quality standards. Molecular and phylogeographic analyses revealed extensive variation within each of the two clades and possibly distinct dispersal patterns. Their age estimates agree with the dating of the earliest archaeological sites in South America and indicate that the Paleo-Indian spread along the entire longitude of the American double continent might have taken even <2000 yr. This study confirms that major sampling and sequencing efforts are mandatory for uncovering all of the most basal variation in the Native American mtDNA haplogroups and for clarification of Paleo-Indian migrations, by targeting, if possible, both the general mixed population of national states and autochthonous Native American groups, especially in South America. PMID:22333566

  9. Rapid coastal spread of First Americans: novel insights from South America's Southern Cone mitochondrial genomes.

    PubMed

    Bodner, Martin; Perego, Ugo A; Huber, Gabriela; Fendt, Liane; Röck, Alexander W; Zimmermann, Bettina; Olivieri, Anna; Gómez-Carballa, Alberto; Lancioni, Hovirag; Angerhofer, Norman; Bobillo, Maria Cecilia; Corach, Daniel; Woodward, Scott R; Salas, Antonio; Achilli, Alessandro; Torroni, Antonio; Bandelt, Hans-Jürgen; Parson, Walther

    2012-05-01

    It is now widely agreed that the Native American founders originated from a Beringian source population ~15-18 thousand years ago (kya) and rapidly populated all of the New World, probably mainly following the Pacific coastal route. However, details about the migration into the Americas and the routes pursued on the continent still remain unresolved, despite numerous genetic, archaeological, and linguistic investigations. To examine the pioneering peopling phase of the South American continent, we screened literature and mtDNA databases and identified two novel mitochondrial DNA (mtDNA) clades, here named D1g and D1j, within the pan-American haplogroup D1. They both show overall rare occurrences but local high frequencies, and are essentially restricted to populations from the Southern Cone of South America (Chile and Argentina). We selected and completely sequenced 43 D1g and D1j mtDNA genomes applying highest quality standards. Molecular and phylogeographic analyses revealed extensive variation within each of the two clades and possibly distinct dispersal patterns. Their age estimates agree with the dating of the earliest archaeological sites in South America and indicate that the Paleo-Indian spread along the entire longitude of the American double continent might have taken even <2000 yr. This study confirms that major sampling and sequencing efforts are mandatory for uncovering all of the most basal variation in the Native American mtDNA haplogroups and for clarification of Paleo-Indian migrations, by targeting, if possible, both the general mixed population of national states and autochthonous Native American groups, especially in South America.

  10. Identification and characterization of abundant repetitive sequences in Eragrostis tef cv. Enatite genome.

    PubMed

    Gebre, Yohannes Gedamu; Bertolini, Edoardo; Pè, Mario Enrico; Zuccolo, Andrea

    2016-02-01

    Eragrostis tef is an allotetraploid (2n = 4 × = 40) annual, C4 grass with an estimated nuclear genome size of 730 Mbp. It is widely grown in Ethiopia, where it provides basic nutrition for more than half of the population. Although a draft assembly of the E. tef genome was made available in 2014, characterization of the repetitive portion of the E. tef genome has not been a subject of a detailed analysis. Repetitive sequences constitute most of the DNA in eukaryotic genomes. Transposable elements are usually the most abundant repetitive component in plant genomes. They contribute to genome size variation, cause mutations, can result in chromosomal rearrangements, and influence gene regulation. An extensive and in depth characterization of the repetitive component is essential in understanding the evolution and function of the genome. Using new paired-end sequence data and a de novo repeat identification strategy, we identified the most repetitive elements in the E. tef genome. Putative repeat sequences were annotated based on similarity to known repeat groups in other grasses. Altogether we identified 1,389 medium/highly repetitive sequences that collectively represent about 27% of the teff genome. Phylogenetic analyses of the most important classes of TEs were carried out in a comparative framework including paralog elements from rice and maize. Finally, an abundant tandem repeat accounting for more than 4% of the whole genome was identified and partially characterized. Analyzing a large sample of randomly sheared reads we obtained a library of the repetitive sequences of E. tef. The approach we used was designed to avoid underestimation of repeat contribution; such underestimation is characteristic of whole genome assembly projects. The data collected represent a valuable resource for further analysis of the genome of this important orphan crop.

  11. Characterization of noncoding regulatory DNA in the human genome.

    PubMed

    Elkon, Ran; Agami, Reuven

    2017-08-08

    Genetic variants associated with common diseases are usually located in noncoding parts of the human genome. Delineation of the full repertoire of functional noncoding elements, together with efficient methods for probing their biological roles, is therefore of crucial importance. Over the past decade, DNA accessibility and various epigenetic modifications have been associated with regulatory functions. Mapping these features across the genome has enabled researchers to begin to document the full complement of putative regulatory elements. High-throughput reporter assays to probe the functions of regulatory regions have also been developed but these methods separate putative regulatory elements from the chromosome so that any effects of chromatin context and long-range regulatory interactions are lost. Definitive assignment of function(s) to putative cis-regulatory elements requires perturbation of these elements. Genome-editing technologies are now transforming our ability to perturb regulatory elements across entire genomes. Interpretation of high-throughput genetic screens that incorporate genome editors might enable the construction of an unbiased map of functional noncoding elements in the human genome.

  12. A universal, rapid, and inexpensive method for genomic DNA isolation from the whole blood of mammals and birds.

    PubMed

    Al-Shuhaib Mohammed Baqur, Sahib A

    2017-03-01

    There is no 'one' procedure for extracting DNA from the whole blood of both mammals and birds, since each species has a unique property that require different methods to release its own DNA. Therefore, to obtain genomic DNA, a universal, rapid, and noncostly method was developed. A very simple biological basis is followed in this procedure, in which, when the blood is placed in water, it rapidly enters the RBCs by osmosis and causes cells to burst by hemolysis. The validity of extracting genomic DNA was confirmed by several molecular biological experiments. It was found that this method provides an efficient and versatile alternative for extracting bulk amounts of highly-qualified DNA from the blood of a wide range of species. This is the first manuscript that describes use of distilled water as the only eliminator of RBCs among all other known DNA extraction techniques.

  13. Analyses of Charophyte Chloroplast Genomes Help Characterize the Ancestral Chloroplast Genome of Land Plants

    PubMed Central

    Civáň, Peter; Foster, Peter G.; Embley, Martin T.; Séneca, Ana; Cox, Cymon J.

    2014-01-01

    Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes. PMID:24682153

  14. Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants.

    PubMed

    Civaň, Peter; Foster, Peter G; Embley, Martin T; Séneca, Ana; Cox, Cymon J

    2014-04-01

    Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes.

  15. Rapid and inexpensive whole-genome genotyping-by-sequencing for crossover localization and fine-scale genetic mapping.

    PubMed

    Rowan, Beth A; Patel, Vipul; Weigel, Detlef; Schneeberger, Korbinian

    2015-01-13

    The reshuffling of existing genetic variation during meiosis is important both during evolution and in breeding. The reassortment of genetic variants relies on the formation of crossovers (COs) between homologous chromosomes. The pattern of genome-wide CO distributions can be rapidly and precisely established by the short-read sequencing of individuals from F2 populations, which in turn are useful for quantitative trait locus (QTL) mapping. Although sequencing costs have decreased precipitously in recent years, the costs of library preparation for hundreds of individuals have remained high. To enable rapid and inexpensive CO detection and QTL mapping using low-coverage whole-genome sequencing of large mapping populations, we have developed a new method for library preparation along with Trained Individual GenomE Reconstruction, a probabilistic method for genotype and CO predictions for recombinant individuals. In an example case with hundreds of F2 individuals from two Arabidopsis thaliana accessions, we resolved most CO breakpoints to within 2 kb and reduced a major flowering time QTL to a 9-kb interval. In addition, an extended region of unusually low recombination revealed a 1.8-Mb inversion polymorphism on the long arm of chromosome 4. We observed no significant differences in the frequency and distribution of COs between F2 individuals with and without a functional copy of the DNA helicase gene RECQ4A. In summary, we present a new, cost-efficient method for large-scale, high-precision genotyping-by-sequencing. Copyright © 2015 Rowan et al.

  16. Beyond genomic variation--comparison and functional annotation of three Brassica rapa genomes: a turnip, a rapid cycling and a Chinese cabbage.

    PubMed

    Lin, Ke; Zhang, Ningwen; Severing, Edouard I; Nijveen, Harm; Cheng, Feng; Visser, Richard G F; Wang, Xiaowu; de Ridder, Dick; Bonnema, Guusje

    2014-03-31

    Brassica rapa is an economically important crop species. During its long breeding history, a large number of morphotypes have been generated, including leafy vegetables such as Chinese cabbage and pakchoi, turnip tuber crops and oil crops. To investigate the genetic variation underlying this morphological variation, we re-sequenced, assembled and annotated the genomes of two B. rapa subspecies, turnip crops (turnip) and a rapid cycling. We then analysed the two resulting genomes together with the Chinese cabbage Chiifu reference genome to obtain an impression of the B. rapa pan-genome. The number of genes with protein-coding changes between the three genotypes was lower than that among different accessions of Arabidopsis thaliana, which can be explained by the smaller effective population size of B. rapa due to its domestication. Based on orthology to a number of non-brassica species, we estimated the date of divergence among the three B. rapa morphotypes at approximately 250,000 YA, far predating Brassica domestication (5,000-10,000 YA). By analysing genes unique to turnip we found evidence for copy number differences in peroxidases, pointing to a role for the phenylpropanoid biosynthesis pathway in the generation of morphological variation. The estimated date of divergence among three B. rapa morphotypes implies that prior to domestication there was already considerably divergence among B. rapa genotypes. Our study thus provides two new B. rapa reference genomes, delivers a set of computer tools to analyse the resulting pan-genome and uses these to shed light on genetic drivers behind the rich morphological variation found in B. rapa.

  17. BAC-pool 454-sequencing: A rapid and efficient approach to sequence complex tetraploid cotton genomes

    USDA-ARS?s Scientific Manuscript database

    New and emerging next generation sequencing technologies have been promising in reducing sequencing costs, but not significantly for complex polyploid plant genomes such as cotton. Large and highly repetitive genome of G. hirsutum (~2.5GB) is less amenable and cost-intensive with traditional BAC-by...

  18. Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat

    USDA-ARS?s Scientific Manuscript database

    In hexaploid wheat (Triticum aestivum L.) (AABBDD, C=17,000Mb), repeat DNA accounts for ~ 90% of the genome of which transposable elements (TEs) constitute 60-80 %. Despite the dynamic evolution of TEs, our previous study indicated that the majority of TEs between the homologous wheat genomes are co...

  19. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST)

    PubMed Central

    Overbeek, Ross; Olson, Robert; Pusch, Gordon D.; Olsen, Gary J.; Davis, James J.; Disz, Terry; Edwards, Robert A.; Gerdes, Svetlana; Parrello, Bruce; Shukla, Maulik; Vonstein, Veronika; Wattam, Alice R.; Xia, Fangfang; Stevens, Rick

    2014-01-01

    In 2004, the SEED (http://pubseed.theseed.org/) was created to provide consistent and accurate genome annotations across thousands of genomes and as a platform for discovering and developing de novo annotations. The SEED is a constantly updated integration of genomic data with a genome database, web front end, API and server scripts. It is used by many scientists for predicting gene functions and discovering new pathways. In addition to being a powerful database for bioinformatics research, the SEED also houses subsystems (collections of functionally related protein families) and their derived FIGfams (protein families), which represent the core of the RAST annotation engine (http://rast.nmpdr.org/). When a new genome is submitted to RAST, genes are called and their annotations are made by comparison to the FIGfam collection. If the genome is made public, it is then housed within the SEED and its proteins populate the FIGfam collection. This annotation cycle has proven to be a robust and scalable solution to the problem of annotating the exponentially increasing number of genomes. To date, >12 000 users worldwide have annotated >60 000 distinct genomes using RAST. Here we describe the interconnectedness of the SEED database and RAST, the RAST annotation pipeline and updates to both resources. PMID:24293654

  20. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST).

    PubMed

    Overbeek, Ross; Olson, Robert; Pusch, Gordon D; Olsen, Gary J; Davis, James J; Disz, Terry; Edwards, Robert A; Gerdes, Svetlana; Parrello, Bruce; Shukla, Maulik; Vonstein, Veronika; Wattam, Alice R; Xia, Fangfang; Stevens, Rick

    2014-01-01

    In 2004, the SEED (http://pubseed.theseed.org/) was created to provide consistent and accurate genome annotations across thousands of genomes and as a platform for discovering and developing de novo annotations. The SEED is a constantly updated integration of genomic data with a genome database, web front end, API and server scripts. It is used by many scientists for predicting gene functions and discovering new pathways. In addition to being a powerful database for bioinformatics research, the SEED also houses subsystems (collections of functionally related protein families) and their derived FIGfams (protein families), which represent the core of the RAST annotation engine (http://rast.nmpdr.org/). When a new genome is submitted to RAST, genes are called and their annotations are made by comparison to the FIGfam collection. If the genome is made public, it is then housed within the SEED and its proteins populate the FIGfam collection. This annotation cycle has proven to be a robust and scalable solution to the problem of annotating the exponentially increasing number of genomes. To date, >12 000 users worldwide have annotated >60 000 distinct genomes using RAST. Here we describe the interconnectedness of the SEED database and RAST, the RAST annotation pipeline and updates to both resources.

  1. Genome sequence and characterization of the Tsukamurella bacteriophage TPA2.

    PubMed

    Petrovski, Steve; Seviour, Robert J; Tillett, Daniel

    2011-02-01

    The formation of stable foam in activated sludge plants is a global problem for which control is difficult. These foams are often stabilized by hydrophobic mycolic acid-synthesizing Actinobacteria, among which are Tsukamurella spp. This paper describes the isolation from activated sludge of the novel double-stranded DNA phage TPA2. This polyvalent Siphoviridae family phage is lytic for most Tsukamurella species. Whole-genome sequencing reveals that the TPA2 genome is circularly permuted (61,440 bp) and that 70% of its sequence is novel. We have identified 78 putative open reading frames, 95 pairs of inverted repeats, and 6 palindromes. The TPA2 genome has a modular gene structure that shares some similarity to those of Mycobacterium phages. A number of the genes display a mosaic architecture, suggesting that the TPA2 genome has evolved at least in part from genetic recombination events. The genome sequence reveals many novel genes that should inform any future discussion on Tsukamurella phage evolution.

  2. Characterization of evolutionary rates and constraints in three mammalian genomes

    SciTech Connect

    Cooper, Gregory M.; Brudno, Michael; Stone, Eric A.; Dubchak, Inna; Batzoglou, Serafim; Sidow, Arend

    2004-02-15

    We present an analysis of rates and patterns of microevolutionary phenomena that have shaped the human, mouse, and rat genomes since their last common ancestor. We find evidence for a shift in the mutational spectrum between the mouse and rat lineages, with the net effect being a relative increase in GC content in the rat genome. Our estimate for the neutral point substitution rate separating the two rodents is 0.196 substitutions per site, and 0.65 substitutions per site for the tree relating all three mammals. Small insertions and deletions of 1-10 bp in length (''microindels'') occur at approximately 5 percent of the point substitution rate. Inferred regional correlations in evolutionary rates between lineages and between types of sites support the idea that rates of evolution are influenced by local genomic or cell biological context. No substantial correlations between rates of point substitutions and rates of microindels are found, however, implying that the influences that affect these processes are distinct. Finally, we have identified those regions in the human genome that are evolving slowly, which are likely to include functional elements important to human biology. At least 5 percent of the human genome is under substantial constraint, most of which is noncoding.

  3. Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis.

    PubMed

    Zhu, Huayu; Song, Pengyao; Koo, Dal-Hoe; Guo, Luqin; Li, Yanman; Sun, Shouru; Weng, Yiqun; Yang, Luming

    2016-08-05

    Microsatellite markers are one of the most informative and versatile DNA-based markers used in plant genetic research, but their development has traditionally been difficult and costly. The whole genome sequencing with next-generation sequencing (NGS) technologies provides large amounts of sequence data to develop numerous microsatellite markers at whole genome scale. SSR markers have great advantage in cross-species comparisons and allow investigation of karyotype and genome evolution through highly efficient computation approaches such as in silico PCR. Here we described genome wide development and characterization of SSR markers in the watermelon (Citrullus lanatus) genome, which were then use in comparative analysis with two other important crop species in the Cucurbitaceae family: cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). We further applied these markers in evaluating the genetic diversity and population structure in watermelon germplasm collections. A total of 39,523 microsatellite loci were identified from the watermelon draft genome with an overall density of 111 SSRs/Mbp, and 32,869 SSR primers were designed with suitable flanking sequences. The dinucleotide SSRs were the most common type representing 34.09 % of the total SSR loci and the AT-rich motifs were the most abundant in all nucleotide repeat types. In silico PCR analysis identified 832 and 925 SSR markers with each having a single amplicon in the cucumber and melon draft genome, respectively. Comparative analysis with these cross-species SSR markers revealed complicated mosaic patterns of syntenic blocks among the genomes of three species. In addition, genetic diversity analysis of 134 watermelon accessions with 32 highly informative SSR loci placed these lines into two groups with all accessions of C.lanatus var. citorides and three accessions of C. colocynthis clustered in one group and all accessions of C. lanatus var. lanatus and the remaining accessions of C. colocynthis

  4. Genome characterization of a bovine papillomavirus type 5 from cattle in the Amazon region, Brazil.

    PubMed

    da Silva, Flavio R C; Daudt, Cíntia; Cibulski, Samuel P; Weber, Matheus N; Varela, Ana Paula M; Mayer, Fabiana Q; Roehe, Paulo M; Canal, Cláudio W

    2017-02-01

    Papillomaviruses are small and complex viruses with circular DNA genome that belongs to the Papillomavirus family, which comprises at least 39 genera. The bovine papillomavirus (BPV) causes an infectious disease that is characterized by chronic and proliferative benign tumors that affect cattle worldwide. In the present work, the full genome sequence of BPV type 5, an Epsilonpapillomavirus, is reported. The genome was recovered from papillomatous lesions excised from cattle raised in the Amazon region, Northern Brazil. The genome comprises 7836 base pairs and exhibits the archetypal organization of the Papillomaviridae. This is of significance for the study of BPV biology, since currently available full BPV genome sequences are scarce. The availability of genomic information of BPVs can provide better understanding of the differences in genetics and biology of papillomaviruses.

  5. Characterizing genomic alterations in cancer by complementary functional associations | Office of Cancer Genomics

    Cancer.gov

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment.

  6. Characterization of the complete genome sequence of pike fry rhabdovirus.

    PubMed

    Chen, Hong-Lian; Liu, Hong; Liu, Zong-Xiao; He, Jun-Qiang; Gao, Long-Ying; Shi, Xiu-Jie; Jiang, Yu-Lin

    2009-01-01

    The complete genome sequence of pike fry rhabdovirus (PFRV), consisting of 11,097 nucleotides, was determined. The genome contains five genes, encoding the nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G), and RNA-dependent RNA polymerase (L) protein in the order 3'-N-P-M-G-L-5'. 3' leader- and 5' trailer-sequences in the PFRV genome show inverse complementarity. The PFRV proteins share the highest homology to the proteins of spring viremia of carp virus (SVCV), ranging from 55.3 to 91.4%. Phylogenetic analysis of the five proteins showed that PFRV clusters with SVCV and is closely related to the mammalian vesiculoviruses, 903/87, STRV and SCRV.

  7. Genomics-enabled sensor platform for rapid detection of viruses related to disease outbreak.

    SciTech Connect

    Brozik, Susan M; Manginell, Ronald P; Moorman, Matthew W; Xiao, Xiaoyin; Edwards, Thayne L.; Anderson, John Moses; Pfeifer, Kent Bryant; Branch, Darren W.; Wheeler, David Roger; Polsky, Ronen; Lopez, DeAnna M.; Ebel, Gregory D.; Prasad, Abhishek N.; Brozik, James A.; Rudolph, Angela R.; Wong, Lillian P.

    2013-09-01

    Bioweapons and emerging infectious diseases pose growing threats to our national security. Both natural disease outbreak and outbreaks due to a bioterrorist attack are a challenge to detect, taking days after the outbreak to identify since most outbreaks are only recognized through reportable diseases by health departments and reports of unusual diseases by clinicians. In recent decades, arthropod-borne viruses (arboviruses) have emerged as some of the most significant threats to human health. They emerge, often unexpectedly, from cryptic transmission foci causing localized outbreaks that can rapidly spread to multiple continents due to increased human travel and trade. Currently, diagnosis of acute infections requires amplification of viral nucleic acids, which can be costly, highly specific, technically challenging and time consuming. No diagnostic devices suitable for use at the bedside or in an outbreak setting currently exist. The original goals of this project were to 1) develop two highly sensitive and specific diagnostic assays for detecting RNA from a wide range of arboviruses; one based on an electrochemical approach and the other a fluorescent based assay and 2) develop prototype microfluidic diagnostic platforms for preclinical and field testing that utilize the assays developed in goal 1. We generated and characterized suitable primers for West Nile Virus RNA detection. Both optical and electrochemical transduction technologies were developed for DNA-RNA hybridization detection and were implemented in microfluidic diagnostic sensing platforms that were developed in this project.

  8. Genomic characterization of Burkholderia pseudomallei isolates selected for medical countermeasures testing: comparative genomics associated with differential virulence.

    PubMed

    Sahl, Jason W; Allender, Christopher J; Colman, Rebecca E; Califf, Katy J; Schupp, James M; Currie, Bart J; Van Zandt, Kristopher E; Gelhaus, H Carl; Keim, Paul; Tuanyok, Apichai

    2015-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis and a potential bioterrorism agent. In the development of medical countermeasures against B. pseudomallei infection, the US Food and Drug Administration (FDA) animal Rule recommends using well-characterized strains in animal challenge studies. In this study, whole genome sequence data were generated for 6 B. pseudomallei isolates previously identified as candidates for animal challenge studies; an additional 5 isolates were sequenced that were associated with human inhalational melioidosis. A core genome single nucleotide polymorphism (SNP) phylogeny inferred from a concatenated SNP alignment from the 11 isolates sequenced in this study and a diverse global collection of isolates demonstrated the diversity of the proposed Animal Rule isolates. To understand the genomic composition of each isolate, a large-scale blast score ratio (LS-BSR) analysis was performed on the entire pan-genome; this demonstrated the variable composition of genes across the panel and also helped to identify genes unique to individual isolates. In addition, a set of ~550 genes associated with pathogenesis in B. pseudomallei were screened against the 11 sequenced genomes with LS-BSR. Differential gene distribution for 54 virulence-associated genes was observed between genomes and three of these genes were correlated with differential virulence observed in animal challenge studies using BALB/c mice. Differentially conserved genes and SNPs associated with disease severity were identified and could be the basis for future studies investigating the pathogenesis of B. pseudomallei. Overall, the genetic characterization of the 11 proposed Animal Rule isolates provides context for future studies involving B. pseudomallei pathogenesis, differential virulence, and efficacy to therapeutics.

  9. Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts

    PubMed Central

    Guo, Xianwu; Castillo-Ramírez, Santiago; González, Víctor; Bustos, Patricia; Luís Fernández-Vázquez, José; Santamaría, Rosa Isela; Arellano, Jesús; Cevallos, Miguel A; Dávila, Guillermo

    2007-01-01

    Background Fabaceae (legumes) is one of the largest families of flowering plants, and some members are important crops. In contrast to what we know about their great diversity or economic importance, our knowledge at the genomic level of chloroplast genomes (cpDNAs or plastomes) for these crops is limited. Results We sequenced the complete genome of the common bean (Phaseolus vulgaris cv. Negro Jamapa) chloroplast. The plastome of P. vulgaris is a 150,285 bp circular molecule. It has gene content similar to that of other legume plastomes, but contains two pseudogenes, rpl33 and rps16. A distinct inversion occurred at the junction points of trnH-GUG/rpl14 and rps19/rps8, as in adzuki bean [1]. These two pseudogenes and the inversion were confirmed in 10 varieties representing the two domestication centers of the bean. Genomic comparative analysis indicated that inversions generally occur in legume plastomes and the magnitude and localization of insertions/deletions (indels) also vary. The analysis of repeat sequences demonstrated that patterns and sequences of tandem repeats had an important impact on sequence diversification between legume plastomes and tandem repeats did not belong to dispersed repeats. Interestingly, P. vulgaris plastome had higher evolutionary rates of change on both genomic and gene levels than G. max, which could be the consequence of pressure from both mutation and natural selection. Conclusion Legume chloroplast genomes are widely diversified in gene content, gene order, indel structure, abundance and localization of repetitive sequences, intracellular sequence exchange and evolutionary rates. The P. vulgaris plastome is a rapidly evolving genome. PMID:17623083

  10. Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts.

    PubMed

    Guo, Xianwu; Castillo-Ramírez, Santiago; González, Víctor; Bustos, Patricia; Fernández-Vázquez, José Luís; Santamaría, Rosa Isela; Arellano, Jesús; Cevallos, Miguel A; Dávila, Guillermo

    2007-07-10

    Fabaceae (legumes) is one of the largest families of flowering plants, and some members are important crops. In contrast to what we know about their great diversity or economic importance, our knowledge at the genomic level of chloroplast genomes (cpDNAs or plastomes) for these crops is limited. We sequenced the complete genome of the common bean (Phaseolus vulgaris cv. Negro Jamapa) chloroplast. The plastome of P. vulgaris is a 150,285 bp circular molecule. It has gene content similar to that of other legume plastomes, but contains two pseudogenes, rpl33 and rps16. A distinct inversion occurred at the junction points of trnH-GUG/rpl14 and rps19/rps8, as in adzuki bean 1. These two pseudogenes and the inversion were confirmed in 10 varieties representing the two domestication centers of the bean. Genomic comparative analysis indicated that inversions generally occur in legume plastomes and the magnitude and localization of insertions/deletions (indels) also vary. The analysis of repeat sequences demonstrated that patterns and sequences of tandem repeats had an important impact on sequence diversification between legume plastomes and tandem repeats did not belong to dispersed repeats. Interestingly, P. vulgaris plastome had higher evolutionary rates of change on both genomic and gene levels than G. max, which could be the consequence of pressure from both mutation and natural selection. Legume chloroplast genomes are widely diversified in gene content, gene order, indel structure, abundance and localization of repetitive sequences, intracellular sequence exchange and evolutionary rates. The P. vulgaris plastome is a rapidly evolving genome.

  11. Rapid evolution of the compact and unusual mitochondrial genome in the ctenophore, Pleurobrachia bachei.

    PubMed

    Kohn, Andrea B; Citarella, Mathew R; Kocot, Kevin M; Bobkova, Yelena V; Halanych, Kenneth M; Moroz, Leonid L

    2012-04-01

    Ctenophores are one of the most basally branching lineages of metazoans with the largest mitochondrial organelles in the animal kingdom. We sequenced the mitochondrial (mtDNA) genome from the Pacific cidipid ctenophore, Pleurobrachia bachei. The circular mitochondrial genome is 11,016 nts, with only 12 genes, and one of the smallest metazoan mtDNA genomes recorded. The protein coding genes are intronless cox1-3, cob, nad1, 3, 4, 4L and 5. The nad2 and 6 genes are represented as short fragments whereas the atp6 gene was found in the nuclear genome. Only the large ribosomal RNA subunit and two tRNAs were present with possibly the small subunit unidentifiable due to extensive fragmentation. The observed unique features of this mitochondrial genome suggest that nuclear and mitochondrial genomes have evolved at very different rates. This reduced mtDNA genome sharply contrasts with the very large sizes of mtDNA found in other basal metazoans including Porifera (sponges), and Placozoa (Trichoplax). Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Whole-Genome Comparison Reveals Novel Genetic Elements That Characterize the Genome of Industrial Strains of Saccharomyces cerevisiae

    PubMed Central

    Borneman, Anthony R.; Desany, Brian A.; Riches, David; Affourtit, Jason P.; Forgan, Angus H.; Pretorius, Isak S.; Egholm, Michael; Chambers, Paul J.

