Notes on the space-time decay rate of the Stokes flows in the half space
NASA Astrophysics Data System (ADS)
Chang, Tongkeun; Jin, Bum Ja
2017-07-01
In this paper, a Stokes equations in the half space R+n, n ≥ 2 has been considered. We derive a rapid decay rate of the Stokes flow in space and time when the initial data decreases fast enough and satisfies some additional condition. Initial data decreasing too slowly to be | x | h ∈L1 (R+n) are also considered.
Decaying two-dimensional turbulence in a circular container.
Schneider, Kai; Farge, Marie
2005-12-09
We present direct numerical simulations of two-dimensional decaying turbulence at initial Reynolds number 5 x 10(4) in a circular container with no-slip boundary conditions. Starting with random initial conditions the flow rapidly exhibits self-organization into coherent vortices. We study their formation and the role of the viscous boundary layer on the production and decay of integral quantities. The no-slip wall produces vortices which are injected into the bulk flow and tend to compensate the enstrophy dissipation. The self-organization of the flow is reflected by the transition of the initially Gaussian vorticity probability density function (PDF) towards a distribution with exponential tails. Because of the presence of coherent vortices the pressure PDF become strongly skewed with exponential tails for negative values.
Schnell, Gretja; Spudich, Serena; Harrington, Patrick; Price, Richard W; Swanstrom, Ronald
2009-04-01
Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) shortly after systemic infection and can result in the subsequent development of HIV-1-associated dementia (HAD) in a subset of infected individuals. Genetically compartmentalized virus in the CNS is associated with HAD, suggesting autonomous viral replication as a factor in the disease process. We examined the source of compartmentalized HIV-1 in the CNS of subjects with HIV-1-associated neurological disease and in asymptomatic subjects who were initiating antiretroviral therapy. The heteroduplex tracking assay (HTA), targeting the variable regions of env, was used to determine which HIV-1 genetic variants in the cerebrospinal fluid (CSF) were compartmentalized and which variants were shared with the blood plasma. We then measured the viral decay kinetics of individual variants after the initiation of antiretroviral therapy. Compartmentalized HIV-1 variants in the CSF of asymptomatic subjects decayed rapidly after the initiation of antiretroviral therapy, with a mean half-life of 1.57 days. Rapid viral decay was also measured for CSF-compartmentalized variants in four HAD subjects (t(1/2) mean = 2.27 days). However, slow viral decay was measured for CSF-compartmentalized variants from an additional four subjects with neurological disease (t(1/2) range = 9.85 days to no initial decay). The slow decay detected for CSF-compartmentalized variants was not associated with poor CNS drug penetration, drug resistant virus in the CSF, or the presence of X4 virus genotypes. We found that the slow decay measured for CSF-compartmentalized variants in subjects with neurological disease was correlated with low peripheral CD4 cell count and reduced CSF pleocytosis. We propose a model in which infiltrating macrophages replace CD4(+) T cells as the primary source of productive viral replication in the CNS to maintain high viral loads in the CSF in a substantial subset of subjects with HAD.
Schnell, Gretja; Spudich, Serena; Harrington, Patrick; Price, Richard W.; Swanstrom, Ronald
2009-01-01
Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) shortly after systemic infection and can result in the subsequent development of HIV-1–associated dementia (HAD) in a subset of infected individuals. Genetically compartmentalized virus in the CNS is associated with HAD, suggesting autonomous viral replication as a factor in the disease process. We examined the source of compartmentalized HIV-1 in the CNS of subjects with HIV-1–associated neurological disease and in asymptomatic subjects who were initiating antiretroviral therapy. The heteroduplex tracking assay (HTA), targeting the variable regions of env, was used to determine which HIV-1 genetic variants in the cerebrospinal fluid (CSF) were compartmentalized and which variants were shared with the blood plasma. We then measured the viral decay kinetics of individual variants after the initiation of antiretroviral therapy. Compartmentalized HIV-1 variants in the CSF of asymptomatic subjects decayed rapidly after the initiation of antiretroviral therapy, with a mean half-life of 1.57 days. Rapid viral decay was also measured for CSF-compartmentalized variants in four HAD subjects (t1/2 mean = 2.27 days). However, slow viral decay was measured for CSF-compartmentalized variants from an additional four subjects with neurological disease (t1/2 range = 9.85 days to no initial decay). The slow decay detected for CSF-compartmentalized variants was not associated with poor CNS drug penetration, drug resistant virus in the CSF, or the presence of X4 virus genotypes. We found that the slow decay measured for CSF-compartmentalized variants in subjects with neurological disease was correlated with low peripheral CD4 cell count and reduced CSF pleocytosis. We propose a model in which infiltrating macrophages replace CD4+ T cells as the primary source of productive viral replication in the CNS to maintain high viral loads in the CSF in a substantial subset of subjects with HAD. PMID:19390619
Velocity bias in the distribution of dark matter halos
NASA Astrophysics Data System (ADS)
Baldauf, Tobias; Desjacques, Vincent; Seljak, Uroš
2015-12-01
The standard formalism for the coevolution of halos and dark matter predicts that any initial halo velocity bias rapidly decays to zero. We argue that, when the purpose is to compute statistics like power spectra etc., the coupling in the momentum conservation equation for the biased tracers must be modified. Our new formulation predicts the constancy in time of any statistical halo velocity bias present in the initial conditions, in agreement with peak theory. We test this prediction by studying the evolution of a conserved halo population in N -body simulations. We establish that the initial simulated halo density and velocity statistics show distinct features of the peak model and, thus, deviate from the simple local Lagrangian bias. We demonstrate, for the first time, that the time evolution of their velocity is in tension with the rapid decay expected in the standard approach.
Effects of proliferation on the decay of thermotolerance in Chinese hamster cells.
Armour, E P; Li, G C; Hahn, G M
1985-09-01
Development and decay of thermotolerance were observed in Chinese hamster HA-1 cells. The thermotolerance kinetics of exponentially growing and fed plateau-phase cells were compared. Following a 10-min heat exposure at 45 degrees C, cells in both growth states had similar rates of development of tolerance to a subsequent 45-min exposure at 45 degrees C. This thermotolerant state started to decay between 12 and 24 hr after the initial heat exposure. The decay appeared to initiate slightly sooner in the exponentially growing cells when compared to the fed plateau-phase cells. During the decay phase, the rate of thermotolerance decay was similar in the two growth conditions. In other experiments, cells were induced to divide at a slower rate by chronic growth (3 months) in a low concentration of fetal calf serum. Under these low serum conditions cells became more sensitive to heat and the rate of decay of thermotolerance remained the same for exponentially growing cells. Plateau-phase cells were also more sensitive, but thermotolerance decayed more rapidly in these cells. Although dramatic cell cycle perturbations were seen in the exponentially growing cells, these changes appeared not to be related to thermotolerance kinetics.
NASA Astrophysics Data System (ADS)
Wood, R.; Monson, J.; Coughlin, T.
1999-03-01
The presence of a soft magnetic layer adjacent to a magnetic recording medium reduces the demagnetization of both perpendicular and longitudinal recording media. However, for perpendicular media, there is no reduction in the worst case, DC, demagnetizing field and no lessening of the decay. For longitudinal media, the highest demagnetizing fields occur at high densities. The soft layer or keeper can reduce these fields significantly and slow the initial decay. The soft underlayer also induces a small anisotropy field that assists the thermal stability of a perpendicular medium. A similar layer with a longitudinal medium, however, causes a small reduction in thermal stability, but only at low levels of demagnetizing field. For longitudinal recording media the overall effect of the keeper on thermal stability is quite complicated: the initial decay may be delayed significantly (a factor of ten in time) but the final decay to zero may still proceed more rapidly.
Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob; Keika, Kunihiro
2014-01-01
H-ion (∼45 keV to ∼600 keV), He-ion (∼65 keV to ∼520 keV), and O-ion (∼140 keV to ∼1130 keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first 9 months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L shells, on the order of ∼0.8 day at L shells of 3–4, and decay more slowly with higher L shell, on the order of ∼1.7 days at L shells of 5–6. Conversely, O-ions decay very rapidly (∼1.5 h) across all L shells. The He-ion decay time are consistent with previously measured and calculated lifetimes associated with charge exchange. The O-ion decay time is much faster than predicted and is attributed to the inclusion of higher-energy (> 500 keV) O-ions in our decay rate estimation. We note that these measurements demonstrate a compelling need for calculation of high-energy O-ion loss rates, which have not been adequately studied in the literature to date. Key Points We report initial observations of ring current ions We show that He-ion decay rates are consistent with theory We show that O-ions with energies greater than 500 keV decay very rapidly PMID:26167435
Space-time asymptotics of the two dimensional Navier-Stokes flow in the whole plane
NASA Astrophysics Data System (ADS)
Okabe, Takahiro
2018-01-01
We consider the space-time behavior of the two dimensional Navier-Stokes flow. Introducing some qualitative structure of initial data, we succeed to derive the first order asymptotic expansion of the Navier-Stokes flow without moment condition on initial data in L1 (R2) ∩ Lσ2 (R2). Moreover, we characterize the necessary and sufficient condition for the rapid energy decay ‖ u (t) ‖ 2 = o (t-1) as t → ∞ motivated by Miyakawa-Schonbek [21]. By weighted estimated in Hardy spaces, we discuss the possibility of the second order asymptotic expansion of the Navier-Stokes flow assuming the first order moment condition on initial data. Moreover, observing that the Navier-Stokes flow u (t) lies in the Hardy space H1 (R2) for t > 0, we consider the asymptotic expansions in terms of Hardy-norm. Finally we consider the rapid time decay ‖ u (t) ‖ 2 = o (t - 3/2 ) as t → ∞ with cyclic symmetry introduced by Brandolese [2].
Instabilities of Current Carrying Torus
NASA Astrophysics Data System (ADS)
Liu, Wenjuan; Qiu, J.
2010-05-01
We investigate the initial equilibrium and stability conditions for an uniform current-carrying plasma ring with a non-trivial toroidal magnetic field Bt. Realistic parameters comparable to observations are used to describe the magnetic field inside and outside the torus. The external poloidal magnetic field is assumed to fall off as a power function with decay index n (n = - d log (Bex) /d log(h)). The parameter space is explored to find all initial equilibrium solutions, at which perturbation is introduced. It is shown that with non-trivial toroidal field, the current ring attains equilibrium with a weaker external field. It is also shown that the torus attains equilibrium at higher altitude when the external field decays more rapidly (greater n) or the ratio of the toroidal flux in the torus to the external field increases. We further study stabilities of the torus at equilibrium by defining a critical decay index ncr (Kliem and Török 2006). A sufficiently strong toroidal field can completely suppress the torus instability due to the current hoop force. With a weak toroidal field, similar to the case of Bt=0, the instability occurs when the external magnetic field declines rapidly with height when the field decay index n>ncr. For realistic sets of parameters, the equilibrium height is within 10 solar radii, and the effective ncr is in the range of 1.0-1.6. The critical decay index increases when the ratio of the toroidal flux to the external field decreases. This work is supported by NSF CAREER grant ATM-0748428.
The time-course of protection of the RTS,S vaccine against malaria infections and clinical disease.
Penny, Melissa A; Pemberton-Ross, Peter; Smith, Thomas A
2015-11-04
Recent publications have reported follow-up of the RTS,S/AS01 malaria vaccine candidate Phase III trials at 11 African sites for 32 months (or longer). This includes site- and time-specific estimates of incidence and efficacy against clinical disease with four different vaccination schedules. These data allow estimation of the time-course of protection against infection associated with two different ages of vaccination, both with and without a booster dose. Using an ensemble of individual-based stochastic models, each trial cohort in the Phase III trial was simulated assuming many different hypothetical profiles for the vaccine efficacy against infection in time, for both the primary course and boosting dose and including the potential for either exponential or non-exponential decay. The underlying profile of protection was determined by Bayesian fitting of these model predictions to the site- and time-specific incidence of clinical malaria over 32 months (or longer) of follow-up. Using the same stochastic models, projections of clinical efficacy in each of the sites were modelled and compared to available observed trial data. The initial protection of RTS,S immediately following three doses is estimated as providing an efficacy against infection of 65 % (when immunizing infants aged 6-12 weeks old) and 91 % (immunizing children aged 5-17 months old at first vaccination). This protection decays relatively rapidly, with an approximately exponential decay for the 6-12 weeks old cohort (with a half-life of 7.2 months); for the 5-17 months old cohort a biphasic decay with a similar half-life is predicted, with an initial rapid decay followed by a slower decay. The boosting dose was estimated to return protection to an efficacy against infection of 50-55 % for both cohorts. Estimates of clinical efficacy by trial site are consistent with those reported in the trial for all cohorts. The site- and time-specific clinical observations from the RTS,S/AS01 trial data allowed a reasonably precise estimation of the underlying vaccine protection against infection which is consistent with common underlying efficacy and decay rates across the trial sites. This calibration suggests that the decay in efficacy against clinical disease is more rapid than that against infection because of age-shifts in the incidence of disease. The dynamical models predict that clinical effectiveness will continue to decay and that likely effects beyond the time-scale of the trial will be small.
Navier-Stokes relaxation to sinh-Poisson states at finite Reynolds numbers
NASA Technical Reports Server (NTRS)
Montgomery, David; Shan, Xiaowen; Matthaeus, William H.
1993-01-01
A mathematical framework is proposed in which it seems possible to justify the computationally-observed relaxation of a two-dimensional Navier-Stokes fluid to a 'most probable', or maximum entropy, state. The relaxation occurs at large but finite Reynolds numbers, and involves substantial decay of higher-order ideal invariants such as enstrophy. A two-fluid formulation, involving interpenetrating positive and negative vorticity fluxes (continuous and square integrable) is developed, and is shown to be intimately related to the passive scalar decay problem. Increasing interpenetration of the two fluids corresponds to the decay of vorticity flux due to viscosity. It is demonstrated numerically that, in two dimensions, passive scalars decay rapidly, relative to mean-square vorticity (enstrophy). This observation provides a basis for assigning initial data to the two-fluid field variables.
Detachment-limited erosion, alluvial transport, and relief in decaying landscapes
NASA Astrophysics Data System (ADS)
Johnstone, S. A.; Hilley, G. E.
2013-12-01
The correspondence between relief and erosion rates in tectonically active orogens suggests that erosion rates and relief adjust relatively rapidly to changes in the rates of tectonic processes. This rapid landscape response is at odds with the preservation of ancient orogens for 10s to 100s of millions of years after orogenesis has ceased. We hypothesize that this hysteresis in response times to the acceleration versus deceleration of tectonic rates results from a geomorphic process transition in fluvial networks. In steep landscapes found in tectonically active environments erosion is largely controlled by detachment-limited incision, whereas the increasing importance of alluvial transport in decaying landscapes controls relief and response time-scales in these situations. We present results from one-dimensional (profile) numerical modeling of channels undergoing topographic decay from an initial steady state following a cessation in uplift to understand process transitions that may reconcile the large differences in response times implied by active versus ancient mountain-belts. We performed dimensional analysis on the governing equations such that relief in the channels, process transitions between alluvial transport and detachment-limited erosion, and response times could be viewed in terms of dimensionless numbers that capture the relative strength of sediment transport, bedrock incision, and the initial uplift rate. We found that the form of the decaying profile is dictated by the relative ability of a system to incise vs. transport sediment. When sediment transport is inefficient relative to bedrock incision, models suggest that relief decays in a manner that preserves the overall channel profile geometry as channel slopes decline. In contrast, when the ability of a system to transport sediment greatly exceeds its ability to incise bedrock, decay will be dominated by the consumption of topography by slope retreat. We find that the declivity of the surface along which slopes retreat is set by the sediment transport slope of the fluvial network. As slope retreat progresses, the fraction of area undergoing rapid erosion (and therefore the sediment flux) decreases, which causes a perpetual decline in the sediment transport slope itself. This is manifest as a headward migrating transition from areas dominated by slope retreat to slope decline. While this behavior occurs to some degree in all simulations undergoing slope retreat, it is only clearly observed when steady state alluvial transport slopes are comparable to, but smaller than, bedrock incision slopes. For a given length scale we find that the evolution of relief through time, measured as the fraction of initial relief preserved, is independent of dimensionless fluvial erosion and transport coefficients. High sediment transport slopes can act to limit the rate of decay of relief in landscapes evolving by slope retreat. However, because slope decline occupies only the downstream portion of drainage networks in these cases, the majority of the relief reduction is typically accomplished by slope retreat. These results highlight the importance of erosional process transitions in shaping the relief of decaying landscapes.
Viral dynamics in primary HIV-1 infection. Karolinska Institutet Primary HIV Infection Study Group.
Lindbäck, S; Karlsson, A C; Mittler, J; Blaxhult, A; Carlsson, M; Briheim, G; Sönnerborg, A; Gaines, H
2000-10-20
To study the natural course of viremia during primary HIV infection (PHI). Eight patients were followed from a median of 5 days from the onset of PHI illness. Plasma HIV-1 RNA levels were measured frequently and the results were fitted to mathematical models. HIV-1 RNA levels were also monitored in nine patients given two reverse transcriptase inhibitors and a protease inhibitor after a median of 7 days from the onset of PHI illness. HIV-1 RNA appeared in the blood during the week preceding onset of PHI illness and increased rapidly during the first viremic phase, reaching a peak at a mean of 7 days after onset of illness. This was followed by a phase of rapidly decreasing levels of HIV-1 RNA to an average of 21 days after onset. Viral density continued to decline thereafter but at a 5- to 50-fold lower rate; a steady-state level was reached at a median of 2 months after onset of PHI. Peak viral density levels correlated significantly with levels measured between days 50 and 600. Initiation of antiretroviral treatment during PHI resulted in rapidly declining levels to below 50 copies/mL. This study demonstrates the kinetic phases of viremia during PHI and indicates two new contributions to the natural history of HIV-1 infection: PHI peak levels correlate with steady-state levels and HIV-1 RNA declines biphasically; an initial rapid decay is usually followed by a slow decay, which is similar to the initial changes seen with antiviral treatment.
Automatic characterization of sleep need dissipation dynamics using a single EEG signal.
Garcia-Molina, Gary; Bellesi, Michele; Riedner, Brady; Pastoor, Sander; Pfundtner, Stefan; Tononi, Giulio
2015-01-01
In the two-process model of sleep regulation, slow-wave activity (SWA, i.e. the EEG power in the 0.5-4 Hz frequency band) is considered a direct indicator of sleep need. SWA builds up during non-rapid eye movement (NREM) sleep, declines before the onset of rapid-eye-movement (REM) sleep, remains low during REM and the level of increase in successive NREM episodes gets progressively lower. Sleep need dissipates with a speed that is proportional to SWA and can be characterized in terms of the initial sleep need, and the decay rate. The goal in this paper is to automatically characterize sleep need from a single EEG signal acquired at a frontal location. To achieve this, a highly specific and reasonably sensitive NREM detection algorithm is proposed that leverages the concept of a single-class Kernel-based classifier. Using automatic NREM detection, we propose a method to estimate the decay rate and the initial sleep need. This method was tested on experimental data from 8 subjects who recorded EEG during three nights at home. We found that on average the estimates of the decay rate and the initial sleep need have higher values when automatic NREM detection was used as compared to manual NREM annotation. However, the average variability of these estimates across multiple nights of the same subject was lower when the automatic NREM detection classifier was used. While this method slightly over estimates the sleep need parameters, the reduced variability across subjects makes it more effective for within subject statistical comparisons of a given sleep intervention.
Ring current proton decay by charge exchange
NASA Technical Reports Server (NTRS)
Smith, P. H.; Hoffman, R. A.; Fritz, T.
1975-01-01
Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.
Predicting the decomposition of Scots pine, Norway spruce, and birch stems in Finland.
Mäkinen, Harri; Hynynen, Jari; Siitonen, Juha; Sievänen, Risto
2006-10-01
Models were developed for predicting the decomposition of dead wood for the main tree species in Finland, based on data collected from long-term thinning experiments in southern and central Finland. The decomposition rates were strongly related to the number of years after tree death. In contrast to previous studies, which have used the first-order exponential model, we found that the decomposition rate was not constant. Therefore, the Gompertz and Chapman-Richard's functions were fitted to the data. The slow initial decomposition period was mainly due to the fact that most dead trees remained standing as snags after their death. The initial period was followed by a period of rapid decomposition and, finally, by a period of moderately slow decomposition. Birch stems decomposed more rapidly than Scots pine and Norway spruce stems. Decomposition rates of Norway spruce stems were somewhat lower than those of Scots pine. Because the carbon concentration of decaying boles was relatively stable (about 50%) the rate of carbon loss follows that of mass loss. Models were also developed for the probability that a dead tree remains standing as a snag. During the first years after death, the probability was high. Thereafter, it decreased rapidly, the decrease being faster for birch stems than for Scots pine and Norway spruce stems. Almost all stems had fallen down within 40 years after their death. In Scots pine and Norway spruce, most snags remained hard and belonged to decay class 1. In birch, a higher proportion of snags belonged to the more advanced decay classes. The models provide a framework for predicting dead wood dynamics in managed as well as dense unthinned stands. The models can be incorporated into forest management planning systems, thereby facilitating estimates of carbon dynamics.
USDA-ARS?s Scientific Manuscript database
An often cited advantage of MALDI-MS is the ability to archive and reuse sample plates after the initial analysis is complete. However, experience demonstrates that the peptide ion signals decay rapidly as the number of laser shots becomes large. Thus, the signal level obtainable from an archived sa...
Statistical Study of Rapid Penumbral Decay Associated with Flares
NASA Astrophysics Data System (ADS)
Chen, W.; Liu, C.; Wang, H.
2005-05-01
We present results of statistical study of rapid penumbral decay associated with flares. In total, we investigated 402 events from 05/09/98 to 07/17/04, including 40 X-class, 173 M-class and 189 C-class flares. We show strong evidence that penumbral segments decayed rapidly and permanently right after many flares. The rapid changes, which can be identified in the time profiles of white-light(WL) mean intensity are permanent, not transient, thus are not due to flare emissions. Our study shows that penumbral decay is more likely to be detected when associated with large solar flares. The larger the flare magnitude, the stronger the penumbral decay is. For X-class flares, almost 50% events show distinct decay. But for M- and C-class flares, this percentage drops to 16% and 10%, respectively. For all the events that clear decay can be observed, we find that the locations of penumbral decay are associated with flare emissions and are connected by prominent TRACE post-flare loops. To explain these observations, we propose a reconnection picture in that the penumbral fields change from a highly inclined to a more vertical configuration, leading to penumbral decay.
Properties of solutions of the Kadomtsev-Petviashvili I equation
NASA Astrophysics Data System (ADS)
Boiti, M.; Pempinelli, F.; Pogrebkov, A.
1994-09-01
The Kadomtsev-Petviashvili I (KPI) equation is considered as a useful laboratory for experimenting with new theoretical tools able to handle the specific features of integrable models in 2+1 dimensions. The linearized version of the KPI equation is first considered by solving the initial value problem for different classes of initial data. Properties of the solutions in different cases are analyzed in details. The obtained results are used as a guideline for studying the properties of the solution u(t,x,y) of the Kadomtsev-Petviashvili I (KPI) equation with given initial data u(0,x,y) belonging to the Schwartz space. The spectral theory associated to KPI is studied in the space of the Fourier transform of the solutions. The variables p={p1,p2} of the Fourier space are shown to be the most convenient spectral variables to use for spectral data. Spectral data are shown to decay rapidly at large p but to be discontinuous at p=0. Direct and inverse problems are solved with special attention to the behavior of all the quantities involved in the neighborhood of t=0 and p=0. It is shown in particular that the solution u(t,x,y) has a time derivative discontinuous at t=0 and that at any t≠0 it does not belong to the Schwartz space no matter how small in norm and rapidly decaying at large distances the initial data are chosen.
Transient Postseismic Relaxation With Burger's Body Viscoelasticity
NASA Astrophysics Data System (ADS)
Hetland, E. A.; Hager, B. H.; O'Connell, R. J.
2002-12-01
Typical models used to investigate postseismic deformation are composed of an elastic layer over a Maxwell viscoelastic region. Geodetic observations made after a number of large earthquakes show a rapid exponential decay in postseismic velocity immediately after the rupture, followed by a more slowly decaying (or constant) velocity at a later time. Models of a Maxwell viscoelastic interior predict a single exponential postseismic velocity relaxation. To account for observed rapid, short-term relaxation decay, surprisingly low viscosities in the lower-crust or upper-mantle have been proposed. To model the difference in short and long time decay rates, the Maxwell element is sometimes modified to have a non-linear rheology, which results in a lower effective viscosity immediately after the rupture, evolving to a higher effective viscosity as the co-seismic stresses relax. Incorporation of models of after-slip in the lower crust on a down-dip extension of the fault have also had some success at modeling the above observations. When real rocks are subjected to a sudden change in stress or strain, e.g., that caused by an earthquake, they exhibit a transient response. The transient deformation is typically accommodated by grain boundary sliding and the longer-time deformation is accommodated by motion of dislocations. Both a short-term transient response and long-term steady creep are exhibited by a Burger's body, a Maxwell element (a spring in series with a viscous dash-pot) in series with a Voigt element (a spring in parallel with a viscous dash-pot). Typically the (transient) viscosity of the Voigt element is 10 - 100 times less than the (steady) viscosity of the Maxwell element. Thus, with a Burger's body, stress relaxation is a superposition of two exponential decays. For a model composed of an elastic layer over a viscoelastic region, the coseismic changes in stress (and strain) depend only on the elastic moduli, and are independent of the description of the viscous component of the rheology. In a Burger's body model of viscoelasticity, if the viscosity of the Voigt element is much less than that of the Maxwell element, the initial relaxation time is given by the decay time τ = η {Voigt}}/G{ {Maxwell}. Whereas, for a Maxwell rheology, the initial relaxation time is given by τ = η {Maxwell}}/G{ {Maxwell}. For both models, the initial spatial distribution of stresses is the same, which results in identical initial spatial distribution of velocities. Thus it is easy to mistake the transient response of a Burger's body for that of a Maxwell rheology with unrealistically low viscosity. Only later in the seismic cycle do the spatial patterns of velocity differ for the two rheologies.
Is Deuterium Nuclear Fusion Catalyzed by Antineutrinos?
NASA Astrophysics Data System (ADS)
Shomer, Isaac
2010-02-01
The hypothesis of Fischbach and Jenkins that neutrinos emitted from the sun accelerate radioactive decay is noted. It is thought that neutrinos accelerate beta decay by reacting with neutron-rich nuclides to form a beta particle and a daughter product, with no antineutrino emitted. Conversely, it is proposed that antineutrinos can react with proton-rich nuclides to cause positron decay, with no neutrino emitted. It is also proposed that the nuclear fusion of the hydrogen bomb is triggered not only by the energy of the igniting fission bomb, but by the antineutrinos created by the rapid beta decay of the daughter products in the fission process. The contemplated mechanism for antineutrino initiated fusion is the following: 1. The antineutrinos from the fission daughter products cause positron decay of deuterium by the process outlined above. 2. In a later fusion step, these positrons subsequently react with neutrons in deuterium to create antineutrinos. Electrons are unavailable to annihilate positrons in the plasma of the hydrogen bomb. 3. These antineutrinos thereafter react with more deuterium to form positrons, thereby propagating a chain reaction. )
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yandell, Margaret A.; King, Sarah B.; Neumark, Daniel M., E-mail: dneumark@berkeley.edu
2014-05-14
Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I{sup −}·CH{sub 3}CN) and iodide-nitromethane (I{sup −}·CH{sub 3}NO{sub 2}) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4–900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion speciesmore » then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.« less
Yandell, Margaret A; King, Sarah B; Neumark, Daniel M
2014-05-14
Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I(-)·CH3CN) and iodide-nitromethane (I(-)·CH3NO2) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4-900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion species then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.
On linear Landau Damping for relativistic plasmas via Gevrey regularity
NASA Astrophysics Data System (ADS)
Young, Brent
2015-10-01
We examine the phenomenon of Landau Damping in relativistic plasmas via a study of the relativistic Vlasov-Poisson system (both on the torus and on R3) linearized around a sufficiently nice, spatially uniform kinetic equilibrium. We find that exponential decay of spatial Fourier modes is impossible under modest symmetry assumptions. However, by assuming the equilibrium and initial data are sufficiently regular functions of velocity for a given wavevector (in particular that they exhibit a kind of Gevrey regularity), we show that it is possible for the mode associated to this wavevector to decay like exp (-| t | δ) (with 0 < δ < 1) if the magnitude of the wavevector exceeds a certain critical size which depends on the character of the interaction. We also give a heuristic argument why one should not expect such rapid decay for modes with wavevectors below this threshold.
Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores
Wood, Joseph P.; Meyer, Kathryn M.; Kelly, Thomas J.; Choi, Young W.; Rogers, James V.; Riggs, Karen B.; Willenberg, Zachary J.
2015-01-01
There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially. PMID:26372011
Harvey, E. Newton; Snell, Peter A.
1931-01-01
1. The rapid decay of luminescence in extracts of the ostracod crustacean Cypridina hilgendorfii, has been studied by means of a photoelectric-amplifier-string galvanometer recording system. 2. For rapid flashes of luminescence, the decay is logarithmic if ratio of luciferin to luciferase is small; logarithmic plus an initial flash, if ratio of luciferin to luciferase is greater than five. The logarithmic plot of luminescence intensity against time is concave to time axis if ratio of luciferin to luciferase is very large. 3. The velocity constant of rapid flashes of luminescence is approximately proportional to enzyme concentration, is independent of luciferin concentration, and varies approximately inversely as the square root of the total luciferin (luciferin + oxyluciferin) concentration. For large total luciferin concentrations, the velocity constant is almost independent of the total luciferin. 4. The variation of velocity constant with total luciferin concentration (luciferin + oxyluciferin) and its independence of luciferin concentration is explained by assuming that light intensity is a measure of the luciferin molecules which become activated to oxidize (accompanied with luminescence) by adsorption on luciferase. The adsorption equilibrium is the same for luciferin and oxyluciferin and determines the velocity constant. PMID:19872603
NASA Astrophysics Data System (ADS)
Salhi, A.; Cambon, C.
2007-05-01
Angular phase mixing in rapidly rotating or in strongly stratified flows is quantified for single-time single-point energy components, using linear theory. In addition to potential energy, turbulent kinetic energy is more easily analyzed in terms of its toroidal and poloidal components, and then in terms of vertical and horizontal components. Since the axial symmetry around the direction n (which bears both the system angular velocity and the mean density gradient) is consistent with basic dynamical equations, the input of initial anisotropy is investigated in the axisymmetric case. A general way to construct axisymmetric initial data is used, with a classical expansion in terms of scalar spherical harmonics for the 3D spectral density of kinetic energy e, and a modified expansion for the polarization anisotropy Z, which reflects the unbalance in terms of poloidal and toroidal energy components. The expansion involves Legendre polynomials of arbitrary order, P2n0(cosθ), (n=0,1,2,…,N0), in which the term [cosθ=(k•n)/∣k∣] characterizes the anisotropy in k-wavespace; two sets of parameters, β2n(e) and β2n(z), separately generate the directional anisotropy and the polarization anisotropy. In the rotating case, the phase mixing results in damping the polarization anisotropy, so that toroidal and poloidal energy components asymptotically equilibrate after transient oscillations. Complete analytical solutions are found in terms of Bessel functions. The envelope of these oscillations decay with time like (ft)-2 (f being the Coriolis parameter), whereas those for the vertical and horizontal components decay like (ft)-3. The long-time limit of the ratio of horizontal component to vertical one depends only on β2(e), which is eventually related to a classical component in structure-based modeling, independently of the degree of the expansion of the initial data. For the stratified case, both the degree of initial anisotropy and the initial unbalance in terms of potential and poloidal (or kinetic gravity wave) energy are investigated. The latter unbalance is characterized by a ratio χ /2, assuming initial proportionality between the kinetic energy spectrum and the potential energy one. The phase mixing yields asymptotic equipartition in terms of poloidal and potential energy components, and analytical solutions are found in terms of Weber functions. At large time, the damped oscillations for poloidal, potential and vertical components decay with time like (Nt)-1/2 (N is the buoyancy frequency), while the oscillations for the horizontal component decay with time like (Nt)-3/2. The long-time limit of the ratio of horizontal component to vertical one depends only on the parameters χ, β2(e), β0(z), β2(z), and β4(z).
NASA Astrophysics Data System (ADS)
Hendricks, E. A.; Elsberry, R. L.; Velden, C.; Creasey, R.; Jorgensen, A.; Jordan, M.
2017-12-01
Hurricane Joaquin (2015) was the most intense Atlantic hurricane with a non-tropical origin during the satellite era. In addition to its rapid intensification, Joaquin was noteworthy for the difficulty in forecasting its post-recurvature track to the northeast after having struck the Bahama Islands. Such a track typically leads to a decay as the hurricane moves poleward over colder water, and Joaquin had an extreme decay rate from 135 kt to 65 kt in only 30 h. The focus of this study is on the environmental and internal factors that interrupted this extreme decay at 1800 UTC 4 October, and then how Joaquin re-intensified to 75 kt and maintained that intensity for 30 hours. The real-time Statistical Hurricane Intensity Prediction System (SHIPS) database is used to calculate each six hours six environmental variables that Hendricks et al. (2010) had found contributed to intensity change. Only the deep-layer vertical wind shear (VWS) from SHIPS, and also from the Cooperative Institute for Meteorological Satellite Studies (CIMSS), had a well-defined relationship with both the interrupted rapid decay and the subsequent constant intensity period. A special dataset of Atmospheric Motion Vectors (AMVs) at 15-minute intervals prepared by CIMSS is then utilized to create a continuous VWS record that documents the large ( 15 m s-1) VWS throughout most of the rapid decay period, and then a rapid decrease in VWS to moderate ( 8 m s-1) values at and following the rapid decay period. Horizontal distributions of these CIMSS VWSs demonstrate that during this period Joaquin was located in a large gradient region between large VWSs to the north and near-zero VWSs to the south, which was favorable for sustaining Joaquin at hurricane intensity.
Enhancement and diminution of mechanical tension evoked by staircase and by tetanus in rat muscle
Krarup, Christian
1981-01-01
1. Potentiation of the isometric twitch tension was compared during and after the staircase and after tetanic stimuli in the fast-twitch extensor digitorum longus muscle of adult Lewis rats at 37-38°C. 2. With up to 250 stimuli the potentiation rose with an increase in both the frequency and number of stimuli in the staircase (2-5/sec) and the tetanus (100-167/sec). After a tetanus of 375 stimuli (125/sec) the potentiation was smaller. The potentiation 2 sec after a tetanus of 250 stimuli (167/sec) was + 132 ± 5% (n = 21, s.e. of mean) which was greater (P < 0·001) than at the 250th stimulus at 5/sec, +92±3% (n = 21, s.e. of mean). 3. After the staircase the decay of potentiation was initially slow and later more rapid. This was taken to indicate both the recovery of a process that diminished twitch tension and the decay of a process causing potentiation. After 250 stimuli (5/sec) the rate of decay of the processes causing diminution and potentiation had time constants of 34·5 ± 3·8 sec (n = 18, s.e. of mean) and 102·2 ± 6·6 sec (n = 20, s.e. of mean) respectively. Compared with the potentiation, the process causing diminution became relatively more pronounced the greater the frequency of stimuli. 4. The decay of post-tetanic potentiation showed an initial rapid and a later slower phase of decay. After a tetanus of 250 stimuli (167/sec) the rates of decay had time constants of 5·7 ± 0·8 sec (n = 16, s.e. of mean) and 113·5 ± 8·7 sec (n = 19, s.e. of mean) respectively. 5. Compared with the unpotentiated response the time course of the twitch was shortened initially in the staircase and when the post-tetanic potentiation was low. The contraction time was then increasingly prolonged the greater the potentiation and the greater the number of stimuli in the staircase and in the tetanus. The half-relaxation time was the more prolonged the greater the number of stimuli. 6. Potentiation can be described in terms of a two-compartment model of processes which show saturation. Both compartments were activated in a tetanus whereas only the compartment with a slow rate of decay was activated in the staircase. It is speculated that the two compartments are related to the excitation—contraction coupling. The process that caused diminution of twitch tension during the staircase may be due to fatigue. It is suggested that the energy consumption in 250 twitches is about 10 times greater than in a tetanus of 250 stimuli which may explain the presence of fatigue after the staircase whereas it was absent after the tetanus. PMID:7264972
Read-out of emotional information from iconic memory: the longevity of threatening stimuli.
Kuhbandner, Christof; Spitzer, Bernhard; Pekrun, Reinhard
2011-05-01
Previous research has shown that emotional stimuli are more likely than neutral stimuli to be selected by attention, indicating that the processing of emotional information is prioritized. In this study, we examined whether the emotional significance of stimuli influences visual processing already at the level of transient storage of incoming information in iconic memory, before attentional selection takes place. We used a typical iconic memory task in which the delay of a poststimulus cue, indicating which of several visual stimuli has to be reported, was varied. Performance decreased rapidly with increasing cue delay, reflecting the fast decay of information stored in iconic memory. However, although neutral stimulus information and emotional stimulus information were initially equally likely to enter iconic memory, the subsequent decay of the initially stored information was slowed for threatening stimuli, a result indicating that fear-relevant information has prolonged availability for read-out from iconic memory. This finding provides the first evidence that emotional significance already facilitates stimulus processing at the stage of iconic memory.
Rapid soft X-ray fluctuations in solar flares observed with the X-ray polychromator
NASA Technical Reports Server (NTRS)
Zarro, D. M.; Saba, J. L. R.; Strong, K. T.
1986-01-01
Three flares observed by the Soft X-Ray Polychromator on the Solar Maximum Mission were studied. Flare light curves from the Flat Crystal Spectrometer and Bent Crystal Spectrometer were examined for rapid signal variations. Each flare was characterized by an initial fast (less than 1 min) burst, observed by the Hard X-Ray Burst Spectrometer (HXRBS), followed by softer gradual X-ray emission lasting several minutes. From an autocorrelation function analysis, evidence was found for quasi-periodic fluctuations with rise and decay times of 10 s in the Ca XIX and Fe XXV light curves. These variations were of small amplitude (less than 20%), often coincided with hard X-ray emissions, and were prominent during the onset of the gradual phase after the initial hard X-ray burst. It is speculated that these fluctuations were caused by repeated energy injections in a coronal loop that had already been heated and filled with dense plasma associated with the initial hard X-ray burst.
Force decay and deformation of orthodontic elastomeric ligatures.
Taloumis, L J; Smith, T M; Hondrum, S O; Lorton, L
1997-01-01
This study evaluated commercially available molded gray elastomeric ligatures from seven companies for force decay, dimensional change, and the relationship between ligature dimension and force. The initial wall thickness, inside diameter, outside diameter, and force levels of each ligature were measured. Three of four test groups of ligatures were stretched over stainless steel dowels with a circumference approximating that of a large orthodontic twin bracket. Test group 1 was kept at room temperature and humidity for 28 days and test group 2 in a synthetic saliva bath at 37 degrees C, pH 6.84 for 28 days. The residual forces and dimensional changes were measured. The third test group was placed in a synthetic saliva bath at 37 degrees C, pH 6.84, and force levels recorded at initial, 24 hours, 7 days, 14 days, and 28 days. The fourth test group of unstretched samples was placed in a synthetic saliva bath at 37 degrees C, pH 6.84 for 28 days to evaluate dimensional changes due solely to moisture sorption. The results for stretched samples in a simulated oral environment revealed the following: (1) Moisture and heat had a pronounced effect on force decay and permanent deformation, (2) a positive correlation existed between the wall thickness and force, (3) a negative correlation existed between the inside diameter and force, (4) a weak correlation existed between outside diameter and force, (5) the greatest force loss occurred in the first 24 hours and the decay pattern was similar for all ligatures tested, and (6) unstretched ligatures absorbed moisture in the range of 0.060% to 3.15%. The ligatures tested appear to be suitable for use during initial aligning and leveling. However, the rapid force loss and permanent deformation of these products may preclude their use for rotational and torque corrections.
Cerebrospinal fluid neopterin decay characteristics after initiation of antiretroviral therapy.
Yilmaz, Aylin; Yiannoutsos, Constantin T; Fuchs, Dietmar; Price, Richard W; Crozier, Kathryn; Hagberg, Lars; Spudich, Serena; Gisslén, Magnus
2013-05-10
Neopterin, a biomarker of macrophage activation, is elevated in the cerebrospinal fluid (CSF) of most HIV-infected individuals and decreases after initiation of antiretroviral therapy (ART). We studied decay characteristics of neopterin in CSF and blood after commencement of ART in HIV-infected subjects and estimated the set-point levels of CSF neopterin after ART-mediated viral suppression. CSF and blood neopterin were longitudinally measured in 102 neurologically asymptomatic HIV-infected subjects who were treatment-naïve or had been off ART for ≥ 6 months. We used a non-linear model to estimate neopterin decay in response to ART and a stable neopterin set-point attained after prolonged ART. Seven subjects with HIV-associated dementia (HAD) who initiated ART were studied for comparison. Non-HAD patients were followed for a median 84.7 months. Though CSF neopterin concentrations decreased rapidly after ART initiation, it was estimated that set-point levels would be below normal CSF neopterin levels (<5.8 nmol/L) in only 60/102 (59%) of these patients. Pre-ART CSF neopterin was the primary predictor of set-point (P <0.001). HAD subjects had higher baseline median CSF neopterin levels than non-HAD subjects (P <0.0001). Based on the non-HAD model, only 14% of HAD patients were predicted to reach normal levels. After virologically suppressive ART, abnormal CSF neopterin levels persisted in 41% of non-HAD and the majority of HAD patients. ART is not fully effective in ameliorating macrophage activation in CNS as well as blood, especially in subjects with higher pre-ART levels of immune activation.
NASA Astrophysics Data System (ADS)
Lau, Rita
2018-02-01
In this paper, we investigate the sensitivities of positron decays on a one-zone model of type-I X-ray bursts. Most existing studies have multiplied or divided entire beta decay rates (electron captures and beta decay rates) by 10. Instead of using the standard Fuller & Fowler (FFNU) rates, we used the most recently developed weak library rates [1], which include rates from Langanke et al.'s table (the LMP table) (2000) [2], Langanke et al.'s table (the LMSH table) (2003) [3], and Oda et al.'s table (1994) [4] (all shell model rates). We then compared these table rates with the old FFNU rates [5] to study differences within the final abundances. Both positron decays and electron capture rates were included in the tables. We also used pn-QRPA rates [6,7] to study the differences within the final abundances. Many of the positron rates from the nuclei's ground states and initial excited energy states along the rapid proton capture (rp) process have been measured in existing studies. However, because temperature affects the rates of excited states, these studies should have also acknowledged the half-lives of the nuclei's excited states. Thus, instead of multiplying or dividing entire rates by 10, we studied how the half-lives of sensitive nuclei in excited states affected the abundances by dividing the half-lives of the ground states by 10, which allowed us to set the half-lives of the excited states. Interestingly, we found that the peak of the final abundance shifted when we modified the rates from the excited states of the 105Sn positron decay rates. Furthermore, the abundance of 80Zr also changed due to usage of pn-QRPA rates instead of weak library rates (the shell model rates).
Impact of sediment particle size on biotransformation of 17β-estradiol and 17β-trenbolone.
Zhang, Yun; Sangster, Jodi L; Gauza, Lukasz; Bartelt-Hunt, Shannon L
2016-12-01
Soil/sediment particle size has been reported to influence the sorption and bioavailability of steroid hormones in the environment. However, the impact of particle size on biotransformation has not been well elucidated. The present study investigated the dissipation of 17β-estradiol and 17β-trenbolone and the formation and degradation of the subsequent transformation products in different size fractions of a sandy and a silt loam sediment. The results showed that the decay of 17β-estradiol and 17β-trenbolone associated with fine particles followed a biphasic pattern with more rapid decay in the initial phase followed by a second phase with slower decay of the residues compared to their decay rates in the sand fraction. Estrone and trendione were detected as a primary biotransformation product for 17β-estradiol and 17β-trenbolone, respectively. The parent-to-product conversion ratios and the degradation rates of estrone and trendione varied among different size fractions, but no consistent correlation was observed between decay rates and sediment particle size. Estrone and trendione decayed in the whole sediments at rates not statistically different from those associated with the fine fractions. These results indicate that fine particles may play an important role in influencing the persistence of and the potential risk posed by steroid hormones in the aquatic systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide
Plechinger, Gerd; Nagler, Philipp; Arora, Ashish; Schmidt, Robert; Chernikov, Alexey; del Águila, Andrés Granados; Christianen, Peter C.M.; Bratschitsch, Rudolf; Schüller, Christian; Korn, Tobias
2016-01-01
Monolayer transition-metal dichalcogenides have recently emerged as possible candidates for valleytronic applications, as the spin and valley pseudospin are directly coupled and stabilized by a large spin splitting. The optical properties of these two-dimensional crystals are dominated by tightly bound electron–hole pairs (excitons) and more complex quasiparticles such as charged excitons (trions). Here we investigate monolayer WS2 samples via photoluminescence and time-resolved Kerr rotation. In photoluminescence and in energy-dependent Kerr rotation measurements, we are able to resolve two different trion states, which we interpret as intravalley and intervalley trions. Using time-resolved Kerr rotation, we observe a rapid initial valley polarization decay for the A exciton and the trion states. Subsequently, we observe a crossover towards exciton–exciton interaction-related dynamics, consistent with the formation and decay of optically dark A excitons. By contrast, resonant excitation of the B exciton transition leads to a very slow decay of the Kerr signal. PMID:27586517
NASA Astrophysics Data System (ADS)
Blackman, Eric G.; Subramanian, Kandaswamy
2013-02-01
The extent to which large-scale magnetic fields are susceptible to turbulent diffusion is important for interpreting the need for in situ large-scale dynamos in astrophysics and for observationally inferring field strengths compared to kinetic energy. By solving coupled evolution equations for magnetic energy and magnetic helicity in a system initialized with isotropic turbulence and an arbitrarily helical large-scale field, we quantify the decay rate of the latter for a bounded or periodic system. The magnetic energy associated with the non-helical large-scale field decays at least as fast as the kinematically estimated turbulent diffusion rate, but the decay rate of the helical part depends on whether the ratio of its magnetic energy to the turbulent kinetic energy exceeds a critical value given by M1, c = (k1/k2)2, where k1 and k2 are the wavenumbers of the large and forcing scales. Turbulently diffusing helical fields to small scales while conserving magnetic helicity requires a rapid increase in total magnetic energy. As such, only when the helical field is subcritical can it so diffuse. When supercritical, it decays slowly, at a rate determined by microphysical dissipation even in the presence of macroscopic turbulence. In effect, turbulent diffusion of such a large-scale helical field produces small-scale helicity whose amplification abates further turbulent diffusion. Two curious implications are that (1) standard arguments supporting the need for in situ large-scale dynamos based on the otherwise rapid turbulent diffusion of large-scale fields require re-thinking since only the large-scale non-helical field is so diffused in a closed system. Boundary terms could however provide potential pathways for rapid change of the large-scale helical field. (2) Since M1, c ≪ 1 for k1 ≪ k2, the presence of long-lived ordered large-scale helical fields as in extragalactic jets do not guarantee that the magnetic field dominates the kinetic energy.
Creep Strain and Strain Rate Response of 2219 Al Alloy at High Stress Levels
NASA Technical Reports Server (NTRS)
Taminger, Karen M. B.; Wagner, John A.; Lisagor, W. Barry
1998-01-01
As a result of high localized plastic deformation experienced during proof testing in an International Space Station connecting module, a study was undertaken to determine the deformation response of a 2219-T851 roll forging. After prestraining 2219-T851 Al specimens to simulate strains observed during the proof testing, creep tests were conducted in the temperature range from ambient temperature to 107 C (225 F) at stress levels approaching the ultimate tensile strength of 2219-T851 Al. Strain-time histories and strain rate responses were examined. The strain rate response was extremely high initially, but decayed rapidly, spanning as much as five orders of magnitude during primary creep. Select specimens were subjected to incremental step loading and exhibited initial creep rates of similar magnitude for each load step. Although the creep rates decreased quickly at all loads, the creep rates dropped faster and reached lower strain rate levels for lower applied loads. The initial creep rate and creep rate decay associated with primary creep were similar for specimens with and without prestrain; however, prestraining (strain hardening) the specimens, as in the aforementioned proof test, resulted in significantly longer creep life.
Experimental observations on the decay of environmental DNA from bighead and silver carps
Lance, Richard F.; Klymus, Katy E.; Richter, Cathy; Guan, Xin; Farrington, Heather L.; Carr, Matthew R.; Thompson, Nathan; Chapman, Duane C.; Baerwaldt, Kelly L.
2017-01-01
Interest in the field of environmental DNA (eDNA) is growing rapidly and eDNA surveys are becoming an important consideration for aquatic resource managers dealing with invasive species. However, in order for eDNA monitoring to mature as a research and management tool, there are several critical knowledge gaps that must be filled. One such gap is the fate of eDNA materials in the aquatic environment. Understanding the environmental factors that influence the decay of eDNA and how these factors impact detection probabilities over time and space could have significant implications for eDNA survey design and data interpretation. Here we experimentally explore decay of eDNA associated with bighead carp (Hypophthalmichthys nobilis) biological waste collected from an aquaculture filtration system and with sperm collected from captive silver carp (H. molitrix), and how decay may be influenced by differing levels of water turbulence, temperature, microbial load, and pH. We found that the decay patterns of eDNA associated with both H. nobilis biological waste and H. molitrix milt significantly fit monophasic exponential decay curves. Secondly, we observed that the highest temperature we tested resulted in a decay half-life as much as 5.5× more rapid than the lowest temperature we tested. When we suppressed microbial loads in eDNA samples, we observed that overall losses of eDNA were reduced by about 2.5×. When we amended eDNA samples with pond water the half-life of eDNA was reduced by about 2.25×, despite relatively little apparent increase in the overall microbial load. This pattern indicated that species constituency of the microbial community, in addition to microbial load, might play a critical role in eDNA degradation. A shift in pH from 6.5 to 8.0 in the samples resulted in a 1.6× reduction in eDNA halflife. Water turbulence in our study had no apparent effect on eDNA decay. When we combined different temperature, pH, and microbial load treatments to create a rapid decay condition and a slow decay condition, and tracked eDNA decay over 91 days, we observed a 5.0× greater loss of eDNA by Day 5 under rapid decay conditions than under slow decay conditions. At the end of the trials, the differences in eDNA loss between the rapid decay and baseline and slow decay conditions were 0.1× and 3.3×, respectively. Our results strongly demonstrate the potential for environmental factors to influence eDNA fate and, thus, the interpretation of eDNA survey results.
Cerebrospinal fluid neopterin decay characteristics after initiation of antiretroviral therapy
2013-01-01
Background Neopterin, a biomarker of macrophage activation, is elevated in the cerebrospinal fluid (CSF) of most HIV-infected individuals and decreases after initiation of antiretroviral therapy (ART). We studied decay characteristics of neopterin in CSF and blood after commencement of ART in HIV-infected subjects and estimated the set-point levels of CSF neopterin after ART-mediated viral suppression. Methods CSF and blood neopterin were longitudinally measured in 102 neurologically asymptomatic HIV-infected subjects who were treatment-naïve or had been off ART for ≥ 6 months. We used a non-linear model to estimate neopterin decay in response to ART and a stable neopterin set-point attained after prolonged ART. Seven subjects with HIV-associated dementia (HAD) who initiated ART were studied for comparison. Results Non-HAD patients were followed for a median 84.7 months. Though CSF neopterin concentrations decreased rapidly after ART initiation, it was estimated that set-point levels would be below normal CSF neopterin levels (<5.8 nmol/L) in only 60/102 (59%) of these patients. Pre-ART CSF neopterin was the primary predictor of set-point (P <0.001). HAD subjects had higher baseline median CSF neopterin levels than non-HAD subjects (P <0.0001). Based on the non-HAD model, only 14% of HAD patients were predicted to reach normal levels. Conclusions After virologically suppressive ART, abnormal CSF neopterin levels persisted in 41% of non-HAD and the majority of HAD patients. ART is not fully effective in ameliorating macrophage activation in CNS as well as blood, especially in subjects with higher pre-ART levels of immune activation. PMID:23664008
Excitation of Continuous and Discrete Modes in Incompressible Boundary Layers
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Reshotko, Eli
1998-01-01
This report documents the full details of the condensed journal article by Ashpis & Reshotko (JFM, 1990) entitled "The Vibrating Ribbon Problem Revisited." A revised formal solution of the vibrating ribbon problem of hydrodynamic stability is presented. The initial formulation of Gaster (JFM, 1965) is modified by application of the Briggs method and a careful treatment of the complex double Fourier transform inversions. Expressions are obtained in a natural way for the discrete spectrum as well as for the four branches of the continuous spectra. These correspond to discrete and branch-cut singularities in the complex wave-number plane. The solutions from the continuous spectra decay both upstream and downstream of the ribbon, with the decay in the upstream direction being much more rapid than that in the downstream direction. Comments and clarification of related prior work are made.
NASA Astrophysics Data System (ADS)
Arns, Robert G.
In 1930 Wolfgang Pauli suggested that a new particle might be required to make sense of the radioactive-disintegration mode known as beta decay. This conjecture initially seemed impossible to verify since the new particle, which became known as the neutrino, was uncharged, had zero or small mass, and interacted only insignificantly with other matter. In 1951 Frederick Reines and Clyde L. Cowan, Jr., of the Los Alamos Scientific Laboratory undertook the difficult task of detecting the free neutrino by observing its inverse beta-decay interaction with matter. They succeeded in 1956. The neutrino was accepted rapidly as a fundamental particle despite discrepancies in reported details of the experiments and despite the absence of independent verification of the result. This paper describes the experiments, examines the nature of the discrepancies, and discusses the circumstances of the acceptance of the neutrino's detection by the physics community.
GRB-081029: A Step Towards Understanding Multiple Afterglow Components
NASA Technical Reports Server (NTRS)
Holland Stephen T.
2010-01-01
We present an analysis of the unusual optical light curve of the gamma-ray burst-081029 at a redshift of z = 3.8474. We combine X-ray and optical observations from (Swift) with optical and infrared data from REM to obtain a detailed data set extending from approx 10(exp 2)s to approx 10(exp 5)s after the BAT trigger, and from approx.10 keV to 16,000 AA. The X-ray afterglow showed a shallow initial decay followed by u rapid decay after about 18,000 s. The optical afterglow, however, shows an uncharecteristic rise at about 5000 s that has no corresponding feature in the X-ray light curve. The data are not consistent with a single-component jet. It is possible that there are multiple physical components contributing to the afterglow of GRB-081029.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Tsuyoshi; Asano, Katsuaki; Ioka, Kunihito, E-mail: inouety@phys.aoyama.ac.jp
2011-06-20
Relativistic astrophysical phenomena such as gamma-ray bursts (GRBs) and active galactic nuclei often require long-lived strong magnetic fields that cannot be achieved by shock compression alone. Here, we report on three-dimensional special-relativistic magnetohydrodynamic (MHD) simulations that we performed using a second-order Godunov-type conservative code to explore the amplification and decay of macroscopic turbulence dynamo excited by the so-called Richtmyer-Meshkov instability (RMI; a Rayleigh-Taylor-type instability). This instability is an inevitable outcome of interactions between shock and ambient density fluctuations. We find that the magnetic energy grows exponentially in a few eddy-turnover times because of field-line stretching and then, following the decaymore » of kinetic turbulence, decays with a temporal power-law exponent of -0.7. The magnetic energy fraction can reach {epsilon}{sub B} {approx} 0.1 but depends on the initial magnetic field strength, which can diversify the observed phenomena. We find that the magnetic energy grows by at least two orders of magnitude compared to the magnetic energy immediately behind the shock, provided the kinetic energy of turbulence injected by the RMI is greater than the magnetic energy. This minimum degree of amplification does not depend on the amplitude of the initial density fluctuations, while the growth timescale and the maximum magnetic energy depend on the degree of inhomogeneity in the density. The transition from Kolmogorov cascade to MHD critical balance cascade occurs at {approx}1/10th the initial inhomogeneity scale, which limits the maximum synchrotron polarization to less than {approx}2%. We derive analytical formulas for these numerical results and apply them to GRBs. New results include the avoidance of electron cooling with RMI turbulence, the turbulent photosphere model via RMI, and the shallow decay of the early afterglow from RMI. We also perform a simulation of freely decaying turbulence with relativistic velocity dispersion. We find that relativistic turbulence begins to decay much more quickly than one eddy-turnover time because of rapid shock dissipation, which does not support the relativistic turbulence model by Narayan and Kumar.« less
C. A. Clausen; S. N. Kartal
2003-01-01
Early detection of wood decay is critical because decay fungi can cause rapid structural failure. The objective of this study was to compare the sensitivity of different methods purported to detect brown-rot decay in the early stages of development. The immunodiagnostic wood decay (IWD)test, soil block test/cake pan test, mechanical property tests, and chemical...
Edén, Arvid; Andersson, Lars-Magnus; Andersson, Orjan; Flamholc, Leo; Josephson, Filip; Nilsson, Staffan; Ormaasen, Vidar; Svedhem, Veronica; Säll, Christer; Sönnerborg, Anders; Tunbäck, Petra; Gisslén, Magnus
2010-05-01
Initial viral decay rate may be useful when comparing the relative potency of antiretroviral regimens. Two hundred twenty-seven ART-naïve patients were randomized to receive efavirenz (EFV) (n = 74), lopinavir/ritonavir (LPV/r) (n = 77), or atazanavir/ritonavir (ATV/r) (n = 79) in combination with two NRTIs. The most frequently used NRTI combinations in the EFV and ATV/r groups were the nonthymidine analogues tenofovir and emtricitabine or lamivudine (70% and 68%, respectively) and, in the LPV/r group, lamivudine and the thymidine analogue zidovudine (89%). HIV-1 RNA was monitored during the first 28 days after treatment initiation. Phase 1 and 2 decay rate was estimated in a subset of 157 patients by RNA decrease from days 0 to 7, and days 14 to 28. One-way ANOVA and subsequent Tukey's post hoc tests were used for groupwise comparisons. Mean (95% CI) HIV-1 RNA reductions from days 0 to 28 were 2.59 (2.45-2.73), 2.42 (2.27-2.57), and 2.13 (2.01-2.25) log(10) copies/ml for the EFV-, LPV/r-, and ATV/r-based treatment groups, respectively, with a significantly larger decrease in the EFV-based group at all time points compared with ATV/r (p < 0.0001), and with LPV/r at days 7-21 (p < 0.0001-0.03). LPV/r gave a greater RNA decrease compared with ATV/r from day 14 (p = 0.02). Phase 1 decay rate was significantly higher in the EFV group compared with LPV/r (p = 0.003) or ATV/r (p < 0.0001). No difference was found in phase 2 decrease. EFV-based treatment gave a more rapid decline in HIV-1 RNA than did either of the boosted protease inhibitor-based regimens. The observed differences may reflect different inherent regimen potencies.
Park, Jong Ho; Park, Jung Jin; Park, O Ok; Yang, Jung Hoon
2016-11-23
Capacity decay in vanadium redox flow batteries during charge-discharge cycling has become an important issue because it lowers the practical energy density of the battery. The battery capacity tends to drop rapidly within the first tens of cycles and then drops more gradually over subsequent cycles during long-term operation. This paper analyzes and discusses the reasons for this early capacity decay. The imbalanced crossover rate of vanadium species was found to remain high until the total difference in vanadium concentration between the positive and negative electrolytes reached almost 1 mol dm -3 . To minimize the initial crossover imbalance, we introduced an asymmetric volume ratio between the positive and negative electrolytes during cell operation. Changing this ratio significantly reduced the capacity fading rate of the battery during the early cycles and improved its capacity retention at steady state. As an example, the practical energy density of the battery increased from 15.5 to 25.2 Wh L -1 simply after reduction of the positive volume by 25 %. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alternative catalysts for low-temperature CO-oxidation
NASA Technical Reports Server (NTRS)
Gardner, Steven D.; Hoflund, Gar B.; Schryer, David R.; Schryer, Jacqueline; Upchurch, Billy T.; Brown, David R.
1990-01-01
MnO sub x, Ag/MnO sub x, Cu/MnO sub x, Pt/MnO sub x, Ru/MnO sub x, Au/CeO sub x, and Au/Fe2O3 were synthesized and tested for CO oxidation activity in low concentrations of stoichiometric CO and O2 at 30 to 75 C. Catalytic activity was measured for periods as long as 18000 minutes. At 75 deg Au/MnO sub x is most active sustaining nearly 100 percent CO conversion for 10000 minutes. It also retains high activity at 50 and 30 C with negligible decay in activity. A direct comparison between an unpretreated 10 percent Au/MnO sub x catalyst and an optimized 19.5 percent Pt/SnO sub 2 (pretreated) catalyst shows that the Au/MnO sub x catalyst exhibits much higher catalytic activity and far superior decay characteristics. Other catalysts including Au/CeO sub x and Au/Fe2O3 also perform well. The Cu/MnO sub x exhibits a high initial activity which decays rapidly. After the decay period the activity remains very stable making Cu/MnO sub x a potential candidate for long-term applications such as CO2 lasers in space.
NASA Astrophysics Data System (ADS)
Maiti, Soumyabrata; Bandyopadhyay, Ritwik; Chatterjee, Anindya
2018-01-01
We study free and harmonically forced vibrations of an Euler-Bernoulli beam with rate-independent hysteretic dissipation. The dissipation follows a model proposed elsewhere for materials with randomly dispersed frictional microcracks. The virtual work of distributed dissipative moments is approximated using Gaussian quadrature, yielding a few discrete internal hysteretic states. Lagrange's equations are obtained for the modal coordinates. Differential equations for the modal coordinates and internal states are integrated together. Free vibrations decay exponentially when a single mode dominates. With multiple modes active, higher modes initially decay rapidly while lower modes decay relatively slowly. Subsequently, lower modes show their own characteristic modal damping, while small amplitude higher modes show more erratic decay. Large dissipation, for the adopted model, leads mathematically to fast and damped oscillations in the limit, unlike viscously overdamped systems. Next, harmonically forced, lightly damped responses of the beam are studied using both a slow frequency sweep and a shooting-method based search for periodic solutions along with numerical continuation. Shooting method and frequency sweep results match for large ranges of frequency. The shooting method struggles near resonances, where internal states collapse into lower dimensional behavior and Newton-Raphson iterations fail. Near the primary resonances, simple numerically-aided harmonic balance gives excellent results. Insights are also obtained into the harmonic content of secondary resonances.
Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome
ORBAN, TAMAS I.; IZAURRALDE, ELISA
2005-01-01
RNA interference (RNAi) is a conserved RNA silencing pathway that leads to sequence-specific mRNA decay in response to the presence of double-stranded RNA (dsRNA). Long dsRNA molecules are first processed by Dicer into 21–22-nucleotide small interfering RNAs (siRNAs). The siRNAs are incorporated into a multimeric RNA-induced silencing complex (RISC) that cleaves mRNAs at a site determined by complementarity with the siRNAs. Following this initial endonucleolytic cleavage, the mRNA is degraded by a mechanism that is not completely understood. We investigated the decay pathway of mRNAs targeted by RISC in Drosophila cells. We show that 5′ mRNA fragments generated by RISC cleavage are rapidly degraded from their 3′ ends by the exosome, whereas the 3′ fragments are degraded from their 5′ ends by XRN1. Exosome-mediated decay of the 5′ fragments requires the Drosophila homologs of yeast Ski2p, Ski3p, and Ski8p, suggesting that their role as regulators of exosome activity is conserved. Our findings indicate that mRNAs targeted by siRNAs are degraded from the ends generated by RISC cleavage, without undergoing decapping or deadenylation. PMID:15703439
Early detection and progression of decay in L-joints and lap-joints in a moderate decay hazard zone
Carol A. Clausen; Terry L. Highley; Daniel L. Lindner
2006-01-01
Accelerated test methods are needed to evaluate the initiation and progression of decay in wood exposed aboveground. The relationship between test conditions and initiation of decay, however, is poorly understood. Southern pine and maple L-joints and lap-joints were exposed aboveground in a configuration that encouraged water entrapment at the Valley View Experimental...
NASA Technical Reports Server (NTRS)
Barnouin, Olivier S.; Daly, R. Terik; Cintala, Mark J.; Crawford, David A.
2018-01-01
The surfaces of many planets and asteroids contain coarsely fragmental material generated by impacts or other geologic processes. The presence of such pre-existing structures may affect subsequent impacts, particularly when the width of the shock is comparable to or smaller than the size of pre-existing structures. Reasonable theoretical predictions and low speed (<300m/s) impact experiments suggest that in such targets the cratering process should be highly dissipative, which would reduce cratering efficiencies and cause a rapid decay in ejection velocity as a function of distance from the impact point. In this study, we assess whether these results apply at higher impact speeds between 0.5 and 2.5 km s-1. This study shows little change in cratering efficiency when 3.18 mm diameter glass beads are launched into targets composed of these same beads. These impacts are very efficient, and ejection velocity decays slowly as function of distance from the impact point. This slow decay in ejection velocity probably indicates a correspondingly slow decay of the shock stresses. However, these experiments reveal that initial interactions between projectile and target strongly influence the cratering process and lead to asymmetries in crater shape and ejection angles, as well as significant variations in ejection velocity at a given launch position. Such effects of asymmetric coupling could be further enhanced by heterogeneity in the initial distribution of grains in the target and by mechanical collisions between grains. These experiments help to explain why so few craters are seen on the rubble-pile asteroid Itokawa: impacts into its coarsely fragmental surface by projectiles comparable to or smaller than the size of these fragments likely yield craters that are not easily recognizable.
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovska, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ravasenga, I.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Valencia Palomo, L.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vickovic, L.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.