    2011-01-01

    Human intervention has subjected the yeast Saccharomyces cerevisiae to multiple rounds of independent domestication and thousands of generations of artificial selection. As a result, this species comprises a genetically diverse collection of natural isolates as well as domesticated strains that are used in specific industrial applications. However the scope of genetic diversity that was captured during the domesticated evolution of the industrial representatives of this important organism remains to be determined. To begin to address this, we have produced whole-genome assemblies of six commercial strains of S. cerevisiae (four wine and two brewing strains). These represent the first genome assemblies produced from S. cerevisiae strains in their industrially-used forms and the first high-quality assemblies for S. cerevisiae strains used in brewing. By comparing these sequences to six existing high-coverage S. cerevisiae genome assemblies, clear signatures were found that defined each industrial class of yeast. This genetic variation was comprised of both single nucleotide polymorphisms and large-scale insertions and deletions, with the latter often being associated with ORF heterogeneity between strains. This included the discovery of more than twenty probable genes that had not been identified previously in the S. cerevisiae genome. Comparison of this large number of S. cerevisiae strains also enabled the characterization of a cluster of five ORFs that have integrated into the genomes of the wine and bioethanol strains on multiple occasions and at diverse genomic locations via what appears to involve the resolution of a circular DNA intermediate. This work suggests that, despite the scrutiny that has been directed at the yeast genome, there remains a significant reservoir of ORFs and novel modes of genetic transmission that may have significant phenotypic impact in this important model and industrial species. PMID:21304888

  13. Development and characterization of genomic and expressed SSRs in citrus by genome-wide analysis.

    PubMed

    Liu, Sheng-Rui; Li, Wen-Yang; Long, Dang; Hu, Chun-Gen; Zhang, Jin-Zhi

    2013-01-01

    Microsatellites or simple sequence repeats (SSRs) are one of the most popular sources of genetic markers and play a significant role in plant genetics and breeding. In this study, we identified citrus SSRs in the genome of Clementine mandarin and analyzed their frequency and distribution in different genomic regions. A total of 80,708 SSRs were detected in the genome with an overall density of 268 SSRs/Mb. While di-nucleotide repeats were the most frequent microsatellites in genomic DNA sequence, tetra-nucleotides, which had more repeat units than any other SSR types, had the highest cumulative sequence length. We identified 6,834 transcripts as containing 8,989 SSRs in 33,929 Clementine mandarin transcripts, among which, tri-nucleotide motifs (36.0%) were the most common, followed by di-nucleotide (26.9%) and hexa-nucleotide motifs (15.1%). The motif AG (16.7%) was most abundant among these SSRs, while motifs AAG (6.6%), AAT (5.0%), and TAG (2.2%) were most common among tri-nucleotides. Functional categorization of transcripts containing SSRs revealed that 5,879 (86.0%) of such transcripts had homology with known proteins, GO and KEGG annotation revealed that transcripts containing SSRs were those implicated in diverse biological processes in plants, including binding, development, transcription, and protein degradation. When 27 genomic and 78 randomly selected SSRs were tested on Clementine mandarin, 95 SSRs revealed polymorphism. These 95 SSRs were further deployed on 18 genotypes of the three generas of Rutaceae for the genetic diversity assessment, genomic SSRs generally show low transferability in comparison to SSRs developed from expressed sequences. These transcript-markers identified in our study may provide a valuable genetic and genomic tool for further genetic research and varietal development in citrus, such as diversity study, QTL mapping, molecular breeding, comparative mapping and other genetic analyses.

  14. Characterizing the walnut genome through analyses of BAC end sequences

    USDA-ARS?s Scientific Manuscript database

    Persian walnut (Juglans regia L.) is an economically important tree for its nut crop and timber. To gain insight into the structure and evolution of the walnut genome, we constructed two bacterial artificial chromosome (BAC) libraries, containing a total of 129,024 clones, from in vitro-grown shoots...

  15. Genomic Characterization of Nipah Virus, West Bengal, India

    PubMed Central

    Bandyopadhyay, Bhaswati T.; Ramdasi, Ashwini Y.; Jadi, Ramesh; Patil, Dilip R.; Rahman, Mehebubar; Majumdar, Monalisa; Banerjee, Parthasarthi S.; Hati, Amiyakumar K.; Goswami, Ramaprasad P.; Neogi, Dhruba Kumar; Mishra, Akhilesh C.

    2011-01-01

    An intrafamilial outbreak in West Bengal, India, involving 5 deaths and person-to-person transmission was attributed to Nipah virus. Full-genome sequence of Nipah virus (18,252 nt) amplified from lung tissue showed 99.2% nt and 99.8% aa identity with the Bangladesh-2004 isolate, suggesting a common source of the virus. PMID:21529409

  16. Characterization of reniform nematode genome through shotgun sequencing

    USDA-ARS?s Scientific Manuscript database

    The reniform nematode (RN), a major agricultural pest particularly on cotton in the United States(U.S.), is among the major plant parasitic nematodes for which limited genomic information exists. In this study, over 380 Mb of sequence data were generated from four pooled adult female RN and assembl...

  17. Characterization of the North American beaver (Castor canadensis) papillomavirus genome.

    PubMed

    Rogovskyy, Artem S; Chen, Zigui; Burk, Robert D; Bankhead, Troy

    2014-01-10

    The papillomaviruses comprise a large group of viruses that cause proliferations of the stratified squamous epithelium of skin and mucosa in a variety of animals. An earlier report identified a novel papillomavirus of the North American beaver, Castor canadensis (CcanPV1) that was associated with cutaneous exophytic lesions. In the current study, we determined the sequence of the complete 7435 basepair genome of CcanPV1. The genome contains an Upstream Regulatory Region located between the end of L1 and the start of E6, and seven canonical papillomavirus open reading frames encoding five early (E6, E7, E1, E2, and E4) and two late (L2 and L1) proteins. No E5 open reading frame was detected. Phylogenetic analysis of the CcanPV1 genome places the virus between the genera Kappapapillomavirus and Mupapillomavirus. Analyses of the papillomavirus genomes detected in different species of the order Rodentia indicate these viruses do not form a monophyletic clade. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Cytogenetic characterization and genome size of the medicinal plant Catharanthus roseus (L.) G. Don

    PubMed Central

    Guimarães, Guilherme; Cardoso, Luísa; Oliveira, Helena; Santos, Conceição; Duarte, Patrícia; Sottomayor, Mariana

    2012-01-01

    Background and aims Catharanthus roseus is a highly valuable medicinal plant producing several terpenoid indole alkaloids (TIAs) with pharmaceutical applications, including the anticancer agents vinblastine and vincristine. Due to the interest in its TIAs, C. roseus is one of the most extensively studied medicinal plants and has become a model species for the study of plant secondary metabolism. However, very little is known about the cytogenetics and genome size of this species, in spite of their importance for breeding programmes, TIA genetics and emerging genomic research. Therefore, the present paper provides a karyotype description and fluorescence in situ hybridization (FISH) data for C. roseus, as well as a rigorous characterization of its genome size. Methodology The organization of C. roseus chromosomes was characterized using several DNA/chromatin staining techniques and FISH of rDNA. Genome size was investigated by flow cytometry using an optimized methodology. Principal results The C. roseus full chromosome complement of 2n = 16 includes two metacentric, four subtelocentric and two telocentric chromosome pairs, with the presence of a single nucleolus organizer region in chromosome 6. An easy and reliable flow cytometry protocol for nuclear genome analysis of C. roseus was optimized, and the C-value of this species was estimated to be 1C = 0.76 pg, corresponding to 738 Mbp. Conclusions The organization and size of the C. roseus genome were characterized, providing an important basis for future studies of this important medicinal species, including further cytogenetic mapping, genomics, TIA genetics and breeding programmes. PMID:22479673

  19. Genome characterization of a novel Burkholderia cepacia complex genomovar isolated from dieback affected mango orchards.

    PubMed

    Khan, Asifullah; Asif, Huma; Studholme, David J; Khan, Ishtiaq A; Azim, M Kamran

    2013-11-01

    We characterized the genome of the antibiotic resistant, caseinolytic and non-hemolytic Burkholderia sp. strain TJI49, isolated from mango trees (Mangifera indica L.) with dieback disease. This isolate produced severe disease symptoms on the indicator plants. Next generation DNA sequencing and short-read assembly generated the 60X deep 7,631,934 nucleotide draft genome of Burkholderia sp. TJI49 which comprised three chromosomes and at least one mega plasmid. Genome annotation studies revealed a total 8,992 genes, out of which 8,940 were protein coding genes. Comparative genomics and phylogenetics identified Burkholderia sp. TJI49 as a distinct species of Burkholderia cepacia complex (BCC), closely related to B. multivorans ATCC17616. Genome-wide sequence alignment of this isolate with replicons of BCC members showed conservation of core function genes but considerable variations in accessory genes. Subsystem-based gene annotation identified the active presence of wide spread colonization island and type VI secretion system in Burkholderia sp. TJI49. Sequence comparisons revealed (a) 28 novel ORFs that have no database matches and (b) 23 ORFs with orthologues in species other than Burkholderia, indicating horizontal gene transfer events. Fold recognition of novel ORFs identified genes encoding pertactin autotransporter-like proteins (a constituent of type V secretion system) and Hap adhesion-like proteins (involved in cell-cell adhesion) in the genome of Burkholderia sp. TJI49. The genomic characterization of this isolate provided additional information related to the 'pan-genome' of Burkholderia species.

  20. Genome-culture coevolution promotes rapid divergence of killer whale ecotypes

    PubMed Central

    Foote, Andrew D.; Vijay, Nagarjun; Ávila-Arcos, María C.; Baird, Robin W.; Durban, John W.; Fumagalli, Matteo; Gibbs, Richard A.; Hanson, M. Bradley; Korneliussen, Thorfinn S.; Martin, Michael D.; Robertson, Kelly M.; Sousa, Vitor C.; Vieira, Filipe G.; Vinař, Tomáš; Wade, Paul; Worley, Kim C.; Excoffier, Laurent; Morin, Phillip A.; Gilbert, M. Thomas P.; Wolf, Jochen B.W.

    2016-01-01

    Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and post-zygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step towards an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level. PMID:27243207

  1. Genomic evidence of rapid, global-scale gene flow in a Sulfolobus species.

    PubMed

    Mao, Dominic; Grogan, Dennis

    2012-08-01

    Local populations of Sulfolobus islandicus diverge genetically with geographical separation, and this has been attributed to restricted transfer of propagules imposed by the unfavorable spatial distribution of acidic geothermal habitat. We tested the generality of genetic divergence with distance in Sulfolobus species by analyzing genomes of Sulfolobus acidocaldarius drawn from three populations separated by more than 8000 km. In sharp contrast to S. islandicus, the geographically diverse S. acidocaldarius genomes proved to be nearly identical. We could not link the difference in genome conservation between the two species to a corresponding difference in genome stability or ecological factors affecting propagule dispersal. The results provide the first evidence that genetic isolation of local populations does not result primarily from properties intrinsic to Sulfolobus and the severe discontinuity of its geothermal habitat, but varies with species, and thus may reflect biotic interactions that act after propagule dispersal.

  2. Genome-culture coevolution promotes rapid divergence of killer whale ecotypes.

    PubMed

    Foote, Andrew D; Vijay, Nagarjun; Ávila-Arcos, María C; Baird, Robin W; Durban, John W; Fumagalli, Matteo; Gibbs, Richard A; Hanson, M Bradley; Korneliussen, Thorfinn S; Martin, Michael D; Robertson, Kelly M; Sousa, Vitor C; Vieira, Filipe G; Vinař, Tomáš; Wade, Paul; Worley, Kim C; Excoffier, Laurent; Morin, Phillip A; Gilbert, M Thomas P; Wolf, Jochen B W

    2016-05-31

    Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and post-zygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step towards an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level.

  3. Rapid, Enhanced IV Characterization of Multi-Junction PV Devices under One Sun at NREL: Preprint

    SciTech Connect

    Moriarty, Tom; France, Ryan; Steiner, Myles

    2015-09-15

    Multi-junction technology is rapidly advancing, which puts increasing demands on IV characterization resources. We report on a tool and procedure for fast turn-around of IV data under the reference conditions, but also under controlled variations from the reference conditions. This enhanced data set can improve further iterations of device optimization.

  4. Collision-induced fragmentation accurate mass spectrometric analysis methods to rapidly characterize plant extracts

    USDA-ARS?s Scientific Manuscript database

    The rapid advances in analytical chromatography equipment have made the reliable and reproducible measurement of a wide range of plant chemical components possible. Full chemical characterization of a given plant material is possible with the new mass spectrometers currently available. For phytochem...

  5. Collision-induced fragmentation accurate mass spectrometric analysis methods to rapidly characterize plant extracts

    USDA-ARS?s Scientific Manuscript database

    The rapid advances in analytical chromatography equipment have made the reliable and reproducible measurement of a wide range of plant chemical components possible. Full chemical characterization of a given plant material is possible with the new mass spectrometers currently available. However, th...

  6. Collision-induced fragmentation accurate mass spectrometric analysis methods to rapidly characterize phytochemicals in plant extracts

    USDA-ARS?s Scientific Manuscript database

    The rapid advances in analytical chromatography equipment have made the reliable and reproducible measurement of a wide range of plant chemical components possible. Full chemical characterization of a given plant material is possible with the new mass spectrometers currently available. New methods a...

  7. Rapid and Efficient Genome Editing in Staphylococcus aureus by Using an Engineered CRISPR/Cas9 System.

    PubMed

    Chen, Weizhong; Zhang, Yifei; Yeo, Won-Sik; Bae, Taeok; Ji, Quanjiang

    2017-03-02

    Staphylococcus aureus, a major human pathogen, has been the cause of serious infectious diseases with a high mortality rate. Although genetics is a key means to study S. aureus physiology, such as drug resistance and pathogenesis, genetic manipulation in S. aureus is always time-consuming and labor-intensive. Here we report a CRISPR/Cas9 system (pCasSA) for rapid and efficient genome editing, including gene deletion, insertion, and single-base substitution mutation in S. aureus. The designed pCasSA system is amenable to the assembly of spacers and repair arms by Golden Gate assembly and Gibson assembly, respectively, enabling rapid construction of the plasmids for editing. We further engineered the pCasSA system to be an efficient transcription inhibition system for gene knockdown and possible genome-wide screening. The development of the CRISPR/Cas9-mediated genome editing and transcription inhibition tools will dramatically accelerate drug-target exploration and drug development.

  8. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity.

    PubMed

    Sperschneider, Jana; Gardiner, Donald M; Thatcher, Louise F; Lyons, Rebecca; Singh, Karam B; Manners, John M; Taylor, Jennifer M

    2015-05-19

    Pathogens and hosts are in an ongoing arms race and genes involved in host-pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host-pathogen interactions for experimental verification.

  9. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity

    PubMed Central

    Sperschneider, Jana; Gardiner, Donald M.; Thatcher, Louise F.; Lyons, Rebecca; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.

    2015-01-01

    Pathogens and hosts are in an ongoing arms race and genes involved in host–pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host–pathogen interactions for experimental verification. PMID:25994930

  10. Genomic characterization of Zika virus isolated from Indonesia.

    PubMed

    Yudhaputri, Frilasita A; Trimarsanto, Hidayat; Perkasa, Aditya; Yohan, Benediktus; Haryanto, Sotianingsih; Wiyatno, Ageng; Soebandrio, Amin; Myint, Khin Saw; Ledermann, Jeremy P; Rosenberg, Ronald; Powers, Ann M; Sasmono, R Tedjo

    2017-10-01

    Zika virus (ZIKV) JMB-185 strain was isolated from a febrile patient in Jambi, Indonesia in 2014. To understand its genetic characteristics, we performed whole genome sequencing using the Ion Torrent PGM platform on the supernatant of the first passage. The phylogenetic analysis showed that the isolate was not closely related to the Brazilian ZIKV associated with microcephaly or isolates from the recent Singapore Zika outbreak. Molecular evolution analysis indicated that JMB-185 strain may have been circulating in the Southeast Asia region, including Indonesia since 2000. We observed high nucleotide sequence identity between Indonesia, Thailand, Singapore, and American strains although unique amino acid substitutions were also observed. This report provides information on the genomic characteristics of Indonesian ZIKV which may be used for further studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. FusX: A Rapid One-Step Transcription Activator-Like Effector Assembly System for Genome Science

    PubMed Central

    Ma, Alvin C.; McNulty, Melissa S.; Poshusta, Tanya L.; Campbell, Jarryd M.; Martínez-Gálvez, Gabriel; Argue, David P.; Lee, Han B.; Urban, Mark D.; Bullard, Cassandra E.; Blackburn, Patrick R.; Man, Toni K.; Clark, Karl J.; Ekker, Stephen C.

    2016-01-01

    Transcription activator-like effectors (TALEs) are extremely effective, single-molecule DNA-targeting molecular cursors used for locus-specific genome science applications, including high-precision molecular medicine and other genome engineering applications. TALEs are used in genome engineering for locus-specific DNA editing and imaging, as artificial transcriptional activators and repressors, and for targeted epigenetic modification. TALEs as nucleases (TALENs) are effective editing tools and offer high binding specificity and fewer sequence constraints toward the targeted genome than other custom nuclease systems. One bottleneck of broader TALE use is reagent accessibility. For example, one commonly deployed method uses a multitube, 5-day assembly protocol. Here we describe FusX, a streamlined Golden Gate TALE assembly system that (1) is backward compatible with popular TALE backbones, (2) is functionalized as a single-tube 3-day TALE assembly process, (3) requires only commonly used basic molecular biology reagents, and (4) is cost-effective. More than 100 TALEN pairs have been successfully assembled using FusX, and 27 pairs were quantitatively tested in zebrafish, with each showing high somatic and germline activity. Furthermore, this assembly system is flexible and is compatible with standard molecular biology laboratory tools, but can be scaled with automated laboratory support. To demonstrate, we use a highly accessible and commercially available liquid-handling robot to rapidly and accurately assemble TALEs using the FusX TALE toolkit. Together, the FusX system accelerates TALE-based genomic science applications from basic science screening work for functional genomics testing and molecular medicine applications. PMID:26854857

  12. FusX: A Rapid One-Step Transcription Activator-Like Effector Assembly System for Genome Science.

    PubMed

    Ma, Alvin C; McNulty, Melissa S; Poshusta, Tanya L; Campbell, Jarryd M; Martínez-Gálvez, Gabriel; Argue, David P; Lee, Han B; Urban, Mark D; Bullard, Cassandra E; Blackburn, Patrick R; Man, Toni K; Clark, Karl J; Ekker, Stephen C

    2016-06-01

    Transcription activator-like effectors (TALEs) are extremely effective, single-molecule DNA-targeting molecular cursors used for locus-specific genome science applications, including high-precision molecular medicine and other genome engineering applications. TALEs are used in genome engineering for locus-specific DNA editing and imaging, as artificial transcriptional activators and repressors, and for targeted epigenetic modification. TALEs as nucleases (TALENs) are effective editing tools and offer high binding specificity and fewer sequence constraints toward the targeted genome than other custom nuclease systems. One bottleneck of broader TALE use is reagent accessibility. For example, one commonly deployed method uses a multitube, 5-day assembly protocol. Here we describe FusX, a streamlined Golden Gate TALE assembly system that (1) is backward compatible with popular TALE backbones, (2) is functionalized as a single-tube 3-day TALE assembly process, (3) requires only commonly used basic molecular biology reagents, and (4) is cost-effective. More than 100 TALEN pairs have been successfully assembled using FusX, and 27 pairs were quantitatively tested in zebrafish, with each showing high somatic and germline activity. Furthermore, this assembly system is flexible and is compatible with standard molecular biology laboratory tools, but can be scaled with automated laboratory support. To demonstrate, we use a highly accessible and commercially available liquid-handling robot to rapidly and accurately assemble TALEs using the FusX TALE toolkit. Together, the FusX system accelerates TALE-based genomic science applications from basic science screening work for functional genomics testing and molecular medicine applications.

  13. Identification and Characterization of Genomic Amplifications in Ovarian Serous Carcinoma

    DTIC Science & Technology

    2009-01-01

    was performed by standard protocol with an EnVision System peroxidase kit (DAKO, Carpinteria, CA). Quantitative Real-Time PCR. Real-time PCR for... histology . To further test whether the clinical significance of Rsf-1 ampli- fication and overexpression depended on the arbitrary cutoffs, we...2304 sequencing reactions per day (384 reac- tions/plate × 6 plates/d). This high-throughput platform permits a systemic scan of cancer genome at the

  14. Identification and Characterization of Genomic Amplifications in Ovarian Serous Carcinoma

    DTIC Science & Technology

    2009-07-01

    New Jersey, Piscataway, NJ) was used in the immunohistochemistry study. Immunohistochemistry was performed by standard protocol with an EnVision System ...multivariate analysis adjusted for patient age, clinical stage, and differentiation status of tumor histology . To further test whether the clinical...6 plates/d). This high-throughput platform permits a systemic scan of cancer genome at the nucleo- tide level in a short time [35]. This format has

  15. Identification and Characterization of Genomic Amplifications in Ovarian Serous Carcinoma

    DTIC Science & Technology

    2006-01-01

    squamous carcinoma [23], bladder cancer [24], pancreatic cancer [25], chronic lym- phocytic leukemia [26], and gastric cancer [27,28]. Al- though CGH array...amplifications in pancreatic cancer than conventional comparative genomic hybridization and leads to the identification of novel candidate genes...Lisitsyn N, Wigler M: Cloning the differences between two complex ge- nomes. Science 1993, 259: 946 –951. •• 33 Lucito R, Healy J, Alexander J, et al

  16. Genome-wide characterization of fission yeast DNA replication origins

    PubMed Central

    Heichinger, Christian; Penkett, Christopher J; Bähler, Jürg; Nurse, Paul

    2006-01-01

    Eukaryotic DNA replication is initiated from multiple origins of replication, but little is known about the global regulation of origins throughout the genome or in different types of cell cycles. Here, we identify 401 strong origins and 503 putative weaker origins spaced in total every 14 kb throughout the genome of the fission yeast Schizosaccharomyces pombe. The same origins are used during premeiotic and mitotic S-phases. We found that few origins fire late in mitotic S-phase and that activating the Rad3 dependent S-phase checkpoint by inhibiting DNA replication had little effect on which origins were fired. A genome-wide analysis of eukaryotic origin efficiencies showed that efficiency was variable, with large chromosomal domains enriched for efficient or inefficient origins. Average efficiency is twice as high during mitosis compared with meiosis, which can account for their different S-phase lengths. We conclude that there is a continuum of origin efficiency and that there is differential origin activity in the mitotic and meiotic cell cycles. PMID:17053780

  17. Final progress report, Construction of a genome-wide highly characterized clone resource for genome sequencing

    SciTech Connect

    Nierman, William C.

    2000-02-14

    At TIGR, the human Bacterial Artificial Chromosome (BAC) end sequencing and trimming were with an overall sequencing success rate of 65%. CalTech human BAC libraries A, B, C and D as well as Roswell Park Cancer Institute's library RPCI-11 were used. To date, we have generated >300,000 end sequences from >186,000 human BAC clones with an average read length {approx}460 bp for a total of 141 Mb covering {approx}4.7% of the genome. Over sixty percent of the clones have BAC end sequences (BESs) from both ends representing over five-fold coverage of the genome by the paired-end clones. The average phred Q20 length is {approx}400 bp. This high accuracy makes our BESs match the human finished sequences with an average identity of 99% and a match length of 450 bp, and a frequency of one match per 12.8 kb contig sequence. Our sample tracking has ensured a clone tracking accuracy of >90%, which gives researchers a high confidence in (1) retrieving the right clone from the BA C libraries based on the sequence matches; and (2) building a minimum tiling path of sequence-ready clones across the genome and genome assembly scaffolds.

  18. Genomics-assisted characterization of a breeding collection of Apios americana, an edible tuberous legume

    USDA-ARS?s Scientific Manuscript database

    For species with potential as new crops, rapid improvement may be facilitated by new genomic methods. Apios (Apios americana Medik.), once a staple food source of Native American Indians, produces protein-rich tubers, tolerates a wide range of soils, and symbiotically fixes nitrogen. We report the f...

  19. Using genomic prediction to characterize environments and optimize prediction accuracy in applied breeding data

    USDA-ARS?s Scientific Manuscript database

    Simulation and empirical studies of genomic selection (GS) show accuracies sufficient to generate rapid annual genetic gains. It also shifts the focus from the evaluation of lines to the evaluation of alleles. Consequently, new methods should be developed to optimize the use of large historic multi-...

  20. Genomics-assisted characterization of a breeding collection of Apios americana, an edible tuberous legume

    PubMed Central

    Belamkar, Vikas; Farmer, Andrew D.; Weeks, Nathan T.; Kalberer, Scott R.; Blackmon, William J.; Cannon, Steven B.

    2016-01-01

    For species with potential as new crops, rapid improvement may be facilitated by new genomic methods. Apios (Apios americana Medik.), once a staple food source of Native American Indians, produces protein-rich tubers, tolerates a wide range of soils, and symbiotically fixes nitrogen. We report the first high-quality de novo transcriptome assembly, an expression atlas, and a set of 58,154 SNP and 39,609 gene expression markers (GEMs) for characterization of a breeding collection. Both SNPs and GEMs identify six genotypic clusters in the collection. Transcripts mapped to the Phaseolus vulgaris genome–another phaseoloid legume with the same chromosome number–provide provisional genetic locations for 46,852 SNPs. Linkage disequilibrium decays within 10 kb (based on the provisional genetic locations), consistent with outcrossing reproduction. SNPs and GEMs identify more than 21 marker-trait associations for at least 11 traits. This study demonstrates a holistic approach for mining plant collections to accelerate crop improvement. PMID:27721469

  1. Contributing to Tumor Molecular Characterization Projects with a Global Impact | Office of Cancer Genomics

    Cancer.gov

    My name is Nicholas Griner and I am the Scientific Program Manager for the Cancer Genome Characterization Initiative (CGCI) in the Office of Cancer Genomics (OCG). Until recently, I spent most of my scientific career working in a cancer research laboratory. In my postdoctoral training, my research focused on identifying novel pathways that contribute to both prostate and breast cancers and studying proteins within these pathways that may be targeted with cancer drugs.

  2. Construction of the BAC Library of Small Abalone (Haliotis diversicolor) for Gene Screening and Genome Characterization.

    PubMed

    Jiang, Likun; You, Weiwei; Zhang, Xiaojun; Xu, Jian; Jiang, Yanliang; Wang, Kai; Zhao, Zixia; Chen, Baohua; Zhao, Yunfeng; Mahboob, Shahid; Al-Ghanim, Khalid A; Ke, Caihuan; Xu, Peng

    2016-02-01

    The small abalone (Haliotis diversicolor) is one of the most important aquaculture species in East Asia. To facilitate gene cloning and characterization, genome analysis, and genetic breeding of it, we constructed a large-insert bacterial artificial chromosome (BAC) library, which is an important genetic tool for advanced genetics and genomics research. The small abalone BAC library includes 92,610 clones with an average insert size of 120 Kb, equivalent to approximately 7.6× of the small abalone genome. We set up three-dimensional pools and super pools of 18,432 BAC clones for target gene screening using PCR method. To assess the approach, we screened 12 target genes in these 18,432 BAC clones and identified 16 positive BAC clones. Eight positive BAC clones were then sequenced and assembled with the next generation sequencing platform. The assembled contigs representing these 8 BAC clones spanned 928 Kb of the small abalone genome, providing the first batch of genome sequences for genome evaluation and characterization. The average GC content of small abalone genome was estimated as 40.33%. A total of 21 protein-coding genes, including 7 target genes, were annotated into the 8 BACs, which proved the feasibility of PCR screening approach with three-dimensional pools in small abalone BAC library. One hundred fifty microsatellite loci were also identified from the sequences for marker development in the future. The BAC library and clone pools provided valuable resources and tools for genetic breeding and conservation of H. diversicolor.

  3. Characterization of genomic alterations in radiation-associated breast cancer among childhood cancer survivors, using comparative genomic hybridization (CGH) arrays.

    PubMed

    Yang, Xiaohong R; Killian, J Keith; Hammond, Sue; Burke, Laura S; Bennett, Hunter; Wang, Yonghong; Davis, Sean R; Strong, Louise C; Neglia, Joseph; Stovall, Marilyn; Weathers, Rita E; Robison, Leslie L; Bhatia, Smita; Mabuchi, Kiyohiko; Inskip, Peter D; Meltzer, Paul

    2015-01-01

    Ionizing radiation is an established risk factor for breast cancer. Epidemiologic studies of radiation-exposed cohorts have been primarily descriptive; molecular events responsible for the development of radiation-associated breast cancer have not been elucidated. In this study, we used array comparative genomic hybridization (array-CGH) to characterize genome-wide copy number changes in breast tumors collected in the Childhood Cancer Survivor Study (CCSS). Array-CGH data were obtained from 32 cases who developed a second primary breast cancer following chest irradiation at early ages for the treatment of their first cancers, mostly Hodgkin lymphoma. The majority of these cases developed breast cancer before age 45 (91%, n = 29), had invasive ductal tumors (81%, n = 26), estrogen receptor (ER)-positive staining (68%, n = 19 out of 28), and high proliferation as indicated by high Ki-67 staining (77%, n = 17 out of 22). Genomic regions with low-copy number gains and losses and high-level amplifications were similar to what has been reported in sporadic breast tumors, however, the frequency of amplifications of the 17q12 region containing human epidermal growth factor receptor 2 (HER2) was much higher among CCSS cases (38%, n = 12). Our findings suggest that second primary breast cancers in CCSS were enriched for an "amplifier" genomic subgroup with highly proliferative breast tumors. Future investigation in a larger irradiated cohort will be needed to confirm our findings.

  4. Characterization of Genomic Alterations in Radiation-Associated Breast Cancer among Childhood Cancer Survivors, Using Comparative Genomic Hybridization (CGH) Arrays

    PubMed Central

    Yang, Xiaohong R.; Killian, J. Keith; Hammond, Sue; Burke, Laura S.; Bennett, Hunter; Wang, Yonghong; Davis, Sean R.; Strong, Louise C.; Neglia, Joseph; Stovall, Marilyn; Weathers, Rita E.; Robison, Leslie L.; Bhatia, Smita; Mabuchi, Kiyohiko; Inskip, Peter D.; Meltzer, Paul

    2015-01-01

    Ionizing radiation is an established risk factor for breast cancer. Epidemiologic studies of radiation-exposed cohorts have been primarily descriptive; molecular events responsible for the development of radiation-associated breast cancer have not been elucidated. In this study, we used array comparative genomic hybridization (array-CGH) to characterize genome-wide copy number changes in breast tumors collected in the Childhood Cancer Survivor Study (CCSS). Array-CGH data were obtained from 32 cases who developed a second primary breast cancer following chest irradiation at early ages for the treatment of their first cancers, mostly Hodgkin lymphoma. The majority of these cases developed breast cancer before age 45 (91%, n = 29), had invasive ductal tumors (81%, n = 26), estrogen receptor (ER)-positive staining (68%, n = 19 out of 28), and high proliferation as indicated by high Ki-67 staining (77%, n = 17 out of 22). Genomic regions with low-copy number gains and losses and high-level amplifications were similar to what has been reported in sporadic breast tumors, however, the frequency of amplifications of the 17q12 region containing human epidermal growth factor receptor 2 (HER2) was much higher among CCSS cases (38%, n = 12). Our findings suggest that second primary breast cancers in CCSS were enriched for an “amplifier” genomic subgroup with highly proliferative breast tumors. Future investigation in a larger irradiated cohort will be needed to confirm our findings. PMID:25764003

  5. Rapid prototyping of microbial cell factories via genome-scale engineering.

    PubMed

    Si, Tong; Xiao, Han; Zhao, Huimin

    2015-11-15

    Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Rapid Prototyping of Microbial Cell Factories via Genome-scale Engineering

    PubMed Central

    Si, Tong; Xiao, Han; Zhao, Huimin

    2014-01-01

    Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. PMID:25450192

  7. Complete genome assemblies and methylome characterization in infectious diseases

    USDA-ARS?s Scientific Manuscript database

    Understanding the genetic basis of infectious diseases is a critical component to effective treatments. Because of the rapid evolution of bacterial strains and frequent horizontal transfer of DNA between them, resequencing of new isolates against known reference strains often provides an incomplete ...

  8. Genomic characterization of asymptomatic CT-detected lung cancers.

    PubMed

    Belloni, E; Veronesi, G; Micucci, C; Javan, S; Minardi, S P; Venturini, E; Maisonneuve, P; Volorio, S; Riboni, M; Bellomi, M; Scanagatta, P; Taliento, G; Pelosi, G; Pece, S; Spaggiari, L; Pelicci, P G

    2011-03-03

    Computed tomography (CT) screening of lung cancer allows the detection of early tumors. The objective of our study was to verify whether initial asymptomatic lung cancers, identified by high-resolution low-dose CT (LD-CT) on a high-risk population, show genetic abnormalities that could be indicative of the early events of lung carcinogenesis. We analyzed 78 tumor samples: 21 (pilot population) from heavy smokers with asymptomatic non-screening detected early-stage lung cancers and 57 from 5203 asymptomatic heavy smoker volunteers, who underwent a LD-CT screening study. During surgical resection of the detected tumors, tissue samples were collected and short-term cultures were started for karyotype evaluation. Samples were classified according to the normal (NK) or aneuploid (AK) karyotype. The NK samples were further analyzed by the Affymetrix single-nucleotide polymorphisms (SNPs) technology. Metaphase spreads were obtained in 73.0% of the selected samples: 80.7% showed an AK. A statistically significant correlation was found between presence of vascular invasion and abnormal karyotype. A total of 10 NK samples were suitable for SNPs analysis. Subtle genomic alterations were found in eight tumors, the remaining two showing no evidence to date of chromosomal aberrations anywhere in the genome. Two common regions of amplification were identified at 5p and 8p11. Mutation analysis by direct sequencing was conducted for the K-RAS, TP53 and EGFR genes, confirming data already described for heavy smokers. We show that: (i) the majority of screening-detected tumors are aneuploid; (ii) early-stage tumors tend to harbor a less abnormal karyotype; (iii) whole genome analysis of NK tumors allows for the detection of common regions of copy number variation (such as amplifications at 5p and 8p11), highlighting genes that might be considered candidate markers of early events in lung carcinogenesis.

  9. Characterization of complete mitochondrial genomes of indigenous Mayans in Mexico.

    PubMed

    Mizuno, Fuzuki; Wang, Li; Sugiyama, Saburo; Kurosaki, Kunihiko; Granados, Julio; Gomez-Trejo, Celta; Acuña-Alonzo, Víctor; Ueda, Shintaroh

    2017-08-22

    The authors have previously published the complete mitochondrial genome (mitogenome) sequences of two indigenous Mesoamerican populations, Mazahua (n = 25) and Zapotec (n = 88). This study determined the complete mitogenome sequences of nine unrelated individuals from the indigenous Maya population living in Mexico. Their mitogenome sequences could be classified into either of the haplogroups A2 and C1. Surprisingly, there were no mitogenome sequences (haplotypes) that the Maya, Mazahua, and Zapotec people share in common. This indicates that no genetic exchange, at least matrilineally, has occurred among them.

  10. A novel high-throughput multi-parameter flow cytometry based method for monitoring and rapid characterization of microbiome dynamics in anaerobic systems.

    PubMed

    Dhoble, Abhishek S; Bekal, Sadia; Dolatowski, William; Yanz, Connor; Lambert, Kris N; Bhalerao, Kaustubh D

    2016-11-01

    A novel multidimensional flow cytometry based method has been demonstrated to monitor and rapidly characterize the dynamics of the complex anaerobic microbiome associated with perturbations in external environmental factors. While community fingerprinting provides an estimate of the meta genomic structure, flow cytometry provides a fingerprint of the community morphology including its autofluorescence spectrum in a high-throughput manner. Using anaerobic microbial consortia perturbed with the controlled addition of various carbon sources, it is possible to quantitatively discriminate between divergent microbiome analogous to community fingerprinting techniques using automated ribosomal intergenic spacer analysis (ARISA). The utility of flow cytometry based method has also been demonstrated in a fully functional industry scale anaerobic digester to distinguish between microbiome composition caused by varying hydraulic retention time (HRT). This approach exploits the rich multidimensional information from flow cytometry for rapid characterization of the dynamics of microbial communities.

  11. Current and emerging technologies for rapid detection and characterization of Salmonella in poultry and poultry products.

    PubMed

    Park, Si Hong; Aydin, Muhsin; Khatiwara, Anita; Dolan, Maureen C; Gilmore, David F; Bouldin, Jennifer L; Ahn, Soohyoun; Ricke, Steven C

    2014-04-01

    Salmonella is the leading cause of foodborne illnesses in the United States, and one of the main contributors to salmonellosis is the consumption of contaminated poultry and poultry products. Since deleterious effects of Salmonella on public health and the economy continue to occur, there is an ongoing need to develop more advanced detection methods that can identify Salmonella accurately and rapidly in foods before they reach consumers. Rapid detection and identification methods for Salmonella are considered to be an important component of strategies designed to prevent poultry and poultry product-associated illnesses. In the past three decades, there have been increasing efforts towards developing and improving rapid pathogen detection and characterization methodologies for application to poultry and poultry products. In this review, we discuss molecular methods for detection, identification and genetic characterization of Salmonella associated with poultry and poultry products. In addition, the advantages and disadvantages of the established and emerging rapid detection and characterization methods are addressed for Salmonella in poultry and poultry products. The methods with potential application to the industry are highlighted in this review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release

    PubMed Central

    Nguyen, Michael D.; Venton, B. Jill

    2014-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future. PMID:26900429

  13. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release.

    PubMed

    Nguyen, Michael D; Venton, B Jill

    2015-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future.

  14. Comprehensively identifying and characterizing the missing gene sequences in human reference genome with integrated analytic approaches.

    PubMed

    Chen, Geng; Wang, Charles; Shi, Leming; Tong, Weida; Qu, Xiongfei; Chen, Jiwei; Yang, Jianmin; Shi, Caiping; Chen, Long; Zhou, Peiying; Lu, Bingxin; Shi, Tieliu

    2013-08-01

    The human reference genome is still incomplete and a number of gene sequences are missing from it. The approaches to uncover them, the reasons causing their absence and their functions are less explored. Here, we comprehensively identified and characterized the missing genes of human reference genome with RNA-Seq data from 16 different human tissues. By using a combined approach of genome-guided transcriptome reconstruction coupled with genome-wide comparison, we uncovered 3.78 and 2.37 Mb transcribed regions in the human genome assemblies of Celera and HuRef either missed from their homologous chromosomes of NCBI human reference genome build 37.2 or partially or entirely absent from the reference. We further identified a significant number of novel transcript contigs in each tissue from de novo transcriptome assembly that are unalignable to NCBI build 37.2 but can be aligned to at least one of the genomes from Celera, HuRef, chimpanzee, macaca or mouse. Our analyses indicate that the missing genes could result from genome misassembly, transposition, copy number variation, translocation and other structural variations. Moreover, our results further suggest that a large portion of these missing genes are conserved between human and other mammals, implying their important biological functions. Totally, 1,233 functional protein domains were detected in these missing genes. Collectively, our study not only provides approaches for uncovering the missing genes of a genome, but also proposes the potential reasons causing genes missed from the genome and highlights the importance of uncovering the missing genes of incomplete genomes.

  15. Characterization of Three Mycobacterium spp. with Potential Use in Bioremediation by Genome Sequencing and Comparative Genomics

    PubMed Central

    Das, Sarbashis; Pettersson, B.M. Fredrik; Behra, Phani Rama Krishna; Ramesh, Malavika; Dasgupta, Santanu; Bhattacharya, Alok; Kirsebom, Leif A.

    2015-01-01

    We provide the genome sequences of the type strains of the polychlorophenol-degrading Mycobacterium chlorophenolicum (DSM43826), the degrader of chlorinated aliphatics Mycobacterium chubuense (DSM44219) and Mycobacterium obuense (DSM44075) that has been tested for use in cancer immunotherapy. The genome sizes of M. chlorophenolicum, M. chubuense, and M. obuense are 6.93, 5.95, and 5.58 Mb with GC-contents of 68.4%, 69.2%, and 67.9%, respectively. Comparative genomic analysis revealed that 3,254 genes are common and we predicted approximately 250 genes acquired through horizontal gene transfer from different sources including proteobacteria. The data also showed that the biodegrading Mycobacterium spp. NBB4, also referred to as M. chubuense NBB4, is distantly related to the M. chubuense type strain and should be considered as a separate species, we suggest it to be named Mycobacterium ethylenense NBB4. Among different categories we identified genes with potential roles in: biodegradation of aromatic compounds and copper homeostasis. These are the first nonpathogenic Mycobacterium spp. found harboring genes involved in copper homeostasis. These findings would therefore provide insight into the role of this group of Mycobacterium spp. in bioremediation as well as the evolution of copper homeostasis within the Mycobacterium genus. PMID:26079817

  16. Integrative Genomic Characterization and a Genomic Staging System for Gastrointestinal Stromal Tumors

    PubMed Central

    Ylipää, Antti; Hunt, Kelly K.; Yang, Jilong; Lazar, Alexander J. F.; Torres, Keila E.; Lev, Dina Chelouche; Nykter, Matti; Pollock, Raphael E.; Trent, Jonathan; Zhang, Wei

    2010-01-01

    Gastrointestinal stromal tumors (GISTs) were historically grouped with leiomyosarcomas (LMSs) based on their morphological similarities, but recently they have been unequivocally established as a distinct type of sarcoma based on the molecular features and response to imatinib treatment. To gain further insight into the genomic differences between GISTs and LMSs, we mapped gene copy number aberrations (CNAs) in 42 GISTs and 30 LMSs and integrated them with gene expression profiles. Our studies revealed distinct patterns of CNAs between GISTs and LMSs. Losses in chromosomes 1p, 14q, 15q, and 22q were significantly more frequent in GISTs than in LMSs (P < 0.001), whereas losses in chromosomes 10 and 16 as well as gains in 1q, 14q, and 15q (P < 0.001) were more common in LMSs. By integrating CNAs with gene expression data and clinical information, we found several clinically relevant CNAs that were prognostic of survival in patients with GIST. Furthermore, GISTs were categorized into four groups according to an accumulating pattern of genetic alterations. Many key cellular pathways were differently expressed in the four groups and the patients had increasingly worse prognosis as the extent of genomic alterations increased. These findings lead us to propose a new tumor-progression genetic staging system termed Genomic Instability Stage (GIS) to complement the current prognostic predictive system based on tumor size, mitotic index (MI), and KIT mutation. PMID:20818650

  17. Rapid genome resequencing of an atoxigenic strain of Aspergillus carbonarius

    SciTech Connect

    Cabañes, F. Javier; Sanseverino, Walter; Castellá, Gemma; Bragulat, M. Rosa; Cigliano, Riccardo Aiese; Sánchez, Armand

    2015-03-13

    In microorganisms, Ion Torrent sequencing technology has been proved to be useful in whole-genome sequencing of bacterial genomes (5 Mbp). In our study, for the first time we used this technology to perform a resequencing approach in a whole fungal genome (36 Mbp), a non-ochratoxin A producing strain of Aspergillus carbonarius. Ochratoxin A (OTA) is a potent nephrotoxin which is found mainly in cereals and their products, but it also occurs in a variety of common foods and beverages. Due to the fact that this strain does not produce OTA, we focused some of the bioinformatics analyses in genes involved in OTA biosynthesis, using a reference genome of an OTA producing strain of the same species. This study revealed that in the atoxigenic strain there is a high accumulation of nonsense and missense mutations in several genes. Importantly, a two fold increase in gene mutation ratio was observed in PKS and NRPS encoding genes which are suggested to be involved in OTA biosynthesis.

  18. The genomic landscape of rapid, repeated evolutionary rescue from toxic pollution in wild fish

    USDA-ARS?s Scientific Manuscript database

    Here we describe evolutionary rescue from intense pollution via multiple modes of selection in killifish populations from 4 urban estuaries of the US eastern seaboard. Comparative transcriptomics and analysis of 384 whole genome sequences show that the functioning of a receptor-based signaling pathw...

  19. Comparative Genomics and an Insect Model Rapidly Identify Novel Virulence Genes of Burkholderia mallei

    DTIC Science & Technology

    2008-04-01

    deviations (38), GC con- tents , or GC skews that significantly differ from those of the flanking regions or the genome averages. Nearly 130 CDSs are...Spring Harbor, NY. 46. Miyata, S., M. Casey, D. W. Frank, F. M. Ausubel, and E. Drenkard. 2003. Use of the Galleria mellonella caterpillar as a model host

  20. Next generation sequencing provides rapid access to the genome of wheat stripe rust

    USDA-ARS?s Scientific Manuscript database

    Background: The wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, PST) is responsible for significant yield losses in wheat production worldwide. In spite of its economic importance, the PST genomic sequence is not currently available. Fortunately Next Generation Sequencing (NGS) has ra...

  1. Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    SciTech Connect

    Anderson, Iain; Ulrich, Luke E.; Lupa, Boguslaw; Susanti, Dwi; Porat, Iris; Hooper, Sean D.; Lykidis, Athanasios; Sieprawska-Lupa, Magdalena; Dharmarajan, Lakshmi; Goltsman, Eugene; Lapidus, Alla; Saunders, Elizabeth; Han, Cliff; Land, Miriam; Lucas, Susan; Mukhopadhyay, Biswarup; Whitman, William B.; Woese, Carl; Bristow, James; Kyrpides, Nikos

    2009-05-01

    Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).

  2. Characterization of genome-reduced fission yeast strains

    PubMed Central

    Sasaki, Mayumi; Kumagai, Hiromichi; Takegawa, Kaoru; Tohda, Hideki

    2013-01-01

    The Schizosaccharomyces pombe genome is one of the smallest among the free-living eukaryotes. We further reduced the S. pombe gene number by large-scale gene deletion to identify a minimal gene set required for growth under laboratory conditions. The genome-reduced strain has four deletion regions: 168.4 kb in the left arm of chromosome I, 155.4 kb in the right arm of chromosome I, 211.7 kb in the left arm of chromosome II and 121.6 kb in the right arm of chromosome II. The deletions corresponded to a loss of 223 genes of the original ∼5100. The quadruple-deletion strain, with a total deletion size of 657.3 kb, showed a decreased ability to uptake glucose and some amino acids in comparison with the parental strain. The strain also showed increased gene expression of the mating pheromone M-factor precursor and the nicotinamide adenine dinucleotide phosphate -specific glutamate dehydrogenase. There was also a 2.7-fold increase in the concentration of cellular adenosine triphosphate, and levels of the heterologous proteins, enhanced green fluorescent protein and secreted human growth hormone were increased by 1.7- and 1.8-fold, respectively. The transcriptome data from this study have been submitted to the Gene Expression Omnibus (GEO: http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE38620 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=vjkxjewuywgcovc&acc=GSE38620). PMID:23563150

  3. Comprehensive genomic characterization of head and neck squamous cell carcinomas

    PubMed Central

    2014-01-01

    The Cancer Genome Atlas profiled 279 head and neck squamous cell carcinomas (HNSCCs) to provide a comprehensive landscape of somatic genomic alterations. We find that human papillomavirus-associated (HPV) tumors are dominated by helicase domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification of the cell cycle gene E2F1. Smoking-related HNSCCs demonstrate near universal loss of TP53 mutations and CDKN2A with frequent copy number alterations including a novel amplification of 11q22. A subgroup of oral cavity tumors with favorable clinical outcomes displayed infrequent CNAs in conjunction with activating mutations of HRAS or PIK3CA, coupled with inactivating mutations of CASP8, NOTCH1 and wild-type TP53. Other distinct subgroups harbored novel loss of function alterations of the chromatin modifier NSD1, Wnt pathway genes AJUBA and FAT1, and activation of oxidative stress factor NFE2L2, mainly in laryngeal tumors. Therapeutic candidate alterations were identified in the majority of HNSCC's. PMID:25631445

  4. Comprehensive genomic characterization of head and neck squamous cell carcinomas.

    PubMed

    2015-01-29

    The Cancer Genome Atlas profiled 279 head and neck squamous cell carcinomas (HNSCCs) to provide a comprehensive landscape of somatic genomic alterations. Here we show that human-papillomavirus-associated tumours are dominated by helical domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification of the cell cycle gene E2F1. Smoking-related HNSCCs demonstrate near universal loss-of-function TP53 mutations and CDKN2A inactivation with frequent copy number alterations including amplification of 3q26/28 and 11q13/22. A subgroup of oral cavity tumours with favourable clinical outcomes displayed infrequent copy number alterations in conjunction with activating mutations of HRAS or PIK3CA, coupled with inactivating mutations of CASP8, NOTCH1 and TP53. Other distinct subgroups contained loss-of-function alterations of the chromatin modifier NSD1, WNT pathway genes AJUBA and FAT1, and activation of oxidative stress factor NFE2L2, mainly in laryngeal tumours. Therapeutic candidate alterations were identified in most HNSCCs.

  5. Genomic characterization of methanomicrobiales reveals three classes of methanogens.

    PubMed

    Anderson, Iain; Ulrich, Luke E; Lupa, Boguslaw; Susanti, Dwi; Porat, Iris; Hooper, Sean D; Lykidis, Athanasios; Sieprawska-Lupa, Magdalena; Dharmarajan, Lakshmi; Goltsman, Eugene; Lapidus, Alla; Saunders, Elizabeth; Han, Cliff; Land, Miriam; Lucas, Susan; Mukhopadhyay, Biswarup; Whitman, William B; Woese, Carl; Bristow, James; Kyrpides, Nikos

    2009-06-04

    Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).

  6. Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    SciTech Connect

    Anderson, Iain; Ulrich, Luke; Lupa, Boguslaw; Susanti, Dwi; Porat, I.; Hooper, Sean; Lykidis, A; Sieprawska-Lupa, Magdalena; Dharmarajan, Lakshmi; Goltsman, Eugene; Lapidus, Alla L.; Saunders, Elizabeth H; Han, Cliff; Land, Miriam L; Lucas, Susan; Mukhopadhyay, Biswarup; Whitman, William; Woese, Carl; Bristow, James; Kyrpides, Nikos C

    2009-01-01

    Background Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. Methodology/Principal Findings In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Conclusions/Significance Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).

  7. Characterizing the empirical distribution of prokaryotic genome n-mers in the presence of nullomers.

    PubMed

    Tabb, Loni Philip; Zhao, Wei; Huang, Jingyu; Rosen, Gail L

    2014-10-01

    Characterizing the empirical distribution of the frequency of n-mers is a vital step in understanding the entire genome. This will allow for researchers to examine how complex the genome really is, and move beyond simple, traditional modeling frameworks that are often biased in the presence of abundant and/or extremely rare words. We hypothesize that models based on the negative binomial distribution and its zero-inflated counterpart will characterize the n-mer distributions of genomes better than the Poisson. Our study examined the empirical distribution of the frequency of n-mers (6 ≤ n ≤ 11) in 2,199 genomes. We considered four distributions: Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial (ZINB). The number of genomes that have nullomers in 6-, 7-, and 8-mers was 150, 602 and 2,012, respectively, whereas all of the genomes for the 9-, 10-, and 11-mers had nullomers. In each n-mer considered, the negative binomial model performed the best for at least 93% of the 2,199 genomes; however, a small percentage (i.e., <7%) of the genomes did prefer the ZINB. The negative binomial and zero-inflation distributions extend the traditional Poisson setting and are more flexible in handling overdispersion that can be caused by an increase in nullomers. In an effort to characterize the distribution of the frequency of n-mers, researchers should also consider other discrete distributions that are more flexible and adjust for possible overdispersion.

  8. Rapid genome assembly and comparison decode intrastrain variation in human alphaherpesviruses.

    PubMed

    Parsons, Lance R; Tafuri, Yolanda R; Shreve, Jacob T; Bowen, Christopher D; Shipley, Mackenzie M; Enquist, L W; Szpara, Moriah L

    2015-03-31

    Herpes simplex virus (HSV) is a widespread pathogen that causes epithelial lesions with recurrent disease that manifests over a lifetime. The lifelong aspect of infection results from latent viral infection of neurons, a reservoir from which the virus reactivates periodically. Recent work has demonstrated the breadth of genetic variation in globally distributed HSV strains. However, the amount of variation or capacity for mutation within one strain has not been well studied. Here we developed and applied a streamlined new approach for assembly and comparison of large DNA viral genomes such as HSV-1. This viral genome assembly (VirGA) workflow incorporates a combination of de novo assembly, alignment, and annotation strategies to automate the generation of draft genomes for large viruses. We applied this approach to quantify the amount of variation between clonal derivatives of a common parental virus stock. In addition, we examined the genetic basis for syncytial plaque phenotypes displayed by a subset of these strains. In each of the syncytial strains, we found an identical DNA change, affecting one residue in the gB (UL27) fusion protein. Since these identical mutations could have appeared after extensive in vitro passaging, we applied the VirGA sequencing and comparison approach to two clinical HSV-1 strains isolated from the same patient. One of these strains was syncytial upon first culturing; its sequence revealed the same gB mutation. These data provide insight into the extent and origin of genome-wide intrastrain HSV-1 variation and present useful methods for expansion to in vivo patient infection studies. Herpes simplex virus (HSV) infects more than 70% of adults worldwide, causing epithelial lesions and recurrent disease that manifests over a lifetime. Prior work has demonstrated that HSV strains vary from country to country and between individuals. However, the amount of variation within one strain has not been well studied. To address this, we developed

  9. Whole-genome characterization of chemoresistant ovarian cancer.

    PubMed

    Patch, Ann-Marie; Christie, Elizabeth L; Etemadmoghadam, Dariush; Garsed, Dale W; George, Joshy; Fereday, Sian; Nones, Katia; Cowin, Prue; Alsop, Kathryn; Bailey, Peter J; Kassahn, Karin S; Newell, Felicity; Quinn, Michael C J; Kazakoff, Stephen; Quek, Kelly; Wilhelm-Benartzi, Charlotte; Curry, Ed; Leong, Huei San; Hamilton, Anne; Mileshkin, Linda; Au-Yeung, George; Kennedy, Catherine; Hung, Jillian; Chiew, Yoke-Eng; Harnett, Paul; Friedlander, Michael; Quinn, Michael; Pyman, Jan; Cordner, Stephen; O'Brien, Patricia; Leditschke, Jodie; Young, Greg; Strachan, Kate; Waring, Paul; Azar, Walid; Mitchell, Chris; Traficante, Nadia; Hendley, Joy; Thorne, Heather; Shackleton, Mark; Miller, David K; Arnau, Gisela Mir; Tothill, Richard W; Holloway, Timothy P; Semple, Timothy; Harliwong, Ivon; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Idrisoglu, Senel; Bruxner, Timothy J C; Christ, Angelika N; Poudel, Barsha; Holmes, Oliver; Anderson, Matthew; Leonard, Conrad; Lonie, Andrew; Hall, Nathan; Wood, Scott; Taylor, Darrin F; Xu, Qinying; Fink, J Lynn; Waddell, Nick; Drapkin, Ronny; Stronach, Euan; Gabra, Hani; Brown, Robert; Jewell, Andrea; Nagaraj, Shivashankar H; Markham, Emma; Wilson, Peter J; Ellul, Jason; McNally, Orla; Doyle, Maria A; Vedururu, Ravikiran; Stewart, Collin; Lengyel, Ernst; Pearson, John V; Waddell, Nicola; deFazio, Anna; Grimmond, Sean M; Bowtell, David D L

    2015-05-28

    Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.

  10. Characterization of the mitochondrial genome of Amolops tuberodepressus (Anura: Ranidae).

    PubMed

    Zhang, Chaohua; Xia, Yun; Zeng, Xiaomao

    2016-07-01

    Amolops tuberodepressus is a vulnerable torrent frog, and only know distributed in the Wuliang Mountain in southwestern China. In the present study, the mitochondrial DNA (mtDNA) sequence of A. tuberodepressus was determined. The genome was 18 348 bp in length, and it contained 37 genes (13 protein-coding genes, two ribosomal RNAs, and 22 transfer RNAs), one partial control region and one light strand replication origin. The gene rearrangement was observed within the WANCY tRNA gene cluster region, which similar to other Amolops species. In this paper, we utilized 13 protein-coding genes of A. tuberodepressus and other 10 closely ranid species to construct the species phylogenetic tree to verify the A. tuberodepressus was accuracy.

  11. NUT Midline Carcinoma: Morphoproteomic Characterization with Genomic and Therapeutic Correlates.

    PubMed

    Sun, Hongxia; McGuire, Mary F; Zhang, Songlin; Brown, Robert E

    2015-01-01

    NUT midline carcinoma is a rare entity arising primarily in the midline of teenagers and young adults. Genomically, it is associated with a translocation involving a nuclear protein in testis (NUT) gene with other genes, most commonly, the BRD4 gene. The resultant is a partial or near total block in differentiation of tumor cells into mature squamous elements. Such tumors are resistant to conventional therapy with a reported mean survival at less than 1 year. In this study, we investigated two cases with genomic confirmation as NUT midline carcinoma by morphoproteomic analysis using immunohistochemical antibodies. Our results showed overexpression, largely in the undifferentiated cells of the tumors of: 1) Stemness marker, SRY (sex determining region Y)-box 2 (Sox2); 2) Constitutive activation of the mTORC2 pathway with expression of total insulin-like growth factor-1 receptor (IGF-1R[Tyr1165/1166]), and nuclear p-mTOR (Ser 2448) and p-Akt (Ser 473); and 3) c-Myc, silent mating type information regulation 2 homolog 1 (Sirt1) and histone methyltransferase enhancer of Zeste, Drosophila, homolog 2 (EZH2) as molecular impediments to differentiation. These data were analyzed through the use of QIAGEN's Ingenuity(®) Pathway Analysis (IPA(®), QIAGEN Redwood City, www.qiagen.com/ingenuity). The results established the interconnection of these pathways and molecules, and identified several pharmacogenomic agents--melatonin, metformin, vorinostat, curcumin, and sulforaphane--that have the potential to remove the block in differentiation and lead to the establishment of a more benign form of NUT midline carcinoma.

  12. Characterization of the complete mitochondrial genome of Diphyllobothrium nihonkaiense (Diphyllobothriidae: Cestoda), and development of molecular markers for differentiating fish tapeworms.

    PubMed

    Kim, Kyu-Heon; Jeon, Hyeong-Kyu; Kang, Seokha; Sultana, Tahera; Kim, Gil Jung; Eom, Keeseon; Park, Joong-Ki

    2007-06-30

    We sequenced and characterized the complete mitochondrial genome of the Japanese fish tapeworm D. nihonkaiense. The genome is a circular-DNA molecule of 13607 bp (one nucleotide shorter than that of D. latum mtDNA) containing 12 protein-coding genes (lacking atp8), 22 tRNA genes and two rRNA genes. Gene order and genome content are identical to those of the other cestodes reported thus far, including its congener D. latum. The only exception is Hymenolepis diminuta in which the positions of trnS2 and trnL1 are switched. We tested a PCR-based molecular assay designed to rapidly and accurately differentiate between D. nihonkaiense and D. latum using species-specific primers based on a comparison of their mtDNA sequences. We found the PCR-based system to be very reliable and specific, and suggest that PCR-based identification methods using mtDNA sequences could contribute to the study of the epidemiology and larval ecology of Diphyllobothrium species.