2016-09-01
The elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity (| y| < 0.7) is measured in Pb-Pb collisions at √{s_{NN}}=2.76 TeV with ALICE at the LHC. The particle azimuthal distribution with respect to the reaction plane can be parametrized with a Fourier expansion, where the second coefficient ( v 2) represents the elliptic flow. The v 2 coefficient of inclusive electrons is measured in three centrality classes (0-10%, 10-20% and 20-40%) with the event plane and the scalar product methods in the transverse momentum ( p T) intervals 0.5-13 GeV/ c and 0.5-8 GeV/ c, respectively. After subtracting the background, mainly from photon conversions and Dalitz decays of neutral mesons, a positive v 2 of electrons from heavy-flavour hadron decays is observed in all centrality classes, with a maximum significance of 5.9 σ in the interval 2 < p T < 2.5 GeV/ c in semi-central collisions (20-40%). The value of v 2 decreases towards more central collisions at low and intermediate p T (0.5 < p T < 3 GeV/ c). The v 2 of electrons from heavy-flavour hadron decays at mid-rapidity is found to be similar to the one of muons from heavy-flavour hadron decays at forward rapidity (2.5 < y < 4). The results are described within uncertainties by model calculations including substantial elastic interactions of heavy quarks with an expanding strongly-interacting medium. [Figure not available: see fulltext.
Woody debris volume depletion through decay: implications for biomass and carbon accounting
Fraver, Shawn; Milo, Amy M.; Bradford, John B.; D'Amato, Anthony W.; Kenefic, Laura; Palik, Brian J.; Woodall, Christopher W.; Brissette, John
2013-01-01
Woody debris decay rates have recently received much attention because of the need to quantify temporal changes in forest carbon stocks. Published decay rates, available for many species, are commonly used to characterize deadwood biomass and carbon depletion. However, decay rates are often derived from reductions in wood density through time, which when used to model biomass and carbon depletion are known to underestimate rate loss because they fail to account for volume reduction (changes in log shape) as decay progresses. We present a method for estimating changes in log volume through time and illustrate the method using a chronosequence approach. The method is based on the observation, confirmed herein, that decaying logs have a collapse ratio (cross-sectional height/width) that can serve as a surrogate for the volume remaining. Combining the resulting volume loss with concurrent changes in wood density from the same logs then allowed us to quantify biomass and carbon depletion for three study species. Results show that volume, density, and biomass follow distinct depletion curves during decomposition. Volume showed an initial lag period (log dimensions remained unchanged), even while wood density was being reduced. However, once volume depletion began, biomass loss (the product of density and volume depletion) occurred much more rapidly than density alone. At the temporal limit of our data, the proportion of the biomass remaining was roughly half that of the density remaining. Accounting for log volume depletion, as demonstrated in this study, provides a comprehensive characterization of deadwood decomposition, thereby improving biomass-loss and carbon-accounting models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.
Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughoutmore » the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.« less
Penny, Melissa A; Galactionova, Katya; Tarantino, Michael; Tanner, Marcel; Smith, Thomas A
2015-07-29
The RTS,S/AS01 malaria vaccine candidate recently completed Phase III trials in 11 African sites. Recommendations for its deployment will partly depend on predictions of public health impact in endemic countries. Previous predictions of these used only limited information on underlying vaccine properties and have not considered country-specific contextual data. Each Phase III trial cohort was simulated explicitly using an ensemble of individual-based stochastic models, and many hypothetical vaccine profiles. The true profile was estimated by Bayesian fitting of these models to the site- and time-specific incidence of clinical malaria in both trial arms over 18 months of follow-up. Health impacts of implementation via two vaccine schedules in 43 endemic sub-Saharan African countries, using country-specific prevalence, access to care, immunisation coverage and demography data, were predicted via weighted averaging over many simulations. The efficacy against infection of three doses of vaccine was initially approximately 65 % (when immunising 6-12 week old infants) and 80 % (children 5-17 months old), with a 1 year half-life (exponential decay). Either schedule will avert substantial disease, but predicted impact strongly depends on the decay rate of vaccine effects and average transmission intensity. For the first time Phase III site- and time-specific data were available to estimate both the underlying profile of RTS,S/AS01 and likely country-specific health impacts. Initial efficacy will probably be high, but decay rapidly. Adding RTS,S to existing control programs, assuming continuation of current levels of malaria exposure and of health system performance, will potentially avert 100-580 malaria deaths and 45,000 to 80,000 clinical episodes per 100,000 fully vaccinated children over an initial 10-year phase.
Observation of a Relaxed Plasma State in a Quasi-Infinite Cylinder
NASA Astrophysics Data System (ADS)
Gray, T.; Brown, M. R.; Dandurand, D.
2013-02-01
A helical relaxed plasma state is observed in a long cylindrical volume. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v≥50km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. The relaxed state is rapidly attained in 1-2 axial Alfvén times after initiation of the plasma. Magnetic data are favorably compared with an analytical model. Magnetic data exhibit broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement with the minimum energy eigenstate of ∇×B=λB.
Observation of a relaxed plasma state in a quasi-infinite cylinder.
Gray, T; Brown, M R; Dandurand, D
2013-02-22
A helical relaxed plasma state is observed in a long cylindrical volume. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v ≥ 50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. The relaxed state is rapidly attained in 1-2 axial Alfvén times after initiation of the plasma. Magnetic data are favorably compared with an analytical model. Magnetic data exhibit broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement with the minimum energy eigenstate of [Symbol: see text] × B = λB.
Stewart, David J.; Behrens, Carmen; Roth, Jack; Wistuba, Ignacio I.
2010-01-01
Background For processes that follow first order kinetics, exponential decay nonlinear regression analysis (EDNRA) may delineate curve characteristics and suggest processes affecting curve shape. We conducted a preliminary feasibility assessment of EDNRA of patient survival curves. Methods EDNRA was performed on Kaplan-Meier overall survival (OS) and time-to-relapse (TTR) curves for 323 patients with resected NSCLC and on OS and progression-free survival (PFS) curves from selected publications. Results and Conclusions In our resected patients, TTR curves were triphasic with a “cured” fraction of 60.7% (half-life [t1/2] >100,000 months), a rapidly-relapsing group (7.4%, t1/2=5.9 months) and a slowly-relapsing group (31.9%, t1/2=23.6 months). OS was uniphasic (t1/2=74.3 months), suggesting an impact of co-morbidities; hence, tumor molecular characteristics would more likely predict TTR than OS. Of 172 published curves analyzed, 72 (42%) were uniphasic, 92 (53%) were biphasic, 8 (5%) were triphasic. With first-line chemotherapy in advanced NSCLC, 87.5% of curves from 2-3 drug regimens were uniphasic vs only 20% of those with best supportive care or 1 drug (p<0.001). 54% of curves from 2-3 drug regimens had convex rapid-decay phases vs 0% with fewer agents (p<0.001). Curve convexities suggest that discontinuing chemotherapy after 3-6 cycles “synchronizes” patient progression and death. With postoperative adjuvant chemotherapy, the PFS rapid-decay phase accounted for a smaller proportion of the population than in controls (p=0.02) with no significant difference in rapid-decay t1/2, suggesting adjuvant chemotherapy may move a subpopulation of patients with sensitive tumors from the relapsing group to the cured group, with minimal impact on time to relapse for a larger group of patients with resistant tumors. In untreated patients, the proportion of patients in the rapid-decay phase increased (p=0.04) while rapid-decay t1/2 decreased (p=0.0004) with increasing stage, suggesting that higher stage may be associated with tumor cells that both grow more rapidly and have a higher probability of surviving metastatic processes than in early stage tumors. This preliminary assessment of EDNRA suggests that it may be worth exploring this approach further using more sophisticated, statistically rigorous nonlinear modelling approaches. Using such approaches to supplement standard survival analyses could suggest or support specific testable hypotheses. PMID:20627364
Rotation-induced nonlinear wavepackets in internal waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, A. J., E-mail: ashley.whitfield.12@ucl.ac.uk; Johnson, E. R., E-mail: e.johnson@ucl.ac.uk
2014-05-15
The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets.more » It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.« less
Decay of the zincate concentration gradient at an alkaline zinc cathode after charging
NASA Technical Reports Server (NTRS)
Kautz, H. E.; May, C. E.
1979-01-01
The study was carried out by observing the decay of the zincate concentration gradient at a horizontal zinc cathode after charging. This decay was found to approximate first order kinetics as expected from a proposed boundary layer model. The decay half life was shown to be a linear function of the thickness of porous zinc deposit on the cathode indicating a very rapid transport of zincate through porous zinc metal. The rapid transport is attributed to an electrochemical mechanism. The data also indicated a relatively sharp transition between the diffusion and convection transport regions. The diffusion of zincate ion through asbestos submerged in alkaline electrolyte was shown to be comparable with that predicted from the bulk diffusion coefficient of the zincate ion in alkali.
Brane decay and an initial spacelike singularity.
Kawai, Shinsuke; Keski-Vakkuri, Esko; Leigh, Robert G; Nowling, Sean
2006-01-27
We present a novel string theory scenario where matter in a spacetime originates from a decaying brane at the origin of time. The decay could be considered as a big-bang-like event at X0=0. The closed string interpretation is a time-dependent spacetime with a semi-infinite time direction, with the initial energy of the brane converted into energy flux from the origin. The open string interpretation can be viewed as a string theoretic nonsingular initial condition.
Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath
NASA Astrophysics Data System (ADS)
Rivera-Rivera, Luis A.; Wagner, Albert F.; Sewell, Thomas D.; Thompson, Donald L.
2015-01-01
Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is ˜100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane "simultaneously" colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities.
Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Rivera, Luis A.; Wagner, Albert F.; Sewell, Thomas D.
2015-01-07
Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is similar to 100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit withmore » the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane "simultaneously" colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities. (C) 2015 AIP Publishing LLC.« less
Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath.
Rivera-Rivera, Luis A; Wagner, Albert F; Sewell, Thomas D; Thompson, Donald L
2015-01-07
Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is ∼100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane "simultaneously" colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities.
Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Rivera, Luis A.; Sewell, Thomas D.; Thompson, Donald L.
2015-01-07
Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is ∼100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatzmore » function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane “simultaneously” colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities.« less
M Purser, Harry R; Jarrold, Christopher
2005-05-01
Individuals with Down syndrome suffer from relatively poor verbal short-term memory. Recent work has indicated that this deficit is not caused by problems of audition, speech, or articulatory rehearsal within the phonological loop component of Baddeley and Hitch's working memory model. Given this, two experiments were conducted to investigate whether abnormally rapid decay underlies the deficit. In a first experiment, we attempted to vary the time available for decay using a modified serial recall procedure that had both verbal and visuospatial conditions. No evidence was found to suggest that forgetting is abnormally rapid in phonological memory in Down syndrome, but a selective phonological memory deficit was indicated. A second experiment further investigated possible problems of decay in phonological memory, restricted to item information. The results indicated that individuals with Down syndrome do not show atypically rapid item forgetting from phonological memory but may have a limited-capacity verbal short-term memory system.
NASA Astrophysics Data System (ADS)
Kristensen, Erik; Holmer, Marianne
2001-02-01
Carbon mineralization of fresh and aged diatoms ( Skeletonema costatum) and barley hay ( Hordeum vulgare) was followed for 23 to 35 d in sandy and silty sediment. By the use of a thin-layer flow-through technique, it was possible to expose the sediment selectively for oxygen, nitrate or sulfate as electron acceptors in the terminal oxidation of organic carbon. Decomposition took place in two basic stages. Mineralization of the rapidly leachable fraction of the fresh materials occurred rapidly and with the same constant rate regardless of the electron acceptor available, indicating that the dissolved organic carbon released initially was labile and readily available for all heterotrophic respirers. In the case of diatoms, decay of the remaining, more refractory, particulate fraction of fresh and aged diatoms were strikingly similar, although both were degraded 5 to 10 times faster under oxic than anoxic conditions. Most of the particulate remains of diatoms after leaching apparently belong to one fraction, which maintains the same degradability even after prolonged aging. With respect to hay, the late divergence in rates of aerobic and anaerobic decay (a factor of 4 to 5 for aged hay only after 20 d) indicated that the larger hay particles (<500 μm) became exhausted in labile organic matter much slower through time than fine-particulate diatoms (˜20 μm). Anaerobic carbon mineralization rates of diatoms and hay particulates with sulfate and nitrate as electron acceptors were similar or up to two times faster with sulfate. The generally low levels of dissolved organic carbon in all incubations after the initial leaching phase suggest that the limiting step of decomposition under both aerobic and anaerobic decay is the initial hydrolytic attack on the complex particulate remains. Based on a volumetric model, we show that the exposure of anoxic subsurface sediment containing partly degraded organic material to oxygen via irrigated worm burrows or by reworking may significantly enhance total sediment carbon oxidation. The enhancement in the irrigation case increases linearly with density (up to 80%) and is higher than the density-independent enhancement (10%) in the reworking case when abundance is above a lower limit of ˜400 individuals/m 2.
Heat-induced ribosome pausing triggers mRNA co-translational decay in Arabidopsis thaliana
Merret, Rémy; Nagarajan, Vinay K.; Carpentier, Marie-Christine; Park, Sunhee; Favory, Jean-Jacques; Descombin, Julie; Picart, Claire; Charng, Yee-yung; Green, Pamela J.; Deragon, Jean-Marc; Bousquet-Antonelli, Cécile
2015-01-01
The reprogramming of gene expression in heat stress is a key determinant to organism survival. Gene expression is downregulated through translation initiation inhibition and release of free mRNPs that are rapidly degraded or stored. In mammals, heat also triggers 5′-ribosome pausing preferentially on transcripts coding for HSC/HSP70 chaperone targets, but the impact of such phenomenon on mRNA fate remains unknown. Here, we provide evidence that, in Arabidopsis thaliana, heat provokes 5′-ribosome pausing leading to the XRN4-mediated 5′-directed decay of translating mRNAs. We also show that hindering HSC/HSP70 activity at 20°C recapitulates heat effects by inducing ribosome pausing and co-translational mRNA turnover. Strikingly, co-translational decay targets encode proteins with high HSC/HSP70 binding scores and hydrophobic N-termini, two characteristics that were previously observed for transcripts most prone to pausing in animals. This work suggests for the first time that stress-induced variation of translation elongation rate is an evolutionarily conserved process leading to the polysomal degradation of thousands of ‘non-aberrant’ mRNAs. PMID:25845591
Searching for Rapid Orbital Decay of WASP-18b
NASA Astrophysics Data System (ADS)
Wilkins, Ashlee N.; Delrez, Laetitia; Barker, Adrian J.; Deming, Drake; Hamilton, Douglas; Gillon, Michael; Jehin, Emmanuel
2017-02-01
The WASP-18 system, with its massive and extremely close-in planet, WASP-18b (M p = 10.3M J , a = 0.02 au, P = 22.6 hr), is one of the best-known exoplanet laboratories to directly measure Q‧, the modified tidal quality factor and proxy for efficiency of tidal dissipation, of the host star. Previous analysis predicted a rapid orbital decay of the planet toward its host star that should be measurable on the timescale of a few years, if the star is as dissipative as is inferred from the circularization of close-in solar-type binary stars. We have compiled published transit and secondary eclipse timing (as observed by WASP, TRAPPIST, and Spitzer) with more recent unpublished light curves (as observed by TRAPPIST and Hubble Space Telescope) with coverage spanning nine years. We find no signature of a rapid decay. We conclude that the absence of rapid orbital decay most likely derives from Q‧ being larger than was inferred from solar-type stars and find that Q‧ ≥ 1 × 106, at 95% confidence; this supports previous work suggesting that F stars, with their convective cores and thin convective envelopes, are significantly less tidally dissipative than solar-type stars, with radiative cores and large convective envelopes.
Searching for Rapid Orbital Decay of WASP-18b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, Ashlee N.; Deming, Drake; Hamilton, Douglas
2017-02-20
The WASP-18 system, with its massive and extremely close-in planet, WASP-18b ( M{sub p} = 10.3 M{sub J}, a = 0.02 au, P = 22.6 hr), is one of the best-known exoplanet laboratories to directly measure Q ′, the modified tidal quality factor and proxy for efficiency of tidal dissipation, of the host star. Previous analysis predicted a rapid orbital decay of the planet toward its host star that should be measurable on the timescale of a few years, if the star is as dissipative as is inferred from the circularization of close-in solar-type binary stars. We have compiled publishedmore » transit and secondary eclipse timing (as observed by WASP, TRAPPIST, and Spitzer ) with more recent unpublished light curves (as observed by TRAPPIST and Hubble Space Telescope ) with coverage spanning nine years. We find no signature of a rapid decay. We conclude that the absence of rapid orbital decay most likely derives from Q ′ being larger than was inferred from solar-type stars and find that Q ′ ≥ 1 × 10{sup 6}, at 95% confidence; this supports previous work suggesting that F stars, with their convective cores and thin convective envelopes, are significantly less tidally dissipative than solar-type stars, with radiative cores and large convective envelopes.« less
Turbulence, selective decay, and merging in the SSX plasma wind tunnel
NASA Astrophysics Data System (ADS)
Gray, Tim; Brown, Michael; Flanagan, Ken; Werth, Alexandra; Lukin, V.
2012-10-01
A helical, relaxed plasma state has been observed in a long cylindrical volume. The cylinder has dimensions L = 1 m and R = 0.08 m. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v >=50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. Typical plasma parameters are Ti= 25 eV, ne>=10^15 cm-3, and B = 0.25 T. The relaxed state is rapidly attained in 1--2 axial Alfv'en times after initiation of the plasma. Magnetic data is favorably compared with an analytical model. Magnetic data exhibits broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement to the minimum energy eigenstate of ∇xB = λB. While the global structure roughly corresponds to the minimum energy eigenstate for the wind tunnel geometry, the plasma is high beta (β= 0.5) and does not have a flat λ profile. Merging of two plasmoids in this configuration results in noticeably more dynamic activity compared to a single plasmoid. These episodes of activity exhibit s
Cotroneo, S; Schiffbauer, J D; McCoy, V E; Wortmann, U G; Darroch, S A F; Peng, Y; Laflamme, M
2016-11-01
Preservation of Pennsylvanian-aged (307 Ma) soft-bodied fossils from Mazon Creek, Illinois, USA, is attributed to the formation of siderite concretions, which encapsulate the remains of terrestrial, freshwater, and marine flora and fauna. The narrow range of positive δ 34 S values from pyrite in individual concretions suggests microenvironmentally limited ambient sulfate, which may have been rapidly exhausted by sulfate-reducing bacteria. Tissue of the decaying carcass was rapidly encased by early diagenetic pyrite and siderite produced within the sulfate reduction and methanogenic zones of the sediment, with continuation of the latter resulting in concretion cementation. Cross-sectional isotopic analyses (δ 13 C and δ 18 O) and mineralogical characterization of the concretions point to initiation of preservation in high porosity proto-concretions during the early phases of microbially induced decay. The proto-concretion was cemented prior to compaction of the sediments by siderite as a result of methanogenic production of 13 C-rich bicarbonate-which varies both between Essex and Braidwood concretions and between fossiliferous and unfossiliferous concretions. This work provides the first detailed geochemical study of the Mazon Creek siderite concretions and identifies the range of conditions allowing for exceptional soft-tissue fossil formation as seen at Mazon Creek. © 2016 John Wiley & Sons Ltd.
A snap shot of the short-term response of crustaceans to macrophyte detritus in the deep Oslofjord.
Ramirez-Llodra, Eva; Rinde, Eli; Gundersen, Hege; Christie, Hartvig; Fagerli, Camilla With; Fredriksen, Stein; Gitmark, Janne Kim; Norling, Karl; Walday, Mats Gunnar; Norderhaug, Kjell Magnus
2016-03-30
A test deployment of a time-lapse camera lander in the deep Oslofjord (431 m) was used to obtain initial information on the response of benthic fauna to macroalgal debris. Three macroalgal species were used on the lander baited plate: Fucus serratus, Saccharina latissima and Laminaria hyperborea and observed during 41.5 hours. The deep-water shrimp Pandalus borealis were attracted to the macroalgae rapidly (3 min after the lander reached the seafloor), followed by amphipods. Shrimp abundances were significantly higher in areas covered by macroalgae compared to the adjacent seafloor and the number of shrimp visiting the macroalgae increased with time. Amphipods arrived 13 hours later and were observed mainly on decaying L. hyperborea. The abundance of amphipods on L. hyperborea increased rapidly, reaching a peak at 31 h after deployment. These initial observations suggest that debris from kelp forests and other macroalgal beds may play an important role in fuelling deep benthic communities in the outer Oslofjord and, potentially, enhance secondary production of commercial species such as P. borealis.
Rapid onset of mafic magmatism facilitated by volcanic edifice collapse
NASA Astrophysics Data System (ADS)
Cassidy, M.; Watt, S. F. L.; Talling, P. J.; Palmer, M. R.; Edmonds, M.; Jutzeler, M.; Wall-Palmer, D.; Manga, M.; Coussens, M.; Gernon, T.; Taylor, R. N.; Michalik, A.; Inglis, E.; Breitkreuz, C.; Le Friant, A.; Ishizuka, O.; Boudon, G.; McCanta, M. C.; Adachi, T.; Hornbach, M. J.; Colas, S. L.; Endo, D.; Fujinawa, A.; Kataoka, K. S.; Maeno, F.; Tamura, Y.; Wang, F.
2015-06-01
Volcanic edifice collapses generate some of Earth's largest landslides. How such unloading affects the magma storage systems is important for both hazard assessment and for determining long-term controls on volcano growth and decay. Here we present a detailed stratigraphic and petrological analyses of volcanic landslide and eruption deposits offshore Montserrat, in a subduction zone setting, sampled during Integrated Ocean Drilling Program Expedition 340. A large (6-10 km3) collapse of the Soufrière Hills Volcano at ~130 ka was followed by explosive basaltic volcanism and the formation of a new basaltic volcanic center, the South Soufrière Hills, estimated to have initiated <100 years after collapse. This basaltic volcanism was a sharp departure from the andesitic volcanism that characterized Soufrière Hills' activity before the collapse. Mineral-melt thermobarometry demonstrates that the basaltic magma's transit through the crust was rapid and from midcrustal depths. We suggest that this rapid ascent was promoted by unloading following collapse.
USDA-ARS?s Scientific Manuscript database
Fresh-cut lettuce is popular, but highly perishable product. Genetic studies of two bi-parental populations derived from crossing parents with rapid and slow rates of decay showed that the decay rate is heritable (broad spectrum heritability H2 of 0.56 – 0.87). The major genetic determinant of the d...
Nelson, Andrew W; Eitrheim, Eric S; Knight, Andrew W; May, Dustin; Mehrhoff, Marinea A; Shannon, Robert; Litman, Robert; Burnett, William C; Forbes, Tori Z; Schultz, Michael K
2015-07-01
The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of "produced fluids" generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element-radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides.
Linear Transformation Method for Multinuclide Decay Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding Yuan
2010-12-29
A linear transformation method for generic multinuclide decay calculations is presented together with its properties and implications. The method takes advantage of the linear form of the decay solution N(t) = F(t)N{sub 0}, where N(t) is a column vector that represents the numbers of atoms of the radioactive nuclides in the decay chain, N{sub 0} is the initial value vector of N(t), and F(t) is a lower triangular matrix whose time-dependent elements are independent of the initial values of the system.
NASA Astrophysics Data System (ADS)
Martynova, A. I.; Orlov, V. V.
2014-10-01
Numerical simulations have been carried out in the general three-body problem with equal masses with zero initial velocities, to investigate the distribution of the decay times T based on a representative sample of initial conditions. The distribution has a power-law character on long time scales, f( T) ∝ T - α , with α = 1.74. Over small times T < 30 T cr ( T cr is the mean crossing time for a component of the triple system), a series of local maxima separated by about 1.0 T cr is observed in the decay-time distribution. These local peaks correspond to zones of decay after one or a few triple encounters. Figures showing the arrangement of these zones in the domain of the initial conditions are presented.
Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability
Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.; ...
2017-11-28
Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughoutmore » the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.« less
Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability
NASA Astrophysics Data System (ADS)
Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.; Schloemer, Tracy H.; Harvey, Steven P.; Tremolet de Villers, Bertrand J.; Sellinger, Alan; Berry, Joseph J.; Luther, Joseph M.
2018-01-01
Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughout the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.
NASA Technical Reports Server (NTRS)
Pellett, G. L.; Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.
1983-01-01
Both measurements and model calculations of the temporal dispersion of peak HCl (g + aq) concentration in Titan III exhaust clouds are found to be well characterized by one-term power-law decay expressions. The respective coefficients and decay exponents, however, are found to vary widely with meteorology. The HCl (g), HCl (g + aq), dewpoint, and temperature-pressure-altitude data for Titan III exhaust clouds are consistent with accurately calculated HCl/H2O vapor-liquid compositions for a model quasi-equilibrated flat surface aqueous aerosol. Some cloud evolution characteristics are also defined. Rapid and extensive condensation of aqueous acid clearly occurs during the first three min of cloud rise. Condensation is found to be intensified by the initial entrainment of relatively moist ambient air from lower levels, that is, from levels below eventual cloud stabilization. It is pointed out that if subsequent dilution air at stabilization altitude is significantly drier, a state of maximum condensation soon occurs, followed by an aerosol evaporation phase.
Yuste, S Bravo; Borrego, R; Abad, E
2010-02-01
We consider various anomalous d -dimensional diffusion problems in the presence of an absorbing boundary with radial symmetry. The motion of particles is described by a fractional diffusion equation. Their mean-square displacement is given by r(2) proportional, variant t(gamma)(0
Effect of Fungal Competition on Decay Rates in Bicultured Soil Bottle Assays
Grant T. Kirker; Amy Blodgett; Patricia K. Lebow; Carol A. Clausen
2016-01-01
For decades, wood scientists and preservative formulators have employed the monocultured soil bottle assay to test efficacy of wood treatment in the laboratory as a rapid predictor of field performance. This study examines the effects of bicultured soil bottle assays on the decay by common wood decay fungi. Mycelial interactions were noted in early stages of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuns, Edward William
This dissertation presents a measurement of the tau charge asymmetry in events where the taus are produced by W decays. This charge asymmetry appears as different rapidity distributions for positive and negative taus. Two competing effects generate tau charge asymmetry. The production mechanism for the W gauge boson generates a charge asymmetry which is a function of the ratio of parton distribution functions, d(x)=u(x), measured at x ~ M W/√s. This is the dominant effect for tau charge asymmetry at small rapidity. At higher rapidity, however, the competing charge asymmetry from parity violation in W decay to taus becomes dominant. This tau asymmetry measurement is consistent with the Standard Model with a x 2 per degree of freedom equal to 2.5 for 4 degrees of freedom when the asymmetry measurement is folded about y = 0, taking advantage of the CP symmetry of the underlying physics, and 8.9 for 8 degrees of freedom when it is not. This measurement introduces some methods and variables of interest to future analyses using hadronic decay modes of taus. This work was done using the CDF detector inmore » $$\\bar{p}$$p collisions at √s = 1.8 TeV at Fermilab's Tevatron accelerator.« less
Liu, Chao; von Gunten, Urs; Croué, Jean-Philippe
2013-08-06
Chlorine dioxide (ClO2) decay in the presence of typical metal oxides occurring in distribution systems was investigated. Metal oxides generally enhanced ClO2 decay in a second-order process via three pathways: (1) catalytic disproportionation with equimolar formation of chlorite and chlorate, (2) reaction to chlorite and oxygen, and (3) oxidation of a metal in a reduced form (e.g., cuprous oxide) to a higher oxidation state. Cupric oxide (CuO) and nickel oxide (NiO) showed significantly stronger abilities than goethite (α-FeOOH) to catalyze the ClO2 disproportionation (pathway 1), which predominated at higher initial ClO2 concentrations (56-81 μM). At lower initial ClO2 concentrations (13-31 μM), pathway 2 also contributed. The CuO-enhanced ClO2 decay is a base-assisted reaction with a third-order rate constant of 1.5 × 10(6) M(-2) s(-1) in the presence of 0.1 g L(-1) CuO at 21 ± 1 °C, which is 4-5 orders of magnitude higher than in the absence of CuO. The presence of natural organic matter (NOM) significantly enhanced the formation of chlorite and decreased the ClO2 disproportionation in the CuO-ClO2 system, probably because of a higher reactivity of CuO-activated ClO2 with NOM. Furthermore, a kinetic model was developed to simulate CuO-enhanced ClO2 decay at various pH values. Model simulations that agree well with the experimental data include a pre-equilibrium step with the rapid formation of a complex, namely, CuO-activated Cl2O4. The reaction of this complex with OH(-) is the rate-limiting and pH-dependent step for the overall reaction, producing chlorite and an intermediate that further forms chlorate and oxygen in parallel. These novel findings suggest that the possible ClO2 loss and the formation of chlorite/chlorate should be carefully considered in drinking water distribution systems containing copper pipes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Toshio; Toki, Hiroshi; Nomoto, Ken’ichi, E-mail: suzuki@phys.chs.nihon-u.ac.jp
Electron-capture and β-decay rates for nuclear pairs in the sd-shell are evaluated at high densities and high temperatures relevant to the final evolution of electron-degenerate O–Ne–Mg cores of stars with initial masses of 8–10 M{sub ⊙}. Electron capture induces a rapid contraction of the electron-degenerate O–Ne–Mg core. The outcome of rapid contraction depends on the evolutionary changes in the central density and temperature, which are determined by the competing processes of contraction, cooling, and heating. The fate of the stars is determined by these competitions, whether they end up with electron-capture supernovae or Fe core-collapse supernovae. Since the competing processes aremore » induced by electron capture and β-decay, the accurate weak rates are crucially important. The rates are obtained for pairs with A = 20, 23, 24, 25, and 27 by shell-model calculations in the sd-shell with the USDB Hamiltonian. Effects of Coulomb corrections on the rates are evaluated. The rates for pairs with A = 23 and 25 are important for nuclear Urca processes that determine the cooling rate of the O–Ne–Mg core, while those for pairs with A = 20 and 24 are important for the core contraction and heat generation rates in the core. We provide these nuclear rates at stellar environments in tables with fine enough meshes at various densities and temperatures for studies of astrophysical processes sensitive to the rates. In particular, the accurate rate tables are crucially important for the final fates of not only O–Ne–Mg cores but also a wider range of stars, such as C–O cores of lower-mass stars.« less
Fast analysis of radionuclide decay chain migration
NASA Astrophysics Data System (ADS)
Chen, J. S.; Liang, C. P.; Liu, C. W.; Li, L.
2014-12-01
A novel tool for rapidly predicting the long-term plume behavior of an arbitrary length radionuclide decay chain is presented in this study. This fast tool is achieved based on generalized analytical solutions in compact format derived for a set of two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions in groundwater system. The performance of the developed tool is evaluated by a numerical model using a Laplace transform finite difference scheme. The results of performance evaluation indicate that the developed model is robust and accurate. The developed model is then used to fast understand the transport behavior of a four-member radionuclide decay chain. Results show that the plume extents and concentration levels of any target radionuclide are very sensitive to longitudinal, transverse dispersion, decay rate constant and retardation factor. The developed model are useful tools for rapidly assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.
Extended-Range Forecasts at Climate Prediction Center: Current Status and Future Plans
NASA Astrophysics Data System (ADS)
Kumar, A.
2016-12-01
Motivated by a user need to provide forecast information on extended-range time-scales (i.e., weeks 2-4), in recent years Climate Prediction Center (CPC) has made considerable efforts towards developing and testing the feasibility for developing the required forecasts. The forecasts targeting this particular time-scale face a unique challenge in that while the forecast skill due to atmospheric initial conditions is small (because of rapid decay in the memory associated with the atmospheric initial conditions), short time averages for which forecasts are made do not benefit from skill associated with anomalous boundary conditions either. Despite these challenges, CPC has embarked on providing an experimental outlook for weeks 3-4 average. The talk will summarize the current status of CPC's current suite of extended-range forecast products, and further, will discuss some future plans.
On the dynamics of acute EBV infection and the pathogenesis of infectious mononucleosis
Hadinoto, Vey; Shapiro, Michael; Greenough, Thomas C.; Sullivan, John L.; Luzuriaga, Katherine
2008-01-01
Memory B cells latently infected with Epstein-Barr virus (mBLats) in the blood disappear rapidly on presentation with acute symptomatic primary infection (acute infectious mononucleosis [AIM]). They undergo a simple exponential decay (average half-life: 7.5 ± 3.7 days) similar to that of normal memory B cells. The cytotoxic T lymphocyte (CTL) response to immediate early (IE) lytic antigens (CTLIEs) also decays over this time period, but no such correlation was observed for the CTL response to lytic or latent antigens or to the levels of virions shed into saliva. We have estimated the average half-life of CTLIEs to be 73 (± 23) days. We propose that cycles of infection and reactivation occur in the initial stages of infection that produce high levels of mBLats in the circulation. Eventually the immune response arises and minimizes these cycles leaving the high levels of mBLats in the blood to decay through simple memory B-cell homeostasis mechanisms. This triggers the cells to reactivate the virus whereupon most are killed by CTLIEs before they can release virus and infect new cells. The release of antigens caused by this large-scale destruction of infected cells may trigger the symptoms of AIM and be a cofactor in other AIM-associated diseases. PMID:17991806
An experimental investigation of barite formation in seawater
Ganeshram, R.S.; Francois, R.; Commeau, J.; Brown-Leger, S. L.
2003-01-01
We report results from time-series decay and sequential leaching experiments of laboratory cultured and coastal plankton to elucidate the mechanisms controlling barite formation in seawater. Batch-cultured diatoms ( Stephanopyxis palmerina ) and coccolithophorids (Emiliania huxleyi) were let to decay in the dark for 8-10 weeks, suspended in aerated seawater. The development of barite crystals was monitored by Scanning Electron Microscopy (SEM). A similar experiment was conducted with plankton collected during the spring-bloom in Vineyard Sound (MA). In addition to SEM, suspended particles were sequentially leached for Ba (distilled water rinse; 10% (v/v) HNO3 rinse at room temperature; 30% (v/v) HCl at 80??C overnight; 50% (v/v) HNO3 at 80??C overnight) immediately after collection, and after 10-week decay in seawater, in seawater poisoned with HgCl2, and in seawater spiked with 135Ba. Both experiments showed an increase in the number of barite crystals during decay. The spring-bloom plankton had initially a large pool of labile Ba, soluble in distilled water and cold dilute HNO3 that was lost from the plankton after 10-week decay in both axenic and nonaxenic conditions. In contrast, Ba in the decayed plankton samples was predominantly in forms extracted by hot HCl and hot HNO3 acids, which were attributed to presence of barite Ba and refractory organic Ba respectively. The increase in barite crystal counts under a Scanning Electron Microscope (SEM), the increase in HCl extractable Ba relative to organic carbon, and the loss of a large fraction of Ba during plankton decay suggest that living plankton consists of a relatively large pool of labile Ba, which is rapidly released during plankton decomposition and acts as the main source of Ba for barite formation in supersaturated microenvironments. Since mass balance indicates that only a small proportion (2 to 4%) of the labile-Ba pool is converted to barite, the availability of microenvironments that could locally concentrate Ba released by plankton decay seems to be the main limiting factor in barite precipitation. ?? 2003 Elsevier Science Ltd.
Sediment accumulation in water storage facilities causes water quality degradation issues, including enhanced biological growth and more rapid disinfectant decay. For chloramine systems, sediment may harbor nitrifying bacteria, feeding on ammonia from monochloramine decay and dem...
The decay of coronal loops brightened by flares and transients
NASA Technical Reports Server (NTRS)
Krieger, A. S.
1978-01-01
Observations of X-ray emitting loops derived from Skylab S-054 photographs, and combined with temperature and brightness estimates from Solrad data, are used to determine brightness decay times resulting from various coronal energy loss mechanisms. Conductive losses are found to be more rapid than radiative losses. Attention is given to the role of geometrical inhibition of conduction as a possible mechanism of brightness decay. Soft X-ray observations are consistent with the continuation of the 'evaporation' driven by thermal conduction late into the decay phase of the event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhardt, P.V.; Lawrance, G.A.; Sangster, D.F.
The square-planar nickel(II) complexes of the ligands 8-methyl-8-nitro-1,3,6,10,13,15-hexaazatricyclo(13.1.1.1/sup 13,15/)octadecane, 8-amino-8-methyl-1,3,6,10,13,15-hexaazatricyclo(13.1.1.1/sup 13,15/)octadecane, 3,7-bis(2-aminoethyl)-1,3,5,7-tetraazabicyclo(3.3.1)nonane, and 9-methyl-9-nitro-1,4,7,11-tetraazacyclotridecane (I-IV) react rapidly with hydroxyl radicals and aquated electrons (e/sub aq/). The initial transient products of these reactions decay via first-order kinetics within a few milliseconds in neutral aqueous solution at 22/degrees/C in all cases. Electronic spectra and decay rate constants, as well as formation rate constants, are reported for all transients. Reaction of the nitro-substituted complexes with e/sub aq/ led to electron addition to the nitro group rather than to the metal center; otherwise, a Ni/sup I/ transient is observed. Following reaction with OH, themore » product of the initial decay remains a Ni/sup III/ species. This is more long-lived, and stabilization of Ni/sup III/ by axial coordination of the pendant amine in II is indicated. No notable stabilization of Ni/sup I/ or Ni/sup III/ from the presence of the bicyclic azamethylene football in I-III occurs. Cyclic voltammetry in acetonitrile identified both one-electron oxidation and one-electron reduction processes for the nickel(II) complexes, as well as nitro group reduction, where this group was pendant to the macrocycle. 34 references, 3 figures, 3 tables.« less
Environmentally Persistent Free Radicals and Their Lifetimes in PM2.5
Gehling, William; Dellinger, Barry
2015-01-01
For the first time, an expansive study into the concentration and extended decay behavior of environmentally persistent free radicals in PM2.5 was performed. Results from this study revealed three types of radical decay—a fast decay, slow decay, and no decay—following one of four decay patterns: a relatively fast decay exhibiting a 1/e lifetime of 1–21 days accompanied by a slow decay with a 1/e lifetime of 21–5028 days (47% of samples); a single slow decay including a 1/e lifetime of 4–2083 days (24% of samples); no decay (18% of samples); and a relatively fast decay displaying an average 1/e lifetime of 0.25–21 days followed by no decay (11% of samples). Phenol correlated well with the initial radical concentration and fast decay rate. Other correlations for common atmospheric pollutants (ozone, NOx, SO2, etc.) as well as meteorological conditions suggested photochemical processes impact the initial radical concentration and fast decay rate. The radical signal in PM2.5 was remarkably similar to semiquinones in cigarette smoke. Accordingly, radicals inhaled from PM2.5 were related to the radicals inhaled from smoking cigarettes, expressed as the number of equivalent cigarettes smoked. This calculated to 0.4–0.9 cigarettes per day for nonextreme air quality in the United States. PMID:23844657
NASA Astrophysics Data System (ADS)
Guo, Lei
2009-10-01
In d+Au collisions, vector mesons produced in hard scattering are sensitive to various nuclear effects such as parton shadowing/saturation in the small x region (forward rapidity) leading to suppression, and antishadowing (large x region, backward rapidity) or the Cronin effect which both can produce enhancement. Since approaches such as the Color Glass Condensate (CGC) and pQCD-based Glauber-Eikonal models do not agree on the nature of these nuclear effects on particle production at large rapidity, it is essential that they be tested with experimental data in this kinematic regime. Knowledge of the difference between the forward and backward rapidity regions, in d+Au collisions, could also be used to separate the initial-state nuclear wave function modifications and final state in-medium effects in Au+Au collisions. In addition, the relative ratio for the production of ρ, φ and φ can provide information on the production mechanisms of light vector mesons. The PHENIX collaboration at RHIC has recently collected data in d+Au collisions at √s=200 GeV during the 2008 run. The latest work on the RCP measurements of φ, through the di-muon decays at forward and backward rapidities (1.2<η<2.2), will be discussed.
Nelson, Andrew W.; Eitrheim, Eric S.; Knight, Andrew W.; May, Dustin; Mehrhoff, Marinea A.; Shannon, Robert; Litman, Robert; Burnett, William C.; Forbes, Tori Z.
2015-01-01
Background The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of “produced fluids” generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element—radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. Objective We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. Methods For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. Results We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Conclusions Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides. Citation Nelson AW, Eitrheim ES, Knight AW, May D, Mehrhoff MA, Shannon R, Litman R, Burnett WC, Forbes TZ, Schultz MK. 2015. Understanding the radioactive ingrowth and decay of naturally occurring radioactive materials in the environment: an analysis of produced fluids from the Marcellus Shale. Environ Health Perspect 123:689–696; http://dx.doi.org/10.1289/ehp.1408855 PMID:25831257
Budson, Andrew E; Simons, Jon S; Waring, Jill D; Sullivan, Alison L; Hussoin, Trisha; Schacter, Daniel L
2007-10-01
Although there are many opportunities to study memory in patients with Alzheimer's disease (AD) in the laboratory, there are few opportunities to study memory for real world events in these patients. The September 11, 2001 terrorist attacks provided one such opportunity. Patients with AD, patients with mild cognitive impairment (MCI), and healthy older adults were given a telephone questionnaire in the initial weeks after the event, again three to four months later, and finally one year afterwards to evaluate their memory for the September 11, 2001 terrorist attacks. We were particularly interested in using the attacks as an opportunity to examine the decline of episodic memory in patients with AD, patients with MCI, and older adult controls over a period of months. We found that compared to healthy older adults, patients with AD and MCI showed impaired memory at the initial time point, more rapid forgetting from the initial to the three-month time point, and very similar changes in memory from the three-month to the one-year time point. We speculated that these findings were consistent with patients with AD and MCI showing initial impaired encoding and a more rapid rate of forgetting compared with healthy older adults, but that once the memories had been consolidated, their decay rate became similar to that of healthy older adults. Lastly, although memory distortions were common among all groups, they were greatest in the patients with AD.
NASA Astrophysics Data System (ADS)
Garber, Jonathan H.
1984-06-01
The decomposition of cultured marine phytoplankton ( Skeletonema costatum) and natural estuarine seston from Narragansett Bay, RI, was studied at two temperatures (8°C and 18°C) in bottles containing sterile bay-water (30‰) and in bay-water with micro-organisms small enough to pass through a glass fibre filter (nominally < 1μ). About 50% of the particulate organic nitrogen (PON) and particulate phosphorus (PP) was immediately released to the water in dissolved organic forms from both types of organic matter. Comparison of changes in the dissolved organic nitrogen (DON) fraction in the sterile and non-sterile systems indicated that nearly all of the DON initially released was subsequently remineralized. Ammonification proceeded only in non-sterile bay-water. 20-25% of the PP was converted to dissolved inorganic-P (DIP) fraction after only 7 h in both sterile and non-sterile bay-water. Following autolytic releases of DON, DOP and DIP the initial rates of N and P remineralization were temperature dependent: Q 10 values for PON and PP decay during first phase of microbially mediated decomposition ranged from 1·3 to 6·4. Rates of remineralization then slowed so that about equal amounts of nutrients were remineralized (45-50% of the N and 57-60% of the P in the phytoplankton and 60-63% of the N and 36-60% of the P in the natural seston) after 30 days storage at either temperature. During 30 days of decomposition in non-sterile seawater the N/P ratios in the dissolved inorganic fractions converged on the ratios of total-N/total-P initially present in the bottles. Kinetic analysis of the decay of total organic-N (TON) and total organic-P (TOP) in the non-sterile systems and analysis of similar sets found in the literature showed that the initial stages of the decomposition of N and P from planktonic POM in vitro could be modelled as the sequential decay, at first-order rates, of two particulate fractions. The first, more labile, fraction comprised about 60% of the particulate N and P. First-order rate constants (- k, base e) for decomposition during the 1st and 2nd phases were 0·02 to 0·2 day -1 and 0·003 to 0·02 day -1, respectively. The decay rates are far too slow to account for the 'rapid in situ recycling' of nutrients needed to support phytoplankton production when other means of nutrient resupply (by advection, fixation, rainfall, etc.) are very low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theil, Elizabeth C.; Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720
Ferritins are protein nanocages that use iron and oxygen chemistry to concentrate iron and trap dioxygen or hydrogen peroxide in biominerals of hydrated ferric oxides, 5-8 nm in diameter, inside the cages. The proteins are found in nature from archea to humans. Protein catalytic sites are embedded in the protein cage and initiate mineralization by oxido-reduction of ferrous ions and dioxygen or hydrogen peroxide to couple two iron ions through a peroxo bridge, followed by decay to diferric oxo/hydroxyl mineral precursors; ferritin protein subdomains that fold/unfold independently of the protein cage control recovery of ferrous ions from the mineral. Earlymore » EXAFS (1978) was extremely useful in defining the ferritin mineral. More recent use of rapid freeze quench (RFQ) EXAFS spectroscopies, coupled with RFQ Moessbauer, Resonance Raman and rapid mixing UV-vis spectroscopy, have identified and characterized unusual ferritin protein catalytic intermediates and mineral precursors. EXAFS spectroscopy can play an important role in the future understanding of protein catalysis in metalloproteins such as ferritin, ribonucleotide reductase and methane monooxygenases. Needed are instrumentation improvements that will provide rapid-scan fluorescence spectra with high signal/noise ratios.« less
Draft genome sequence of a monokaryotic model brown-rot fungus Postia (Rhodonia) placenta SB12
Jill Gaskell; Phil Kersten; Luis F. Larrondo; Paulo Canessa; Diego Martinez; David Hibbett; Monika Schmoll; Christian P. Kubicek; Angel T. Martinez; Jagjit Yadav; Emma Master; Jon Karl Magnuson; Debbie Yaver; Randy Berka; Kathleen Lail; Cindy Chen; Kurt LaButti; Matt Nolan; Anna Lipzen; Andrea Aerts; Robert Riley; Kerrie Barry; Bernard Henrissat; Robert Blanchette; Igor V. Grigoriev; Dan Cullen
2017-01-01
We report the genome of Postia (Rhodonia) placenta MAD-SB12, a homokaryotic wood decay fungus (Basidiomycota, Polyporales). Intensively studied as a representative brown rot decayer, the gene complement is consistent with the rapid depolymerization of cellulose but not lignin.
The role of chemical transport in the brown-rot decay resistance of modified wood
Samuel Zelinka; R. Ringman; A. Pilgard; E. E. Thybring; Joseph Jakes; K. Richter
2016-01-01
Chemical modification of wood increases decay resistance but the exact mechanisms remain poorly understood. Recently, Ringman and coauthors examined established theories addressing why modified wood has increased decay resistance and concluded that the most probable cause of inhibition and/or delay of initiation of brown-rot decay is lowering the equilibrium moisture...
Rapid Recovery Gene Downregulation during Excess-Light Stress and Recovery in Arabidopsis.
Crisp, Peter A; Ganguly, Diep R; Smith, Aaron B; Murray, Kevin D; Estavillo, Gonzalo M; Searle, Iain; Ford, Ethan; Bogdanović, Ozren; Lister, Ryan; Borevitz, Justin O; Eichten, Steven R; Pogson, Barry J
2017-08-01
Stress recovery may prove to be a promising approach to increase plant performance and, theoretically, mRNA instability may facilitate faster recovery. Transcriptome (RNA-seq, qPCR, sRNA-seq, and PARE) and methylome profiling during repeated excess-light stress and recovery was performed at intervals as short as 3 min. We demonstrate that 87% of the stress-upregulated mRNAs analyzed exhibit very rapid recovery. For instance, HSP101 abundance declined 2-fold every 5.1 min. We term this phenomenon rapid recovery gene downregulation (RRGD), whereby mRNA abundance rapidly decreases promoting transcriptome resetting. Decay constants ( k ) were modeled using two strategies, linear and nonlinear least squares regressions, with the latter accounting for both transcription and degradation. This revealed extremely short half-lives ranging from 2.7 to 60.0 min for 222 genes. Ribosome footprinting using degradome data demonstrated RRGD loci undergo cotranslational decay and identified changes in the ribosome stalling index during stress and recovery. However, small RNAs and 5'-3' RNA decay were not essential for recovery of the transcripts examined, nor were any of the six excess light-associated methylome changes. We observed recovery-specific gene expression networks upon return to favorable conditions and six transcriptional memory types. In summary, rapid transcriptome resetting is reported in the context of active recovery and cellular memory. © 2017 American Society of Plant Biologists. All rights reserved.
Rapid Recovery Gene Downregulation during Excess-Light Stress and Recovery in Arabidopsis[OPEN
Estavillo, Gonzalo M.
2017-01-01
Stress recovery may prove to be a promising approach to increase plant performance and, theoretically, mRNA instability may facilitate faster recovery. Transcriptome (RNA-seq, qPCR, sRNA-seq, and PARE) and methylome profiling during repeated excess-light stress and recovery was performed at intervals as short as 3 min. We demonstrate that 87% of the stress-upregulated mRNAs analyzed exhibit very rapid recovery. For instance, HSP101 abundance declined 2-fold every 5.1 min. We term this phenomenon rapid recovery gene downregulation (RRGD), whereby mRNA abundance rapidly decreases promoting transcriptome resetting. Decay constants (k) were modeled using two strategies, linear and nonlinear least squares regressions, with the latter accounting for both transcription and degradation. This revealed extremely short half-lives ranging from 2.7 to 60.0 min for 222 genes. Ribosome footprinting using degradome data demonstrated RRGD loci undergo cotranslational decay and identified changes in the ribosome stalling index during stress and recovery. However, small RNAs and 5ʹ-3ʹ RNA decay were not essential for recovery of the transcripts examined, nor were any of the six excess light-associated methylome changes. We observed recovery-specific gene expression networks upon return to favorable conditions and six transcriptional memory types. In summary, rapid transcriptome resetting is reported in the context of active recovery and cellular memory. PMID:28705956
Kinetics and characterization of radiation-induced grafting of styrene on fluoropolymers
NASA Astrophysics Data System (ADS)
Guilmeau, I.; Esnouf, S.; Betz, N.; Le Moël, A.
1997-08-01
Grafting of styrene solution onto poly(ethylene-co-tetrafluoroethylene) (ETFE) was carried out by the pre-irradiation method. ETFE films were irradiated by 1.5 MeV electron beams in air. The influence of grafting temperature (50 to 80°C) has been investigated. It was found that the saturation grafting yield and the initial rate follow an Arrhenius law. The volume grafting yields were measured by FTIR spectroscopy in transmission and by weighing and the 'surface' grafting yields by FTIR-ATR. The results showed that grafting reaction is not monomer diffusion controlled in 30 μm film, nevertheless heterogeneities are revealed. By in-situ ESR, the decay of peroxy radicals was recorded under various heating and grafting conditions. These experiments suggest that the peroxy radicals react rapidly with monomer, but do not initiate the grafting process. The propagating radicals were not detectable, which may indicate that polystyrene chains are very long.
NASA Astrophysics Data System (ADS)
Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.
The Cauchy problem is considered for the massive Dirac equation in the non-extreme Kerr-Newman geometry, for smooth initial data with compact support outside the event horizon and bounded angular momentum. We prove that the Dirac wave function decays in L∞ {loc} at least at the rate t-5/6. For generic initial data, this rate of decay is sharp. We derive a formula for the probability p that the Dirac particle escapes to infinity. For various conditions on the initial data, we show that p = 0, 1 or 0 < p < 1. The proofs are based on a refined analysis of the Dirac propagator constructed in [4].
This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...
This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria, and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manre-amended agricultural soils. Known concentrations of transformed green fluore...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jyegal, Jang, E-mail: jjyegal@inu.ac.kr
Velocity overshoot is a critically important nonstationary effect utilized for the enhanced performance of submicron field-effect devices fabricated with high-electron-mobility compound semiconductors. However, the physical mechanisms of velocity overshoot decay dynamics in the devices are not known in detail. Therefore, a numerical analysis is conducted typically for a submicron GaAs metal-semiconductor field-effect transistor in order to elucidate the physical mechanisms. It is found that there exist three different mechanisms, depending on device bias conditions. Specifically, at large drain biases corresponding to the saturation drain current (dc) region, the velocity overshoot suddenly begins to drop very sensitively due to the onsetmore » of a rapid decrease of the momentum relaxation time, not the mobility, arising from the effect of velocity-randomizing intervalley scattering. It then continues to drop rapidly and decays completely by severe mobility reduction due to intervalley scattering. On the other hand, at small drain biases corresponding to the linear dc region, the velocity overshoot suddenly begins to drop very sensitively due to the onset of a rapid increase of thermal energy diffusion by electrons in the channel of the gate. It then continues to drop rapidly for a certain channel distance due to the increasing thermal energy diffusion effect, and later completely decays by a sharply decreasing electric field. Moreover, at drain biases close to a dc saturation voltage, the mechanism is a mixture of the above two bias conditions. It is suggested that a large secondary-valley energy separation is essential to increase the performance of submicron devices.« less
Decay property of sup 20 Na for the onset mechanism of the rapid-proton process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubono, S.; Ikeda, N.; Funatsu, Y.
1992-07-01
The decay property of {sup 20}Na was studied using a {sup 20}Mg beam to learn better the onset mechanism of the rapid-proton process. The delayed protons were successfully measured, which correspond to one of the possible 1{sup +} states in {sup 20}Na. There is no clear beta decay to the first excited 1{sup +} state above the proton threshold, suggesting that this state would not be the {ital s}-wave resonance in the thermal reaction of {sup 19}Ne+{ital p} as was expected before. The half-life time of {sup 20}Mg is determined to be 114{plus minus}17 ms. The stellar reaction rate ofmore » {sup 19}Ne({ital p},{gamma}){sup 20}Na is also discussed based on the present experimental result.« less
Klymiuk, Ashley A
2016-09-01
This study builds on previous investigations of paleomycological diversity within permineralized plants of a significant Eocene paleobotanical locality, the Princeton Chert. The fungal body fossils described here occur in decayed rhizomes of the extinct semi-aquatic fern Dennstaedtiopsis aerenchymata Fungi include vegetative hyphae throughout the plant tissue, as well as a dense assemblage of >100 dematiaceous spores. The spores occur in a discrete zone surrounding two extraneous rootlets of other plants, which penetrated the fern tissue post-mortem. Spores are obovoid and muriform, composed of 8-12 cells with constricted septa and produced from hyaline or slightly pigmented hyphae. The spores are morphologically similar to both asexual reproductive dictyospores of phylogenetically disparate microfungi attributed to the morphogenus Monodictys and perennating dictyochlamydospores that occur in the anamorph genus Phoma In addition to expanding the early Eocene fossil record for Ascomycota, these specimens also provide new insight into the rapidity of initial phases of the fossilization process in this important paleobotanical locality. © 2016 by The Mycological Society of America.
Method for eliminating artifacts in CCD imagers
Turko, B.T.; Yates, G.J.
1992-06-09
An electronic method for eliminating artifacts in a video camera employing a charge coupled device (CCD) as an image sensor is disclosed. The method comprises the step of initializing the camera prior to normal read out and includes a first dump cycle period for transferring radiation generated charge into the horizontal register while the decaying image on the phosphor being imaged is being integrated in the photosites, and a second dump cycle period, occurring after the phosphor image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers. Image charge is then transferred from the photosites and to the vertical registers and read out in conventional fashion. The inventive method allows the video camera to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear and smear phenomena caused by insufficient opacity of the registers and, and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites. 3 figs.
CHLORINE DECAY AND BIOFILM STUDIES IN A PILOT SCALE DRINKING WATER DISTRIBUTION DEAD END PIPE SYSTEM
Chlorine decay experiments using a pilot-scale water distribution dead end pipe system were conducted to define relationships between chlorine decay and environmental factors. These included flow rate, biomass concentration and biofilm density, and initial chlorine concentrations...
NASA Astrophysics Data System (ADS)
Verma, M.; Denker, C.; Balthasar, H.; Kuckein, C.; González Manrique, S. J.; Sobotka, M.; Bello González, N.; Hoch, S.; Diercke, A.; Kummerow, P.; Berkefeld, T.; Collados, M.; Feller, A.; Hofmann, A.; Kneer, F.; Lagg, A.; Löhner-Böttcher, J.; Nicklas, H.; Pastor Yabar, A.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Schubert, M.; Sigwarth, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; von der Lühe, O.; Waldmann, T.
2016-11-01
Context. The solar magnetic field is responsible for all aspects of solar activity. Thus, emergence of magnetic flux at the surface is the first manifestation of the ensuing solar activity. Aims: Combining high-resolution and synoptic observations aims to provide a comprehensive description of flux emergence at photospheric level and of the growth process that eventually leads to a mature active region. Methods: The small active region NOAA 12118 emerged on 2014 July 17 and was observed one day later with the 1.5-m GREGOR solar telescope on 2014 July 18. High-resolution time-series of blue continuum and G-band images acquired in the blue imaging channel (BIC) of the GREGOR Fabry-Pérot Interferometer (GFPI) were complemented by synoptic line-of-sight magnetograms and continuum images obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Horizontal proper motions and horizontal plasma velocities were computed with local correlation tracking (LCT) and the differential affine velocity estimator (DAVE), respectively. Morphological image processing was employed to measure the photometric and magnetic area, magnetic flux, and the separation profile of the emerging flux region during its evolution. Results: The computed growth rates for photometric area, magnetic area, and magnetic flux are about twice as high as the respective decay rates. The space-time diagram using HMI magnetograms of five days provides a comprehensive view of growth and decay. It traces a leaf-like structure, which is determined by the initial separation of the two polarities, a rapid expansion phase, a time when the spread stalls, and a period when the region slowly shrinks again. The separation rate of 0.26 km s-1 is highest in the initial stage, and it decreases when the separation comes to a halt. Horizontal plasma velocities computed at four evolutionary stages indicate a changing pattern of inflows. In LCT maps we find persistent flow patterns such as outward motions in the outer part of the two major pores, a diverging feature near the trailing pore marking the site of upwelling plasma and flux emergence, and low velocities in the interior of dark pores. We detected many elongated rapidly expanding granules between the two major polarities, with dimensions twice as large as the normal granules.
NASA Astrophysics Data System (ADS)
Acharya, S.; Acosta, F. T.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Al-Turany, M.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Ali, Y.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Angeletti, M.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Apadula, N.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Bastid, N.; Basu, S.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bazo Alba, J. L.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhaduri, P. P.; Bhasin, A.; Bhat, I. R.; Bhattacharjee, B.; Bhom, J.; Bianchi, A.; Bianchi, L.; Bianchi, N.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camacho, R. S.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Chandra, S.; Chang, B.; Chang, W.; Chapeland, S.; Chartier, M.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Delsanto, S.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Ruzza, B.; Diaz, R. A.; Dietel, T.; Dillenseger, P.; Ding, Y.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. R.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dudi, S.; Duggal, A. K.; Dukhishyam, M.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Ersdal, M. R.; Espagnon, B.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faggin, M.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Guernane, R.; Guerzoni, B.; Guittiere, M.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Habib, M. K.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Haque, M. R.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Hernandez, E. G.; Herrera Corral, G.; Herrmann, F.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Huhn, P.; Humanic, T. J.; Hushnud, H.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iddon, J. P.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, S.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. J.; Kim, E. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Králik, I.; Kravčáková, A.; Kreis, L.; Krivda, M.; Krizek, F.; Krüger, M.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Larionov, P.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, X.; Li, X. L.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Liu, A.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Luhder, J. R.; Lunardon, M.; Luparello, G.; Lupi, M.; Maevskaya, A.; Mager, M.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matuoka, P. F. T.; Matyja, A.; Mayer, C.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Micheletti, L.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Mischke, A.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, A. P.; Mohanty, B.; Khan, M. Mohisin; De Godoy, D. A. Moreira; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munoz, M. I. A.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Negrao De Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Neskovic, G.; Ng, F.; Nicassio, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, H.; Ohlson, A.; Olah, L.; Oleniacz, J.; Da Silva, A. C. Oliveira; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Pisano, S.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Punin, V.; Putschke, J.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reshetin, A.; Reygers, K.; Riabov, V.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogalev, R.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Roslon, K.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, C.; Roy, P.; Rueda, O. V.; Rui, R.; Rumyantsev, B.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Schaefer, B.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schmidt, N. V.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shimomura, M.; Shirinkin, S.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silaeva, S.; Silvermyr, D.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Soramel, F.; Sorensen, S.; Sozzi, F.; Sputowska, I.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Storetvedt, M. M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Thoresen, F.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Topilskaya, N.; Toppi, M.; Torres, S. R.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzcinski, T. P.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vermunt, L.; Vernet, R.; Vértesi, R.; Vickovic, L.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wang, H.; Wang, M.; Watanabe, Y.; Weber, M.; Weber, S. G.; Wegrzynek, A.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Xu, R.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yun, E.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, Y.; Zichichi, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.
2018-06-01
A measurement of beauty hadron production at mid-rapidity in proton-lead collisions at a nucleon-nucleon centre-of-mass energy √{s_ {NN}}=5.02 TeV is presented. The semi-inclusive decay channel of beauty hadrons into J/ψ is considered, where the J/ψ mesons are reconstructed in the dielectron decay channel at mid-rapidity down to transverse momenta of 1.3 GeV/ c. The b\\bar{b} production cross section at mid-rapidity, dσ _{b\\bar{b}}/dy, and the total cross section extrapolated over full phase space, σ _{ {b}\\bar{ {b}}}, are obtained. This measurement is combined with results on inclusive J/ψ production to determine the prompt J/ψ cross sections. The results in p-Pb collisions are then scaled to expectations from pp collisions at the same centre-of-mass energy to derive the nuclear modification factor R_{ {pPb}}, and compared to models to study possible nuclear modifications of the production induced by cold nuclear matter effects. R_{ {pPb}} is found to be smaller than unity at low pT for both J/ψ coming from beauty hadron decays and prompt J/ψ.
Toward Clarity on Understanding Tropical Cyclone Intensification
2015-08-01
forefront of tropical cyclone research for a number of years , espe- cially in the context of the rapid intensification or decay of storms. Rapid...67, 1817 – 1830, doi:10.1175/2010JAS3318.1. Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos
Skills Decay in Military Medical Training: A Meta-synthesis of Research Outcomes.
Linde, Amber S; Caridha, Jona; Kunkler, Kevin J
2018-01-01
In fiscal year 2012, the Medical Simulation and Information Sciences Research Program released two Skills Decay (SD) research program announcements (PAs) under the Medical Readiness Initiative entitled "Medical Practice Initiative Breadth of Medical Practice & Disease Frequency Exposure (MPI-BMP)" and the "Medical Practice Initiative Procedural Skill Decay and Maintenance (MPI-PSD)." The Office of Naval Research also released a PA entitled "Medical Modeling and Simulation (MM&S) for Military Training and Education." A total investment of $12 M was made. This article provides a meta-synthesis of the Skills Decay research conducted under these efforts. The MSIRRP Medical Simulation Portfolio collected, reviewed, and analyzed the final reports of the Skills Decay research efforts from the three PAs. This paper provides a meta-synthesis of the outcomes of those studies. Focus of this study was to determine if the anticipated goals of the Skills Decay PAs were met as well as to provide a summary of lessons learned to the research community. Fourteen research questions posed by the PAs were structured into four main goals: (1) Skills Decay identification, (2) creation/validity of Skills Decay tools and feasibility and viability of data extraction project, (3) refreshment training to prevent or alleviate Skills Decay project, and (4) Skills Decay education content. Using a combination of training styles, choosing variables known to have Skills Decay predication value, and developing better ways of mining available data that can, in turn, provide feedback to training needs, it is possible for accurate Skills Decay models to be developed. These technologies have the ability not only capture the learner's reaction during the simulation, but to capture the simulation outcomes to predict a medical professional's level of experience and background. Lessons learned from the investments made by the government are extremely important in order to ensure that the outcomes of the research touch the lives of the warfighter. Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Mohammadi, Amir; Mahmoodi, Farhang
2015-01-01
Background and aims. The purpose of this study was to evaluate initial force and force decay of commercially available elastomeric ligatures and elastomeric separators in active tieback state in a simulated oral environment. Materials and methods. A total of 288 elastomeric ligatures and elastomeric separators from three manufacturers (Dentaurum, RMO, 3M Unitek) were stretched to 100% and 150% of their original inner diameter. Force levels were measured initially and at 3-minute, 24-hour, and 1-, 2-, 3- and 4-week intervals. Data were analyzed by univariate analysis of variance and a post hoc Tukey test. Results. The means of initial forces of elastomeric ligatures and separators from three above-mentioned companies, when stretched to 100% of their inner diameters, were 199, 305 and 284 g, and 330, 416, 330 g; when they were stretched to 150% of their inner diameters the values were 286, 422 and 375 g, and 433, 540 and 504 g, respectively. In active tieback state, 11-18% of the initial force of the specimens was lost within the first 3 minutes and 29-63% of the force decay occurred in the first 24 hours; then force decay rate decreased. 62-81% of the initial force was lost in 4 weeks. Although force decay pattern was identical in all the products, the initial force and force decay of Dentaurum elastomeric products were less than the similar products of other companies (P<0.05). Under the same conditions, the force of elastomeric separators was greater than elastomeric ligatures of the same company. Conclusion. Regarding the force pattern of elastomeric ligatures and separators and optimal force for tooth movement, many of these products can be selected for applying orthodontic forces in active tieback state.
An astrophysical engine that stores gravitational work as nuclear Coulomb energy
NASA Astrophysics Data System (ADS)
Clayton, Donald
2014-03-01
I describe supernovae gravity machines that store large internal nuclear Coulomb energy, 0.80Z2A- 1 / 3MeV per nucleus. Excess of it is returned later by electron capture and positron emission. Decay energy manifests as (1) observable gamma-ray lines (2) light curves of supernovae (3) chemical energy of free carbon dissociated from CO molecules (4) huge abundances of radiogenic daughters. I illustrate by rapid silicon burning, a natural epoch in SN II. Gravitational work produces the high temperatures that photoeject nucleons and alpha particles from heavy nuclei. These are retained by other nuclei to balance photoejection rates (quasiequilibrium). The abundance distribution adjusts slowly as remaining abundance of Z = N 28Si decomposes, so p, n, α recaptures hug the Z = N line. This occurs in milliseconds, too rapidly for weak decay to alter bulk Z/N ratio. The figure displays those quasiequilibrium abundances color-coded to their decays. Z = N = 2k nuclei having k < 11 are stable, whereas k > 10 are radioactive owing to excess Coulomb energy. Weak decays radiate that excess energy weeks later to fuel the four macroscopic energetic phenomena cited. How startling to think of the Coulomb nuclear force as storing cosmic energy and its weak decay releasing macroscopic activation to SNII.
Kinetics of diffusion-controlled annihilation with sparse initial conditions
Ben-Naim, Eli; Krapivsky, Paul
2016-12-16
Here, we study diffusion-controlled single-species annihilation with sparse initial conditions. In this random process, particles undergo Brownian motion, and when two particles meet, both disappear. We also focus on sparse initial conditions where particles occupy a subspace of dimension δ that is embedded in a larger space of dimension d. Furthermore, we find that the co-dimension Δ = d - δ governs the behavior. All particles disappear when the co-dimension is sufficiently small, Δ ≤ 2; otherwise, a finite fraction of particles indefinitely survive. We establish the asymptotic behavior of the probability S(t) that a test particle survives until time t. When the subspace is a line, δ = 1, we find inverse logarithmic decay,more » $$S\\sim {(\\mathrm{ln}t)}^{-1}$$, in three dimensions, and a modified power-law decay, $$S\\sim (\\mathrm{ln}t){t}^{-1/2}$$, in two dimensions. In general, the survival probability decays algebraically when Δ < 2, and there is an inverse logarithmic decay at the critical co-dimension Δ = 2.« less
Ultrafast Dephasing and Incoherent Light Photon Echoes in Organic Amorphous Systems
NASA Astrophysics Data System (ADS)
Yano, Ryuzi; Matsumoto, Yoshinori; Tani, Toshiro; Nakatsuka, Hiroki
1989-10-01
Incoherent light photon echoes were observed in organic amorphous systems (cresyl violet in polyvinyl alcohol and 1,4-dihydroxyanthraquinone in polymethacrylic acid) by using temporally-incoherent nanosecond laser pulses. It was found that an echo decay curve of an organic amorphous system is composed of a sharp peak which decays very rapidly and a slowly decaying wing at the tail. We show that the persistent hole burning (PHB) spectra were reproduced by the Fourier-cosine transforms of the echo decay curves. We claim that in general, we must take into account the multi-level feature of the system in order to explain ultrafast dephasing at very low temperatures.
A comparative study of turbulence decay using Navier-Stokes and a discrete particle simulation
NASA Technical Reports Server (NTRS)
Goswami, A.; Baganoff, D.; Lele, S.; Feiereisen, W.
1993-01-01
A comparative study of the two dimensional temporal decay of an initial turbulent state of flow is presented using a direct Navier-Stokes simulation and a particle method, ranging from the near continuum to more rarefied regimes. Various topics related to matching the initial conditions between the two simulations are considered. The determination of the initial velocity distribution function in the particle method was found to play an important role in the comparison. This distribution was first developed by matching the initial Navier-Stokes state of stress, but was found to be inadequate beyond the near continuum regime. An alternative approach of using the Lees two-sided Maxwellian to match the initial strain-rate is discussed. Results of the comparison of the temporal decay of mean kinetic energy are presented for a range of Knudsen numbers. As expected, good agreement was observed for the near continuum regime, but the differences found for the more rarefied conditions were unexpectedly small.
Experimental examination of vorticity stripping from a wing-tip vortex in free-stream turbulence
NASA Astrophysics Data System (ADS)
Ghimire, Hari C.; Bailey, Sean C. C.
2018-03-01
Time-resolved stereoscopic particle image velocimetry measurements were conducted of a wing-tip vortex decaying in free-stream turbulence. The objective of the research was to experimentally investigate the mechanism causing the increased rate of decay of the vortex in the presence of turbulence. It was observed that the circulation of the vortex core experienced periods of rapid loss and recovery when immersed in free-stream turbulence. These events were not observed when the vortex was in a laminar free stream. A connection was made between these events and distortion of the vortex, coinciding with stripping of core fluid from the vortex core. Specifically, vortex stripping events were connected to asymmetry in the vortex core, and this asymmetry was associated with instances of rapid circulation loss. The increased rate of decay of the vortex in turbulence coincided with the formation of secondary vortical structures which wrapped azimuthally around the primary vortex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruderman, M.
1984-09-01
The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10/sup 38/s/sup -1/ of 10/sup 12/ eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, amore » substantial fraction of the 10/sup 8/ old dead pulsars in the Galaxy are the most probable source for the isotropically distributed ..gamma..-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables.« less
Stability and nuclear dynamics of the Bicoid morphogen gradient
Gregor, Thomas; Wieschaus, Eric F.; McGregor, Alistair P.; Bialek, William; Tank, David W.
2008-01-01
Patterning in multicellular organisms results from spatial gradients in morphogen concentration, but the dynamics of these gradients remains largely unexplored. We characterize, through in vivo optical imaging, the development and stability of the Bicoid morphogen gradient in Drosophila embryos that express a Bicoid-eGFP fusion protein. The gradient is established rapidly (~1 hour after fertilization) with nuclear Bicoid concentration rising and falling during mitosis. Interphase levels result from a rapid equilibrium between Bicoid uptake and removal. Initial interphase concentration in nuclei in successive cycles is constant (±10%), demonstrating a form of gradient stability, but subsequently decays by approximately 30%. Both direct photobleaching measurements and indirect estimates of Bicoid-eGFP diffusion constants (D ≤ 1 μm2/s), provide a consistent picture of Bicoid transport on short (~min) time scales, but challenge traditional models of long range gradient formation. A new model is presented emphasizing the possible role of nuclear dynamics in shaping and scaling the gradient. PMID:17632061
Rist, J.; Miteva, T.; Gaire, B.; ...
2016-09-15
In this paper we present a comprehensive and detailed study of Interatomic Coulombic Decay (ICD) occurring after irradiating argon dimers with XUV-synchrotron radiation. A manifold of different decay channels is observed and the corresponding initial and final states are assigned. Additionally, the effect of nuclear dynamics on the ICD electron spectrum is examined for one specific decay channel. The internuclear distance-dependent width Γ(R) of the decay is obtained from the measured kinetic energy release distribution of the ions employing a classical nuclear dynamics model.
Investigation of anomalous very fast decay regimes in homogeneous isotropic turbulence
NASA Astrophysics Data System (ADS)
Meldi, Marcello; Sagaut, Pierre
2018-05-01
The emergence of anomalous fast decay regimes in homogeneous isotropic turbulence (HIT) decay is investigated via both theoretical analysis and eddy-damped quasi-normal Markovian simulations. The work provides new insight about a fundamental issue playing a role in HIT decay, namely the influence of non-standard shapes of the energy spectrum, in particular in the large energetic scale region. A detailed analysis of the kinetic energy spectrum E(k) and the non-linear energy transfer T(k) shows that anomalous decay regimes are associated with the relaxation of initial energy spectra which exhibit a bump at energetic scales. This feature induces an increase in the energy cascade rate, toward solutions with a smooth shape at the spectrum peak. Present results match observations reported in wind-tunnel experiments dealing with turbulence decay in the wake of grids and bluff bodies, including scaling laws for the dissipation parameter Cɛ. They also indicate that the ratio between the initial eddy turnover time and the advection time determines of how fast anomalous regimes relax toward classical turbulence free-decay. This parameter should be used for consistent data comparison and it opens perspectives for the control of multiscale effects in industrial applications.
Moradi, Sina; Liu, Sanly; Chow, Christopher W K; van Leeuwen, John; Cook, David; Drikas, Mary; Amal, Rose
2017-07-01
The management of chloramine decay and the prevention of nitrification are some of the critical issues faced by water utilities that use chloramine as a disinfectant. In this study, potential association between high performance size exclusion chromatography (HPSEC) data obtained with multiple wavelength Ultraviolet (UV) detection from two drinking water distribution systems in Australia and nitrification occurrence was investigated. An increase in the absorbance signal of HPSEC profiles with UV detection at λ=230nm between apparent molecular weights of 200 to 1000Da was observed at sampling sites that experienced rapid chloramine decay and nitrification while its absorbance signal at λ=254nm decreased. A chloramine decay index (C.D.I) defined as the ratio of area beneath the HPSEC spectra at two different wavelengths of 230 and 254nm, was used in assessing chloramine decay occurrences. The C.D.Is of waters at locations that experienced nitrification were consistently higher than locations not experiencing nitrification. A simulated laboratory study showed that the formation of nitrite/nitrate and/or soluble microbial products and/or the release of extracellular polymeric substances (EPS) during nitrification may contribute to the C.D.I. increase. These findings suggest that C.D.I derived from HPSEC with multiple wavelength UV detection could be an informative index to track the occurrence of rapid chloramine decay and nitrification. Copyright © 2016. Published by Elsevier B.V.
Theodorus H. de Koker; Philip J. Kersten
2002-01-01
The recent sequencing of the Phanerochaete chrysosporium genome presents many opportunities, including the possibility of rapidly correlating specific wood decay proteins of the fungus with the corresponding gene sequences. Here we compare mass fragments of trypsin digests, determined by MALDI-MS (Matrix Assisted Laser Desorption Ionization-Mass Spectrometry), with...
Simon R. Przewloka; Douglas M. Crawford; Douglas R. Rammer; Donald L. Buckner; Bessie M. Woodward; Gan Li; Darrel D. Nicholas
2008-01-01
Demand for the development of environmentally benign wood preservatives has increased significantly. To reduce the evaluation time of prospective candidates, reliable accelerated decay methodologies are necessary for laboratory screening of potential preservatives. Ongoing research at Mississippi State University has focused upon utilizing custom built equipment to...
Word Length Effects in Long-Term Memory
ERIC Educational Resources Information Center
Tehan, Gerald; Tolan, Georgina Anne
2007-01-01
The word length effect has been a central feature of theorising about immediate memory. The notion that short-term memory traces rapidly decay unless refreshed by rehearsal is based primarily upon the finding that serial recall for short words is better than that for long words. The decay account of the word length effect has come under pressure…
Studies of Elementary Reactions of Chemical Importance in the Atmospheres of Planets
NASA Technical Reports Server (NTRS)
Nesbitt, Fred L.
2001-01-01
The methyl self-reaction was studied at T = 298 K and 202 K and at three different pressures, P = 0.5, 1.0, and 2.1 Torr. The experimental measurements were performed in our discharge flow-mass spectrometer (DF-MS) apparatus. The methyl radicals were generated by the reaction of F with methane. Passing a mixture of molecular fluorine, F2, in helium through a microwave cavity generated the atomic fluorine reagent. The atomic F enters the flow tube through a rear port on the flow tube. The methane reagent enters the flow tube through a movable injector located coaxial in the flow tube. The decay of methyl radical signal was monitored at a mass/charge ratio (m/z) of 15 as a function of the injector distance. To minimize secondary chemistry from the reaction CH3 + F to CH2 + HF the initial [CH4](sub 0)/[F](sub 0) was above 37.0 and typically 100. This ensures a 1:1 relationship between initial [F] and [CH3]. A titration of F with excess Cl2 yields the initial [F](sub 0). Our experimental methodology to accurately measure the mass spectrometer scaling factor, i.e., the relationship between initial signal and [CH3](sub 0) has been improved. Now we measure the CH3 signal decay under exponential decay conditions at low initial [F](sub 0), 3x10(exp 11) molecule/cc, in the presence of Cl2. This minimizes the second-order decay contributed by the CH3 self-reaction and a simple extrapolation of the 1n(signal) vs time plot to t = 0 gives the initial signal. This provides the desired relationship between initial signal at 15 amu and [CH3](sub 0). The resulting calibration is then applied to the observed decay of the CH3 signal at high concentrations of CH3 assuming linearity of this scaling factor.
Formation of wave packets in the Ostrovsky equation for both normal and anomalous dispersion
Grimshaw, Roger; Stepanyants, Yury; Alias, Azwani
2016-01-01
It is well known that the Ostrovsky equation with normal dispersion does not support steady solitary waves. An initial Korteweg–de Vries solitary wave decays adiabatically through the radiation of long waves and is eventually replaced by an envelope solitary wave whose carrier wave and envelope move with different velocities (phase and group velocities correspondingly). Here, we examine the same initial condition for the Ostrovsky equation with anomalous dispersion, when the wave frequency increases with wavenumber in the limit of very short waves. The essential difference is that now there exists a steady solitary wave solution (Ostrovsky soliton), which in the small-amplitude limit can be described asymptotically through the solitary wave solution of a nonlinear Schrödinger equation, based at that wavenumber where the phase and group velocities coincide. Long-time numerical simulations show that the emergence of this steady envelope solitary wave is a very robust feature. The initial Korteweg–de Vries solitary wave transforms rapidly to this envelope solitary wave in a seemingly non-adiabatic manner. The amplitude of the Ostrovsky soliton strongly correlates with the initial Korteweg–de Vries solitary wave. PMID:26997887
Explicit solutions for exit-only radioactive decay chains
NASA Astrophysics Data System (ADS)
Yuan, Ding; Kernan, Warnick
2007-05-01
In this study, we extended Bateman's [Proc. Cambridge Philos. Soc. 15, 423 (1910)] original work for solving radioactive decay chains and explicitly derived analytic solutions for generic exit-only radioactive decay problems under given initial conditions. Instead of using the conventional Laplace transform for solving Bateman's equations, we used a much simpler algebraic approach. Finally, we discuss methods of breaking down certain classes of large decay chains into collections of simpler chains for easy handling.
Cho, Hana; Park, Ok Hyun; Park, Joori; Ryu, Incheol; Kim, Jeonghan; Ko, Jesang; Kim, Yoon Ki
2015-03-31
Glucocorticoid receptor (GR), which was originally known to function as a nuclear receptor, plays a role in rapid mRNA degradation by acting as an RNA-binding protein. The mechanism by which this process occurs remains unknown. Here, we demonstrate that GR, preloaded onto the 5'UTR of a target mRNA, recruits UPF1 through proline-rich nuclear receptor coregulatory protein 2 (PNRC2) in a ligand-dependent manner, so as to elicit rapid mRNA degradation. We call this process GR-mediated mRNA decay (GMD). Although GMD, nonsense-mediated mRNA decay (NMD), and staufen-mediated mRNA decay (SMD) share upstream frameshift 1 (UPF1) and PNRC2, we find that GMD is mechanistically distinct from NMD and SMD. We also identify de novo cellular GMD substrates using microarray analysis. Intriguingly, GMD functions in the chemotaxis of human monocytes by targeting chemokine (C-C motif) ligand 2 (CCL2) mRNA. Thus, our data provide molecular evidence of a posttranscriptional role of the well-studied nuclear hormone receptor, GR, which is traditionally considered a transcription factor.
Beta decay heat following U-235, U-238 and Pu-239 neutron fission
NASA Astrophysics Data System (ADS)
Li, Shengjie
1997-09-01
This is an experimental study of beta-particle decay heat from 235U, 239Pu and 238U aggregate fission products over delay times 0.4-40,000 seconds. The experimental results below 2s for 235U and 239Pu, and below 20s for 238U, are the first such results reported. The experiments were conducted at the UMASS Lowell 5.5-MV Van de Graaff accelerator and 1-MW swimming-pool research reactor. Thermalized neutrons from the 7Li(p,n)7Be reaction induced fission in 238U and 239Pu, and fast neutrons produced in the reactor initiated fission in 238U. A helium-jet/tape-transport system rapidly transferred fission fragments from a fission chamber to a low background counting area. Delay times after fission were selected by varying the tape speed or the position of the spray point relative to the beta spectrometer that employed a thin-scintillator-disk gating technique to separate beta-particles from accompanying gamma-rays. Beta and gamma sources were both used in energy calibration. Based on low-energy(<1 MeV) internal-conversion electron studies, a set of trial responses for the spectrometer was established and spanned electron energies 0-10 MeV. Measured beta spectra were unfolded for their energy distributions by the program FERD, and then compared to other measurements and summation calculations based on ENDF/B-VI fission-product data performed on the LANL Cray computer. Measurements of the beta activity as a function of decay time furnished a relative normalization. Results for the beta decay heat are presented and compared with other experimental data and the summation calculations.
Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..
NASA Astrophysics Data System (ADS)
Berhanu, Michael
2017-04-01
Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)
Helicity dynamics in stratified turbulence in the absence of forcing.
Rorai, C; Rosenberg, D; Pouquet, A; Mininni, P D
2013-06-01
A numerical study of decaying stably stratified flows is performed. Relatively high stratification (Froude number ≈10(-2)-10(-1)) and moderate Reynolds (Re) numbers (Re≈ 3-6×10(3)) are considered and a particular emphasis is placed on the role of helicity (velocity-vorticity correlations), which is not an invariant of the nondissipative equations. The problem is tackled by integrating the Boussinesq equations in a periodic cubical domain using different initial conditions: a nonhelical Taylor-Green (TG) flow, a fully helical Beltrami [Arnold-Beltrami-Childress (ABC)] flow, and random flows with a tunable helicity. We show that for stratified ABC flows helicity undergoes a substantially slower decay than for unstratified ABC flows. This fact is likely associated to the combined effect of stratification and large-scale coherent structures. Indeed, when the latter are missing, as in random flows, helicity is rapidly destroyed by the onset of gravitational waves. A type of large-scale dissipative "cyclostrophic" balance can be invoked to explain this behavior. No production of helicity is observed, contrary to the case of rotating and stratified flows. When helicity survives in the system, it strongly affects the temporal energy decay and the energy distribution among Fourier modes. We discover in fact that the decay rate of energy for stratified helical flows is much slower than for stratified nonhelical flows and can be considered with a phenomenological model in a way similar to what is done for unstratified rotating flows. We also show that helicity, when strong, has a measurable effect on the Fourier spectra, in particular at scales larger than the buoyancy scale, for which it displays a rather flat scaling associated with vertical shear, as observed in the planetary boundary layer.
Litter dynamics in two Sierran mixed conifer forests. I. Litterfall and decomposition rates
Stohlgren, Thomas J.
1988-01-01
Litterfall was measured for 4 years and leaf litter decomposition rates were studied for 3.6 years in two mixed conifer forest (giant sequoia-fir and fir-pine) in the southern Sierra Nevada of California. The giant sequoia-fir forest (GS site) was dominated by giant sequoia (Sequoiadendron giganteum (Lindl.) Buchh.), white fir (Abies concolor Lindl. & Gord.), and sugar pine (Pinus lambertiana Dougl.). The fir-pine forest (FP site) was dominated by white fir, sugar pine, and incense cedar (Calocedrus decurrens (Torr.) Florin). Litterfall, including large woody debris -1•year-1 compared with 4355 kg•ha-1•year-1 at the FP site (3.4:1). In the GS site, leaf litter decomposition after 3.6 years was slowest for giant sequoia (28.2% mass loss), followed by sugar pine (34.3%) and white fie (45.1%). In the FP site, mass loss was slowest for sugar pine (40.0%), followed by white fir (45.1%), while incense cedar showed the greatest mass loss (56.9%) after 3.6 years. High litterfall rates of large woody debris (i.e., 2.5-15.2 cm diameter) and slow rates of leaf litter decomposition in the giant sequoia-fir forest type may result in higher litter accumulation rates than in the fir-pine type. Leaf litter times to 95% decay for the GS and FP sites were 30 and 27 years, respectively, if the initial 0.7-year period (a short period of rapid mass decay) was ignored in the calculation. A mass balance approach for total litterfall (<15.2 cm diameter) decomposition yielded lower decay constants than did the litterbag study and therefore longer times to 95% decay (57 years for the GS site and 62 years for the FP site).
The life cycles of persistent anomalies and blocking over the North Pacific
NASA Technical Reports Server (NTRS)
Dole, Randall M.
1986-01-01
The evolution of persistent anomaly patterns over the central North Pacific is investigated. Composite time evolution fields of the 500-mbar anomaly patterns are constructed from low-pass and unfiltered height anomaly data; the time scales for the development and decay of these persistent anomalies are analyzed. The relationship between zonal flow in the Pacific jet region and the development of the anomaly patterns is examined. The effect of baroclinic instabilities on the development of the anomalies is studied. The vertical structure and synoptic characteristics of the evolution of the anomalies are described. It is noted that the initial rapid growth of the main center may be associated with a propagating, intensifying, synoptic-scale disturbance which originates in the midlatitudes over eastern Asia.
Plasmonic Landau damping in active environments
NASA Astrophysics Data System (ADS)
Thakkar, Niket; Montoni, Nicholas P.; Cherqui, Charles; Masiello, David J.
2018-03-01
Optical manipulation of charge on the nanoscale is of fundamental importance to an array of proposed technologies from selective photocatalysis to nanophotonics. Open plasmonic systems where collective electron oscillations release energy and charge to their environments offer a potential means to this end as plasmons can rapidly decay into energetic electron-hole pairs; however, isolating this decay from other plasmon-environment interactions remains a challenge. Here we present an analytic theory of noble-metal nanoparticles that quantitatively models plasmon decay into electron-hole pairs, demonstrates that this decay depends significantly on the nanoparticle's dielectric environment, and disentangles this effect from competing decay pathways. Using our approach to incorporate embedding material and substrate effects on plasmon-electron interaction, we show that predictions from the model agree with four separate experiments. Finally, examination of coupled nanoparticle-emitter systems further shows that the hybridized in-phase mode more efficiently decays to photons whereas the out-of-phase mode more efficiently decays to electron-hole pairs, offering a strategy to tailor open plasmonic systems for charge manipulation.
Propagation of solutions to the Fisher-KPP equation with slowly decaying initial data
NASA Astrophysics Data System (ADS)
Henderson, Christopher
2016-10-01
The Fisher-KPP equation is a model for population dynamics that has generated a huge amount of interest since its introduction in 1937. The speed with which a population spreads has been computed quite precisely when the initial data, u 0, decays exponentially. More recently, though, the case when the initial data decays more slowly has been studied. In Hamel F and Roques L (2010 J. Differ. Equ. 249 1726-45), the authors show that the level sets of height of m of u move super-linearly and may be bounded above and below by expressions of the form u0-1≤ft({{c}m}{{\\text{e}}-t}\\right) when u 0 decays algebraically of a small enough order. The constants c m for the upper and lower bounds that they obtain are not explicit and do not match. In this paper, we improve their precision for a broader class of initial data and for a broader class of equations. In particular, our approach yields the explicit highest order term in the location of the level sets, which in the most basic setting is given by u0-1≤ft(m{{\\text{e}}-t}/(1-m)\\right) as long as u 0 decays slower than {{\\text{e}}-\\sqrt{x}} . We generalize this to the previously unstudied setting when the nonlinearity is periodic in space. In addition, for large times, we characterize the profile of the solution in terms of a generalized logistic equation.
Ding, Kai; Byrnes, Cory; Bridge, Jarrod; Grannas, Amanda; Xu, Wenqing
2018-04-01
This study investigates the fate of sorbed nitroaromatics on the surface of pyrogenic carbonaceous matter (PCM) to assess the feasibility of a PCM-promoted hydrolysis. The degradation of two nitroaromatic compounds, 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroanisole, was observed at pH 7 in the presence of graphite powder, a model PCM. By contrast, no decay occurred without graphite. Using TNT as a model compound, our results suggest that TNT decay demonstrated a strong pH dependence, with no reaction at pH 3-5 but rapid degradation at pH 6-10. Moreover, by fitting TNT decay at different pH conditions along with its sorption kinetics to the Langmuir Kinetic Model, our results suggest that the base-catalyzed hydrolysis was important. The activation energy for TNT decay was obtained by measuring reaction rates at different temperatures with or without graphite and no significant difference was observed. However, the addition of tetramethylammonium cation was able to promote TNT decay possibly due to its ability to attract more OH - from the aqueous solution, leading to an increase in the sorbed OH - concentrations. Nitrite and a Meisenheimer complex were identified as degradation products for TNT. Other PCM, such as biochar, also demonstrated a comparable ability in promoting TNT decay at pH 7. Furthermore, a rapid degradation of TNT at pH 7 was observed when biochar was used as a soil amendment (4% by weight). Our results suggest that PCM can facilitate TNT and 2,4-dinitroanisole decay via a surface-promoted hydrolysis at neutral pH conditions, suggesting a promising alternative for in situ soil remediation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Time-resolved fluorescence decay measurements for flowing particles
Deka, C.; Steinkamp, J.A.
1999-06-01
Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.
Time-resolved fluorescence decay measurements for flowing particles
Deka, Chiranjit; Steinkamp, John A.
1999-01-01
Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.
NASA Astrophysics Data System (ADS)
Ren, Xueguang; Miteva, Tsveta; Kolorenč, Přemysl; Gokhberg, Kirill; Kuleff, Alexander I.; Cederbaum, Lorenz S.; Dorn, Alexander
2017-09-01
We investigate the interatomic Coulombic decay (ICD) in argon dimers induced by electron-impact ionization (E0=90 eV ) using a multiparticle coincidence experiment in which the momentum vectors and, consequently, the kinetic energies for electrons and fragment ions are determined. The signature of the ICD process is obtained from a correlation map between ejected electron energy and kinetic energy release (KER) for Ar++Ar+ fragment ions where low-energy ICD electrons can be identified. Furthermore, two types of ICD processes, termed fast and slow interatomic decay, are separated by the ICD initial-state energies and projectile energy losses. The dependence of the energies of emitted low-energy ICD electrons on the initial-state energy is studied. ICD electron energy spectra and KER spectra are obtained separately for fast and slow decay processes where the KER spectra for the slow decay channel are strongly influenced by nuclear motion. The KER and ICD electron energy spectra are well reproduced by ab initio calculations.
Decaying and growing eigenmodes in open quantum systems: Biorthogonality and the Petermann factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Soo-Young
2009-10-15
We study the biorthogonality between decaying and growing eigenmodes in one-dimensional potential barrier problems. It is shown that Petermann factors K{sub n} of the eigenmodes, a measure of nonorthogonality, are involved in decaying mechanism of an initially confined particle. We also show that the decay tail of the growing modes at an exceptional point (EP), where K{sub n} become infinite, is not exponential, but {approx}t{sup 2}e{sup -{gamma}{sub EP}t}, {gamma}{sub EP} the decay rate of the decaying mode at EP. In addition, the geometrical phase near an EP is illustrated by the evolution of wave function.
Logarithmic speed-up of relaxation in A -B annihilation with exclusion
NASA Astrophysics Data System (ADS)
Dandekar, Rahul
2018-04-01
We show that the decay of the density of active particles in the reaction A +B →0 in one dimension, with exclusion interaction, results in logarithmic corrections to the expected power law decay, when the starting initial condition (i.c.) is periodic. It is well known that the late-time density of surviving particles goes as t-1 /4 with random initial conditions, and as t-1 /2 with alternating initial conditions (A B A B A B ⋯ ). We show that the decay for periodic i.c.'s made of longer blocks (AnBnAnBn⋯ ) do not show a pure power-law decay when n is even. By means of first-passage Monte Carlo simulations, and a mapping to a q -state coarsening model which can be solved in the independent interval approximation (IIA), we show that the late-time decay of the density of surviving particles goes as t-1 /2[ln(t ) ] -1 for n even, but as t-1 /2 when n is odd. We relate this kinetic symmetry breaking in the Glauber Ising model. We also see a very slow crossover from a t-1 /2[ln(t ) ] -1 regime to eventual t-1 /2 behavior for i.c.'s made of mixtures of odd- and even-length blocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rist, J.; Miteva, T.; Gaire, B.
In this paper we present a comprehensive and detailed study of Interatomic Coulombic Decay (ICD) occurring after irradiating argon dimers with XUV-synchrotron radiation. A manifold of different decay channels is observed and the corresponding initial and final states are assigned. Additionally, the effect of nuclear dynamics on the ICD electron spectrum is examined for one specific decay channel. The internuclear distance-dependent width Γ(R) of the decay is obtained from the measured kinetic energy release distribution of the ions employing a classical nuclear dynamics model.
Meth mouth severity in response to drug-use patterns and dental access in methamphetamine users.
Brown, Ronni E; Morisky, Donald E; Silverstein, Steven J
2013-06-01
Meth mouth is the rapid development of tooth decay in methamphetamine users. Our study questioned whether drug-use patterns and dental care access are risk factors affecting the severity of meth mouth. Participants received dental examinations, and the number of decayed, missing and filled teeth (DMFT) were counted and used to measure meth mouth severity.
Jill Gaskell; Robert A. Blanchette; Philip E. Stewart; Sandra Splinter BonDurant; Marie Adams; Grzegorz Sabat; Philip Kersten; Daniel Cullen
2016-01-01
Certain wood decay basidiomycetes, collectively referred to as brown rot fungi, rapidly depolymerize cellulose while leaving behind the bulk of cell wall lignin as a modified residue. The mechanism(s) employed is unclear, but considerable evidence implicates the involvement of diffusible oxidants generated via Fenton-like chemistry. Toward a better understanding of...
Diego Martinez; Jean Challacombe; Ingo Morgenstern; David Hibbett; Monika Schmoll; Christian P. Kubicek; Patricia Ferreira; Francisco J. Ruiz-Duenas; Angel T. Martinez; Philip J. Kersten; Kenneth E. Hammel; Jill A. Gaskell; Daniel Cullen
2009-01-01
Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome,...
NASA Astrophysics Data System (ADS)
Marsman, A.; Horbatsch, M.; Hessels, E. A.
2017-12-01
The resonant line shape from driving a transition between two states, |a 〉 and |b 〉 , can be distorted due to a quantum-mechanical interference effect involving a resonance between two different states, |c 〉 and |d 〉 , if |c 〉 has a decay path to |a 〉 and |d 〉 has a decay path to |b 〉 . This interference can cause a shift of the measured resonance, despite the fact that the two resonances do not have a common initial or final state. As an example, we demonstrate that such a shift affects measurements of the atomic hydrogen 2 S1 /2 -to-2 P1 /2 Lamb-shift transition due to 3 S -to-3 P transitions if the 3 S1 /2 state has some initial population.
Quantum decay model with exact explicit analytical solution
NASA Astrophysics Data System (ADS)
Marchewka, Avi; Granot, Er'El
2009-01-01
A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.
Convection in three dimensions with surface plates - Generation of toroidal flow
NASA Technical Reports Server (NTRS)
Gable, Carl W.; O'Connell, Richard J.; Travis, Bryan J.
1991-01-01
This work presents numerical calculations of mantle convection that incorporate some of the basic observational constraints imposed by plate tectonics. The model is three-dimensional and includes surface plates; it allows plate velocity to change dynamically according to the forces which result from convection. It is shown that plates are an effective means of introducing a toroidal component into the flow field. After initial transients the plate motion is nearly parallel to transform faults and in the direction that tends to minimize the toroidal flow field. The toroidal field decays with depth from its value at the surface; the poloidal field is relatively constant throughout the layer but falls off slightly at the top and bottom boundaries. Layered viscosity increasing with depth causes the toroidal field to decay more rapidly, effectively confining it to the upper, low-viscosity layer. The effect of viscosity layering on the poloidal field is relatively small, which is attributed to its generation by temperature variations distributed throughout the system. The generation of toroidal flow by surface plates would seem to account for the observed nearly equal energy of toroidal and poloidal fields of plate motions on the earth. A low-viscosity region in the upper mantle will cause the toroidal flow to decay significantly before reaching the lower mantle. The resulting concentration of toroidal flow in the upper mantle may result in more thorough mixing there and account for some of the geochemical and isotopic differences proposed to exist between the upper and lower mantles.
Acceleration from short-duration blast
NASA Astrophysics Data System (ADS)
Ritzel, D. V.; Van Albert, S.; Sajja, V.; Long, J.
2018-01-01
The blast-induced motion of spheres has been studied experimentally where the shock wave is rapidly decaying during the period that quasi-steady acceleration would be developed in the case of a step-function shock wave as considered in most shock-tube studies. The motion of sphere models ranging from 39 to 251 mm in diameter and having a range of densities was assessed using the "free-flight" method in a simulator specially designed to replicate the decaying shock wave profile of spherical blast including negative phase and positive entropy gradient. A standardized blast-wave simulation of 125 kPa and 6-ms positive-phase duration was applied for all experiments. In all cases, there are three phases to the motion: a relatively low "kickoff" velocity from the shock diffraction, acceleration or deceleration during the positive duration, then deceleration through the negative phase and subsequent quiescent air. The unexpected deceleration of larger spheres after their kickoff velocity during the decaying yet high-speed flow of the blast wave seems associated with the persistence of a ring vortex on the downstream side of the sphere. The flow is entirely unsteady with initial forces dominated by the shock diffraction; therefore, the early motion of spheres under such conditions is not governed by quasi-steady drag as in classical aerodynamics. The work will help establish scaling rules for model studies of blast-induced motion relevant to improvised explosive devices, and preliminary results are shown for motion imparted to a human skull surrogate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makwana, K. D., E-mail: kirit.makwana@gmx.com; Cattaneo, F.; Zhdankin, V.
Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k{sub ⊥}{sup −1.3}. The kinetic code shows a spectral slope of k{submore » ⊥}{sup −1.5} for smaller simulation domain, and k{sub ⊥}{sup −1.3} for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. This work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.« less
Implicit and explicit forgetting: when is gist remembered?
Dorfman, J; Mandler, G
1994-08-01
Recognition (YES/NO) and stem completion (cued: complete with a word from the list; and uncued: complete with the first word that comes to mind) were tested following either semantic or non-semantic processing of a categorized input list. Item/instance information was tested by contrasting target items from the input list with new items that were categorically related to them; gist/categorical information was tested by comparing target items semantically related to the input items with unrelated new items. For both recognition and stem completion, regardless of initial processing condition, item information decayed rapidly over a period of one week. Gist information was maintained over the same period when initial processing was semantic but only in the cued condition for completion. These results are discussed in terms of dual process theory, which postulates activation/integration of a representation as primarily relevant to implicit item information and elaboration of a representation as mainly relevant to semantic (i.e. categorical) information.
Vorticity Transport and Wave Emission in the Protoplanetary Nebula
NASA Technical Reports Server (NTRS)
Davis, S. S.; DeVincenzi, Donald (Technical Monitor)
2001-01-01
Higher order numerical algorithms (4th order in time, 3rd order in space) are applied to the Euler/Energy equations and are used to examine vorticity transport and wave motion in a non-self gravitating, initially isentropic Keplerian disk. In this talk we will examine the response of the nebula to an isolated vortex with a circulation about equal to the rotation rate of Jupiter. The vortex is located on the 4 AU circle and the nebula is simulated from 1 to 24 AU. We show that the vortex emits pressure-supported density and Rossby-type wave packets before it decays within a few orbits. The acoustic density waves evolve into weak (non entropy preserving) shock waves that propagate over the entire disk. The Rossby waves remain in the vicinity of the initial vortex disturbance, but are rapidly damped. Temporal frequencies and spatial wavenumbers are derived using the simulation data and compared with analytical dispersion relations from the linearized Euler/Energy equations.
Vorticity Transport and Wave Emission In A Protoplanetary Disk
NASA Technical Reports Server (NTRS)
Davis, S. S.; Davis, Sanford (Technical Monitor)
2002-01-01
Higher order numerical algorithms (4th order in time, 3rd order in space) are applied to the Euler equations and are used to examine vorticity transport and wave motion in a non-self gravitating, initially isentropic Keplerian disk. In this talk we will examine the response of the disk to an isolated vortex with a circulation about equal to the rotation rate of Jupiter. The vortex is located on the 4 AU circle and the nebula is simulated from 1 to 24 AU. We show that the vortex emits pressure-supported density and Rossby-type wave packets before it decays within a few orbits. The acoustic density waves evolve into weak (non entropy preserving) shock waves that propagate over the entire disk. The Rossby waves remain in the vicinity of the initial vortex disturbance, but are rapidly damped. Temporal frequencies and spatial wavenumbers are derived from the nonlinear simulation data and correlated with analytical dispersion relations from the linearized Euler and energy equations.
Mesoscale Simulation Data for Initializing Fast-Time Wake Transport and Decay Models
NASA Technical Reports Server (NTRS)
Ahmad, Nashat N.; Proctor, Fred H.; Vanvalkenburg, Randal L.; Pruis, Mathew J.; LimonDuparcmeur, Fanny M.
2012-01-01
The fast-time wake transport and decay models require vertical profiles of crosswinds, potential temperature and the eddy dissipation rate as initial conditions. These inputs are normally obtained from various field sensors. In case of data-denied scenarios or operational use, these initial conditions can be provided by mesoscale model simulations. In this study, the vertical profiles of potential temperature from a mesoscale model were used as initial conditions for the fast-time wake models. The mesoscale model simulations were compared against available observations and the wake model predictions were compared with the Lidar measurements from three wake vortex field experiments.
Dynamics of airflow in a short inhalation
Bates, A. J.; Doorly, D. J.; Cetto, R.; Calmet, H.; Gambaruto, A. M.; Tolley, N. S.; Houzeaux, G.; Schroter, R. C.
2015-01-01
During a rapid inhalation, such as a sniff, the flow in the airways accelerates and decays quickly. The consequences for flow development and convective transport of an inhaled gas were investigated in a subject geometry extending from the nose to the bronchi. The progress of flow transition and the advance of an inhaled non-absorbed gas were determined using highly resolved simulations of a sniff 0.5 s long, 1 l s−1 peak flow, 364 ml inhaled volume. In the nose, the distribution of airflow evolved through three phases: (i) an initial transient of about 50 ms, roughly the filling time for a nasal volume, (ii) quasi-equilibrium over the majority of the inhalation, and (iii) a terminating phase. Flow transition commenced in the supraglottic region within 20 ms, resulting in large-amplitude fluctuations persisting throughout the inhalation; in the nose, fluctuations that arose nearer peak flow were of much reduced intensity and diminished in the flow decay phase. Measures of gas concentration showed non-uniform build-up and wash-out of the inhaled gas in the nose. At the carina, the form of the temporal concentration profile reflected both shear dispersion and airway filling defects owing to recirculation regions. PMID:25551147
Long-Term Spectral and Timing Behavior of the Black Hole Candidate XTE J1908+094
NASA Technical Reports Server (NTRS)
Gogus, Ersin; Finger, Mark H.; Kouveliotou, Chryssa; Woods, Peter M.; Patel, Sandeep K.; Ruppen, Michael; Swank, Jean H.; Markwardt, Craig B.; VanDerKlis, Michiel
2004-01-01
We present the long-term X-ray light curves and detailed spectral and timing analyses of XTE J1908+094 using the Rossi X-Ray Timing Explorer Proportional Counter Array observations covering two outbursts in 2002 and early 2003. At the onset of the first outburst, the source was found in a spectrally low/hard state lasting for approx.40 days, followed by a 3 day long transition to the high/soft state. The source flux (in 2- 10 keV) reached approx.100 mcrab on 2002 April 6, then decayed rapidly. In power spectra, we detect strong band-limited noise and varying low- frequency quasi-periodic oscillations that evolved from approx.0.5 to approx.5 Hz during the initial low/hard state of the source. We find that the second outburst closely resembled the spectral evolution of the first. The X-ray transient s overall outburst characteristics led us to classify XTE J1908+094 as a black hole candidate. Here we also derive precise X-ray position of the source using Chandra observations that were performed during the decay phase of the first outburst and following the second outburst.
Method for eliminating artifacts in CCD imagers
Turko, Bojan T.; Yates, George J.
1992-01-01
An electronic method for eliminating artifacts in a video camera (10) employing a charge coupled device (CCD) (12) as an image sensor. The method comprises the step of initializing the camera (10) prior to normal read out and includes a first dump cycle period (76) for transferring radiation generated charge into the horizontal register (28) while the decaying image on the phosphor (39) being imaged is being integrated in the photosites, and a second dump cycle period (78), occurring after the phosphor (39) image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers (32). Image charge is then transferred from the photosites (36) and (38) to the vertical registers (32) and read out in conventional fashion. The inventive method allows the video camera (10) to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear and smear phenomena caused by insufficient opacity of the registers (28) and (32), and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites (36) and (37).
On the decay of solutions to the 2D Neumann exterior problem for the wave equation
NASA Astrophysics Data System (ADS)
Secchi, Paolo; Shibata, Yoshihiro
We consider the exterior problem in the plane for the wave equation with a Neumann boundary condition and study the asymptotic behavior of the solution for large times. For possible application we are interested to show a decay estimate which does not involve weighted norms of the initial data. In the paper we prove such an estimate, by a combination of the estimate of the local energy decay and decay estimates for the free space solution.
The Role of Chemical Transport in the Decay Resistance of Modified Wood. In: M
Samuel L. Zelinka; Rebecka Ringman; Annica Pulgard; Emil Engelund Thybring; Joseph E. Jakes; Klaus Richter
2015-01-01
A 2014 review by Ringman et al. examined established theories addressing why modified wood has increased decay resistance and concluded that the most probable cause of inhibition and/or delay of the initiation of brown rot decay is lowering the equilibrium moisture content for given environmental conditions. A 2013 paper by Jakes et al...
Reactions and Transport: Diffusion, Inertia, and Subdiffusion
NASA Astrophysics Data System (ADS)
Méndez, Vicenç; Fedotov, Sergei; Horsthemke, Werner
Particles, such as molecules, atoms, or ions, and individuals, such as cells or animals, move in space driven by various forces or cues. In particular, particles or individuals can move randomly, undergo velocity jump processes or spatial jump processes [333]. The steps of the random walk can be independent or correlated, unbiased or biased. The probability density function (PDF) for the jump length can decay rapidly or exhibit a heavy tail. Similarly, the PDF for the waiting time between successive jumps can decay rapidly or exhibit a heavy tail. We will discuss these various possibilities in detail in Chap. 3. Below we provide an introduction to three transport processes: standard diffusion, transport with inertia, and anomalous diffusion.
Measurement of heavy-flavour production, correlations and jets with ALICE
NASA Astrophysics Data System (ADS)
Sakai, Shingo
2018-02-01
In this article, recent ALICE measurements of the RAA and v2 of electrons at mid-rapidity (|y|<0.6) and muons at forward rapidity (2.5
Local energy decay for linear wave equations with variable coefficients
NASA Astrophysics Data System (ADS)
Ikehata, Ryo
2005-06-01
A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].
The cancellation of magnetic flux. II - In a decaying active region. [of sun
NASA Technical Reports Server (NTRS)
Martin, S. F.; Livi, S. H. B.; Wang, J.
1985-01-01
H-alpha filtergrams and videomagnetograms are used to study an active region during its period of decay on August 3-8, 1984; the decay had been initiated by a fragmentation process in which very small knots of magnetic flux separated from larger concentration of flux. The disappearance of magnetic flux was always observed when the small fragments of flux encountered other small fragments or concentrations of flux of opposite polarity. Such 'cancellations' are shared by both polarities of magnetic field, and it is deduced that the disappearance of flux occurred either at or within 5 arcsec of the apparent dividing line between the opposite polarities. All of the 22 flares observed during the decay of this region were initiated around sites where magnetic flux was cancelling or was deduced to be cancelling during the flares. It is hypothesized that cancellation was one of the necessary conditions for flaring in this active region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basdevant, Jean-Louis; Berger, Edmond L.
2015-05-01
We show that a single I = 1 spin-parity J(PC) = 1(++) a(1) resonance can manifest itself as two separated mass peaks, one decaying into an S-wave rho pi system and the second decaying into a P-wave f(0)(980)pi system, with a rapid increase of the phase difference between their amplitudes arising mainly from the structure of the diffractive production process. This study clarifies questions related to the mass, width, and decay rates of the a(1) resonance raised by the recent high statistics data of the COMPASS Collaboration on a 1 production in pi N -> pi pi pi N atmore » high energies.« less
Human choice among five alternatives when reinforcers decay.
Rothstein, Jacob B; Jensen, Greg; Neuringer, Allen
2008-06-01
Human participants played a computer game in which choices among five alternatives were concurrently reinforced according to dependent random-ratio schedules. "Dependent" indicates that choices to any of the wedges activated the random-number generators governing reinforcers on all five alternatives. Two conditions were compared. In the hold condition, once scheduled, a reinforcer - worth a constant five points - remained available until it was collected. In the decay condition, point values decreased with intervening responses, i.e., rapid collection was differentially reinforced. Slopes of matching functions were higher in the decay than hold condition. However inter-subject variability was high in both conditions.
NASA Astrophysics Data System (ADS)
Zhao, Xiaopeng; Zhu, Mingxuan
2018-04-01
In this paper, we consider the small initial data global well-posedness of solutions for the magnetohydrodynamics with Hall and ion-slip effects in R^3. In addition, we also establish the temporal decay estimates for the weak solutions. With these estimates in hand, we study the algebraic time decay for higher-order Sobolev norms of small initial data solutions.
Spanwise Spacing Effects on the Initial Structure and Decay of Axial Vortices
NASA Technical Reports Server (NTRS)
Wendt, B. J.; Reichert, B. A.
1996-01-01
The initial structure and axial decay of an array of streamwise vortices embedded in a turbulent pipe boundary layer is experimentally investigated. The vortices are shed in counter-rotating fashion from an array of equally-spaced symmetric airfoil vortex generators. Vortex structure is quantified in terms of crossplane circulation and peak streamwise vorticity. Flow conditions are subsonic and incompressible. The focus of this study is on the effect of the initial spacing between the parent vortex generators. Arrays with vortex generators spaced at 15 and 30 degrees apart are considered. When the spacing between vortex generators is decreased the circulation and peak vorticity of the shed vortices increases. Analysis indicates this strengthening results from regions of fluid acceleration in the vicinity of the vortex generator array. Decreased spacing between the constituent vortices also produces increased rates of circulation and peak vorticity decay.
Neutron stars: history of the magnetic field decay
NASA Astrophysics Data System (ADS)
Igoshev, Andrei P.; Kholtygin, Alexander F.
2013-03-01
Using the data of the ATNF pulsar catalog we study the relation connected the real age t of young neutron stars (NS) and their spin-down age τ. We suppose that this relation is independent from both initial period of the NS and its initial surface magnetic field, and that the laws of the surface magnetic field decay are similar for all NSs in the Milky Way. We further assume that the birth-rate of pulsars was constant during at least last 200 million years. With these assumptions we were able to restore the history of the magnetic field decay for the galactic NSs. We reconstruct the universal function f(t) = B(t)/B 0, where B 0 is the initial magnetic field and B(t) is the magnetic field of NS at the age t. The function f(t) can be fitted by a power law with power index α = -1.17.
Adamová, D; Agakichiev, G; Antończyk, D; Appelshäuser, H; Belaga, V; Bielcíková, J; Braun-Munzinger, P; Busch, O; Cherlin, A; Damjanovic, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Z; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Krobath, G; Kushpil, V; Ludolphs, W; Maas, A; Marín, A; Milosević, J; Miśkowiec, D; Ortega, R; Panebrattsev, Y; Petchenova, O; Petrácek, V; Radomski, S; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Schukraft, J; Sedykh, S; Shimansky, S; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, I; Tsiledakis, G; Wessels, J P; Wienold, T; Wurm, J P; Yurevich, S; Yurevich, V
2006-04-21
We report on results of a measurement of meson production in central Pb-Au collisions at E(lab) = 158A GeV. For the first time in the history of high energy heavy-ion collisions, phi mesons were reconstructed both in the K+K- and the dilepton decay channels in the same experiment. This measurement yields rapidity densities near midrapidity, from the two decay channels, of 2.05 +/- 0.14(stat) +/- 0.25(syst) and 2.04 +/- 0.49(stat) +/- 0.32(syst), respectively. The shape of the measured transverse momentum spectrum is also in close agreement in both decay channels. The data rule out a possible enhancement of the phi yield in the leptonic over the hadronic decay channel of a factor 1.6 or larger at the 95% C.L. This rules out the discrepancy reported in the literature between measurements of the hadronic and dimuon decay channels by two different experiments.
Fravolini, Giulia; Egli, Markus; Derungs, Curdin; Cherubini, Paolo; Ascher-Jenull, Judith; Gómez-Brandón, María; Bardelli, Tommaso; Tognetti, Roberto; Lombardi, Fabio; Marchetti, Marco
2016-11-01
Deadwood is known to significantly contribute to global terrestrial carbon stocks and carbon cycling, but its decay dynamics are still not thoroughly understood. Although the chemistry of deadwood has been studied as a function of decay stage in temperate to subalpine environments, it has generally not been related to time. We therefore studied the decay (mass of deadwood, cellulose and lignin) of equal-sized blocks of Picea abies wood in soil-mesocosms over two years in the Italian Alps. The 8 sites selected were along an altitudinal sequence, reflecting different climate zones. In addition, the effect of exposure (north- and south-facing slopes) was taken into account. The decay dynamics of the mass of deadwood, cellulose and lignin were related to soil parameters (pH, soil texture, moisture, temperature) and climatic data. The decay rate constants of Picea abies deadwood were low (on average between 0.039 and 0.040y(-1)) and of lignin close to zero (or not detectable), while cellulose reacted much faster with average decay rate constants between 0.110 and 0.117y(-1). Our field experiments showed that local scale factors, such as soil parameters and topographic properties, influenced the decay process: higher soil moisture and clay content along with a lower pH seemed to accelerate wood decay. Interestingly, air temperature negatively correlated with decay rates or positively with the amount of wood components on south-facing sites. It exerted its influence rather on moisture availability, i.e. the lower the temperature the higher the moisture availability. Topographic features were also relevant with generally slower decay processes on south-facing sites than on north-facing sites owing to the drier conditions, the higher pH and the lower weathering state of the soils (less clay minerals). This study highlights the importance of a multifactorial consideration of edaphic parameters to unravel the complex dynamics of initial wood decay. Copyright © 2016 Elsevier B.V. All rights reserved.
Rapid decay of nonlinear whistler waves in two dimensions: Full particle simulation
NASA Astrophysics Data System (ADS)
Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro
2017-05-01
The decay of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave is investigated by utilizing a two-dimensional (2D) fully relativistic electromagnetic particle-in-cell code. The simulation is performed under a low-beta condition in which the plasma pressure is much lower than the magnetic pressure. It has been shown that the nonlinear (large-amplitude) parent whistler wave decays through the parametric instability in a one-dimensional (1D) system. The present study shows that there is another channel for the decay of the parent whistler wave in 2D, which is much faster than in the timescale of the parametric decay in 1D. The parent whistler wave decays into two sideband daughter whistlers propagating obliquely with respect to the ambient magnetic field with a frequency close to the parent wave and two quasi-perpendicular electromagnetic modes with a frequency close to zero via a 2D decay instability. The two sideband daughter oblique whistlers also enhance a nonlinear longitudinal electrostatic wave via a three-wave interaction as a secondary process.
Probing properties of hot and dense QCD matter with heavy flavor in the PHENIX experiment at RHIC
Nouicer, Rachid
2015-05-29
Hadrons carrying heavy quarks, i.e. charm or bottom, are important probes of the hot and dense medium created in relativistic heavy ion collisions. Heavy quark-antiquark pairs are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. Heavy quark production has been studied by the PHENIX experiment at RHIC via measurements of single leptons from semi-leptonic decays in both the electron channel at mid-rapidity and in the muon channel at forward rapidity. A large suppression and azimuthal anisotropy of single electrons havemore » been observed in Au + Au collisions at 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. The PHENIX experiment has also measured J/ψ production at 200 GeV in p + p, d + Au, Cu + Cu and Au + Au collisions, both at mid- and forward-rapidities, and additionally Cu + Au and U + U at forward-rapidities. In the most energetic collisions, more suppression is observed at forward rapidity than at central rapidity. This can be interpreted either as a sign of quark recombination, or as a hint of additional cold nuclear matter effects. The centrality dependence of nuclear modification factor, R AA(p T), for J/ψ in U + U collisions at √ sNN = 193 GeV shows a similar trend to the lighter systems, Au + Au and Cu + Cu, at similar energy 200 GeV.« less
The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation.
Zubiaga, A M; Belasco, J G; Greenberg, M E
1995-01-01
Labile mRNAs that encode cytokine and immediate-early gene products often contain AU-rich sequences within their 3' untranslated region (UTR). These AU-rich sequences appear to be key determinants of the short half-lives of these mRNAs, although the sequence features of these elements and the mechanism by which they target mRNAs for rapid decay have not been fully defined. We have examined the features of AU-rich elements (AREs) that are crucial for their function as determinants of mRNA instability in mammalian cells by testing the ability of various mutant c-fos AREs and synthetic AREs to direct rapid mRNA deadenylation and decay when inserted within the 3' UTR of the normally stable beta-globin mRNA. Evidence is presented that the pentamer AUUUA, which previously was suggested to be the minimal determinant of instability present in mammalian AREs, cannot direct rapid mRNA deadenylation and decay. Instead, the nonomer UUAUUUAUU is the elemental AU-rich sequence motif that destabilizes mRNA. Removal of one uridine residue from either end of the nonamer (UUAUUUAU or UAUUUAUU) results in a decrease of potency of the element, while removal of a uridine residue from both ends of the nonamer (UAUUUAU) eliminates detectable destabilizing activity. The inclusion of an additional uridine residue at both ends of the nonamer (UUUAUUUAUUU) does not further increase the efficacy of the element. Taken together, these findings suggest that the nonamer UUAUUUAUU is the minimal AU-rich motif that effectively destabilizes mRNA. Additional ARE potency is achieved by combining multiple copies of this nonamer in a single mRNA 3' UTR. Furthermore, analysis of poly(A) shortening rates for ARE-containing mRNAs reveals that the UUAUUUAUU sequence also accelerates mRNA deadenylation and suggests that the UUAUUUAUU motif targets mRNA for rapid deadenylation as an early step in the mRNA decay process. PMID:7891716
Upf1 senses 3′UTR length to potentiate mRNA decay
Hogg, J. Robert; Goff, Stephen P.
2010-01-01
Summary The selective degradation of mRNAs by the nonsense-mediated decay pathway is a quality control process with important consequences for human disease. From initial studies using RNA hairpin-tagged mRNAs for purification of messenger ribonucleoproteins assembled on transcripts with HIV-1 3′ untranslated region (3′UTR) sequences, we uncover a two-step mechanism for Upf1-dependent degradation of mRNAs with long 3′UTRs. We demonstrate that Upf1 associates with mRNAs in a 3′UTR length-dependent manner and is highly enriched on transcripts containing 3′UTRs known to elicit NMD. Surprisingly, Upf1 recruitment and subsequent RNA decay can be antagonized by retroviral RNA elements that promote translational readthrough. By modulating the efficiency of translation termination, recognition of long 3′UTRs by Upf1 is uncoupled from the initiation of decay. We propose a model for 3′UTR length surveillance in which equilibrium binding of Upf1 to mRNAs precedes a kinetically distinct commitment to RNA decay. PMID:21029861
Effect of Particle Size and Operating Conditions on Pt 3Co PEMFC Cathode Catalyst Durability
Gummalla, Mallika; Ball, Sarah; Condit, David; ...
2015-05-29
The initial performance and decay trends of polymer electrolyte membrane fuel cells (PEMFC) cathodes with Pt 3Co catalysts of three mean particle sizes (4.9 nm, 8.1 nm, and 14.8 nm) with identical Pt loadings are compared. Even though the cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface area (ECA) and mass activity, the cathode based on 8.1 nm catalyst showed better initial performance at high currents. Owing to the low mass activity of the large particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the lowest. The performance decay rate of the electrodes withmore » the smallest Pt 3Co particle size was the highest and that of the largest Pt 3Co particle size was lowest. Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s), the relative improvement in performance of the cathode based on 8.1 nm Pt 3Co over the 4.9 nm Pt 3Co increased, owing to better stability of the 8.1 nm catalyst. The electron microprobe analysis (EMPA) of the decayed membrane-electrode assembly (MEA) showed that the amount of Co in the membrane was lower for the larger particles, and the platinum loss into the membrane also decreased with increasing particle size. This suggests that the higher initial performance at high currents with 8.1 nm Pt 3Co could be due to lower contamination of the ionomer in the electrode. Furthermore, lower loss of Co from the catalyst with increased particle size could be one of the factors contributing to the stability of ECA and mass activity of electrodes with larger cathode catalyst particles. To delineate the impact of particle size and alloy effects, these results are compared with prior work from our research group on size effects of pure platinum catalysts. The impact of PEMFC operating conditions, including upper potential, relative humidity, and temperature on the alloy catalyst decay trends, along with the EMPA analysis of the decayed MEAs, are reported.« less
Synchronous Measurement of Ultrafast Anisotropy Decay of the B850 in Bacterial LH2 Complex
NASA Astrophysics Data System (ADS)
Wang, Yun-Peng; Du, Lu-Chao; Zhu, Gang-Bei; Wang, Zhuan; Weng, Yu-Xiang
2015-02-01
Ultrafast anisotropic decay is a prominent parameter revealing ultrafast energy and electron transfer; however, it is difficult to be determined reliably owing to the requirement of a simultaneous availability of the parallel and perpendicular polarized decay kinetics. Nowadays, any measurement of anisotropic decay is a kind of approach to the exact simultaneity. Here we report a novel method for a synchronous ultrafast anisotropy decay measurement, which can well determine the anisotropy, even at a very early time, as the rising phase of the excitation laser pulse. The anisotropic decay of the B850 in bacterial light harvesting antenna complex LH2 of Rhodobacter sphaeroides in solution at room temperature with coherent excitation is detected by this method, which shows a polarization response time of 30 fs, and the energy transfer from the initial excitation to the bacteriochlorophylls in B850 ring takes about 70 fs. The anisotropic decay that is probed at the red side of the absorption spectrum, such as 880 nm, has an initial value of 0.4, corresponding to simulated emission, while the blue side with an anisotropy of 0.1 contributes to the ground-state bleaching. Our results show that the coherent excitation covering the whole ring might not be realized owing to the symmetry breaking of LH2: from C9 symmetry in membrane to C2 symmetry in solution.
Partial Accretion in the Propeller Stage of Low-mass X-Ray Binary Aql X-1
NASA Astrophysics Data System (ADS)
Güngör, C.; Ekşi, K. Y.; Göğüş, E.; Güver, T.
2017-10-01
Aql X-1 is one of the most prolific low-mass X-ray binary transients (LMXBTs) showing outbursts almost annually. We present the results of our spectral analyses of Rossi X-Ray Timing Explorer/proportional counter-array observations of the 2000 and 2011 outbursts. We investigate the spectral changes related to the changing disk-magnetosphere interaction modes of Aql X-1. The X-ray light curves of the outbursts of LMXBTs typically show phases of fast rise and exponential decay. The decay phase shows a “knee” where the flux goes from the slow-decay to the rapid-decay stage. We assume that the rapid decay corresponds to a weak propeller stage at which a fraction of the inflowing matter in the disk accretes onto the star. We introduce a novel method for inferring, from the light curve, the fraction of the inflowing matter in the disk that accretes onto the neutron star depending on the fastness parameter. We determine the fastness parameter range within which the transition from the accretion to the partial propeller stage is realized. This fastness parameter range is a measure of the scale height of the disk in units of the inner disk radius. We applied the method to a sample of outbursts of Aql X-1 with different maximum flux and duration times. We show that different outbursts with different maximum luminosity and duration follow a similar path in the parameter space of accreted/inflowing mass flux fraction versus fastness parameter.
Characterization of Qatar's surface carbonates for CO2 capture and thermochemical energy storage
NASA Astrophysics Data System (ADS)
Kakosimos, Konstantinos E.; Al-Haddad, Ghadeer; Sakellariou, Kyriaki G.; Pagkoura, Chrysa; Konstandopoulos, Athanasios G.
2017-06-01
Samples of surface carbonates were collected from three different areas of the Qatar peninsula. We employed material characterization techniques to examine the morphology and composition of the samples, while their CO2 capture capacity was assessed via multiple successive calcination-carbonation cycles. Our samples were mainly calcite and dolomite based. Calcite samples showed higher initial capacity of around 11 mmol CO2 g-1 which decayed rapidly to less than 2 mmol CO2 g-1. On the other hand, dolomite samples showed an excellent stability (˜15 cycles) with a capacity of 6 mmol CO2 g-1. The performance of the dolomite samples is better compared to other similar natural samples, from literature. A promising result for future studies towards improving their performance by physical and chemical modification.
Scribner, Kim T.; Avise, John C.
1994-01-01
The dynamics of mitochondrial and multilocus nuclear genotypic frequencies were monitored for 2 yr in experimental populations established with equal numbers of two poeciliid fishes (Gambusia affinis and Gambusia holbrooki) that hybridize naturally in the southeastern United States. In replicated "small-pool" populations (experiment I), 1018 sampled individuals at six time periods revealed an initial flush of hybridization, followed by a rapid decline in frequencies of G. affinis nuclear and mitochondrial alleles over 64 wk. Decay of gametic and cytonuclear disequilibria differed from expectations under random mating as well as under a model of assortative mating involving empirically estimated mating propensities. In two replicate "large-pond" populations (experiment II), 841 sampled individuals across four reproductive cohorts revealed lower initial frequencies of F1 hybrids than in experiment I, but again G. holbrooki alleles achieved high frequencies over four generations (72 wk). Thus, evolution within experimental Gambusia hybrid populations can be extremely rapid, resulting in consistent loss of G. affinis nuclear and cytoplasmic alleles. Concordance in results between experiments and across genetic markers suggests strong directional selection favoring G. holbrooki genotypes. Results are interpreted in light of previous reports of genotype-specific differences in life-history traits, reproductive ecology, patterns of recruitment, and size-specific mortality, and in the context of patterns of introgression previously studied indirectly from spatial observations on cytonuclear genotypes in natural Gambusia populations.
Decay of the zincate concentration gradient at an alkaline zinc cathode after charging
NASA Technical Reports Server (NTRS)
Kautz, H. E.; May, C. E.
1979-01-01
The transport of the zincate ion to the alkaline zinc cathode was studied by observing the decay of the zincate concentration gradient at a horizontal zinc cathode after charging. This decay was found to approximate first order kinetics as expected from a proposed boundary layer model. The concentrations were calculated from polarization voltages. The decay half life was shown to be a linear function of the thickness of porous zinc deposit on the cathode indicating a very rapid transport of zincate through porous zinc metal. The rapid transport is attributed to an electrochemical mechanism. From the linear dependence of the half life on the thickness the boundary layer thickness was found to be about 0.010 cm when the cathode was at the bottom of the cell. No significant dependence of the boundary layer thickness on the viscosity of electrolyte was observed. The data also indicated a relatively sharp transition between the diffusion and convection transport regions. When the cathode was at the top of the cell, the boundary layer thickness was found to be roughly 0.080 cm. The diffusion of zincate ion through asbestos submerged in alkaline electrolyte was shown to be comparable with that predicted from the bulk diffusion coefficient of the zincate ion in alkali.
NASA Astrophysics Data System (ADS)
Ryo, Ikehata
Uniform energy and L2 decay of solutions for linear wave equations with localized dissipation will be given. In order to derive the L2-decay property of the solution, a useful device whose idea comes from Ikehata-Matsuyama (Sci. Math. Japon. 55 (2002) 33) is used. In fact, we shall show that the L2-norm and the total energy of solutions, respectively, decay like O(1/ t) and O(1/ t2) as t→+∞ for a kind of the weighted initial data.
α decay of high-K isomers in 270Ds and 266Hs in a superfluid tunneling model
NASA Astrophysics Data System (ADS)
Clark, R. M.; Rudolph, D.
2018-02-01
We use the superfluid tunneling model (STM) to calculate the half-lives of ground-state α decays of even-even superheavy nuclei (SHN) with Z ≥100 . The experimental data are reproduced to accuracies comparable to other contemporary models of α decay of SHN. We apply the STM to the case of the α decaying high-K isomers identified in the decay chains of 270Ds. By accounting for the α -decay Q values, Qα, the angular momentum difference between initial and final states, L, and a reduction in the pairing gap, Δ, we are able to reproduce the observed α decay of the isomers, including the unusual competition between L ≈10 and L ≈0 α branches seen for the K isomer in 270Ds(Z =110 ) .
PHENIX results on open heavy flavor production
NASA Astrophysics Data System (ADS)
Hachiya, Takashi
2018-02-01
PHENIX measures the open heavy flavor productions in p + p, Cu+Au, and Au+Au collisions at = 200 and 510 GeV using the silicon tracking detectors for mid- and forward rapidities. In Au+Au collisions, the nuclear modification of single electrons from bottom and charm hadron decays are measured for minimum bias and most central collisions. It is found that bottoms are less suppressed than charms in pT=3-5 GeV/c and charms in most central collisions are more suppressed than that in minimum bias collisions. In p + p and Cu+Au collisions, J/ψ from B meson decays are measured at forward and backward rapidities. The nuclear modification of B mesons in Cu+Au collisions is consistent with unity.
Translocation of the neonicotinoid seed treatment clothianidin in maize
Krupke, Christian H.
2017-01-01
Neonicotinoid seed treatments, typically clothianidin or thiamethoxam, are routinely applied to >80% of maize (corn) seed grown in North America where they are marketed as a targeted pesticide delivery system. Despite this widespread use, the amount of compound translocated into plant tissue from the initial seed treatment to provide protection has not been reported. Our two year field study compared concentrations of clothianidin seed treatments in maize to that of maize without neonicotinoid seed treatments and found neonicotinoids present in root tissues up to 34 days post planting. Plant-bound clothianidin concentrations followed an exponential decay pattern with initially high values followed by a rapid decrease within the first ~20 days post planting. A maximum of 1.34% of the initial seed treatment was successfully recovered from plant tissues in both study years and a maximum of 0.26% was recovered from root tissue. Our findings show neonicotinoid seed treatments may provide protection from some early season secondary maize pests. However, the proportion of the neonicotinoid seed treatment clothianidin translocated into plant tissues throughout the growing season is low overall and this observation may provide a mechanism to explain reports of inconsistent efficacy of this pest management approach and increasing detections of environmental neonicotinoids. PMID:28282441
NASA Astrophysics Data System (ADS)
Cho, Min Kyung; Park, Hee-Young; Lee, Hye Jin; Kim, Hyoung-Juhn; Lim, Ahyoun; Henkensmeier, Dirk; Yoo, Sung Jong; Kim, Jin Young; Lee, So Young; Park, Hyun S.; Jang, Jong Hyun
2018-04-01
Herein, we investigate the effects of catholyte feed method and anode binder content on the characteristics of anion exchange membrane water electrolysis (AEMWE) to construct a high-performance electrolyzer, revealing that the initial AEMWE performance is significantly improved by pre-feeding 0.5 M aqueous KOH to the cathode. The highest long-term activity during repeated voltage cycling is observed for AEMWE operation in the dry cathode mode, for which the best long-term performance among membrane electrode assemblies (MEAs) featuring polytetrafluoroethylene (PTFE) binder-impregnated (5-20 wt%) anodes is detected for a PTFE content of 20 wt%. MEAs with low PTFE content (5 and 9 wt%) demonstrate high initial performance, rapid performance decay, and significant catalyst loss from the electrode during long-term operation, whereas the MEA with 20 wt% PTFE allows stable water electrolysis for over 1600 voltage cycles. Optimization of cell operating conditions (i.e., operation in dry cathode mode at an optimum anode binder content following an initial solution feed) achieves an enhanced water splitting current density (1.07 A cm-2 at 1.8 V) and stable long-term AEMWE performance (0.01% current density reduction per voltage cycle).