  13. Genetic characterization of dogs via chromosomal analysis and array-based comparative genomic hybridization (aCGH).

    PubMed

    Müller, M H; Reimann-Berg, N; Bullerdiek, J; Murua Escobar, H

    2012-01-01

    The results of cytogenetic and molecular cytogenetic investigations revealed similarities in genetic background and biological behaviour between tumours and genetic diseases of humans and dogs. These findings classify the dog a good and accepted model for human cancers such as osteosarcomas, mammary carcinomas, oral melanomas and others. With the appearance of new studies and advances in canine genome sequencing, the number of known homologies in diseases between these species raised and still is expected to increase. In this context, array-based comparative genomic hybridization (aCGH) provides a novel tool to rapidly characterize numerical aberrations in canine tumours or to detect copy number aberrations between different breeds. As it is possible to spot probes covering the whole genome on each chip to discover copy number aberrations of all chromosomes simultaneously, this method is time-saving and cost-effective - considering the relation of costs and the amount of data obtained. Complemented with traditional methods like karyotyping and fluorescence in situ hybridization (FISH) analyses, the aCGH is able to provide new insights into the underlying causes of canine carcinogenesis.

  14. Efficient CRISPR/Cas9 Plasmids for Rapid and Versatile Genome Editing in Drosophila

    PubMed Central

    Gokcezade, Joseph; Sienski, Grzegorz; Duchek, Peter

    2014-01-01

    The CRISPR-associated RNA-guided nuclease Cas9 has emerged as a powerful tool for genome engineering in a variety of organisms. To achieve efficient gene targeting rates in Drosophila, current approaches require either injection of in vitro transcribed RNAs or injection into transgenic Cas9-expressing embryos. We report a simple and versatile alternative method for CRISPR-mediated genome editing in Drosophila using bicistronic Cas9/sgRNA expression vectors. Gene targeting with this single-plasmid injection approach is as efficient as in transgenic nanos-Cas9 embryos and allows the isolation of targeted knock-out and knock-in alleles by molecular screening within 2 months. Our strategy is independent of genetic background and does not require prior establishment of transgenic flies. PMID:25236734

  15. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques.

    PubMed

    Aljanabi, S M; Martinez, I

    1997-11-15

    A very simple, fast, universally applicable and reproducible method to extract high quality megabase genomic DNA from different organisms is described. We applied the same method to extract high quality complex genomic DNA from different tissues (wheat, barley, potato, beans, pear and almond leaves as well as fungi, insects and shrimps' fresh tissue) without any modification. The method does not require expensive and environmentally hazardous reagents and equipment. It can be performed even in low technology laboratories. The amount of tissue required by this method is approximately 50-100 mg. The quantity and the quality of the DNA extracted by this method is high enough to perform hundreds of PCR-based reactions and also to be used in other DNA manipulation techniques such as restriction digestion, Southern blot and cloning.

  16. POPULATION GENOMICS REVEAL RECENT SPECIATION AND RAPID EVOLUTIONARY ADAPTATION IN POLAR BEARS

    PubMed Central

    Liu, Shiping; Lorenzen, Eline D.; Fumagalli, Matteo; Li, Bo; Harris, Kelley; Xiong, Zijun; Zhou, Long; Korneliussen, Thorfinn Sand; Somel, Mehmet; Babbitt, Courtney; Wray, Greg; Li, Jianwen; He, Weiming; Wang, Zhuo; Fu, Wenjing; Xiang, Xueyan; Morgan, Claire C.; Doherty, Aoife; O’Connell, Mary J.; McInerney, James O.; Born, Erik W.; Dalén, Love; Dietz, Rune; Orlando, Ludovic; Sonne, Christian; Zhang, Guojie; Nielsen, Rasmus; Willerslev, Eske; Wang, Jun

    2014-01-01

    SUMMARY Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyperlipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show that the species diverged only 479–343 thousand years BP. We find that genes on the polar bear lineage have been under stronger positive selection than in brown bears; nine of the top 16 genes under strong positive selection are associated with cardiomyopathy and vascular disease, implying important reorganization of the cardio-vascular system. One of the genes showing the strongest evidence of selection, APOB, encodes the primary lipoprotein component of low-density lipoprotein (LDL); functional mutations in APOB may explain how polar bears are able to cope with life-long elevated LDL levels that are associated with high risk of heart disease in humans. PMID:24813606

  17. Comparative Genomics and stx Phage Characterization of LEE-Negative Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Steyert, Susan R.; Sahl, Jason W.; Fraser, Claire M.; Teel, Louise D.; Scheutz, Flemming; Rasko, David A.

    2012-01-01

    Infection by Escherichia coli and Shigella species are among the leading causes of death due to diarrheal disease in the world. Shiga toxin-producing E. coli (STEC) that do not encode the locus of enterocyte effacement (LEE-negative STEC) often possess Shiga toxin gene variants and have been isolated from humans and a variety of animal sources. In this study, we compare the genomes of nine LEE-negative STEC harboring various stx alleles with four complete reference LEE-positive STEC isolates. Compared to a representative collection of prototype E. coli and Shigella isolates representing each of the pathotypes, the whole genome phylogeny demonstrated that these isolates are diverse. Whole genome comparative analysis of the 13 genomes revealed that in addition to the absence of the LEE pathogenicity island, phage-encoded genes including non-LEE encoded effectors, were absent from all nine LEE-negative STEC genomes. Several plasmid-encoded virulence factors reportedly identified in LEE-negative STEC isolates were identified in only a subset of the nine LEE-negative isolates further confirming the diversity of this group. In combination with whole genome analysis, we characterized the lambdoid phages harboring the various stx alleles and determined their genomic insertion sites. Although the integrase gene sequence corresponded with genomic location, it was not correlated with stx variant, further highlighting the mosaic nature of these phages. The transcription of these phages in different genomic backgrounds was examined. Expression of the Shiga toxin genes, stx1 and/or stx2, as well as the Q genes, were examined with quantitative reverse transcriptase polymerase chain reaction assays. A wide range of basal and induced toxin induction was observed. Overall, this is a first significant foray into the genome space of this unexplored group of emerging and divergent pathogens. PMID:23162798

  18. A novel method of characterizing genetic sequences: genome space with biological distance and applications.

    PubMed

    Deng, Mo; Yu, Chenglong; Liang, Qian; He, Rong L; Yau, Stephen S-T

    2011-03-02

    Most existing methods for phylogenetic analysis involve developing an evolutionary model and then using some type of computational algorithm to perform multiple sequence alignment. There are two problems with this approach: (1) different evolutionary models can lead to different results, and (2) the computation time required for multiple alignments makes it impossible to analyse the phylogeny of a whole genome. This motivates us to create a new approach to characterize genetic sequences. To each DNA sequence, we associate a natural vector based on the distributions of nucleotides. This produces a one-to-one correspondence between the DNA sequence and its natural vector. We define the distance between two DNA sequences to be the distance between their associated natural vectors. This creates a genome space with a biological distance which makes global comparison of genomes with same topology possible. We use our proposed method to analyze the genomes of the new influenza A (H1N1) virus, human rhinoviruses (HRV) and mammalian mitochondrial. The result shows that a triple-reassortant swine virus circulating in North America and the Eurasian swine virus belong to the lineage of the influenza A (H1N1) virus. For the HRV and mammalian mitochondrial genomes, the results coincide with biologists' analyses. Our approach provides a powerful new tool for analyzing and annotating genomes and their phylogenetic relationships. Whole or partial genomes can be handled more easily and more quickly than using multiple alignment methods. Once a genome space has been constructed, it can be stored in a database. There is no need to reconstruct the genome space for subsequent applications, whereas in multiple alignment methods, realignment is needed to add new sequences. Furthermore, one can make a global comparison of all genomes simultaneously, which no other existing method can achieve.

  19. Biophysical and Ultrastructural Characterization of Adeno-Associated Virus Capsid Uncoating and Genome Release

    PubMed Central

    Horowitz, Eric D.; Rahman, K. Shefaet; Bower, Brian D.; Dismuke, David J.; Falvo, Michael R.; Griffith, Jack D.

    2013-01-01

    We describe biophysical and ultrastructural differences in genome release from adeno-associated virus (AAV) capsids packaging wild-type DNA, recombinant single-stranded DNA (ssDNA), or dimeric, self-complementary DNA (scDNA) genomes. Atomic force microscopy and electron microscopy (EM) revealed that AAV particles release packaged genomes and undergo marked changes in capsid morphology upon heating in physiological buffer (pH 7.2). When different AAV capsids packaging ss/scDNA varying in length from 72 to 123% of wild-type DNA (3.4 to 5.8 kb) were incrementally heated, the proportion of uncoated AAV capsids decreased with genome length as observed by EM. Genome release was further characterized by a fluorimetric assay, which demonstrated that acidic pH and high osmotic pressure suppress genome release from AAV particles. In addition, fluorimetric analysis corroborated an inverse correlation between packaged genome length and the temperature needed to induce uncoating. Surprisingly, scAAV vectors required significantly higher temperatures to uncoat than their ssDNA-packaging counterparts. However, externalization of VP1 N termini appears to be unaffected by packaged genome length or self-complementarity. Further analysis by tungsten-shadowing EM revealed striking differences in the morphologies of ssDNA and scDNA genomes upon release from intact capsids. Computational modeling and molecular dynamics simulations suggest that the unusual thermal stability of scAAV vectors might arise from partial base pairing and optimal organization of packaged scDNA. Our work further defines the biophysical mechanisms underlying adeno-associated virus uncoating and genome release. PMID:23269804

  20. Rapid Genome Assembly and Comparison Decode Intrastrain Variation in Human Alphaherpesviruses

    PubMed Central

    Tafuri, Yolanda R.; Shreve, Jacob T.; Bowen, Christopher D.; Shipley, Mackenzie M.; Enquist, L. W.

    2015-01-01

    ABSTRACT Herpes simplex virus (HSV) is a widespread pathogen that causes epithelial lesions with recurrent disease that manifests over a lifetime. The lifelong aspect of infection results from latent viral infection of neurons, a reservoir from which the virus reactivates periodically. Recent work has demonstrated the breadth of genetic variation in globally distributed HSV strains. However, the amount of variation or capacity for mutation within one strain has not been well studied. Here we developed and applied a streamlined new approach for assembly and comparison of large DNA viral genomes such as HSV-1. This viral genome assembly (VirGA) workflow incorporates a combination of de novo assembly, alignment, and annotation strategies to automate the generation of draft genomes for large viruses. We applied this approach to quantify the amount of variation between clonal derivatives of a common parental virus stock. In addition, we examined the genetic basis for syncytial plaque phenotypes displayed by a subset of these strains. In each of the syncytial strains, we found an identical DNA change, affecting one residue in the gB (UL27) fusion protein. Since these identical mutations could have appeared after extensive in vitro passaging, we applied the VirGA sequencing and comparison approach to two clinical HSV-1 strains isolated from the same patient. One of these strains was syncytial upon first culturing; its sequence revealed the same gB mutation. These data provide insight into the extent and origin of genome-wide intrastrain HSV-1 variation and present useful methods for expansion to in vivo patient infection studies. PMID:25827418

  1. Rapid characterization of woody biomass digestibility and chemical composition using near-infrared spectroscopy.

    PubMed

    Hou, Shen; Li, Laigeng

    2011-02-01

    Rapid determination of the properties of lignocellulosic material is highly desirable for biomass production and utilization. In the present study, measurements of woody biomass digestibility and chemical composition using near-infrared reflectance (NIR) spectroscopy were calibrated. Poplar and eucalyptus materials were recorded in NIR spectrum as well as determined for their chemical compositions of Klason lignin, α-cellulose, holocellulose, lignin syringyl/guaiacyl (S/G) ratio and enzymatic digestibility. Fitting of the NIR information with chemical properties and digestibility by partial least-squares (PLS) regression generated a group of trained NIR models that were able to be used for rapid biomass measurement. Applying the models for woody biomass measurements led to a reliable evaluation of the chemical composition and digestibility, suggesting the feasibility of using NIR spectroscopy in the rapid characterization of biomass properties. © 2011 Institute of Botany, Chinese Academy of Sciences.

  2. Rapid Whole-Genome Sequencing for Surveillance of Salmonella enterica Serovar Enteritidis

    PubMed Central

    den Bakker, Henk C.; Allard, Marc W.; Bopp, Dianna; Brown, Eric W.; Fontana, John; Iqbal, Zamin; Kinney, Aristea; Limberger, Ronald; Musser, Kimberlee A.; Shudt, Matthew; Strain, Errol; Wiedmann, Martin

    2014-01-01

    For Salmonella enterica serovar Enteritidis, 85% of isolates can be classified into 5 pulsed-field gel electrophoresis (PFGE) types. However, PFGE has limited discriminatory power for outbreak detection. Although whole-genome sequencing has been found to improve discrimination of outbreak clusters, whether this procedure can be used in real-time in a public health laboratory is not known. Therefore, we conducted a retrospective and prospective analysis. The retrospective study investigated isolates from 1 confirmed outbreak. Additional cases could be attributed to the outbreak strain on the basis of whole-genome data. The prospective study included 58 isolates obtained in 2012, including isolates from 1 epidemiologically defined outbreak. Whole-genome sequencing identified additional isolates that could be attributed to the outbreak, but which differed from the outbreak-associated PFGE type. Additional putative outbreak clusters were detected in the retrospective and prospective analyses. This study demonstrates the practicality of implementing this approach for outbreak surveillance in a state public health laboratory. PMID:25062035

  3. Rapid Intracellular Competition between Hepatitis C Viral Genomes as a Result of Mitosis

    PubMed Central

    Webster, Brian; Wissing, Silke; Herker, Eva; Ott, Melanie

    2013-01-01

    Cells infected with hepatitis C virus (HCV) become refractory to further infection by HCV (T. Schaller et al., J. Virol. 81:4591–4603, 2007; D. M. Tscherne et al., J. Virol. 81:3693–3703, 2007). This process, termed superinfection exclusion, does not involve downregulation of surface viral receptors but instead occurs inside the cell at the level of RNA replication. The originally infecting virus may occupy replication niches or sequester host factors necessary for viral growth, preventing effective growth of viruses that enter the cell later. However, there appears to be an additional level of intracellular competition between viral genomes that occurs at or shortly following mitosis. In the setting of cellular division, when two viral replicons of equivalent fitness are present within a cell, each has an equal opportunity to exclude the other. In a population of dividing cells, the competition between viral genomes proceeds apace, randomly clearing one or the other genome from cells in the span of 9 to 12 days. These findings demonstrate a new mechanism of intracellular competition between HCV strains, which may act to further limit HCV's genetic diversity and ability to recombine in vivo. PMID:23097449

  4. Efficient and rapid generation of large genomic variants in rats and mice using CRISMERE

    PubMed Central

    Birling, Marie-Christine; Schaeffer, Laurence; André, Philippe; Lindner, Loic; Maréchal, Damien; Ayadi, Abdel; Sorg, Tania; Pavlovic, Guillaume; Hérault, Yann

    2017-01-01

    Modelling Down syndrome (DS) in mouse has been crucial for the understanding of the disease and the evaluation of therapeutic targets. Nevertheless, the modelling so far has been limited to the mouse and, even in this model, generating duplication of genomic regions has been labour intensive and time consuming. We developed the CRISpr MEdiated REarrangement (CRISMERE) strategy, which takes advantage of the CRISPR/Cas9 system, to generate most of the desired rearrangements from a single experiment at much lower expenses and in less than 9 months. Deletions, duplications, and inversions of genomic regions as large as 24.4 Mb in rat and mouse founders were observed and germ line transmission was confirmed for fragment as large as 3.6 Mb. Interestingly we have been able to recover duplicated regions from founders in which we only detected deletions. CRISMERE is even more powerful than anticipated it allows the scientific community to manipulate the rodent and probably other genomes in a fast and efficient manner which was not possible before. PMID:28266534

  5. Rapid intracellular competition between hepatitis C viral genomes as a result of mitosis.

    PubMed

    Webster, Brian; Wissing, Silke; Herker, Eva; Ott, Melanie; Greene, Warner C

    2013-01-01

    Cells infected with hepatitis C virus (HCV) become refractory to further infection by HCV (T. Schaller et al., J. Virol. 81:4591-4603, 2007; D. M. Tscherne et al., J. Virol. 81:3693-3703, 2007). This process, termed superinfection exclusion, does not involve downregulation of surface viral receptors but instead occurs inside the cell at the level of RNA replication. The originally infecting virus may occupy replication niches or sequester host factors necessary for viral growth, preventing effective growth of viruses that enter the cell later. However, there appears to be an additional level of intracellular competition between viral genomes that occurs at or shortly following mitosis. In the setting of cellular division, when two viral replicons of equivalent fitness are present within a cell, each has an equal opportunity to exclude the other. In a population of dividing cells, the competition between viral genomes proceeds apace, randomly clearing one or the other genome from cells in the span of 9 to 12 days. These findings demonstrate a new mechanism of intracellular competition between HCV strains, which may act to further limit HCV's genetic diversity and ability to recombine in vivo.

  6. rep-PCR-Mediated Genomic Fingerprinting: A Rapid and Effective Method to Identify Clavibacter michiganensis.

    PubMed

    Louws, F J; Bell, J; Medina-Mora, C M; Smart, C D; Opgenorth, D; Ishimaru, C A; Hausbeck, M K; de Bruijn, F J; Fulbright, D W

    1998-08-01

    ABSTRACT The genomic DNA fingerprinting technique known as repetitive-sequence-based polymerase chain reaction (rep-PCR) was evaluated as a tool to differentiate subspecies of Clavibacter michiganensis, with special emphasis on C. michiganensis subsp. michiganensis, the pathogen responsible for bacterial canker of tomato. DNA primers (REP, ERIC, and BOX), corresponding to conserved repetitive element motifs in the genomes of diverse bacterial species, were used to generate genomic fingerprints of C. michiganensis subsp. michiganensis, C. michiganensis subsp. sepedonicus, C. michiganensis subsp. nebraskensis, C. michiganensis subsp. tessellarius, and C. michiganensis subsp. insidiosum. The rep-PCR-generated patterns of DNA fragments observed after agarose gel electrophoresis support the current division of C. michiganensis into five subspecies. In addition, the rep-PCR fingerprints identified at least four types (A, B, C, and D) within C. michiganensis subsp. michiganensis based on limited DNA polymorphisms; the ability to differentiate individual strains may be of potential use in studies on the epidemiology and host-pathogen interactions of this organism. In addition, we have recovered from diseased tomato plants a relatively large number of naturally occurring avirulent C. michiganensis subsp. michiganensis strains with rep-PCR fingerprints identical to those of virulent C. michiganensis subsp. michiganensis strains.

  7. Rapid Identification and Characterization of Francisella by Molecular Biology and Other Techniques

    PubMed Central

    Lai, Xin-He; Zhao, Long-Fei; Chen, Xiao-Ming; Ren, Yi

    2016-01-01

    Francisella tularensis is the causative pathogen of tularemia and a Tier 1 bioterror agent on the CDC list. Considering the fact that some subpopulation of the F. tularensis strains is more virulent, more significantly associated with mortality, and therefore poses more threat to humans, rapid identification and characterization of this subpopulation strains is of invaluable importance. This review summarizes the up-to-date developments of assays for mainly detecting and characterizing F. tularensis and a touch of caveats of some of the assays. PMID:27335619

  8. Fiber-optic sensors for rapid, inexpensive characterization of soil and ground water contamination

    SciTech Connect

    Milanovich, F.P.; Yow, J.L. Jr.

    1994-08-01

    The extent and complexity of worldwide environmental contamination are great enough that characterization, remediation, and performance monitoring will be extremely costly and lengthy. Characterization techniques that are rapid, inexpensive, and simple and that do not generate waste are urgently needed. Towards this end LLNL is developing a fiber-optic chemical sensor technology for use in groundwater and vadose-zone monitoring. We use a colorimetric detection technique, based on an irreversible chemical reaction between a specific reagent and the target compound. The accuracy and sensitivity of the sensor (<5 ppb by weight in water, determined by comparison with gas chromatographic standard measurements) are sufficient for environmental monitoring of trichloroethylene (TCE) and chloroform.

  9. A New Method for Rapid Screening of End-Point PCR Products: Application to Single Genome Amplified HIV and SIV Envelope Amplicons

    PubMed Central

    Houzet, Laurent; Deleage, Claire; Satie, Anne-Pascale; Merlande, Laetitia; Mahe, Dominique; Dejucq-Rainsford, Nathalie

    2015-01-01

    PCR is the most widely applied technique for large scale screening of bacterial clones, mouse genotypes, virus genomes etc. A drawback of large PCR screening is that amplicon analysis is usually performed using gel electrophoresis, a step that is very labor intensive, tedious and chemical waste generating. Single genome amplification (SGA) is used to characterize the diversity and evolutionary dynamics of virus populations within infected hosts. SGA is based on the isolation of single template molecule using limiting dilution followed by nested PCR amplification and requires the analysis of hundreds of reactions per sample, making large scale SGA studies very challenging. Here we present a novel approach entitled Long Amplicon Melt Profiling (LAMP) based on the analysis of the melting profile of the PCR reactions using SYBR Green and/or EvaGreen fluorescent dyes. The LAMP method represents an attractive alternative to gel electrophoresis and enables the quick discrimination of positive reactions. We validate LAMP for SIV and HIV env-SGA, in 96- and 384-well plate formats. Because the melt profiling allows the screening of several thousands of PCR reactions in a cost-effective, rapid and robust way, we believe it will greatly facilitate any large scale PCR screening. PMID:26053379

  10. A New Method for Rapid Screening of End-Point PCR Products: Application to Single Genome Amplified HIV and SIV Envelope Amplicons.

    PubMed

    Houzet, Laurent; Deleage, Claire; Satie, Anne-Pascale; Merlande, Laetitia; Mahe, Dominique; Dejucq-Rainsford, Nathalie

    2015-01-01

    PCR is the most widely applied technique for large scale screening of bacterial clones, mouse genotypes, virus genomes etc. A drawback of large PCR screening is that amplicon analysis is usually performed using gel electrophoresis, a step that is very labor intensive, tedious and chemical waste generating. Single genome amplification (SGA) is used to characterize the diversity and evolutionary dynamics of virus populations within infected hosts. SGA is based on the isolation of single template molecule using limiting dilution followed by nested PCR amplification and requires the analysis of hundreds of reactions per sample, making large scale SGA studies very challenging. Here we present a novel approach entitled Long Amplicon Melt Profiling (LAMP) based on the analysis of the melting profile of the PCR reactions using SYBR Green and/or EvaGreen fluorescent dyes. The LAMP method represents an attractive alternative to gel electrophoresis and enables the quick discrimination of positive reactions. We validate LAMP for SIV and HIV env-SGA, in 96- and 384-well plate formats. Because the melt profiling allows the screening of several thousands of PCR reactions in a cost-effective, rapid and robust way, we believe it will greatly facilitate any large scale PCR screening.

  11. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. © 2015 Hilton and Gersbach; Published by Cold Spring Harbor Laboratory Press.

  12. Enabling functional genomics with genome engineering

    PubMed Central

    Hilton, Isaac B.; Gersbach, Charles A.

    2015-01-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  13. Removing the bottleneck in whole genome sequencing of Mycobacterium tuberculosis for rapid drug resistance analysis: a call to action.

    PubMed

    McNerney, Ruth; Clark, Taane G; Campino, Susana; Rodrigues, Camilla; Dolinger, David; Smith, Liezel; Cabibbe, Andrea M; Dheda, Keertan; Schito, Marco

    2017-03-01

    Whole genome sequencing (WGS) can provide a comprehensive analysis of Mycobacterium tuberculosis mutations that cause resistance to anti-tuberculosis drugs. With the deployment of bench-top sequencers and rapid analytical software, WGS is poised to become a useful tool to guide treatment. However, direct sequencing from clinical specimens to provide a full drug resistance profile remains a serious challenge. This article reviews current practices for extracting M. tuberculosis DNA and possible solutions for sampling sputum. Techniques under consideration include enzymatic digestion, physical disruption, chemical degradation, detergent solubilization, solvent extraction, ligand-coated magnetic beads, silica columns, and oligonucleotide pull-down baits. Selective amplification of genomic bacterial DNA in sputum prior to WGS may provide a solution, and differential lysis to reduce the levels of contaminating human DNA is also being explored. To remove this bottleneck and accelerate access to WGS for patients with suspected drug-resistant tuberculosis, it is suggested that a coordinated and collaborative approach be taken to more rapidly optimize, compare, and validate methodologies for sequencing from patient samples.

  14. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation.

    PubMed

    Yu, Li; Li, Yi-Wei; Ryder, Oliver A; Zhang, Ya-Ping

    2007-10-24

    Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt) gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other difficult phylogenetic issues. Although the whole

  15. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation

    PubMed Central

    Yu, Li; Li, Yi-Wei; Ryder, Oliver A; Zhang, Ya-Ping

    2007-01-01

    Background Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt) gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. Results This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Conclusion Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other difficult phylogenetic

  16. Sequence Analysis and Characterization of Active Human Alu Subfamilies Based on the 1000 Genomes Pilot Project

    PubMed Central

    Konkel, Miriam K.; Walker, Jerilyn A.; Hotard, Ashley B.; Ranck, Megan C.; Fontenot, Catherine C.; Storer, Jessica; Stewart, Chip; Marth, Gabor T.; Batzer, Mark A.

    2015-01-01

    The goal of the 1000 Genomes Consortium is to characterize human genome structural variation (SV), including forms of copy number variations such as deletions, duplications, and insertions. Mobile element insertions, particularly Alu elements, are major contributors to genomic SV among humans. During the pilot phase of the project we experimentally validated 645 (611 intergenic and 34 exon targeted) polymorphic “young” Alu insertion events, absent from the human reference genome. Here, we report high resolution sequencing of 343 (322 unique) recent Alu insertion events, along with their respective target site duplications, precise genomic breakpoint coordinates, subfamily assignment, percent divergence, and estimated A-rich tail lengths. All the sequenced Alu loci were derived from the AluY lineage with no evidence of retrotransposition activity involving older Alu families (e.g., AluJ and AluS). AluYa5 is currently the most active Alu subfamily in the human lineage, followed by AluYb8, and many others including three newly identified subfamilies we have termed AluYb7a3, AluYb8b1, and AluYa4a1. This report provides the structural details of 322 unique Alu variants from individual human genomes collectively adding about 100 kb of genomic variation. Many Alu subfamilies are currently active in human populations, including a surprising level of AluY retrotransposition. Human Alu subfamilies exhibit continuous evolution with potential drivers sprouting new Alu lineages. PMID:26319576

  17. Using genomics to characterize evolutionary potential for conservation of wild populations

    PubMed Central

    Harrisson, Katherine A; Pavlova, Alexandra; Telonis-Scott, Marina; Sunnucks, Paul

    2014-01-01

    Genomics promises exciting advances towards the important conservation goal of maximizing evolutionary potential, notwithstanding associated challenges. Here, we explore some of the complexity of adaptation genetics and discuss the strengths and limitations of genomics as a tool for characterizing evolutionary potential in the context of conservation management. Many traits are polygenic and can be strongly influenced by minor differences in regulatory networks and by epigenetic variation not visible in DNA sequence. Much of this critical complexity is difficult to detect using methods commonly used to identify adaptive variation, and this needs appropriate consideration when planning genomic screens, and when basing management decisions on genomic data. When the genomic basis of adaptation and future threats are well understood, it may be appropriate to focus management on particular adaptive traits. For more typical conservations scenarios, we argue that screening genome-wide variation should be a sensible approach that may provide a generalized measure of evolutionary potential that accounts for the contributions of small-effect loci and cryptic variation and is robust to uncertainty about future change and required adaptive response(s). The best conservation outcomes should be achieved when genomic estimates of evolutionary potential are used within an adaptive management framework. PMID:25553064

  18. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment

    SciTech Connect

    Wurch, Louie; Giannone, Richard J.; Belisle, Bernard S.; Swift, Carolyn; Utturkar, Sagar; Hettich, Robert L.; Reysenbach, Anna-Louise; Podar, Mircea

    2016-07-05

    Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism’s physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota (‘Nanopusillus acidilobi’) and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of ‘Nanopusillus’ are among the smallest known cellular organisms (100–300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Lastly, genomic and proteomic comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea.

  19. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment

    DOE PAGES

    Wurch, Louie; Giannone, Richard J.; Belisle, Bernard S.; ...

    2016-07-05

    Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism’s physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota (‘Nanopusillus acidilobi’) and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of ‘Nanopusillus’ are among the smallest known cellular organisms (100–300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Lastly, genomic and proteomicmore » comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea.« less

  20. Genetic Characterization and Comparative Genome Analysis of Brucella melitensis Isolates from India.

    PubMed

    Azam, Sarwar; Rao, Sashi Bhushan; Jakka, Padmaja; NarasimhaRao, Veera; Bhargavi, Bindu; Gupta, Vivek Kumar; Radhakrishnan, Girish

    2016-01-01

    Brucellosis is the most frequent zoonotic disease worldwide, with over 500,000 new human infections every year. Brucella melitensis, the most virulent species in humans, primarily affects goats and the zoonotic transmission occurs by ingestion of unpasteurized milk products or through direct contact with fetal tissues. Brucellosis is endemic in India but no information is available on population structure and genetic diversity of Brucella spp. in India. We performed multilocus sequence typing of four B. melitensis strains isolated from naturally infected goats from India. For more detailed genetic characterization, we carried out whole genome sequencing and comparative genome analysis of one of the B. melitensis isolates, Bm IND1. Genome analysis identified 141 unique SNPs, 78 VNTRs, 51 Indels, and 2 putative prophage integrations in the Bm IND1 genome. Our data may help to develop improved epidemiological typing tools and efficient preventive strategies to control brucellosis.