HIV-1 dynamics revisited: biphasic decay by cytotoxic T lymphocyte killing?
Arnaout, R A; Nowak, M A; Wodarz, D
2000-01-01
The biphasic decay of blood viraemia in patients being treated for human immunodeficiency virus type 1 (HIV-1) infection has been explained as the decay of two distinct populations of cells: the rapid death of productively infected cells followed by the much slower elimination of a second population the identity of which remains unknown. Here we advance an alternative explanation based on the immune response against a single population of infected cells. We show that the biphasic decay can be explained simply, without invoking multiple compartments: viral load falls quickly while cytotoxic T lymphocytes (CTL) are still abundant, and more slowly as CTL disappear. We propose a method to test this idea, and develop a framework that is readily applicable to treatment of other infections. PMID:10972131
NASA Astrophysics Data System (ADS)
Yoshida, J.; Kinbara, S.; Mishina, A.; Nakazawa, K.; Soe, M. K.; Theint, A. M. M.; Tint, K. T.
2017-03-01
A new scanning system named "Vertex picker" has been developed to rapid collect alpha decay events, which are calibration sources for the range-energy relation in nuclear emulsion. A computer-controlled optical microscope scans emulsion layers exhaustively, and a high-speed and high-resolution camera takes their micrographs. A dedicated image processing picks out vertex-like shapes. Practical operations of alpha decay search were demonstrated by emulsion sheets of the KEK-PS E373 experiment. Alpha decays of nearly 28 events were detected in eye-check work on a PC monitor per hour. This yield is nearly 20 times more effective than that by the conventional eye-scan method. The speed and quality is acceptable for the coming new experiment, J-PARC E07.
Measuring the magnetic field of a trans-equatorial loop system using coronal seismology
NASA Astrophysics Data System (ADS)
Long, D. M.; Valori, G.; Pérez-Suárez, D.; Morton, R. J.; Vásquez, A. M.
2017-07-01
Context. EIT waves are freely-propagating global pulses in the low corona which are strongly associated with the initial evolution of coronal mass ejections (CMEs). They are thought to be large-amplitude, fast-mode magnetohydrodynamic waves initially driven by the rapid expansion of a CME in the low corona. Aims: An EIT wave was observed on 6 July 2012 to impact an adjacent trans-equatorial loop system which then exhibited a decaying oscillation as it returned to rest. Observations of the loop oscillations were used to estimate the magnetic field strength of the loop system by studying the decaying oscillation of the loop, measuring the propagation of ubiquitous transverse waves in the loop and extrapolating the magnetic field from observed magnetograms. Methods: Observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory (SDO/AIA) and the Coronal Multi-channel Polarimeter (CoMP) were used to study the event. An Empirical Mode Decomposition analysis was used to characterise the oscillation of the loop system in CoMP Doppler velocity and line width and in AIA intensity. Results: The loop system was shown to oscillate in the 2nd harmonic mode rather than at the fundamental frequency, with the seismological analysis returning an estimated magnetic field strength of ≈ 5.5 ± 1.5 G. This compares to the magnetic field strength estimates of ≈1-9 G and ≈3-9 G found using the measurements of transverse wave propagation and magnetic field extrapolation respectively. A movie associated to Figs. 1 and 2 is available at http://www.aanda.org
Adam, J.; Adamová, D.; Aggarwal, M. M.; ...
2015-06-09
Here we have studied the transverse-momentum (p T) dependence of the inclusive J/more » $$\\psi$$ production in p-Pb collisions at root $$\\sqrt{s_{N\\ N}}$$ = 5.02 TeV, in three center-of-mass rapidity (y cms) regions, down to zero p T. Results in the forward and backward rapidity ranges (2.03 < y cms < 3.53 and -4.46 < y cms < -2.96) are obtained by studying the J/$$\\psi$$ decay to μ +μ -, while the mid-rapidity region (-1.37 < y cms < 0.43) is investigated by measuring the e +e - decay channel. The p T dependence of the J/$$\\psi$$ production cross section and nuclear modification factor are presented for each of the rapidity intervals, as well as the J/psi mean p T values. Forward and mid-rapidity results show a suppression of the J/$$\\psi$$ yield, with respect to pp collisions, which decreases with increasing p T. At backward rapidity no significant J/$$\\psi$$ suppression is observed. Theoretical models including a combination of cold nuclear matter effects such as shadowing and partonic energy loss, are in fair agreement with the data, except at forward rapidity and low transverse momentum. Finally, the implications of the p-Pb results for the evaluation of cold nuclear matter effects on J/$$\\psi$$ production in Pb-Pb collisions are also discussed.« less
Hergenhahn, Uwe
2012-12-01
The paper gives an introduction into Interatomic and Intermolecular Coulombic Decay (ICD). ICD is an autoionization process, which contrary to Auger decay involves neighbouring sites of the initial vacancy as an integral part of the decay transition. As a result of ICD, slow electrons are produced which generally are known to be active in radiation damage. The author summarizes the properties of ICD and reviews a number of important experiments performed in recent years. Intermolecular Coulombic Decay can generally take place in weakly bonded aggregates in the presence of ionizing particles or ionizing radiation. Examples collected here mostly use soft X-rays produced by synchrotron radiation to ionize, and use rare-gas clusters, water clusters or solutes in a liquid jet to observe ICD after irradiation. Intermolecular Coulombic Decay is initiated by single ionization into an excited state. The subsequent relaxation proceeds via an ultra-fast energy transfer to a neighbouring site, where a second ionization occurs. Secondary electrons from ICD have clearly been identified in numerous systems. ICD can take place after primary ionization, as the second step of a decay cascade which also involves Auger decay, or after resonant excitation with an energy which exceeds the ionization potential of the system. ICD is expected to play a role whenever particles or radiation with photon energies above the ionization energies for inner valence electrons are present in weakly bonded matter, e.g., biological tissue. The process produces at the same time a slow electron and two charged atomic or molecular fragments, which will lead to structural changes around the ionized site.
Makwana, K. D.; Zhdankin, V.; Li, H.; ...
2015-04-10
We performed simulations of decaying magnetohydrodynamic (MHD) turbulence with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k-1.3⊥k⊥-1.3. The kinetic code shows a spectral slope of k-1.5⊥k⊥-1.5 for smallermore » simulation domain, and k-1.3⊥k⊥-1.3 for larger domain. We then estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. Finally, this work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makwana, K. D.; Zhdankin, V.; Li, H.
We performed simulations of decaying magnetohydrodynamic (MHD) turbulence with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k-1.3⊥k⊥-1.3. The kinetic code shows a spectral slope of k-1.5⊥k⊥-1.5 for smallermore » simulation domain, and k-1.3⊥k⊥-1.3 for larger domain. We then estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. Finally, this work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.« less
2010-04-01
of radiolabeling fusion proteins without the denaturing effects coincident with oxidative radio-iodination associated with the chloramine T method...organ PS product = [(%ID/g)/AUC]*1000 Reportable Outcomes (1) The plasma concentration decay curve for AGT-185 is shown in Figure 1. The % of...injected dose (ID)/mL decreases rapidly in plasma following IV injection. This plasma decay curve was fit to the bi-exponential equation described above
Production and sequential decay of charmed hyperons
NASA Astrophysics Data System (ADS)
Fäldt, Göran
2018-03-01
We investigate production and decay of the Λc+ hyperon. The production considered is through the e+e- annihilation channel, e+e-→Λc+Λ¯c - , with summation over the Λ¯c- antihyperon spin directions. It is in this situation that the Λc+ decay chain is identified. Two kinds of sequential decays are studied. The first one is the doubly weak decay B1→B2M2 , followed by B2→B3M3. The other one is the mixed weak-electromagnetic decay B1→B2M2, followed by B2→B3γ . In both schemes B denotes baryons and M mesons. We should also mention that the initial state of the Λc+ hyperon is polarized.
Chain response of microbial loop to the decay of a diatom bloom in the East China Sea
NASA Astrophysics Data System (ADS)
Wu, Linnan; Lin, Shiquan; Huang, Lingfeng; Lu, Jiachang; Chen, Wenzhao; Guo, Weidong; Zhang, Wuchang; Xiao, Tian; Sun, Jun
2016-02-01
Algal bloom has been regarded as one of the key causes for the summer hypoxia phenomena in the bottom water adjacent to the Yangtze River estuary in the East China Sea. Although a series of biological processes within microbial loop are involved in the development of oxygen depletion during the bloom decay, little has been known about the dynamics of microorganisms in response to the decaying process of the bloom through trophic interaction context. Here, we report some preliminary results of our observations about the response of microbial loop to the bloom decay, based on the onboard incubation experiments for 10 days during a diatom bloom near the Yangtze River estuary in August, 2011. Light and dark incubations were conducted to simulate the bloom decay inside and below the euphotic layer, respectively. In the first stage of bloom decay (Day 0 to Day 4), rapid response was found in heterotrophic bacteria (HB) and ciliate growth, which was in accordance with the decrease of total Chl a, indicating a "bottom-up" control at the early stage of bloom decay. However, the increase of heterotrophic nanoflagellates (HNF) abundance was rather inconspicuous, suggesting predation pressure on HNF from ciliate or other predator at this stage. In the second stage (Day 4 to Day 8), HB and ciliate decreased rapidly with the increase of HNF, revealing the release of HNF form ciliate predation, which suggested a "top-down" control. In the last stage of our experiment (Day 8 to Day 10), the trophic interactions were more complex, but it also implied a "top-down" control within the microbial loop. Meanwhile, virus had been monitored in the whole process of our incubations. It was found that virus lysed microalgae at the first stage, and lysed HB at the second stage. In addition, the bacterial mortality was principally caused by HNF grazing in the light-sufficient incubations and by viral lysis in the light-insufficient incubations. Our results suggest tight trophic interactions within the microbial loop in the decaying process of the algal bloom, which may assist our understanding of the role of microbial loop in hypoxia formation in coastal waters.
Dalitz plot analysis of three-body charmonium decays at BABAR
NASA Astrophysics Data System (ADS)
Palano, Antimo
2016-05-01
We present preliminary results on the measurement of the I=1/2 Kπ S-wave through a model independent partial wave analysis of ηc decays to KS0 K+π- and K+ K-π0 produced in two-photon interactions. We also perform a Dalitz plot analysis of the J/ψ decays to π+π-π0 and K+ K-π0 produced in the initial state radiation process.
Hawkins, Clare L; Davies, Michael J
2002-01-01
Stimulated monocytes and neutrophils generate hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is a key bactericidal agent, but can also damage host tissue. As there is a strong link between chronic inflammation and some cancers, we have investigated HOCl damage to DNA, RNA, and polynucleotides. Reaction of HOCl with these materials is shown to yield multiple semistable chloramines (RNHCl/RR'NCl), which are the major initial products, and account for 50-95% of the added HOCl. These chloramines decay by thermal and metal-ion catalyzed processes, to give nucleoside-derived, nitrogen-centered, radicals. The latter have been characterized by EPR spin trapping. The propensity for radical formation with polynucleotides is cytidine > adenosine = guanosine > uridine = thymidine. The rates of decay, and yield of radicals formed, are dependent on the nature of the nucleobase on which they are formed, with chloramines formed from ring heterocyclic amine groups being less stable than those formed on exocyclic amines (RNH2 groups). Evidence is presented for chlorine transfer from the former, kinetically favored, sites to the more thermodynamically favored exocyclic amines. EPR experiments have also provided evidence for the rapid addition of pyrimidine-derived nitrogen-centered radicals to other nucleobases to give dimers and the oxidation of DNA by radicals derived from preformed nucleoside chloramines. Direct reaction of HOCl with plasmid DNA gives rise to single- and double-strand breaks via chloramine-mediated reactions. Preformed nucleoside chloramines also induce plasmid cleavage, though this only occurs to a significant extent with unstable thymidine- and uridine-derived chloramines, where radical formation is rapid. Overall the data rationalize the preferential formation of chlorinated 2'-deoxycytidine and 2'-deoxyadenosine in DNA and suggest that DNA damage induced by HOCl, and preformed chloramines, occurs at sequence-specific sites.
López, Eduardo L; Contrini, María Marta; Mistchenko, Alicia; Kieffer, Alexia; Baggaley, Rebecca F; Di Tanna, Gian Luca; Desai, Kamal; Rasuli, Anvar; Armoni, Judith
2015-04-01
Long-term seroprotection data are essential for decision-making on the need and timing of vaccine boosters. Based on data from longitudinal serological studies, modeling can provide estimates on long-term antibody persistence and inform such decision-making. We examined long-term anti-hepatitis A virus (anti-HAV) antibody persistence in Argentinean children ≤15 years after the initial study where they completed a 2-dose course of inactivated hepatitis A vaccine (Avaxim 80U Pediatric, Sanofi Pasteur, Lyon, France). Blood serum samples were taken at baseline, 2 weeks (post first dose), 6 months (pre-booster), 6.5 months (post-booster), 10 years and 14-15 years after first vaccine dose. We fitted 8 statistical model types, predominantly mixed effects models, to anti-HAV persistence data, to identify the most appropriate and best fitting models for our data set and to predict individuals' anti-HAV levels and seroprotection rates up to 30 years post vaccination. Fifty-four children (mean age at enrollment 30.4 months) were enrolled up to 15 years post first vaccine dose. There were 3 distinct periods of antibody concentration: rapid rise up to peak concentration post-booster, rapid decay from post-booster to 10 years, followed by slower decay. A 3-segmented linear mixed effects model was the most appropriate for the data set. Extrapolating based on the available 14-15-year follow-up, the analysis predicted that 88% of individuals anti-HAV seronegative prior to vaccination would remain seroprotected at 30 years post vaccination and lifelong seroprotection for vaccinees seropositive prior to vaccination. Currently available data demonstrate that Avaxim 80U Pediatric confers to most vaccinees a high level of seroprotection against hepatitis A infection for at least 20-30 years.
NASA Astrophysics Data System (ADS)
Hansel, C. M.; Buchwald, C.; Diaz, J. M.; Dyhrman, S.; Van Mooy, B. A. S.
2014-12-01
Reactive oxygen species (ROS) are key players in the biogeochemistry of the ocean, where they serve a critical role in the cycling of carbon and metals. Research in the past decade has introduced phytoplankton and, most recently, heterotrophic bacteria as significant sources of ROS, including superoxide, within both photic and aphotic regions of the ocean. ROS are both beneficial and detrimental to life. For instance, superoxide is a vital inter- and intra-cellular signaling molecule, yet at high concentrations it induces lipid peroxidation and initiates programmed cell death (PCD). In fact, superoxide has been implicated in PCD in the nitrogen-fixing diazotroph Trichodesmium, presumably leading to the demise of blooms within oligotrophic marine systems. Here, we explore the rates of superoxide production and decay by natural Trichodesmium populations obtained from various surface waters in the Sargasso Sea. We investigate also the role of light and colony density and morphology (puff v. raft) on superoxide fluxes. We find that Trichodesmium colonies produce extracellular superoxide at extremely high rates in the dark that are on par with those of the toxic raphidophyte Chattonella. The rates of superoxide production, however, rapidly decline with increasing cell density pointing to a role for superoxide in cell signaling in these organisms. We also find extremely rapid extracellular superoxide degradation by Trichodesmium. Together, this likely reflects a need for these organisms to maintain ROS at levels that will support signaling but below the threshold level that triggers PCD or oxidative damage. We also show differences in the effect of light on superoxide fluxes as a function of Trichodesmium colony morphology, suggesting differences in either colony physiology or associated bacterial symbionts. These findings point to complex physiological, ecological, and physical influences on ROS dynamics in phytoplankton that require further exploration.
Deformation dependence of proton decay rates and angular distributions in a time-dependent approach
NASA Astrophysics Data System (ADS)
Carjan, N.; Talou, P.; Strottman, D.
1998-12-01
A new, time-dependent, approach to proton decay from axially symmetric deformed nuclei is presented. The two-dimensional time-dependent Schrödinger equation for the interaction between the emitted proton and the rest of the nucleus is solved numerically for well defined initial quasi-stationary proton states. Applied to the hypothetical proton emission from excited states in deformed nuclei of 208Pb, this approach shows that the problem cannot be reduced to one dimension. There are in general more than one directions of emission with wide distributions around them, determined mainly by the quantum numbers of the initial wave function rather than by the potential landscape. The distribution of the "residual" angular momentum and its variation in time play a major role in the determination of the decay rate. In a couple of cases, no exponential decay was found during the calculated time evolution (2×10-21 sec) although more than half of the wave function escaped during that time.
Short term memory bowing effect is consistent with presentation rate dependent decay.
Tarnow, Eugen
2010-12-01
I reanalyze the free recall data of Murdock, J Exp Psychol 64(5):482-488 (1962) and Murdock and Okada, J Verbal Learn and Verbal Behav 86:263-267 (1970) which show the famous bowing effect in which initial and recent items are recalled better than intermediate items (primacy and recency effects). Recent item recall probabilities follow a logarithmic decay with time of recall consistent with the tagging/retagging theory. The slope of the decay increases with increasing presentation rate. The initial items, with an effectively low presentation rate, decay with the slowest logarithmic slope, explaining the primacy effect. The finding that presentation rate limits the duration of short term memory suggests a basis for memory loss in busy adults, for the importance of slow music practice, for long term memory deficiencies for people with attention deficits who may be artificially increasing the presentation rates of their surroundings. A well-defined, quantitative measure of the primacy effect is introduced.
ERIC Educational Resources Information Center
Countryman, Renee A.; Gold, Paul E.
2007-01-01
A major characteristic of age-related changes in memory in rodents is an increase in the rate of forgetting of new information, even when tests given soon after training reveal intact memory. Interference with CREB functions similarly results in rapid decay of memory. Using quantitative immunocytochemistry, the present experiment examined the…
Hu, Shih-Cheng; Shiue, Angus; Liu, Han-Yang; Chiu, Rong-Ben
2016-01-01
There is worldwide concern with regard to the adverse effects of drug usage. However, contaminants can gain entry into a drug manufacturing process stream from several sources such as personnel, poor facility design, incoming ventilation air, machinery and other equipment for production, etc. In this validation study, we aimed to determine the impact and evaluate the contamination control in the preparation areas of the rapid transfer port (RTP) chamber during the pharmaceutical manufacturing processes. The RTP chamber is normally tested for airflow velocity, particle counts, pressure decay of leakage, and sterility. The air flow balance of the RTP chamber is affected by the airflow quantity and the height above the platform. It is relatively easy to evaluate the RTP chamber′s leakage by the pressure decay, where the system is charged with the air, closed, and the decay of pressure is measured by the time period. We conducted the determination of a vaporized H2O2 of a sufficient concentration to complete decontamination. The performance of the RTP chamber will improve safety and can be completely tested at an ISO Class 5 environment. PMID:27845748
Hu, Shih-Cheng; Shiue, Angus; Liu, Han-Yang; Chiu, Rong-Ben
2016-11-12
There is worldwide concern with regard to the adverse effects of drug usage. However, contaminants can gain entry into a drug manufacturing process stream from several sources such as personnel, poor facility design, incoming ventilation air, machinery and other equipment for production, etc. In this validation study, we aimed to determine the impact and evaluate the contamination control in the preparation areas of the rapid transfer port (RTP) chamber during the pharmaceutical manufacturing processes. The RTP chamber is normally tested for airflow velocity, particle counts, pressure decay of leakage, and sterility. The air flow balance of the RTP chamber is affected by the airflow quantity and the height above the platform. It is relatively easy to evaluate the RTP chamber's leakage by the pressure decay, where the system is charged with the air, closed, and the decay of pressure is measured by the time period. We conducted the determination of a vaporized H₂O₂ of a sufficient concentration to complete decontamination. The performance of the RTP chamber will improve safety and can be completely tested at an ISO Class 5 environment.
Photon and neutral pion production in Au+Au collisions at {radical}s{sub NN} = 130 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, J.; Adler, C.; Aggarwal, M.M.
2004-01-08
We report the first inclusive photon measurements about mid-rapidity (|y| < 0.5) from {sup 197}Au + {sup 197}Au collisions at {radical}s{sub NN} = 130 GeV at RHIC. Photon pair conversions were reconstructed from electron and positron tracks measured with the Time Projection Chamber (TPC) of the STAR experiment. With this method, an energy resolution of {Delta}E/E {approx} 2% at 0.5 GeV has been achieved. Reconstructed photons have also been used to measure the transverse momentum (p{sub t}) spectra of {pi}{sup 0} mesons about mid-rapidity (|y| < 1) via the {pi}{sup 0} {yields} {gamma}{gamma} decay channel. The fractional contribution of themore » {pi}{sup 0} {yields} {gamma}{gamma} decay to the inclusive photon spectrum decreases by 20% {+-} 5% between p{sub t} = 1.65 GeV/c and p{sub t} = 2.4 GeV/c in the most central events, indicating that relative to {pi}{sup 0} {yields} {gamma}{gamma} decay the contribution of other photon sources is substantially increasing.« less
Study of J/ψ production and cold nuclear matter effects in pPb collisions at = 5 TeV
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; David, P.; David, P. N. Y.; Davis, A.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Dogaru, M.; Donleavy, S.; Dordei, F.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Falabella, A.; Färber, C.; Farinelli, C.; Farry, S.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garosi, P.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorbounov, P.; Gordon, H.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hicks, E.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Huse, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Kochebina, O.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Li Gioi, L.; Liles, M.; Lindner, R.; Linn, C.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lu, H.; Lucchesi, D.; Luisier, J.; Luo, H.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Maratas, J.; Marconi, U.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martins Tostes, D.; Martynov, A.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Maurice, E.; Mazurov, A.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morawski, P.; Mordà, A.; Morello, M. J.; Mountain, R.; Mous, I.; Muheim, F.; Müller, K.; Muresan, R.; Muryn, B.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neubert, S.; Neufeld, N.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrick, G. N.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Pérez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Pessina, G.; Petridis, K.; Petrolini, A.; Phan, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Roberts, D. A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shatalov, P.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; Waldi, R.; Wallace, C.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiechczynski, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.
2014-02-01
The production of J/ψ mesons with rapidity 1 .5 < y < 4 .0 or -5 .0 < y < -2 .5 and transverse momentum p T < 14 GeV/ c is studied with the LHCb detector in proton-lead collisions at a nucleon-nucleon centre-of-mass energy = 5TeV. The J/ψ mesons are reconstructed using the dimuon decay mode. The analysis is based on a data sample corresponding to an integrated luminosity of about 1 .6 nb-1. For the first time the nuclear modification factor and forward-backward production ratio are determined separately for prompt J/ψ mesons and J/ψ from b-hadron decays. Clear suppression of prompt J/ψ production with respect to proton-proton collisions at large rapidity is observed, while the production of J/ψ from b-hadron decays is less suppressed. These results show good agreement with available theoretical predictions. The measurement shows that cold nuclear matter effects are important for interpretations of the related quark-gluon plasma signatures in heavy-ion collisions. [Figure not available: see fulltext.
Ma, Ying-Zhong; Lin, Haoran; Du, Mao-Hua; Doughty, Benjamin; Ma, Biwu
2018-05-03
Excitons in low-dimensional organic-inorganic metal halide hybrid structures are commonly thought to undergo rapid self-trapping following creation due to strong quantum confinement and exciton-phonon interaction. Here we report an experimental study probing the dynamics of these self-trapped excitons in the single-crystalline bulk assemblies of 1D organic metal halide nanotubes, (C 6 H 13 N 4 ) 3 Pb 2 Br 7 . Through time-resolved photoluminescence (PL) measurements at different excitation intensities, we observed a marked variation in the PL decay behavior that is manifested by an accelerated decay rate with increasing excitation fluence. Our results offer direct evidence of the occurrence of an exciton-exciton annihilation process, a nonlinear relaxation phenomenon that takes place only when some of the self-trapped excitons become mobile and can approach either each other or those trapped excitons. We further identify a fast and dominant PL decay component with a lifetime of ∼2 ns with a nearly invariant relative area for all acquired PL kinetics, suggesting that this rapid relaxation process is intrinsic.
Ma, Ying -Zhong; Lin, Haoran; Du, Mao -Hua; ...
2018-04-11
Excitons in low-dimensional organic–inorganic metal halide hybrid structures are commonly thought to undergo rapid self-trapping following creation due to strong quantum confinement and exciton–phonon interaction. Here we report an experimental study probing the dynamics of these self-trapped excitons in the single-crystalline bulk assemblies of 1D organic metal halide nanotubes, (C 6H 13N 4) 3Pb 2Br 7. Through time-resolved photoluminescence (PL) measurements at different excitation intensities, we observed a marked variation in the PL decay behavior that is manifested by an accelerated decay rate with increasing excitation fluence. Our results offer direct evidence of the occurrence of an exciton–exciton annihilation process,more » a nonlinear relaxation phenomenon that takes place only when some of the self-trapped excitons become mobile and can approach either each other or those trapped excitons. As a result, we further identify a fast and dominant PL decay component with a lifetime of ~2 ns with a nearly invariant relative area for all acquired PL kinetics, suggesting that this rapid relaxation process is intrinsic.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ying -Zhong; Lin, Haoran; Du, Mao -Hua
Excitons in low-dimensional organic–inorganic metal halide hybrid structures are commonly thought to undergo rapid self-trapping following creation due to strong quantum confinement and exciton–phonon interaction. Here we report an experimental study probing the dynamics of these self-trapped excitons in the single-crystalline bulk assemblies of 1D organic metal halide nanotubes, (C 6H 13N 4) 3Pb 2Br 7. Through time-resolved photoluminescence (PL) measurements at different excitation intensities, we observed a marked variation in the PL decay behavior that is manifested by an accelerated decay rate with increasing excitation fluence. Our results offer direct evidence of the occurrence of an exciton–exciton annihilation process,more » a nonlinear relaxation phenomenon that takes place only when some of the self-trapped excitons become mobile and can approach either each other or those trapped excitons. As a result, we further identify a fast and dominant PL decay component with a lifetime of ~2 ns with a nearly invariant relative area for all acquired PL kinetics, suggesting that this rapid relaxation process is intrinsic.« less
Centrality dependence of inclusive J/ ψ production in p-Pb collisions at √{s_{NN}}=5.02 TeV
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Chunhui, Z.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadlovska, S.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Luz, P. H. F. N. D.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Masui, H.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.
2015-11-01
We present a measurement of inclusive J/ ψ production in p-Pb collisions at √{s_{NN}}=5.02 TeV as a function of the centrality of the collision, as estimated from the energy deposited in the Zero Degree Calorimeters. The measurement is performed with the ALICE detector down to zero transverse momentum, p T, in the backward (-4 .46 < y cms < -2 .96) and forward (2 .03 < y cms < 3 .53) rapidity intervals in the dimuon decay channel and in the mid-rapidity region (-1 .37 < y cms < 0 .43) in the dielectron decay channel. The backward and forward rapidity intervals correspond to the Pb-going and p-going direction, respectively. The p T-differential J /ψ production cross section at backward and forward rapidity is measured for several centrality classes, together with the corresponding average p T and p T2 values. The nuclear modification factor is presented as a function of centrality for the three rapidity intervals, and as a function of p T for several centrality classes at backward and forward rapidity. At mid- and forward rapidity, the J /ψ yield is suppressed up to 40% compared to that in pp interactions scaled by the number of binary collisions. The degree of suppression increases towards central p-Pb collisions at forward rapidity, and with decreasing p T of the J /ψ. At backward rapidity, the nuclear modification factor is compatible with unity within the total uncertainties, with an increasing trend from peripheral to central p-Pb collisions. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Sharma, Manohar K.; Kumar, Abhishek; Verma, Mahendra K.; Chakraborty, Sagar
2018-04-01
In this paper, we investigate the properties of rapidly rotating decaying turbulence using numerical simulations and phenomenological modeling. We find that as the turbulent flow evolves in time, the Rossby number decreases to ˜10-3, and the flow becomes quasi-two-dimensional with strong coherent columnar structures arising due to the inverse cascade of energy. We establish that a major fraction of energy is confined in Fourier modes (±1, 0, 0) and (0, ±1, 0) that correspond to the largest columnar structure in the flow. For wavenumbers (k) greater than the enstrophy dissipation wavenumber (kd), our phenomenological arguments and numerical study show that the enstrophy flux and spectrum of a horizontal cross section perpendicular to the axis of rotation are given by ɛωexp (-C (k/kd ) 2 ) and C ɛω2 /3k-1exp (-C (k/kd ) 2 ) , respectively; for this 2D flow, ɛω is the enstrophy dissipation rate, and C is a constant. Using these results, we propose a new form for the energy spectrum of rapidly rotating decaying turbulence: E (k ) =C ɛω2 /3k-3exp (-C (k/kd ) 2 ) . This model of the energy spectrum is based on wavenumber-dependent enstrophy flux, and it deviates significantly from power law energy spectrum reported earlier.
Time scales of tunneling decay of a localized state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ban, Yue; Muga, J. G.; Sherman, E. Ya.
2010-12-15
Motivated by recent time-domain experiments on ultrafast atom ionization, we analyze the transients and time scales that characterize, aside from the relatively long lifetime, the decay of a localized state by tunneling. While the tunneling starts immediately, some time is required for the outgoing flux to develop. This short-term behavior depends strongly on the initial state. For the initial state, tightly localized so that the initial transients are dominated by over-the-barrier motion, the time scale for flux propagation through the barrier is close to the Buettiker-Landauer traversal time. Then a quasistationary, slow-decay process follows, which sets ideal conditions for observingmore » diffraction in time at longer times and distances. To define operationally a tunneling time at the barrier edge, we extrapolate backward the propagation of the wave packet that escaped from the potential. This extrapolated time is considerably longer than the time scale of the flux and density buildup at the barrier edge.« less
Memory behaviors of entropy production rates in heat conduction
NASA Astrophysics Data System (ADS)
Li, Shu-Nan; Cao, Bing-Yang
2018-02-01
Based on the relaxation time approximation and first-order expansion, memory behaviors in heat conduction are found between the macroscopic and Boltzmann-Gibbs-Shannon (BGS) entropy production rates with exponentially decaying memory kernels. In the frameworks of classical irreversible thermodynamics (CIT) and BGS statistical mechanics, the memory dependency on the integrated history is unidirectional, while for the extended irreversible thermodynamics (EIT) and BGS entropy production rates, the memory dependences are bidirectional and coexist with the linear terms. When macroscopic and microscopic relaxation times satisfy a specific relationship, the entropic memory dependences will be eliminated. There also exist initial effects in entropic memory behaviors, which decay exponentially. The second-order term are also discussed, which can be understood as the global non-equilibrium degree. The effects of the second-order term are consisted of three parts: memory dependency, initial value and linear term. The corresponding memory kernels are still exponential and the initial effects of the global non-equilibrium degree also decay exponentially.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, Mi-Xiang; Dai, Zi-Gao; Wu, Xue-Feng, E-mail: dzg@nju.edu.cn
2016-08-01
The X-ray afterglows of almost one-half of gamma-ray bursts have been discovered by the Swift satellite to have a shallow decay phase of which the origin remains mysterious. Two main models have been proposed to explain this phase: relativistic wind bubbles (RWBs) and structured ejecta, which could originate from millisecond magnetars and rapidly rotating black holes, respectively. Based on these models, we investigate polarization evolution in the shallow decay phase of X-ray and optical afterglows. We find that in the RWB model, a significant bump of the polarization degree evolution curve appears during the shallow decay phase of both opticalmore » and X-ray afterglows, while the polarization position angle abruptly changes its direction by 90°. In the structured ejecta model, however, the polarization degree does not evolve significantly during the shallow decay phase of afterglows whether the magnetic field configuration in the ejecta is random or globally large-scale. Therefore, we conclude that these two models for the shallow decay phase and relevant central engines would be testable with future polarization observations.« less
Mulkern, Robert; Haker, Steven; Mamata, Hatsuho; Lee, Edward; Mitsouras, Dimitrios; Oshio, Koichi; Balasubramanian, Mukund; Hatabu, Hiroto
2014-03-01
Lung parenchyma is challenging to image with proton MRI. The large air space results in ~l/5th as many signal-generating protons compared to other organs. Air/tissue magnetic susceptibility differences lead to strong magnetic field gradients throughout the lungs and to broad frequency distributions, much broader than within other organs. Such distributions have been the subject of experimental and theoretical analyses which may reveal aspects of lung microarchitecture useful for diagnosis. Their most immediate relevance to current imaging practice is to cause rapid signal decays, commonly discussed in terms of short T 2 * values of 1 ms or lower at typical imaging field strengths. Herein we provide a brief review of previous studies describing and interpreting proton lung spectra. We then link these broad frequency distributions to rapid signal decays, though not necessarily the exponential decays generally used to define T 2 * values. We examine how these decays influence observed signal intensities and spatial mapping features associated with the most prominent torso imaging sequences, including spoiled gradient and spin echo sequences. Effects of imperfect refocusing pulses on the multiple echo signal decays in single shot fast spin echo (SSFSE) sequences and effects of broad frequency distributions on balanced steady state free precession (bSSFP) sequence signal intensities are also provided. The theoretical analyses are based on the concept of explicitly separating the effects of reversible and irreversible transverse relaxation processes, thus providing a somewhat novel and more general framework from which to estimate lung signal intensity behavior in modern imaging practice.
MULKERN, ROBERT; HAKER, STEVEN; MAMATA, HATSUHO; LEE, EDWARD; MITSOURAS, DIMITRIOS; OSHIO, KOICHI; BALASUBRAMANIAN, MUKUND; HATABU, HIROTO
2014-01-01
Lung parenchyma is challenging to image with proton MRI. The large air space results in ~l/5th as many signal-generating protons compared to other organs. Air/tissue magnetic susceptibility differences lead to strong magnetic field gradients throughout the lungs and to broad frequency distributions, much broader than within other organs. Such distributions have been the subject of experimental and theoretical analyses which may reveal aspects of lung microarchitecture useful for diagnosis. Their most immediate relevance to current imaging practice is to cause rapid signal decays, commonly discussed in terms of short T2* values of 1 ms or lower at typical imaging field strengths. Herein we provide a brief review of previous studies describing and interpreting proton lung spectra. We then link these broad frequency distributions to rapid signal decays, though not necessarily the exponential decays generally used to define T2* values. We examine how these decays influence observed signal intensities and spatial mapping features associated with the most prominent torso imaging sequences, including spoiled gradient and spin echo sequences. Effects of imperfect refocusing pulses on the multiple echo signal decays in single shot fast spin echo (SSFSE) sequences and effects of broad frequency distributions on balanced steady state free precession (bSSFP) sequence signal intensities are also provided. The theoretical analyses are based on the concept of explicitly separating the effects of reversible and irreversible transverse relaxation processes, thus providing a somewhat novel and more general framework from which to estimate lung signal intensity behavior in modern imaging practice. PMID:25228852
Partial Accretion in the Propeller Stage of Low-mass X-Ray Binary Aql X–1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Güngör, C.; Ekşi, K. Y.; Göğüş, E.
Aql X–1 is one of the most prolific low-mass X-ray binary transients (LMXBTs) showing outbursts almost annually. We present the results of our spectral analyses of Rossi X-Ray Timing Explorer /proportional counter-array observations of the 2000 and 2011 outbursts. We investigate the spectral changes related to the changing disk-magnetosphere interaction modes of Aql X–1. The X-ray light curves of the outbursts of LMXBTs typically show phases of fast rise and exponential decay. The decay phase shows a “knee” where the flux goes from the slow-decay to the rapid-decay stage. We assume that the rapid decay corresponds to a weak propellermore » stage at which a fraction of the inflowing matter in the disk accretes onto the star. We introduce a novel method for inferring, from the light curve, the fraction of the inflowing matter in the disk that accretes onto the neutron star depending on the fastness parameter. We determine the fastness parameter range within which the transition from the accretion to the partial propeller stage is realized. This fastness parameter range is a measure of the scale height of the disk in units of the inner disk radius. We applied the method to a sample of outbursts of Aql X–1 with different maximum flux and duration times. We show that different outbursts with different maximum luminosity and duration follow a similar path in the parameter space of accreted/inflowing mass flux fraction versus fastness parameter.« less
Gu, Ning; Vervaeke, Koen; Storm, Johan F
2007-01-01
Neuronal potassium (K+) channels are usually regarded as largely inhibitory, i.e. reducing excitability. Here we show that BK-type calcium-activated K+ channels enhance high-frequency firing and cause early spike frequency adaptation in neurons. By combining slice electrophysiology and computational modelling, we investigated functions of BK channels in regulation of high-frequency firing in rat CA1 pyramidal cells. Blockade of BK channels by iberiotoxin (IbTX) selectively reduced the initial discharge frequency in response to strong depolarizing current injections, thus reducing the early spike frequency adaptation. IbTX also blocked the fast afterhyperpolarization (fAHP), slowed spike rise and decay, and elevated the spike threshold. Simulations with a computational model of a CA1 pyramidal cell confirmed that the BK channel-mediated rapid spike repolarization and fAHP limits activation of slower K+ channels (in particular the delayed rectifier potassium current (IDR)) and Na+ channel inactivation, whereas M-, sAHP- or SK-channels seem not to be important for the early facilitating effect. Since the BK current rapidly inactivates, its facilitating effect diminishes during the initial discharge, thus producing early spike frequency adaptation by an unconventional mechanism. This mechanism is highly frequency dependent. Thus, IbTX had virtually no effect at spike frequencies < 40 Hz. Furthermore, extracellular field recordings demonstrated (and model simulations supported) that BK channels contribute importantly to high-frequency burst firing in response to excitatory synaptic input to distal dendrites. These results strongly support the idea that BK channels play an important role for early high-frequency, rapidly adapting firing in hippocampal pyramidal neurons, thus promoting the type of bursting that is characteristic of these cells in vivo, during behaviour. PMID:17303637
Time-resolved production and detection of reactive atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossman, L. W.; Hurst, G. S.
1977-09-01
Cesium iodide in the presence of a buffer gas was dissociated with a pulsed ultraviolet laser, which will be referred to as the source laser. This created a population of atoms at a well defined time and in a compact, well defined volume. A second pulsed laser, with a beam that completely surrounded that of the first, photoionized the cesium after a known time delay. This laser will be referred to as the detector laser. It was determined that for short time delays, all of the cesium atoms were easily ionized. When focused, the source laser generated an extremely intensemore » fluence. By accounting for the beam intensity profile it was shown that all of the molecules in the central portion of the beam can be dissociated and detected. Besides proving the feasibility of single-molecule detection, this enabled a determination of the absolute photodissociation cross section as a function of wavelength. Initial studies of the time decay of the cesium signal at low argon pressures indicated a non-exponential decay. This was consistent with a diffusion mechanism transporting cesium atoms out of the laser beam. Therefore, it was desired to conduct further experiments using a tightly focused source beam, passing along the axis of the detector beam. The theoretical behavior of this simple geometry accounting for diffusion and reaction is easily calculated. A diffusion coefficient can then be extracted by data fitting. If reactive decay is due to impurities constituting a fixed percentage of the buffer gas, then two-body reaction rates will scale linearly with pressure and three-body reaction rates will scale quadratically. Also, the diffusion coefficient will scale inversely with pressure. At low pressures it is conceivable that decay due to diffusion would be sufficiently rapid that all other processes can be neglected. Extraction of a diffusion coefficient would then be quite direct. Finally, study of the reaction of cesium and oxygen was undertaken.« less
Rapid reaction of nanomolar Mn(II) with superoxide radical in seawater and simulated freshwater
Hansard, S.P.; Easter, H.D.; Voelker, Bettina M.
2011-01-01
Superoxide radical (O2-) has been proposed to be an important participant in oxidation-reduction reactions of metal ions in natural waters. Here, we studied the reaction of nanomolar Mn(II) with O 2- in seawater and simulated freshwater, using chemiluminescence detection of O2- to quantify the effect of Mn(II) on the decay kinetics of O2-. With 3-24 nM added [Mn(II)] and <0.7 nM [O2-], we observed effective second-order rate constants for the reaction of Mn(II) with O2- of 6 ?? 106 to 1 ?? 107 M -1???s-1 in various seawater samples. In simulated freshwater (pH 8.6), the effective rate constant of Mn(II) reaction with O 2- was somewhat lower, 1.6 ?? 106 M -1???s-1. With higher initial [O2-], in excess of added [Mn(II)], catalytic decay of O 2- by Mn was observed, implying that a Mn(II/III) redox cycle occurred. Our results show that reactions with nanomolar Mn(II) could be an important sink of O2- in natural waters. In addition, reaction of Mn(II) with superoxide could maintain a significant fraction of dissolved Mn in the +III oxidation state. ?? 2011 American Chemical Society.
Observation of magnetic fluctuations and rapid density decay of magnetospheric plasma in Ring Trap 1
NASA Astrophysics Data System (ADS)
Saitoh, H.; Yoshida, Z.; Morikawa, J.; Yano, Y.; Mikami, H.; Kasaoka, N.; Sakamoto, W.
2012-06-01
The Ring Trap 1 device, a magnetospheric configuration generated by a levitated dipole field magnet, has created high-β (local β ˜ 70%) plasma by using electron cyclotron resonance heating (ECH). When a large population of energetic electrons is generated at low neutral gas pressure operation, high frequency magnetic fluctuations are observed. When the fluctuations are strongly excited, rapid loss of plasma was simultaneously observed especially in a quiet decay phase after the ECH microwave power is turned off. Although the plasma is confined in a strongly inhomogeneous dipole field configuration, the frequency spectra of the fluctuations have sharp frequency peaks, implying spatially localized sources of the fluctuations. The fluctuations are stabilized by decreasing the hot electron component below approximately 40%, realizing stable high-β confinement.
Beyond mean-field description of Gamow-Teller resonances and β-decay
NASA Astrophysics Data System (ADS)
Niu, Yifei; Colò, Gianluca; Vigezzi, Enrico; Bai, Chunlin; Niu, Zhongming; Sagawa, Hiroyuki
2018-02-01
β-decay half-lives set the time scale of the rapid neutron capture process, and are therefore essential for understanding the origin of heavy elements in the universe. The random-phase approximation (RPA) based on Skyrme energy density functionals is widely used to calculate the properties of Gamow-Teller (GT) transitions, which play a dominant role in β-decay half-lives. However, the RPA model has its limitations in reproducing the resonance width and often overestimates β-decay half-lives. To overcome these problems, effects beyond mean-field can be included on top of the RPA model. In particular, this can be obtained by taking into account the particle-vibration coupling (PVC). Within the RPA+PVC model, we successfully reproduce the experimental GT resonance width and β-decay half-lives in magic nuclei. We then extend the formalism to superfluid nuclei and apply it to the GT resonance in 120Sn, obtaining a good reproduction of the experimental strength distribution. The effect of isoscalar pairing is also discussed.
[Atrio-ventricular pressure difference associated with mitral valve motion].
Wang, L M; Mori, H; Minezaki, K; Shinozaki, Y; Okino, H
1990-05-01
Pressure difference (PD) across the mitral valve was analyzed by a computer-aided catheter system in dogs. Positive PD (PPD) was consistently traced in the initial phase of rapid filling. While heart rate (HR) was below 100 beat/min, a negative PD (NPD) followed the above PPD. In the period between the NPD and the 2nd PPD due to atrial contraction, PD was kept at zero, while LA and LV pressures were gradually elevated by pulmonary venous return. As HR exceeded 100, 2 positive peaks of PD merged into M-shaped or mono-peaked PD. Through higher inflow resistance produced by artificial mitral stenosis, PPD peak decayed without NPD. In mitral regurgitation with an acute volume overload, all of the PD amplitudes were exaggerated. Thus the quick reversal of PD suggested the effect in blood filling process across the mitral valve.
Transient surface states during the CBE growth of GaAs
NASA Astrophysics Data System (ADS)
Farrell, T.; Hill, D.; Joyce, T. B.; Bullough, T. J.; Weightman, P.
1997-05-01
We report the occurrence of a transient surface state during the initial stages of CBE GaAs(0 0 1) growth. The state was detected in real-time reflectance ( R) and reflectance anisotropy spectroscopy (RAS) growth monitoring. At low growth rates, less than 1 μm/h, beam equivalent pressure (BEP) of triethylgallium (TEG) < 2.5 × 10 -5 mbar there was no change in R and the RAS signal changed from its pre-growth value under arsenic stabilisation at the growth temperature to its "during growth" value upon admission of the TEG, with the familiar monolayer oscillations. At higher TEG BEPs there was a rapid increase in R at all monitoring wavelengths, followed by a monotonic decay to its pre-growth value. This transient increase in R was accompanied by a change in the RAS signal, the magnitude and sign of which varied with wavelength. The initial increase in R is shown to be associated with the development of a metallic-like surface whereas the changes in the RAS signal are consistent with the formation of Ga dimers.
Decay characterization of solutions to the viscous Camassa-Holm equations
NASA Astrophysics Data System (ADS)
Anh, Cung The; Trang, Pham Thi
2018-02-01
In this paper we study the decay characterization in the space H^Kσ({R}^n) of solutions to the viscous Camassa-Holm equations (VCHE) in the whole space {R}n (n=2, 3, 4 ), namely, where m+2p≤slant K , r^*=r^*(v_0) is the decay character of the initial datum v_0\\in H^Kσ({R}^n) . We also get the optimal lower bounds for decay rates of solutions to VCHE when -{n}/{2}. In particular, when v_0\\in H^Kσ({R}^n) \\cap L^1({R}^n) has decay character r^*(v_0)=0 , then we recover the previous results of Bjorland and Schonbek (2008 Ann. Inst. Henri Poincaré Anal. Non Linéaire 25 907-36).
Litter decay rates are determined by lignin chemistry
Jennifer M. Talbot; Daniel J. Yelle; James Nowick; Kathleen K. Treseder
2011-01-01
Litter decay rates are often correlated with the initial lignin:N or lignin:cellulose content of litter, suggesting that interactions between lignin and more labile compounds are important controls over litter decomposition. The chemical composition of lignin may influence these interactions, if lignin physically or chemically protects labile components from microbial...
Long-time predictability in disordered spin systems following a deep quench
NASA Astrophysics Data System (ADS)
Ye, J.; Gheissari, R.; Machta, J.; Newman, C. M.; Stein, D. L.
2017-04-01
We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit—in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.
Long-time predictability in disordered spin systems following a deep quench.
Ye, J; Gheissari, R; Machta, J; Newman, C M; Stein, D L
2017-04-01
We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit-in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.
Production of muons from heavy-flavour hadron decays in p-Pb collisions at √{sNN} = 5.02 TeV
NASA Astrophysics Data System (ADS)
Acharya, S.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.
2017-07-01
The production of muons from heavy-flavour hadron decays in p-Pb collisions at √{sNN} = 5.02 TeV was studied for 2
Production of muons from heavy-flavour hadron decays in p–Pb collisions at s NN = 5.02 TeV
Acharya, S.; Adamová, D.; Aggarwal, M. M.; ...
2017-03-28
The production of muons from heavy-flavour hadron decays in p–Pb collisions at √ sNN = 5.02 TeV was studied for 2< p T <16 GeV/c with the ALICE detector at the CERN LHC. The measurement was performed at forward (p-going direction) and backward (Pb-going direction) rapidity, in the ranges of rapidity in the centre-of-mass system (cms) 2.03 cms <3.53 and –4.46cms <–2.96, respectively. The production cross sections and nuclear modification factors are presented as a function of transverse momentum (p T). At forward rapidity, the nuclear modification factor is compatible with unity while at backward rapidity, in the interval 2.5more » < p T < 3.5 GeV/c, it is above unity by more than 2σ. The ratio of the forward-to-backward production cross sections is also measured in the overlapping interval 2.96<|y cms| < 3.53 and is smaller than unity by 3.7σ in 2.5< p T <3.5 GeV/c. The data are described by model calculations including cold nuclear matter effects.« less
Adam, J.; Adamová, D.; Aggarwal, M. M.; ...
2015-11-19
Here, we present a measurement of inclusive J/Ψ production in p-Pb collisions at √S NN = 5.02 TeV as a function of the centrality of the collision, as estimated from the energy deposited in the Zero Degree Calorimeters. We also performed this measurement with the ALICE detector down to zero transverse momentum, p T, in the backward (-4.46 < y cms < -2.96) and forward (2.03 < y cms< 3.53) rapidity intervals in the dimuon decay channel and in the mid-rapidity region (-1.37 < y cms < 0.43) in the dielectron decay channel. The backward and forward rapidity intervals correspondmore » to the Pb-going and p-going direction, respectively. The p T-differential J/Ψ production cross section at backward and forward rapidity is measured for several centrality classes, together with the corresponding average p T and p T2 values. The nuclear modification factor is presented as a function of centrality for the three rapidity intervals, and as a function of p T for several centrality classes at backward and forward rapidity. At mid-and forward rapidity, the J/Ψ yield is suppressed up to 40% compared to that in pp interactions scaled by the number of binary collisions. Furthermore, the degree of suppression increases towards central p-Pb collisions at forward rapidity, and with decreasing p T of the J/Ψ. At backward rapidity, the nuclear modification factor is compatible with unity within the total uncertainties, with an increasing trend from peripheral to central p-Pb collisions.« less
The early thermal evolution of Mars
NASA Astrophysics Data System (ADS)
Bhatia, G. K.; Sahijpal, S.
2016-01-01
Hf-W isotopic systematics of Martian meteorites have provided evidence for the early accretion and rapid core formation of Mars. We present the results of numerical simulations performed to study the early thermal evolution and planetary scale differentiation of Mars. The simulations are confined to the initial 50 Myr (Ma) of the formation of solar system. The accretion energy produced during the growth of Mars and the decay energy due to the short-lived radio-nuclides 26Al, 60Fe, and the long-lived nuclides, 40K, 235U, 238U, and 232Th are incorporated as the heat sources for the thermal evolution of Mars. During the core-mantle differentiation of Mars, the molten metallic blobs were numerically moved using Stoke's law toward the center with descent velocity that depends on the local acceleration due to gravity. Apart from the accretion and the radioactive heat energies, the gravitational energy produced during the differentiation of Mars and the associated heat transfer is also parametrically incorporated in the present work to make an assessment of its contribution to the early thermal evolution of Mars. We conclude that the accretion energy alone cannot produce widespread melting and differentiation of Mars even with an efficient consumption of the accretion energy. This makes 26Al the prime source for the heating and planetary scale differentiation of Mars. We demonstrate a rapid accretion and core-mantle differentiation of Mars within the initial ~1.5 Myr. This is consistent with the chronological records of Martian meteorites.
Asymptotic decay and non-rupture of viscous sheets
NASA Astrophysics Data System (ADS)
Fontelos, Marco A.; Kitavtsev, Georgy; Taranets, Roman M.
2018-06-01
For a nonlinear system of coupled PDEs, that describes evolution of a viscous thin liquid sheet and takes account of surface tension at the free surface, we show exponential (H^1, L^2) asymptotic decay to the flat profile of its solutions considered with general initial data. Additionally, by transforming the system to Lagrangian coordinates we show that the minimal thickness of the sheet stays positive for all times. This result proves the conjecture formally accepted in the physical literature (cf. Eggers and Fontelos in Singularities: formation, structure, and propagation. Cambridge Texts in Applied Mathematics, Cambridge, 2015), that a viscous sheet cannot rupture in finite time in the absence of external forcing. Moreover, in the absence of surface tension we find a special class of initial data for which the Lagrangian solution exhibits L^2-exponential decay to the flat profile.
Inorganic Halogen Oxidizer Research.
1978-01-25
depend on the rate of exchange. Finally, in our experiments we were dealing RI/RD78-125 B-4 -5- with polymeric solid AsF 5 or BF3 phases which on...well be a heterogeneous diffusion controlled reaction and step (5) might be the rate determining step in the above mechanism. It was shown that at...temperatures above -196*C, where a given NF+ salt is still stable in the absence of light, uv irradiation causes a rapid decay RI/RD78-125 B-5 -6- decay of
Molecular quenching and relaxation in a plasmonic tunable system
NASA Astrophysics Data System (ADS)
Baffou, Guillaume; Girard, Christian; Dujardin, Erik; Colas Des Francs, Gérard; Martin, Olivier J. F.
2008-03-01
Molecular fluorescence decay is significantly modified when the emitting molecule is located near a plasmonic structure. When the lateral sizes of such structures are reduced to nanometer-scale cross sections, they can be used to accurately control and amplify the emission rate. In this Rapid Communication, we extend Green’s dyadic method to quantitatively investigate both radiative and nonradiative decay channels experienced by a single fluorescent molecule confined in an adjustable dielectric-metal nanogap. The technique produces data in excellent agreement with current experimental work.
Ambient methods and apparatus for rapid laser trace constituent analysis
Snyder, Stuart C.; Partin, Judy K.; Grandy, Jon D.; Jeffery, Charles L.
2002-01-01
A method and apparatus are disclosed for measuring trace amounts of constituents in samples by using laser induced breakdown spectroscopy and laser induced fluorescence under ambient conditions. The laser induced fluorescence is performed at a selected wavelength corresponding to an absorption state of a selected trace constituent. The intensity value of the emission decay signal which is generated by the trace constituent is compared to calibrated emission intensity decay values to determine the amount of trace constituent present.
2012-04-26
subsequent fish kills supplied additional organic nutrients for utilization by these opportunistic toxic algae. Both nutrient vectors represented organic non...ichthyotoxic levels, rapid decay of subsequent fish kills supplied additional organic nutrients for utilization by these opportunistic toxic algae. Both...HABSIM model (Fig. 2) a positive feedback of the recycled organic nutrients (DON and DOP) from decaying fish , killed by K. brevis. Note that dissolved
Gyre-driven decay of the Earth's magnetic dipole
Finlay, Christopher C.; Aubert, Julien; Gillet, Nicolas
2016-01-01
Direct observations indicate that the magnitude of the Earth's magnetic axial dipole has decreased over the past 175 years; it is now 9% weaker than it was in 1840. Here we show how the rate of dipole decay may be controlled by a planetary-scale gyre in the liquid metal outer core. The gyre's meridional limbs on average transport normal polarity magnetic flux equatorward and reverse polarity flux poleward. Asymmetry in the geomagnetic field, due to the South Atlantic Anomaly, is essential to the proposed mechanism. We find that meridional flux advection accounts for the majority of the dipole decay since 1840, especially during times of rapid decline, with magnetic diffusion making an almost steady contribution generally of smaller magnitude. Based on the morphology of the present field, and the persistent nature of the gyre, the current episode of dipole decay looks set to continue, at least for the next few decades. PMID:26814368
Gyre-driven decay of the Earth's magnetic dipole.
Finlay, Christopher C; Aubert, Julien; Gillet, Nicolas
2016-01-27
Direct observations indicate that the magnitude of the Earth's magnetic axial dipole has decreased over the past 175 years; it is now 9% weaker than it was in 1840. Here we show how the rate of dipole decay may be controlled by a planetary-scale gyre in the liquid metal outer core. The gyre's meridional limbs on average transport normal polarity magnetic flux equatorward and reverse polarity flux poleward. Asymmetry in the geomagnetic field, due to the South Atlantic Anomaly, is essential to the proposed mechanism. We find that meridional flux advection accounts for the majority of the dipole decay since 1840, especially during times of rapid decline, with magnetic diffusion making an almost steady contribution generally of smaller magnitude. Based on the morphology of the present field, and the persistent nature of the gyre, the current episode of dipole decay looks set to continue, at least for the next few decades.
Interaction quantum quenches in the one-dimensional Fermi-Hubbard model
NASA Astrophysics Data System (ADS)
Heidrich-Meisner, Fabian; Bauer, Andreas; Dorfner, Florian; Riegger, Luis; Orso, Giuliano
2016-05-01
We discuss the nonequilibrium dynamics in two interaction quantum quenches in the one-dimensional Fermi-Hubbard model. First, we study the decay of the Néel state as a function of interaction strength. We observe a fast charge dynamics over which double occupancies are built up, while the long-time decay of the staggered moment is controlled by spin excitations, corroborated by the analysis of the entanglement dynamics. Second, we investigate the formation of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations in a spin-imbalanced system in quenches from the noninteracting case to attractive interactions. Even though the quench puts the system at a finite energy density, peaks at the characteristic FFLO quasimomenta are visible in the quasi-momentum distribution function, albeit with an exponential decay of s-wave pairing correlations. We also discuss the imprinting of FFLO correlations onto repulsively bound pairs and their rapid decay in ramps. Supported by the DFG (Deutsche Forschungsgemeinschaft) via FOR 1807.
Thomson scattering diagnostics of decay processes of Ar/SF6 gas-blast arcs confined by a nozzle
NASA Astrophysics Data System (ADS)
Tomita, Kentaro; Gojima, Daisuke; Nagai, Kazuhiko; Uchino, Kiichiro; Kamimae, Ryo; Tanaka, Yasunori; Suzuki, Katsumi; Iijima, Takanori; Uchii, Toshiyuki; Shinkai, Takeshi
2013-09-01
Because of its instability, it is difficult to measure precisely the electron density (ne) of a long-gap decaying arc discharge in a circuit breaker. However, it is well known that it is an essential parameter for the determination of success or failure of the current interruption in a circuit breaker. In this paper, the spatiotemporal evolutions of the electron density were successfully measured in decaying SF6 gas-blast arc discharges formed with a long gap (50 mm) in a confined nozzle using laser Thomson scattering. Pure Ar gas and an 80%Ar/20%SF6 mixture gas were used as the arc quenching media at atmospheric pressure. After reducing the current to zero, both the measured ne and arc radius in the Ar/SF6 gas arc clearly decayed more rapidly than in the pure Ar gas arc.
Fluorescence decay of naphthalene studied in an electrostatic storage ring, the Mini-Ring
NASA Astrophysics Data System (ADS)
Martin, S.; Matsumoto, J.; Kono, N.; Ji, M.-C.; Brédy, R.; Bernard, J.; Cassimi, A.; Chen, L.
2017-10-01
The cooling of naphthalene cations (C10H8)+ has been studied in a compact electrostatic ion storage ring, the Mini-Ring. A nano second laser pulse of 532 nm (2.33 eV) was used to probe the internal energy distribution every millisecond during the storage time up to 5 ms. The evolution of the internal energy distribution of the stored ions was simulated with a model taking into account the dissociation and the radiative decay processes. Calculated decay curves were fitted to the corresponding laser induced neutral decays. For a laser power of 200 μJ/pulse, a good agreement between experiment and modeling was found using an initial Gaussian energy distribution centered to 5.9 eV and a fluorescence decay rate varying from 200 to 300 s-1 in the energy range from 6 to 7 eV. This fast decay was attributed to the delayed Poincaré fluorescence process.
Taboada-Aranza, Olga; Rodríguez-Nieto, Karen
2018-01-01
The first permanent molar is susceptible to acquire tooth decay since its eruption, due to its anatomy and because it has been exposed before other teeth. An observational, prolective, transversal and comparative study in 194 students, with an average age of 9.9 ± 1.8 years. The evaluation of the dentobacterial plate (DBP) was analyzed using the O'Leary index and the tooth decay experience with the DMFS (sum of decayed, missing, extracted and filling dental surfaces) and DMFT (sum of decayed, missing, extracted and filling per tooth) indexes. The prevalence of DBP in the first permanent molar was of 99.4% and tooth decay of 57.2%. The value of DMFT was 1.4 ± 1.4. The tooth decay experience was higher in children from 7.10 years old with a value of 2.2 ± 2.3, who are 7.9 times more likely to develop lesions than younger children (odds ratio: 8.9; 95% confidence interval: 4.1-19.5; p < 0.0001). We found an association between age and the values of the tooth decay experience indexes; even though these were weak in the case of DMF (r = 0.439), the model allowed to explain 19% of the association, and 22% for DMFT (r = 0.464). Tooth decay develops rapidly in the first permanent molars; however, it does not receive the necessary care because it is usually unknown that it is a permanent tooth. Copyright: © 2018 Permanyer.
Source term evaluation model for high-level radioactive waste repository with decay chain build-up.
Chopra, Manish; Sunny, Faby; Oza, R B
2016-09-18
A source term model based on two-component leach flux concept is developed for a high-level radioactive waste repository. The long-lived radionuclides associated with high-level waste may give rise to the build-up of activity because of radioactive decay chains. The ingrowths of progeny are incorporated in the model using Bateman decay chain build-up equations. The model is applied to different radionuclides present in the high-level radioactive waste, which form a part of decay chains (4n to 4n + 3 series), and the activity of the parent and daughter radionuclides leaching out of the waste matrix is estimated. Two cases are considered: one when only parent is present initially in the waste and another where daughters are also initially present in the waste matrix. The incorporation of in situ production of daughter radionuclides in the source is important to carry out realistic estimates. It is shown that the inclusion of decay chain build-up is essential to avoid underestimation of the radiological impact assessment of the repository. The model can be a useful tool for evaluating the source term of the radionuclide transport models used for the radiological impact assessment of high-level radioactive waste repositories.
High speed radiometric measurements of IED detonation fireballs
NASA Astrophysics Data System (ADS)
Spidell, Matthew T.; Gordon, J. Motos; Pitz, Jeremey; Gross, Kevin C.; Perram, Glen P.
2010-04-01
Continuum emission is predominant in fireball spectral phenomena and in some demonstrated cases, fine detail in the temporal evolution of infrared spectral emissions can be used to estimate size and chemical composition of the device. Recent work indicates that a few narrow radiometric bands may reveal forensic information needed for the explosive discrimination and classification problem, representing an essential step in moving from "laboratory" measurements to a rugged, fieldable system. To explore phenomena not observable in previous experiments, a high speed (10μs resolution) radiometer with four channels spanning the infrared spectrum observed the detonation of nine home made explosive (HME) devices in the < 100lb class. Radiometric measurements indicate that the detonation fireball is well approximated as a single temperature blackbody at early time (0 < t <~ 3ms). The effective radius obtained from absolute intensity indicates fireball growth at supersonic velocity during this time. Peak fireball temperatures during this initial detonation range between 3000.3500K. The initial temperature decay with time (t <~ 10ms) can be described by a simple phenomenological model based on radiative cooling. After this rapid decay, temperature exhibits a small, steady increase with time (10 <~ t <~ 50ms) and peaking somewhere between 1000.1500K-likely the result of post-detonation combustion-before subsequent cooling back to ambient conditions . Radius derived from radiometric measurements can be described well (R2 > 0.98) using blast model functional forms, suggesting that energy release could be estimated from single-pixel radiometric detectors. Comparison of radiometer-derived fireball size with FLIR infrared imagery indicate the Planckian intensity size estimates are about a factor of two smaller than the physical extent of the fireball.
Effect of oxygen on survival of faecal pollution indicators in drinking water.
Roslev, P; Bjergbaek, L A; Hesselsoe, M
2004-01-01
The aim of this study was to determine the effect of oxygen on the survival of faecal pollution indicators including Escherichia coli in nondisinfected drinking water. Aerobic and anaerobic drinking water microcosms were inoculated with E. coli ATCC 25922 or raw sewage. Survival of E. coli was monitored by membrane filtration combined with cultivation on standard media, and by in situ hybridization with 16S rRNA-targeted fluorescent oligonucleotide probes. Anaerobic conditions significantly increased the survival of E. coli in drinking water compared with aerobic conditions. Escherichia coli ATCC 25922 showed a biphasic decrease in survival under aerobic conditions with an initial first-order decay rate of -0.11 day(-1) followed by a more rapid rate of -0.35 day(-1). In contrast, the first-order decay rate under anaerobic conditions was only -0.02 day(-1). After 35 days, <0.01% of the initial E. coli ATCC 25922 population remained detectable in aerobic microcosms compared with 48% in anaerobic microcosms. A poor survival was observed under aerobic conditions regardless of whether E. coli ATCC 25922 or sewage-derived E. coli was examined, and regardless of the detection method used (CFU or fluorescent in situ hybridization). Aerobic conditions in drinking water also appeared to decrease the survival of faecal enterococci, somatic coliphages and coliforms other than E. coli. The results indicate that oxygen is a major regulator of the survival of E. coli in nondisinfected drinking water. The results also suggest that faecal pollution indicators other than E. coli may persist longer in drinking water under anaerobic conditions. The effect of oxygen should be considered when evaluating the survival potential of enteric pathogens in oligotrophic environments.
NASA Astrophysics Data System (ADS)
Khoze, Valentin V.; Spannowsky, Michael
2018-01-01
We introduce and discuss two inter-related mechanisms operative in the electroweak sector of the Standard Model at high energies. Higgsplosion, the first mechanism, occurs at some critical energy in the 25 to 103 TeV range, and leads to an exponentially growing decay rate of highly energetic particles into multiple Higgs bosons. We argue that this is a well-controlled non-perturbative phenomenon in the Higgs-sector which involves the final state Higgs multiplicities n in the regime nλ ≫ 1 where λ is the Higgs self-coupling. If this mechanism is realised in nature, the cross-sections for producing ultra-high multiplicities of Higgs bosons are likely to become observable and even dominant in this energy range. At the same time, however, the apparent exponential growth of these cross-sections at even higher energies will be tamed and automatically cut-off by a related Higgspersion mechanism. As a result, and in contrast to previous studies, multi-Higgs production does not violate perturbative unitarity. Building on this approach, we then argue that the effects of Higgsplosion alter quantum corrections from very heavy states to the Higgs boson mass. Above a certain energy, which is much smaller than their masses, these states would rapidly decay into multiple Higgs bosons. The heavy states become unrealised as they decay much faster than they are formed. The loop integrals contributing to the Higgs mass will be cut off not by the masses of the heavy states, but by the characteristic loop momenta where their decay widths become comparable to their masses. Hence, the cut-off scale would be many orders of magnitude lower than the heavy mass scales themselves, thus suppressing their quantum corrections to the Higgs boson mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spitznagel, D
Purpose: The use of protons for radiation therapy is growing rapidly. One consequence of protons interacting with different media is activation. These nuclear reactions induced by the protons, scattered neutrons, and gamma rays, activate different materials encountered, particularly by the therapists. The purpose of this study was to examine the derived nuclides from the activation, and also the decay rate. Methods: The study was conducted in our proton therapy facility. Protons are derived from a synchrocyclotron and pass through field shipping systems, apertures, and range compensators to define the beam within the patient.Included materials of concerns measured; the patient supportmore » couch, sheet rock in the wall, solid plastics used for quality assurance and dosimetry, and the passive scattering system itself, which includes brass apertures, and Lucite or blue wax compensators. All devices were studied post irradiation using gamma spectroscopy to determine the nuclides, and a sodium iodine scintillation detector to measure decay, particularly when the dose rate fell to background levels. Results: We have also determined from the measurements we will maintain brass apertures for three months before sending them for scrap. Some of the radionuclides arrived from these measurements included Na-22 for the blue wax compensator, C1-34m for the sheetrock, and Sc-44 and Co-60 for the brass apertures. We found compensators made out of Lucite or wax decayed to background in 2 hours. The patient support couch decayed to background in approximately 40 minutes, and sheet rock decayed in 80 minutes. In terms of the aperture layers, the most proximal aperture slab had much higher activity than the distal slab. Also the proximal sides of the slabs were much more activate than the distal. Conclusion: We have given proper instruction to therapists performing quality assurance in terms of the handled plastics, and to handle apertures rapidly as possible.« less
Research Paper. Nutrient uptake and mineralization during leaf decay in streams-a model simulation.
J.R. Webster; J.D. Newbold; S.A. Thomas; H.M. Valett; P.J. Mulholland
2009-01-01
We developed a stoichiometrically explicit computer model to examine how heterotrophic uptake of nutrients and microbial mineralization occurring during the decay of leaves in streams may be important in modifying nutrient concentrations. The simulations showed that microbial uptake can substantially decrease stream nutrient concentrations during the initial phases of...
Orthopositronium decay form factors and two-photon correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adkins, Gregory S.; Droz, Daniel R.; Rastawicki, Dominik
2010-04-15
We give results for the orthopositronium decay form factors through one-loop order. We use the form factors to calculate momentum correlations of the final-state photons
Xingxia Ma; Grant T. Kirker; Carol A. Clausen; Mingliang Jiang; Haibin Zhou
2017-01-01
The modulus of elasticity (MOE) of wood is a sensitive indicator of rotfungal attack. To develop an alternative method of rapid assessment of fungal decay in the laboratory, changes in static MOE of untreated and preservative-treated wood were measured during exposure to the brownrot fungus, Gloeophyllum trabeum, and the white-rot fungus, Trametes...
Direct measurement of initial wake separation (bo) and initial circulation (ro) using pulsed lidars
DOT National Transportation Integrated Search
2013-06-17
The initial separation distance (bo) between a counter-rotating vortex pair generated by an aircraft is a fundamental parameter affecting wake turbulence decay. For the past decade Pulsed Doppler Lidars have emerged as the primary remote sensors for ...
On the Nature of the Cherdyntsev-Chalov Effect
NASA Astrophysics Data System (ADS)
Timashev, S. F.
2018-06-01
It is shown that the Cherdyntsev-Chalov effect, usually presented as the separation of even isotopes of uranium upon their transition from the solid to the liquid phase, can include initiated acceleration of the radioactive decay of uranium-238 nuclei during the formation of cracks in geologically (seismic and volcanically) active zones of the Earth's crust. The fissuring of the solid-phase medium leads to an increase in mechanical tensile stress and the emergence of strong local electric fields, resulting in the injection of chemical-scale high-energy electrons into the aqueous phase of the cracks. Under these conditions, the e - catalytic decay of uranium-238 nucleus studied earlier can occur during the formation of metastable protactinium-238 nuclei with locally distorted nucleon structure, which subequently undergo β-decay with the formation of thorium-234 and helium-4 nuclei as products of the fission of the initial uranium-238 nucleus with a characteristic period of several years. The observed increased activity of uranium-234 nuclei that form during the subsequent β-decay of thorium and then protactinium is associated with the initiated fission of uranium-238. The possibility is discussed of developing thermal power by using existing wastes from uranium production that contain uranium-238 to activate this isotope through the mechanochemical processing of these wastes in aqueous media with the formation of 91 238 Pa isu , the half-life of which is several years.
Relaxation processes in a low-order three-dimensional magnetohydrodynamics model
NASA Technical Reports Server (NTRS)
Stribling, Troy; Matthaeus, William H.
1991-01-01
The time asymptotic behavior of a Galerkin model of 3D magnetohydrodynamics (MHD) has been interpreted using the selective decay and dynamic alignment relaxation theories. A large number of simulations has been performed that scan a parameter space defined by the rugged ideal invariants, including energy, cross helicity, and magnetic helicity. It is concluded that time asymptotic state can be interpreted as a relaxation to minimum energy. A simple decay model, based on absolute equilibrium theory, is found to predict a mapping of initial onto time asymptotic states, and to accurately describe the long time behavior of the runs when magnetic helicity is present. Attention is also given to two processes, operating on time scales shorter than selective decay and dynamic alignment, in which the ratio of kinetic to magnetic energy relaxes to values 0(1). The faster of the two processes takes states initially dominant in magnetic energy to a state of near-equipartition between kinetic and magnetic energy through power law growth of kinetic energy. The other process takes states initially dominant in kinetic energy to the near-equipartitioned state through exponential growth of magnetic energy.
Aad, G.
2015-09-14
Measurements of differential cross sections for J/ψ production in p + Pb collisions at √s NN=5.02 TeV at the CERN Large Hadron Collider with the ATLAS detector are presented. The data set used corresponds to an integrated luminosity of 28.1 nb -1. The J/ψ mesons are reconstructed in the dimuon decay channel over the transverse momentum range 8< p T< 30GeV and over the center-of-mass rapidity range -2.87 < y*< 1.94. Prompt J/ψ are separated from J/ψ resulting from b-hadron decays through an analysis of the distance between the J/ψ decay vertex and the event primary vertex. The differential crossmore » section for production of nonprompt J/ψ is compared to a FONLL calculation that does not include nuclear effects. Forward-backward production ratios are presented and compared to theoretical predictions. These results complement previously published results by covering a region of higher transverse momentum and more central rapidity. They constrain the kinematic dependence of nuclear modifications of charmonium and b-quark production in p + Pb collisions.« less
NASA Technical Reports Server (NTRS)
Schreck, Stefan
1993-01-01
This reports describes experiments conducted at the High-Speed Jet Facility at the University of Southern California on supersonic jets. The goal of the study was to develop methods for controlling the noise emitted from supersonic jets by passive and/or active means. Work by Seiner et al (1991) indicates that eddy Mach wave radiation is the dominant noise source in a heated high speed jet. Eddy Mach radiation is caused by turbulent eddies traveling at supersonic speed in the shear layer of the jet. The convection velocity of the eddies decays with increasing distance from the nozzle exit due to the mixing of the jet stream with the ambient fluid. Once the convection speed reaches subsonic velocities, eddy Mach wave radiation ceases. To control noise, a rapid decay of the convection velocity is desired. This may be accomplished by enhanced mixing in the jet. In this study, small aspect ratio rectangular jet nozzles were tested. A flapping mode was noticed in the jets. By amplifying screech components of the jets and destabilizing the jet columns with a collar device, the flapping mode was excited. The result was a rapid decay of the jet velocity. A reduction in eddy Mach radiation in rectangular supersonic jets may be achieved with this device.
Smith, Benjamin T; Knutsen, Jeffrey S; Davis, Robert H
2010-05-01
The cellulose hydrolysis kinetics during batch enzymatic saccharification are typified by a rapid initial rate that subsequently decays, resulting in incomplete conversion. Previous studies suggest that changes associated with the solution, substrate, or enzymes may be responsible. In this work, kinetic experiments were conducted to determine the relative magnitude of these effects. Pretreated corn stover (PCS) was used as a lignocellulosic substrate likely to be found in a commercial saccharification process, while Avicel and Kraft lignin were used to create model substrates. Glucose inhibition was observed by spiking the reaction slurry with glucose during initial-rate experiments. Increasing the glucose concentration from 7 to 48 g/L reduced the cellulose conversion rate by 94%. When product sugars were removed using ultrafiltration with a 10 kDa membrane, the glucose-based conversion increased by 9.5%. Reductions in substrate reactivity with conversion were compared directly by saccharifying PCS and Avicel substrates that had been pre-reacted to different conversions. Reaction of substrate with a pre-conversion of 40% resulted in about 40% reduction in the initial rate of saccharification, relative to fresh substrate with identical cellulose concentration. Overall, glucose inhibition and reduced substrate reactivity appear to be dominant factors, whereas minimal reductions of enzyme activity were observed.
Resurgent current of voltage-gated Na+ channels
Lewis, Amanda H; Raman, Indira M
2014-01-01
Resurgent Na+ current results from a distinctive form of Na+ channel gating, originally identified in cerebellar Purkinje neurons. In these neurons, the tetrodotoxin-sensitive voltage-gated Na+ channels responsible for action potential firing have specialized mechanisms that reduce the likelihood that they accumulate in fast inactivated states, thereby shortening refractory periods and permitting rapid, repetitive, and/or burst firing. Under voltage clamp, step depolarizations evoke transient Na+ currents that rapidly activate and quickly decay, and step repolarizations elicit slower channel reopening, or a ‘resurgent’ current. The generation of resurgent current depends on a factor in the Na+ channel complex, probably a subunit such as NaVβ4 (Scn4b), which blocks open Na+ channels at positive voltages, competing with the fast inactivation gate, and unblocks at negative voltages, permitting recovery from an open channel block along with a flow of current. Following its initial discovery, resurgent Na+ current has been found in nearly 20 types of neurons. Emerging research suggests that resurgent current is preferentially increased in a variety of clinical conditions associated with altered cellular excitability. Here we review the biophysical, molecular and structural mechanisms of resurgent current and their relation to the normal functions of excitable cells as well as pathophysiology. PMID:25172941
NASA Astrophysics Data System (ADS)
Milliner, C. W. D.; Burgmann, R.; Wang, T.; Inbal, A.; Bekaert, D. P.; Liang, C.; Fielding, E. J.
2017-12-01
Separating the contribution of shallow coseismic slip from rapidly decaying, postseismic afterslip in surface rupturing events has been difficult to resolve due to the typically sparse configuration of GPS networks and long-repeat time of InSAR acquisitions. Whether shallow fault motion along surface ruptures is a result of coseismic slip, or largely a product of rapid afterslip occurring within the first minutes to days, has significant implications for our understanding of the mechanics and frictional behavior of faulting in the shallow crust. To test this behavior in the case of a major surface rupturing event, we attempt to quantify the co- and postseismic slip of the 2016 Mw 7.1 Kumamoto earthquake sequence using a dense and continuous GPS network ( 10 km spacing), with short-repeat time, ALOS-2 InSAR data. Using the Network Inversion Filter method, we jointly invert the GPS and InSAR data to obtain a time history of afterslip in the first minutes to months following the mainshock. From our initial results, we find no clear evidence of significant shallow afterslip (i.e., no observable slip > 30 cm at depths of < 3 km, a minimum resolvable value), that could account for the 1 m of coseismic deficit of shallow slip inferred from our static finite-fault inversion. Our results show, aside from significant volumetric changes related to poroelastic processes, the majority of shallow fault slip was largely complete after rupture cessation. We also attempt to improve our coseismic slip model by implementing a method that inverts changes in seismicity rates for coseismic slip, helping constrain parts of the model space at depth where geodetic data loses resolving power. The use of geodetic data with the ability to resolve near-field, coseismic deformation and rapidly decaying postseismic processes will aid in our understanding of the frictional properties of shallow faulting, giving more reliable predictions for ground motion simulations and seismic hazard assessments.
NASA Astrophysics Data System (ADS)
Lü, Boqiang; Shi, Xiaoding; Zhong, Xin
2018-06-01
We are concerned with the Cauchy problem of the two-dimensional (2D) nonhomogeneous incompressible Navier–Stokes equations with vacuum as far-field density. It is proved that if the initial density decays not too slow at infinity, the 2D Cauchy problem of the density-dependent Navier–Stokes equations on the whole space admits a unique global strong solution. Note that the initial data can be arbitrarily large and the initial density can contain vacuum states and even have compact support. Furthermore, we also obtain the large time decay rates of the spatial gradients of the velocity and the pressure, which are the same as those of the homogeneous case.
Kobayashi, Kazuo; Seike, Yumiko; Saeki, Akinori; Kozawa, Takahiro; Takeuchi, Fusako; Tsubaki, Motonari
2014-10-06
The dynamics of free-radical species in a model cellular system are examined by measuring the formation and decay of ascorbate radicals within a liposome with pulse radiolysis techniques. Upon pulse radiolysis of an N2O-saturated aqueous solution containing ascorbate-loaded liposome vesicles, ascorbate radicals are formed by the reaction of OH(·) radicals with ascorbate in unilamellar vesicles exclusively, irrespective of the presence of vesicle lipids. The radicals are found to decay rapidly compared with the decay kinetics in an aqueous solution. The distinct radical reaction kinetics in the vesicles and in bulk solution are characterized, and the kinetic data are analyzed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal non-equilibrium effect of small-scale structures in compressible turbulence
NASA Astrophysics Data System (ADS)
Li, Shi-Yi; Li, Qi-Bing
2018-05-01
The thermal non-equilibrium effect of the small-scale structures in the canonical two-dimensional turbulence is studied. Comparative studies of Unified Gas Kinetic Scheme (UGKS) and GKS-Navier-Stokes (NS) for Taylor-Green flow with initial Ma = 1, Kn = 0.01 and decaying isotropic turbulence with initial Mat = 1, Reλ = 20 show that the discrepancy exists both in small and large scales, even beyond the dissipation range to 10η with accuracy to 8% in the SGS energy transfer of the decaying isotropic turbulence, illustrating the necessity for resolving the kinetic scales even at moderated Reλ = 20.
Characterization of plasma current quench during disruptions at HL-2A
NASA Astrophysics Data System (ADS)
Zhu, Jinxia; Zhang, Yipo; Dong, Yunbo; HL-2A Team
2017-05-01
The most essential assumptions of physics for the evaluation of electromagnetic forces on the plasma-facing components due to a disruption-induced eddy current are characteristics of plasma current quenches including the current quench rate or its waveforms. The characteristics of plasma current quenches at HL-2A have been analyzed during spontaneous disruptions. Both linear decay and exponential decay are found in the disruptions with the fastest current quenches. However, there are two stages of current quench in the slow current quench case. The first stage with an exponential decay and the second stage followed by a rapid linear decay. The faster current quench rate corresponds to the faster movement of plasma displacement. The parameter regimes on the current quench time and the current quench rates have been obtained from disruption statistics at HL-2A. There exists no remarkable difference for distributions obtained between the limiter and the divertor configuration. This data from HL-2A provides basic data of the derivation of design criteria for a large-sized machine during the current decay phase of the disruptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.
The production of the X(3872) is studied in pp collisions at sqrt(s) = 7 TeV, using decays to J/psi pi pi, where the J/psi decays to two muons. The data were recorded by the CMS experiment and correspond to an integrated luminosity of 4.8 inverse femtobarns. The measurements are performed in a kinematic range in which the X(3872) candidates have a transverse momentum 10 < pt < 50 GeV and rapidity abs(y) < 1.2. The ratio of the X(3872) and psi(2S) cross sections times their branching fractions into J/psi pi pi is measured as a function of pt. In addition,more » the fraction of X(3872) originating from B decays is determined. From these measurements the prompt X(3872) differential cross section times branching fraction as a function of pt is extracted. The pi pi mass spectrum of the J/psi pi pi system in the X(3872) decays is also investigated.« less
DiClemente, Ralph J.; Brown, Jennifer L.; Sales, Jessica M.; Rose, Eve S.
2013-01-01
Objective HIV risk-reduction interventions have demonstrated efficacy in enhancing the proportion of condom protected sex acts (CPS) among diverse populations. While post-intervention exposure increases in CPS are often observed, there is scant empirical data quantifying decay of intervention efficacy (declines in CPS following cessation of the intervention among participants reporting an initial post-intervention increase in CPS). Thus, the objective of this study was to quantify the rate of decay in intervention efficacy over a 24-month follow-up. Design African-American adolescent females (ages 14–20; N = 349) completed a baseline ACASI, participated in an HIV risk-reduction intervention, and were assessed at 6-month intervals for 24-months post-intervention. Intervention efficacy was conceptualized as an increase in participants’ CPS relative to baseline. Methods Analyses focused on the subset of participants who reported an initial increase in CPS from baseline to the 6-month post-intervention assessment (n = 121) to quantify the rate of decay in intervention efficacy over a 24-month follow-up period. Results CPS increased markedly from baseline to 6-month follow-up assessment. However, from 6- to 12-months, a marked decline in CPS was observed. Further CPS declines, though not statistically significant, were observed from 12- to 18-months and 18- to 24-months. Cumulative reductions in CPS over the entire 24-month follow-up resulted in no statistical difference between baseline and 24-month follow-up; indicative of a non-significant intervention effect at 24-month assessment. Conclusions Innovative post-intervention optimization strategies are needed to minimize CPS decay over protracted time periods by reinforcing, sustaining, and potentially amplifying initial gains in condom use. PMID:23673893
Decay of solutions of the wave equation with arbitrary localized nonlinear damping
NASA Astrophysics Data System (ADS)
Bellassoued, Mourad
We study the problem of decay rate for the solutions of the initial-boundary value problem to the wave equation, governed by localized nonlinear dissipation and without any assumption on the dynamics (i.e., the control geometric condition is not satisfied). We treat separately the autonomous and the non-autonomous cases. Providing regular initial data, without any assumption on an observation subdomain, we prove that the energy decays at last, as fast as the logarithm of time. Our result is a generalization of Lebeau (in: A. Boutet de Monvel, V. Marchenko (Eds.), Algebraic and Geometric Methods in Mathematical Physics, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1996, pp. 73) result in the autonomous case and Nakao (Adv. Math. Sci. Appl. 7 (1) (1997) 317) work in the non-autonomous case. In order to prove that result we use a new method based on the Fourier-Bross-Iaglintzer (FBI) transform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reifenrath, W.G.; Hawkins, G.S.; Kurtz, M.S.
Formulations of the mosquito repellent N,N-diethyl-3-methylbenzamide (deet) in combination with a variety of additives were developed to control repellent evaporation and percutaneous penetration. Deet was also formulated with the repellent dimethyl phthalate to study the interaction of the two compounds on the skin. The evaporation and penetration processes were evaluated on whole and split-thickness pig skin using radiolabeled repellents with an in vitro apparatus. Under essentially still air and air flow conditions, one of the deet formulations resulted in significantly reduced total evaporation and percutaneous penetration of deet as compared to unformulated repellent. When deet and dimethyl phthalate were combined,more » neither repellent affected the total amount of evaporation and penetration of the other compound. However, initial percutaneous penetration and evaporation rates were slightly less and decayed less rapidly than when both chemicals were tested separately at the same dose. These results indicated a degree of competition of the two compounds for the same avenues of loss.« less
Precision Neutron Time-of-Flight Detectors Provide Insight into NIF Implosion Dynamics
NASA Astrophysics Data System (ADS)
Schlossberg, David; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Moore, A. S.; Waltz, C. S.
2017-10-01
During inertial confinement fusion, higher-order moments of neutron time-of-flight (nToF) spectra can provide essential information for optimizing implosions. The nToF diagnostic suite at the National Ignition Facility (NIF) was recently upgraded to include novel, quartz Cherenkov detectors. These detectors exploit the rapid Cherenkov radiation process, in contrast with conventional scintillator decay times, to provide high temporal-precision measurements that support higher-order moment analyses. Preliminary measurements have been made on the NIF during several implosions and initial results are presented here. Measured line-of-sight asymmetries, for example in ion temperatures, will be discussed. Finally, advanced detector optimization is shown to advance accessible physics, with possibilities for energy discrimination, gamma source identification, and further reduction in quartz response times. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
The Time-Course of Lexical Activation During Sentence Comprehension in People With Aphasia
Ferrill, Michelle; Love, Tracy; Walenski, Matthew; Shapiro, Lewis P.
2012-01-01
Purpose To investigate the time-course of processing of lexical items in auditorily presented canonical (subject–verb–object) constructions in young, neurologically unimpaired control participants and participants with left-hemisphere damage and agrammatic aphasia. Method A cross modal picture priming (CMPP) paradigm was used to test 114 control participants and 8 participants with agrammatic aphasia for priming of a lexical item (direct object noun) immediately after it is initially encountered in the ongoing auditory stream and at 3 additional time points at 400-ms intervals. Results The control participants demonstrated immediate activation of the lexical item, followed by a rapid loss (decay). The participants with aphasia demonstrated delayed activation of the lexical item. Conclusion This evidence supports the hypothesis of a delay in lexical activation in people with agrammatic aphasia. The delay in lexical activation feeds syntactic processing too slowly, contributing to comprehension deficits in people with agrammatic aphasia. PMID:22355007
He, Shui-Lian; Yang, Yang; Morrell, Peter L; Yi, Ting-Shuang
2015-01-01
Foxtail millet (Setaria italica (L.) Beauv) is one of the earliest domesticated grains, which has been cultivated in northern China by 8,700 years before present (YBP) and across Eurasia by 4,000 YBP. Owing to a small genome and diploid nature, foxtail millet is a tractable model crop for studying functional genomics of millets and bioenergy grasses. In this study, we examined nucleotide sequence diversity, geographic structure, and levels of linkage disequilibrium at four nuclear loci (ADH1, G3PDH, IGS1 and TPI1) in representative samples of 311 landrace accessions across its cultivated range. Higher levels of nucleotide sequence and haplotype diversity were observed in samples from China relative to other sampled regions. Genetic assignment analysis classified the accessions into seven clusters based on nucleotide sequence polymorphisms. Intralocus LD decayed rapidly to half the initial value within ~1.2 kb or less.
Mirror Instability in the Turbulent Solar Wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellinger, Petr; Landi, Simone; Verdini, Andrea
2017-04-01
The relationship between a decaying strong turbulence and the mirror instability in a slowly expanding plasma is investigated using two-dimensional hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and a vanishing correlation between the two fields. A turbulent cascade rapidly develops, magnetic field fluctuations exhibit a Kolmogorov-like power-law spectrum at large scales and a steeper spectrum at sub-ion scales. The imposed expansion (taking a strictly transverse ambient magnetic field) leadsmore » to the generation of an important perpendicular proton temperature anisotropy that eventually drives the mirror instability. This instability generates large-amplitude, nonpropagating, compressible, pressure-balanced magnetic structures in a form of magnetic enhancements/humps that reduce the perpendicular temperature anisotropy.« less
A systematic experimental study was conducted using a pilot-scale drinking water distribution system simulator to quantify the effect of hydrodynamics, total organic carbon (TOC), initial disinfectant levels, and pipe materials on chlorine decay and disinfection by-product (DBP) ...
A systematic experimental study was conducted using a pilot-scale drinking water distribution system simulator to quantify the effect of hydrodynamics, total organic carbon (TOC), initial disinfectant levels, and pipe materials on chlorine decay and disinfection by-product (DBP) ...
Preventing Tooth Decay: A Guide for Implementing Self-Applied Fluoride in Schools.
ERIC Educational Resources Information Center
National Inst. of Dental Research (NIH), Bethesda, MD.
This guidebook was developed to assist citizens in initiating programs to prevent tooth decay in young children through the use of fluoridation. It contains outlines for determining the needs of the school and community for fluoride in drinking water, and presents the various steps and activities that are necessary for developing and implementing…
Mechanisms of protection by NHA against fungal decay
Frederick Green; William Henry; Tor Schultz
2002-01-01
Treating wood with the water-borne sodium salt of N'-N-naphthaloylhydroxylamine (Na-NHA) protects wood against decay and termite damage. Initial testing indicated little or no inhibition of sapstain fungi, molds, or soft-rot fungi by Na-NHA, suggesting that the mechanism by which this compound protected wood was complex and not that of a broad-spectrum biocide....
Dongsheng Wei; Carl J. Houtman; Alexander N. Kapich; Christopher G. Hunt; Daniel Cullen; Kenneth E. Hammel
2010-01-01
Brown rot basidiomycetes initiate wood decay by producing extracellular reactive oxygen species that depolymerize the structural polysaccharides of lignocellulose. Secreted fungal hydroquinones are considered one contributor because they have been shown to reduce Fe3+, thus generating perhydroxyl radicals and Fe2+, which...
Assessing the Ability of Ground-Penetrating Radar to Detect Fungal Decay in Douglas-Fir Beams
Christopher Adam Senalik; James Wacker; Xiping Wang; F. Jalinoos
2016-01-01
This paper describes the testing plan and current progress for assessing the efficacy of using ground-penetrating radar (GPR) to detect fungal decay within Douglas-fir beams. Initially, the beams were assessed using a variety of physical, mechanical, and nondestructive evaluation (NDE) test methods including micro-resistance drilling, Janka hardness, ultrasonic...
NASA Astrophysics Data System (ADS)
Chang, Minhee; Ho, Chang-Hoi; Park, Myung-Sook
2016-04-01
Tropical cyclones (TCs) are developed through persistent latent heating taken from deep convective process. By analyzing aircraft and polar-orbit satellite observations, distinct upper-level warm-core induced by strong updraft was found in pre-TCs while vertically uniform temperature profile is found in non-developers. Precipitation is also broader and more frequent in developing disturbances than in nondeveloping ones. However, large uncertainties remain in determining which disturbance will develop into TC by using observation snap-shots. Here, five-day systematic evolution of deep convection and environments in developing (80) and non-developing (491) disturbances are examined over the western North Pacific for 20072009 by using geostationary satellite observation. Daily, positive tendencies in the hourly time series of the area of the MTSAT-1R infrared (IR) and water vapor (WV) brightness temperature difference < 0 are used to define single diurnal convective burst (CB) event. In terms of single CB properties (duration, expanded convective area, maximum convective area, and expanding rate), developing and nondeveloping disturbances shows significantly different mean values in the statistics, but it is not effective to estimate TC genesis. The presence of continuous CB events more than two days (i.e. multi-day CB; mCB), however, is generally found in developing disturbances. Based on the presence and absence mCB in the IR-WV time series, two different evolutions from Day 1 to Day 5 of TC formation (non-development) are explored, in which Day 6 is set to be a TC formation day (Day5 as non-development vortex decaying day). The majority of developing disturbances with mCB (83 %) initially have stronger large-scale vorticity with low-level maxima, tend to have gradually increasing deep convective area and vorticities at low-to-upper troposphere. By contrast, few developing disturbances (17 %) without mCB are pre-conditioned by much weaker large-scale vorticity. Due to adjacent dry air, resultant intensification was driven only after from Day 3 with rapid increase in relative vorticity and abrupt convective burst. There also exist many non-developing cases with mCB (54 %), which appear to candidates of TC formation as gradually increasing their convective area from Day 1 to Day 4. Due to the initially weak large-scale vorticity, they eventually decay on Day 5. For nondeveloping disturbances without mCB (46%), initially weak large-scale vorticity as well as dry atmosphere resulted in one-time deep convection and decay. Thus, this study suggests that the multiple days of convective burst, which initially accompanies strong low- to mid-troposphere large-scale vorticity, is important in TC formation.
NASA Astrophysics Data System (ADS)
Maneu, J.; Parreño, A.; Ramos, A.
2018-05-01
A one-meson exchange model including the ground state of the pseudoscalar octet is used to describe the weak two-body interactions responsible for the decay of {}{{Λ }{{Λ }}}{}6{{H}}{{e}}. Strong interaction effects are taken into account by a microscopic study based on the solution of G-matrix and T-matrix equations for the initial and final interacting pairs respectively. Results for the decay induced by {{Λ }}{{Λ }}\\to {{Λ }}N({{Σ }}N) transitions are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scargill, James H. C.
Theories with more than one vacuum allow quantum transitions between them, which may proceed via bubble nucleation; theories with more than two vacua posses additional decay modes in which the wall of a bubble may further decay. The instantons which mediate such a process have O(3) symmetry (in four dimensions, rather than the usual O(4) symmetry of homogeneous vacuum decay), and have been called ‘barnacles’; previously they have been studied in flat space, in the thin wall limit, and this paper extends the analysis to include gravity. It is found that there are regions of parameter space in which, givenmore » an initial bubble, barnacles are the favoured subsequent decay process, and that the inclusion of gravity can enlarge this region. The relation to other heterogeneous vacuum decay scenarios, as well as some of the phenomenological implications of barnacles are briefly discussed.« less
Western North Pacific Tropical Cyclone Formation and Structure Change in TCS08
2013-09-30
transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds, there is a need to...improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution of the transition from...a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that potentially impact maritime
Western North Pacific Tropical Cyclone Formation and Structure Change in TCS-08
2012-09-30
cyclones often transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds...there is a need to improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution...of the transition from a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that
NASA Astrophysics Data System (ADS)
Weiser, Dennis
2018-02-01
We present new results for the nuclear modification factor RAA of J/ψ mesons as a function of centrality and transverse momentum at mid-rapidity. The measurement is carried out with the ALICE central barrel detectors in the acceptance range |y| < 0.9 and pT > 0 in the dielectron decay channel.
Long, Andrew M; Short, Steven M
2016-01-01
To address questions about algal virus persistence (i.e., continued existence) in the environment, rates of decay of infectivity for two viruses that infect Chlorella-like algae, ATCV-1 and CVM-1, and a virus that infects the prymnesiophyte Chrysochromulina parva, CpV-BQ1, were estimated from in situ incubations in a temperate, seasonally frozen pond. A series of experiments were conducted to estimate rates of decay of infectivity in all four seasons with incubations lasting 21 days in spring, summer and autumn, and 126 days in winter. Decay rates observed across this study were relatively low compared with previous estimates obtained for other algal viruses, and ranged from 0.012 to 11% h−1. Overall, the virus CpV-BQ1 decayed most rapidly whereas ATCV-1 decayed most slowly, but for all viruses the highest decay rates were observed during the summer and the lowest were observed during the winter. Furthermore, the winter incubations revealed the ability of each virus to overwinter under ice as ATCV-1, CVM-1 and CpV-BQ1 retained up to 48%, 19% and 9% of their infectivity after 126 days, respectively. The observed resilience of algal viruses in a seasonally frozen freshwater pond provides a mechanism that can support the maintenance of viral seed banks in nature. However, the high rates of decay observed in the summer demonstrate that virus survival and therefore environmental persistence can be subject to seasonal bottlenecks. PMID:26943625
Hahn, Britta; Kappenman, Emily S.; Robinson, Benjamin M.; Fuller, Rebecca L.; Luck, Steven J.; Gold, James M.
2011-01-01
Working memory impairment is considered a core deficit in schizophrenia, but the precise nature of this deficit has not been determined. Multiple lines of evidence implicate deficits at the encoding stage. During encoding, information is held in a precategorical sensory store termed iconic memory, a literal image of the stimulus with high capacity but rapid decay. Pathologically increased iconic decay could reduce the number of items that can be transferred into working memory before the information is lost and could thus contribute to the working memory deficit seen in the illness. The current study used a partial report procedure to test the hypothesis that patients with schizophrenia (n = 37) display faster iconic memory decay than matched healthy control participants (n = 28). Six letters, arranged in a circle, were presented for 50 ms. Following a variable delay of 0–1000 ms, a central arrow cue indicated the item to be reported. In both patients and control subjects, recall accuracy decreased with increasing cue delay, reflecting decay of the iconic representation of the stimulus array. Patients displayed impaired memory performance across all cue delays, consistent with an impairment in working memory, but the rate of iconic memory decay did not differ between patients and controls. This provides clear evidence against faster loss of iconic memory representations in schizophrenia, ruling out iconic decay as an underlying source of the working memory impairment in this population. Thus, iconic decay rate can be added to a growing list of unimpaired cognitive building blocks in schizophrenia. PMID:20053864
Iconic decay in schizophrenia.
Hahn, Britta; Kappenman, Emily S; Robinson, Benjamin M; Fuller, Rebecca L; Luck, Steven J; Gold, James M
2011-09-01
Working memory impairment is considered a core deficit in schizophrenia, but the precise nature of this deficit has not been determined. Multiple lines of evidence implicate deficits at the encoding stage. During encoding, information is held in a precategorical sensory store termed iconic memory, a literal image of the stimulus with high capacity but rapid decay. Pathologically increased iconic decay could reduce the number of items that can be transferred into working memory before the information is lost and could thus contribute to the working memory deficit seen in the illness. The current study used a partial report procedure to test the hypothesis that patients with schizophrenia (n = 37) display faster iconic memory decay than matched healthy control participants (n = 28). Six letters, arranged in a circle, were presented for 50 ms. Following a variable delay of 0-1000 ms, a central arrow cue indicated the item to be reported. In both patients and control subjects, recall accuracy decreased with increasing cue delay, reflecting decay of the iconic representation of the stimulus array. Patients displayed impaired memory performance across all cue delays, consistent with an impairment in working memory, but the rate of iconic memory decay did not differ between patients and controls. This provides clear evidence against faster loss of iconic memory representations in schizophrenia, ruling out iconic decay as an underlying source of the working memory impairment in this population. Thus, iconic decay rate can be added to a growing list of unimpaired cognitive building blocks in schizophrenia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankratov, I. M., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Zhou, R. J., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Hu, L. Q.
2015-07-15
Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot andmore » its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.« less
NASA Astrophysics Data System (ADS)
Pankratov, I. M.; Zhou, R. J.; Hu, L. Q.
2015-07-01
Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.
A study of parton fragmentation in hadronic Z 0 decays using Λ Λ correlations
NASA Astrophysics Data System (ADS)
OPAL Collaboration; Abbiendi, G.; et al.
2000-03-01
The correlated production of Λ and Λ baryons has been studied using 4.3 million multihadronic Z0 decays recorded with the Opal detector at Lep. Lambda pairs were investigated in the full data sample and for the first time also in 2-jet and 3-jet events selected with the k⊥ algorithm. The distributions of rapidity differences from correlated Λ Λ pairs exhibit short-range, local correlations and prove to be a sensitive tool to test models, particularly for 2-jet events. The Jetset model describes the data best but some extra parameter tuning is needed to improve agreement with the experimental results in the rates and the rapidity spectra simultaneously. The recently developed modification of Jetset, the MOdified Popcorn Scenarium (Mops), and also Herwig do not give satisfactory results. This study of di-lambda production in 2- and 3-jet events supports the short-range compensation of quantum numbers.
Microscopic Description of Spontaneous Emission in Stark Chirped Rapid Adiabatic Passages
NASA Astrophysics Data System (ADS)
Shi, Xuan; Yuan, Hao; Zhao, Hong-Quan
2018-01-01
A microscopic approach describing the effect of spontaneous emission in the stark-chirped rapid adiabatic passages (SCRAPs) for quantum computation is presented. Apart from the phenomenological model, this microscopic one can investigate the dependence of the population dynamics both on the temperature of the environment and the decay rate γ. With flux-biased Josephson qubits as a specifical example, we study the efficiency of the SCRAP for realizing the basic Pauli-X and iSWAP gates. Our results show clearly that the behavior of the population transfer described by the microscopic model is similar with the phenomenological one at zero temperature. In the limit of very high temperature, the population probabilities of the qubit states exhibit strong stability properties. High efficiency for the quantum gate manipulations in SCRAPs is available against the weak decay rate γ ≪ 1 at low temperature.
Angular decay coefficients of J/ψ mesons at forward rapidity from p+p collisions at √s = 510 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adare, A.; Azmoun, B.; Aidala, C.
In this paper, we report the first measurement of the full angular distribution for inclusive J/ψ → μ +μ - decays in p+p collisions at √s = 510 GeV. The measurements are made for J/ψ transverse momentum 2 < p T < 10 GeV/c and rapidity 1.2 < y < 2.2 in the Helicity, Collins-Soper, and Gottfried-Jackson reference frames. In all frames the polar coefficient λ θ is strongly negative at low p T and becomes close to zero at high p T, while the azimuthal coefficient λ Φ is close to zero at low p T, and becomes slightlymore » negative at higher p T. The frame-independent coefficient λ ~ is strongly negative at all p T in all frames. Finally, the data are compared to the theoretical predictions provided by nonrelativistic quantum chromodynamics models.« less
Angular decay coefficients of J /ψ mesons at forward rapidity from p +p collisions at √{s }=510 GeV
NASA Astrophysics Data System (ADS)
Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alfred, M.; Andrieux, V.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Boer, M.; Bok, J. S.; Bownes, E. K.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butler, C.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Chujo, T.; Citron, Z.; Connors, M.; Cronin, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Dixit, D.; Do, J. H.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Dusing, J. P.; Elder, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukuda, Y.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Giordano, F.; Glenn, A.; Goto, Y.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; He, X.; Hemmick, T. K.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Ji, Z.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kang, J. H.; Kang, J. S.; Kapukchyan, D.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kihara, K.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, H.-J.; Kim, M.; Kim, M. H.; Kim, Y. K.; Kimball, M. L.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Koster, J.; Kotler, J. R.; Kotov, D.; Kudo, S.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, K. B.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Leung, Y. H.; Lewis, N. A.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Loggins, V.-R.; Lovasz, K.; Lynch, D.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manion, A.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendez, A. R.; Mendoza, M.; Meredith, B.; Miake, Y.; Mignerey, A. C.; Mihalik, D. E.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagai, K.; Nagamiya, S.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, J. S.; Park, S.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Press, C. J.; Pun, A.; Purschke, M. L.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richford, D.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Runchey, J.; Safonov, A. S.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shukla, P.; Sickles, A.; Silva, C. L.; Silva, J. A.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Smith, K. L.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stepanov, M.; Stien, H.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Syed, S.; Sziklai, J.; Takahara, A.; Takeda, A.; Taketani, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vargyas, M.; Vazquez-Carson, S.; Velkovska, J.; Virius, M.; Vrba, V.; Vukman, N.; Vznuzdaev, E.; Wang, X. R.; Wang, Z.; Watanabe, D.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; Wolin, S.; Wong, C. P.; Woody, C. L.; Wysocki, M.; Xia, B.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yoo, J. H.; Yoon, I.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zou, L.; Phenix Collaboration
2017-05-01
We report the first measurement of the full angular distribution for inclusive J /ψ →μ+μ- decays in p +p collisions at √{s }=510 GeV . The measurements are made for J /ψ transverse momentum 2
Angular decay coefficients of J/ψ mesons at forward rapidity from p+p collisions at √s = 510 GeV
Adare, A.; Azmoun, B.; Aidala, C.; ...
2017-04-13
In this paper, we report the first measurement of the full angular distribution for inclusive J/ψ → μ +μ - decays in p+p collisions at √s = 510 GeV. The measurements are made for J/ψ transverse momentum 2 < p T < 10 GeV/c and rapidity 1.2 < y < 2.2 in the Helicity, Collins-Soper, and Gottfried-Jackson reference frames. In all frames the polar coefficient λ θ is strongly negative at low p T and becomes close to zero at high p T, while the azimuthal coefficient λ Φ is close to zero at low p T, and becomes slightlymore » negative at higher p T. The frame-independent coefficient λ ~ is strongly negative at all p T in all frames. Finally, the data are compared to the theoretical predictions provided by nonrelativistic quantum chromodynamics models.« less
On the life and death of satellite haloes
NASA Astrophysics Data System (ADS)
Taffoni, Giuliano; Mayer, Lucio; Colpi, Monica; Governato, Fabio
2003-05-01
We study the evolution of dark matter satellites orbiting inside more massive haloes using semi-analytical tools coupled with high-resolution N-body simulations. We select initial satellite sizes, masses, orbital energies, and eccentricities as predicted by hierarchical models of structure formation. Both the satellite (of initial mass Ms,0) and the main halo (of mass Mh) are described by a Navarro, Frenk & White density profile with various concentrations. We explore the interplay between dynamic friction and tidal mass loss/evaporation in determining the final fate of the satellite. We provide a user-friendly expression for the dynamic friction time-scale τdf,live and for the disruption time for a live (i.e. mass-losing) satellite. This can be easily implemented into existing semi-analytical models of galaxy formation improving considerably the way they describe the evolution of satellites. Massive satellites (Ms,0 > 0.1Mh) starting from typical cosmological orbits sink rapidly (irrespective of the initial circularity) toward the centre of the main halo where they merge after a time τdf,rig, as if they were rigid. Satellites of intermediate mass (0.01Mh < Ms,0 < 0.1Mh) suffer severe tidal mass losses as dynamic friction reduces their pericentre distance. In this case, mass loss increases substantially their decay time with respect to a rigid satellite. The final fate depends on the concentration of the satellite, cs, relative to that of the main halo, ch. Only in the unlikely case where cs/ch<~ 1 are satellites disrupted. In this mass range, τdf,live gives a measure of the merging time. Among the satellites whose orbits decay significantly, those that survive must have been moving preferentially on more circular orbits since the beginning as dynamical friction does not induce circularization. Lighter satellites (Ms,0 < 0.01Mh) do not suffer significant orbital decay and tidal mass loss stabilizes the orbit even further. Their orbits should map those at the time of entrance into the main halo. After more than a Hubble time satellites have masses Ms~ 1-10 per cent Ms,0, typically, implying Ms < 0.001Mh for the remnants. In a Milky-Way-like halo, light satellites should be present even after several orbital times with their baryonic components experimenting morphological changes due to tidal stirring. They coexist with the remnants of more massive satellites depleted in their dark matter content by the tidal field, which should move preferentially on tightly bound orbits.
Modeling Type IIn Supernovae: Understanding How Shock Development Effects Light Curves Properties
NASA Astrophysics Data System (ADS)
De La Rosa, Janie
2016-06-01
Type IIn supernovae are produced when massive stars experience dramatic mass loss phases caused by opacity edges or violent explosions. Violent mass ejections occur quite often just prior to the collapse of the star. If the final episode happens just before collapse, the outward ejecta is sufficiently dense to alter the supernova light-curve, both by absorbing the initial supernova light and producing emission when the supernova shock hits the ejecta. Initially, the ejecta is driven by shock progating through the interior of the star, and eventually expands through the circumstellar medium, forming a cold dense shell. As the shock wave approaches the shell, there is an increase in UV and optical radiation at the location of the shock breakout. We have developed a suite of simple semi-analytical models in order to understand the relationship between our observations and the properties of the expanding SN ejecta. When we compare Type IIn observations to a set of modeled SNe, we begin to see the influence of initial explosion conditions on early UV light curve properties such as peak luminosities and decay rate.The fast rise and decay corresponds to the models representing a photosphere moving through the envelope, while the modeled light curves with a slower rise and decay rate are powered by 56Ni decay. However, in both of these cases, models that matched the luminosity were unable to match the low radii from the blackbody models. The effect of shock heating as the supernova material blasts through the circumstellar material can drastically alter the temperature and position of the photosphere. The new set of models redefine the initial modeling conditions to incorporate an outer shell-like structure, and include late-time shock heating from shocks produced as the supernova ejecta travels through the inhomogeneous circumstellar medium.
Jindariani, Sergo
2016-05-31
Measurements are presented of the properties of top quarks in pair production and decay from proton-proton collisions at the LHC. The data were collected at centre-of-mass energies of 7 and 8 TeV by the CMS experiment during the years 2011 and 2012. The top quark-antiquark charge asymmetry is measured using the difference of the absolute rapidities of the reconstructed top and anti-top kinematics, as well as from distributions of the top quark decay products. The measurements are performed in the decay channels of the tt¯ pair into both one and two leptons in the final state. The polarization of topmore » quarks and top pair spin correlations are measured from the angular distributions of top quark decay products. The W-boson helicity fractions and angular asymmetries are extracted and limits on anomalous contributions to the Wtb vertex are determined. The flavor content in top-quark pair events is measured using the fraction of top quarks decaying into a W-boson and a b -quark relative to all top quark decays, R=B(t→Wb)/B(t→Wq) , and the result is used to determine the CKM matrix element Vtb as well as the width of the top quark resonance. Finally, all of the results are found to be in good agreement with standard model predictions.« less
2017-06-01
at 1200 UTC 3 October with maximum winds of 135 knots (kt) and minimum sea-level pressure of 934 millibars (mb). The time frame for the interrupted ...DeMaria et al. (2005). Figure 17. SHIPS Shear and 200 mb Divergence Since 1800 UTC 4 October was the time of the interruption of the rapid decay of...right) calculations. 43 Time series of CIMSS VWS magnitude (m/s, red line) and direction (degrees, blue line) from which the VWS vector is coming
GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow
NASA Technical Reports Server (NTRS)
Holland, Stephen T.; DePasquale, Massimiliano; Mao, Jirong; Sakamoto, Taka; Shady, Patricia; Covino, Stefano; Yi-Zhong, Fan; Zhi-Ping, Jin; D'Avanzo, Paolo; Antonelli, Angelo;
2011-01-01
We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet Optical Telescope with ground-based optical and infrared data obtained using the REM and ROTSE telescopes to construct a detailed data set extending from 86 s to approx. 100000 s after the BAT trigger. Our data cover a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 5000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.
Bacterial Community Succession in Pine-Wood Decomposition.
Kielak, Anna M; Scheublin, Tanja R; Mendes, Lucas W; van Veen, Johannes A; Kuramae, Eiko E
2016-01-01
Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.
Bacterial Community Succession in Pine-Wood Decomposition
Kielak, Anna M.; Scheublin, Tanja R.; Mendes, Lucas W.; van Veen, Johannes A.; Kuramae, Eiko E.
2016-01-01
Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities. PMID:26973611
NASA Technical Reports Server (NTRS)
Terman, James L.; Taam, Ronald E.; Hernquist, Lars
1995-01-01
Binary systems with properties similar to those of high-mass X-ray binaries are evolved through the common envelope phase. Three-dimensional simulations show that the timescale of the infall phase of the neutron star depends upon the evolutionary state of its massive companion. We find that tidal torques more effectively accelerate common envelope evolution for companions in their late core helium-burning stage and that the infall phase is rapid (approximately several initial orbital periods). For less evolved companions the decay of the orbit is longer; however, once the neutron star is deeply embedded within the companion's envelope the timescale for orbital decay decreases rapidly. As the neutron star encounters the high-density region surrounding the helium core of its massive companion, the rate of energy loss from the orbit increases dramatically leading to either partial or nearly total envelope ejection. The outcome of the common envelope phase depends upon the structure of the evolved companion. In particular, it is found that the entire common envelope can be ejected by the interaction of the neutron star with a red supergiant companion in binaries with orbital periods similar to those of long-period Be X-ray binaries. For orbital periods greater than or approximately equal to 0.8-2 yr (for companions of mass 12-24 solar mass) it is likely that a binary will survive the common envelope phase. For these systems, the structure of the progenitor star is characterized by a steep density gradient above the helium core, and the common envelope phase ends with a spin up of the envelope to within 50%-60% of corotation and with a slow mass outflow. The efficiency of mass ejection is found to be approximately 30%-40%. For less evolved companions, there is insufficient energy in the orbit to unbind the common envelope and only a fraction of it is ejected. Since the timescale for orbital decay is always shorter than the mass-loss timescale from the common envelope, the two cores will likely merge to form a Thorne-Zytkow object. Implications for the origin of Cyg X-3, an X-ray source consisting of a Wolf-Rayet star and a compact companion, and for the fate of the remnant binary consisting of a helium star and a neutron star are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acosta, D.; Adelman, J.; Affolder, T.
We present a new measurement of the inclusive and differential production cross sections of J/{psi} mesons and b-hadrons in proton-antiproton collisions at {radical}s = 1960 GeV. The data correspond to an integrated luminosity of 39.7 pb{sup -1} collected by the CDF Run II detector. We find the integrated cross section for inclusive J/{psi} production for all transverse momenta from 0 to 20 GeV/c in the rapidity range |y| < 0.6 to be 4.08 {+-} 0.02(stat){sub -0.33}{sup +0.36}(syst) {mu}b. We separate the fraction of J/{psi} events from the decay of the long-lived b-hadrons using the lifetime distribution in all events withmore » p{sub T} (J/{psi}) > 1.25 GeV/c. We find the total cross section for b-hadrons, including both hadrons and anti-hadrons, decaying to J/{psi} with transverse momenta greater than 1.25 GeV/c in the rapidity range |y(J/{psi})| < 0.6, is 0.330 {+-} 0.005(stat){sub -0.033}{sup +0.036}(syst) {mu}b. Using a Monte Carlo simulation of the decay kinematics of b-hadrons to all final states containing a J/{psi}, we extract the first measurement of the total single b-hadron cross section down to zero transverse momentum at {radical}s = 1960 GeV. We find the total single b-hadron cross section integrated over all transverse momenta for b-hadrons in the rapidity range |y| < 0.6 to be 17.6 {+-} 0.4(stat){sub -2.3}{sup +2.5}(syst) {mu}b.« less
Savings Memory Is Accompanied by Transcriptional Changes That Persist beyond the Decay of Recall
ERIC Educational Resources Information Center
Perez, Leticia; Patel, Ushma; Rivota, Marissa; Calin-Jageman, Irina E.; Calin-Jageman, Robert J.
2018-01-01
Most long-term memories are forgotten. What happens, then, to the changes in neuronal gene expression that were initially required to encode and maintain the memory? Here we show that the decay of recall for long-term sensitization memory in "Aplysia" is accompanied both by a form of savings memory (easier relearning) and by persistent…
Brett Niemi; Wayne St. John; Bessie Woodward; Rodney DeGroot; Gary McGinnis
2000-01-01
In recent years, the performance of copper naphthenate as a wood preservative has been in question. To understand the varying results of copper naphthenate in preventing wood decay, a closer look at eight naphthenic acid (NA) supplies was undertaken. Initial studies of NA samples from individual suppliers revealed large differences in chemical composition and wood...
The Apparently Decaying Orbit of WASP-12b
NASA Astrophysics Data System (ADS)
Patra, Kishore C.; Winn, Joshua N.; Holman, Matthew J.; Yu, Liang; Deming, Drake; Dai, Fei
2017-07-01
We present new transit and occultation times for the hot Jupiter WASP-12b. The data are compatible with a constant period derivative: \\dot{P}=-29+/- 3 ms yr-1 and P/\\dot{P}=3.2 {Myr}. However, it is difficult to tell whether we have observed orbital decay or a portion of a 14-year apsidal precession cycle. If interpreted as decay, the star’s tidal quality parameter {Q}\\star is about 2× {10}5. If interpreted as precession, the planet’s Love number is 0.44 ± 0.10. Orbital decay appears to be the more parsimonious model: it is favored by {{Δ }}{χ }2=5.5 despite having two fewer free parameters than the precession model. The decay model implies that WASP-12 was discovered within the final ˜0.2% of its existence, which is an unlikely coincidence but harmonizes with independent evidence that the planet is nearing disruption. Precession does not invoke any temporal coincidence, but it does require some mechanism to maintain an eccentricity of ≈ 0.002 in the face of rapid tidal circularization. To distinguish unequivocally between decay and precession will probably require a few more years of monitoring. Particularly helpful will be occultation timing in 2019 and thereafter.
Interatomic Coulombic Decay: The Mechanism for Rapid Deexcitation of Hollow Atoms.
Wilhelm, Richard A; Gruber, Elisabeth; Schwestka, Janine; Kozubek, Roland; Madeira, Teresa I; Marques, José P; Kobus, Jacek; Krasheninnikov, Arkady V; Schleberger, Marika; Aumayr, Friedrich
2017-09-08
The impact of a highly charged ion onto a solid gives rise to charge exchange between the ion and target atoms, so that a slow ion gets neutralized in the vicinity of the surface. Using highly charged Ar and Xe ions and the surface-only material graphene as a target, we show that the neutralization and deexcitation of the ions proceeds on a sub-10 fs time scale. We further demonstrate that a multiple Interatomic Coulombic Decay (ICD) model can describe the observed ultrafast deexcitation. Other deexcitation mechanisms involving nonradiative decay and quasimolecular orbital formation during the impact are not important, as follows from the comparison of our experimental data with the results of first-principles calculations. Our method also enables the estimation of ICD rates directly.
Interrelations between translation and general mRNA degradation in yeast
Huch, Susanne; Nissan, Tracy
2014-01-01
Messenger RNA (mRNA) degradation is an important element of gene expression that can be modulated by alterations in translation, such as reductions in initiation or elongation rates. Reducing translation initiation strongly affects mRNA degradation by driving mRNA toward the assembly of a decapping complex, leading to decapping. While mRNA stability decreases as a consequence of translational inhibition, in apparent contradiction several external stresses both inhibit translation initiation and stabilize mRNA. A key difference in these processes is that stresses induce multiple responses, one of which stabilizes mRNAs at the initial and rate-limiting step of general mRNA decay. Because this increase in mRNA stability is directly induced by stress, it is independent of the translational effects of stress, which provide the cell with an opportunity to assess its response to changing environmental conditions. After assessment, the cell can store mRNAs, reinitiate their translation or, alternatively, embark on a program of enhanced mRNA decay en masse. Finally, recent results suggest that mRNA decay is not limited to non-translating messages and can occur when ribosomes are not initiating but are still elongating on mRNA. This review will discuss the models for the mechanisms of these processes and recent developments in understanding the relationship between translation and general mRNA degradation, with a focus on yeast as a model system. How to cite this article: WIREs RNA 2014, 5:747–763. doi: 10.1002/wrna.1244 PMID:24944158
Interrelations between translation and general mRNA degradation in yeast.
Huch, Susanne; Nissan, Tracy
2014-01-01
Messenger RNA (mRNA) degradation is an important element of gene expression that can be modulated by alterations in translation, such as reductions in initiation or elongation rates. Reducing translation initiation strongly affects mRNA degradation by driving mRNA toward the assembly of a decapping complex, leading to decapping. While mRNA stability decreases as a consequence of translational inhibition, in apparent contradiction several external stresses both inhibit translation initiation and stabilize mRNA. A key difference in these processes is that stresses induce multiple responses, one of which stabilizes mRNAs at the initial and rate-limiting step of general mRNA decay. Because this increase in mRNA stability is directly induced by stress, it is independent of the translational effects of stress, which provide the cell with an opportunity to assess its response to changing environmental conditions. After assessment, the cell can store mRNAs, reinitiate their translation or, alternatively, embark on a program of enhanced mRNA decay en masse. Finally, recent results suggest that mRNA decay is not limited to non-translating messages and can occur when ribosomes are not initiating but are still elongating on mRNA. This review will discuss the models for the mechanisms of these processes and recent developments in understanding the relationship between translation and general mRNA degradation, with a focus on yeast as a model system. © 2014 The Authors. WIREs RNA published by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
DeHart, Jennifer C.
Airborne radar reflectivity data and numerical simulations are examined to determine how tropical cyclone precipitation processes are impacted by landfall over a continental mountain range. Analysis of the high-resolution radar data collected within Hurricane Karl (2010) during the Genesis and Rapid Intensification Processes (GRIP) shows that radar reflectivity enhancement in regions of upslope flow is constrained to low-levels. Reflectivity enhancement is not uniform and discrete regions of enhanced precipitation are embedded within a broad echo. In conjunction with an upstream dropsonde that exhibits weak instability, the radar data suggest a mix of gentle ascent and shallow convection occur. Regions of downslope flow are characterized by precipitation originating further aloft with little modification near low levels. Satellite data further indicate that deep convection develops after the high clouds dissipate, indicating that the evolving thermodynamic environment favors orographic modification processes beyond collection of orographically-generated cloud water. Numerical simulations examine how modification processes controlling precipitation are affected by the height of an idealized plateau. When terrain is minimal, the tropical cyclone decays slowly, the upper-level warm core remains robust, the moist neutral environment persists, and precipitation processes are largely concentrated within the eyewall and rainband. Movement over a tall topographic barrier induces rapid decay, which erodes the warm core and moist neutral environment. A mix of forced ascent and buoyant motions contribute to enhanced warm rain processes over the terrain. Overall, all microphysical quantities are greater for the tall plateau storm, but concentrations within the innermost core decay rapidly along with the storm. It is shown that the simulated tropical cyclone precipitation is heavily influenced by overestimated graupel production, which is a common problem of microphysical schemes. Surface precipitation is comparable between the two experiments, suggesting that strong decay of the storm affects the upper limit of precipitation. Similar precipitation patterns between the observations and tall plateau simulation suggest that the model obtains realistic precipitation through incorrect microphysical processes, but a lack of microphysical observations prevent full assessment of that hypothesis. Overall, this dissertation demonstrates that decay due to landfall over complex terrain affects the inner core thermodynamic and kinematic environment, which in turn affects the type and organization of precipitation processes that occur.
Constraints on both the quadratic and quartic symmetry energy coefficients by 2β --decay energies
NASA Astrophysics Data System (ADS)
Wan, Niu; Xu, Chang; Ren, Zhongzhou; Liu, Jie
2018-05-01
In this Rapid Communication, the 2 β- -decay energies Q (2 β-) given in the atomic mass evaluation are used to extract not only the quadratic volume symmetry energy coefficient csymv, but also the quartic one csym,4 v. Based on the modified Bethe-Weizsäcker nuclear mass formula of the liquid-drop model, the decay energy Q (2 β-) is found to be closely related to both the quadratic and quartic symmetry energy coefficients csymv and csym,4 v. There are totally 449 data of decay energies Q (2 β-) used in the present analysis where the candidate nuclei are carefully chosen by fulfilling the following criteria: (1) large neutron-proton number difference N -Z , (2) large isospin asymmetry I , and (3) limited shell effect. The values of csymv and csym,4 v are extracted to be 29.345 and 3.634 MeV, respectively. Moreover, the quadratic surface-volume symmetry energy coefficient ratio is determined to be κ =csyms/csymv=1.356 .
Scargill, James H. C.
2017-09-18
Theories with more than one vacuum allow quantum transitions between them, which may proceed via bubble nucleation; theories with more than two vacua posses additional decay modes in which the wall of a bubble may further decay. The instantons which mediate such a process have O(3) symmetry (in four dimensions, rather than the usual O(4) symmetry of homogeneous vacuum decay), and have been called ‘barnacles’; previously they have been studied in flat space, in the thin wall limit, and this paper extends the analysis to include gravity. It is found that there are regions of parameter space in which, givenmore » an initial bubble, barnacles are the favoured subsequent decay process, and that the inclusion of gravity can enlarge this region. The relation to other heterogeneous vacuum decay scenarios, as well as some of the phenomenological implications of barnacles are briefly discussed.« less
Modeling the turbulent kinetic energy equation for compressible, homogeneous turbulence
NASA Technical Reports Server (NTRS)
Aupoix, B.; Blaisdell, G. A.; Reynolds, William C.; Zeman, Otto
1990-01-01
The turbulent kinetic energy transport equation, which is the basis of turbulence models, is investigated for homogeneous, compressible turbulence using direct numerical simulations performed at CTR. It is shown that the partition between dilatational and solenoidal modes is very sensitive to initial conditions for isotropic decaying turbulence but not for sheared flows. The importance of the dilatational dissipation and of the pressure-dilatation term is evidenced from simulations and a transport equation is proposed to evaluate the pressure-dilatation term evolution. This transport equation seems to work well for sheared flows but does not account for initial condition sensitivity in isotropic decay. An improved model is proposed.
PLASMA TURBULENCE AND KINETIC INSTABILITIES AT ION SCALES IN THE EXPANDING SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellinger, Petr; Trávnícek, Pavel M.; Matteini, Lorenzo
The relationship between a decaying strong turbulence and kinetic instabilities in a slowly expanding plasma is investigated using two-dimensional (2D) hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and vanishing correlation between the two fields. A turbulent cascade rapidly develops; magnetic field fluctuations exhibit a power-law spectrum at large scales and a steeper spectrum at ion scales. The turbulent cascade leads to an overall anisotropic proton heating, protons are heatedmore » in the perpendicular direction, and, initially, also in the parallel direction. The imposed expansion leads to generation of a large parallel proton temperature anisotropy which is at later stages partly reduced by turbulence. The turbulent heating is not sufficient to overcome the expansion-driven perpendicular cooling and the system eventually drives the oblique firehose instability in a form of localized nonlinear wave packets which efficiently reduce the parallel temperature anisotropy. This work demonstrates that kinetic instabilities may coexist with strong plasma turbulence even in a constrained 2D regime.« less
Early childhood caries update: A review of causes, diagnoses, and treatments
Çolak, Hakan; Dülgergil, Çoruh T.; Dalli, Mehmet; Hamidi, Mehmet Mustafa
2013-01-01
Dental caries (decay) is an international public health challenge, especially amongst young children. Early childhood caries (ECC) is a serious public health problem in both developing and industrialized countries. ECC can begin early in life, progresses rapidly in those who are at high risk, and often goes untreated. Its consequences can affect the immediate and long-term quality of life of the child's family and can have significant social and economic consequences beyond the immediate family as well. ECC can be a particularly virulent form of caries, beginning soon after dental eruption, developing on smooth surfaces, progressing rapidly, and having a lasting detrimental impact on the dentition. Children experiencing caries as infants or toddlers have a much greater probability of subsequent caries in both the primary and permanent dentitions. The relationship between breastfeeding and ECC is likely to be complex and confounded by many biological variables, such as mutans streptococci, enamel hypoplasia, intake of sugars, as well as social variables, such as parental education and socioeconomic status, which may affect oral health. Unlike other infectious diseases, tooth decay is not self-limiting. Decayed teeth require professional treatment to remove infection and restore tooth function. In this review, we give detailed information about ECC, from its diagnosis to management. PMID:23633832
Σ0 production in proton nucleus collisions near threshold
NASA Astrophysics Data System (ADS)
Adamczewski-Musch, J.; Agakishiev, G.; Arnold, O.; Atomssa, E. T.; Behnke, C.; Berger-Chen, J. C.; Biernat, J.; Blanco, A.; Blume, C.; Böhmer, M.; Bordalo, P.; Chernenko, S.; Deveaux, C.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Fonte, P.; Franco, C.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Gill, K.; Golubeva, M.; Guber, F.; Gumberidze, M.; Harabasz, S.; Hennino, T.; Hlavac, S.; Höhne, C.; Holzmann, R.; Ierusalimov, A.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Kardan, B.; Koenig, I.; Koenig, W.; Kolb, B. W.; Korcyl, G.; Kornakov, G.; Kotte, R.; Krása, A.; Krebs, E.; Kuc, H.; Kugler, A.; Kunz, T.; Kurepin, A.; Kurilkin, A.; Kurilkin, P.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Mahmoud, T.; Maier, L.; Maurus, S.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Petousis, V.; Pietraszko, J.; Przygoda, W.; Ramos, S.; Ramstein, B.; Rehnisch, L.; Reshetin, A.; Rost, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Scheib, T.; Schmidt-Sommerfeld, K.; Schuldes, H.; Sellheim, P.; Siebenson, J.; Silva, L.; Sobolev, Yu. G.; Spataro, S.; Ströbele, H.; Stroth, J.; Strzempek, P.; Sturm, C.; Svoboda, O.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Wendisch, C.; Wirth, J.; Wüstenfeld, J.; Zanevsky, Y.; Zumbruch, P.; Hades Collaboration
2018-06-01
The production of Σ0 baryons in the nuclear reaction p (3.5 GeV) + Nb (corresponding to √{sNN } = 3.18 GeV) is studied with the detector set-up HADES at GSI, Darmstadt. Σ0s were identified via the decay Σ0 → Λγ with subsequent decays Λ → pπ- in coincidence with a e+e- pair from either external (γ →e+e-) or internal (Dalitz decay γ* →e+e-) gamma conversions. The differential Σ0 cross section integrated over the detector acceptance, i.e. the rapidity interval 0.5 < y < 1.1, has been extracted as ΔσΣ0 = 2.3 ±(0.2) stat ±(-0.6+0.6)sys ±(0.2) norm mb, yielding the inclusive production cross section in full phase space σΣ0total = 5.8 ±(0.5) stat ± (-1.4+1.4)sys ±(0.6) norm ±(1.7) extrapol mb by averaging over different extrapolation methods. The Λall/Σ0 ratio within the HADES acceptance is equal to 2.3 ±(0.2) stat ± (-0.6+0.6)sys. The obtained rapidity and momentum distributions are compared to transport model calculations. The Σ0 yield agrees with the statistical model of particle production in nuclear reactions.
Dark-soliton dynamics in Bose-Einstein condensates at finite temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, B.; Proukakis, N. P.; Barenghi, C. F.
2007-05-15
The dynamics of a dark soliton in an elongated Bose-Einstein condensate is studied at finite temperatures. In addition to accurately reproducing all stages of the decay of the soliton observed in the experiment of Burger et al. [Phys. Rev. Lett. 83, 5198 (1999)], our numerical simulations reveal the existence of an experimentally accessible parameter regime for which phase-imprinted dark solitons can execute at least one full axial oscillation prior to their decay. The dependence of the decay time scale on temperature and initial soliton depth is analyzed and the role of interatomic collisions quantified.
Passive containment cooling system
Conway, Lawrence E.; Stewart, William A.
1991-01-01
A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.
Biodegradation of the chitin-protein complex in crustacean cuticle
Artur, Stankiewicz B.; Mastalerz, Maria; Hof, C.H.J.; Bierstedt, A.; Flannery, M.B.; Briggs, D.E.G.; Evershed, R.P.