  1. Genetic Characterization and Comparative Genome Analysis of Brucella melitensis Isolates from India

    PubMed Central

    Azam, Sarwar; Rao, Sashi Bhushan; Jakka, Padmaja; NarasimhaRao, Veera; Bhargavi, Bindu; Gupta, Vivek Kumar

    2016-01-01

    Brucellosis is the most frequent zoonotic disease worldwide, with over 500,000 new human infections every year. Brucella melitensis, the most virulent species in humans, primarily affects goats and the zoonotic transmission occurs by ingestion of unpasteurized milk products or through direct contact with fetal tissues. Brucellosis is endemic in India but no information is available on population structure and genetic diversity of Brucella spp. in India. We performed multilocus sequence typing of four B. melitensis strains isolated from naturally infected goats from India. For more detailed genetic characterization, we carried out whole genome sequencing and comparative genome analysis of one of the B. melitensis isolates, Bm IND1. Genome analysis identified 141 unique SNPs, 78 VNTRs, 51 Indels, and 2 putative prophage integrations in the Bm IND1 genome. Our data may help to develop improved epidemiological typing tools and efficient preventive strategies to control brucellosis. PMID:27525259

  2. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment.

    PubMed

    Wurch, Louie; Giannone, Richard J; Belisle, Bernard S; Swift, Carolyn; Utturkar, Sagar; Hettich, Robert L; Reysenbach, Anna-Louise; Podar, Mircea

    2016-07-05

    Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism's physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota ('Nanopusillus acidilobi') and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of 'Nanopusillus' are among the smallest known cellular organisms (100-300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Genomic and proteomic comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea.

  3. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment

    PubMed Central

    Wurch, Louie; Giannone, Richard J.; Belisle, Bernard S.; Swift, Carolyn; Utturkar, Sagar; Hettich, Robert L.; Reysenbach, Anna-Louise; Podar, Mircea

    2016-01-01

    Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism's physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota (‘Nanopusillus acidilobi') and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of ‘Nanopusillus' are among the smallest known cellular organisms (100–300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Genomic and proteomic comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea. PMID:27378076

  4. Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes.

    PubMed

    Keller, I; Wagner, C E; Greuter, L; Mwaiko, S; Selz, O M; Sivasundar, A; Wittwer, S; Seehausen, O

    2013-06-01

    Adaptive radiations are an important source of biodiversity and are often characterized by many speciation events in very short succession. It has been proposed that the high speciation rates in these radiations may be fuelled by novel genetic combinations produced in episodes of hybridization among the young species. The role of such hybridization events in the evolutionary history of a group can be investigated by comparing the genealogical relationships inferred from different subsets of loci, but such studies have thus far often been hampered by shallow genetic divergences, especially in young adaptive radiations, and the lack of genome-scale molecular data. Here, we use a genome-wide sampling of SNPs identified within restriction site-associated DNA (RAD) tags to investigate the genomic consistency of patterns of shared ancestry and adaptive divergence among five sympatric cichlid species of two genera, Pundamilia and Mbipia, which form part of the massive adaptive radiation of cichlids in the East African Lake Victoria. Species pairs differ along several axes: male nuptial colouration, feeding ecology, depth distribution, as well as the morphological traits that distinguish the two genera and more subtle morphological differences. Using outlier scan approaches, we identify signals of divergent selection between all species pairs with a number of loci showing parallel patterns in replicated contrasts either between genera or between male colour types. We then create SNP subsets that we expect to be characterized to different extents by selection history and neutral processes and describe phylogenetic and population genetic patterns across these subsets. These analyses reveal very different evolutionary histories for different regions of the genome. To explain these results, we propose at least two intergeneric hybridization events (between Mbipia spp. and Pundamilia spp.) in the evolutionary history of these five species that would have lead to the evolution

  5. Characterization of genome in tetraploid StY species of Elymus (Triticeae: Poaceae) using sequential FISH and GISH.

    PubMed

    Liu, Ruijuan; Wang, Richard R-C; Yu, Feng; Lu, Xingwang; Dou, Quanwen

    2017-08-01

    Genomes of ten species of Elymus, either presumed or known as tetraploid StY, were characterized using fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH). These tetraploid species could be grouped into three categories. Type I included StY genome reported species-Roegneria pendulina, R. nutans, R. glaberrima, R. ciliaris, and Elymus nevskii, and StY genome presumed species-R. sinica, R. breviglumis, and R. dura, whose genome could be separated into two sets based on different GISH intensities. Type I genome constitution was deemed as putative StY. The St genome were mainly characterized with intense hybridization with pAs1, fewer AAG sites, and linked distribution of 5S rDNA and 18S-26S rDNA, while the Y genome with less intense hybridization with pAs1, more varied AAG sites, and isolated distribution of 5S rDNA and 18S-26S rDNA. Nevertheless, further genomic variations were detected among the different StY species. Type II included E. alashanicus, whose genome could be easily separated based on GISH pattern. FISH and GISH patterns suggested that E. alashanicus comprised a modified St genome and an unknown genome. Type III included E. longearistatus, whose genome could not be separated by GISH and was designated as St(l)Y(l). Notably, a close relationship between S(l) and Y(l) genomes was observed.

  6. Genomic characterization of liver metastases from colorectal cancer patients.

    PubMed

    Sayagués, José María; Corchete, Luís Antonio; Gutiérrez, María Laura; Sarasquete, Maria Eugenia; Del Mar Abad, María; Bengoechea, Oscar; Fermiñán, Encarna; Anduaga, María Fernanda; Del Carmen, Sofia; Iglesias, Manuel; Esteban, Carmen; Angoso, María; Alcazar, Jose Antonio; García, Jacinto; Orfao, Alberto; Muñoz-Bellvis, Luís

    2016-11-08

    Metastatic dissemination is the most frequent cause of death of sporadic colorectal cancer (sCRC) patients. Genomic abnormalities which are potentially characteristic of such advanced stages of the disease are complex and so far, they have been poorly described and only partially understood. We evaluated the molecular heterogeneity of sCRC tumors based on simultaneous assessment of the overall GEP of both coding mRNA and non-coding RNA genes in primary sCRC tumor samples from 23 consecutive patients and their paired liver metastases. Liver metastases from the sCRC patients analyzed, systematically showed deregulated transcripts of those genes identified as also deregulated in their paired primary colorectal carcinomas. However, some transcripts were found to be specifically deregulated in liver metastases (vs. non-tumoral colorectal tissues) while expressed at normal levels in their primary tumors, reflecting either an increased genomic instability of metastatic cells or theiradaption to the liver microenvironment. Newly deregulated metastatic transcripts included overexpression of APOA1, HRG, UGT2B4, RBP4 and ADH4 mRNAS and the miR-3180-3p, miR-3197, miR-3178, miR-4793 and miR-4440 miRNAs, together with decreased expression of the IGKV1-39, IGKC, IGKV1-27, FABP4 and MYLK mRNAS and the miR-363, miR-1, miR-143, miR-27b and miR-28-5p miRNAs. Canonical pathways found to be specifically deregulated in liver metastatic samples included multiple genes related with intercellular adhesion and the metastatic processes (e.g., IGF1R, PIK3CA, PTEN and EGFR), endocytosis (e.g., the PDGFRA, SMAD2, ERBB3, PML and FGFR2), and the cell cycle (e.g., SMAD2, CCND2, E2F5 and MYC). Our results also highlighted the activation of genes associated with the TGFβ signaling pathway, -e.g. RHOA, SMAD2, SMAD4, SMAD5, SMAD6, BMPR1A, SMAD7 and MYC-, which thereby emerge as candidate genes to play an important role in CRC tumor metastasis.

  7. Genomic characterization of liver metastases from colorectal cancer patients

    PubMed Central

    Sayagués, José María; Corchete, Luís Antonio; Gutiérrez, María Laura; Sarasquete, Maria Eugenia; del Mar Abad, María; Bengoechea, Oscar; Fermiñán, Encarna; Anduaga, María Fernanda; del Carmen, Sofia; Iglesias, Manuel; Esteban, Carmen; Angoso, María; Alcazar, Jose Antonio

    2016-01-01

    Metastatic dissemination is the most frequent cause of death of sporadic colorectal cancer (sCRC) patients. Genomic abnormalities which are potentially characteristic of such advanced stages of the disease are complex and so far, they have been poorly described and only partially understood. We evaluated the molecular heterogeneity of sCRC tumors based on simultaneous assessment of the overall GEP of both coding mRNA and non-coding RNA genes in primary sCRC tumor samples from 23 consecutive patients and their paired liver metastases. Liver metastases from the sCRC patients analyzed, systematically showed deregulated transcripts of those genes identified as also deregulated in their paired primary colorectal carcinomas. However, some transcripts were found to be specifically deregulated in liver metastases (vs. non-tumoral colorectal tissues) while expressed at normal levels in their primary tumors, reflecting either an increased genomic instability of metastatic cells or theiradaption to the liver microenvironment. Newly deregulated metastatic transcripts included overexpression of APOA1, HRG, UGT2B4, RBP4 and ADH4 mRNAS and the miR-3180-3p, miR-3197, miR-3178, miR-4793 and miR-4440 miRNAs, together with decreased expression of the IGKV1-39, IGKC, IGKV1-27, FABP4 and MYLK mRNAS and the miR-363, miR-1, miR-143, miR-27b and miR-28-5p miRNAs. Canonical pathways found to be specifically deregulated in liver metastatic samples included multiple genes related with intercellular adhesion and the metastatic processes (e.g., IGF1R, PIK3CA, PTEN and EGFR), endocytosis (e.g., the PDGFRA, SMAD2, ERBB3, PML and FGFR2), and the cell cycle (e.g., SMAD2, CCND2, E2F5 and MYC). Our results also highlighted the activation of genes associated with the TGFβ signaling pathway, -e.g. RHOA, SMAD2, SMAD4, SMAD5, SMAD6, BMPR1A, SMAD7 and MYC-, which thereby emerge as candidate genes to play an important role in CRC tumor metastasis. PMID:27662660

  8. Discovery and Characterization of Novel Signatures from the Ricinus communis L. (Castor Bean) Genome

    DTIC Science & Technology

    2006-11-01

    DISCOVERY AND CHARACTERIZATION OF NOVEL SIGNATURES FROM THE RICINUS COMMUNIS (CASTOR BEAN) GENOME Kevin P. O’Connell* and Evan W. Skowronski...2006 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Discovery And Characterization Of Novel Signatures From The Ricinus Communis ...fingerprints” of ricin genes, and knowledge about the overall genetic diversity of Ricinus communis varieties worldwide, are required to establish

  9. Identification and characterization of essential genes in the human genome

    PubMed Central

    Wang, Tim; Birsoy, Kıvanç; Hughes, Nicholas W.; Krupczak, Kevin M.; Post, Yorick; Wei, Jenny J.; Lander, Eric S.; Sabatini, David M.

    2015-01-01

    Large-scale genetic analysis of lethal phenotypes has elucidated the molecular underpinnings of many biological processes. Using the bacterial clustered regularly interspaced short palindromic repeats (CRISPR) system, we constructed a genome-wide single-guide RNA (sgRNA) library to screen for genes required for proliferation and survival in a human cancer cell line. Our screen revealed the set of cell-essential genes, which was validated by an orthogonal gene-trap-based screen and comparison with yeast gene knockouts. This set is enriched for genes that encode components of fundamental pathways, are expressed at high levels, and contain few inactivating polymorphisms in the human population. We also uncovered a large group of uncharacterized genes involved in RNA processing, a number of whose products localize to the nucleolus. Lastly, screens in additional cell lines showed a high degree of overlap in gene essentiality, but also revealed differences specific to each cell line and cancer type that reflect the developmental origin, oncogenic drivers, paralogous gene expression pattern, and chromosomal structure of each line. These results demonstrate the power of CRISPR-based screens and suggest a general strategy for identifying liabilities in cancer cells. PMID:26472758

  10. Rapid response near-infrared spectrophotometric characterization of Near Earth Objects

    NASA Astrophysics Data System (ADS)

    Mommert, Michael; Trilling, David; Axelrod, Tim; Butler, Nat; Jedicke, Robert; Moskovitz, Nicholas; Pichardo, Barbara; Reyes, Mauricio

    2014-11-01

    Small NEOs are, as a whole, poorly characterized, and we know nothing about the physical properties of the majority of all NEOs. The rate of NEO discoveries is increasing each year, and projects to determine the physical properties of NEOs are lagging behind. NEOs are faint, and generally even fainter by the time that follow-up characterizations can be made days or weeks later. There is a need for a high-throughput, high-efficiency physical characterization strategy in which hundreds of faint NEOs can be characterized each year. Broadband photometry in the near-infrared is sufficiently diagnostic to assign taxonomic types, and hence constrain both the individual and ensemble properties of NEOs. We will present results from our recently initiated program of rapid response near-infrared spectrophotometric characterization of NEOs. We are using UKIRT (on Mauna Kea) and the RATIR instrument on the 1.5m telescope at the San Pedro Martir Observatory (Mexico) to allow us to make observations most nights of the year in robotic/queue mode. This technique is powerful and fast. We have written automated software that allows us to observe NEOs very soon after discovery. Our targets are NEOs that are generally too faint for other characterization techniques. We are on pace to characterize hundreds of NEOs per year.

  11. Array-based comparative genomic hybridization (array CGH) for rapid prenatal diagnosis of cytogenetic abnormalities

    USDA-ARS?s Scientific Manuscript database

    We have shown in a prospective validation study that an array CGH test was highly accurate for rapid detection of chromosomal aneuploidies and deletions or duplications on fetal DNA samples in a clinical prenatal diagnostic setting. Here we present our updated "post-validation phase" experience with...

  12. Genomic characterization of novel marine vesiviruses from Steller sea lions (Eumetopias jubatus) from Alaska

    USDA-ARS?s Scientific Manuscript database

    Marine vesiviruses were isolated in cell culture from oral and rectal swabs and vesicular fluids from Alaskan Steller sea lions (SSL; Eumetopias jubatus). Further characterization by RT-PCR, complete genomic sequencing, and phylogenetic analyses indicated that these viruses are most closely related ...

  13. Complete genomic characterization of a Potato mop-top virus isolate from the United States

    USDA-ARS?s Scientific Manuscript database

    Potato mop-top virus (PMTV) (family: Virgaviridae) was reported recently in the Pacific North-western USA. To better understand the genetic diversity of the virus, the complete genome of an isolate from Washington State (WA), USA was characterized. Sequence comparisons of the WA isolate with other k...

  14. Complete genomic characterization of potato mop-topvirus isolate from the United States

    USDA-ARS?s Scientific Manuscript database

    Potato mop-top virus (PMTV; family Virgaviridae)was reported recently in the Pacific Northwestern USA. To better understand the genetic diversity of thisvirus, the complete genome of an isolate from WashingtonState (WA), USA, was characterized. Sequence comparisons of the WA isolate with other known...

  15. Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection

    USDA-ARS?s Scientific Manuscript database

    The USDA Agriculture Research Service National Plant Germplasm System (NPGS) preserves the largest sorghum germplasm collection in the world, which includes 7,217 accessions from the center of diversity in Ethiopia. The characterization of this exotic germplasm at a genome-wide scale will improve co...

  16. Novel antigen identification method for discovery of protective malaria antigens by rapid testing of DNA vaccines encoding exons from the parasite genome.

    PubMed

    Haddad, Diana; Bilcikova, Erika; Witney, Adam A; Carlton, Jane M; White, Charles E; Blair, Peter L; Chattopadhyay, Rana; Russell, Joshua; Abot, Esteban; Charoenvit, Yupin; Aguiar, Joao C; Carucci, Daniel J; Weiss, Walter R

    2004-03-01

    We describe a novel approach for identifying target antigens for preerythrocytic malaria vaccines. Our strategy is to rapidly test hundreds of DNA vaccines encoding exons from the Plasmodium yoelii yoelii genomic sequence. In this antigen identification method, we measure reduction in parasite burden in the liver after sporozoite challenge in mice. Orthologs of protective P. y. yoelii genes can then be identified in the genomic databases of Plasmodium falciparum and Plasmodium vivax and investigated as candidate antigens for a human vaccine. A pilot study to develop the antigen identification method approach used 192 P. y. yoelii exons from genes expressed during the sporozoite stage of the life cycle. A total of 182 (94%) exons were successfully cloned into a DNA immunization vector with the Gateway cloning technology. To assess immunization strategies, mice were vaccinated with 19 of the new DNA plasmids in addition to the well-characterized protective plasmid encoding P. y. yoelii circumsporozoite protein. Single plasmid immunization by gene gun identified a novel vaccine target antigen which decreased liver parasite burden by 95% and which has orthologs in P. vivax and P. knowlesi but not P. falciparum. Intramuscular injection of DNA plasmids produced a different pattern of protective responses from those seen with gene gun immunization. Intramuscular immunization with plasmid pools could reduce liver parasite burden in mice despite the fact that none of the plasmids was protective when given individually. We conclude that high-throughput cloning of exons into DNA vaccines and their screening is feasible and can rapidly identify new malaria vaccine candidate antigens.

  17. Characterization of hemizygous deletions in citrus using array-comparative genomic hybridization and microsynteny comparisons with the poplar genome.

    PubMed

    Ríos, Gabino; Naranjo, Miguel A; Iglesias, Domingo J; Ruiz-Rivero, Omar; Geraud, Marion; Usach, Antonio; Talón, Manuel

    2008-08-09

    Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background. Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules) were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH) using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues. In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected conclusion that microsynteny and local gene colinearity in

  18. Characterization of hemizygous deletions in Citrus using array-Comparative Genomic Hybridization and microsynteny comparisons with the poplar genome

    PubMed Central

    Ríos, Gabino; Naranjo, Miguel A; Iglesias, Domingo J; Ruiz-Rivero, Omar; Geraud, Marion; Usach, Antonio; Talón, Manuel

    2008-01-01

    Background Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background. Results Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules) were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH) using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues. Conclusion In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected conclusion that microsynteny

  19. Rapid Screening for CRISPR-Directed Editing of the Drosophila Genome Using white Coconversion

    PubMed Central

    Ge, Daniel Tianfang; Tipping, Cindy; Brodsky, Michael H.; Zamore, Phillip D.

    2016-01-01

    Adoption of a streamlined version of the bacterial clustered regular interspersed short palindromic repeat (CRISPR)/Cas9 defense system has accelerated targeted genome engineering. The Streptococcus pyogenes Cas9 protein, directed by a simplified, CRISPR-like single-guide RNA, catalyzes a double-stranded DNA break at a specific genomic site; subsequent repair by end joining can introduce mutagenic insertions or deletions, while repair by homologous recombination using an exogenous DNA template can incorporate new sequences at the target locus. However, the efficiency of Cas9-directed mutagenesis is low in Drosophila melanogaster. Here, we describe a strategy that reduces the time and effort required to identify flies with targeted genomic changes. The strategy uses editing of the white gene, evidenced by altered eye color, to predict successful editing of an unrelated gene-of-interest. The red eyes of wild-type flies are readily distinguished from white-eyed (end-joining-mediated loss of White function) or brown-eyed (recombination-mediated conversion to the whitecoffee allele) mutant flies. When single injected G0 flies produce individual G1 broods, flies carrying edits at a gene-of-interest were readily found in broods in which all G1 offspring carried white mutations. Thus, visual assessment of eye color substitutes for wholesale PCR screening of large numbers of G1 offspring. We find that end-joining-mediated mutations often show signatures of microhomology-mediated repair and that recombination-based mutations frequently involve donor plasmid integration at the target locus. Finally, we show that gap repair induced by two guide RNAs more reliably converts the intervening target sequence, whereas the use of Lig4169 mutants to suppress end joining does not improve recombination efficacy. PMID:27543296

  20. Rapid Screening for CRISPR-Directed Editing of the Drosophila Genome Using white Coconversion.

    PubMed

    Ge, Daniel Tianfang; Tipping, Cindy; Brodsky, Michael H; Zamore, Phillip D

    2016-10-13

    Adoption of a streamlined version of the bacterial clustered regular interspersed short palindromic repeat (CRISPR)/Cas9 defense system has accelerated targeted genome engineering. The Streptococcus pyogenes Cas9 protein, directed by a simplified, CRISPR-like single-guide RNA, catalyzes a double-stranded DNA break at a specific genomic site; subsequent repair by end joining can introduce mutagenic insertions or deletions, while repair by homologous recombination using an exogenous DNA template can incorporate new sequences at the target locus. However, the efficiency of Cas9-directed mutagenesis is low in Drosophila melanogaster Here, we describe a strategy that reduces the time and effort required to identify flies with targeted genomic changes. The strategy uses editing of the white gene, evidenced by altered eye color, to predict successful editing of an unrelated gene-of-interest. The red eyes of wild-type flies are readily distinguished from white-eyed (end-joining-mediated loss of White function) or brown-eyed (recombination-mediated conversion to the white(coffee) allele) mutant flies. When single injected G0 flies produce individual G1 broods, flies carrying edits at a gene-of-interest were readily found in broods in which all G1 offspring carried white mutations. Thus, visual assessment of eye color substitutes for wholesale PCR screening of large numbers of G1 offspring. We find that end-joining-mediated mutations often show signatures of microhomology-mediated repair and that recombination-based mutations frequently involve donor plasmid integration at the target locus. Finally, we show that gap repair induced by two guide RNAs more reliably converts the intervening target sequence, whereas the use of Lig4(169) mutants to suppress end joining does not improve recombination efficacy.

  1. Rapid extraction of genomic DNA from saliva for HLA typing on microarray based on magnetic nanobeads

    NASA Astrophysics Data System (ADS)

    Xie, Xin; Zhang, Xu; Yu, Bingbin; Gao, Huafang; Zhang, Huan; Fei, Weiyang

    2004-09-01

    A series of simplified protocols are developed for extracting genomic DNA from saliva by using the magnetic nanobeads as absorbents. In these protocols, both the enrichment of the target cells and the adsorption of DNA can be achieved simultaneously by our functionally modified magnetic beads in one step, and the DNA-nanobeads complex can be used as PCR templates. HLA typing based on an oligonucleotide array was conducted by hybridization with the PCR products. The result shows that the protocols are robust and sensitive.

  2. Rapid phylogenetic and functional classification of short genomic fragments with signature peptides

    PubMed Central

    2012-01-01

    Background Classification is difficult for shotgun metagenomics data from environments such as soils, where the diversity of sequences is high and where reference sequences from close relatives may not exist. Approaches based on sequence-similarity scores must deal with the confounding effects that inheritance and functional pressures exert on the relation between scores and phylogenetic distance, while approaches based on sequence alignment and tree-building are typically limited to a small fraction of gene families. We describe an approach based on finding one or more exact matches between a read and a precomputed set of peptide 10-mers. Results At even the largest phylogenetic distances, thousands of 10-mer peptide exact matches can be found between pairs of bacterial genomes. Genes that share one or more peptide 10-mers typically have high reciprocal BLAST scores. Among a set of 403 representative bacterial genomes, some 20 million 10-mer peptides were found to be shared. We assign each of these peptides as a signature of a particular node in a phylogenetic reference tree based on the RNA polymerase genes. We classify the phylogeny of a genomic fragment (e.g., read) at the most specific node on the reference tree that is consistent with the phylogeny of observed signature peptides it contains. Using both synthetic data from four newly-sequenced soil-bacterium genomes and ten real soil metagenomics data sets, we demonstrate a sensitivity and specificity comparable to that of the MEGAN metagenomics analysis package using BLASTX against the NR database. Phylogenetic and functional similarity metrics applied to real metagenomics data indicates a signal-to-noise ratio of approximately 400 for distinguishing among environments. Our method assigns ~6.6 Gbp/hr on a single CPU, compared with 25 kbp/hr for methods based on BLASTX against the NR database. Conclusions Classification by exact matching against a precomputed list of signature peptides provides comparable

  3. A rapid feedback characterization technique for polymeric hollow fiber membranes using disperse dyes

    SciTech Connect

    Clausi, D.T.; Koros, W.J.

    1996-12-31

    The morphologies of advanced asymmetric gas separation membranes can be described in terms of porosity, pore size distribution, and pore connectivity. These complex morphologies are generated via a rapid non-solvent induced phase separation process to yield hollow fiber membranes. Manipulation and control of these microscopic features are accomplished through adjustment of an array of spinning process parameters. A serious limitation to research in hollow fiber membrane formation is the lengthy time lag between fiber spinning and the collection of characteristic data for process optimization. This lag time is due to the intensive downstream processing required before gas based permeation measurements can be conducted. A rapid feedback characterization technique will be discussed for use in polymeric hollow fiber membrane spinning applications utilizing commercially available disperse dyes. This technique involves dyeing wet hollow fibers immediately after spinning in an aqueous dye bath. In the present work, polysulfone fibers have been characterized using this method before lengthy downstream processing (i.e. solvent exchange, drying, and post-treatment). Dye uptake in the hollow fibers appears to be a function of skin porosity, thereby allowing quick evaluation of permeation characteristics. Dye uptake was measured both visually and using UV-visible spectrophotometry. Examples of fibers characterized using this technique and relationships between dye uptake and post-treated selectivity are shown and discussed. This technique allows characterization during the fiber spinning process, making on-line optimization of spinning parameters possible.

  4. A rapid method to characterize seabed habitats and associated macro-organisms

    USGS Publications Warehouse

    Anderson, T.J.; Cochrane, G.R.; Roberts, D.A.; Chezar, H.; Hatcher, G.; ,

    2007-01-01

    This study presents a method for rapidly collecting, processing, and interrogating real-time abiotic and biotic seabed data to determine seabed habitat classifications. This is done from data collected over a large area of an acoustically derived seabed map, along multidirectional transects, using a towed small camera-sled. The seabed, within the newly designated Point Harris Marine Reserve on the northern coast of San Miguel Island, California, was acoustically imaged using sidescan sonar then ground-truthed using a towed small camera-sled. Seabed characterizations were made from video observations, and were logged to a laptop computer (PC) in real time. To ground-truth the acoustic mosaic, and to characterize abiotic and biotic aspects of the seabed, a three-tiered characterization scheme was employed that described the substratum type, physical structure (i.e., bedform or vertical relief), and the occurrence of benthic macrofauna and flora. A crucial advantage of the method described here, is that preliminary seabed characterizations can be interrogated and mapped over the sidescan mosaic and other seabed information within hours of data collection. This ability to rapidly process seabed data is invaluable to scientists and managers, particularly in modifying concurrent or planning subsequent surveys.

  5. Rapid characterization of titanium microstructural features for specific modelling of mechanical properties

    NASA Astrophysics Data System (ADS)

    Searles, T.; Tiley, J.; Tanner, A.; Williams, R.; Rollins, B.; Lee, E.; Kar, S.; Banerjee, R.; Fraser, H. L.

    2005-01-01

    Mechanical properties of α/β Ti alloys are closely related to their microstructure. The complexity of the microstructural features involved makes it rather difficult to develop models for predicting properties of these alloys. Advances in stereology and microscopy permit rapid characterization of various features in Ti alloys including Widmanstätten α-laths, grain sizes, grain shapes, colony structures and volume fractions of different phases. This research documents the stereology procedures for characterizing microstructural features in Ti alloys, including the use of three-dimensional serial sectioning and reconstruction procedures for developing through material measurements. The resulting data indicate the powerful characterization processes now available, and the ability to rapidly assess microstructural features in Ti alloys. The processes were tested using Ti-62222 by serial sectioning the sample and conducting automated stereology protocols to determine features. In addition, three-dimensional reconstruction was completed on a Ti-6242 sample to evaluate lath interactions within the alloy. Results indicate the tremendous potential for characterizing microstructures using advanced techniques.

  6. Rapid identification of lettuce seed germination mutants by bulked segregant analysis and whole genome sequencing.

    PubMed

    Huo, Heqiang; Henry, Isabelle M; Coppoolse, Eric R; Verhoef-Post, Miriam; Schut, Johan W; de Rooij, Han; Vogelaar, Aat; Joosen, Ronny V L; Woudenberg, Leo; Comai, Luca; Bradford, Kent J

    2016-11-01

    Lettuce (Lactuca sativa) seeds exhibit thermoinhibition, or failure to complete germination when imbibed at warm temperatures. Chemical mutagenesis was employed to develop lettuce lines that exhibit germination thermotolerance. Two independent thermotolerant lettuce seed mutant lines, TG01 and TG10, were generated through ethyl methanesulfonate mutagenesis. Genetic and physiological analyses indicated that these two mutations were allelic and recessive. To identify the causal gene(s), we applied bulked segregant analysis by whole genome sequencing. For each mutant, bulked DNA samples of segregating thermotolerant (mutant) seeds were sequenced and analyzed for homozygous single-nucleotide polymorphisms. Two independent candidate mutations were identified at different physical positions in the zeaxanthin epoxidase gene (ABSCISIC ACID DEFICIENT 1/ZEAXANTHIN EPOXIDASE, or ABA1/ZEP) in TG01 and TG10. The mutation in TG01 caused an amino acid replacement, whereas the mutation in TG10 resulted in alternative mRNA splicing. Endogenous abscisic acid contents were reduced in both mutants, and expression of the ABA1 gene from wild-type lettuce under its own promoter fully complemented the TG01 mutant. Conventional genetic mapping confirmed that the causal mutations were located near the ZEP/ABA1 gene, but the bulked segregant whole genome sequencing approach more efficiently identified the specific gene responsible for the phenotype. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  7. Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing.