1998-01-01
Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative analysis of amino acids (by HPLC) and chitin showed that the major loss of proteins and chitin occurred between weeks 1 and 2. After 8 weeks tyrosine, tryptophan and valine are the most prominent amino acid moieties, showing their resistance to degradation. The presence of cyclic ketones in the pyrolysates indicates that mucopolysaccharides or other bound non-chitinous carbohydrates are also resistant to decay. There is no evidence of structural degradation of chitin prior to 8 weeks when FTIR revealed a reduction in chitin-specific bands. The chemical changes are paralleled by structural changes in the cuticle, which becomes an increasingly open structure consisting of loose chitinous fibres. The rapid rate of decay in the experiments suggests that where chitin and protein are preserved in fossil cuticles degradation must have been inhibited.Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative analysis of amino acids (by HPLC) and chitin showed that the major loss of proteins and chitin occurred between weeks 1 and 2. After 8 weeks tyrosine, tryptophan and valine are the most prominent amino acid moieties, showing their resistance to degradation. The presence of cyclic ketones in the pyrolysates indicates that mucopolysaccharides or other bound non-chitinous carbohydrates are also resistant to decay. There is no evidence of structural degradation of chitin prior to 8 weeks when FTIR revealed a reduction in chitin-specific bands. The chemical changes are paralleled by structural changes in the cuticle, which becomes an increasingly open structure consisting of loose chitinous fibres. The rapid rate of decay in the experiments suggests, that where chitin and protein are preserved in fossil cuticles degradation must have been inhibited.
Microbial Community Analysis in Water Storage Tank Sediment Exposed to Monochloramine - Portland
Sediment accumulation in water storage facilities causes water quality degradation, including enhanced biological growth and more rapid disinfectant decay. The current research evaluated the microbial community composition after a drinking water storage facility’s sediment was e...
Measurements of wake vortices interacting with the ground
DOT National Transportation Integrated Search
2005-09-01
Although wake vortices are known to decay more rapidly near the ground than away from the ground, the details of the ground interaction are not well understood. Propeller anemometer arrays located under the approach path have been used to study vorte...
Microbial Community Analysis in Water Storage Tank Sediment Exposed to Monochloramine
Sediment accumulation in water storage facilities causes water quality degradation, including enhanced biological growth and more rapid disinfectant decay. The current research evaluated the microbial community composition after a drinking water storage facility’s sediment was e...
Preservation and phylogeny of Cambrian ecdysozoans tested by experimental decay of Priapulus
NASA Astrophysics Data System (ADS)
Sansom, Robert S.
2016-09-01
The exceptionally preserved Cambrian fossil record provides unique insight into the early evolutionary history of animals. Understanding of the mechanisms of exceptional soft tissue preservation frames all interpretations of the fauna and its evolutionary significance. This is especially true for recent interpretations of preserved nervous tissues in fossil ecdysozoans. However, models of soft tissue preservation lack empirical support from actualistic studies. Here experimental decay of the priapulid Priapulus reveal consistent bias towards rapid loss of internal non-cuticular anatomy compared with recalcitrant cuticular anatomy. This is consistent with models of Burgess Shale-type preservation and indicates that internal tissues are unlikely to be preserved with fidelity if organically preserved. This pattern, along with extreme body margin distortion, is consistent with onychophoran decay, and is therefore resolved as general for early ecdysozoans. Application of these patterns to phylogenetic data finds scalidophoran taxa to be very sensitive to taphonomically informed character coding, but not panarthropodan taxa. Priapulid decay also have unexpected relevance for interpretation of myomeres in fossil chordates. The decay data presented serve not only as a test of models of preservation but also a framework with which to interpret ecdysozoan fossil anatomies, and the subsequent evolutionary inferences drawn from them.
The luminescence characteristics of CsI(Na) crystal under α and X/γ excitation
NASA Astrophysics Data System (ADS)
Liu, Jinliang; Liu, Fang; Ouyang, Xiaoping; Liu, Bin; Chen, Liang; Ruan, Jinlu; Zhang, Zhongbing; Liu, Jun
2013-01-01
In this paper, we study the effective decay time characteristic of CsI(Na) crystal under 239Pu alpha particle and 137Cs gamma-ray excitation using a single photon counting decay time measurement system. The measurement system employs a silicon optical fiber to couple and transit single photon. The slow decay time component of CsI(Na) crystal is 460-550 ns. We observe a 15 ns fast decay component under alpha particle excitation. In addition, we find that the primary stage of the falling edge in the decay time curve is non-exponential and drops rapidly when CsI(Na) crystal is excited by 239Pu alpha particles. Since the high density of self-trapped-excitons (STEs) is produced in alpha particle excitation process, we propose that the fast falling edge is corresponding to the quenching process of STEs which transit with non-radiation in the case of high excitation density. To prove this proposal, we excited the CsI(Na) crystal with sub-nanosecond intensive pulsed X-ray radiation. Our X-ray impinging results show that the fast falling edge also exists under low energy (average 100 keV) bremsstrahlung X-ray excitation.
Preservation and phylogeny of Cambrian ecdysozoans tested by experimental decay of Priapulus
Sansom, Robert S.
2016-01-01
The exceptionally preserved Cambrian fossil record provides unique insight into the early evolutionary history of animals. Understanding of the mechanisms of exceptional soft tissue preservation frames all interpretations of the fauna and its evolutionary significance. This is especially true for recent interpretations of preserved nervous tissues in fossil ecdysozoans. However, models of soft tissue preservation lack empirical support from actualistic studies. Here experimental decay of the priapulid Priapulus reveal consistent bias towards rapid loss of internal non-cuticular anatomy compared with recalcitrant cuticular anatomy. This is consistent with models of Burgess Shale-type preservation and indicates that internal tissues are unlikely to be preserved with fidelity if organically preserved. This pattern, along with extreme body margin distortion, is consistent with onychophoran decay, and is therefore resolved as general for early ecdysozoans. Application of these patterns to phylogenetic data finds scalidophoran taxa to be very sensitive to taphonomically informed character coding, but not panarthropodan taxa. Priapulid decay also have unexpected relevance for interpretation of myomeres in fossil chordates. The decay data presented serve not only as a test of models of preservation but also a framework with which to interpret ecdysozoan fossil anatomies, and the subsequent evolutionary inferences drawn from them. PMID:27595908
Emmanuel Ebanyenle; Andrew J. Burton; Andrew J. Storer; Dana L. Richter; Jessie A. Glaeser
2016-01-01
We examined the effects of elevated CO2 and/or O3 on the wood-decaying basidiomycete fungal community and wood decomposition rates at the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) project. Mass loss rates were determined after one year of log decomposition on the soil...
A theory of self-organized zonal flow with fine radial structure in tokamak
NASA Astrophysics Data System (ADS)
Zhang, Y. Z.; Liu, Z. Y.; Xie, T.; Mahajan, S. M.; Liu, J.
2017-12-01
The (low frequency) zonal flow-ion temperature gradient (ITG) wave system, constructed on Braginskii's fluid model in tokamak, is shown to be a reaction-diffusion-advection system; it is derived by making use of a multiple spatiotemporal scale technique and two-dimensional (2D) ballooning theory. For real regular group velocities of ITG waves, two distinct temporal processes, sharing a very similar meso-scale radial structure, are identified in the nonlinear self-organized stage. The stationary and quasi-stationary structures reflect a particular feature of the poloidal group velocity. The equation set posed to be an initial value problem is numerically solved for JET low mode parameters; the results are presented in several figures and two movies that show the spatiotemporal evolutions as well as the spectrum analysis—frequency-wave number spectrum, auto power spectrum, and Lissajous diagram. This approach reveals that the zonal flow in tokamak is a local traveling wave. For the quasi-stationary process, the cycle of ITG wave energy is composed of two consecutive phases in distinct spatiotemporal structures: a pair of Cavitons growing and breathing slowly without long range propagation, followed by a sudden decay into many Instantons that carry negative wave energy rapidly into infinity. A spotlight onto the motion of Instantons for a given radial position reproduces a Blob-Hole temporal structure; the occurrence as well as the rapid decay of Caviton into Instantons is triggered by zero-crossing of radial group velocity. A sample of the radial profile of zonal flow contributed from 31 nonlinearly coupled rational surfaces near plasma edge is found to be very similar to that observed in the JET Ohmic phase [J. C. Hillesheim et al., Phys. Rev. Lett. 116, 165002 (2016)]. The theory predicts an interior asymmetric dipole structure associated with the zonal flow that is driven by the gradients of ITG turbulence intensity.
Glavinovíc, M I
1999-02-01
The release of vesicular glutamate, spatiotemporal changes in glutamate concentration in the synaptic cleft and the subsequent generation of fast excitatory postsynaptic currents at a hippocampal synapse were modeled using the Monte Carlo method. It is assumed that glutamate is released from a spherical vesicle through a cylindrical fusion pore into the synaptic cleft and that S-alpha-amino-3-hydroxy -5-methyl-4-isoxazolepropionic acid (AMPA) receptors are uniformly distributed postsynaptically. The time course of change in vesicular concentration can be described by a single exponential, but a slow tail is also observed though only following the release of most of the glutamate. The time constant of decay increases with vesicular size and a lower diffusion constant, and is independent of the initial concentration, becoming markedly shorter for wider fusion pores. The cleft concentration at the fusion pore mouth is not negligible compared to vesicular concentration, especially for wider fusion pores. Lateral equilibration of glutamate is rapid, and within approximately 50 micros all AMPA receptors on average see the same concentration of glutamate. Nevertheless the single-channel current and the number of channels estimated from mean-variance plots are unreliable and different when estimated from rise- and decay-current segments. Greater saturation of AMPA receptor channels provides higher but not more accurate estimates. Two factors contribute to the variability of postsynaptic currents and render the mean-variance nonstationary analysis unreliable, even when all receptors see on average the same glutamate concentration. Firstly, the variability of the instantaneous cleft concentration of glutamate, unlike the mean concentration, first rapidly decreases before slowly increasing; the variability is greater for fewer molecules in the cleft and is spatially nonuniform. Secondly, the efficacy with which glutamate produces a response changes with time. Understanding the factors that determine the time course of vesicular content release as well as the spatiotemporal changes of glutamate concentration in the cleft is crucial for understanding the mechanism that generates postsynaptic currents.
Simulation of radiation damage in minerals by sequential ion irradiations
NASA Astrophysics Data System (ADS)
Nakasuga, W. M.; Li, W.; Ewing, R. C.
2015-12-01
Radiation effects due to α-decay of U and Th and spontaneous fission of 238U control the production and recovery of the radiation-induced structure of minerals, as well as the diffusion of elements through the mineral host. However, details of how the damage microstructure is produced and annealed remain unknown. Our recent ion beam experiments demonstrate that ionizing radiation from the α-particle recovers the damage structure. Thus, the damage structure is not only the result of the thermal hisotry of the sample, but also of the complex interaction between ionizing and ballistic damage mechanisms. By combining ion irradiations with transmission electron microscopy (TEM), we have simulated the damage produced by α-decay and fission. The α-particle induced annealing has been simulated by in situ TEM observation of consecutive ion-irradiations: i.) 1 MeV Kr2+ (simulating 70 keV α-recoils induced damage), ii.) followed by 400 keV He+ (simulating 4.5 MeV α-particle induced annealing). Thus, in addition to the well-established effects of thermal annealing, the α-particle annealing effects, as evidenced by partical recrystallization of the originally, fully-amorphous apatite upon the α-particle irriadations, should also be considered when evaluating diffusion and release of elements, such as He. In addition, the fission track annealing has been simulated by a new sample preparation method that allows for direct observation of radiation damage recovery at each point along the length of latent tracks created by 80 MeV Xe ions (a typical fission fragment). The initial, rapid reduction in etched track length during isothermal annealing is explained by the rapid annealing of those sections of the track with smaller diameters, as observed directly by in situ TEM. In summary, the atomic-scale investigation of radiation damage in minerals is critical to understanding of the influence of raidation damage on diffusion and kinetics that are fundamental to geochronology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Binh T; Lehmann, Johannes C; Kinyangi, James
Black carbon (BC) is a quantitatively important C pool in the global carbon cycle due to its relative recalcitrance against decay compared with other C pools. However, how rapidly BC is oxidized and in what way the molecular structure changes during decomposition over decadal time scales, is largely unknown. In the present study, the long-term dynamics in quality and quantity of BC were investigated in cultivated soil using X-ray Photoelectron Spectroscopy (XPS), Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) techniques. BC particles, obtained from soil samples at 8 conversion ages stretching over 100 years and from a forest soilmore » sample from Kenya, were manually picked under a light microscope for characterization and quantification. BC contents rapidly decreased from 12.7 to 3.8 mg C g⁻¹ soil during the first 30 years since conversion, after which they slowly decreased to a steady state at 3.51 mg C g ⁻¹soil. BC-derived C losses over 100 years were estimated at 6000 kg C ha⁻¹ to a depth of 0.1 m. The initial rapid changes in BC stocks resulted in a mean residence time of only around 8.3 years, which was likely a function of both decomposition as well as transport processes. The molecular properties of BC changed more rapidly on surfaces than in the interior of BC particles and more rapidly during the first 30 years than during the following 70 years. The Oc/C ratios (Oc is O bound to C) and carbonyl groups (C=O) increased over time by 133 and 192 %, respectively, indicating oxidation was an important degradation process controlling BC quality. Al, Si, polysaccharides, and to a lesser extent Fe were rapidly adsorbed on BC particle surfaces within the first few years after BC deposition to soil. The protection by physical and chemical stabilization was apparently sufficient to not only minimize decomposition below detection between 30 and 100 years after deposition, but also physical export by erosion and vertical transport below 0.1 m.« less
The Quantum-to-Classical Transition in Strongly Interacting Nanoscale Systems
NASA Astrophysics Data System (ADS)
Benatov, Latchezar Latchezarov
This thesis comprises two separate but related studies, dealing with two strongly interacting nanoscale systems on the border between the quantum and classical domains. In Part 1, we use a Born-Markov approximated master equation approach to study the symmetrized-in-frequency current noise spectrum and the oscillator steady state of a nanoelectromechanical system where a nanoscale resonator is coupled linearly via its momentum to a quantum point contact (QPC). Our current noise spectra exhibit clear signatures of the quantum correlations between the QPC current and the back-action force on the oscillator at a value of the relative tunneling phase where such correlations are expected to be maximized. We also show that the steady state of the oscillator obeys a classical Fokker-Planck equation, but can experience thermomechanical noise squeezing in the presence of a momentum-coupled detector bath and a position-coupled environmental bath. Besides, the full master equation clearly shows that half of the detector back-action is correlated with electron tunneling, indicating a departure from the model of the detector as an effective bath and suggesting that a future calculation valid at lower bias voltage, stronger tunneling and/or stronger coupling might reveal interesting quantum effects in the oscillator dynamics. In the second part of the thesis, we study the subsystem dynamics and thermalization of an oscillator-spin star model, where a nanomechanical resonator is coupled to a few two-level systems (TLS's). We use a fourth-order Runge-Kutta numerical algorithm to integrate the Schrodinger equation for the system and obtain our results. We find that the oscillator reaches a Boltzmann steady state when the TLS bath is initially in a thermal state at a temperature higher than the oscillator phonon energy. This occurs in both chaotic and integrable systems, and despite the small number of spins (only six) and the lack of couplings between them. At the same time, pure initial states do not thermalize well in our system, indicating that mixed state thermalization stems from the thermal nature of the initial bath state. Under the influence of a thermal TLS bath, oscillator Fock states decay in an approximately exponential manner, but there is also a concave-down trend at very early times, possibly indicative of Gaussian decay. In the case of initial Fock state superpositions, the diagonal density matrix element behaves very similarly to single initial Fock states, while the off-diagonal matrix element decays sinusoidally with an exponentially decreasing amplitude. The off-diagonal decay time is much smaller then the diagonal one, indicating that superposition states decohere much faster than they decay. Both decay times decrease with increasing Fock state number, but more slowly than the 1/n dependence seen in the presence of an external ohmic bath.
NASA Astrophysics Data System (ADS)
Cai, X. D.; O'Brien, Edward E.; Ladeinde, Foluso
1996-11-01
Direct numerical simulation of decaying, isotropic, compressible turbulence in three dimensions is used to examine the behavior of fluctuations in density, temperature, and pressure when the initial conditions include temperature fluctuations larger than pressure fluctuations. The numerical procedure is described elsewhere (Ladeinde, F. et al.,) Phys. Fluids 7(11), pp. 2848 (1995), the initial turbulence Mach number range is subsonic, 0.3 to 0.7, and, following Ghosh and Matthaeus(Ghosh, S. and Matthaeus, W. H. Phys. Fluids A, pp. 148 (1991)), the initial compressible turbulence is characterized as a: mostly solenoidal, b: random, or c: longitudinal. These cases represent, respectively, ratios of initial kinetic energy in the compressible modes to total initial kinetic energy, say \\chi_0, which are either a: very small, b: about 0.6, or c: near unity. Thermodynamic scalings at the lowest values of initial Mach number and \\chi0 follow the predictions of Zank and Matthaeus (Zank, G. P. and Matthaeus, W. H. Phys. Fluids A(3), pp. 69 (1991)), but not otherwise. The relationship between \\chi, Mach number, and compressible pressure predicted by Sarkar et al.(Sarkar, S. et al.,) J. Fluid Mech. 227, pp. 473 (1991) applies, on average, to all cases computed.
Power function decay of hydraulic conductivity for a TOPMODEL-based infiltration routine
NASA Astrophysics Data System (ADS)
Wang, Jun; Endreny, Theodore A.; Hassett, James M.
2006-11-01
TOPMODEL rainfall-runoff hydrologic concepts are based on soil saturation processes, where soil controls on hydrograph recession have been represented by linear, exponential, and power function decay with soil depth. Although these decay formulations have been incorporated into baseflow decay and topographic index computations, only the linear and exponential forms have been incorporated into infiltration subroutines. This study develops a power function formulation of the Green and Ampt infiltration equation for the case where the power n = 1 and 2. This new function was created to represent field measurements in the New York City, USA, Ward Pound Ridge drinking water supply area, and provide support for similar sites reported by other researchers. Derivation of the power-function-based Green and Ampt model begins with the Green and Ampt formulation used by Beven in deriving an exponential decay model. Differences between the linear, exponential, and power function infiltration scenarios are sensitive to the relative difference between rainfall rates and hydraulic conductivity. Using a low-frequency 30 min design storm with 4.8 cm h-1 rain, the n = 2 power function formulation allows for a faster decay of infiltration and more rapid generation of runoff. Infiltration excess runoff is rare in most forested watersheds, and advantages of the power function infiltration routine may primarily include replication of field-observed processes in urbanized areas and numerical consistency with power function decay of baseflow and topographic index distributions. Equation development is presented within a TOPMODEL-based Ward Pound Ridge rainfall-runoff simulation. Copyright
NASA Astrophysics Data System (ADS)
Clements, Thomas; Purnell, Mark; Gabbott, Sarah
2016-04-01
The hard mineralised parts of organisms such as shells, teeth and bones dominate the fossil record. There are, however, sites around the world where soft-tissues are preserved often through rapid replacement of original tissue by rapidly-precipitating authigenic minerals. These exceptionally well-preserved soft-bodied fossils are much more informative about the anatomy, physiology, ecology and behaviour of ancient organisms as well as providing a more inclusive picture of ecosystems and evolution throughout geological time. However, despite the wealth of information that soft-bodied fossils can provide they must first be correctly interpreted as the processes of both decay and preservation act to modify the carcass from its in vivo condition. Decay leads to alteration of the appearance and topology of anatomy, and ultimately to loss. Preservation is selective with some anatomical features being more likely to be captured than others. These problems are especially germane to the interpretation of deep-time and/or enigmatic fossils where no modern analogue exist for comparative anatomical analysis. It is therefore of vital importance to understand the processes carcasses undergo during the fossilisation process, , in order to interpret the anatomical remains of fossils and thus extract true evolutionary presence or absence of anatomy from absence due to taphonomic biases. We have designed a series of novel experiments to investigate, in real time, how decay processes affect the fossilisation potential of soft-tissues - especially of internal anatomy. Our data allow us to unravel both the timing and sequence of anatomical decay of different organs. At the same time through measuring Eh and pH in selected organs we can predict when anatomical features will fall in to the window of authigenic mineralization and thus potentially become preserved. We can also place constraints on which minerals will operate to capture tissues. Our findings are applied to the fossil record allowing greater accuracy in reading the record of exceptionally preserved organisms.
Knibbs, Luke D.; Kidd, Timothy J.; Wainwright, Claire E.; Wood, Michelle E.; Ramsay, Kay A.; Bell, Scott C.; Morawska, Lidia
2016-01-01
This work aimed to develop an in vivo approach for measuring the duration of human bioaerosol infectivity. To achieve this, techniques designed to target short-term and long-term bioaerosol aging, were combined in a tandem system and optimized for the collection of human respiratory bioaerosols, without contamination. To demonstrate the technique, cough aerosols were sampled from two persons with cystic fibrosis and chronic Pseudomonas aeruginosa infection. Measurements and cultures from aerosol ages of 10, 20, 40, 900 and 2700 seconds were used to determine the optimum droplet nucleus size for pathogen transport and the airborne bacterial biological decay. The droplet nuclei containing the greatest number of colony forming bacteria per unit volume of airborne sputum were between 1.5 and 2.6 μm. Larger nuclei of 3.9 μm, were more likely to produce a colony when impacted onto growth media, because the greater volume of sputum comprising the larger droplet nuclei, compensated for lower concentrations of bacteria within the sputum of larger nuclei. Although more likely to produce a colony, the larger droplet nuclei were small in number, and the greatest numbers of colonies were instead produced by nuclei from 1.5 to 5.7 μm. Very few colonies were produced by smaller droplet nuclei, despite their very large numbers. The concentration of viable bacteria within the dried sputum comprising the droplet nuclei exhibited an orderly dual decay over time with two distinct half-lives. Nuclei exhibiting a rapid biological decay process with a 10 second half-life were quickly exhausted, leaving only a subset characterized by a half-life of greater than 10 minutes. This finding implied that a subset of bacteria present in the aerosol was resistant to rapid biological decay and remained viable in room air long enough to represent an airborne infection risk. PMID:27388489
Developments for the 6He beta - nu angular correlation experiment
NASA Astrophysics Data System (ADS)
Zumwalt, David W.
This thesis describes developments toward the measurement of the angular correlation between the beta and the antineutrino in the beta decay of 6He. This decay is a pure Gamow-Teller decay which is described in the Standard Model as a purely axial vector weak interaction. The angular correlation is characterized by the parameter abetanu = -1/3 in the Standard Model. Any deviation from this value would be evidence for tensor components in the weak interaction and would constitute new physics. A new method will be used to measure the parameter a betanu from 6He decays, featuring a magneto-optical trap that will measure the beta particle in coincidence with the recoiling 6Li daughter ion. This neutral atom trapping scheme provides cold, tightly confined atoms which will reduce systematic uncertainties related to the initial position of the decay. By knowing the initial position of the decay and measuring the time of flight of the recoiling 6Li daughter ion in coincidence with the beta, the angular correlation between the beta and the antineutrino can be deduced. We aim to measure a betanu first to the level of 1%, and eventually to the 0.1% level, which would represent an order of magnitude improvement in precision over past experiments. Towards this goal, we have designed, built, and successfully tested a liquid lithium target to provide >2×10. {10} 6He atoms/sto a low-background environment, which is the most intense source of 6He presently available. This allowed for an additional measurement of the 6He half-life (806.89 +/- 0.11stat +0.23-0.19syst ms) to be made with unprecedented precision, resolving discrepancies in past measurements. We have also tested our trapping and detection apparatus and have begun to record preliminary coincidence events.
The shock waves in decaying supersonic turbulence
NASA Astrophysics Data System (ADS)
Smith, M. D.; Mac Low, M.-M.; Zuev, J. M.
2000-04-01
We here analyse numerical simulations of supersonic, hypersonic and magnetohydrodynamic turbulence that is free to decay. Our goals are to understand the dynamics of the decay and the characteristic properties of the shock waves produced. This will be useful for interpretation of observations of both motions in molecular clouds and sources of non-thermal radiation. We find that decaying hypersonic turbulence possesses an exponential tail of fast shocks and an exponential decay in time, i.e. the number of shocks is proportional to t exp (-ktv) for shock velocity jump v and mean initial wavenumber k. In contrast to the velocity gradients, the velocity Probability Distribution Function remains Gaussian with a more complex decay law. The energy is dissipated not by fast shocks but by a large number of low Mach number shocks. The power loss peaks near a low-speed turn-over in an exponential distribution. An analytical extension of the mapping closure technique is able to predict the basic decay features. Our analytic description of the distribution of shock strengths should prove useful for direct modeling of observable emission. We note that an exponential distribution of shocks such as we find will, in general, generate very low excitation shock signatures.
Tunneling decay of false vortices with gravitation
NASA Astrophysics Data System (ADS)
Dupuis, Éric; Gobeil, Yan; Lee, Bum-Hoon; Lee, Wonwoo; MacKenzie, Richard; Paranjape, Manu B.; Yajnik, Urjit A.; Yeom, Dong-han
2017-11-01
We study the effect of vortices on the tunneling decay of a symmetry-breaking false vacuum in three spacetime dimensions with gravity. The scenario considered is one in which the initial state, rather than being the homogeneous false vacuum, contains false vortices. The question addressed is whether, and, if so, under which circumstances, the presence of vortices has a significant catalyzing effect on vacuum decay. After studying the existence and properties of vortices, we study their decay rate through quantum tunneling using a variety of techniques. In particular, for so-called thin-wall vortices we devise a one-parameter family of configurations allowing a quantum-mechanical calculation of tunneling. Also for thin-wall vortices, we employ the Israel junction conditions between the interior and exterior spacetimes. Matching these two spacetimes reveals a decay channel which results in an unstable, expanding vortex. We find that the tunneling exponent for vortices, which is the dominant factor in the decay rate, is half that for Coleman-de Luccia bubbles. This implies that vortices are short-lived, making them cosmologically significant even for low vortex densities. In the limit of the vanishing gravitational constant we smoothly recover our earlier results for the decay of the false vortex in a model without gravity.
Wait for It: Post-supernova Winds Driven by Delayed Radioactive Decays
NASA Astrophysics Data System (ADS)
Shen, Ken J.; Schwab, Josiah
2017-01-01
In most astrophysical situations, the radioactive decay of {}56{Ni} to {}56{Co} occurs via electron capture with a fixed half-life of 6.1 days. However, this decay rate is significantly slowed when the nuclei are fully ionized because K-shell electrons are unavailable for capture. In this paper, we explore the effect of these delayed decays on white dwarfs (WDs) that may survive Type Ia and Type Iax supernovae (SNe Ia and SNe Iax). The energy released by the delayed radioactive decays of {}56{Ni} and {}56{Co} drives a persistent wind from the surviving WD’s surface that contributes to the late-time appearance of these SNe after emission from the bulk of the SN ejecta has faded. We use the stellar evolution code MESA to calculate the hydrodynamic evolution and resulting light curves of these winds. Our post-SN Ia models conflict with late-time observations of SN 2011fe, but uncertainties in our initial conditions prevent us from ruling out the existence of surviving WD donors. Much better agreement with observations is achieved with our models of post-SN Iax bound remnants, providing evidence that these explosions are due to deflagrations in accreting WDs that fail to completely unbind the WDs. Future radiative transfer calculations and wind models utilizing simulations of explosions for more accurate initial conditions will extend our study of radioactively powered winds from post-SN surviving WDs and enable their use as powerful discriminants among the various SN Ia and SN Iax progenitor scenarios.
A Statistical Study of Rapid Sunspot Structure Change Associated with Flares
NASA Astrophysics Data System (ADS)
Chen, Wei-Zhong; Liu, Chang; Song, Hui; Deng, Na; Tan, Chang-Yi; Wang, Hai-Min
2007-10-01
We reported recently some rapid changes of sunspot structure in white-light (WL) associated with major flares. We extend the study to smaller events and present here results of a statistical study of this phenomenon. In total, we investigate 403 events from 1998 May 9 to 2004 July 17, including 40 X-class, 174 M-class, and 189 C-class flares. By monitoring the structure of the flaring active regions using the WL observations from the Transition Region and Coronal Explorer (TRACE), we find that segments in the outer sunspot structure decayed rapidly right after many flares; and that, on the other hand, the central part of sunspots near the flare-associated magnetic neutral line became darkened. These rapid and permanent changes are evidenced in the time profiles of WL mean intensity and are not likely resulted from the flare emissions. Our study further shows that the outer sunspot structure decay as well as the central structure darkening are more likely to be detected in larger solar flares. For X-class flares, over 40% events show distinct sunspot structure change. For M- and C-class flares, this percentage drops to 17% and 10%, respectively. The results of this statistical study support our previously proposed reconnection picture, i.e., the flare-related magnetic fields evolve from a highly inclined to a more vertical configuration.
Gradient-based stochastic estimation of the density matrix
NASA Astrophysics Data System (ADS)
Wang, Zhentao; Chern, Gia-Wei; Batista, Cristian D.; Barros, Kipton
2018-03-01
Fast estimation of the single-particle density matrix is key to many applications in quantum chemistry and condensed matter physics. The best numerical methods leverage the fact that the density matrix elements f(H)ij decay rapidly with distance rij between orbitals. This decay is usually exponential. However, for the special case of metals at zero temperature, algebraic decay of the density matrix appears and poses a significant numerical challenge. We introduce a gradient-based probing method to estimate all local density matrix elements at a computational cost that scales linearly with system size. For zero-temperature metals, the stochastic error scales like S-(d+2)/2d, where d is the dimension and S is a prefactor to the computational cost. The convergence becomes exponential if the system is at finite temperature or is insulating.
The Kepler Light Curve of V344 LYR: Constraining the Thermal-Viscous Limit Cycle Instability
NASA Technical Reports Server (NTRS)
Cannizzo, J. K.; Still, M. D.; Howell, S. B.; Wood, M. A.; Smale, A. P.
2010-01-01
We present time dependent modeling based on the accretion disk limit cycle model for a 90 d light curve of the short period SU UMa-type dwarf nova V344 Lyr taken by Kepler. The unprecedented precision and cadence (1 minute) far surpass that generally available for long term light curves. The data encompass a super outburst, preceded by three normal (i.e., short) outbursts and followed by two normal outbursts. The main decay of the super outburst is nearly perfectly exponential, decaying at a rate approx.12 d/mag, while the much more rapid decays of the normal outbursts exhibit a faster-than-exponential shape. We show that the standard limit cycle model can account for the light curve, without the need for either the thermal-tidal instability or enhanced mass transfer.
Eddy Resolving Global Ocean Prediction including Tides
2012-09-30
cooler than the enhanced dark contour) represent regions inconsistent with QG or SQG theory. The model spectra decay rapidly with increasing...Teixeira, and J.A. Hawkins, 2003: Analysis of coupled oceanographic and acoustic soliton simulations in the Yellow Sea: a search for soliton -induced
Biogeochemistry of vertebrate decomposition in a forest ecosystem
USDA-ARS?s Scientific Manuscript database
Decomposing plants and animals provide critical nutrients for ecosystems, including forests. During vertebrate decay, the rapid release of limiting nutrients, including N, P, C, and S fundamentally transforms the soil environment by stimulating endogenous organisms. The goal of this study was t...
Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Ciocci, M A; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; De Barbaro, P; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Eusebi, R; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, P; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Sorin, V; Song, H; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S
2013-03-22
This Letter reports a search for a narrow resonant state decaying into two W bosons and two b quarks where one W boson decays leptonically and the other decays into a quark-antiquark pair. The search is particularly sensitive to top-antitop resonant production. We use the full data sample of proton-antiproton collisions at a center-of-mass energy of 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron, corresponding to an integrated luminosity of 9.45 fb(-1). No evidence for resonant production is found, and upper limits on the production cross section times branching ratio for a narrow resonant state are extracted. Within a specific benchmark model, we exclude a Z' boson with mass, M(Z'), below 915 GeV/c(2) decaying into a top-antitop pair at the 95% credibility level assuming a Z' boson decay width of Γ(Z') = 0.012 M(Z'). This is the most sensitive search for a narrow qq-initiated tt resonance in the mass region below 750 GeV/c(2).
Jenkins, R Brian; Joyce, Peter; Mechtel, Deborah
2017-01-27
Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Stephen Allan
2016-01-28
During the astrophysical r-process, multiple neutron captures occur so rapidly on target nuclei that their daughter nuclei generally do not have time to undergo radioactive decay before another neutron is captured. The r-process can be approximately simulated on Earth in certain types of thermonuclear explosions through an analogous process of rapid neutron captures known as the "prompt capture" process. Between 1952 and 1969, 23 nuclear tests were fielded by the US which were involved (at least partially) with the "prompt capture" process. Of these tests, 15 were at least partially successful. Some of these tests were conducted under the Plowsharemore » Peaceful Nuclear Explosion Program as scientific research experiments. It is now known that the USSR conducted similar nuclear tests during 1966 to 1979. The elements einsteinium and fermium were first discovered by this process. The most successful tests achieved 19 successive neutron captures on the initial target nuclei. A review of the US program, target nuclei used, heavy element yields, scientific achievements of the program, and how some of the results have been used by the astrophysical community is given. Finally, some unanswered questions concerning very neutron-rich nuclei that could potentially have been answered with additional nuclear experiments is presented.« less
Jenkins, R. Brian; Joyce, Peter; Mechtel, Deborah
2017-01-01
Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay. PMID:28134815
Improved Reactive Flow Modeling of the LX-17 Double Shock Experiments
NASA Astrophysics Data System (ADS)
Rehagen, Thomas J.; Vitello, Peter
2017-06-01
Over driven double shock experiments provide a measurement of the properties of the reaction product states of the insensitive high explosive LX-17 (92.5% TATB and 7.5% Kel-F by weight). These experiments used two flyer materials mounted on the end of a projectile to send an initial shock through the LX-17, followed by a second shock of a higher magnitude into the detonation products. In the experiments, the explosive was initially driven by the flyer plate to pressures above the Chapman-Jouguet state. The particle velocity history was recorded by Photonic Doppler Velocimetry (PDV) probes pointing at an aluminum foil coated LiF window. The PDV data shows a sharp initial shock and decay, followed by a rounded second shock. Here, the experimental results are compared to 2D and 3D Cheetah reactive flow modeling. Our default Cheetah reactive flow model fails to accurately reproduce the decay of the first shock or the curvature or strength of the second shock. A new model is proposed in which the carbon condensate produced in the reaction zone is controlled by a kinetic rate. This allows the carbon condensate to be initially out of chemical equilibrium with the product gas. This new model reproduces the initial detonation peak and decay, and matches the curvature of the second shock, however, it still over-predicts the strength of the second shock. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Graham, Susan M.; Holte, Sarah E.; Dragavon, Joan A.; Ramko, Kelly M.; Mandaliya, Kishor N.; McClelland, R. Scott; Peshu, Norbert M.; Sanders, Eduard J.; Krieger, John N.; Coombs, Robert W.
2012-01-01
Objectives Antiretroviral therapy (ART) decreases HIV-1 RNA levels in semen and reduces sexual transmission from HIV-1-infected men. Our objective was to study the time course and magnitude of seminal HIV-1 RNA decay after initiation of efavirenz-based ART among 13 antiretroviral-naïve Kenyan men. Methods HIV-1 RNA was quantified (lower limit of detection, 120 copies/mL) in blood and semen at baseline and over the first month of ART. Median log10 HIV-1 RNA was compared at each time-point using Wilcoxon Signed Rank tests. Perelson’s two-phase viral decay model and nonlinear random effects were used to compare decay rates in blood and semen. Results Median baseline HIV-1 RNA was 4.40 log10 copies/mL in blood (range, 3.20–5.08 log10 copies/mL) and 3.69 log10 copies/mL in semen (range, <2.08–4.90 log10 copies/mL). The median reduction in HIV-1 RNA by day 28 was 1.90 log10 copies/mL in blood (range, 0.56–2.68 log10 copies/mL) and 1.36 log10 copies/mL in semen (range, 0–2.66 log10 copies/mL). ART led to a decrease from baseline by day 7 in blood and day 14 in semen (p = 0.005 and p = 0.006, respectively). The initial modeled decay rate was slower in semen than in blood (p = 0.06). There was no difference in second-phase decay rates between blood and semen. Conclusions Efavirenz-based ART reduced HIV-1 RNA levels more slowly in semen than in blood. Although this difference was of borderline significance in this small study, our observations suggest that there is suboptimal suppression of seminal HIV-1 RNA for some men in the early weeks of treatment. PMID:22912795
NASA Technical Reports Server (NTRS)
Farokhi, S.; Taghavi, R.; Rice, E. J.
1988-01-01
An existing cold jet facility at NASA-Lewis was modified to produce swirling flows with controllable initial tangential velocity distribution. Distinctly different swirl velocity profiles were produced, and their effects on jet mixing characteristics were measured downstream of an 11.43 cm diameter convergent nozzle. It was experimentally shown that in the near field of a swirling turbulent jet, the mean velocity field strongly depends on the initial swirl profile. Two extreme tangential velocity distributions were produced. The two jets shared approximately the same initial mass flow rate of 5.9 kg/s, mass averaged axial Mach number and swirl number. Mean centerline velocity decay characteristics of the solid body rotation jet flow exhibited classical decay features of a swirling jet with S = 0.48 reported in the literature. It is concluded that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field.
Finite-Temperature Entanglement Dynamics in an Anisotropic Two-Qubit Heisenberg Spin Chain
NASA Astrophysics Data System (ADS)
Chen, Tao; Shan, Chuanjia; Li, Jinxing; Liu, Tangkun; Huang, Yanxia; Li, Hong
2010-07-01
This paper investigates the entanglement dynamics of an anisotropic two-qubit Heisenberg spin chain in the presence of decoherence at finite temperature. The time evolution of the concurrence is studied for different initial Werner states. The influences of initial purity, finite temperature, spontaneous decay and Hamiltonian on the entanglement evolution are analyzed in detail. Our calculations show that the finite temperature restricts the evolution of the entanglement all the time when the Hamiltonian improves it and the spontaneous decay to the reservoirs can produce quantum entanglement with the anisotropy of spin-spin interaction. Finally, the steady-state concurrence which may remain non-zero for low temperature is also given.
Rapid Acyl-Homoserine Lactone Quorum Signal Biodegradation in Diverse Soils†
Wang, Ya-Juan; Leadbetter, Jared Renton
2005-01-01
Signal degradation impacts all communications. Although acyl-homoserine lactone (acyl-HSL) quorum-sensing signals are known to be degraded by defined laboratory cultures, little is known about their stability in nature. Here, we show that acyl-HSLs are biodegraded in soils sampled from diverse U.S. sites and by termite hindgut contents. When amended to samples at physiologically relevant concentrations, 14C-labeled acyl-HSLs were mineralized to 14CO2 rapidly and, at most sites examined, without lag. A lag-free turf soil activity was characterized in further detail. Heating or irradiation of the soil prior to the addition of radiolabel abolished mineralization, whereas protein synthesis inhibitors did not. Mineralization exhibited an apparent Km of 1.5 μM acyl-HSL, ca. 1,000-fold lower than that reported for a purified acyl-HSL lactonase. Under optimal conditions, acyl-HSL degradation proceeded at a rate of 13.4 nmol · h−1 · g of fresh weight soil−1. Bioassays established that the final extent of signal inactivation was greater than for its full conversion to CO2 but that the two processes were well coupled kinetically. A most probable number of 4.6 × 105 cells · g of turf soil−1 degraded physiologically relevant amounts of hexanoyl-[1-14C]HSL to 14CO2. It would take chemical lactonolysis months to match the level of signal decay achieved in days by the observed biological activity. Rapid decay might serve either to quiet signal cross talk that might otherwise occur between spatially separated microbial aggregates or as a full system reset. Depending on the context, biological signal decay might either promote or complicate cellular communications and the accuracy of population density-based controls on gene expression in species-rich ecosystems. PMID:15746331
SEISMIC PREDICTION USING UNATTACHED RADON DECAY PRODUCTS.
Harley, Naomi H; Chittaporn, Passaporn; Fisenne, Isabel M
2017-11-01
Long-term measurements of the 222Rn concentration, 222Rn decay product activity, particle size distribution, and unattached, and attached 222Rn decay products, were made at two locations using the 22 y radon decay product 210Pb as their tracer. The particle size sampler collects both short lived 222Rn decay products that ultimately decay to 210Pb on the filters, and also airborne 210Pb. The measurements were made outdoors, at a suburban home and at Fernald, OH, a former uranium processing facility, on top of one of the two 226Ra storage silos containing 150 TBq 226Ra. The size distributions showed the unattached fractions, i.e. particle diameter 2-4 nm, to be 1.5% at the home and 14% at the silos. The unattached fraction of 218Po can be shown to be an immediate measure of the 222Rn concentration. The data indicates detection of the pressure driven 222Rn flow at the silo and with the enhanced measurement capability of a filtered air source versus the usual 222Rn gas measurement. It is proposed that real time measurements of unattached 218Po may be used to identify rapidly changing 222Rn concentrations associated with pressure driven soil air flow associated with seismic activity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhang, Hongyin; Liu, Zhouyang; Xu, Baitian; Chen, Keping; Yang, Qiya; Zhang, Qiuyun
2013-10-15
The influence of adding burdock fructooligosaccharide (BFO) in the culture media on the efficacy of Rhodotorula mucilaginosa in controlling postharvest decay of peaches and its possible mode of action were investigated. The antagonistic activity of R. mucilaginosa to Rhizopus decay and blue mold decay of peaches was greatly enhanced through cultivation in the nutrient yeast dextrose agar (NYDA) medium amended with BFO at the concentration of 0.32%, compared with that cultivated in NYDB without BFO. R. mucilaginosa at 1×10(8) cells/mL cultivation in the NYDB media did not reduce the natural decay incidence of peaches, compared with the control after 30 d at 4 °C followed by 7d at 20 °C. However, R. mucilaginosa cultivation in the NYDB media amended with BFO at the concentration of 0.32% reduced the natural decay incidence of peaches. The population of R. mucilaginosa harvested from NYDB amended with BFO at 0.32% increased rapidly in peach wounds compared to that harvested from NYDB without BFO no matter peaches were stored at 20 °C or 4 °C. The activities of chitinase and β-1,3-glucanase of cell-free culture filtrate of R. mucilaginosa harvested from NYDB amended with BFO at 0.32% were higher than that at other concentrations and the control. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kwon, Sungchul; Kim, Jin Min
2015-01-01
For a fixed-energy (FE) Manna sandpile model in one dimension, we investigate the effects of random initial conditions on the dynamical scaling behavior of an order parameter. In the FE Manna model, the density ρ of total particles is conserved, and an absorbing phase transition occurs at ρc as ρ varies. In this work, we show that, for a given ρ , random initial distributions of particles lead to the domain structure in which domains with particle densities higher and lower than ρc alternate with each other. In the domain structure, the dominant length scale is the average domain length, which increases via the coalescence of adjacent domains. At ρc, the domain structure slows down the decay of an order parameter and also causes anomalous finite-size effects, i.e., power-law decay followed by an exponential one before the quasisteady state. As a result, the interplay of particle conservation and random initial conditions causes the domain structure, which is the origin of the anomalous dynamical scaling behaviors for random initial conditions.
NASA Astrophysics Data System (ADS)
Qie, X.; Pu, Y.; Jiang, R.; Liu, M.; Sun, Z.
2017-12-01
Positive recoil leader was observed in both rocket-triggered and tower lightning flashes. The similar processes are observed in all the cases: an initial weakening dart leader propagated downward from the cloud with weak luminosity and terminated finally before reaching the ground. Then the bidirectional leaders started and propagated in the preexisting and decaying channel below the terminated downward dart leader, and the luminosity of the bileader ends was asymmetrical, but both with its tip being the weakest. The upward positive leader end started earlier and fast than the downward negative leader end. The bidirectional leader developed with the positive leader moving upward, along the decayed downward negative leader channel, and the negative leader downward, along the remnants of the channel created by the previous stroke or ICC, and, hence, could be viewed as a kind of recoil leader. However, the polarity of this recoil leader is contrary to the traditional recoil leader with negative leader end retrogressing along an existing positive leader channel. The bidirectional leaders observed herein are new as they are excited by a decayed negative leader with in the preexisting discharge channel, unlike other bidirectional leaders, e.g., the electric breakdown in virgin air or traditional recoil processes formed in a decayed positive leader channel.
Disentanglement versus decoherence of two qubits in thermal noise.
Zampetaki, A V; Diakonos, F K
2012-08-31
We show that the influence of thermal noise, simulated by a 2D ferromagnetic Ising spin lattice on a pair of noninteracting, initially entangled qubits, represented by quantum spins, leads to unexpected evolution of quantum correlations. The high temperature noise leads to ultraslow decay of the quantum correlations. Decreasing the noise temperature we observe a decrease of the characteristic decay time scale. When the noise originates from a critical state, a revival of the quantum correlations is observed. This revival becomes oscillatory with a slowly decaying amplitude when the temperature is decreased below the critical region, leading to persistence of the quantum correlations.
Naked-eye optical flash from gamma-ray burst 080319B: Tracing the decaying neutrons in the outflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan Yizhong; Zhang Bing; Wei Daming
For an unsteady baryonic gamma-ray burst (GRB) outflow, the fast and slow proton shells collide with each other and produce energetic soft gamma-ray emission. If the outflow has a significant neutron component, the ultrarelativistic neutrons initially expand freely until decaying at a larger radius. The late-time proton shells ejected from the GRB central engine, after powering the regular internal shocks, will sweep these {beta}-decay products and give rise to very bright UV/optical emission. The naked-eye optical flash from GRB 080319B, an energetic explosion in the distant Universe, can be well explained in this way.
Drinking water chloramine use may promote ammonia–oxidizing bacteria (AOB) growth because of naturally occurring ammonia, residual ammonia remaining from chloramine formation, and ammonia released from chloramine decay and demand. A rapid chloramine residual loss is often associa...
Production and degradation of oxalic acid by brown rot fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espejo, E.; Agosin, E.
1991-07-01
Our results show that all of the brown rot fungi tested produce oxalic acid in liquid as well as in semisolid cultures. Gloeophyllum trabeum, which accumulates the lowest amount of oxalic acid during decay of pine holocellulose, showed the highest polysaccharide-depolymerizing activity. Semisolid cultures inoculated with this fungus rapidly converted {sup 14}C-labeled oxalic acid to CO{sub 2} during cellulose depolymerization. The other brown rot fungi also oxidized {sup 14}C-labeled oxalic acid, although less rapidly. In contrast, semisolid cultures inoculated with the white rot fungus Coriolus versicolor did not significantly catabolize the acid and did not depolymerize the holocellulose during decay.more » Semisolid cultures of G. trabeum amended with desferrioxamine, a specific iron-chelating agent, were unable to lower the degree of polymerization of cellulose or to oxidize {sup 14}C-labeled oxalic acid to the extent or at the rate that control cultures did. These results suggest that both iron and oxalic acid are involved in cellulose depolymerization by brown rot fungi.« less
Chatrchyan, Serguei
2014-04-30
The t t-bar charge asymmetry in proton-proton collisions atmore » $$\\sqrt{s} =$$ 7 TeV is measured using the dilepton decay channel (ee, e mu, or mu mu). The data correspond to a total integrated luminosity of 5.0 inverse femtobarns, collected by the CMS experiment at the LHC. The t t-bar and lepton charge asymmetries, defined as the differences in absolute values of the rapidities between the reconstructed top quarks and antiquarks and of the pseudorapidities between the positive and negative leptons, respectively, are measured to be Ac = -0.010 +/- 0.017 (stat.) +/- 0.008 (syst.) and A c lep = 0.009 +/- 0.010 (stat.) +/- 0.006 (syst). The lepton charge asymmetry is also measured as a function of the invariant mass, rapidity, and transverse momentum of the t t-bar system. All measurements are consistent with the expectations of the standard model.« less
Status of double beta decay experiments using isotopes other than 136Xe
NASA Astrophysics Data System (ADS)
Pandola, L.
2014-09-01
Neutrinoless double beta decay is a lepton-number violating process predicted by many extensions of the standard model. It is actively searched for in several candidate isotopes within many experimental projects. The status of the experimental initiatives which are looking for the neutrinoless double beta decay in isotopes other than 136Xe is reviewed, with special emphasis given to the projects that passed the R&D phase. The results recently released by the experiment GERDA are also summarized and discussed. The GERDA data give no positive indication of neutrinoless double beta decay of 76Ge and disfavor in a model-independent way the long-standing observation claim on the same isotope. The lower limit reported by GERDA for the half-life of neutrinoless double beta decay of 76Ge is T1/20ν > 2.1 ṡ1025 yr (90% C.L.), or T1/20ν > 3.0 ṡ1025 yr, when combined with the results of other 76Ge predecessor experiments.
NASA Astrophysics Data System (ADS)
Ibragimov, Timur; Leigh, Nathan W. C.; Ryu, Taeho; Panurach, Teresa; Perna, Rosalba
2018-03-01
We present a half-life formalism for describing the disruption of gravitationally-bound few-body systems, with a focus on binary-binary scattering. For negative total encounter energies, the four-body problem has three possible decay products in the point particle limit. For each decay product and a given set of initial conditions, we obtain directly from numerical scattering simulations the half-life for the distribution of disruption times. As in radioactive decay, the half-lives should provide a direct prediction for the relative fractions of each decay product. We test this prediction with simulated data and find good agreement with our hypothesis. We briefly discuss applications of this feature of the gravitational four-body problem to populations of black holes in globular clusters. This paper, the second in the series, builds on extending the remarkable similarity between gravitational chaos at the macroscopic scale and radioactive decay at the microscopic scale to larger-N systems.
NASA Astrophysics Data System (ADS)
Ibragimov, Timur; Leigh, Nathan W. C.; Ryu, Taeho; Panurach, Teresa; Perna, Rosalba
2018-07-01
We present a half-life formalism for describing the disruption of gravitationally bound few-body systems, with a focus on binary-binary scattering. For negative total encounter energies, the four-body problem has three possible decay products in the point-particle limit. For each decay product and a given set of initial conditions, we obtain directly from numerical scattering simulations the half-life for the distribution of disruption times. As in radioactive decay, the half-lives should provide a direct prediction for the relative fractions of each decay product. We test this prediction with simulated data and find good agreement with our hypothesis. We briefly discuss applications of this feature of the gravitational four-body problem to populations of black holes in globular clusters. This paper, the second in the series, builds on extending the remarkable similarity between gravitational chaos at the macroscopic scale and radioactive decay at the microscopic scale to larger-N systems.
Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño
NASA Astrophysics Data System (ADS)
Chowdary, Jasti S.; Harsha, H. S.; Gnanaseelan, C.; Srinivas, G.; Parekh, Anant; Pillai, Prasanth; Naidu, C. V.
2017-04-01
In general the Indian summer monsoon (ISM) rainfall is near normal or excess during the El Niño decay phase. Nevertheless the impact of large variations in decaying El Niño on the ISM rainfall and circulation is not systematically examined. Based on the timing of El Niño decay with respect to boreal summer season, El Niño decay phases are classified into three types in this study using 142 years of sea surface temperature (SST) data, which are as follows: (1) early-decay (ED; decay during spring), (2) mid-summer decay (MD; decay by mid-summer) and (3) no-decay (ND; no decay in summer). It is observed that ISM rainfall is above normal/excess during ED years, normal during MD years and below normal/deficit in ND years, suggesting that the differences in El Niño decay phase display profound impact on the ISM rainfall. Tropical Indian Ocean (TIO) SST warming, induced by El Niño, decays rapidly before the second half of the monsoon season (August and September) in ED years, but persists up to the end of the season in MD years, whereas TIO warming maintained up to winter in ND case. Analysis reveals the existence of strong sub-seasonal ISM rainfall variations in the summer following El Niño years. During ED years, strong negative SST anomalies develop over the equatorial central-eastern Pacific by June and are apparent throughout the summer season accompanied by anomalous moisture divergence and high sea level pressure (SLP). The associated moisture convergence and low SLP over ISM region favour excess rainfall (mainly from July onwards). This circulation and rainfall anomalies are highly influenced by warm TIO SST and Pacific La Niña conditions in ED years. Convergence of southwesterlies from Arabian Sea and northeasterlies from Bay of Bengal leads to positive rainfall over most part of the Indian subcontinent from August onwards in MD years. ND years are characterized by negative rainfall anomaly spatial pattern and weaker circulation over India throughout the summer season, which are mainly due to persisting El Niño related warm SST anomalies over the Pacific. Atmospheric general circulation model simulation supports our hypothesis that El Niño decay variations modulate ISM rainfall and circulation.
Micek, Mark A.; Blanco, Ana Judith; Beck, Ingrid A.; Dross, Sandra; Matunha, Laurinda; Montoya, Pablo; Seidel, Kristy; Gantt, Soren; Matediane, Eduardo; Jamisse, Lilia; Gloyd, Stephen; Frenkel, Lisa M.
2011-01-01
Background In women, single-dose nevirapine for prophylaxis against mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) selects for nevirapine-resistant HIV-1, which subsequently decays rapidly. We hypothesized that the selection, acquisition, and decay of nevirapine-resistant HIV-1 differs in infants, varying by the timing of HIV-1 infection. Methods We conducted a prospective, observational study of 740 Mozambican infants receiving single-dose nevirapine prophylaxis and determined the timing of infection and concentrations of nevirapine-resistant HIV-1 over time. Results Infants with established in utero infection had a high rate (87.0%) of selection of nevirapine-resistant HIV-1 mutants, which rapidly decayed to undetectable levels. The few without nevirapine resistance received zidovudine with single-dose nevirapine and/or their mothers took alternative antiretroviral drugs. Infants with acute in utero infection had a lower rate of nevirapine-resistant HIV-1 (33.3%; P =.006, compared with established in utero infection), but mutants persisted over time. Infants with peripartum infection also had a lower rate of nevirapine-resistant HIV-1 (38.1%; P =.001, compared with established in utero infection) but often acquired 100% mutant virus that persisted over time (P =.017, compared with established in utero infection). Conclusions The detection and persistence of nevirapine-resistant HIV-1 in infants after single-dose nevirapine therapy vary by the timing of infection and the antiretroviral regimen. In infants with persistent high-level nevirapine-resistant HIV-1, nevirapine-based antiretroviral therapy is unlikely to ever be efficacious because of concentrations in long-lived viral reservoirs. However, the absence or decay of nevirapine-resistant HIV-1 in many infants suggests that nevirapine antiretroviral therapy may be effective if testing can identify these individuals. PMID:20384494
A DNS study of turbulent mixing of two passive scalars
NASA Astrophysics Data System (ADS)
Juneja, A.; Pope, S. B.
1996-08-01
We employ direct numerical simulations to study the mixing of two passive scalars in stationary, homogeneous, isotropic turbulence. The present work is a direct extension of that of Eswaran and Pope from one scalar to two scalars and the focus is on examining the evolution states of the scalar joint probability density function (jpdf) and the conditional expectation of the scalar diffusion to motivate better models for multi-scalar mixing. The initial scalar fields are chosen to conform closely to a ``triple-delta function'' jpdf corresponding to blobs of fluid in three distinct states. The effect of the initial length scales and diffusivity of the scalars on the evolution of the jpdf and the conditional diffusion is investigated in detail as the scalars decay from their prescribed initial state. Also examined is the issue of self-similarity of the scalar jpdf at large times and the rate of decay of the scalar variance and dissipation.
Influence of tensor interactions on masses and decay widths of dibaryons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pang Hourong; Ping Jialun; Chen Lingzhi
The influence of gluon and Goldstone boson induced tensor interactions on the dibaryon masses and D-wave decay widths has been studied in the quark delocalization, color screening model. The effective S-D wave transition interactions induced by gluon and Goldstone boson exchanges decrease rapidly with increasing strangeness of the channel. The tensor contribution of K and {eta} mesons is negligible in this model. There is no six-quark state in the light flavor world studied so far that can become bound by means of these tensor interactions besides the deuteron. The partial D-wave decay widths of the IJ{sup p}=(1/2)2{sup +}N{omega} state tomore » spin 0 and 1 {lambda}{xi} final states are 12.0 and 21.9 keV, respectively. This is a very narrow dibaryon resonance that might be detectable in those production reactions with rich high strangeness particles through the reconstruction of the vertex mass of the decay product {lambda}{xi} by existing detectors at RHIC and COMPASS at CERN or at JHF in Japan and FAIR in Germany in the future.« less
Bal Krishna, K C; Sathasivan, Arumugam; Chandra Sarker, Dipok
2012-09-01
The discovery of a microbially derived soluble product that accelerates chloramine decay is described. Nitrifying bacteria are believed to be wholly responsible for rapid chloramine loss in drinking water systems. However, a recent investigation showed that an unidentified soluble agent significantly accelerated chloramine decay. The agent was suspected to be either natural organic matter (NOM) or soluble microbial products (SMPs). A laboratory scale reactor was fed chloraminated reverse osmosis (RO) treated water to eliminate the interference from NOM. Once nitrification had set in, experiments were conducted on the reactor and feed waters to determine the identity of the component. The study showed the presence of SMPs released by microbes in severely nitrified waters. Further experiments proved that the SMPs significantly accelerated chloramine decay, probably through catalytic reaction. Moreover, application of common protein denaturing techniques stopped the reaction implying that the compound responsible was likely to be a protein. This significant finding will pave the way for better control of chloramine in the distribution systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gurrutxaga-Lerma, Beñat; Balint, Daniel S; Dini, Daniele; Eakins, Daniel E; Sutton, Adrian P
2015-05-01
When a metal is subjected to extremely rapid compression, a shock wave is launched that generates dislocations as it propagates. The shock wave evolves into a characteristic two-wave structure, with an elastic wave preceding a plastic front. It has been known for more than six decades that the amplitude of the elastic wave decays the farther it travels into the metal: this is known as "the decay of the elastic precursor." The amplitude of the elastic precursor is a dynamic yield point because it marks the transition from elastic to plastic behavior. In this Letter we provide a full explanation of this attenuation using the first method of dislocation dynamics to treat the time dependence of the elastic fields of dislocations explicitly. We show that the decay of the elastic precursor is a result of the interference of the elastic shock wave with elastic waves emanating from dislocations nucleated in the shock front. Our simulations reproduce quantitatively recent experiments on the decay of the elastic precursor in aluminum and its dependence on strain rate.
Rehearsal in serial recall: An unworkable solution to the nonexistent problem of decay.
Lewandowsky, Stephan; Oberauer, Klaus
2015-10-01
We examine the explanatory roles that have been ascribed to various forms of rehearsal or refreshing in short-term memory (STM) and working memory paradigms, usually in conjunction with the assumption that memories decay over time if they are not rehearsed. Notwithstanding the popularity of the rehearsal notion, there have been few detailed examinations of its underlying mechanisms. We explicitly implemented rehearsal in a decay model and explored its role by simulation in several benchmark paradigms ranging from immediate serial recall to complex span and delayed recall. The results show that articulatory forms of rehearsal often fail to counteract temporal decay. Rapid attentional refreshing performs considerably better, but so far there is scant empirical evidence that people engage in refreshing during STM tasks. Combining articulatory rehearsal and refreshing as 2 independent maintenance processes running in parallel leads to worse performance than refreshing alone. We conclude that theoretical reliance on articulatory rehearsal as a causative agent in memory may be unwise and that explanatory appeals to rehearsal are insufficient unless buttressed by quantitative modeling. (c) 2015 APA, all rights reserved).
Yamada, Yasuhiro; Yamada, Takumi; Shimazaki, Ai; Wakamiya, Atsushi; Kanemitsu, Yoshihiko
2016-06-02
The fast-decaying component of photoluminescence (PL) under very weak pulse photoexcitation is dominated by the rapid relaxation of the photoexcited carriers into a small number of carrier-trapping defect states. Here, we report the subnanosecond decay of the PL under excitation weaker than 1 nJ/cm(2) both in CH3NH3PbI3-based heterostructures and bare thin films. The trap-site density at the interface was evaluated on the basis of the fluence-dependent PL decay profiles. It was found that high-density defects determining the PL decay dynamics are formed near the interface between CH3NH3PbI3 and the hole-transporting Spiro-OMeTAD but not at the CH3NH3PbI3/TiO2 interface and the interior regions of CH3NH3PbI3 films. This finding can aid the fabrication of high-quality heterointerfaces, which are required improving the photoconversion efficiency of perovskite-based solar cells.
Baryon number and lepton universality violation in leptoquark and diquark models
NASA Astrophysics Data System (ADS)
Assad, Nima; Fornal, Bartosz; Grinstein, Benjamín
2018-02-01
We perform a systematic study of models involving leptoquarks and diquarks with masses well below the grand unification scale and demonstrate that a large class of them is excluded due to rapid proton decay. After singling out the few phenomenologically viable color triplet and sextet scenarios, we show that there exist only two leptoquark models which do not suffer from tree-level proton decay and which have the potential for explaining the recently discovered anomalies in B meson decays. Both of those models, however, contain dimension five operators contributing to proton decay and require a new symmetry forbidding them to emerge at a higher scale. This has a particularly nice realization for the model with the vector leptoquark (3 , 1) 2 / 3, which points to a specific extension of the Standard Model, namely the Pati-Salam unification model, where this leptoquark naturally arises as the new gauge boson. We explore this possibility in light of recent B physics measurements. Finally, we analyze also a vector diquark model, discussing its LHC phenomenology and showing that it has nontrivial predictions for neutron-antineutron oscillation experiments.
Dynamical synapses enhance neural information processing: gracefulness, accuracy, and mobility.
Fung, C C Alan; Wong, K Y Michael; Wang, He; Wu, Si
2012-05-01
Experimental data have revealed that neuronal connection efficacy exhibits two forms of short-term plasticity: short-term depression (STD) and short-term facilitation (STF). They have time constants residing between fast neural signaling and rapid learning and may serve as substrates for neural systems manipulating temporal information on relevant timescales. This study investigates the impact of STD and STF on the dynamics of continuous attractor neural networks and their potential roles in neural information processing. We find that STD endows the network with slow-decaying plateau behaviors: the network that is initially being stimulated to an active state decays to a silent state very slowly on the timescale of STD rather than on that of neuralsignaling. This provides a mechanism for neural systems to hold sensory memory easily and shut off persistent activities gracefully. With STF, we find that the network can hold a memory trace of external inputs in the facilitated neuronal interactions, which provides a way to stabilize the network response to noisy inputs, leading to improved accuracy in population decoding. Furthermore, we find that STD increases the mobility of the network states. The increased mobility enhances the tracking performance of the network in response to time-varying stimuli, leading to anticipative neural responses. In general, we find that STD and STP tend to have opposite effects on network dynamics and complementary computational advantages, suggesting that the brain may employ a strategy of weighting them differentially depending on the computational purpose.
Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review
NASA Astrophysics Data System (ADS)
Li, Tim; Wang, Bin; Wu, Bo; Zhou, Tianjun; Chang, Chih-Pei; Zhang, Renhe
2017-12-01
The western North Pacific anomalous anticyclone (WNPAC) is an important atmospheric circulation system that conveys El Niño impact on East Asian climate. In this review paper, various theories on the formation and maintenance of the WNPAC, including warm pool atmosphere-ocean interaction, Indian Ocean capacitor, a combination mode that emphasizes nonlinear interaction between ENSO and annual cycle, moist enthalpy advection/Rossby wave modulation, and central Pacific SST forcing, are discussed. It is concluded that local atmosphere-ocean interaction and moist enthalpy advection/Rossby wave modulation mechanisms are essential for the initial development and maintenance of the WNPAC during El Niño mature winter and subsequent spring. The Indian Ocean capacitor mechanism does not contribute to the earlier development but helps maintain the WNPAC in El Niño decaying summer. The cold SST anomaly in the western North Pacific, although damped in the summer, also plays a role. An interbasin atmosphere-ocean interaction across the Indo-Pacific warm pool emerges as a new mechanism in summer. In addition, the central Pacific cold SST anomaly may induce the WNPAC during rapid El Niño decaying/La Niña developing or La Niña persisting summer. The near-annual periods predicted by the combination mode theory are hardly detected from observations and thus do not contribute to the formation of the WNPAC. The tropical Atlantic may have a capacitor effect similar to the tropical Indian Ocean.
GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow
NASA Technical Reports Server (NTRS)
Holland, Stephen T.; De Pasquale, Massimiliano; Mao, Jirong; Sakamoto, Takanori; Schady, Patricia; Covino, Stefano; Fan, Yi-Zhong; Jin, Zhi-Ping; D'Avanzo, Paolo; Antonelli, Angelo;
2012-01-01
We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift Ultra Violet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3-m telescopes to construct a detailed data set extending from 86 s to approx.100,000 s after the BAT trigger. Our data covers a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18,000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.injection
NASA Astrophysics Data System (ADS)
Galama, T. J.; Bremer, M.; Bertoldi, F.; Menten, K. M.; Lisenfeld, U.; Shepherd, D. S.; Mason, B.; Walter, F.; Pooley, G. G.; Frail, D. A.; Sari, R.; Kulkarni, S. R.; Berger, E.; Bloom, J. S.; Castro-Tirado, A. J.; Granot, J.
2000-10-01
The millimeter wavelength emission from GRB 991208 is the second brightest ever detected, yielding a unique data set. We present here well-sampled spectra and light curves over more than two decades in frequency for a 2 week period. This data set has allowed us for the first time to trace the evolution of the characteristic synchrotron self-absorption frequency νa, peak frequency νm, and the peak flux density Fm; we obtain νa~t-0.15+/-0.23, νm~t-1.7+/-0.7, and Fm~t-0.47+/-0.20. From the radio data we find that models of homogeneous or wind-generated ambient media with a spherically symmetric outflow can be ruled out. A model in which the relativistic outflow is collimated (a jet) can account for the observed evolution of the synchrotron parameters, the rapid decay at optical wavelengths, and the observed radio-to-optical spectral flux distributions that we present here, provided that the jet transition has not been fully completed in the first 2 weeks after the event. These observations provide additional evidence that rapidly decaying optical/X-ray afterglows are due to jets and that such transitions either develop very slowly or perhaps never reach the predicted asymptotic decay F(t)~t-p.
Adam, J.; Adamová, D.; Aggarwal, M. M.; ...
2015-12-02
We measured the elliptic flow, v 2, of muons from heavy-flavour hadron decays at forward rapidity (2.5 < y < 4) in Pb-Pb collisions at √s NN= 2.76TeVwith the ALICE detector at the LHC. The scalar product, two- and four-particle Q cumulants and Lee-Yang zeros methods are used. The dependence of the v 2 of muons from heavy-flavour hadron decays on the collision centrality, in the range 0-40%, and on transverse momentum, p T, is studied in the interval 3 < p T< 10 GeV/c. We also observe a positive v 2 with the scalar product and two-particle Q cumulantsmore » in semi-central collisions (10-20% and 20-40% centrality classes) for the p T interval from 3 to about 5GeV/c with a significance larger than 3 sigma, based on the combination of statistical and systematic uncertainties. The v 2 magnitude tends to decrease towards more central collisions and with increasing p T. It becomes compatible with zero in the interval 6 < p T< 10 GeV/c. Our results are compared to models describing the interaction of heavy quarks and open heavy-flavour hadrons with the high-density medium formed in high-energy heavy-ion collisions.« less
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Chunhui, Z.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadlovska, S.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Luz, P. H. F. N. D.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Masui, H.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration
2016-02-01
The elliptic flow, v2, of muons from heavy-flavour hadron decays at forward rapidity (2.5 < y < 4) is measured in Pb-Pb collisions at √{sNN} = 2.76 TeV with the ALICE detector at the LHC. The scalar product, two- and four-particle Q cumulants and Lee-Yang zeros methods are used. The dependence of the v2 of muons from heavy-flavour hadron decays on the collision centrality, in the range 0-40%, and on transverse momentum, pT, is studied in the interval 3
Modeling the growth and decay of the Antarctic Peninsula Ice Sheet
NASA Astrophysics Data System (ADS)
Payne, A. J.; Sugden, D. E.; Clapperton, C. M.
1989-03-01
A model of the growth and decay of the Antarctic Peninsula Ice Sheet during the last glacial/interglacial cycle is used to identify the main controls on ice sheet behavior. Using as input glaciological assumptions derived by W. F. Budd and I. N. Smith (1982, Annals of Glaciology3, 42-49), bedrock topography, isostatic compensation, and mass balance relationships, the model is driven by sea-level change over the last 40,000 yr in association with assumed changes in the rate of melting beneath ice shelves. An ice sheet dome over 3.5 km thick grows on the offshore shelf and straits west of the Antarctic Peninsula and reaches a maximum at 18,000 yr B.P. Collapse begins at 14,000 yr B.P. but becomes rapid and continuous after 10,000 yr B.P. The present stable ice cover is achieved at 6500 yr B.P. Ice growth and decay are characterized by thresholds which separate periods of steady state from periods of rapid transition; the thresholds usually relate to topography. Tests show that ice sheet behavior is most sensitive to sea-level change, basal marine melting, and accumulation and is less sensitive to isostasy, spatial variation in accumulation, calving rates, and ice flow parameterization. Tests of the model against field evidence show good agreement in places, as well as discrepancies which require further work.
Fourier heat conduction as a strong kinetic effect in one-dimensional hard-core gases
NASA Astrophysics Data System (ADS)
Zhao, Hanqing; Wang, Wen-ge
2018-01-01
For a one-dimensional (1D) momentum conserving system, intensive studies have shown that generally its heat current autocorrelation function (HCAF) tends to decay in a power-law manner and results in the breakdown of the Fourier heat conduction law in the thermodynamic limit. This has been recognized to be a dominant hydrodynamic effect. Here we show that, instead, the kinetic effect can be dominant in some cases and leads to the Fourier law for finite-size systems. Usually the HCAF undergoes a fast decaying kinetic stage followed by a long slowly decaying hydrodynamic tail. In a finite range of the system size, we find that whether the system follows the Fourier law depends on whether the kinetic stage dominates. Our Rapid Communication is illustrated by the 1D hard-core gas models with which the HCAF is derived analytically and verified numerically by molecular dynamics simulations.
Human vertical eye movement responses to earth horizontal pitch
NASA Technical Reports Server (NTRS)
Wall, C. 3rd; Petropoulos, A. E.
1993-01-01
The vertical eye movements in humans produced in response to head-over-heels constant velocity pitch rotation about a horizontal axis resemble those from other species. At 60 degrees/s these are persistent and tend to have non-reversing slow components that are compensatory to the direction of rotation. In most, but not all subjects, the slow component velocity was well characterized by a rapid build-up followed by an exponential decay to a non-zero baseline. Super-imposed was a cyclic or modulation component whose frequency corresponded to the time for one revolution and whose maximum amplitude occurred during a specific head orientation. All response components (exponential decay, baseline and modulation) were larger during pitch backward compared to pitch forward runs. Decay time constants were shorter during the backward runs, thus, unlike left to right yaw axis rotation, pitch responses display significant asymmetries between paired forward and backward runs.
Su, Li-Chien; Hsu, Yi-Hsiang; Wang, Hsiang-Yu
2012-05-01
An alternating current was used to generate an electric field to enhance the fluorescent labeling of microalgae cellular lipids with Nile red and LipidTOX. The decay of the fluorescence intensity of Chlorella vulgaris cells in 0 V/cm was more than 50% after 10 min, and the intensity variation was as high as 7% in 20s. At 2000 V/cm, the decay rate decreased to 1.22% per minute and the intensity fluctuation was less than 1% for LipidTOX-labeled cells. For Spirulina sp. cells at 0 V/cm, the fluorescence intensity increased by 10% after 10 min, whereas at 2000 V/cm, labeling was more rapid and fluorescence intensity doubled. These results show that applying an electric field can improve the quality of fluorescence detection by alleviating decay and fluctuation or by enhancing signal intensity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Short-term visual memory for location in depth: A U-shaped function of time.
Reeves, Adam; Lei, Quan
2017-10-01
Short-term visual memory was studied by displaying arrays of four or five numerals, each numeral in its own depth plane, followed after various delays by an arrow cue shown in one of the depth planes. Subjects reported the numeral at the depth cued by the arrow. Accuracy fell with increasing cue delay for the first 500 ms or so, and then recovered almost fully. This dipping pattern contrasts with the usual iconic decay observed for memory traces. The dip occurred with or without a verbal or color-shape retention load on working memory. In contrast, accuracy did not change with delay when a tonal cue replaced the arrow cue. We hypothesized that information concerning the depths of the numerals decays over time in sensory memory, but that cued recall is aided later on by transfer to a visual memory specialized for depth. This transfer is sufficiently rapid with a tonal cue to compensate for the sensory decay, but it is slowed by the need to tag the arrow cue's depth relative to the depths of the numerals, exposing a dip when sensation has decayed and transfer is not yet complete. A model with a fixed rate of sensory decay and varied transfer rates across individuals captures the dip as well as the cue modality effect.
NASA Astrophysics Data System (ADS)
Palmer, John; Dobrovolny, Hana M.; Beauchemin, Catherine A. A.
2017-01-01
Antiviral therapy is a first line of defence against new influenza strains. Current pandemic preparations involve stock- piling oseltamivir, an oral neuraminidase inhibitor (NAI), so rapidly determining the effectiveness of NAIs against new viral strains is vital for deciding how to use the stockpile. Previous studies have shown that it is possible to extract the drug efficacy of antivirals from the viral decay rate of chronic infections. In the present work, we use a nonlinear mathematical model representing the course of an influenza infection to explore the possibility of extracting NAI drug efficacy using only the observed viral titer decay rates seen in patients. We first show that the effect of a time-varying antiviral concentration can be accurately approximated by a constant efficacy. We derive a relationship relating the true treatment dose and time elapsed between doses to the constant drug dose required to approximate the time- varying dose. Unfortunately, even with the simplification of a constant drug efficacy, we show that the viral decay rate depends not just on drug efficacy, but also on several viral infection parameters, such as infection and production rate, so that it is not possible to extract drug efficacy from viral decay rate alone.
The Extensional Rheology of Non-Newtonian Materials
NASA Technical Reports Server (NTRS)
Spiegelberg, Stephen H.; McKinley, Gareth H.
1996-01-01
The evolution of the transient extensional stresses in dilute and semi-dilute viscoelastic polymer solutions are measured with a filament stretching rheometer of a design similar to that first introduced by Sridhar, et al. The solutions are polystyrene-based (PS) Boger fluids that are stretched at constant strain rates ranging from 0.6 less than or equal to epsilon(0) less than or equal to 4s(exp -1) and to Hencky strains of epsilon greater than 4. The test fluids all strain harden and Trouton ratios exceeding 1000 are obtained at high strains. The experimental data strain hardens at lower strain levels than predicted by bead-spring FENE models. In addition to measuring the transient tensile stress growth, we also monitor the decay of the tensile viscoelastic stress difference in the fluid column following cessation of uniaxial elongation as a function of the total imposed Hencky strain and the strain rate. The extensional stresses initially decay very rapidly upon cessation of uniaxial elongation followed by a slower viscoelastic relaxation, and deviate significantly from FENE relaxation predictions. The relaxation at long times t is greater than or equal to 5 s, is compromised by gravitational draining leading to non-uniform filament profiles. For the most elastic fluids, partial decohension of the fluid filament from the endplates of the rheometer is observed in tests conducted at high strain rates. This elastic instability is initiated near the rigid endplate fixtures of the device and it results in the progressive breakup of the fluid column into individual threads or 'fibrils' with a regular azimuthal spacing. These fibrils elongate and bifurcate as the fluid sample is elongated further. Flow visualization experiments using a modified stretching device show that the instability develops as a consequence of an axisymmetry-breaking meniscus instability in the nonhomogeneous region of highly deformed fluid near the rigid endplate.
NASA Technical Reports Server (NTRS)
Higgins, R. W.; Schubert, S. D.
1994-01-01
This study examines the role of synoptic-scale eddies during the development of persistent anticyclonic height anomalies over the central North Pacific in a general circulation model under perpetual January conditions. The General Circulation Model (GCM) replicates the basic characteristics of the evolution of the anomaly patterns found in observations. The life cycle is characterized by the rapid establishment of the major anomaly center and considerably longer maintenance and decay phases, which include the development of downstream anomaly centers. The simulation also shows a realistic evolution of synoptic-scale activity beginning with enhanced activity off the east coast of Asia prior to onset, followed by a northward shift of the Pacific storm track, which lasts throughout the maintenance phase. The initial enhancement of synoptic-scale eddy activity is associated with a large-scale cyclonic anomaly that developes over Siberia several days prior to the onset of the main anticyclonic anomaly over the central North Pacific. The observations, however, show considerable interdecadel variability in the details of the composite onset behavior; it is unclear whether this variability is real or whether it reflects differences in the data assimilation systems. The role of the time mean flow and synoptic-scale eddies in the development of the persistent Pacific anomalies is studied within the context of a kinetic energy budget in which the flow is decomposed into the time-mean, low-frequency (timescales longer than 10 days), and synoptic (timescales less than 6 days) components. The budget, which is carried out for the simulation at 500 mb, shows that the initial growth of the persistent anticyclonic anomalies is associated with barotropic conversions of energy, with approximately equal contributions coming from the mean flow and the synoptic-scale eddies. After onset the barotropic conversion from the mean flow dominates, whereas the decay phase is associated with baroclinic processes within the low-frequency flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Lewis A.; Habershon, Scott, E-mail: S.Habershon@warwick.ac.uk
Pigment-protein complexes (PPCs) play a central role in facilitating excitation energy transfer (EET) from light-harvesting antenna complexes to reaction centres in photosynthetic systems; understanding molecular organisation in these biological networks is key to developing better artificial light-harvesting systems. In this article, we combine quantum-mechanical simulations and a network-based picture of transport to investigate how chromophore organization and protein environment in PPCs impacts on EET efficiency and robustness. In a prototypical PPC model, the Fenna-Matthews-Olson (FMO) complex, we consider the impact on EET efficiency of both disrupting the chromophore network and changing the influence of (local and global) environmental dephasing. Surprisingly,more » we find a large degree of resilience to changes in both chromophore network and protein environmental dephasing, the extent of which is greater than previously observed; for example, FMO maintains EET when 50% of the constituent chromophores are removed, or when environmental dephasing fluctuations vary over two orders-of-magnitude relative to the in vivo system. We also highlight the fact that the influence of local dephasing can be strongly dependent on the characteristics of the EET network and the initial excitation; for example, initial excitations resulting in rapid coherent decay are generally insensitive to the environment, whereas the incoherent population decay observed following excitation at weakly coupled chromophores demonstrates a more pronounced dependence on dephasing rate as a result of the greater possibility of local exciton trapping. Finally, we show that the FMO electronic Hamiltonian is not particularly optimised for EET; instead, it is just one of many possible chromophore organisations which demonstrate a good level of EET transport efficiency following excitation at different chromophores. Overall, these robustness and efficiency characteristics are attributed to the highly connected nature of the chromophore network and the presence of multiple EET pathways, features which might easily be built into artificial photosynthetic systems.« less
Baumgart, Mario; Groth, Marco; Priebe, Steffen; Savino, Aurora; Testa, Giovanna; Dix, Andreas; Ripa, Roberto; Spallotta, Francesco; Gaetano, Carlo; Ori, Michela; Terzibasi Tozzini, Eva; Guthke, Reinhard; Platzer, Matthias; Cellerino, Alessandro
2014-12-01
The brains of teleost fish show extensive adult neurogenesis and neuronal regeneration. The patterns of gene regulation during fish brain aging are unknown. The short-lived teleost fish Nothobranchius furzeri shows markers of brain aging including reduced learning performances, gliosis, and reduced adult neurogenesis. We used RNA-seq to quantify genome-wide transcript regulation and sampled five different time points to characterize whole-genome transcript regulation during brain aging of N. furzeri. Comparison with human datasets revealed conserved up-regulation of ribosome, lysosome, and complement activation and conserved down-regulation of synapse, mitochondrion, proteasome, and spliceosome. Down-regulated genes differ in their temporal profiles: neurogenesis and extracellular matrix genes showed rapid decay, synaptic and axonal genes a progressive decay. A substantial proportion of differentially expressed genes (~40%) showed inversion of their temporal profiles in the last time point: spliceosome and proteasome showed initial down-regulation and stress-response genes initial up-regulation. Extensive regulation was detected for chromatin remodelers of the DNMT and CBX families as well as members of the polycomb complex and was mirrored by an up-regulation of the H3K27me3 epigenetic mark. Network analysis showed extensive coregulation of cell cycle/DNA synthesis genes with the uncharacterized zinc-finger protein ZNF367 as central hub. In situ hybridization showed that ZNF367 is expressed in neuronal stem cell niches of both embryonic zebrafish and adult N. furzeri. Other genes down-regulated with age, not previously associated with adult neurogenesis and with similar patterns of expression are AGR2, DNMT3A, KRCP, MEX3A, SCML4, and CBX1. CBX7, on the other hand, was up-regulated with age. © 2014 The Authors. Aging cell published by the Anatomical Society and John Wiley & Sons Ltd.
Hairpin vortices in turbulent boundary layers
NASA Astrophysics Data System (ADS)
Eitel-Amor, G.; Örlü, R.; Schlatter, P.; Flores, O.
2015-02-01
The present work presents a number of parallel and spatially developing simulations of boundary layers to address the question of whether hairpin vortices are a dominant feature of near-wall turbulence, and which role they play during transition. In the first part, the parent-offspring regeneration mechanism is investigated in parallel (temporal) simulations of a single hairpin vortex introduced in a mean shear flow corresponding to either turbulent channels or boundary layers (Reτ ≲ 590). The effect of a turbulent background superimposed on the mean flow is considered by using an eddy viscosity computed from resolved simulations. Tracking the vortical structure downstream, it is found that secondary hairpins are only created shortly after initialization, with all rotational structures decaying for later times. For hairpins in a clean (laminar) environment, the decay is relatively slow, while hairpins in weak turbulent environments (10% of νt) dissipate after a couple of eddy turnover times. In the second part, the role of hairpin vortices in laminar-turbulent transition is studied using simulations of spatial boundary layers tripped by hairpin vortices. These vortices are generated by means of specific volumetric forces representing an ejection event, creating a synthetic turbulent boundary layer initially dominated by hairpin-like vortices. These hairpins are advected towards the wake region of the boundary layer, while a sinusoidal instability of the streaks near the wall results in rapid development of a turbulent boundary layer. For Reθ > 400, the boundary layer is fully developed, with no evidence of hairpin vortices reaching into the wall region. The results from both the parallel and spatial simulations strongly suggest that the regeneration process is rather short-lived and may not sustain once a turbulent background is developed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former direct numerical simulation studies is reminiscent of the transitional boundary layer and may not be connected to some aspects of the dynamics of the fully developed wall-bounded turbulence.
Turbulent flame propagation and combustion in spark ignition engines
NASA Technical Reports Server (NTRS)
Beretta, G. P.; Rashidi, M.; Keck, J. C.
1983-01-01
Pressure measurements synchronized with high-speed motion-picture records of flame propagation have been made in a transparent-piston engine. The data show that the initial expansion speed of the flame front is close to that of a laminar flame. As the flame expands, its speed rapidly accelerates to a quasi-steady value comparable with that of the turbulent velocity fluctuations in the unburned gas. During the quasi-steady propagation phase, a significant fraction of the gas behind the visible front is unburned. Final burnout of the charge may be approximated by an exponential decay in time. The data have been analyzed in a model-independent way to obtain a set of empirical equations for calculating mass burning rates in spark-ignition engines. The burning equations contain three parameters: the laminar burning speed, a characteristic speed (uT), and a characteristic length (lT). The laminar burning speed is known from laboratory measurements. Tentative correlations relating uT and lT to engine geometry and operating variables have been derived from the engine data.
Metal-organic framework-based separator for lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Bai, Songyan; Liu, Xizheng; Zhu, Kai; Wu, Shichao; Zhou, Haoshen
2016-07-01
Lithium-sulfur batteries are a promising energy-storage technology due to their relatively low cost and high theoretical energy density. However, one of their major technical problems is the shuttling of soluble polysulfides between electrodes, resulting in rapid capacity fading. Here, we present a metal-organic framework (MOF)-based battery separator to mitigate the shuttling problem. We show that the MOF-based separator acts as an ionic sieve in lithium-sulfur batteries, which selectively sieves Li+ ions while efficiently suppressing undesired polysulfides migrating to the anode side. When a sulfur-containing mesoporous carbon material (approximately 70 wt% sulfur content) is used as a cathode composite without elaborate synthesis or surface modification, a lithium-sulfur battery with a MOF-based separator exhibits a low capacity decay rate (0.019% per cycle over 1,500 cycles). Moreover, there is almost no capacity fading after the initial 100 cycles. Our approach demonstrates the potential for MOF-based materials as separators for energy-storage applications.
Suppressing Taylor vortices in a Taylor-Couette flow system with free surface
NASA Astrophysics Data System (ADS)
Bouabdallah, A.; Oualli, H.; Mekadem, M.; Gad-El-Hak, M.
2016-11-01
Taylor-Couette flows have been extensively investigated due to their many industrial applications, such as catalytic reactors, electrochemistry, photochemistry, biochemistry, and polymerization. Mass transfer applications include extraction, tangential filtration, crystallization, and dialysis. A 3D study is carried out to simulate a Taylor-Couette flow with a rotating and pulsating inner cylinder. We utilize FLUENT to simulate the incompressible flow with a free surface. The study reveals that flow structuring is initiated with the development of an Ekman vortex at low Taylor number, Ta = 0 . 01 . For all encountered flow regimes, the Taylor vortices are systematically inhibited by the pulsatile motion of the inner cylinder. A spectral analysis shows that this pulsatile motion causes a rapid decay of the free surface oscillations, from a periodic wavy movement to a chaotic one, then to a fully turbulent motion. This degenerative free surface behavior is interpreted as the underlying mechanism responsible for the inhibition of the Taylor vortices.
Cobbs, W H; Pugh, E N
1987-01-01
1. Membrane currents initiated by intense, 20 microseconds flashes (photocurrents) were recorded from isolated salamander rods by combined extracellular suction electrodes and intracellular tight-seal electrodes either in current or voltage clamp mode. The magnitudes (mean +/- 2 S.E.M.) of the maximal photoresponses recorded by the suction and by the intracellular electrode respectively were 40 +/- 5 pA (n = 18) and 35 +/- 7 mV (n = 8) for current clamp at zero current; 43 +/- 9 pA and 66 +/- 13 (n = 11) pA for voltage clamp at the zero-current holding potential, -24 +/- 3 mV. 2. Photocurrents initiated by flashes isomerizing 0.1% or more of the outer segment's rhodopsin achieved a saturated velocity and were 95% complete in less than 50 ms. The effect of incrementing flash intensity above 0.1% isomerization can be described as a translation of the photocurrent along the time axis towards the origin. Within the interval 0-50 ms the latter two-thirds of the velocity-saturated photocurrent is well described as a single-exponential decay. The decay was much faster in voltage clamp (2.8 +/- 1.2 ms, n = 11) than in current clamp mode (17 +/- 5 ms, n = 17). 3. The initial third of the velocity-saturated photocurrent, occurring over the interval from the flash to the onset of exponential decay, followed about the same time course in current and voltage clamp. The time interval occupied by this initial 'latent' phase decreased with increasing flash intensity and attained an apparent minimum of about 7 ms in response to flashes isomerizing 10% or more of the rhodopsin at ca. 22 degrees C. 4. The hypothesis that the decay of outer segment light-sensitive membrane current is the same in current and voltage clamp was supported by an analysis of the difference between outer segment currents measured successively in the two recording modes. First, the tail of the difference current decayed exponentially with a time constant approximately equal to R x C, where R and C are independently estimated slope resistance and capacitance of the rod. Secondly, the integral of the difference current, when divided by outer segment capacitance, closely approximated the hyperpolarizing light response measured under current clamp. Thus, displacement current accounted for the difference between photocurrents measured in current and voltage clamp.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2832596
NASA Astrophysics Data System (ADS)
Chen, Ye-Hong; Shi, Zhi-Cheng; Song, Jie; Xia, Yan
2018-02-01
In this paper, by invariant-based inverse engineering, we design classical driving fields to transfer quantum fluctuations between two suspended membranes in an optomechanical cavity system. The transfer can be quickly attained through a nonadiabatic evolution path determined by a so-called dynamical invariant. Such an evolution path allows one to optimize the occupancies of the unstable "intermediate" states; thus, the influence of cavity decays can be suppressed. Numerical simulation demonstrates that a perfect fluctuation transfer between two membranes can be rapidly achieved in one step, and the transfer is robust to both the amplitude noises and cavity decays.
Measurement of the differential inclusive B + hadron cross sections in pp collisions at s = 13 TeV
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...
2017-05-30
The differential cross sections for inclusive production of B + hadrons are measured as a function of the B + transverse momentum p T B and rapidity y B in pp collisions at a centre-of-mass energy of 13 TeV, using data collected by the CMS experiment that correspond to an integrated luminosity of 48.1 pb –1. The measurement uses the exclusive decay channel B +→J/ψK +, with J/ψ mesons that decay to a pair of muons. Lastly, the results show a reasonable agreement with theoretical calculations within the uncertainties.
Wigner functions for evanescent waves.
Petruccelli, Jonathan C; Tian, Lei; Oh, Se Baek; Barbastathis, George
2012-09-01
We propose phase space distributions, based on an extension of the Wigner distribution function, to describe fields of any state of coherence that contain evanescent components emitted into a half-space. The evanescent components of the field are described in an optical phase space of spatial position and complex-valued angle. Behavior of these distributions upon propagation is also considered, where the rapid decay of the evanescent components is associated with the exponential decay of the associated phase space distributions. To demonstrate the structure and behavior of these distributions, we consider the fields generated from total internal reflection of a Gaussian Schell-model beam at a planar interface.
Optical detection of radon decay in air
Sand, Johan; Ihantola, Sakari; Peräjärvi, Kari; Toivonen, Harri; Toivonen, Juha
2016-01-01
An optical radon detection method is presented. Radon decay is directly measured by observing the secondary radiolumines cence light that alpha particles excite in air, and the selectivity of coincident photon detection is further enhanced with online pulse-shape analysis. The sensitivity of a demonstration device was 6.5 cps/Bq/l and the minimum detectable concentration was 12 Bq/m3 with a 1 h integration time. The presented technique paves the way for optical approaches in rapid radon detec tion, and it can be applied beyond radon to the analysis of any alpha-active sample which can be placed in the measurement chamber. PMID:26867800
Strong cosmic censorship in de Sitter space
NASA Astrophysics Data System (ADS)
Dias, Oscar J. C.; Eperon, Felicity C.; Reall, Harvey S.; Santos, Jorge E.
2018-05-01
Recent work indicates that the strong cosmic censorship hypothesis is violated by nearly extremal Reissner-Nordström-de Sitter black holes. It was argued that perturbations of such a black hole decay sufficiently rapidly that the perturbed spacetime can be extended across the Cauchy horizon as a weak solution of the equations of motion. In this paper we consider the case of Kerr-de Sitter black holes. We find that, for any nonextremal value of the black hole parameters, there are quasinormal modes which decay sufficiently slowly to ensure that strong cosmic censorship is respected. Our analysis covers both scalar field and linearized gravitational perturbations.
Evolution of hydromagnetic turbulence from the electroweak phase transition
NASA Astrophysics Data System (ADS)
Brandenburg, Axel; Kahniashvili, Tina; Mandal, Sayan; Pol, Alberto Roper; Tevzadze, Alexander G.; Vachaspati, Tanmay
2017-12-01
We present new simulations of decaying hydromagnetic turbulence for a relativistic equation of state relevant to the early Universe. We compare helical and nonhelical cases either with kinetically or magnetically dominated initial fields. Both kinetic and magnetic initial helicities lead to maximally helical magnetic fields after some time, but with different temporal decay laws. Both are relevant to the early Universe, although no mechanisms have yet been identified that produce magnetic helicity with strengths comparable to the big bang nucleosynthesis limit at scales comparable to the Hubble horizon at the electroweak phase transition. Nonhelical magnetically dominated fields could still produce picoGauss magnetic fields under most optimistic conditions. Only helical magnetic fields can potentially have nanoGauss strengths at scales up to 30 kpc today.
Bergroth, Tobias; Ekici, Halime; Gisslén, Magnus; Loes, Sabine Kinloch-de; Goh, Li-Ean; Freedman, Andrew; Lampe, Fiona; Johnson, Margaret A; Sönnerborg, Anders
2009-01-01
Therapy failure due to drug resistance development is a common phenomenon in HIV-infected patients. However, when the drug pressure leads to the earliest selection of drug-resistant HIV-1 populations is still unclear. In this study, the extent to which selection of the HIV-1 reverse transcriptase M184I/V mutations occur during the initial phase of viral decay in treatment-naïve HIV-1 infected patients receiving antiretroviral therapy (ART) was examined. Plasma virus from three cohorts of treatment-naïve patients initiating quadruple (n = 43), triple (n = 14) or dual (n = 15) lamivudine-containing ART were analyzed for M184I/V during the first 6 months of therapy using direct sequencing and a sensitive selective real-time PCR method. Among quadruple ART patients, who all were treated at primary HIV-1 infection, only one patient developed M184V after 6 weeks of therapy, having had wild-type virus at baseline. No mutations were found in chronically infected patients on triple ART. In patients on dual therapy, M184I/V mutants were found frequently. Selection of M184I/V mutants was found to be rare during the initial phase of viral decay after initiation of ART in adherent patients given a three or four-drug combination, in contrast to those receiving a less potent regimen. The results suggest that triple and quadruple lamivudine + PI or PI/r containing ART given to treatment-naïve adherent patients is potent enough to prevent development of resistance during the first months of therapy.
Wang, Nidan; Li, Yijia; Han, Yang; Xie, Jing; Li, Taisheng
2017-06-01
The association between baseline human immunodeficiency virus (HIV) sequence diversity and HIV DNA decay after the initiation of antiretroviral therapy (ART) remains uncharacterized during the early stages of HIV infection. Samples were obtained from a cohort of 17 patients with early HIV infection (<6 months after infection) who initiated ART, and the C2V5 region of the HIV-1 envelope (env) gene was amplified via single genome amplification (SGA) to determine the peripheral plasma HIV quasispecies. We categorized HIV quasispecies into two groups according to baseline viral sequence genetic distance, which was determined by the Poisson-Fitter tool. Total HIV DNA in peripheral blood mononuclear cells (PBMCs), viral load, and T cell subsets were measured prior to and after the initiation of ART. The median SGA sequence number was 17 (range 6-28). At baseline, we identified 7 patients with homogeneous viral populations (designated the Homogeneous group) and 10 patients with heterogeneous viral populations (designated the Heterogeneous group) based on SGA sequences. Both groups exhibited similar HIV DNA decay rates during the first 6 months of ART (P > 0.99), but the Homogenous group experienced more prominent decay than the Heterogeneous group after 6 months (P = 0.037). The Heterogeneous group had higher CD4 cell counts after ART initiation; however, both groups had comparable recovery in terms of CD4/CD8 ratios and CD8 T cell activation levels. Viral population homogeneity upon the initiation of ART is associated with a decrease in HIV DNA levels during ART. J. Med. Virol. 89:982-988, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2012-06-21
A measurement of the jet activity inmore » $$t\\bar{t}$$ events produced in proton–proton collisions at a centre-of-mass energy of 7 TeV is presented, using 2.05 fb -1 of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. The $$t\\bar{t}$$ events are selected in the dilepton decay channel with two identified b-jets from the top quark decays. Events are vetoed if they contain an additional jet with transverse momentum above a threshold in a central rapidity interval. The fraction of events surviving the jet veto is presented as a function of this threshold for four different central rapidity interval definitions. An alternate measurement is also performed, in which events are vetoed if the scalar transverse momentum sum of the additional jets in each rapidity interval is above a threshold. In both measurements, the data are corrected for detector effects and compared to the theoretical models implemented in MC@NLO, Powheg, Alpgen and Sherpa. The experimental uncertainties are often smaller than the spread of theoretical predictions, allowing deviations between data and theory to be observed in some regions of phase space.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Ryan H.; Timm, Andrea C.; Timm, Collin M.
The structure, function and evolving composition of microbial communities is deeply influenced by the physical and chemical architecture of the local microenvironment. The complexity of this parameter space in naturally occurring systems has made a clear understanding of the key drivers of community development elusive. Here, we examine the role of spatial confinement on community development using a microwell platform that allows for assembly and monitoring of unique microbial communities en masse. This platform was designed to contain microwells with varied size features in order to mimic various levels of spatial confinement found in natural systems. Microbial populations assembled inmore » wells with incrementally smaller size features showed increasingly larger variations in inoculum levels. By exploiting this size dependence, large wells were used to assemble homogenous initial populations of Pseudomonas aeruginosa, allowing for reproducible, directed growth trajectories. In contrast, smaller wells were used to assemble a heterogeneous range of initial populations, resulting in a variety of growth and decay trajectories. This allowed for parallel screening of single member communities across different levels of confinement to identify initial conditions in which P. aeruginosa colonies have dramatically higher probabilities of survival. These results demonstrate a unique approach for manipulating the distribution of initial microbial populations assembled into controlled microenvironments to rapidly identify population and environmental parameters conducive or inhibitive to growth. Additionally, multi-member community assembly was characterized to demonstrate the power of this platform for studying the role of member abundance on microbial competition, mutualism and community succession.« less
Hansen, Ryan H.; Timm, Andrea C.; Timm, Collin M.; ...
2016-05-06
The structure, function and evolving composition of microbial communities is deeply influenced by the physical and chemical architecture of the local microenvironment. The complexity of this parameter space in naturally occurring systems has made a clear understanding of the key drivers of community development elusive. Here, we examine the role of spatial confinement on community development using a microwell platform that allows for assembly and monitoring of unique microbial communities en masse. This platform was designed to contain microwells with varied size features in order to mimic various levels of spatial confinement found in natural systems. Microbial populations assembled inmore » wells with incrementally smaller size features showed increasingly larger variations in inoculum levels. By exploiting this size dependence, large wells were used to assemble homogenous initial populations of Pseudomonas aeruginosa, allowing for reproducible, directed growth trajectories. In contrast, smaller wells were used to assemble a heterogeneous range of initial populations, resulting in a variety of growth and decay trajectories. This allowed for parallel screening of single member communities across different levels of confinement to identify initial conditions in which P. aeruginosa colonies have dramatically higher probabilities of survival. These results demonstrate a unique approach for manipulating the distribution of initial microbial populations assembled into controlled microenvironments to rapidly identify population and environmental parameters conducive or inhibitive to growth. Additionally, multi-member community assembly was characterized to demonstrate the power of this platform for studying the role of member abundance on microbial competition, mutualism and community succession.« less
Measurements of B → J / ψ at forward rapidity in p + p collisions at s = 510 GeV
Aidala, C.; Ajitanand, N. N.; Akiba, Y.; ...
2017-05-02
Inmore » this paper, we report the first measurement of the fraction of J / ψ mesons coming from Β-meson decay (F Β→ J / ψ ) in p + p collisions at s = 510 GeV . The measurement is performed using the forward silicon vertex detector and central vertex detector at PHENIX, which provide precise tracking and distance-of-closest-approach determinations, enabling the statistical separation of J / ψ due to Β-meson decays from prompt J / ψ . The measured value of F Β→ J / ψ is 8.1% ± 2.3%(stat) ± 1.9%(syst) for J / ψ with transverse momenta 0 < p T < 5 GeV / c and rapidity 1.2 < |y| < 2.2. The measured fraction F Β→ J / ψ at PHENIX is compared to values measured by other experiments at higher center of mass energies and to fixed-order-next-to-leading-logarithm and color-evaporation-model predictions. The bb cross section per unit rapidity [dσ / dy(pp → bb)] extracted from the obtained F Β→ J / ψ and the PHENIX inclusive J / ψ cross section measured at 200 GeV scaled with color-evaporation-model calculations, at the mean Β hadron rapidity y = ±1.7 in 510 GeV p + p collisions, is 3.63 +1.92 -1.70 μb. Finally, it is consistent with the fixed-order-next-to-leading-logarithm calculations.« less
Measurements of B → J / ψ at forward rapidity in p + p collisions at s = 510 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aidala, C.; Ajitanand, N. N.; Akiba, Y.
Inmore » this paper, we report the first measurement of the fraction of J / ψ mesons coming from Β-meson decay (F Β→ J / ψ ) in p + p collisions at s = 510 GeV . The measurement is performed using the forward silicon vertex detector and central vertex detector at PHENIX, which provide precise tracking and distance-of-closest-approach determinations, enabling the statistical separation of J / ψ due to Β-meson decays from prompt J / ψ . The measured value of F Β→ J / ψ is 8.1% ± 2.3%(stat) ± 1.9%(syst) for J / ψ with transverse momenta 0 < p T < 5 GeV / c and rapidity 1.2 < |y| < 2.2. The measured fraction F Β→ J / ψ at PHENIX is compared to values measured by other experiments at higher center of mass energies and to fixed-order-next-to-leading-logarithm and color-evaporation-model predictions. The bb cross section per unit rapidity [dσ / dy(pp → bb)] extracted from the obtained F Β→ J / ψ and the PHENIX inclusive J / ψ cross section measured at 200 GeV scaled with color-evaporation-model calculations, at the mean Β hadron rapidity y = ±1.7 in 510 GeV p + p collisions, is 3.63 +1.92 -1.70 μb. Finally, it is consistent with the fixed-order-next-to-leading-logarithm calculations.« less
Measurements of B →J /ψ at forward rapidity in p +p collisions at √{s }=510 GeV
NASA Astrophysics Data System (ADS)
Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Asano, H.; Atomssa, E. T.; Attila, A.; Awes, T. C.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Boer, M.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butler, C.; Butsyk, S.; Campbell, S.; Canoaroman, C.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Do, J. H.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fukuda, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Ji, Z.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapukchyan, D.; Kapustinsky, J.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, M.; Kim, M. H.; Kim, Y.-J.; Kim, Y. K.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kudo, S.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Leung, Y. H.; Lewis, B.; Lewis, N. A.; Li, X.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Lokos, S.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mihalik, D. E. M.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagai, K.; Nagamiya, S.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Qu, H.; Radzevich, P. V.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Richford, D.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Runchey, J.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skoby, M. J.; Skolnik, M.; Slunečka, M.; Smith, K. L.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sun, J.; Syed, S.; Takahara, A.; Taketani, A.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vargyas, M.; Vazquez-Carson, S.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Wang, Z.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; Wolin, S.; Wong, C. P.; Woody, C. L.; Wysocki, M.; Xia, B.; Xu, C.; Xu, Q.; Yamaguchi, Y. L.; Yanovich, A.; Yin, P.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zhou, S.; Zou, L.; Phenix Collaboration
2017-05-01
We report the first measurement of the fraction of J /ψ mesons coming from B -meson decay (FB →J /ψ) in p +p collisions at √{s }=510 GeV . The measurement is performed using the forward silicon vertex detector and central vertex detector at PHENIX, which provide precise tracking and distance-of-closest-approach determinations, enabling the statistical separation of J /ψ due to B -meson decays from prompt J /ψ . The measured value of FB →J /ψ is 8.1 %±2.3 %(stat)±1.9 %(syst) for J /ψ with transverse momenta 0
Change of nuclear configurations in the neutrinoless double-β decay of 130Te →130Be and 136Xe136Ba
NASA Astrophysics Data System (ADS)
Entwisle, J. P.; Kay, B. P.; Tamii, A.; Adachi, S.; Aoi, N.; Clark, J. A.; Freeman, S. J.; Fujita, H.; Fujita, Y.; Furuno, T.; Hashimoto, T.; Hoffman, C. R.; Ideguchi, E.; Ito, T.; Iwamoto, C.; Kawabata, T.; Liu, B.; Miura, M.; Ong, H. J.; Schiffer, J. P.; Sharp, D. K.; Süsoy, G.; Suzuki, T.; Szwec, S. V.; Takaki, M.; Tsumura, M.; Yamamoto, T.
2016-06-01
The change in the configuration of valence protons between the initial and final states in the neutrinoless double-β decay of 130Te → 130Be and of 136Xe136Ba has been determined by measuring the cross sections of the (d ,3He) reaction with 101-MeV deuterons. Together with our recent determination of the relevant neutron configurations involved in the process, a quantitative comparison with the latest shell-model and interacting-boson-model calculations reveals significant discrepancies. These are the same calculations used to determine the nuclear matrix elements governing the rate of neutrinoless double-β decay in these systems.
Precision Measurement of the β Asymmetry in Spin-Polarized
NASA Astrophysics Data System (ADS)
Fenker, B.; Gorelov, A.; Melconian, D.; Behr, J. A.; Anholm, M.; Ashery, D.; Behling, R. S.; Cohen, I.; Craiciu, I.; Gwinner, G.; McNeil, J.; Mehlman, M.; Olchanski, K.; Shidling, P. D.; Smale, S.; Warner, C. L.
2018-02-01
Using Triumf's neutral atom trap, Trinat, for nuclear β decay, we have measured the β asymmetry with respect to the initial nuclear spin in
Entwisle, J. P.; Kay, B. P.; Tamii, A.; ...
2016-06-13
The change in the configuration of valence protons between the initial and final states in the neutrinoless double-beta decay of Te-130 -> Xe-130 and of Xe-136 -> Ba-136 has been determined by measuring the cross sections of the (d,He-3) reaction with 101-MeV deuterons. Together with our recent determination of the relevant neutron configurations involved in the process, a quantitative comparison with the latest shell-model and interacting-boson-model calculations reveals significant discrepancies. These are the same calculations used to determine the nuclear matrix elements governing the rate of neutrinoless double-beta decay in these systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeldovich, O. Ya.; Kirpichnikov, I. V.
Investigation of neutrinoless double-beta (2{beta}0{nu}) decay is presently being considered as one of the most important problems in particle physics and cosmology Interest in the problem was quickened by the observation of neutrino oscillations. The results of oscillation experiments determine the mass differences between different neutrino flavors, and the observation of neutrinoless decay may fix the absolute scale and the hierarchy of the neutrino masses. Investigation of 2{beta}0{nu} decay is the most efficient method for solving the problem of whether the neutrino is a Dirae or a Majorana particle, Physicists from the Institute of Theoretical and Experimental Physics (ITEP, Moscow)more » have been participating actively in solving this problem. They initiated and pioneered the application of semiconductor detectors manufactured from enriched germanium to searches for the double-beta decay of {sup 76}Ge. Investigations with {sup 76}Ge provided the most important results. At present, ITEP physicists are taking active part in four very large projects, GERDA. Majorana, EXO, and NEMO, which are capable of recording 2{beta}0{nu} decay at a Majorana neutrino mass of
New prospects in fixed target searches for dark forces with the SeaQuest experiment at Fermilab
Gardner, S.; Holt, R. J.; Tadepalli, A. S.
2016-06-10
An intense 120 GeV proton beam incident on an extremely long iron target generates enormous numbers of light-mass particles that also decay within that target. If one of these particles decays to a final state with a hidden gauge boson, or if such a particle is produced as a result of the initial collision, then that weakly interacting hidden-sector particle may traverse the remainder of the target and be detected downstream through its possible decay to an e +e –, μ +μ –, or π +π – final state. These conditions can be realized through an extension of the SeaQuestmore » experiment at Fermilab, and in this initial investigation we consider how it can serve as an ultrasensitive probe of hidden vector gauge forces, both Abelian and non-Abelian. Here a light, weakly coupled hidden sector may well explain the dark matter established through astrophysical observations, and the proposed search can provide tangible evidence for its existence—or, alternatively, constrain a “sea” of possibilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niewelt, T.; Mägdefessel, S.; Schubert, M. C.
2016-08-28
Light-induced degradation due to BO defects in silicon consists of a fast initial decay within a few seconds followed by a slower decay within hours to days. Determination of injection dependent charge carrier lifetime curves during the initial decay is challenging due to this short timeframe. We have developed a suitable measurement technique based on in situ photoluminescence measurements and present results of our studies of the fast degradation component. The temporal evolution of the recombination activity is studied and assessed by means of a two-level Shockley-Read-Hall statistics. A quadratic dependence of the fast defect activation on the hole concentrationmore » during illumination is demonstrated. We suggest a new parameterization of the recombination activity introduced by fast-formed BO defects featuring energy levels 0.34 eV below the conduction band and 0.31 eV above the valence band. The capture asymmetry ratio determined for the donor level of 18.1 is significantly smaller than previous parameterizations in literature suggest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, S.; Ohno, N.; Shibata, Y.
2013-11-15
According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, wemore » find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.« less
Velocity and stress autocorrelation decay in isothermal dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Chaudhri, Anuj; Lukes, Jennifer R.
2010-02-01
The velocity and stress autocorrelation decay in a dissipative particle dynamics ideal fluid model is analyzed in this paper. The autocorrelation functions are calculated at three different friction parameters and three different time steps using the well-known Groot/Warren algorithm and newer algorithms including self-consistent leap-frog, self-consistent velocity Verlet and Shardlow first and second order integrators. At low friction values, the velocity autocorrelation function decays exponentially at short times, shows slower-than exponential decay at intermediate times, and approaches zero at long times for all five integrators. As friction value increases, the deviation from exponential behavior occurs earlier and is more pronounced. At small time steps, all the integrators give identical decay profiles. As time step increases, there are qualitative and quantitative differences between the integrators. The stress correlation behavior is markedly different for the algorithms. The self-consistent velocity Verlet and the Shardlow algorithms show very similar stress autocorrelation decay with change in friction parameter, whereas the Groot/Warren and leap-frog schemes show variations at higher friction factors. Diffusion coefficients and shear viscosities are calculated using Green-Kubo integration of the velocity and stress autocorrelation functions. The diffusion coefficients match well-known theoretical results at low friction limits. Although the stress autocorrelation function is different for each integrator, fluctuates rapidly, and gives poor statistics for most of the cases, the calculated shear viscosities still fall within range of theoretical predictions and nonequilibrium studies.
Gallagher, Thomas L; Tietz, Kiel T; Morrow, Zachary T; McCammon, Jasmine M; Goldrich, Michael L; Derr, Nicolas L; Amacher, Sharon L
2017-09-01
Vertebrate segmentation is controlled by the segmentation clock, a molecular oscillator that regulates gene expression and cycles rapidly. The expression of many genes oscillates during segmentation, including hairy/Enhancer of split-related (her or Hes) genes, which encode transcriptional repressors that auto-inhibit their own expression, and deltaC (dlc), which encodes a Notch ligand. We previously identified the tortuga (tor) locus in a zebrafish forward genetic screen for genes involved in cyclic transcript regulation and showed that cyclic transcripts accumulate post-splicing in tor mutants. Here we show that cyclic mRNA accumulation in tor mutants is due to loss of pnrc2, which encodes a proline-rich nuclear receptor co-activator implicated in mRNA decay. Using an inducible in vivo reporter system to analyze transcript stability, we find that the her1 3'UTR confers Pnrc2-dependent instability to a heterologous transcript. her1 mRNA decay is Dicer-independent and likely employs a Pnrc2-Upf1-containing mRNA decay complex. Surprisingly, despite accumulation of cyclic transcripts in pnrc2-deficient embryos, we find that cyclic protein is expressed normally. Overall, we show that Pnrc2 promotes 3'UTR-mediated decay of developmentally-regulated segmentation clock transcripts and we uncover an additional post-transcriptional regulatory layer that ensures oscillatory protein expression in the absence of cyclic mRNA decay. Copyright © 2017 Elsevier Inc. All rights reserved.
Superradiance in a Large and Dilute Cloud of Cold Atoms in the Linear-Optics Regime.
Araújo, Michelle O; Krešić, Ivor; Kaiser, Robin; Guerin, William
2016-08-12
Superradiance has been extensively studied in the 1970s and 1980s in the regime of superfluorescence, where a large number of atoms are initially excited. Cooperative scattering in the linear-optics regime, or "single-photon superradiance," has been investigated much more recently, and superradiant decay has also been predicted, even for a spherical sample of large extent and low density, where the distance between atoms is much larger than the wavelength. Here, we demonstrate this effect experimentally by directly measuring the decay rate of the off-axis fluorescence of a large and dilute cloud of cold rubidium atoms after the sudden switch off of a low-intensity laser driving the atomic transition. We show that, at large detuning, the decay rate increases with the on-resonance optical depth. In contrast to forward scattering, the superradiant decay of off-axis fluorescence is suppressed near resonance due to attenuation and multiple-scattering effects.
NASA Astrophysics Data System (ADS)
Bian, Dongfen; Liu, Jitao
2017-12-01
This paper is concerned with the initial-boundary value problem to 2D magnetohydrodynamics-Boussinesq system with the temperature-dependent viscosity, thermal diffusivity and electrical conductivity. First, we establish the global weak solutions under the minimal initial assumption. Then by imposing higher regularity assumption on the initial data, we obtain the global strong solution with uniqueness. Moreover, the exponential decay rates of weak solutions and strong solution are obtained respectively.
NASA Astrophysics Data System (ADS)
Brasseur, James G.; Juneja, Anurag
1996-11-01
Previous DNS studies indicate that small-scale structure can be directly altered through ``distant'' dynamical interactions by energetic forcing of the large scales. To remove the possibility of stimulating energy transfer between the large- and small-scale motions in these long-range interactions, we here perturb the large scale structure without altering its energy content by suddenly altering only the phases of large-scale Fourier modes. Scale-dependent changes in turbulence structure appear as a non zero difference field between two simulations from identical initial conditions of isotropic decaying turbulence, one perturbed and one unperturbed. We find that the large-scale phase perturbations leave the evolution of the energy spectrum virtually unchanged relative to the unperturbed turbulence. The difference field, on the other hand, is strongly affected by the perturbation. Most importantly, the time scale τ characterizing the change in in turbulence structure at spatial scale r shortly after initiating a change in large-scale structure decreases with decreasing turbulence scale r. Thus, structural information is transferred directly from the large- to the smallest-scale motions in the absence of direct energy transfer---a long-range effect which cannot be explained by a linear mechanism such as rapid distortion theory. * Supported by ARO grant DAAL03-92-G-0117
On the structure of the turbulent vortex
NASA Technical Reports Server (NTRS)
Roberts, L.
1985-01-01
The trailing vortex generated by a lifting surface, the structure of its turbulent core and the influence of axial flow within the vortex on its initial persistence and on its subsequent decay are described. Similarity solutions of the turbulent diffusion equation are given in closed form and results are expressed in sufficiently simple terms that the influence of the lifting surface parameters on the length of persistence and the rate of decay of the vortex can be evaluated.
Aging memories: differential decay of episodic memory components.
Talamini, Lucia M; Gorree, Eva
2012-05-17
Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent change in the nature of memories may reflect a preferential loss of hippocampus-dependent, configurational information over more cortically based memory components, including memory for individual objects. The current study systematically tests this hypothesis, using a new paradigm that allows the contemporaneous assessment of memory for objects, object pairings, and object-position conjunctions. Retention of each memory component was tested, at multiple intervals, up to 3 mo following encoding. The three memory subtasks adopted the same retrieval paradigm and were matched for initial difficulty. Results show differential decay of the tested episodic memory components, whereby memory for configurational aspects of a scene (objects' co-occurrence and object position) decays faster than memory for featured objects. Interestingly, memory requiring a visually detailed object representation decays at a similar rate as global object recognition, arguing against interpretations based on task difficulty and against the notion that (visual) detail is forgotten preferentially. These findings show that memories undergo qualitative changes as they age. More specifically, event memories become less configurational over time, preferentially losing some of the higher order associations that are dependent on the hippocampus for initial fast encoding. Implications for theories of long-term memory are discussed.
Lee, Suk-Ho; Schwaller, Beat; Neher, Erwin
2000-01-01
The effect of parvalbumin (PV) on [Ca2+] transients was investigated by perfusing adrenal chromaffin cells with fura-2 and fluorescein isothiocyanate (FITC)-labelled PV. As PV diffused into cells, the decay of [Ca2+] transients was transformed from monophasic into biphasic. The proportion of the initial fast decay phase increased in parallel with the fluorescence intensity of FITC, indicating that PV is responsible for the initial fast decay phase.The relationship between the fast decay phase and the [Ca2+] level was investigated using depolarizing trains of stimuli. Within a train the relative amplitude of the fast decay phase was inversely dependent on the [Ca2+] level preceding a given stimulus.Based on these observations, we estimated the Ca2+ binding ratio of PV (κP), the apparent dissociation constant of PV for Ca2+ (Kdc,app), and the unbinding rate constant of Ca2+ from PV (kc-) in the cytosol of chromaffin cells. Assuming free [Mg2+] to be 0.14 mm, we obtained values of 51.4 ± 2.0 nm (n = 3) and 0.95 ± 0.026 s−1 (n = 3), for Kdc,app and kc-, respectively.With the parameters obtained in the perfusion study, we simulated [Ca2+] transients, using two different Ca2+ extrusion rates (γ) – 20 and 300 s−1– which represent typical values for chromaffin cells and neuronal dendrites, respectively. The simulation indicated that Ca2+ is pumped out before it is equilibrated with PV, when γ is comparable to the equilibration rates between PV and Ca2+, resulting in the fast decay phase of a biexponential [Ca2+] transient.From these results we conclude that Ca2+ buffers with slow kinetics, such as PV, may cause biexponential decays in [Ca2+] transients, thereby complicating the analysis of endogenous Ca2+ binding ratios (κS) based on time constants. Nevertheless, estimates of κS based on Ca2+ increments provide reasonable estimates for Ca2+ binding ratios before equilibration with PV. PMID:10835044
A new method for calculation of the chlorine demand of natural and treated waters.
Warton, Ben; Heitz, Anna; Joll, Cynthia; Kagi, Robert
2006-08-01
Conventional methods of calculating chlorine demand are dose dependent, making intercomparison of samples difficult, especially in cases where the samples contain substantially different concentrations of dissolved organic carbon (DOC), or other chlorine-consuming species. Using the method presented here, the values obtained for chlorine demand are normalised, allowing valid comparison of chlorine demand between samples, independent of the chlorine dose. Since the method is not dose dependent, samples with substantially differing water quality characteristics can be reliably compared. In our method, we dosed separate aliquots of a water sample with different chlorine concentrations, and periodically measured the residual chlorine concentrations in these subsamples. The chlorine decay data obtained in this way were then fitted to first-order exponential decay functions, corresponding to short-term demand (0-4h) and long-term demand (4-168 h). From the derived decay functions, the residual concentrations at a given time within the experimental time window were calculated and plotted against the corresponding initial chlorine concentrations, giving a linear relationship. From this linear function, it was then possible to determine the residual chlorine concentration for any initial concentration (i.e. dose). Thus, using this method, the initial chlorine dose required to give any residual chlorine concentration can be calculated for any time within the experimental time window, from a single set of experimental data.
Wichmann, R
1995-11-01
This article discusses the links between poverty, development, the environment, and implementing Agenda 21. The poor in large cities experience greater health risks and threats from environmental hazards. The poor also face inadequate housing, poor sanitation, polluted drinking water, and lack of other basic services. Many poor live in marginalized areas more susceptible to environmental degradation. During 1990-2030, population size may reach 9.7 billion, or 3.7 billion more than today. 90% may be urban residents. Already a large proportion of urban population live in a decaying urban environment with health and life threatening conditions. At least 250 million do not have easy access to safe piped water. 400 million lack proper sanitation. The liberalization of the global economy is fueling urbanization. The cycle of poverty and environmental decline requires rapid economic growth and closing of the infrastructure gaps. Policy initiatives of Agenda 21 occur at the local urban level. At this level, policies directly affect people. The future success of Agenda 21 will depend on local initiatives. Management approaches may need to change in order to achieve sustainable development. The poor will be more vocal and heard from in the future. Critical areas of management include waste management, pollution control, traffic, transportation, energy, economic development, and job creation. Society must be able to participate in setting priorities. About 1500 local authorities are involved in Agenda 21 planning initiatives. Curitiba, Brazil, is an example of how cities can solve community problems.
Leaching of radionuclides from decaying blueberry leaves: Relative rate independent of concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheppard, S.C.; Evenden, W.G.
Leaching of radionuclides from decaying vegetation has not been extensively investigated, especially for radionuclides other than {sup 137}Cs. The authors obtained leaves of blueberry (Vaccinium angustifolium {times} V. corymbosum) that contained over 25-fold ranges in Se, Cs, and I concentrations, as well as a small quantity of leaves containing detectable U. All were contaminated by way of root uptake. Leaching took place for a period of 1 yr in the laboratory, using leach water from forest litter. Monthly, measurements were made of the radionuclide contents and decaying leaf dry weights. The data conformed to an exponential decay model with twomore » first-order components. In no case did the relative loss rates vary systematically with the initial tissue radionuclide concentrations. Loss rates decreased in the order Cs > I > U > dry wt. > Se. Because of the low leaching rate of Se relative to the loss of dry weight, decaying litter may actually accumulate elements such as Se. Accumulation of radionuclides in litter could have important implications for lateral transport, recycling, and direct incorporation into edible mushrooms.« less
Life stages of wall-bounded decay of Taylor-Couette turbulence
NASA Astrophysics Data System (ADS)
Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Spandan, Vamsi; Verzicco, Roberto; Lohse, Detlef
2017-11-01
The decay of Taylor-Couette turbulence, i.e., the flow between two coaxial and independently rotating cylinders, is numerically studied by instantaneously stopping the forcing from an initially statistically stationary flow field at a Reynolds number of Re=3.5 ×104 . The effect of wall friction is analyzed by comparing three separate cases, in which the cylinders are either suddenly made no-slip or stress-free. Different life stages are observed during the decay. In the first stage, the decay is dominated by large-scale rolls. Counterintuitively, when these rolls fade away, if the flow inertia is small a redistribution of energy occurs and the energy of the azimuthal velocity behaves nonmonotonically, first decreasing by almost two orders of magnitude and then increasing during the redistribution. The second stage is dominated by non-normal transient growth of perturbations in the axial (spanwise) direction. Once this mechanism is exhausted, the flow enters the final life stage, viscous decay, which is dominated by wall friction. We show that this stage can be modeled by a one-dimensional heat equation, and that self-similar velocity profiles collapse onto the theoretical solution.
Rapid scanning system for fuel drawers
Caldwell, J.T.; Fehlau, P.E.; France, S.W.
A nondestructive method for uniquely distinguishing among and quantifying the mass of individual fuel plates in situ in fuel drawers utilized in nuclear reactors is described. The method is both rapid and passive, eliminating the personnel hazard of the commonly used irradiation techniques which require that the analysis be performed in proximity to an intense neutron source such as a reactor. In the present technique, only normally decaying nuclei are observed. This allows the analysis to be performed anywhere. This feature, combined with rapid scanning of a given fuel drawer (in approximately 30 s), and the computer data analysis allows the processing of large numbers of fuel drawers efficiently in the event of a loss alert.
Rapid scanning system for fuel drawers
Caldwell, John T.; Fehlau, Paul E.; France, Stephen W.
1981-01-01
A nondestructive method for uniqely distinguishing among and quantifying the mass of individual fuel plates in situ in fuel drawers utilized in nuclear reactors is described. The method is both rapid and passive, eliminating the personnel hazard of the commonly used irradiation techniques which require that the analysis be performed in proximity to an intense neutron source such as a reactor. In the present technique, only normally decaying nuclei are observed. This allows the analysis to be performed anywhere. This feature, combined with rapid scanning of a given fuel drawer (in approximately 30 s), and the computer data analysis allows the processing of large numbers of fuel drawers efficiently in the event of a loss alert.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alba, Paolo; Alberico, Wanda; Bellwied, Rene
We calculate ratios of higher-order susceptibilities quantifying fluctuations in the number of net-protons and in the net-electric charge using the Hadron Resonance Gas (HRG) model. We take into account the effect of resonance decays, the kinematic acceptance cuts in rapidity, pseudo-rapidity and transverse momentum used in the experimental analysis, as well as a randomization of the isospin of nucleons in the hadronic phase. By comparing these results to the latest experimental data from the STAR Collaboration, we determine the freeze-out conditions from net-electric charge and net-proton distributions and discuss their consistency.
Accuracy, reliability, and timing of visual evaluations of decay in fresh-cut lettuce
Hayes, Ryan J.
2018-01-01
Visual assessments are used for evaluating the quality of food products, such as fresh-cut lettuce packaged in bags with modified atmosphere. We have compared the accuracy and the reliability of visual evaluations of decay on fresh-cut lettuce performed with experienced and inexperienced raters. In addition, we have analyzed decay data from over 4.5 thousand bags to determine the optimum timing for evaluations to detect differences among accessions. Lin’s concordance coefficient (ρc) that takes into consideration both the closeness of the data and the conformance to the identity line showed high repeatability (intra-rater reliability, ρc = 0.97), reproducibility (inter-rater reliability, ρc = 0.92), and accuracy (ρc = 0.96) for experienced raters. Inexperienced raters did not perform as well and their ratings showed decreased repeatability (ρc = 0.93), but even larger reduction in reproducibility (ρc = 0.80) and accuracy (ρc = 0.90). We have detected that 5.3% of ratings were outside of the 95% limits of agreement. These under- or overestimates were predominantly found for bags with intermediate levels of decay, which corresponds to the middle of the rating scale. This occurs because intermediate amounts of decay are more difficult to discriminate than extremes. The frequencies of aberrant ratings for experienced raters ranged from 0.6% to 4.4% (mean = 2.1%), for inexperienced raters the frequencies were substantially higher, ranging from 6.1% to 15.6% (mean = 9.4%). Therefore, we recommend that new raters receive training that includes practical examples in this range of decay, use of standard area diagrams, and continuing interaction with experienced raters (consultation during actual rating). Very high agreement among experienced raters indicate that visual ratings can be successfully used for evaluations of decay, until a more objective, rapid, and affordable method is developed. We recommend evaluating samples at multiple time points until 42 days after processing (about 80% decay on average) and then combining these individual ratings into the area under the decay progress stairs (AUDePS) score. Applying this approach, experienced evaluators can accurately detect difference among lettuce accessions and identify lettuce cultivars with reduced decay. PMID:29664945
NASA Astrophysics Data System (ADS)
Lin, Cheng-Ju; Motrunich, Olexei I.
2017-02-01
The eigenstate thermalization hypothesis provides one picture of thermalization in a quantum system by looking at individual eigenstates. However, it is also important to consider how local observables reach equilibrium values dynamically. Quench protocol is one of the settings to study such questions. A recent numerical study [Bañuls, Cirac, and Hastings, Phys. Rev. Lett. 106, 050405 (2007), 10.1103/PhysRevLett.106.050405] of a nonintegrable quantum Ising model with longitudinal field under such a quench setting found different behaviors for different initial quantum states. One particular case called the "weak-thermalization" regime showed apparently persistent oscillations of some observables. Here we provide an explanation of such oscillations. We note that the corresponding initial state has low energy density relative to the ground state of the model. We then use perturbation theory near the ground state and identify the oscillation frequency as essentially a quasiparticle gap. With this quasiparticle picture, we can then address the long-time behavior of the oscillations. Upon making additional approximations which intuitively should only make thermalization weaker, we argue that the oscillations nevertheless decay in the long-time limit. As part of our arguments, we also consider a quench from a BEC to a hard-core boson model in one dimension. We find that the expectation value of a single-boson creation operator oscillates but decays exponentially in time, while a pair-boson creation operator has oscillations with a t-3 /2 decay in time. We also study dependence of the decay time on the density of bosons in the low-density regime and use this to estimate decay time for oscillations in the original spin model.
FE-60 and the evolution of eucrites
NASA Technical Reports Server (NTRS)
Shukolyukov, A.; Lugmair, G. W.
1993-01-01
We have recently presented evidence for the existence of live Fe-60 in the early solar system. This evidence comes from observations of 2.4 to 50 epsilon unit (1 part in 10(exp 4)) relative excesses of Ni-60 measured in samples from the eucrite Chervony Kut (CK). These isotopic excesses have been produced by the decay of the short-lived radionuclide Fe-60 (T(sub 1/2) = 1.5 Ma). Because CK originates from a planetesimal which was totally molten and its high Fe/Ni ratio is due to a planet-wide Fe-Ni fractionation during metal-silicate segregation, the presence of the Fe-60 decay product indicates the large scale abundance of Fe-60 in the early solar system and its presence during differentiation of this planetesimal. The observed variable Ni-60 excesses in different bulk samples and mineral separates from CK can only be understood if some Fe-60 was still alive at the time when basaltic magma had solidified on the eucrite parent body. The lack of a correlation between Ni-60 and the respective Fe/Ni ratios in different mineral fractions from CK indicates a metamorphic remobilization of Ni after essentially all Fe-60 has decayed. However, Ni-60 from three bulk samples from different locations within the meteorite appears to correlate reasonably well with the respective Fe/Ni ratios. If we regard this correlation as an isochron then its slope yields a Fe-60/Fe-56 ratio f (3.9 +/- 0.6) x 10(exp -9) and an initial Ni-60 of 3.2 plus or minus 0.9 epsilon units at the time of crystallization of CK. Estimates based on these values and a approximately 10 Ma time interval between CK solidification and formation of the earliest condensates in the solar system followed by rapid accretion of planetary bodies indicate that the decay of Fe-60 could produce sufficient heat to melt these planetesimals. If Al-26 was present on a planetary scale as Fe-60 and at abundances close to values observed in Allende inclusions then melting of small early formed planets is inevitable. As an attempt to further explore the Fe-60/Ni-60 isotope system as an early solar system chronometer we studied another noncumulate eucrite, Juvinas (JUV) (sample USNM 1051), which belongs to the same subgroup as CK.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.
2006-12-15
In the framework of the extended resolvent approach the direct and inverse scattering problems for the nonstationary Schroedinger equation with a potential being a perturbation of the N-soliton potential by means of a generic bidimensional smooth function decaying at large spaces are introduced and investigated. The initial value problem of the Kadomtsev-Petviashvili I equation for a solution describing N wave solitons on a generic smooth decaying background is then linearized, giving the time evolution of the spectral data.
Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations
NASA Technical Reports Server (NTRS)
Darmofal, David L.
1998-01-01
An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.
A mathematical approach for evaluating nickel-hydrogen cells
NASA Technical Reports Server (NTRS)
Leibecki, H. F.
1986-01-01
A mathematical equation is presented which gives a quantitative relationship between time-voltage discharge curves, when a cell's ampere-hour capacity is determined at a constant discharge current. In particular the equation quantifies the initial exponential voltage decay; the rate of voltage decay; the overall voltage shift of the curve and the total capacity of the cell at the given discharge current. The results of 12 nickel-hydrogen boiler plate cells cycled to 80 percent depth-of-discharge (DOD) are discussed in association with these equations.
2010-03-03
obtainable while for the free-decay problem we simply have to include the initial conditions as random variables to be predicted. A different approach that...important and useful properties of MLEs is that, under regularity conditions , they are asymptotically unbiased and possess the minimum possible...becomes pLðzjh;s2G;MiÞ (i.e. the likelihood is conditional on the specified model). However, in this work we will only consider a single model and drop the
NASA Astrophysics Data System (ADS)
Ben-Naim, E.; Redner, S.; Vazquez, F.
2007-02-01
We study a stochastic process that mimics single-game elimination tournaments. In our model, the outcome of each match is stochastic: the weaker player wins with upset probability q<=1/2, and the stronger player wins with probability 1-q. The loser is eliminated. Extremal statistics of the initial distribution of player strengths governs the tournament outcome. For a uniform initial distribution of strengths, the rank of the winner, x*, decays algebraically with the number of players, N, as x*~N-β. Different decay exponents are found analytically for sequential dynamics, βseq=1-2q, and parallel dynamics, \\beta_par=1+\\frac{\\ln (1-q)}{\\ln 2} . The distribution of player strengths becomes self-similar in the long time limit with an algebraic tail. Our theory successfully describes statistics of the US college basketball national championship tournament.
On the wake of a Darrieus turbine
NASA Technical Reports Server (NTRS)
Base, T. E.; Phillips, P.; Robertson, G.; Nowak, E. S.
1981-01-01
The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent.
Development of a time-variable nuclear pulser for half life measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahn, Guilherme S.; Domienikan, Claudio; Carvalhaes, Roberto P. M.