    PubMed

    Wheat, Christopher W

    2010-04-01

    Next generation sequencing technology affords new opportunities in ecological genetics. This paper addresses how an ecological genetics research program focused on a phenotype of interest can quickly move from no genetic resources to having various functional genomic tools. 454 sequencing and its error rates are discussed, followed by a review of de novo transcriptome assemblies focused on the first successful de novo assembly which happens to be in an ecological model system (the Glanville fritillary butterfly). The potential future developments in 454 sequencing are also covered. Particular attention is paid to the difficulties ecological geneticists are likely to encounter through reviewing relevant studies in both model and non-model systems. Various post-sequencing issues and applications of 454 generated data are presented (e.g. database management, microarray construction, molecular marker and candidate gene development). How to use species with genomic resources to inform study of those without is also discussed. In closing, some of the drawbacks of 454 sequencing are presented along with future prospects of this technology.

  8. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears.

    PubMed

    Liu, Shiping; Lorenzen, Eline D; Fumagalli, Matteo; Li, Bo; Harris, Kelley; Xiong, Zijun; Zhou, Long; Korneliussen, Thorfinn Sand; Somel, Mehmet; Babbitt, Courtney; Wray, Greg; Li, Jianwen; He, Weiming; Wang, Zhuo; Fu, Wenjing; Xiang, Xueyan; Morgan, Claire C; Doherty, Aoife; O'Connell, Mary J; McInerney, James O; Born, Erik W; Dalén, Love; Dietz, Rune; Orlando, Ludovic; Sonne, Christian; Zhang, Guojie; Nielsen, Rasmus; Willerslev, Eske; Wang, Jun

    2014-05-08

    Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyper-lipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show that the species diverged only 479-343 thousand years BP. We find that genes on the polar bear lineage have been under stronger positive selection than in brown bears; nine of the top 16 genes under strong positive selection are associated with cardiomyopathy and vascular disease, implying important reorganization of the cardiovascular system. One of the genes showing the strongest evidence of selection, APOB, encodes the primary lipoprotein component of low-density lipoprotein (LDL); functional mutations in APOB may explain how polar bears are able to cope with life-long elevated LDL levels that are associated with high risk of heart disease in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. HYBRIDCHECK: software for the rapid detection, visualization and dating of recombinant regions in genome sequence data.

    PubMed

    Ward, Ben J; van Oosterhout, Cock

    2016-03-01

    HYBRIDCHECK is a software package to visualize the recombination signal in large DNA sequence data set, and it can be used to analyse recombination, genetic introgression, hybridization and horizontal gene transfer. It can scan large (multiple kb) contigs and whole-genome sequences of three or more individuals. HYBRIDCHECK is written in the r software for OS X, Linux and Windows operating systems, and it has a simple graphical user interface. In addition, the r code can be readily incorporated in scripts and analysis pipelines. HYBRIDCHECK implements several ABBA-BABA tests and visualizes the effects of hybridization and the resulting mosaic-like genome structure in high-density graphics. The package also reports the following: (i) the breakpoint positions, (ii) the number of mutations in each introgressed block, (iii) the probability that the identified region is not caused by recombination and (iv) the estimated age of each recombination event. The divergence times between the donor and recombinant sequence are calculated using a JC, K80, F81, HKY or GTR correction, and the dating algorithm is exceedingly fast. By estimating the coalescence time of introgressed blocks, it is possible to distinguish between hybridization and incomplete lineage sorting. HYBRIDCHECK is libré software and it and its manual are free to download from http://ward9250.github.io/HybridCheck/.

  10. The evolution of genomic GC content undergoes a rapid reversal within the genus Plasmodium.

    PubMed

    Nikbakht, Hamid; Xia, Xuhua; Hickey, Donal A

    2014-09-01

    The genome of the malarial parasite Plasmodium falciparum is extremely AT rich. This bias toward a low GC content is a characteristic of several, but not all, species within the genus Plasmodium. We compared 4283 orthologous pairs of protein-coding sequences between Plasmodium falciparum and the less AT-biased Plasmodium vivax. Our results indicate that the common ancestor of these two species was also extremely AT rich. This means that, although there was a strong bias toward A+T during the early evolution of the ancestral Plasmodium lineage, there was a subsequent reversal of this trend during the more recent evolution of some species, such as P. vivax. Moreover, we show that not only is the P. vivax genome losing its AT richness, it is actually gaining a very significant degree of GC richness. This example illustrates the potential volatility of nucleotide content during the course of molecular evolution. Such reversible fluxes in nucleotide content within lineages could have important implications for phylogenetic reconstruction based on molecular sequence data.

  11. First results from the rapid-response spectrophotometric characterization of Near-Earth objects using RATIR

    NASA Astrophysics Data System (ADS)

    Navarro-Meza, Samuel; Mommert, Michael; Reyes-Ruiz, Mauricio; Trilling, David E.; Butler, Nathaniel; Pichardo, Barbara; Moskovitz, Nicholas; Jedicke, Robert

    2016-10-01

    We are carrying out a program to obtain rapid-response spectrophotometric characterization of newly discovered Near Earth Objects. Our first results, based on observations made with WFCAM on UKIRT, are presented in Mommert et al. (2016). Here we present a preliminary analysis of the r-i distribution of ~140 small (<500m) NEOs observed with the RATIR instrument on the 1.5-m telescope on San Pedro Martir. The observations are made in queue mode, and the data processing is carried out autonomously. Our goals are to derive coarse taxonomic and therefore compositional classifications for each of these objects, which will allow us to derive composition as a function of NEO size. This work is part of a collaboration in which we will characterize hundreds of NEOs that are generally too faint for other characterization techniques (down to V~21). This work is supported by funding from NASA's Solar System Observations program.

  12. Isolation and characterization of novel microsatellite markers from the sika deer (Cervus nippon) genome.

    PubMed

    Li, Y M; Bai, C Y; Niu, W P; Yu, H; Yang, R J; Yan, S Q; Zhang, J Y; Zhang, M J; Zhao, Z H

    2015-09-28

    Microsatellite markers are widely and evenly distributed, and are highly polymorphic. Rapid and convenient detection through automated analysis means that microsatellite markers are widely used in the construction of plant and animal genetic maps, in quantitative trait loci localization, marker-assisted selection, identification of genetic relationships, and genetic diversity and phylogenetic tree construction. However, few microsatellite markers remain to be isolated. We used streptavidin magnetic beads to affinity-capture and construct a (CA)n microsatellite DNA-enriched library from sika deer. We selected sequences containing more than six repeats to design primers. Clear bands were selected, which were amplified using non-specific primers following PCR amplification to screen polymorphisms in a group of 65 unrelated sika deer. The positive clone rate reached 82.9% by constructing the enriched library, and we then selected positive clones for sequencing. There were 395 sequences with CA repeats, and the CA repeat number was 4-105. We selected sequences containing more than six repeats to design primers, of which 297 pairs were designed. We next selected clear bands and used non-specific primers to amplify following PCR amplification. In total, 245 pairs of primers were screened. We then selected 50 pairs of primers to randomly screen for polymorphisms. We detected 47 polymorphic and 3 monomorphic loci in 65 unrelated sika deer. These newly isolated and characterized microsatellite loci can be used to construct genetic maps and for lineage testing in deer. In addition, they can be used for comparative genomics between Cervidae species.

  13. Genomic characterization of a bovine viral diarrhea virus subtype 1i in Brazil.

    PubMed

    Mósena, Ana Cristina S; Weber, Matheus N; Cibulski, Samuel P; Silveira, Simone; Silva, Mariana S; Mayer, Fabiana Q; Canal, Cláudio W

    2017-04-01

    Bovine viral diarrhea virus 1 (BVDV-1) belongs to the genus Pestivirus within the family Flaviviridae. Based on the 5' untranslated region (UTR) sequence, BVDV-1 can be divided into at least 17 subtypes (1a though 1q). BVDV-1i is an uncommon subtype that has been reported in the United Kingdom and Uruguay. Here, we report the complete genome sequence of the first subtype 1i BVDV-1 (strain ACM/BR/2016) isolated from cattle in southern Brazil. The genome is 12,231 nt in length and contains a single ORF that encodes a polyprotein of 3,896 amino acids, flanked by 5' and 3'UTRs of 325 and 220 nt, respectively. Phylogenetic inferences based on the whole genome, the 5'UTR, and the N(pro) region showed that strain ACM/BR/2016 is closely related to previously characterized BVDV-1i members. Its 5'UTR shares the highest nucleotide identity (90.5%) with BVDV-1i strains from United Kingdom, and its N(pro) is most closely related to that of a Uruguayan strain (90.6%). To the best of our knowledge, this is the first BVDV-1i strain from which the whole genome has been completely sequenced and characterized. The complete genome of a BVDV-1i will help future studies on pestivirus evolution and heterogeneity.

  14. Integrated Genomic Characterization Reveals Novel, Therapeutically Relevant Drug Targets in FGFR and EGFR Pathways in Sporadic Intrahepatic Cholangiocarcinoma

    PubMed Central

    Liang, Winnie S.; Fonseca, Rafael; Bryce, Alan H.; McCullough, Ann E.; Barrett, Michael T.; Hunt, Katherine; Patel, Maitray D.; Young, Scott W.; Collins, Joseph M.; Silva, Alvin C.; Condjella, Rachel M.; Block, Matthew; McWilliams, Robert R.; Lazaridis, Konstantinos N.; Klee, Eric W.; Bible, Keith C.; Harris, Pamela; Oliver, Gavin R.; Bhavsar, Jaysheel D.; Nair, Asha A.; Middha, Sumit; Asmann, Yan; Kocher, Jean-Pierre; Schahl, Kimberly; Kipp, Benjamin R.; Barr Fritcher, Emily G.; Baker, Angela; Aldrich, Jessica; Kurdoglu, Ahmet; Izatt, Tyler; Christoforides, Alexis; Cherni, Irene; Nasser, Sara; Reiman, Rebecca; Phillips, Lori; McDonald, Jackie; Adkins, Jonathan; Mastrian, Stephen D.; Placek, Pamela; Watanabe, Aprill T.; LoBello, Janine; Han, Haiyong; Von Hoff, Daniel; Craig, David W.; Stewart, A. Keith; Carpten, John D.

    2014-01-01

    Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM) was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM). In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X) in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations. PMID:24550739

  15. Genomic and transcriptomic characterization of skull base chordoma

    PubMed Central

    Sa, Jason K.; Lee, In-Hee; Hong, Sang Duk; Kong, Doo-Sik; Nam, Do-Hyun

    2017-01-01

    Skull base chordoma is a primary rare malignant bone-origin tumor showing relatively slow growth pattern and locally destructive lesions, which can only be characterized by histologic components. There is no available prognostic or therapeutic biomarker to predict clinical outcome or treatment response and the molecular mechanisms underlying chordoma development still remain unexplored. Therefore, we sought out to identify novel somatic variations that are associated with chordoma progression and potentially employed as therapeutic targets. Thirteen skull base chordomas were subjected for whole-exome and/or whole-transcriptome sequencing. In process, we have identified chromosomal aberration in 1p, 7, 10, 13 and 17q, high frequency of functional germline SNP of the T gene, rs2305089 (P = 0.0038) and several recurrent alterations including MUC4, NBPF1, NPIPB15 mutations and novel gene fusion of SAMD5-SASH1 for the first time in skull base chordoma. PMID:27901492

  16. The large-scale blast score ratio (LS-BSR) pipeline: a method to rapidly compare genetic content between bacterial genomes.

    PubMed

    Sahl, Jason W; Caporaso, J Gregory; Rasko, David A; Keim, Paul

    2014-01-01

    Background. As whole genome sequence data from bacterial isolates becomes cheaper to generate, computational methods are needed to correlate sequence data with biological observations. Here we present the large-scale BLAST score ratio (LS-BSR) pipeline, which rapidly compares the genetic content of hundreds to thousands of bacterial genomes, and returns a matrix that describes the relatedness of all coding sequences (CDSs) in all genomes surveyed. This matrix can be easily parsed in order to identify genetic relationships between bacterial genomes. Although pipelines have been published that group peptides by sequence similarity, no other software performs the rapid, large-scale, full-genome comparative analyses carried out by LS-BSR. Results. To demonstrate the utility of the method, the LS-BSR pipeline was tested on 96 Escherichia coli and Shigella genomes; the pipeline ran in 163 min using 16 processors, which is a greater than 7-fold speedup compared to using a single processor. The BSR values for each CDS, which indicate a relative level of relatedness, were then mapped to each genome on an independent core genome single nucleotide polymorphism (SNP) based phylogeny. Comparisons were then used to identify clade specific CDS markers and validate the LS-BSR pipeline based on molecular markers that delineate between classical E. coli pathogenic variant (pathovar) designations. Scalability tests demonstrated that the LS-BSR pipeline can process 1,000 E. coli genomes in 27-57 h, depending upon the alignment method, using 16 processors. Conclusions. LS-BSR is an open-source, parallel implementation of the BSR algorithm, enabling rapid comparison of the genetic content of large numbers of genomes. The results of the pipeline can be used to identify specific markers between user-defined phylogenetic groups, and to identify the loss and/or acquisition of genetic information between bacterial isolates. Taxa-specific genetic markers can then be translated into clinical

  17. Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek)

    PubMed Central

    2009-01-01

    Background Mungbean is an important economical crop in Asia. However, genomic research has lagged behind other crop species due to the lack of polymorphic DNA markers found in this crop. The objective of this work is to develop and characterize microsatellite or simple sequence repeat (SSR) markers from genome shotgun sequencing of mungbean. Result We have generated and characterized a total of 470,024 genome shotgun sequences covering 100.5 Mb of the mungbean (Vigna radiata (L.) Wilczek) genome using 454 sequencing technology. We identified 1,493 SSR motifs that could be used as potential molecular markers. Among 192 tested primer pairs in 17 mungbean accessions, 60 loci revealed polymorphism with polymorphic information content (PIC) values ranging from 0.0555 to 0.6907 with an average of 0.2594. Majority of microsatellite markers were transferable in Vigna species, whereas transferability rates were only 22.90% and 24.43% in Phaseolus vulgaris and Glycine max, respectively. We also used 16 SSR loci to evaluate phylogenetic relationship of 35 genotypes of the Asian Vigna group. The genome survey sequences were further analyzed to search for gene content. The evidence suggested 1,542 gene fragments have been sequence tagged, that fell within intersected existing gene models and shared sequence homology with other proteins in the database. Furthermore, potential microRNAs that could regulate developmental stages and environmental responses were discovered from this dataset. Conclusion In this report, we provided evidence of generating remarkable levels of diverse microsatellite markers and gene content from high throughput genome shotgun sequencing of the mungbean genomic DNA. The markers could be used in germplasm analysis, accessing genetic diversity and linkage mapping of mungbean. PMID:19930676

  18. Characterization and complete genome sequence analysis of novel bacteriophage IME-EFm1 infecting Enterococcus faecium.

    PubMed

    Wang, Yahui; Wang, Wei; Lv, Yongqiang; Zheng, Wangliang; Mi, Zhiqiang; Pei, Guangqian; An, Xiaoping; Xu, Xiaomeng; Han, Chuanyin; Liu, Jie; Zhou, Changlin; Tong, Yigang

    2014-11-01

    We isolated and characterized a novel virulent bacteriophage, IME-EFm1, specifically infecting multidrug-resistant Enterococcus faecium. IME-EFm1 is morphologically similar to members of the family Siphoviridae. It was found capable of lysing a wide range of our E. faecium collections, including two strains resistant to vancomycin. One-step growth tests revealed the host lysis activity of phage IME-EFm1, with a latent time of 30 min and a large burst size of 116 p.f.u. per cell. These biological characteristics suggested that IME-EFm1 has the potential to be used as a therapeutic agent. The complete genome of IME-EFm1 was 42 597 bp, and was linear, with terminally non-redundant dsDNA and a G+C content of 35.2 mol%. The termini of the phage genome were determined with next-generation sequencing and were further confirmed by nuclease digestion analysis. To our knowledge, this is the first report of a complete genome sequence of a bacteriophage infecting E. faecium. IME-EFm1 exhibited a low similarity to other phages in terms of genome organization and structural protein amino acid sequences. The coding region corresponded to 90.7 % of the genome; 70 putative ORFs were deduced and, of these, 29 could be functionally identified based on their homology to previously characterized proteins. A predicted metallo-β-lactamase gene was detected in the genome sequence. The identification of an antibiotic resistance gene emphasizes the necessity for complete genome sequencing of a phage to ensure it is free of any undesirable genes before use as a therapeutic agent against bacterial pathogens.

  19. Hox cluster characterization of Banna caecilian (Ichthyophis bannanicus) provides hints for slow evolution of its genome.

    PubMed

    Wu, Riga; Liu, Qingfeng; Meng, Shaoquan; Zhang, Peng; Liang, Dan

    2015-06-18

    Caecilians, with a discrete lifestyle, are the least explored group of amphibians. Though with distinct traits, many aspects of their biology are poorly investigated. Obtaining the caecilian genomic sequences will offer new perspectives and aid the fundamental studies in caecilian biology. The caecilian genomic sequences are also important and practical in the comparative genomics of amphibians. Currently, however, only sparse genomic sequences of caecilians are available. Hox genes, an old family of transcription factors playing central roles in the establishment of metazoan body plan. Understanding their structure and genomic organization may provide insights into the animal's genome, which is valuable for animals without a sequenced genome. We sequenced and characterized the Hox clusters of Banna caecilian (Ichthyophis bannanicus) with a strategy combining long range PCR and genome walking. We obtained the majority of the four caecilian Hox clusters and identified 39 Hox genes, 5 microRNA genes and 1 pseudogene (ψHoxD12). There remained seven intergenic gaps we were unable to fill. From the obtained sequences, the caecilian Hox clusters contained less repetitive sequences and more conserved noncoding elements (CNEs) than the frog counterparts. We found that caecilian and coelacanth shared many more CNEs than frog and coelacanth did. Relative rate of sequence evolution showed that caecilian Hox genes evolved significantly more slowly than the other tetrapod species used in this study and were comparable to the slowly evolving coelacanth Hox genes. Phylogenetic tree of the four Hox clusters also revealed shorter branch length especially for the caecilian HoxA, HoxB and HoxD clusters. These features of the caecilian Hox clusters suggested a slowly evolving genome, which was supported by further analysis of a large orthologous protein dataset. Our analyses greatly extended the knowledge about the caecilian Hox clusters from previous PCR surveys. From the obtained

  20. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species.

    PubMed

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-02-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.

  1. Genome-Wide Microsatellite Characterization and Marker Development in the Sequenced Brassica Crop Species

    PubMed Central

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-01-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species. PMID:24130371

  2. Rapid high-resolution characterization of functionally important monoclonal antibody N-glycans by capillary electrophoresis.

    PubMed

    Szabo, Zoltan; Guttman, András; Bones, Jonathan; Karger, Barry L

    2011-07-01

    Characterization of the N-glycosylation present in the Fc region of therapeutic monoclonal antibodies requires rapid, high-resolution separation methods to guarantee product safety and efficacy during all stages of process development. Determination of fucosylated oligosaccharides is particularly important during clone selection, product characterization, and lot release as fucose has been shown to adversely affect the ability of mAbs to induce antibody dependent cellular cytotoxicity (ADCC). Here, we apply a general capillary electrophoresis optimization strategy to separate functionally relevant fucosylated and afucosylated glycans on mononclonal antibody products in the presence of several high mannose oligosaccharides. The N-glycans chosen represent those most commonly reported on CHO cell derived therapeutic antibodies. A rapid (<7 min) high-resolution separation of 12 commonly reported and functionally important IgG glycans was developed by systematically evaluating the effects of selectivity (boric acid) and efficiency (linear polyacrylamide) enhancing additives. The approach can be used to rapidly optimize capillary electrophoresis separation of other glycan mixtures. Following optimization, the method was applied to overnight sample processing for automated 96 well plate-based glycosylation analyses of two nonproprietary therapeutic monoclonal antibodies, demonstrating ruggedness and suitability for high-throughput process and product monitoring applications.

  3. Rapid and Inexpensive Screening of Genomic Copy Number Variations Using a Novel Quantitative Fluorescent PCR Method

    PubMed Central

    Han, Joan C.; Elsea, Sarah H.; Pena, Heloísa B.; Pena, Sérgio Danilo Junho

    2013-01-01

    Detection of human microdeletion and microduplication syndromes poses significant burden on public healthcare systems in developing countries. With genome-wide diagnostic assays frequently inaccessible, targeted low-cost PCR-based approaches are preferred. However, their reproducibility depends on equally efficient amplification using a number of target and control primers. To address this, the recently described technique called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR) was shown to reliably detect four human syndromes by quantifying DNA amplification in an internally controlled PCR reaction. Here, we confirm its utility in the detection of eight human microdeletion syndromes, including the more common WAGR, Smith-Magenis, and Potocki-Lupski syndromes with 100% sensitivity and 100% specificity. We present selection, design, and performance evaluation of detection primers using variety of approaches. We conclude that MQF-PCR is an easily adaptable method for detection of human pathological chromosomal aberrations. PMID:24288428

  4. The iCRISPR platform for rapid genome editing in human pluripotent stem cells.

    PubMed

    Zhu, Zengrong; González, Federico; Huangfu, Danwei

    2014-01-01

    Human pluripotent stem cells (hPSCs) have the potential to generate all adult cell types, including rare or inaccessible human cell populations, thus providing a unique platform for disease studies. To realize this promise, it is essential to develop methods for efficient genetic manipulations in hPSCs. Established using TALEN (transcription activator-like effector nuclease) and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) systems, the iCRISPR platform supports a variety of genome-engineering approaches with high efficiencies. Here, we first describe the establishment of the iCRISPR platform through TALEN-mediated targeting of inducible Cas9 expression cassettes into the AAVS1 locus. Next, we provide a series of technical procedures for using iCRISPR to achieve one-step knockout of one or multiple gene(s), "scarless" introduction of precise nucleotide alterations, as well as inducible knockout during hPSC differentiation. We present an optimized workflow, as well as guidelines for the selection of CRISPR targeting sequences and the design of single-stranded DNA (ssDNA) homology-directed DNA repair templates for the introduction of specific nucleotide alterations. We have successfully used these protocols in four different hPSC lines, including human embryonic stem cells and induced pluripotent stem cells. Once the iCRISPR platform is established, clonal lines with desired genetic modifications can be established in as little as 1 month. The methods described here enable a wide range of genome-engineering applications in hPSCs, thus providing a valuable resource for the creation of diverse hPSC-based disease models with superior speed and ease.

  5. Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology.

    PubMed

    Reuter, Sandra; Ellington, Matthew J; Cartwright, Edward J P; Köser, Claudio U; Török, M Estée; Gouliouris, Theodore; Harris, Simon R; Brown, Nicholas M; Holden, Matthew T G; Quail, Mike; Parkhill, Julian; Smith, Geoffrey P; Bentley, Stephen D; Peacock, Sharon J

    2013-08-12

    The latest generation of benchtop DNA sequencing platforms can provide an accurate whole-genome sequence (WGS) for a broad range of bacteria in less than a day. These could be used to more effectively contain the spread of multidrug-resistant pathogens. To compare WGS with standard clinical microbiology practice for the investigation of nosocomial outbreaks caused by multidrug-resistant bacteria, the identification of genetic determinants of antimicrobial resistance, and typing of other clinically important pathogens. A laboratory-based study of hospital inpatients with a range of bacterial infections at Cambridge University Hospitals NHS Foundation Trust, a secondary and tertiary referral center in England, comparing WGS with standard diagnostic microbiology using stored bacterial isolates and clinical information. Specimens were taken and processed as part of routine clinical care, and cultured isolates stored and referred for additional reference laboratory testing as necessary. Isolates underwent DNA extraction and library preparation prior to sequencing on the Illumina MiSeq platform. Bioinformatic analyses were performed by persons blinded to the clinical, epidemiologic, and antimicrobial susceptibility data. We investigated 2 putative nosocomial outbreaks, one caused by vancomycin-resistant Enterococcus faecium and the other by carbapenem-resistant Enterobacter cloacae; WGS accurately discriminated between outbreak and nonoutbreak isolates and was superior to conventional typing methods. We compared WGS with standard methods for the identification of the mechanism of carbapenem resistance in a range of gram-negative bacteria (Acinetobacter baumannii, E cloacae, Escherichia coli, and Klebsiella pneumoniae). This demonstrated concordance between phenotypic and genotypic results, and the ability to determine whether resistance was attributable to the presence of carbapenemases or other resistance mechanisms. Whole-genome sequencing was used to recapitulate

  6. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.)

    PubMed Central

    2010-01-01

    Background Cucumber, Cucumis sativus L. is an important vegetable crop worldwide. Until very recently, cucumber genetic and genomic resources, especially molecular markers, have been very limited, impeding progress of cucumber breeding efforts. Microsatellites are short tandemly repeated DNA sequences, which are frequently favored as genetic markers due to their high level of polymorphism and codominant inheritance. Data from previously characterized genomes has shown that these repeats vary in frequency, motif sequence, and genomic location across taxa. During the last year, the genomes of two cucumber genotypes were sequenced including the Chinese fresh market type inbred line '9930' and the North American pickling type inbred line 'Gy14'. These sequences provide a powerful tool for developing markers in a large scale. In this study, we surveyed and characterized the distribution and frequency of perfect microsatellites in 203 Mbp assembled Gy14 DNA sequences, representing 55% of its nuclear genome, and in cucumber EST sequences. Similar analyses were performed in genomic and EST data from seven other plant species, and the results were compared with those of cucumber. Results A total of 112,073 perfect repeats were detected in the Gy14 cucumber genome sequence, accounting for 0.9% of the assembled Gy14 genome, with an overall density of 551.9 SSRs/Mbp. While tetranucleotides were the most frequent microsatellites in genomic DNA sequence, dinucleotide repeats, which had more repeat units than any other SSR type, had the highest cumulative sequence length. Coding regions (ESTs) of the cucumber genome had fewer microsatellites compared to its genomic sequence, with trinucleotides predominating in EST sequences. AAG was the most frequent repeat in cucumber ESTs. Overall, AT-rich motifs prevailed in both genomic and EST data. Compared to the other species examined, cucumber genomic sequence had the highest density of SSRs (although comparable to the density of poplar

  7. Novel immune-modulator identified by a rapid, functional screen of the parapoxvirus ovis (Orf virus) genome

    PubMed Central

    2012-01-01

    Background The success of new sequencing technologies and informatic methods for identifying genes has made establishing gene product function a critical rate limiting step in progressing the molecular sciences. We present a method to functionally mine genomes for useful activities in vivo, using an unusual property of a member of the poxvirus family to demonstrate this screening approach. Results The genome of Parapoxvirus ovis (Orf virus) was sequenced, annotated, and then used to PCR-amplify its open-reading-frames. Employing a cloning-independent protocol, a viral expression-library was rapidly built and arrayed into sub-library pools. These were directly delivered into mice as expressible cassettes and assayed for an immune-modulating activity associated with parapoxvirus infection. The product of the B2L gene, a homolog of vaccinia F13L, was identified as the factor eliciting immune cell accumulation at sites of skin inoculation. Administration of purified B2 protein also elicited immune cell accumulation activity, and additionally was found to serve as an adjuvant for antigen-specific responses. Co-delivery of the B2L gene with an influenza gene-vaccine significantly improved protection in mice. Furthermore, delivery of the B2L expression construct, without antigen, non-specifically reduced tumor growth in murine models of cancer. Conclusion A streamlined, functional approach to genome-wide screening of a biological activity in vivo is presented. Its application to screening in mice for an immune activity elicited by the pathogen genome of Parapoxvirus ovis yielded a novel immunomodulator. In this inverted discovery method, it was possible to identify the adjuvant responsible for a function of interest prior to a mechanistic study of the adjuvant. The non-specific immune activity of this modulator, B2, is similar to that associated with administration of inactivated particles to a host or to a live viral infection. Administration of B2 may provide the

  8. Rapid Characterization of Constituents in Tribulus terrestris from Different Habitats by UHPLC/Q-TOF MS

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wang, Fangxu; Zhao, Yang; Sun, Xinguang; Kang, Liping; Fan, Ziquan; Qiao, Lirui; Yan, Renyi; Liu, Shuchen; Ma, Baiping

    2017-08-01

    A strategy for rapid identification of the chemical constituents from crude extracts of Tribulus terrestris was proposed using an informatics platform for the UHPLC/Q-TOF MSE data analyses. This strategy mainly utilizes neutral losses, characteristic fragments, and in-house library to rapidly identify the structure of the compounds. With this strategy, rapid characterization of the chemical components of T. terrestris from Beijing, China was successfully achieved. A total of 82 steroidal saponins and nine flavonoids were identified or tentatively identified from T. terrestris. Among them, 15 new components were deduced based on retention times and characteristic MS fragmentation patterns. Furthermore, the chemical components of T. terrestris, including the other two samples from Xinjiang Uygur Autonomous region, China, and Rome, Italy, were also identified with this strategy. Altogether, 141 chemical components were identified from these three samples, of which 39 components were identified or tentatively identified as new compounds, including 35 groups of isomers. It demonstrated that this strategy provided an efficient protocol for the rapid identification of chemical constituents in complex samples such as traditional Chinese medicines (TCMs) by UHPLC/Q-TOF MSE with informatics platform. [Figure not available: see fulltext.