2013-05-06
In this work a time-variable pulser system with an exponentially-decaying pulse frequency is presented, which was developed using the low-cost, open-source Arduino microcontroler plataform. In this system, the microcontroller produces a TTL signal in the selected rate and a pulse shaper board adjusts it to be entered in an amplifier as a conventional pulser signal; both the decay constant and the initial pulse rate can be adjusted using a user-friendly control software, and the pulse amplitude can be adjusted using a potentiometer in the pulse shaper board. The pulser was tested using several combinations of initial pulse rate and decaymore » constant, and the results show that the system is stable and reliable, and is suitable to be used in half-life measurements.« less
Experimental animal studies of radon and cigarette smoke
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cross, F.T.; Dagle, G.E.; Gies, R.A.
Cigarette-smoking is a dominant cause of lung cancer and confounds risk assessment of exposure to radon decay products. Evidence in humans on the interaction between cigarette-smoking and exposure to radon decay products, although limited, indicates a possible synergy. Experimental animal data, in addition to showing synergy, also show a decrease or no change in risk with added cigarette-smoke exposures. This article reviews previous animal data developed at Compagnie Generale des Matieres Nucleaires and Pacific Northwest Laboratory (PNL) on mixed exposures to radon and cigarette smoke, and highlights new initiation-promotion-initiation (IPI) studies at PNL that were designed within the framework ofmore » a two-mutation carcinogenesis model. Also presented are the PNL exposure system, experimental protocols, dosimetry, and biological data observed to date in IPI animals.« less
Neutral and selection-driven decay of sexual traits in asexual stick insects
Schwander, Tanja; Crespi, Bernard J.; Gries, Regine; Gries, Gerhard
2013-01-01
Environmental shifts and lifestyle changes may result in formerly adaptive traits becoming non-functional or maladaptive. The subsequent decay of such traits highlights the importance of natural selection for adaptations, yet its causes have rarely been investigated. To study the fate of formerly adaptive traits after lifestyle changes, we evaluated sexual traits in five independently derived asexual lineages, including traits that are specific to males and therefore not exposed to selection. At least four of the asexual lineages retained the capacity to produce males that display normal courtship behaviours and are able to fertilize eggs of females from related sexual species. The maintenance of male traits may stem from pleiotropy, or from these traits only regressing via drift, which may require millions of years to generate phenotypic effects. By contrast, we found parallel decay of sexual traits in females. Asexual females produced altered airborne and contact signals, had modified sperm storage organs, and lost the ability to fertilize their eggs, impeding reversals to sexual reproduction. Female sexual traits were decayed even in recently derived asexuals, suggesting that trait changes following the evolution of asexuality, when they occur, proceed rapidly and are driven by selective processes rather than drift. PMID:23782880
Mental Mechanisms for Topics Identification
2014-01-01
Topics identification (TI) is the process that consists in determining the main themes present in natural language documents. The current TI modeling paradigm aims at acquiring semantic information from statistic properties of large text datasets. We investigate the mental mechanisms responsible for the identification of topics in a single document given existing knowledge. Our main hypothesis is that topics are the result of accumulated neural activation of loosely organized information stored in long-term memory (LTM). We experimentally tested our hypothesis with a computational model that simulates LTM activation. The model assumes activation decay as an unavoidable phenomenon originating from the bioelectric nature of neural systems. Since decay should negatively affect the quality of topics, the model predicts the presence of short-term memory (STM) to keep the focus of attention on a few words, with the expected outcome of restoring quality to a baseline level. Our experiments measured topics quality of over 300 documents with various decay rates and STM capacity. Our results showed that accumulated activation of loosely organized information was an effective mental computational commodity to identify topics. It was furthermore confirmed that rapid decay is detrimental to topics quality but that limited capacity STM restores quality to a baseline level, even exceeding it slightly. PMID:24744775
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Meng; Tian, Shubo; Zeng, Chenjie
Structural isomerism in nanoparticles has recently emerged as a new topic and stimulated research interest because the atomic structures of ultrasmall nanoparticles may have great impact on their fundamental properties and applications. We report the correlation between ultrafast relaxation dynamics and atomic structures of two isomers of thiolate-protected Au 38(SC 2H 4Ph) 24. The bi-icosahedral Au 38 (denoted as Au 38Q) with a Au 23 inner core in its atomic structure shows rapid decay (1.5 ps) followed by nanosecond relaxation to the ground state, whereas its structural isomer (Au 38T) exhibits similar relaxation processes, but the rapid decay is acceleratedmore » by ~50% (1.0 ps). The picosecond relaxations in both cases can be assigned to core–shell charge transfer or electronic rearrangement within the metal core. The acceleration of the fast decay in Au38T is ascribed to its unique core structure, which is made up of a mono-icosahedral Au 13 capped by a Au 12 tri-tetrahedron by sharing two atoms. Interestingly, coherent phonon emissions (25 cm –1 for Au 38Q, 27 and 60 cm –1 for Au 38T) are observed in both isomers with pumping in the NIR region. These results illustrate for the first time the importance of atomic structures in the photophysics of same sized gold nanoclusters.« less
Adiabatic expansion, early X-ray data and the central engine in GRBs
NASA Astrophysics Data System (ADS)
Barniol Duran, R.; Kumar, P.
2009-05-01
The Swift satellite early X-ray data show a very steep decay in most of the gamma-ray bursts light curves. This decay is either produced by the rapidly declining continuation of the central engine activity or by some leftover radiation starting right after the central engine shuts off. The latter scenario consists of the emission from an `ember' that cools via adiabatic expansion and, if the jet angle is larger than the inverse of the source Lorentz factor, the large angle emission. In this work, we calculate the temporal and spectral properties of the emission from such a cooling ember, providing a new treatment for the microphysics of the adiabatic expansion. We use the adiabatic invariance of p2⊥/B (p⊥ is the component of the electrons' momentum normal to the magnetic field, B) to calculate the electrons' Lorentz factor during the adiabatic expansion; the electron momentum becomes more and more aligned with the local magnetic field as the expansion develops. We compare the theoretical expectations of the adiabatic expansion (and the large angle emission) with the current observations of the early X-ray data and find that only ~20 per cent of our sample of 107 bursts are potentially consistent with this model. This leads us to believe that, for most bursts, the central engine does not turn off completely during the steep decay of the X-ray light curve; therefore, this phase is produced by the continued rapidly declining activity of the central engine.
Zhou, Meng; Tian, Shubo; Zeng, Chenjie; ...
2016-12-22
Structural isomerism in nanoparticles has recently emerged as a new topic and stimulated research interest because the atomic structures of ultrasmall nanoparticles may have great impact on their fundamental properties and applications. We report the correlation between ultrafast relaxation dynamics and atomic structures of two isomers of thiolate-protected Au 38(SC 2H 4Ph) 24. The bi-icosahedral Au 38 (denoted as Au 38Q) with a Au 23 inner core in its atomic structure shows rapid decay (1.5 ps) followed by nanosecond relaxation to the ground state, whereas its structural isomer (Au 38T) exhibits similar relaxation processes, but the rapid decay is acceleratedmore » by ~50% (1.0 ps). The picosecond relaxations in both cases can be assigned to core–shell charge transfer or electronic rearrangement within the metal core. The acceleration of the fast decay in Au38T is ascribed to its unique core structure, which is made up of a mono-icosahedral Au 13 capped by a Au 12 tri-tetrahedron by sharing two atoms. Interestingly, coherent phonon emissions (25 cm –1 for Au 38Q, 27 and 60 cm –1 for Au 38T) are observed in both isomers with pumping in the NIR region. These results illustrate for the first time the importance of atomic structures in the photophysics of same sized gold nanoclusters.« less
Magnetic field decay in black widow pulsars
NASA Astrophysics Data System (ADS)
Mendes, Camile; de Avellar, Marcio G. B.; Horvath, J. E.; Souza, Rodrigo A. de; Benvenuto, O. G.; De Vito, M. A.
2018-04-01
We study in this work the evolution of the magnetic field in `redback-black widow' pulsars. Evolutionary calculations of these `spider' systems suggest that first the accretion operates in the redback stage, and later the companion star ablates matter due to winds from the recycled pulsar. It is generally believed that mass accretion by the pulsar results in a rapid decay of the magnetic field when compared to the rate of an isolated neutron star. We study the evolution of the magnetic field in black widow pulsars by solving numerically the induction equation using the modified Crank-Nicolson method with intermittent episodes of mass accretion on to the neutron star. Our results show that the magnetic field does not fall below a minimum value (`bottom field') in spite of the long evolution time of the black widow systems, extending the previous conclusions for much younger low-mass X-ray binary systems. We find that in this scenario, the magnetic field decay is dominated by the accretion rate, and that the existence of a bottom field is likely related to the fact that the surface temperature of the pulsar does not decay as predicted by the current cooling models. We also observe that the impurity of the pulsar crust is not a dominant factor in the decay of magnetic field for the long evolution time of black widow systems.
Temporal and spatial binning of TCSPC data to improve signal-to-noise ratio and imaging speed
NASA Astrophysics Data System (ADS)
Walsh, Alex J.; Beier, Hope T.
2016-03-01
Time-correlated single photon counting (TCSPC) is the most robust method for fluorescence lifetime imaging using laser scanning microscopes. However, TCSPC is inherently slow making it ineffective to capture rapid events due to the single photon product per laser pulse causing extensive acquisition time limitations and the requirement of low fluorescence emission efficiency to avoid bias of measurement towards short lifetimes. Furthermore, thousands of photons per pixel are required for traditional instrument response deconvolution and fluorescence lifetime exponential decay estimation. Instrument response deconvolution and fluorescence exponential decay estimation can be performed in several ways including iterative least squares minimization and Laguerre deconvolution. This paper compares the limitations and accuracy of these fluorescence decay analysis techniques to accurately estimate double exponential decays across many data characteristics including various lifetime values, lifetime component weights, signal-to-noise ratios, and number of photons detected. Furthermore, techniques to improve data fitting, including binning data temporally and spatially, are evaluated as methods to improve decay fits and reduce image acquisition time. Simulation results demonstrate that binning temporally to 36 or 42 time bins, improves accuracy of fits for low photon count data. Such a technique reduces the required number of photons for accurate component estimation if lifetime values are known, such as for commercial fluorescent dyes and FRET experiments, and improve imaging speed 10-fold.
Aaij, R; Beteta, C Abellán; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elena, E; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R F; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Sánchez, A Martín; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Alvarez, A Pazos; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Trigo, E Perez; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; De Paula, B Souza; Spaan, B; Sparkes, A; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilschut, H W; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
The production of the [Formula: see text] state in proton-proton collisions is probed via its decay to the [Formula: see text] final state with the LHCb detector, in the rapidity range [Formula: see text] and in the meson transverse-momentum range [Formula: see text]. The cross-section for prompt production of [Formula: see text] mesons relative to the prompt [Formula: see text] cross-section is measured, for the first time, to be [Formula: see text] at a centre-of-mass energy [Formula: see text] using data corresponding to an integrated luminosity of 0.7 fb[Formula: see text], and [Formula: see text] at [Formula: see text] using 2.0 fb[Formula: see text]. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the [Formula: see text] and [Formula: see text] decays to the [Formula: see text] final state. In addition, the inclusive branching fraction of [Formula: see text]-hadron decays into [Formula: see text] mesons is measured, for the first time, to be [Formula: see text], where the third uncertainty includes also the uncertainty on the [Formula: see text] inclusive branching fraction from [Formula: see text]-hadron decays. The difference between the [Formula: see text] and [Formula: see text] meson masses is determined to be [Formula: see text].
β-delayed γ decay of 20Mg and the 19Ne(p , γ) 20 Na breakout reaction in Type I X-ray bursts
NASA Astrophysics Data System (ADS)
Glassman, B. E.; Pérez-Loureiro, D.; Wrede, C.; Allen, J.; Bardayan, D. W.; Bennett, M. B.; Brown, B. A.; Chipps, K. A.; Febbraro, M.; Friedman, M.; Fry, C.; Hall, M. R.; Hall, O.; Liddick, S. N.; O'Malley, P.; Ong, W. J.; Pain, S. D.; Prokop, C.; Schwartz, S. B.; Shidling, P.; Sims, H.; Thompson, P.; Zhang, H.
2018-03-01
Certain astrophysical environments such as thermonuclear outbursts on accreting neutron stars (Type-I X-ray bursts) are hot enough to allow for breakout from the Hot CNO hydrogen burning cycles to the rapid proton capture (rp) process. An important breakout reaction sequence is 15O(α,γ)19Ne(p,γ)20Na and the 19Ne(p,γ)20Na reaction rate is expected to be dominated by a single resonance at 457 keV above the proton threshold in 20Na. The resonance strength and, hence, reaction rate depends strongly on whether this 20Na state at an excitation energy of 2647 keV has spin and parity of 1+ or 3+. Previous 20Mg (Jπ =0+) β+ decay experiments have relied almost entirely on searches for β-delayed proton emission from this resonance in 20Na to limit the log ft value and, hence, Jπ. However there is a non-negligible γ-ray branch expected that must also be limited experimentally to determine the log ft value and constrain Jπ. We have measured the β-delayed γ decay of 20Mg to complement previous β-delayed proton decay work and provide the first complete limit based on all energetically allowed decay channels through the 2647 keV state. Our limit confirms that a 1+ assignment for this state is highly unlikely.
Son, E; Kim, J-J; Lim, Y W; Au-Yeung, T T; Yang, C Y H; Breuil, C
2011-01-01
When lodgepole pines (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson) that are killed by the mountain pine beetle (Dendroctonus ponderosae) and its fungal associates are not harvested, fungal decay can affect wood and fibre properties. Ophiostomatoids stain sapwood but do not affect the structural properties of wood. In contrast, white or brown decay basidiomycetes degrade wood. We isolated both staining and decay fungi from 300 lodgepole pine trees killed by mountain pine beetle at green, red, and grey stages at 10 sites across British Columbia. We retained 224 basidiomycete isolates that we classified into 34 species using morphological and physiological characteristics and rDNA large subunit sequences. The number of basidiomycete species varied from 4 to 14 species per site. We assessed the ability of these fungi to degrade both pine sapwood and heartwood using the soil jar decay test. The highest wood mass losses for both sapwood and heartwood were measured for the brown rot species Fomitopsis pinicola and the white rot Metulodontia and Ganoderma species. The sap rot species Trichaptum abietinum was more damaging for sapwood than for heartwood. A number of species caused more than 50% wood mass losses after 12 weeks at room temperature, suggesting that beetle-killed trees can rapidly lose market value due to degradation of wood structural components.
Morrison, Susan; John-Stewart, Grace; Egessa, John J; Mubezi, Sezi; Kusemererwa, Sylvia; Bii, Dennis K; Bulya, Nulu; Mugume, Francis; Campbell, James D; Wangisi, Jonathan; Bukusi, Elizabeth A; Celum, Connie; Baeten, Jared M
2015-01-01
During an HIV-1 prevention clinical trial in East Africa, we observed 16 cases of primary HIV-1 infection in women coincident with pregnancy or breastfeeding. Nine of eleven pregnant women initiated rapid combination antiretroviral therapy (ART), despite having CD4 counts exceeding national criteria for ART initiation; breastfeeding women initiated ART or replacement feeding. Rapid ART initiation during primary HIV-1 infection during pregnancy and breastfeeding is feasible in this setting.
Regional statistics in confined two-dimensional decaying turbulence.
Házi, Gábor; Tóth, Gábor
2011-06-28
Two-dimensional decaying turbulence in a square container has been simulated using the lattice Boltzmann method. The probability density function (PDF) of the vorticity and the particle distribution functions have been determined at various regions of the domain. It is shown that, after the initial stage of decay, the regional area averaged enstrophy fluctuates strongly around a mean value in time. The ratio of the regional mean and the overall enstrophies increases monotonously with increasing distance from the wall. This function shows a similar shape to the axial mean velocity profile of turbulent channel flows. The PDF of the vorticity peaks at zero and is nearly symmetric considering the statistics in the overall domain. Approaching the wall, the PDFs become skewed owing to the boundary layer.
Nuclear spectroscopy with Geant4: Proton and neutron emission & radioactivity
NASA Astrophysics Data System (ADS)
Sarmiento, L. G.; Rudolph, D.
2016-07-01
With the aid of a novel combination of existing equipment - JYFLTRAP and the TASISpec decay station - it is possible to perform very clean quantum-state selective, high-resolution particle-γ decay spectroscopy. We intend to study the determination of the branching ratio of the ℓ = 9 proton emission from the Iπ = 19/2-, 3174-keV isomer in the N = Z - 1 nucleus 53Co. The study aims to initiate a series of similar experiments along the proton dripline, thereby providing unique insights into "open quantum systems". The technique has been pioneered in case studies using SHIPTRAP and TASISpec at GSI. Newly available radioactive decay modes in Geant4 simulations are going to corroborate the anticipated experimental results.
NASA Astrophysics Data System (ADS)
Gentry, Robert
2011-04-01
Quotes from my Science (184, 62, 1974) report, Radiohalos in Radiochronological and Cosmological Perspective, show why primordial polonium halos earlier commanded attention for creation," It is also apparent that Po halos do pose contradictions to currently held views of Earth history" "For example, there is first the problem of how isotopic separation of several Po isotopes [or their β-decay precursors could have occurred naturally. Second, a straightforward explanation of ^218Po halos implies that the 1-μm radiocenters of very dark halos of this type initially contained as many as 5 x 10^9 atoms (a concentration of more than 50 percent) of the isotope ^218Po (half-life, 3 minutes), a problem that almost defies reason. A further necessary consequence, that such Po halos could have formed only if the host rocks underwent a rapid crystallization, renders exceedingly difficult, in my estimation, the prospect of explaining these halos by physical laws as presently understood." In 1977 E. P. Wigner, G. N. Flerov (Dubna), Ed Anders, E. Segre, F. Dyson, and John Wheeler all commented on these results (see alphacosmos.net). Also, ^14N detection in dwarf radiohalos may be of cosmological significance in implying a superheavy element origin from ^14C emission.
The status and initial results of the Majorana demonstrator experiment
NASA Astrophysics Data System (ADS)
Guiseppe, V. E.; Abgrall, N.; Alvis, S. I.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Barton, C. J.; Bertrand, F. E.; Bode, T.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, T. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Haufe, C. R.; Hehn, L.; Henning, R.; Hoppe, E. W.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Myslik, J.; O'Shaughnessy, C.; Othman, G.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Rielage, K.; Robertson, R. G. H.; Rouf, N. W.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.
2017-10-01
Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The Majorana Collaboration assembled an array of high purity Ge detectors to search for neutrinoless double-beta decay in 76Ge. The Majorana Demonstrator is comprised of 44.1 kg (29.7 kg enriched in 76Ge) of Ge detectors divided between two modules contained in a low-background shield at the Sanford Underground Research Facility in Lead, South Dakota, USA. The initial goals of the Demonstrator are to establish the required background and scalability of a Ge-based next-generation ton-scale experiment. Following a commissioning run that started in 2015, the first detector module started low-background data production in early 2016. The second detector module was added in August 2016 to begin operation of the entire array. We discuss results of the initial physics runs, as well as the status and physics reach of the full Majorana Demonstrator experiment.
USDA-ARS?s Scientific Manuscript database
Many brown rot fungi are capable of rapidly degrading wood and are copper-tolerant. To better understand the genes that control these processes, we examined gene expression of Fibroporia radiculosa growing on wood treated with a copper-based preservative that combined copper carbonate with dimethyld...
Using berry impact recording device for bruising assessment in southern highbush blueberry
USDA-ARS?s Scientific Manuscript database
Blueberries are prone to bruise damages and bruising leads to a rapid increase in the amount of decay. Due to excessive bruising damages caused by machine harvesters, the vast majority of the fruit destined for the fresh market is hand-harvested currently in the United States. The industry needs m...
Ahn, Hyun S; Bard, Allen J
2015-12-15
In surface interrogation scanning electrochemical microscopy (SI-SECM), fine and accurate control of the delay time between substrate generation and tip interrogation (tdelay) is crucial because tdelay defines the decay time of the reactive intermediate. In previous applications of the SI-SECM, the resolution in the control of tdelay has been limited to several hundreds of milliseconds due to the slow switching of the bipotentiostat. In this work, we have improved the time resolution of tdelay control up to ca. 1 μs, enhancing the SI-SECM to be competitive in the time domain with the decay of many reactive intermediates. The rapid switching SI-SECM has been implemented in a substrate generation-tip collection time-of-flight (SG-TC TOF) experiment of a solution redox mediator, and the results obtained from the experiment exhibited good agreement with that obtained from digital simulation. The reaction rate constant of surface Co(IV) on oxygen-evolving catalyst film, which was inaccessible thus far due to the lack of tdelay control, has been measured by the rapid switching SI-SECM.
Gruber, Aaron J; Thapa, Rajat
2016-01-01
The propensity of animals to shift choices immediately after unexpectedly poor reinforcement outcomes is a pervasive strategy across species and tasks. We report here that the memory supporting such lose-shift responding in rats rapidly decays during the intertrial interval and persists throughout training and testing on a binary choice task, despite being a suboptimal strategy. Lose-shift responding is not positively correlated with the prevalence and temporal dependence of win-stay responding, and it is inconsistent with predictions of reinforcement learning on the task. These data provide further evidence that win-stay and lose-shift are mediated by dissociated neural mechanisms and indicate that lose-shift responding presents a potential confound for the study of choice in the many operant choice tasks with short intertrial intervals. We propose that this immediate lose-shift responding is an intrinsic feature of the brain's choice mechanisms that is engaged as a choice reflex and works in parallel with reinforcement learning and other control mechanisms to guide action selection.
NASA Astrophysics Data System (ADS)
Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S. V.; Banerjee, S.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J. J.; Blyth, S. C.; Bobbink, G. J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J. G.; Brochu, F.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Capell, M.; Romeo, G. Cara; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y. H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J. A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M. T.; Duchesneau, D.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Ewers, A.; Extermann, P.; Falagan, M. A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Y.; Ganguli, S. N.; Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z. F.; Grenier, G.; Grimm, O.; Gruenewald, M. W.; Guida, M.; van Gulik, R.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.; Haas, D.; Hakobyan, R. S.; Hatzifotiadou, D.; Hebbeker, T.; Herve, A.; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S. R.; Hu, Y.; Jin, B. N.; Jones, L. W.; de Jong, P.; Josa-Mutuberra, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M. N.; Kim, J. K.; Kirkby, J.; Kittel, W.; Klimentov, A.; Konig, A. C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R. W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J. M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C. H.; Lin, W. T.; Linde, F. L.; Lista, L.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, Y. S.; Lubelsmeyer, K.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W. G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J. P.; Marzano, F.; Mazumdar, K.; McNeil, R. R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W. J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G. B.; Muanza, G. S.; Muijs, A. J. M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Nowak, H.; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D. O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M. A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P. G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, K.; Roe, B. P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, S.; Rosenbleck, C.; Roux, B.; Rubio, J. A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M. P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D. J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Sushkov, S.; Suter, H.; Swain, J. D.; Szillasi, Z.; Tang, X. W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, C. C.; Ting, S. M.; Tonwar, S. C.; Toth, J.; Tully, C.; Tung, K. L.; Ulbricht, J.; Valente, E.; Van de Walle, R. T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Wadhwa, M.; Wallraff, W.; Wang, X. L.; Wang, Z. M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z. Z.; Yamamoto, J.; Yang, B. Z.; Yang, C. G.; Yang, H. J.; Yang, M.; Yeh, S. C.; Zalite, A.; Zalite, Y.; Zhang, Z. P.; Zhao, J.; Zhu, G. Y.; Zhu, R. Y.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zoller, M.
2002-11-01
Bose-Einstein correlations in W-pair production at LEP are investigated in a data sample of 629 pb^-1 collected by the L3 detector at centre-of-mass energies of 189-209 GeV. Bose-Einstein correlations between pions within a W decay are observed and found to be in good agreement with those in light-quark Z decay. No evidence is found for Bose-Einstein correlations between hadrons coming from different W's in the same event.
Fast saturation of the two-plasmon-decay instability for shock-ignition conditions
NASA Astrophysics Data System (ADS)
Weber, S.; Riconda, C.; Klimo, O.; Héron, A.; Tikhonchuk, V. T.
2012-01-01
Two-plasmon-decay (TPD) instability is investigated for conditions relevant for the shock-ignition (SI) scheme of inertial confinement fusion. Two-dimensional particle-in-cell simulations show that in a hot, large-scale plasma, TPD develops in concomitance with stimulated Raman scattering (SRS). It is active only during the first picosecond of interaction, and then it is rapidly saturated due to plasma cavitation. TPD-excited plasma waves extend to small wavelengths, above the standard Landau cutoff. The hot electron spectrum created by SRS and TPD is relatively soft, limited to energies below 100 keV, which should not be a danger for the fuel core preheat in the SI scenario.
Biomass conversion determined via fluorescent cellulose decay assay.
Wischmann, Bente; Toft, Marianne; Malten, Marco; McFarland, K C
2012-01-01
An example of a rapid microtiter plate assay (fluorescence cellulose decay, FCD) that determines the conversion of cellulose in a washed biomass substrate is reported. The conversion, as verified by HPLC, is shown to correlate to the monitored FCD in the assay. The FCD assay activity correlates to the performance of multicomponent enzyme mixtures and is thus useful for the biomass industry. The development of an optimized setup of the 96-well microtiter plate is described, and is used to test a model that shortens the assay incubation time from 72 to 24h. A step-by-step procedure of the final assay is described. Copyright © 2012 Elsevier Inc. All rights reserved.
Gamma Decay of Unbound Neutron-Hole States in 133Sn
NASA Astrophysics Data System (ADS)
Vaquero, V.; Jungclaus, A.; Doornenbal, P.; Wimmer, K.; Gargano, A.; Tostevin, J. A.; Chen, S.; Nácher, E.; Sahin, E.; Shiga, Y.; Steppenbeck, D.; Taniuchi, R.; Xu, Z. Y.; Ando, T.; Baba, H.; Garrote, F. L. Bello; Franchoo, S.; Hadynska-Klek, K.; Kusoglu, A.; Liu, J.; Lokotko, T.; Momiyama, S.; Motobayashi, T.; Nagamine, S.; Nakatsuka, N.; Niikura, M.; Orlandi, R.; Saito, T.; Sakurai, H.; Söderström, P. A.; Tveten, G. M.; Vajta, Zs.; Yalcinkaya, M.
2017-05-01
Excited states in the nucleus 133Sn, with one neutron outside the double magic 132Sn core, were populated following one-neutron knockout from a 134Sn beam on a carbon target at relativistic energies at the Radioactive Isotope Beam Factory at RIKEN. Besides the γ rays emitted in the decay of the known neutron single-particle states in 133Sn additional γ strength in the energy range 3.5-5.5 MeV was observed for the first time. Since the neutron-separation energy of 133Sn is low, Sn=2.402 (4 ) MeV , this observation provides direct evidence for the radiative decay of neutron-unbound states in this nucleus. The ability of electromagnetic decay to compete successfully with neutron emission at energies as high as 3 MeV above threshold is attributed to a mismatch between the wave functions of the initial and final states in the latter case. These findings suggest that in the region southeast of 132Sn nuclear structure effects may play a significant role in the neutron versus γ competition in the decay of unbound states. As a consequence, the common neglect of such effects in the evaluation of the neutron-emission probabilities in calculations of global β -decay properties for astrophysical simulations may have to be reconsidered.
Gamma Decay of Unbound Neutron-Hole States in ^{133}Sn.
Vaquero, V; Jungclaus, A; Doornenbal, P; Wimmer, K; Gargano, A; Tostevin, J A; Chen, S; Nácher, E; Sahin, E; Shiga, Y; Steppenbeck, D; Taniuchi, R; Xu, Z Y; Ando, T; Baba, H; Garrote, F L Bello; Franchoo, S; Hadynska-Klek, K; Kusoglu, A; Liu, J; Lokotko, T; Momiyama, S; Motobayashi, T; Nagamine, S; Nakatsuka, N; Niikura, M; Orlandi, R; Saito, T; Sakurai, H; Söderström, P A; Tveten, G M; Vajta, Zs; Yalcinkaya, M
2017-05-19
Excited states in the nucleus ^{133}Sn, with one neutron outside the double magic ^{132}Sn core, were populated following one-neutron knockout from a ^{134}Sn beam on a carbon target at relativistic energies at the Radioactive Isotope Beam Factory at RIKEN. Besides the γ rays emitted in the decay of the known neutron single-particle states in ^{133}Sn additional γ strength in the energy range 3.5-5.5 MeV was observed for the first time. Since the neutron-separation energy of ^{133}Sn is low, S_{n}=2.402(4) MeV, this observation provides direct evidence for the radiative decay of neutron-unbound states in this nucleus. The ability of electromagnetic decay to compete successfully with neutron emission at energies as high as 3 MeV above threshold is attributed to a mismatch between the wave functions of the initial and final states in the latter case. These findings suggest that in the region southeast of ^{132}Sn nuclear structure effects may play a significant role in the neutron versus γ competition in the decay of unbound states. As a consequence, the common neglect of such effects in the evaluation of the neutron-emission probabilities in calculations of global β-decay properties for astrophysical simulations may have to be reconsidered.
NASA Astrophysics Data System (ADS)
Knappe, C.; Nada, F. Abou; Richter, M.; Aldén, M.
2012-09-01
This work compares the extent of linear response regions from standard time-resolving optical detectors for phosphor thermometry. Different types of photomultipliers (ordinary and time-gated) as well as an avalanche photodiode were tested and compared using the phosphorescence decay time of cadmium tungstate (CdWO4). Effects originating from incipient detector saturation are revealed as a change in evaluated phosphorescence decay time, which was found to be a more sensitive measure for saturation than the conventional signal strength comparison between in- and output. Since the decay time of thermographic phosphors is used for temperature determination systematic temperature errors in the order of several tens of Kelvins may be introduced. Saturation from the initial intensity is isolated from temporally developed saturation by varying the CdWO4 decay time over the microsecond to nanosecond range, resultant of varying the temperature from 290 to 580 K. A detector mapping procedure is developed in order to identify linear response regions where the decay-to-temperature evaluations are unbiased. In addition, this mapping procedure generates a library of the degree of distortion for operating points outside of linear response regions. Signals collected in the partly saturated regime can thus be corrected to their unbiased value using this library, extending the usable detector operating range significantly.
Zhang, Hong; Andrews, Susan A
2012-05-15
This study investigated the effect of copper corrosion products, including Cu(II), Cu(2)O, CuO and Cu(2)(OH)(2)CO(3), on chlorine degradation, HAA formation, and HAA speciation under controlled experimental conditions. Chlorine decay and HAA formation were significantly enhanced in the presence of copper with the extent of copper catalysis being affected by the solution pH and the concentration of copper corrosion products. Accelerated chlorine decay and increased HAA formation were observed at pH 8.6 in the presence of 1.0 mg/L Cu(II) compared with that observed at pH 6.6 and pH 7.6. Further investigation of chlorine decay in the presence of both Suwannee River NOM and Cu(II) indicated that an increased reactivity of NOM with dissolved and/or solid surface-associated Cu(II), rather than chlorine auto-decomposition, was a primary reason for the observed rapid chlorine decay. Copper corrosion solids [Cu(2)O, CuO, Cu(2)(OH)(2)CO(3)] exhibited catalytic effects on both chlorine decay and HAA formation. Contrary to the results observed when in the absence of copper corrosion products, DCAA formation was consistently predominant over other HAA species in the presence of copper corrosion products, especially at neutral and high pH. This study improves the understanding for water utilities and households regarding chlorine residuals and HAA concentrations in distribution systems, in particular once the water reaches domestic plumbing where copper is widely used. Copyright © 2012 Elsevier Ltd. All rights reserved.
Graham, D.W.; Miley, M.K.; Denoyelles, F.; Smith, Val H.; Thurman, E.M.; Carter, R.
2000-01-01
Alachlor is one of the most commonly used herbicides in both Europe and North America. Because of its toxic properties, its fate and attenuation in natural waters is practically important. This paper assesses factors that affect alachlor decay rate in aquatic systems using field-scale experimental units. In particular, we used field mesocosms (11.3 m3 outdoor fiberglass tanks) to examine the affect of oxygen level and other factors on decay rate in water columns. This is one of the first studies ever performed where diverse water column conditions have been successfully simulated using common mesocosm-scale facilities. Four treatments were assessed, including aerobic systems (aerobic); low nutrient, oxygen-stratified systems (stratified-LN); moderate nutrient, oxygen-stratified systems (stratified-HN); and anaerobic systems (anaerobic). The lowest half-lives were observed in the anaerobic units (9.7 days) followed by the aerobic (21 days), stratified-HN (22 days), and stratified-LN (46 days) units. Our results indicate that alachlor is transformed most rapidly under anaerobic conditions, although the ambient phosphorus level also appears to influence decay rate. In this study, two common alachlor breakdown products, ethane sulfonic acid (ESA) and oxanilic acid, were also monitored. Oxanilic acid was produced in greater quantities than ESA under all treatments with the highest levels being produced in the stratified-HN units. In general, our results suggest that previous laboratory data, which indicated that high rates of alachlor decay can occur under oxygen-free methanogenic conditions, is translatable to field-scale applications. Copyright (C) 2000 Elsevier Science Ltd.Alachlor is one of the most commonly used herbicides in both Europe and North America. Because of its toxic properties, its fate and attenuation in natural waters is practically important. This paper assesses factors that affect alachlor decay rate in aquatic systems using field-scale experimental units. In particular, we used field mesocosms (11.3 m3 outdoor fiberglass tanks) to examine the affect of oxygen level and other factors on decay rate in water columns. This is one of the first studies ever performed where diverse water column conditions have been successfully simulated using common mesocosm-scale facilities. Four treatments were assessed, including aerobic systems (aerobic); low nutrient, oxygen-stratified systems (stratified-LN); moderate nutrient, oxygen-stratified systems (stratified-HN); and anaerobic systems (anaerobic). The lowest half-lives were observed in the anaerobic units (9.7 days) followed by the aerobic (21 days), stratified-HN (22 days), and stratified-LN (46 days) units. Our results indicate that alachlor is transformed most rapidly under anaerobic conditions, although the ambient phosphorus level also appears to influence decay rate. In this study, two common alachlor breakdown products, ethane sulfonic acid (ESA) and oxanilic acid, were also monitored. Oxanilic acid was produced in greater quantities than ESA under all treatments with the highest levels being produced in the stratified-HN units. In general, our results suggest that previous laboratory data, which indicated that high rates of alachlor decay can occur under oxygen-free methanogenic conditions, is translatable to field-scale applications.Aquatic field mesocosms were used to examine the influence of DO concentration and the presence of nutrients on alachlor transformation. Four treatments were used: wholly aerobic water columns, thermally and oxygen stratified water columns with low nutrient levels, stratified water columns with moderate nutrient levels, and wholly anaerobic water columns. The anaerobic treatment produced the highest rate of alachlor decay, followed by the aerobic and stratified treatments. The lowest decay rate occurred in the aerobic, low-nutrient stratified units.
Jumpstarting the cytochrome P450 catalytic cycle with a hydrated electron.
Erdogan, Huriye; Vandemeulebroucke, An; Nauser, Thomas; Bounds, Patricia L; Koppenol, Willem H
2017-12-29
Cytochrome P450cam (CYP101Fe 3+ ) regioselectively hydroxylates camphor. Possible hydroxylating intermediates in the catalytic cycle of this well-characterized enzyme have been proposed on the basis of experiments carried out at very low temperatures and shunt reactions, but their presence has not yet been validated at temperatures above 0 °C during a normal catalytic cycle. Here, we demonstrate that it is possible to mimic the natural catalytic cycle of CYP101Fe 3+ by using pulse radiolysis to rapidly supply the second electron of the catalytic cycle to camphor-bound CYP101[FeO 2 ] 2+ Judging by the appearance of an absorbance maximum at 440 nm, we conclude that CYP101[FeOOH] 2+ (compound 0) accumulates within 5 μs and decays rapidly to CYP101Fe 3+ , with a k 440 nm of 9.6 × 10 4 s -1 All processes are complete within 40 μs at 4 °C. Importantly, no transient absorbance bands could be assigned to CYP101[FeO 2+ por •+ ] (compound 1) or CYP101[FeO 2+ ] (compound 2). However, indirect evidence for the involvement of compound 1 was obtained from the kinetics of formation and decay of a tyrosyl radical. 5-Hydroxycamphor was formed quantitatively, and the catalytic activity of the enzyme was not impaired by exposure to radiation during the pulse radiolysis experiment. The rapid decay of compound 0 enabled calculation of the limits for the Gibbs activation energies for the conversions of compound 0 → compound 1 → compound 2 → CYP101Fe 3+ , yielding a Δ G ‡ of 45, 39, and 39 kJ/mol, respectively. At 37 °C, the steps from compound 0 to the iron(III) state would take only 4 μs. Our kinetics studies at 4 °C complement the canonical mechanism by adding the dimension of time. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimachkov, D. A., E-mail: klimchakovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru
2016-09-15
Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describesmore » static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the height of the free boundary on the density of the fluid. Self-similar continuous and discontinuous solutions are obtained for a system on a slope, and a solution is found to the initial discontinuity decay problem in this case.« less
Na intercalation in Fe-MIL-100 for aqueous Na-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavez, James S.; Harrison, Katharine L.; Sava Gallis, Dorina F.
Here we report for the first time the feasibility of using metal–organic frameworks (MOFs) as electrodes for aqueous Na-ion batteries. We show that Fe-MIL-100, a known redox-active MOF, is electrochemically active in a Na aqueous electrolyte, under various compositions. Emphasis was placed on investigating the electrode–electrolyte interface, with a focus on identifying the relationship between additives in the composition of the working electrode, particle size and overall performance. We found that the energy storage capacity is primarily dependent on the binder additive in the composite; the best activity for this MOF is obtained with Nafion as a binder, owing tomore » its hydrophilic and ion conducting nature. Kynar-bound electrodes are clearly less effective, due to their hydrophobic character, which impedes wetting of the electrode. The binder-free systems show the poorest electrochemical activity. There is little difference in the overall performance as function of particle size (micro vs. nano), implying the storage capacities in this study are not limited by ionic and/or electronic conductivity. Excellent reversibility and high coulombic efficiency are achieved at higher potential ranges, observed after cycle 20. That is despite progressive capacity decay observed in the initial cycles. Importantly, structural analyses of cycled working electrodes confirm that the long range crystallinity remains mainly unaltered with cycling. These findings suggest that limited reversibility of the intercalated Na ions in the lower potential range, together with the gradual lack of available active sites in subsequent cycles is responsible for the rapid decay in capacity retention.« less
Na intercalation in Fe-MIL-100 for aqueous Na-ion batteries
Chavez, James S.; Harrison, Katharine L.; Sava Gallis, Dorina F.
2017-05-04
Here we report for the first time the feasibility of using metal–organic frameworks (MOFs) as electrodes for aqueous Na-ion batteries. We show that Fe-MIL-100, a known redox-active MOF, is electrochemically active in a Na aqueous electrolyte, under various compositions. Emphasis was placed on investigating the electrode–electrolyte interface, with a focus on identifying the relationship between additives in the composition of the working electrode, particle size and overall performance. We found that the energy storage capacity is primarily dependent on the binder additive in the composite; the best activity for this MOF is obtained with Nafion as a binder, owing tomore » its hydrophilic and ion conducting nature. Kynar-bound electrodes are clearly less effective, due to their hydrophobic character, which impedes wetting of the electrode. The binder-free systems show the poorest electrochemical activity. There is little difference in the overall performance as function of particle size (micro vs. nano), implying the storage capacities in this study are not limited by ionic and/or electronic conductivity. Excellent reversibility and high coulombic efficiency are achieved at higher potential ranges, observed after cycle 20. That is despite progressive capacity decay observed in the initial cycles. Importantly, structural analyses of cycled working electrodes confirm that the long range crystallinity remains mainly unaltered with cycling. These findings suggest that limited reversibility of the intercalated Na ions in the lower potential range, together with the gradual lack of available active sites in subsequent cycles is responsible for the rapid decay in capacity retention.« less
NASA Astrophysics Data System (ADS)
Rajak, Atanu; Dutta, Amit
2014-04-01
We consider the temporal evolution of a zero-energy edge Majorana of a spinless p-wave superconducting chain following a sudden change of a parameter of the Hamiltonian. Starting from one of the topological phases that has an edge Majorana, the system is suddenly driven to the other topological phase or to the (topologically) trivial phases and to the quantum critical points (QCPs) separating these phases. The survival probability of the initial edge Majorana as a function of time is studied following the quench. Interestingly when the chain is quenched to the QCP, we find a nearly perfect oscillation of the survival probability, indicating that the Majorana travels back and forth between two ends, with a time period that scales with the system size. We also generalize to the situation when there is a next-nearest-neighbor hopping in a superconducting chain and there results in a pair of edge Majorana at each end of the chain in the topological phase. We show that the frequency of oscillation of the survival probability gets doubled in this case. We also perform an instantaneous quenching of the Hamiltonian (with two Majorana modes at each end of the chain) to an another Hamiltonian which has only one Majorana mode in equilibrium; the MSP shows oscillations as a function of time with a noticeable decay in the amplitude. On the other hand for a quenching which is reverse to the previous one, the MSP decays rapidly and stays close to zero with fluctuations in amplitude.
A novel prosthetic group for site-selective labeling of peptides for positron emission tomography.
Olberg, Dag Erlend; Hjelstuen, Ole Kristian; Solbakken, Magne; Arukwe, Joseph; Karlsen, Hege; Cuthbertson, Alan
2008-06-01
Efficient methodologies for the radiolabeling of peptides with [(18)F]fluoride are a prerequisite to enabling commercialization of peptide-containing radiotracers for positron emission tomography (PET) imaging. It was the purpose of this study to investigate a novel chemoselective ligation reaction comprising conjugation of an [(18)F]-N-methylaminooxy-containing prosthetic group to a functionalized peptide. Twelve derivatives of general formula R1-CO-NH-Lys-Gly-Phe-Gly-Lys-OH were synthesized where R1 was selected from a short list of moieties anticipated to be reactive toward the N-methylaminooxy group. Conjugation reactions were initially carried out with nonradioactive precursors to assess, in a qualitative manner, their general suitability for PET chemistry with only the most promising pairings progressing to full radiochemical assessment. Best results were obtained for the ligation of O-[2-(2-[(18)F]fluoroethoxy)ethyl]-N-methyl-N-hydroxylamine 18 to the maleimidopropionyl-Lys-Gly-Phe-Gly-Lys-OH precursor 10 in acetate buffer (pH 5) after 1 h at 70 degrees C. The non-decay-corrected isolated yield was calculated to be 8.5%. The most encouraging result was observed with the combination 18 and 4-(2-nitrovinyl)benzoyl-Lys-Gly-Phe-Gly-Lys-OH, 9, where the conjugation reaction proceeded rapidly to completion at 30 degrees C after only 5 min. The corresponding non-decay-corrected radiochemical yield for the isolated (18)F-labeled product 27 was 12%. The preliminary results from this study demonstrate the considerable potential of this novel strategy for the radiolabeling of peptides.
Timescales of Massive Human Entrainment
Fusaroli, Riccardo; Perlman, Marcus; Mislove, Alan; Paxton, Alexandra; Matlock, Teenie; Dale, Rick
2015-01-01
The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents entrained to each other and to external events. In this paper, we extend the concept of entrainment to the dynamics of human collective attention. We conducted a detailed investigation of the unfolding of human entrainment—as expressed by the content and patterns of hundreds of thousands of messages on Twitter—during the 2012 US presidential debates. By time-locking these data sources, we quantify the impact of the unfolding debate on human attention at three time scales. We show that collective social behavior covaries second-by-second to the interactional dynamics of the debates: A candidate speaking induces rapid increases in mentions of his name on social media and decreases in mentions of the other candidate. Moreover, interruptions by an interlocutor increase the attention received. We also highlight a distinct time scale for the impact of salient content during the debates: Across well-known remarks in each debate, mentions in social media start within 5–10 seconds after it occurs; peak at approximately one minute; and slowly decay in a consistent fashion across well-known events during the debates. Finally, we show that public attention after an initial burst slowly decays through the course of the debates. Thus we demonstrate that large-scale human entrainment may hold across a number of distinct scales, in an exquisitely time-locked fashion. The methods and results pave the way for careful study of the dynamics and mechanisms of large-scale human entrainment. PMID:25880357
The changing spatio-temporal dynamics of thaw lake development, Seward Peninsula, Alaska.
NASA Astrophysics Data System (ADS)
Cooper, Michael; Rees, Gareth; Bartsch, Annett
2014-05-01
Contemporary anthropogenic climatic warming is having an accelerated, and more pronounced effect upon Arctic regions than any other environment on Earth. Increased surface temperatures have led to widespread permafrost degradation and a shift in dynamics. One landscape manifestation of localised permafrost decay, seen to be ubiquitous across low-lying tundra regions of Alaska, Canada and Siberia, is the thermokarst lake - or 'thaw' lake. These features are seen to be truly dynamic, with a relatively rapid evolution and decay. The exact impacts of climatic perturbation on thaw lake development are in contention; however, recent studies have suggested an increased vulnerability of these features, owing to the susceptibility of the fundamental processes of initiation, expansion and drainage to climatic variation. It is often hypothesised that with current trends, thaw lakes will see a net increase in expansion rate, and areal extent, with a potential for increased drainage events. Increased permafrost thaw and thermokarst activity has also led to shifts in biogeochemical cycles, leading to an amplified release from large carbon reservoirs currently sequestered within permafrost. An example of carbon release exhibited from thaw lakes is that of methane ebullition (gas bubble formation); this has been theorised to have the potential to initiate a major positive climatic feedback leading to a continued rise in global temperatures. Due to the remote nature and large area over which these landforms occur, remotely sensed data has been widely used in order to both accurately classify features and measure change over spatially large and great temporal extents. As well as studies interpreting data collected in the visible and near-infrared spectra, studies have recently made use of radar or microwave products in order to capture imagery avoiding adverse atmospheric conditions, most notably cloud cover. Data from Envisat ASAR operating in Wide Swath Mode was acquired for this study region; however, the core of this research relied upon the analysis of the changing lake morphology using visible and near-infrared spectra from MODIS and Landsat products. This research explored: (1) intra-annual variability of freeze-thaw cycles and resultant effects on thaw lake development; and (2) the spatio-temporal trends and changing dynamism of thaw lake activity. Research presented here within suggests that although climatic trends do indeed influence widespread changes within thaw lake characteristics, site-specific phenomena of sediment type and ice-content and fluvial activity also play integral roles. Understanding and observing changing spatio-temporal dynamics, particularly on an intra-annual basis, has helped to gather more information concerning complex lake processes, and increase the understanding of permafrost decay and thaw lake development.
Observation of Y(1S) pair production in proton-proton collisions at $$ \\sqrt{s}=8 $$ TeV
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...
2017-05-03
Pair production of Y(1S) mesons is observed at the LHC in proton-proton collisions at √s = 8 TeV by the CMS experiment in a data sample corresponding to an integrated luminosity of 20.7 fb -1. Both Y(1S) candidates are fully reconstructed via their decays to μ +μ -. The fiducial acceptance region is defined by an absolute Y(1S) rapidity smaller than 2.0. Furthermore, the fiducial cross section for the production of Y(1S) pairs, assuming that both mesons decay isotropically, is measured to be 68.8±12.7 (stat)±7.4 (syst)±2.8 ( BB ) pb, where the third uncertainty comes from the uncertainty in themore » branching fraction of Y(1S) decays to μ +μ -. Assuming instead that the Y(1S) mesons are produced with different polarizations leads to variations in the measured cross section in the range from -38% to +36%.« less
Observation of Y(1S) pair production in proton-proton collisions at √{s}=8 TeV
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Zykunov, V.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Sharma, A.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Micanovic, S.; Sudic, L.; Susa, T.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Tsiakkouri, D.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Khvedelidze, A.; Lomidze, D.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kudella, S.; Lobelle Pardo, P.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Behnamian, H.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Michelotto, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Zanetti, M.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Cotto, G.; Covarelli, R.; De Remigis, P.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Chistov, R.; Danilov, M.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Bravo, C.; Cousins, R.; Dasgupta, A.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Jung, K.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Bruner, C.; Castle, J.; Forthomme, L.; Kenny, R. P.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Kumar, A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Mc Donald, J.; Medvedeva, T.; Mei, K.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Belknap, D. A.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2017-05-01
Pair production of Y(1S) mesons is observed at the LHC in proton-proton collisions at √{s}=8 TeV by the CMS experiment in a data sample corresponding to an integrated luminosity of 20.7 fb-1. Both Y(1S) candidates are fully reconstructed via their decays to μ + μ -. The fiducial acceptance region is defined by an absolute Y(1S) rapidity smaller than 2.0. The fiducial cross section for the production of Y(1S) pairs, assuming that both mesons decay isotropically, is measured to be 68.8±12.7 (stat)±7.4 (syst)±2.8 ( B ) pb, where the third uncertainty comes from the uncertainty in the branching fraction of Y(1S) decays to μ + μ -. Assuming instead that the Y(1S) mesons are produced with different polarizations leads to variations in the measured cross section in the range from -38% to +36%. [Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Glasser, M. E.
1981-01-01
The Multilevel Diffusion Model (MDM) Version 5 was modified to include features of more recent versions. The MDM was used to predict in-cloud HCl concentrations for the April 12 launch of the space Shuttle (STS-1). The maximum centerline predictions were compared with measurements of maximum gaseous HCl obtained from aircraft passes through two segments of the fragmented shuttle ground cloud. The model over-predicted the maximum values for gaseous HCl in the lower cloud segment and portrayed the same rate of decay with time as the observed values. However, the decay with time of HCl maximum predicted by the MDM was more rapid than the observed decay for the higher cloud segment, causing the model to under-predict concentrations which were measured late in the life of the cloud. The causes of the tendency for the MDM to be conservative in over-estimating the HCl concentrations in the one case while tending to under-predict concentrations in the other case are discussed.
Observation of Y(1S) pair production in proton-proton collisions at $$ \\sqrt{s}=8 $$ TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.
Pair production of Y(1S) mesons is observed at the LHC in proton-proton collisions at √s = 8 TeV by the CMS experiment in a data sample corresponding to an integrated luminosity of 20.7 fb -1. Both Y(1S) candidates are fully reconstructed via their decays to μ +μ -. The fiducial acceptance region is defined by an absolute Y(1S) rapidity smaller than 2.0. Furthermore, the fiducial cross section for the production of Y(1S) pairs, assuming that both mesons decay isotropically, is measured to be 68.8±12.7 (stat)±7.4 (syst)±2.8 ( BB ) pb, where the third uncertainty comes from the uncertainty in themore » branching fraction of Y(1S) decays to μ +μ -. Assuming instead that the Y(1S) mesons are produced with different polarizations leads to variations in the measured cross section in the range from -38% to +36%.« less
NASA Technical Reports Server (NTRS)
Swyler, K. J.; Levy, P. W.
1976-01-01
The coloring of NBS 710 glass was studied using a facility for making optical absorption measurements during and after electron irradiation. The induced absorption contains three Gaussian shaped bands. The color center growth curves contain two saturating exponential and one linear components. After irradiation the coloring decays can be described by three decreasing exponentials. At room temperature both the coloring curve plateau and coloring rate increases with increasing dose rate. Coloring measurements made at fixed dose rate but at increasing temperature indicate: (1) The coloring curve plateau decreases with increasing temperature and coloring is barely measurable near 400 C. (2) The plateau is reached more rapidly as the temperature increases. (3) The decay occurring after irradiation cannot be described by Arrhenius kinetics. At each temperature the coloring can be explained by simple kinetics. The temperature dependence of the decay can be explained if it is assumed that the thermal untrapping is controlled by a distribution of activation energies.
All-sky monitor observations of the decay of A0620-00 (Nova monocerotis 1975)
NASA Technical Reports Server (NTRS)
Kaluzienski, L. J.; Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.
1976-01-01
The All-Sky X-ray Monitor onboard Ariel 5 has observed the 3-6 keV decline of the bright transient X-ray source A0620-00 on a virtually continuous basis during the period September 1975 - March 1976. The source behavior on timescales 100 minutes is characterized by smooth, exponential decays interrupted by substantial increases in October and February. The latter increase was an order-of-magnitude rise above the extrapolated exponential fall-off, and was followed by a final rapid decline. Upper limits of 2.5% and 10% were found for any periodicities in the range 0d.2 - 10d during the early and later decay phases, respectively. A probable correlation between the optical and 3-6 keV emission from A0620-00 was noted, effectively ruling out models involving traditional optical novae in favor of Roche-lobe overflow in a binary system. The existing data on the transient X-ray sources is consistent with two distinct luminosity-lifetime classes of these objects.
K/Na-triggered bioluminescence in the oceanic squid Symplectoteuthis oualaniensis.
Tsuji, F I; Leisman, G B
1981-11-01
A distinctive type of luminescent system present in the large dorsal luminous organ of the oceanic squid Symplectoteuthis oualaniensis is described. The organ produces an intense blue flash of light followed by a rapid decay in light intensity. Luminescence originates from numerous oval granules present in the luminous organ. The essential light-emitting components are membrane bound. Intact granules or washed homogenates of the granules are triggered to emit light by monovalent cations such as, in decreasing order of effectiveness, potassium, rubidium, sodium, cesium, ammonium, and lithium. Calcium, magnesium, and strontium ions do not trigger light emission. Analysis of the kinetics of the decay of light intensity suggests that two light-emitting components are involved, one decaying faster than the other. The light-emitting reaction has an absolute requirement for molecular oxygen. The optimum KCl or NaCl concentration is approximately 0.6 M and the optimum pH is approximately 7.8. A free sulfhydryl group is essential for activity.
A Nonequilibrium Rate Formula for Collective Motions of Complex Molecular Systems
NASA Astrophysics Data System (ADS)
Yanao, Tomohiro; Koon, Wang Sang; Marsden, Jerrold E.
2010-09-01
We propose a compact reaction rate formula that accounts for a non-equilibrium distribution of residence times of complex molecules, based on a detailed study of the coarse-grained phase space of a reaction coordinate. We take the structural transition dynamics of a six-atom Morse cluster between two isomers as a prototype of multi-dimensional molecular reactions. Residence time distribution of one of the isomers shows an exponential decay, while that of the other isomer deviates largely from the exponential form and has multiple peaks. Our rate formula explains such equilibrium and non-equilibrium distributions of residence times in terms of the rates of diffusions of energy and the phase of the oscillations of the reaction coordinate. Rapid diffusions of energy and the phase generally give rise to the exponential decay of residence time distribution, while slow diffusions give rise to a non-exponential decay with multiple peaks. We finally make a conjecture about a general relationship between the rates of the diffusions and the symmetry of molecular mass distributions.
NASA Astrophysics Data System (ADS)
Allwood, D. A.; Dyer, P. E.
2000-11-01
Fundamental photophysical parameters have been determined for several molecules that are commonly used as matrices, e.g. ferulic acid, within matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Fluorescence quantum efficiencies ( φqe), singlet decay rates ( kl), vibrationless ground-singlet transition energies and average fluorescence wavelengths have been obtained from solid and solution samples by quantitative optical measurements. This new data will assist in modelling calculations of MALDI processes and in highlighting desirable characteristics of MALDI matrices. φqe may be as high as 0.59 whilst the radiative decay rate ( kf) appears to be within the (0.8-4)×10 8 s -1 range. Interestingly, α-cyano-4-hydroxycinnamic acid (α-CHC) has a very low φqe and fast non-radiative decay rate which would imply a rapid and efficient thermalisation of electronic excitation. This is in keeping with observations that α-CHC exhibits low threshold fluences for ion detection and the low fluences at which α-CHC tends to fragment.
de Groot, L. V.; Biggin, A. J.; Dekkers, M. J.; Langereis, C. G.; Herrero-Bervera, E.
2013-01-01
The dominant dipolar component of the Earth’s magnetic field has been steadily weakening for at least the last 170 years. Prior to these direct measurements, archaeomagnetic records show short periods of significantly elevated geomagnetic intensity. These striking phenomena are not captured by current field models and their relationship to the recent dipole decay is highly unclear. Here we apply a novel multi-method archaeomagnetic approach to produce a new high-quality record of geomagnetic intensity variations for Hawaii, a crucial locality in the central Pacific. It reveals a short period of high intensity occurring ~1,000 years ago, qualitatively similar to behaviour observed 200 years earlier in Europe and 500 years later in Mesoamerica. We combine these records with one from Japan to produce a coherent picture that includes the dipole decaying steadily over the last millennium. Strong, regional, short-term intensity perturbations are superimposed on this global trend; their asynchronicity necessitates a highly non-dipolar nature. PMID:24177390
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; ...
2011-09-20
The B 0 s differential production cross section is measured as functions of the transverse momentum and rapidity in pp collisions at √s=7 TeV, using the B 0 s→J/ψΦ decay, and compared with predictions based on perturbative QCD calculations at next-to-leading order. The data sample, collected by the CMS experiment at the LHC, corresponds to an integrated luminosity of 40 pb⁻¹. The B 0 s is reconstructed from the decays J/ψ→μ⁺μ⁻ and Φ→K⁺K⁻. The integrated B 0 s cross section times B 0 s→J/ψΦ branching fraction in the range 8B T <50 GeV/c and |yB|<2.4 is measured to be 6.9±0.6±0.6more » nb, where the first uncertainty is statistical and the second is systematic.« less
Probing SEP Acceleration Processes With Near-relativistic Electrons
NASA Astrophysics Data System (ADS)
Haggerty, Dennis K.; Roelof, Edmond C.
2009-11-01
Processes in the solar corona are prodigious accelerators of near-relativistic electrons. Only a small fraction of these electrons escape the low corona, yet they are by far the most abundant species observed in Solar Energetic Particle events. These beam-like energetic electron events are sometimes time-associated with coronal mass ejections from the western solar hemisphere. However, a significant number of events are observed without any apparent association with a transient event. The relationship between solar energetic particle events, coronal mass ejections, and near-relativistic electron events are better ordered when we classify the intensity time profiles during the duration of the beam-like anisotropies into three broad categories: 1) Spikes (rapid and equal rise and decay) 2) Pulses (rapid rise, slower decay) and 3) Ramps (rapid rise followed by a plateau). We report on the results of a study that is based on our catalog (covering nearly the complete Solar Cycle 23) of 216 near-relativistic electron events and their association with: solar electromagnetic emissions, shocks driven by coronal mass ejections, models of the coronal magnetic fields and energetic protons. We conclude that electron events with time-intensity profiles of Spikes and Pulses are associated with explosive events in the low corona while events with time-intensity profiles of Ramps are associated with the injection/acceleration process of the CME driven shock.
An assessment of calcite crystal growth mechanisms based on crystal size distributions
Kile, D.E.; Eberl, D.D.; Hoch, A.R.; Reddy, M.M.
2000-01-01
Calcite crystal growth experiments were undertaken to test a recently proposed model that relates crystal growth mechanisms to the shapes of crystal size distributions (CSDs). According to this approach, CSDs for minerals have three basic shapes: (1) asymptotic, which is related to a crystal growth mechanism having constant-rate nucleation accompanied by surface-controlled growth; (2) lognormal, which results from decaying-rate nucleation accompanied by surface-controlled growth; and (3) a theoretical, universal, steady-state curve attributed to Ostwald ripening. In addition, there is a fourth crystal growth mechanism that does not have a specific CSD shape, but which preserves the relative shapes of previously formed CSDs. This mechanism is attributed to supply-controlled growth. All three shapes were produced experimentally in the calcite growth experiments by modifying nucleation conditions and solution concentrations. The asymptotic CSD formed when additional reactants were added stepwise to the surface of solutions that were supersaturated with respect to calcite (initial Ω = 20, where Ω = 1 represents saturation), thereby leading to the continuous nucleation and growth of calcite crystals. Lognormal CSDs resulted when reactants were added continuously below the solution surface, via a submerged tube, to similarly supersaturated solutions (initial Ω = 22 to 41), thereby leading to a single nucleation event followed by surface-controlled growth. The Ostwald CSD resulted when concentrated reactants were rapidly mixed, leading initially to high levels of supersaturation (Ω >100), and to the formation and subsequent dissolution of very small nuclei, thereby yielding CSDs having small crystal size variances. The three CSD shapes likely were produced early in the crystallization process, in the nanometer crystal size range, and preserved during subsequent growth. Preservation of the relative shapes of the CSDs indicates that a supply-controlled growth mechanism was established and maintained during the constant-composition experiments. CSDs having shapes intermediate between lognormal and Ostwald also were generated by varying the initial levels of supersaturation (initial Ω = 28.2 to 69.2) in rapidly mixed solutions. Lognormal CSDs were observed for natural calcite crystals that are found in septarian concretions occurring in southeastern Colorado. Based on the model described above, these CSDs indicate initial growth by surface control, followed by supply-controlled growth. Thus, CSDs may be used to deduce crystal growth mechanisms from which geologic conditions early in the growth history of a mineral can be inferred. Conversely, CSD shape can be predicted during industrial crystallization by applying the appropriate conditions for a particular growth mechanism.
Crustal Deformation in Southcentral Alaska: The 1964 Prince William Sound Earthquake Subduction Zone
NASA Technical Reports Server (NTRS)
Cohen, Steven C.; Freymueller, Jeffrey T.
2003-01-01
This article, for Advances in Geophysics, is a summary of crustal deformation studies in southcentral Alaska. In 1964, southcentral Alaska was struck by the largest earthquake (moment magnitude 9.2) occurring in historical times in North America and the second largest earthquake occurring in the world during the past century. Conventional and space-based geodetic measurements have revealed a complex temporal-spatial pattern of crustal movement. Numerical models suggest that ongoing convergence between the North America and Pacific Plates, viscoelastic rebound, aseismic creep along the tectonic plate interface, and variable plate coupling all play important roles in controlling both the surface and subsurface movements. The geodetic data sets include tide-gauge observations that in some cases provide records back to the decades preceding the earthquake, leveling data that span a few decades around the earthquake, VLBI data from the late 1980s, and GPS data since the mid-1990s. Geologic data provide additional estimates of vertical movements and a chronology of large seismic events. Some of the important features that are revealed by the ensemble of studies that are reviewed in this paper include: (1) Crustal uplift in the region that subsided by up 2 m at the time of the earthquake is as much as 1 m since the earthquake. In the Turnagain Arm and Kenai Peninsula regions of southcentral Alaska, uplift rates in the immediate aftermath of the earthquake reached 150 mm/yr , but this rapid uplift decayed rapidly after the first few years following the earthquake. (2) At some other locales, notably those away the middle of the coseismic rupture zone, postseismic uplift rates were initially slower but the rates decay over a longer time interval. At Kodiak Island, for example, the uplift rates have been decreasing at a rate of about 7mm/yr per decade. At yet other locations, the uplift rates have shown little time dependence so far, but are thought not to be sustainable throughout the several hundred year recurrence time for great earthquake. The nearly 10 mm/yr uplift rate at Seldovia on the Kenai Peninsula is an example.
Masoud, Ahmed I; Tsay, T Peter; BeGole, Ellen; Bedran-Russo, Ana K
2014-11-01
To compare the following over a period of 8 weeks: (1) force decay between thermoplastic (TP) and thermoset (TS) elastomeric chains; (2) force decay between light (200-g) and heavy (350-g) initial forces; and (3) force decay between direct chains and chain loops (stretched from one pin around the second pin and back to the first pin). TP and TS chains were obtained from American Orthodontics™ (AOTP, AOTS) and ORMCO™ (OrTP, OrTS). Each of the four chain groups was subdivided into four subgroups with 10 specimens per subgroup: (1) direct chains light force, (2) direct chains heavy force, (3) chain loops light force, and (4) chain loops heavy force. The experiment was performed in artificial saliva (pH of 6.75) at 37°C. A significant difference was found between TP and TS chains, with an average mean difference of around 20% more force decay found in the TP chains (P < .001, α = .05). There was no significant difference between direct chains and chain loops except in OrTP, in which direct chains showed more force decay. There was also no significant difference in force decay identified when using light vs heavy forces. TS chains decayed less than TP chains, and chain loop retraction was beneficial only when using OrTP chains. Contrary to the interchangeable use of TP and TS chains in the published literature and in clinical practice, this study demonstrates that they perform differently under stress and that a clear distinction should be made between the two.
Vanishing Corrections for the Position in a Linear Model of FKPP Fronts
NASA Astrophysics Data System (ADS)
Berestycki, Julien; Brunet, Éric; Harris, Simon C.; Roberts, Matt
2017-02-01
Take the linearised FKPP equation {partialth = partial2xh + h} with boundary condition h( m( t), t) = 0. Depending on the behaviour of the initial condition h 0( x) = h( x, 0) we obtain the asymptotics—up to a o(1) term r( t)—of the absorbing boundary m( t) such that {ω(x) := lim_{tto∞} h(x + m(t) ,t)} exists and is non-trivial. In particular, as in Bramson's results for the non-linear FKPP equation, we recover the celebrated {-3/2 log t} correction for initial conditions decaying faster than {x^{ν}e^{-x}} for some {ν < -2}. Furthermore, when we are in this regime, the main result of the present work is the identification (to first order) of the r( t) term, which ensures the fastest convergence to {ω(x)}. When h 0( x) decays faster than {x^{ν}e^{-x}} for some {ν < -3}, we show that r( t) must be chosen to be {-3√{π/t}}, which is precisely the term predicted heuristically by Ebert-van Saarloos (Phys. D Nonlin. Phenom. 146(1): 1-99, 2000) in the non-linear case (see also Mueller and Munier Phys Rev E 90(4):042143, 2014, Henderson, Commun Math Sci 14(4):973-985, 2016, Brunet and Derrida Stat Phys 1-20, 2015). When the initial condition decays as {x^{ν}e^{-x}} for some {ν in [-3, -2)}, we show that even though we are still in the regime where Bramson's correction is {-3/2 log t}, the Ebert-van Saarloos correction has to be modified. Similar results were recently obtained by Henderson CommunMath Sci 14(4):973-985, 2016 using an analytical approach and only for compactly supported initial conditions.