  9. Molecular Characterization of Pediatric Restrictive Cardiomyopathy from Integrative Genomics

    PubMed Central

    Rindler, Tara N.; Hinton, Robert B.; Salomonis, Nathan; Ware, Stephanie M.

    2017-01-01

    Pediatric restrictive cardiomyopathy (RCM) is a genetically heterogeneous heart disease with limited therapeutic options. RCM cases are largely idiopathic; however, even within families with a known genetic cause for cardiomyopathy, there is striking variability in disease severity. Although accumulating evidence implicates both gene expression and alternative splicing in development of dilated cardiomyopathy (DCM), there have been no detailed molecular characterizations of underlying pathways dysregulated in RCM. RNA-Seq on a cohort of pediatric RCM patients compared to other forms of adult cardiomyopathy and controls identified transcriptional differences highly common to the cardiomyopathies, as well as those unique to RCM. Transcripts selectively induced in RCM include many known and novel G-protein coupled receptors linked to calcium handling and contractile regulation. In-depth comparisons of alternative splicing revealed splicing events shared among cardiomyopathy subtypes, as well as those linked solely to RCM. Genes identified with altered alternative splicing implicate RBM20, a DCM splicing factor, as a potential mediator of alternative splicing in RCM. We present the first comprehensive report on molecular pathways dysregulated in pediatric RCM including unique/shared pathways identified compared to other cardiomyopathy subtypes and demonstrate that disruption of alternative splicing patterns in pediatric RCM occurs in the inverse direction as DCM. PMID:28098235

  10. Genome-wide characterization of the routes to pluripotency.

    PubMed

    Hussein, Samer M I; Puri, Mira C; Tonge, Peter D; Benevento, Marco; Corso, Andrew J; Clancy, Jennifer L; Mosbergen, Rowland; Li, Mira; Lee, Dong-Sung; Cloonan, Nicole; Wood, David L A; Munoz, Javier; Middleton, Robert; Korn, Othmar; Patel, Hardip R; White, Carl A; Shin, Jong-Yeon; Gauthier, Maely E; Lê Cao, Kim-Anh; Kim, Jong-Il; Mar, Jessica C; Shakiba, Nika; Ritchie, William; Rasko, John E J; Grimmond, Sean M; Zandstra, Peter W; Wells, Christine A; Preiss, Thomas; Seo, Jeong-Sun; Heck, Albert J R; Rogers, Ian M; Nagy, Andras

    2014-12-11

    Somatic cell reprogramming to a pluripotent state continues to challenge many of our assumptions about cellular specification, and despite major efforts, we lack a complete molecular characterization of the reprograming process. To address this gap in knowledge, we generated extensive transcriptomic, epigenomic and proteomic data sets describing the reprogramming routes leading from mouse embryonic fibroblasts to induced pluripotency. Through integrative analysis, we reveal that cells transition through distinct gene expression and epigenetic signatures and bifurcate towards reprogramming transgene-dependent and -independent stable pluripotent states. Early transcriptional events, driven by high levels of reprogramming transcription factor expression, are associated with widespread loss of histone H3 lysine 27 (H3K27me3) trimethylation, representing a general opening of the chromatin state. Maintenance of high transgene levels leads to re-acquisition of H3K27me3 and a stable pluripotent state that is alternative to the embryonic stem cell (ESC)-like fate. Lowering transgene levels at an intermediate phase, however, guides the process to the acquisition of ESC-like chromatin and DNA methylation signature. Our data provide a comprehensive molecular description of the reprogramming routes and is accessible through the Project Grandiose portal at http://www.stemformatics.org.

  11. Genomic DNA characterization of pork spleen by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Guzmán-Embús, D. A.; Orrego Cardozo, M.; Vargas-Hernández, C.

    2013-11-01

    In this paper, the study of Raman signal enhancement due to interaction between ZnO rods and pork spleen DNA is reported. ZnO microstructures were synthesized by the Sol-Gel method and afterward combined with porcine spleen DNA extracted in the previous stages, following standardized cell lysis, deproteinization, and precipitation processes. Raman spectroscopy was used for the characterization of structures of ZnO and ZnO-DNA complex, and the results show the respective bands of ZnO wurtzite hexagonal phase for modes E2 (M), A1(TO), E2(High), E1(LO), and 2LO. Due to the SERS effect in the spectral range from 200 to 1800 cm,-1 Raman bands caused by vibrations of the deoxyribose C-O-C binding were also observed, producing deformation of the ring as shown in the 559 cm-1 peak. The broad band at 782 cm-1, together with the complex vibration of the string 5'-COPO-C3', is over a wide band of thymine (790 cm-1) or cytosine (780 cm-1). A prominent band near 1098 cm-1 assigned to symmetric stretching vibration phosphodioxy group (PO2-) DNA backbone is most favoured in intensity by the addition of ZnO particles originated by the SERS effect. This effect suggests a possible mechanism for enhancing the Raman signal due to the electromagnetic interaction between a DNA molecule and the flat surface of the ZnO rod.

  12. Molecular Characterization of Pediatric Restrictive Cardiomyopathy from Integrative Genomics.

    PubMed

    Rindler, Tara N; Hinton, Robert B; Salomonis, Nathan; Ware, Stephanie M

    2017-01-18

    Pediatric restrictive cardiomyopathy (RCM) is a genetically heterogeneous heart disease with limited therapeutic options. RCM cases are largely idiopathic; however, even within families with a known genetic cause for cardiomyopathy, there is striking variability in disease severity. Although accumulating evidence implicates both gene expression and alternative splicing in development of dilated cardiomyopathy (DCM), there have been no detailed molecular characterizations of underlying pathways dysregulated in RCM. RNA-Seq on a cohort of pediatric RCM patients compared to other forms of adult cardiomyopathy and controls identified transcriptional differences highly common to the cardiomyopathies, as well as those unique to RCM. Transcripts selectively induced in RCM include many known and novel G-protein coupled receptors linked to calcium handling and contractile regulation. In-depth comparisons of alternative splicing revealed splicing events shared among cardiomyopathy subtypes, as well as those linked solely to RCM. Genes identified with altered alternative splicing implicate RBM20, a DCM splicing factor, as a potential mediator of alternative splicing in RCM. We present the first comprehensive report on molecular pathways dysregulated in pediatric RCM including unique/shared pathways identified compared to other cardiomyopathy subtypes and demonstrate that disruption of alternative splicing patterns in pediatric RCM occurs in the inverse direction as DCM.

  13. Single, rapid coastal settlement of Asia revealed by analysis of complete mitochondrial genomes.

    PubMed

    Macaulay, Vincent; Hill, Catherine; Achilli, Alessandro; Rengo, Chiara; Clarke, Douglas; Meehan, William; Blackburn, James; Semino, Ornella; Scozzari, Rosaria; Cruciani, Fulvio; Taha, Adi; Shaari, Norazila Kassim; Raja, Joseph Maripa; Ismail, Patimah; Zainuddin, Zafarina; Goodwin, William; Bulbeck, David; Bandelt, Hans-Jürgen; Oppenheimer, Stephen; Torroni, Antonio; Richards, Martin

    2005-05-13

    A recent dispersal of modern humans out of Africa is now widely accepted, but the routes taken across Eurasia are still disputed. We show that mitochondrial DNA variation in isolated "relict" populations in southeast Asia supports the view that there was only a single dispersal from Africa, most likely via a southern coastal route, through India and onward into southeast Asia and Australasia. There was an early offshoot, leading ultimately to the settlement of the Near East and Europe, but the main dispersal from India to Australia approximately 65,000 years ago was rapid, most likely taking only a few thousand years.

  14. Large number of replacement polymorphisms in rapidly evolving genes of Drosophila. Implications for genome-wide surveys of DNA polymorphism.

    PubMed Central

    Schmid, K J; Nigro, L; Aquadro, C F; Tautz, D

    1999-01-01

    We present a survey of nucleotide polymorphism of three novel, rapidly evolving genes in populations of Drosophila melanogaster and D. simulans. Levels of silent polymorphism are comparable to other loci, but the number of replacement polymorphisms is higher than that in most other genes surveyed in D. melanogaster and D. simulans. Tests of neutrality fail to reject neutral evolution with one exception. This concerns a gene located in a region of high recombination rate in D. simulans and in a region of low recombination rate in D. melanogaster, due to an inversion. In the latter case it shows a very low number of polymorphisms, presumably due to selective sweeps in the region. Patterns of nucleotide polymorphism suggest that most substitutions are neutral or nearly neutral and that weak (positive and purifying) selection plays a significant role in the evolution of these genes. At all three loci, purifying selection of slightly deleterious replacement mutations appears to be more efficient in D. simulans than in D. melanogaster, presumably due to different effective population sizes. Our analysis suggests that current knowledge about genome-wide patterns of nucleotide polymorphism is far from complete with respect to the types and range of nucleotide substitutions and that further analysis of differences between local populations will be required to understand the forces more completely. We note that rapidly diverging and nearly neutrally evolving genes cannot be expected only in the genome of Drosophila, but are likely to occur in large numbers also in other organisms and that their function and evolution are little understood so far. PMID:10581279

  15. Rapid detection of BoHV-1 genomic DNA by loop-mediated isothermal amplification assay.

    PubMed

    El-Kholy, Alaa A; Abdelrahman, Khaled; Soliman, Hatem

    2014-08-01

    Bovine herpes virus-1 (BoHV-1) is a serious viral pathogen of domestic and wild cattle. Herein, we report development of a new molecular diagnostic assay for rapid and sensitive detection of BoHV-1 utilizing the loop-mediated isothermal amplification (LAMP) technique. BoHV-1-LAMP assay was optimized to amplify the target DNA by incubation the Bst-DNA polymerase enzyme with a set of specially constructed six primers, based on the gE-gene of BoHV-1 virus, at 65°C for 60min. BoHV-1-LAMP products were detected by visual inspection using SYBR Green-I stain and had a ladder-like appearance by gel electrophoresis analysis. Negative results obtained with DNA from other tested fish viruses confirmed the specificity of the assay. The analytical sensitivity of the BoHV-1-LAMP assay was 1fg of BoHV-1 DNA (dilution of 10(6)). The developed assay could successfully detect BoVH-1 DNA from clinical samples. Results of this study indicate that the developed BoHV-1-LAMP is rapid and highly sensitive assay not only for detection of BoHV-1 in clinical samples, but also for differentiation between wild-type (gE-positive) and gE-negative BoHV-1 viruses, which will improve the control programs of BoHV-1 in Egypt.

  16. Rapid Genetic and Epigenetic Alterations under Intergeneric Genomic Shock in Newly Synthesized Chrysanthemum morifolium × Leucanthemum paludosum Hybrids (Asteraceae)

    PubMed Central

    Wang, Haibin; Jiang, Jiafu; Chen, Sumei; Qi, Xiangyu; Fang, Weimin; Guan, Zhiyong; Teng, Nianjun; Liao, Yuan; Chen, Fadi

    2014-01-01

    The Asteraceae family is at the forefront of the evolution due to frequent hybridization. Hybridization is associated with the induction of widespread genetic and epigenetic changes and has played an important role in the evolution of many plant taxa. We attempted the intergeneric cross Chrysanthemum morifolium × Leucanthemum paludosum. To obtain the success in cross, we have to turn to ovule rescue. DNA profiling of the amphihaploid and amphidiploid was investigated using amplified fragment length polymorphism, sequence-related amplified polymorphism, start codon targeted polymorphism, and methylation-sensitive amplification polymorphism (MSAP). Hybridization induced rapid changes at the genetic and the epigenetic levels. The genetic changes mainly involved loss of parental fragments and gaining of novel fragments, and some eliminated sequences possibly from the noncoding region of L. paludosum. The MSAP analysis indicated that the level of DNA methylation was lower in the amphiploid (∼45%) than in the parental lines (51.5–50.6%), whereas it increased after amphidiploid formation. Events associated with intergeneric genomic shock were a feature of C. morifolium × L. paludosum hybrid, given that the genetic relationship between the parental species is relatively distant. Our results provide genetic and epigenetic evidence for understanding genomic shock in wide crosses between species in Asteraceae and suggest a need to expand our current evolutionary framework to encompass a genetic/epigenetic dimension when seeking to understand wide crosses. PMID:24407856

  17. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences.

    PubMed

    Medema, Marnix H; Blin, Kai; Cimermancic, Peter; de Jager, Victor; Zakrzewski, Piotr; Fischbach, Michael A; Weber, Tilmann; Takano, Eriko; Breitling, Rainer

    2011-07-01

    Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide variety of microbes. However, rapidly and reliably pinpointing all the potential gene clusters for secondary metabolites in dozens of newly sequenced genomes has been extremely challenging, due to their biochemical heterogeneity, the presence of unknown enzymes and the dispersed nature of the necessary specialized bioinformatics tools and resources. Here, we present antiSMASH (antibiotics & Secondary Metabolite Analysis Shell), the first comprehensive pipeline capable of identifying biosynthetic loci covering the whole range of known secondary metabolite compound classes (polyketides, non-ribosomal peptides, terpenes, aminoglycosides, aminocoumarins, indolocarbazoles, lantibiotics, bacteriocins, nucleosides, beta-lactams, butyrolactones, siderophores, melanins and others). It aligns the identified regions at the gene cluster level to their nearest relatives from a database containing all other known gene clusters, and integrates or cross-links all previously available secondary-metabolite specific gene analysis methods in one interactive view. antiSMASH is available at http://antismash.secondarymetabolites.org.

  18. Rapid genetic and epigenetic alterations under intergeneric genomic shock in newly synthesized Chrysanthemum morifolium x Leucanthemum paludosum hybrids (Asteraceae).

    PubMed

    Wang, Haibin; Jiang, Jiafu; Chen, Sumei; Qi, Xiangyu; Fang, Weimin; Guan, Zhiyong; Teng, Nianjun; Liao, Yuan; Chen, Fadi

    2014-01-01

    The Asteraceae family is at the forefront of the evolution due to frequent hybridization. Hybridization is associated with the induction of widespread genetic and epigenetic changes and has played an important role in the evolution of many plant taxa. We attempted the intergeneric cross Chrysanthemum morifolium × Leucanthemum paludosum. To obtain the success in cross, we have to turn to ovule rescue. DNA profiling of the amphihaploid and amphidiploid was investigated using amplified fragment length polymorphism, sequence-related amplified polymorphism, start codon targeted polymorphism, and methylation-sensitive amplification polymorphism (MSAP). Hybridization induced rapid changes at the genetic and the epigenetic levels. The genetic changes mainly involved loss of parental fragments and gaining of novel fragments, and some eliminated sequences possibly from the noncoding region of L. paludosum. The MSAP analysis indicated that the level of DNA methylation was lower in the amphiploid (∼45%) than in the parental lines (51.5-50.6%), whereas it increased after amphidiploid formation. Events associated with intergeneric genomic shock were a feature of C. morifolium × L. paludosum hybrid, given that the genetic relationship between the parental species is relatively distant. Our results provide genetic and epigenetic evidence for understanding genomic shock in wide crosses between species in Asteraceae and suggest a need to expand our current evolutionary framework to encompass a genetic/epigenetic dimension when seeking to understand wide crosses.

  19. Precise Identification of Genome-Wide Transcription Start Sites in Bacteria by 5'-Rapid Amplification of cDNA Ends (5'-RACE).

    PubMed

    Matteau, Dominick; Rodrigue, Sébastien

    2015-01-01

    Transcription start sites are commonly used to locate promoter elements in bacterial genomes. TSS were previously studied one gene at a time, often through 5'-rapid amplification of cDNA ends (5'-RACE). This technique has now been adapted for high-throughput sequencing and can be used to precisely identify TSS in a genome-wide fashion for practically any bacterium, which greatly contributes to our understanding of gene regulatory networks in microorganisms.

  20. Rapid Bacterial Whole-Genome Sequencing to Enhance Diagnostic and Public Health Microbiology

    PubMed Central

    Reuter, Sandra; Ellington, Matthew J.; Cartwright, Edward J. P.; Köser, Claudio U.; Török, M. Estée; Gouliouris, Theodore; Harris, Simon R.; Brown, Nicholas M.; Holden, Matthew T. G.; Quail, Mike; Parkhill, Julian; Smith, Geoffrey P.; Bentley, Stephen D.; Peacock, Sharon J.

    2014-01-01

    IMPORTANCE The latest generation of benchtop DNA sequencing platforms can provide an accurate whole-genome sequence (WGS) for a broad range of bacteria in less than a day. These could be used to more effectively contain the spread of multidrug-resistant pathogens. OBJECTIVE To compare WGS with standard clinical microbiology practice for the investigation of nosocomial outbreaks caused by multidrug-resistant bacteria, the identification of genetic determinants of antimicrobial resistance, and typing of other clinically important pathogens. DESIGN, SETTING, AND PARTICIPANTS A laboratory-based study of hospital inpatients with a range of bacterial infections at Cambridge University Hospitals NHS Foundation Trust, a secondary and tertiary referral center in England, comparing WGS with standard diagnostic microbiology using stored bacterial isolates and clinical information. MAIN OUTCOMES AND MEASURES Specimens were taken and processed as part of routine clinical care, and cultured isolates stored and referred for additional reference laboratory testing as necessary. Isolates underwent DNA extraction and library preparation prior to sequencing on the Illumina MiSeq platform. Bioinformatic analyses were performed by persons blinded to the clinical, epidemiologic, and antimicrobial susceptibility data. RESULTS We investigated 2 putative nosocomial outbreaks, one caused by vancomycin-resistant Enterococcus faecium and the other by carbapenem-resistant Enterobacter cloacae; WGS accurately discriminated between outbreak and nonoutbreak isolates and was superior to conventional typing methods. We compared WGS with standard methods for the identification of the mechanism of carbapenem resistance in a range of gram-negative bacteria (Acinetobacter baumannii, E cloacae, Escherichia coli, and Klebsiella pneumoniae). This demonstrated concordance between phenotypic and genotypic results, and the ability to determine whether resistance was attributable to the presence of

  1. Identification and Characterization of Microsatellite Markers Derived from the Whole Genome Analysis of Taenia solium

    PubMed Central

    Pajuelo, Mónica J.; Eguiluz, María; Dahlstrom, Eric; Requena, David; Guzmán, Frank; Ramirez, Manuel; Sheen, Patricia; Frace, Michael; Sammons, Scott; Cama, Vitaliano; Anzick, Sarah; Bruno, Dan; Mahanty, Siddhartha; Wilkins, Patricia; Nash, Theodore; Gonzalez, Armando; García, Héctor H.; Gilman, Robert H.; Porcella, Steve; Zimic, Mirko

    2015-01-01

    Background Infections with Taenia solium are the most common cause of adult acquired seizures worldwide, and are the leading cause of epilepsy in developing countries. A better understanding of the genetic diversity of T. solium will improve parasite diagnostics and transmission pathways in endemic areas thereby facilitating the design of future control measures and interventions. Microsatellite markers are useful genome features, which enable strain typing and identification in complex pathogen genomes. Here we describe microsatellite identification and characterization in T. solium, providing information that will assist in global efforts to control this important pathogen. Methods For genome sequencing, T. solium cysts and proglottids were collected from Huancayo and Puno in Peru, respectively. Using next generation sequencing (NGS) and de novo assembly, we assembled two draft genomes and one hybrid genome. Microsatellite sequences were identified and 36 of them were selected for further analysis. Twenty T. solium isolates were collected from Tumbes in the northern region, and twenty from Puno in the southern region of Peru. The size-polymorphism of the selected microsatellites was determined with multi-capillary electrophoresis. We analyzed the association between microsatellite polymorphism and the geographic origin of the samples. Results The predicted size of the hybrid (proglottid genome combined with cyst genome) T. solium genome was 111 MB with a GC content of 42.54%. A total of 7,979 contigs (>1,000 nt) were obtained. We identified 9,129 microsatellites in the Puno-proglottid genome and 9,936 in the Huancayo-cyst genome, with 5 or more repeats, ranging from mono- to hexa-nucleotide. Seven microsatellites were polymorphic and 29 were monomorphic within the analyzed isolates. T. solium tapeworms were classified into two genetic groups that correlated with the North/South geographic origin of the parasites. Conclusions/Significance The availability of draft

  2. Identification and Characterization of Microsatellite Markers Derived from the Whole Genome Analysis of Taenia solium.

    PubMed

    Pajuelo, Mónica J; Eguiluz, María; Dahlstrom, Eric; Requena, David; Guzmán, Frank; Ramirez, Manuel; Sheen, Patricia; Frace, Michael; Sammons, Scott; Cama, Vitaliano; Anzick, Sarah; Bruno, Dan; Mahanty, Siddhartha; Wilkins, Patricia; Nash, Theodore; Gonzalez, Armando; García, Héctor H; Gilman, Robert H; Porcella, Steve; Zimic, Mirko

    2015-12-01

    Infections with Taenia solium are the most common cause of adult acquired seizures worldwide, and are the leading cause of epilepsy in developing countries. A better understanding of the genetic diversity of T. solium will improve parasite diagnostics and transmission pathways in endemic areas thereby facilitating the design of future control measures and interventions. Microsatellite markers are useful genome features, which enable strain typing and identification in complex pathogen genomes. Here we describe microsatellite identification and characterization in T. solium, providing information that will assist in global efforts to control this important pathogen. For genome sequencing, T. solium cysts and proglottids were collected from Huancayo and Puno in Peru, respectively. Using next generation sequencing (NGS) and de novo assembly, we assembled two draft genomes and one hybrid genome. Microsatellite sequences were identified and 36 of them were selected for further analysis. Twenty T. solium isolates were collected from Tumbes in the northern region, and twenty from Puno in the southern region of Peru. The size-polymorphism of the selected microsatellites was determined with multi-capillary electrophoresis. We analyzed the association between microsatellite polymorphism and the geographic origin of the samples. The predicted size of the hybrid (proglottid genome combined with cyst genome) T. solium genome was 111 MB with a GC content of 42.54%. A total of 7,979 contigs (>1,000 nt) were obtained. We identified 9,129 microsatellites in the Puno-proglottid genome and 9,936 in the Huancayo-cyst genome, with 5 or more repeats, ranging from mono- to hexa-nucleotide. Seven microsatellites were polymorphic and 29 were monomorphic within the analyzed isolates. T. solium tapeworms were classified into two genetic groups that correlated with the North/South geographic origin of the parasites. The availability of draft genomes for T. solium represents a significant step

  3. Prevalence and complete genome characterization of turkey picobirnaviruses.

    PubMed

    Verma, Harsha; Mor, Sunil K; Erber, Jonathan; Goyal, Sagar M

    2015-03-01

    The "light turkey syndrome" (LTS), in which birds weigh less than their standard breed character at the marketing time, is believed to be a consequence of viral enteritis at an early age (3-5 weeks) from which the birds never fully recover. In a previously published study, we collected fecal pools from 2, 3, 5 and 8 week old turkey poults (80 pools from LTS farms and 40 from non-LTS farms) and examined them for the presence of astro-, rota-, reo-, and coronaviruses. To determine the presence of additional enteric viruses, we analyzed a fecal pool by Illumina sequencing and found picobirnavirus (PBV). Segments 1 and 2 of this virus shared 45.8%aa and 60.9-64.5%aa identity with genogroup I of human PBV, respectively. Primers based on RNA-dependent RNA polymerase and capsid genes were designed for detection and molecular characterization of PBVs in the 120 fecal pools described above. From LTS farms, 39 of 80 (48.8%) pools were PBV positive while 23 of 40 (57.5%) were positive from non-LTS farms. The phylogenetic analysis of 15 randomly selected strains divided them into four subgroups within genogroup I (subgroups 1A-D). Nine strains were in subgroup IA showing 69.9-76.4%nt identity with human PBV GI strainVS111 from the Netherlands. Strains in subgroup IB (n=2) had 91.4-91.7%nt identity with chicken PBV GI strain AVE 42v1 from Brazil. Two strains in subgroup IC had 72.3-74.2%nt identity with chicken PBV strain AVE 71v3 from Brazil. In subgroup ID, two strains showed 72.4-81.8%nt identity with chicken PBV GI strain AVE 57v2 from Brazil. Subgroup IC and ID were the most divergent. Five of the 15 strains were typed using capsid gene primers. They showed 32.6-33.4%nt and 39.5-41.3%aa identity with VS10 human PBV strain. These results indicate co-circulation of divergent strains of PBVs among Minnesota turkeys.

  4. Characterization of 3D rapid prototyped polymeric material by ultrasonic methods

    NASA Astrophysics Data System (ADS)

    Livings, Richard; Dayal, Vinay; Barnard, Dan

    2015-03-01

    Rapid prototyped parts are quickly becoming a viable alternative for manufacturers. Although the polymeric material is initially isotropic, the printing process introduces a level of anisotropy. This work characterizes the elastic and acoustic properties of the material, after printing, using ultrasonic methods. The elastic constants and the level of anisotropy are determined by measuring the ultrasonic wave velocities. It is shown that the material possesses less symmetry than the orthotropic material model. The dispersion and attenuation characteristics are also determined to provide a basis for ultrasonic flaw detection.

  5. PRIMUS: rapid reconstruction of pedigrees from genome-wide estimates of identity by descent.

    PubMed

    Staples, Jeffrey; Qiao, Dandi; Cho, Michael H; Silverman, Edwin K; Nickerson, Deborah A; Below, Jennifer E

    2014-11-06

    Understanding and correctly utilizing relatedness among samples is essential for genetic analysis; however, managing sample records and pedigrees can often be error prone and incomplete. Data sets ascertained by random sampling often harbor cryptic relatedness that can be leveraged in genetic analyses for maximizing power. We have developed a method that uses genome-wide estimates of pairwise identity by descent to identify families and quickly reconstruct and score all possible pedigrees that fit the genetic data by using up to third-degree relatives, and we have included it in the software package PRIMUS (Pedigree Reconstruction and Identification of the Maximally Unrelated Set). Here, we validate its performance on simulated, clinical, and HapMap pedigrees. Among these samples, we demonstrate that PRIMUS can verify reported pedigree structures and identify cryptic relationships. Finally, we show that PRIMUS reconstructed pedigrees, all of which were previously unknown, for 203 families from a cohort collected in Starr County, TX (1,890 samples).

  6. PRIMUS: Rapid Reconstruction of Pedigrees from Genome-wide Estimates of Identity by Descent

    PubMed Central

    Staples, Jeffrey; Qiao, Dandi; Cho, Michael H.; Silverman, Edwin K.; Nickerson, Deborah A.; Below, Jennifer E.

    2014-01-01

    Understanding and correctly utilizing relatedness among samples is essential for genetic analysis; however, managing sample records and pedigrees can often be error prone and incomplete. Data sets ascertained by random sampling often harbor cryptic relatedness that can be leveraged in genetic analyses for maximizing power. We have developed a method that uses genome-wide estimates of pairwise identity by descent to identify families and quickly reconstruct and score all possible pedigrees that fit the genetic data by using up to third-degree relatives, and we have included it in the software package PRIMUS (Pedigree Reconstruction and Identification of the Maximally Unrelated Set). Here, we validate its performance on simulated, clinical, and HapMap pedigrees. Among these samples, we demonstrate that PRIMUS can verify reported pedigree structures and identify cryptic relationships. Finally, we show that PRIMUS reconstructed pedigrees, all of which were previously unknown, for 203 families from a cohort collected in Starr County, TX (1,890 samples). PMID:25439724

  7. Genomic Characterization of Novel Circular ssDNA Viruses from Insectivorous Bats in Southern Brazil

    PubMed Central

    Lima, Francisco Esmaile de Sales; Cibulski, Samuel Paulo; dos Santos, Helton Fernandes; Teixeira, Thais Fumaco; Varela, Ana Paula Muterle; Roehe, Paulo Michel; Delwart, Eric; Franco, Ana Cláudia

    2015-01-01

    Circoviruses are highly prevalent porcine and avian pathogens. In recent years, novel circular ssDNA genomes have recently been detected in a variety of fecal and environmental samples using deep sequencing approaches. In this study the identification of genomes of novel circoviruses and cycloviruses in feces of insectivorous bats is reported. Pan-reactive primers were used targeting the conserved rep region of circoviruses and cycloviruses to screen DNA bat fecal samples. Using this approach, partial rep sequences were detected which formed five phylogenetic groups distributed among the Circovirus and the recently proposed Cyclovirus genera of the Circoviridae. Further analysis using inverse PCR and Sanger sequencing led to the characterization of four new putative members of the family Circoviridae with genome size ranging from 1,608 to 1,790 nt, two inversely arranged ORFs, and canonical nonamer sequences atop a stem loop. PMID:25688970

  8. Developing a Tissue Resource to Characterize the Genome of Pancreatic Cancer

    PubMed Central

    Voidonikolas, Georgios; Gingras, Marie-Claude; Hodges, Sally; McGuire, Amy L.; Chen, Changyi; Gibbs, Richard A.; Brunicardi, F. Charles; Fisher, William E.

    2010-01-01

    With recent advances in DNA sequencing technology, medicine is entering an era in which a personalized genomic approach to diagnosis and treatment of disease is now feasible. However, discovering the role of altered DNA sequences in various disease states will be a challenging task. The genomic approach offers great promise for diseases like pancreatic cancer in which the effect of current diagnostic and treatment modalities is disappointing. To facilitate the characterization of the genome of pancreatic cancer, high quality and well annotated tissue repositories are needed. This article summarizes basic principles guiding the creation of such a repository including sample processing and preservation techniques, sample size and composition, and collection of clinical data elements. PMID:19137368

  9. Well-characterized sequence features of eukaryote genomes and implications for ab initio gene prediction.

    PubMed

    Huang, Ying; Chen, Shi-Yi; Deng, Feilong

    2016-01-01

    In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over the past two decades, computational approaches for ab initio prediction of gene structure from genome sequence alone have largely facilitated our understanding on a variety of biological questions. Although the computational prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly find the non-coding RNA genes, such as miRNA and lncRNA. Two main aspects of ab initio gene prediction include the computed values for describing sequence features and used algorithm for training the discriminant function, and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction. The main purpose of this article is to provide an overview to beginners who aim to develop the related bioinformatic tools.

  10. Characterization of ten novel Ty1/copia-like retrotransposon families of the grapevine genome

    PubMed Central

    Moisy, Cédric; Garrison, Keith E; Meredith, Carole P; Pelsy, Frédérique

    2008-01-01

    Background Retrotransposons make a significant contribution to the size, organization and genetic diversity of their host genomes. To characterize retrotransposon families in the grapevine genome (the fourth crop plant genome sequenced) we have combined two approaches: a PCR-based method for the isolation of RnaseH-LTR sequences with a computer-based sequence similarity search in the whole-genome sequence of PN40024. Results Supported by a phylogenic analysis, ten novel Ty1/copia families were distinguished in this study. To select a canonical reference element sequence from amongst the various insertions in the genome belonging to each retroelement family, the following screening criteria were adopted to identify the element sequence with: (1) perfect 5 bp-duplication of target sites, (2) the highest level of identity between 5' and 3'-LTR within a single insertion sequence, and (3) longest, un-interrupted coding capacity within the gag-pol ORF. One to eight copies encoding a single putatively functional gag-pol polyprotein were found for three families, indicating that these families could be still autonomous and active. For the others, no autonomous copies were identified. However, a subset of copies within the presumably non-autonomous families had perfect identity between their 5' and 3' LTRs, indicating a recent insertion event. A phylogenic study based on the sequence alignment of the region located between reverse transcriptase domains I and VII distinguished these 10 families from other plant retrotransposons. Including the previously characterized Ty1/copia-like grapevine retrotransposons Tvv1 and Vine 1 and the Ty3/gypsy-like Gret1 in this assessment, a total of 1709 copies were identified for the 13 retrotransposon families, representing 1.24% of the sequenced genome. The copy number per family ranged from 91–212 copies. We performed insertion site profiling for 8 out of the 13 retrotransposon families and confirmed multiple insertions of these

  11. Speciation within genomic networks: a case study based on Steatocranus cichlids of the lower Congo rapids.

    PubMed

    Schwarzer, Julia; Misof, B; Schliewen, U K

    2012-01-01

    Hybridization in animals is a much more common phenomenon as previously thought and may have profound implications for speciation research. The cichlid genus Steatocranus (Teleostei: Cichlidae), a close relative to members of the East African cichlid radiations, radiated under riverine conditions in the lower Congo rapids and produced a small species flock. Previous phylogenetic analyses suggested that hybridization occurred and contributed to speciation in this genus. A re-analysis of an already published 2000 loci-AFLP data set explicitly testing for patterns of ancient gene flow provided strong evidence for a highly reticulate phylogenetic history of the genus. We provide, to our knowledge, the first example of a complex reticulate network in vertebrates, including multiple closely related species connected through ancient as well as recent gene flow. In this context, the limited validity of strictly bifurcating tree hypotheses as a phylogenetic basis for hypothesis testing in evolutionary biology is discussed.

  12. Characterization of the Genome, Proteome, and Structure of Yersiniophage ϕR1-37

    PubMed Central

    Hyytiäinen, Heidi J.; Happonen, Lotta J.; Kiljunen, Saija; Datta, Neeta; Mattinen, Laura; Williamson, Kirsty; Kristo, Paula; Szeliga, Magdalena; Kalin-Mänttäri, Laura; Ahola-Iivarinen, Elina; Kalkkinen, Nisse; Butcher, Sarah J.

    2012-01-01

    The bacteriophage vB_YecM-ϕR1-37 (ϕR1-37) is a lytic yersiniophage that can propagate naturally in different Yersinia species carrying the correct lipopolysaccharide receptor. This large-tailed phage has deoxyuridine (dU) instead of thymidine in its DNA. In this study, we determined the genomic sequence of phage ϕR1-37, mapped parts of the phage transcriptome, characterized the phage particle proteome, and characterized the virion structure by cryo-electron microscopy and image reconstruction. The 262,391-bp genome of ϕR1-37 is one of the largest sequenced phage genomes, and it contains 367 putative open reading frames (ORFs) and 5 tRNA genes. Mass-spectrometric analysis identified 69 phage particle structural proteins with the genes scattered throughout the genome. A total of 269 of the ORFs (73%) lack homologues in sequence databases. Based on terminator and promoter sequences identified from the intergenic regions, the phage genome was predicted to consist of 40 to 60 transcriptional units. Image reconstruction revealed that the ϕR1-37 capsid consists of hexameric capsomers arranged on a T=27 lattice similar to the bacteriophage ϕKZ. The tail of ϕR1-37 has a contractile sheath. We conclude that phage ϕR1-37 is a representative of a novel phage type that carries the dU-containing genome in a ϕKZ-like head. PMID:22973030

  13. Rapid, Multiplexed Characterization of Shiga Toxin-Producing Escherichia coli (STEC) Isolates Using Suspension Array Technology

    PubMed Central

    Carter, John M.; Lin, Andrew; Clotilde, Laurie; Lesho, Matthew

    2016-01-01

    Molecular methods have emerged as the most reliable techniques to detect and characterize pathogenic Escherichia coli. These molecular techniques include conventional single analyte and multiplex PCR, PCR followed by microarray detection, pulsed-field gel electrophoresis (PFGE), and whole genome sequencing. The choice of methods used depends upon the specific needs of the particular study. One versatile method involves detecting serogroup-specific markers by hybridization or binding to encoded microbeads in a suspension array. This molecular serotyping method has been developed and adopted for investigating E. coli outbreaks. The major advantages of this technique are the ability to simultaneously serotype E. coli and detect the presence of virulence and pathogenicity markers. Here, we describe the development of a family of multiplex molecular serotyping methods for Shiga toxin-producing E. coli, compare their performance to traditional serotyping methods, and discuss the cost-benefit balance of these methods in the context of various food safety objectives. PMID:27242670

  14. Rapid identification of a Mycobacterium tuberculosis full genetic drug resistance profile through whole genome sequencing directly from sputum.

    PubMed

    Nimmo, Camus; Doyle, Ronan; Burgess, Carrie; Williams, Rachel; Gorton, Rebecca; McHugh, Timothy D; Brown, Mike; Morris-Jones, Stephen; Booth, Helen; Breuer, Judith

    2017-09-01

    Resistance to second-line tuberculosis drugs is common, but slow to diagnose with phenotypic drug sensitivity testing. Rapid molecular tests speed up diagnosis, but can only detect limited mutations. Whole genome sequencing (WGS) of culture isolates can generate a complete genetic drug resistance profile, but is delayed by the initial culture step. In the case presented here, successful WGS directly from sputum was achieved using targeted enrichment. A 29-year-old Nigerian woman was diagnosed with tuberculosis. Xpert MTB/RIF and Hain line probe assays identified rpoB and inhA mutations consistent with rifampicin and intermediate isoniazid resistance, and a further possible mutation conferring fluoroquinolone resistance. WGS directly from sputum identified a further inhA mutation consistent with high-level isoniazid resistance and confirmed the absence of fluoroquinolone resistance. Isoniazid was stopped, and the patient has completed 18 months of a fluoroquinolone-based regimen without relapse. Compared to rapid molecular tests (which can only examine a limited number of mutations) and WGS of culture isolates (which requires a culture step), WGS directly from sputum can quickly generate a complete genetic drug resistance profile. In this case, WGS altered the clinical management of drug-resistant tuberculosis and demonstrated potential for guiding individualized drug treatment where second-line drug resistance is common. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Rapid evolution of a recently retroposed transcription factor YY2 in mammalian genomes

    SciTech Connect

    Luo, C; Lu, X; Stubbs, L; Kim, J

    2005-11-11

    YY2 was originally identified due to its unusual similarity to the evolutionarily well conserved, zinc-finger gene YY1. In this study, we have determined the evolutionary origin and conservation of YY2 using comparative genomic approaches. Our results indicate that YY2 is a retroposed copy of YY1 that has been inserted into another gene locus named Mbtps2 (membrane-bound transcription factor protease site 2). This retroposition is estimated to have occurred after the divergence of placental mammals from other vertebrates based on the detection of YY2 only in the placental mammals. The N-terminal and C-terminal regions of YY2 have evolved under different selection pressures. The N-terminal region has evolved at a very fast pace with very limited functional constraints whereas the DNA-binding, C-terminal region still maintains very similar sequence structure as YY1 and is also well conserved among placental mammals. In situ hybridizations using different adult mouse tissues indicate that mouse YY2 is expressed at relatively low levels in Purkinje and granular cells of cerebellum, and neuronal cells of cerebrum, but at very high levels in testis. The expression levels of YY2 is much lower than YY1, but the overall spatial expression patterns are similar to those of Mbtps2, suggesting a possible shared transcriptional control between YY2 and Mbtps2. Taken together, the formation and evolution of YY2 represent a very unusual case where a transcription factor was first retroposed into another gene locus encoding a protease and survived with different selection schemes and expression patterns.

  16. Rice transposable elements are characterized by various methylation environments in the genome

    PubMed Central

    Takata, Miwako; Kiyohara, Akihiro; Takasu, Atsuko; Kishima, Yuji; Ohtsubo, Hisako; Sano, Yoshio

    2007-01-01

    Background Recent studies using high-throughput methods have revealed that transposable elements (TEs) are a comprehensive target for DNA methylation. However, the relationship between TEs and their genomic environment regarding methylation still remains unclear. The rice genome contains representatives of all known TE families with different characteristics of chromosomal distribution, structure, transposition, size, and copy number. Here we studied the DNA methylation state around 12 TEs in nine genomic DNAs from cultivated rice strains and their closely related wild strains. Results We employed a transposon display (TD) method to analyze the methylation environments in the genomes. The 12 TE families, consisting of four class I elements, seven class II elements, and one element of a different class, were differentially distributed in the rice chromosomes: some elements were concentrated in the centromeric or pericentromeric regions, but others were located in euchromatic regions. The TD analyses revealed that the TE families were embedded in flanking sequences with different methylation degrees. Each TE had flanking sequences with similar degrees of methylation among the nine rice strains. The class I elements tended to be present in highly methylated regions, while those of the class II elements showed widely varying degrees of methylation. In some TE families, the degrees of methylation were markedly lower than the average methylation state of the genome. In two families, dramatic changes of the methylation state occurred depending on the distance from the TE. Conclusion Our results demonstrate that the TE families in the rice genomes can be characterized by the methylation states of their surroundings. The copy number and degree of conservation of the TE family are not likely to be correlated with the degree of methylation. We discuss possible relationships between the methylation state of TEs and their surroundings. This is the first report demonstrating

  17. Sequence Analysis and Characterization of Active Human Alu Subfamilies Based on the 1000 Genomes Pilot Project.

    PubMed

    Konkel, Miriam K; Walker, Jerilyn A; Hotard, Ashley B; Ranck, Megan C; Fontenot, Catherine C; Storer, Jessica; Stewart, Chip; Marth, Gabor T; Batzer, Mark A

    2015-08-29

    The goal of the 1000 Genomes Consortium is to characterize human genome structural variation (SV), including forms of copy number variations such as deletions, duplications, and insertions. Mobile element insertions, particularly Alu elements, are major contributors to genomic SV among humans. During the pilot phase of the project we experimentally validated 645 (611 intergenic and 34 exon targeted) polymorphic "young" Alu insertion events, absent from the human reference genome. Here, we report high resolution sequencing of 343 (322 unique) recent Alu insertion events, along with their respective target site duplications, precise genomic breakpoint coordinates, subfamily assignment, percent divergence, and estimated A-rich tail lengths. All the sequenced Alu loci were derived from the AluY lineage with no evidence of retrotransposition activity involving older Alu families (e.g., AluJ and AluS). AluYa5 is currently the most active Alu subfamily in the human lineage, followed by AluYb8, and many others including three newly identified subfamilies we have termed AluYb7a3, AluYb8b1, and AluYa4a1. This report provides the structural details of 322 unique Alu variants from individual human genomes collectively adding about 100 kb of genomic variation. Many Alu subfamilies are currently active in human populations, including a surprising level of AluY retrotransposition. Human Alu subfamilies exhibit continuous evolution with potential drivers sprouting new Alu lineages. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Characterization of the chloroplast genome sequence of oil palm (Elaeis guineensis Jacq.).

    PubMed

    Uthaipaisanwong, P; Chanprasert, J; Shearman, J R; Sangsrakru, D; Yoocha, T; Jomchai, N; Jantasuriyarat, C; Tragoonrung, S; Tangphatsornruang, S

    2012-06-01

    Oil palm (Elaeis guineensis Jacq.) is an economically important crop, which is grown for oil production. To better understand the molecular basis of oil palm chloroplasts, we characterized the complete chloroplast (cp) genome sequence obtained from 454 pyrosequencing. The oil palm cp genome is 156,973 bp in length consisting of a large single-copy region of 85,192 bp flanked on each side by inverted repeats of 27,071 bp with a small single-copy region of 17,639 bp joining the repeats. The genome contains 112 unique genes: 79 protein-coding genes, 4 ribosomal RNA genes and 29 tRNA genes. By aligning the cp genome sequence with oil palm cDNA sequences, we observed 18 non-silent and 10 silent RNA editing events among 19 cp protein-coding genes. Creation of an initiation codon by RNA editing in rpl2 has been reported in several monocots and was also found in the oil palm cp genome. Fifty common chloroplast protein-coding genes from 33 plant taxa were used to construct ML and MP phylogenetic trees. Their topologies are similar and strongly support for the position of E. guineensis as the sister of closely related species Phoenix dactylifera in Arecaceae (palm families) of monocot subtrees. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. An empirical strategy for characterizing bacterial proteomes across species in the absence of genomic sequences.

    PubMed

    Turse, Joshua E; Marshall, Matthew J; Fredrickson, James K; Lipton, Mary S; Callister, Stephen J

    2010-11-12

    Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300-500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella.

  20. Characterization and distribution of retrotransposons and simple sequence repeats in the bovine genome

    PubMed Central

    Adelson, David L.; Raison, Joy M.; Edgar, Robert C.

    2009-01-01

    Interspersed repeat composition and distribution in mammals have been best characterized in the human and mouse genomes. The bovine genome contains typical eutherian mammal repeats, but also has a significant number of long interspersed nuclear element RTE (BovB) elements proposed to have been horizontally transferred from squamata. Our analysis of the BovB repeats has indicated that only a few of them are currently likely to retrotranspose in cattle. However, bovine L1 repeats (L1 BT) have many likely active copies. Comparison of substitution rates for BovB and L1 BT indicates that L1 BT is a younger repeat family than BovB. In contrast to mouse and human, L1 occurrence is not negatively correlated with G+C content. However, BovB, Bov A2, ART2A, and Bov-tA are negatively correlated with G+C, although Bov-tAs correlation is weaker. Also, by performing genome wide correlation analysis of interspersed and simple sequence repeats, we have identified genome territories by repeat content that appear to define ancestral vs. ruminant-specific genomic regions. These ancestral regions, enriched with L2 and MIR repeats, are largely conserved between bovine and human. PMID:19625614

  1. Characterization of the mitochondrial genome of Diphyllobothrium latum (Cestoda: Pseudophyllidea) - implications for the phylogeny of eucestodes.

    PubMed

    Park, J-K; Kim, K-H; Kang, S; Jeon, H K; Kim, J-H; Littlewood, D T J; Eom, K S

    2007-05-01

    The complete nucleotide sequence of the mitochondrial genome was determined for the fish tapeworm Diphyllobothrium latum. This genome is 13,608 bp in length and encodes 12 protein-coding genes (but lacks the atp8), 22 transfer RNA (tRNA) and 2 ribosomal RNA (rRNA) genes, corresponding to the gene complement found thus far in other flatworm mitochondrial (mt) DNAs. The gene arrangement of this pseudophyllidean cestode is the same as the 6 cyclophyllidean cestodes characterized to date, with only minor variation in structure among these other genomes; the relative position of trnS2 and trnL1 is switched in Hymenolepis diminuta. Phylogenetic analyses of the concatenated amino acid sequences for 12 protein-coding genes of all complete cestode mtDNAs confirmed taxonomic and previous phylogenetic assessments, with D. latum being a sister taxon to the cyclophyllideans. High nodal support and phylogenetic congruence between different methods suggest that mt genomes may be of utility in resolving ordinal relationships within the cestodes. All species of Diphyllobothrium infect fish-eating vertebrates, and D. latum commonly infects humans through the ingestion of raw, poorly cooked or pickled fish. The complete mitochondrial genome provides a wealth of genetic markers which could be useful for identifying different life-cycle stages and for investigating their population genetics, ecology and epidemiology.

  2. Genomic characterization of three bovine viral diarrhea virus isolates from cattle.

    PubMed

    Cai, Dongjie; Song, Quanjiang; Wang, Jiufeng; Zhu, Yaohong

    2016-12-01

    Three strains of the bovine viral diarrhea virus (BVDV) were isolated from cattle in Beijing, China. To investigate their genomic features, we sequenced and characterized the complete genome of each of the isolates. Each of the three virus genomes is about 12,220 bp in length, containing a 5' untranslated region (UTR), one open reading frame (ORF) encoding a 3897-amino-acid polypeptide, and a 3' UTR. The nucleotide sequence of the three isolates were 99.0 % identical to each and other shared nucleotide sequence identities of 73.4 % to 98.3 % with other BVDV-1 strains, about 70.0 % with BVDV-2 strains, about 67.0 % with BVDV-3, and less than 67.0 % with other pestiviruses. Phylogenetic analysis of the full-length genome, 3' UTR, and the N(pro) gene demonstrated that the three viruses were BVDV-1 isolates. This is the first report of complete genome sequences of BVDV 1d isolates from China and might have implications for vaccine development.

  3. An Empirical Strategy for Characterizing Bacterial Proteomes across Species in the Absence of Genomic Sequences

    PubMed Central

    Turse, Joshua E.; Marshall, Matthew J.; Fredrickson, James K.; Lipton, Mary S.; Callister, Stephen J.

    2010-01-01

    Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300–500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella. PMID:21103051

  4. Characterization of Equine Infectious Anemia Virus Integration in the Horse Genome.

    PubMed

    Liu, Qiang; Wang, Xue-Feng; Ma, Jian; He, Xi-Jun; Wang, Xiao-Jun; Zhou, Jian-Hua

    2015-06-19

    Human immunodeficiency virus (HIV)-1 has a unique integration profile in the human genome relative to murine and avian retroviruses. Equine infectious anemia virus (EIAV) is another well-studied lentivirus that can also be used as a promising retro-transfection vector, but its integration into its native host has not been characterized. In this study, we mapped 477 integration sites of the EIAV strain EIAVFDDV13 in fetal equine dermal (FED) cells during in vitro infection. Published integration sites of EIAV and HIV-1 in the human genome were also analyzed as references. Our results demonstrated that EIAVFDDV13 tended to integrate into genes and AT-rich regions, and it avoided integrating into transcription start sites (TSS), which is consistent with EIAV and HIV-1 integration in the human genome. Notably, the integration of EIAVFDDV13 favored long interspersed elements (LINEs) and DNA transposons in the horse genome, whereas the integration of HIV-1 favored short interspersed elements (SINEs) in the human genome. The chromosomal environment near LINEs or DNA transposons potentially influences viral transcription and may be related to the unique EIAV latency states in equids. The data on EIAV integration in its natural host will facilitate studies on lentiviral infection and lentivirus-based therapeutic vectors.

  5. Rapid, simple and efficient method for detection of viral genomes on raspberries.

    PubMed

    Perrin, A; Loutreul, J; Boudaud, N; Bertrand, I; Gantzer, C

    2015-11-01

    In recent years, foodborne viruses, especially human noroviruses (NoV) and hepatitis A virus (HAV), have been increasingly reported as the causes of foodborne disease outbreaks. Soft red fruits, especially raspberries, have a high incidence among the types of food concerned. Due to low infectious doses and low concentrations of enteric viruses in food samples, it is necessary to have an efficient and rapid detection method to implement prevention measures. A standard method for virus detection and quantification in food, including raspberries (XP CEN ISO/TS 15216-1 and -2, 2013) is currently available. This method proposes a consensus detection approach by RT-real time PCR (RT-qPCR) but also a virus extraction procedure based on the elution-concentration principle. In this study, an alternative method of extraction in which RNAs are directly extracted from food matrices (based on direct RNA extraction) has been optimized. First, each step was improved to make it a highly rapid, specific and simple method. Second, the standard virus concentration method was compared with the optimized direct RNA extraction one. Human enteric viral surrogates, Murine Norovirus (MNV) and F-specific RNA bacteriophage GA, were selected according to their adhesion properties and resistance to pH close to our main targets (NoV and HAV). Raspberries were artificially contaminated using two different techniques (immersion and spotting) in order to define a recovery rate and the amounts of virus recovered. Results showed that the direct RNA extraction method revealed significantly higher viral extraction efficiency (46.2%) than the elution-concentration method (20.3%), with similar proportions of inhibitors for both. In the same way with inoculation by spotting, the best recovery rate of GA phage (39.7% against 0.7%) and MNV (42.8% against 0.5%) was observed by direct RNA extraction. For the lowest concentrations of phage and virus in the immersion bath, only the direct RNA extraction method

  6. RapTOR: Automated sequencing library preparation and suppression for rapid pathogen characterization ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema

    Lane, Todd [SNL

    2016-07-12

    Todd Lane on "RapTOR: Automated sequencing library preparation and suppression for rapid pathogen characterization" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  7. RapTOR: Automated sequencing library preparation and suppression for rapid pathogen characterization ( 7th Annual SFAF Meeting, 2012)

    SciTech Connect

    Lane, Todd

    2012-06-01

    Todd Lane on "RapTOR: Automated sequencing library preparation and suppression for rapid pathogen characterization" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  8. Characterization of the rapid transcriptional response to long-term sensitization training in Aplysia californica

    PubMed Central

    Herdegen, Samantha; Holmes, Geraldine; Cyriac, Ashly; Calin-Jageman, Irina E.; Calin-Jageman, Robert J.

    2014-01-01

    We used a custom-designed microarray and quantitative PCR to characterize the rapid transcriptional response to long-term sensitization training in the marine mollusk Aplysia californica. Aplysia were exposed to repeated noxious shocks to one side of the body, a procedure known to induce a longlasting, transcription-dependent increase in reflex responsiveness that is restricted to the side of training. One hour after training, pleural ganglia from the trained and untrained sides of the body were harvested; these ganglia contain the sensory nociceptors which help mediate the expression of longterm sensitization memory. Microarray analysis from 8 biological replicates suggests that long-term sensitization training rapidly regulates at least 81 transcripts. We used qPCR to test a subset of these transcripts and found that 83% were confirmed in the same samples, and 86% of these were again confirmed in an independent sample. Thus, our new microarray design shows strong convergent and predictive validity for analyzing the transcriptional correlates of memory in Aplysia. Fully validated transcripts include some previously identified as regulated in this paradigm (ApC/EBP and ApEgr) but also include novel findings. Specifically, we show that long-term sensitization training rapidly upregulates the expression of transcripts which may encode Aplysia homologs of a C/EBPγ transcription factor, a glycine transporter (GlyT2), and a vacuolar-protein-sorting-associated protein (VPS36). PMID:25117657

  9. Rapid Characterization of Bacterial Electrogenicity Using a Single-Sheet Paper-Based Electrofluidic Array.

    PubMed

    Gao, Yang; Hassett, Daniel J; Choi, Seokheun

    2017-01-01

    Electrogenicity, or bacterial electron transfer capacity, is an important application which offers environmentally sustainable advances in the fields of biofuels, wastewater treatment, bioremediation, desalination, and biosensing. Significant boosts in this technology can be achieved with the growth of synthetic biology that manipulates microbial electron transfer pathways, thereby potentially significantly improving their electrogenic potential. There is currently a need for a high-throughput, rapid, and highly sensitive test array to evaluate the electrogenic properties of newly discovered and/or genetically engineered bacterial species. In this work, we report a single-sheet, paper-based electrofluidic (incorporating both electronic and fluidic structure) screening platform for rapid, sensitive, and potentially high-throughput characterization of bacterial electrogenicity. This novel screening array uses (i) a commercially available wax printer for hydrophobic wax patterning on a single sheet of paper and (ii) water-dispersed electrically conducting polymer mixture, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate, for full integration of electronic and fluidic components into the paper substrate. The engineered 3-D, microporous, hydrophilic, and conductive paper structure provides a large surface area for efficient electron transfer. This results in rapid and sensitive power assessment of electrogenic bacteria from a microliter sample volume. We validated the effectiveness of the sensor array using hypothesis-driven genetically modified Pseudomonas aeruginosa mutant strains. Within 20 min, we observed that the sensor platform successfully measured the electricity-generating capacities of five isogenic mutants of P. aeruginosa while distinguishing their differences from genetically unmodified bacteria.

  10. Characterization of the rapid transcriptional response to long-term sensitization training in Aplysia californica.

    PubMed

    Herdegen, Samantha; Holmes, Geraldine; Cyriac, Ashly; Calin-Jageman, Irina E; Calin-Jageman, Robert J

    2014-12-01

    We used a custom-designed microarray and quantitative PCR to characterize the rapid transcriptional response to long-term sensitization training in the marine mollusk Aplysia californica. Aplysia were exposed to repeated noxious shocks to one side of the body, a procedure known to induce a long-lasting, transcription-dependent increase in reflex responsiveness that is restricted to the side of training. One hour after training, pleural ganglia from the trained and untrained sides of the body were harvested; these ganglia contain the sensory nociceptors which help mediate the expression of long-term sensitization memory. Microarray analysis from 8 biological replicates suggests that long-term sensitization training rapidly regulates at least 81 transcripts. We used qPCR to test a subset of these transcripts and found that 83% were confirmed in the same samples, and 86% of these were again confirmed in an independent sample. Thus, our new microarray design shows strong convergent and predictive validity for analyzing the transcriptional correlates of memory in Aplysia. Fully validated transcripts include some previously identified as regulated in this paradigm (ApC/EBP and ApEgr) but also include novel findings. Specifically, we show that long-term sensitization training rapidly up-regulates the expression of transcripts which may encode Aplysia homologs of a C/EBPγ transcription factor, a glycine transporter (GlyT2), and a vacuolar-protein-sorting-associated protein (VPS36). Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Rapidly-deposited polydopamine coating via high temperature and vigorous stirring: formation, characterization and biofunctional evaluation.

    PubMed

    Zhou, Ping; Deng, Yi; Lyu, Beier; Zhang, Ranran; Zhang, Hai; Ma, Hongwei; Lyu, Yalin; Wei, Shicheng

    2014-01-01

    Polydopamine (PDA) coating provides a promising approach for immobilization of biomolecules onto almost all kinds of solid substrates. However, the deposition kinetics of PDA coating as a function of temperature and reaction method is not well elucidated. Since dopamine self-polymerization usually takes a long time, therefore, rapid-formation of PDA film becomes imperative for surface modification of biomaterials and medical devices. In the present study, a practical method for preparation of rapidly-deposited PDA coating was developed using a uniquely designed device, and the kinetics of dopamine self-polymerization was investigated by QCM sensor system. It was found that high temperature and vigorous stirring could dramatically speed up the formation of PDA film on QCM chip surface. Surface characterization, BSA binding study, cell viability assay and antibacterial test demonstrates that the polydopamine coating after polymerization for 30 min by our approach exhibits similar properties to those of 24 h counterpart. The method has a great potential for rapid-deposition of polydopamine films to modify biomaterial surfaces.

  12. Rapidly-Deposited Polydopamine Coating via High Temperature and Vigorous Stirring: Formation, Characterization and Biofunct