Rapid prototype fabrication processes for high-performance thrust cells
NASA Technical Reports Server (NTRS)
Hunt, K.; Chwiedor, T.; Diab, J.; Williams, R.
1994-01-01
The Thrust Cell Technologies Program (Air Force Phillips Laboratory Contract No. F04611-92-C-0050) is currently being performed by Rocketdyne to demonstrate advanced materials and fabrication technologies which can be utilized to produce low-cost, high-performance thrust cells for launch and space transportation rocket engines. Under Phase 2 of the Thrust Cell Technologies Program (TCTP), rapid prototyping and investment casting techniques are being employed to fabricate a 12,000-lbf thrust class combustion chamber for delivery and hot-fire testing at Phillips Lab. The integrated process of investment casting directly from rapid prototype patterns dramatically reduces design-to-delivery cycle time, and greatly enhances design flexibility over conventionally processed cast or machined parts.
2010 Precision Strike Annual Review Held in Springfield, Virginia on April 20-21, 2010
2010-04-21
Reaction Technology Office Fogg (Acting) Director, Rapid Fielding Wyatt PD - Riley Program Oversight Dipetto Program Guidance And Assessment TBD Director...warfighters Joint Rapid Acquisition Cell Mr Thomas P Dee Complex Systems Dr Charles W Perkins Rapid Reaction Technology Office Mr Glenn A Fogg (Acting
An improved out-cell to in-cell rapid transfer system at the HFEF-south
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacca, J.P.; Sherman, E.K.
1990-01-01
The Argonne National Laboratory (ANL) Hot Fuel Examination Facility-South (HFEF-S), located at the ANL-West site of the Idaho National Engineering Laboratory, is currently undergoing extensive refurbishment and modifications in preparation for its use, beginning in 1991, in demonstrating remote recycling of fast reactor, metal-alloy fuel as part of the US Department of Energy liquid-metal reactor, Integral Fast Reactor (IFR) program. Included in these improvements to HFEF-S is a new, small-item, rapid transfer system (RTS). When installed, this system will enable the rapid transfer of small items from the hot-cell exterior into the argon cell (argon-gas atmosphere) of the facility withoutmore » necessitating the use of time-consuming and laborious procedures. The new RTS will also provide another important function associated with HFEF-S hot-cell operation in the IFR Fuel Recycle Program; namely, the rapid insertion of clean, radioactive contamination-measuring smear paper specimens into the hot cells for area surveys, and the expedited removal of these contaminated (including alpha as well as beta/gamma contamination) smears from the argon cell for transfer to an adjacent health physics field laboratory in the facility for nuclear contamination/radiation counting.« less
Hiraga, Asahi; Kaneta, Tsuyoshi; Sato, Yasushi; Sato, Seiichi
2010-01-25
Evans Blue staining indicated that actively growing tobacco BY-2 cells in the exponential phase died more rapidly than quiescent cells in the stationary phase when the cells cultured under agitation were placed under still conditions. Fifty percent cell death was induced at about 18, 26, 80 and 140 h for early, mid, late exponential- and stationary-phase cells, respectively. Actively growing cells became TUNEL (transferase-mediated dUTP nick end labelling)-positive more rapidly than quiescent cells, suggesting that the cell death evaluated by Evans Blue is accompanied by DNA cleavages. Electrophoresis of genomic DNA showed a typical 'DNA laddering' pattern formed by multiples of about 200 bp internucleosomal units. Chromatin condensation was first detected at least within 24 h by light microscopy, and then cell shrinkage followed. These findings suggest that the death of BY-2 cells induced by still conditions is PCD (programmed cell death).
Ribeiro, Viviana P; Silva-Correia, Joana; Gonçalves, Cristiana; Pina, Sandra; Radhouani, Hajer; Montonen, Toni; Hyttinen, Jari; Roy, Anirban; Oliveira, Ana L; Reis, Rui L; Oliveira, Joaquim M
2018-01-01
Timely and spatially-regulated injectable hydrogels, able to suppress growing tumors in response to conformational transitions of proteins, are of great interest in cancer research and treatment. Herein, we report rapidly responsive silk fibroin (SF) hydrogels formed by a horseradish peroxidase (HRP) crosslinking reaction at physiological conditions, and demonstrate their use as an artificial biomimetic three-dimensional (3D) matrix. The proposed SF hydrogels presented a viscoelastic nature of injectable hydrogels and spontaneous conformational changes from random coil to β-sheet conformation under physiological conditions. A human neuronal glioblastoma (U251) cell line was used for screening cell encapsulation and in vitro evaluation within the SF hydrogels. The transparent random coil SF hydrogels promoted cell viability and proliferation up to 10 days of culturing, while the crystalline SF hydrogels converted into β-sheet structure induced the formation of TUNEL-positive apoptotic cells. Therefore, this work provides a powerful tool for the investigation of the microenvironment on the programed tumor cells death, by using rapidly responsive SF hydrogels as 3D in vitro tumor models.
A Portable Cell Maintenance System for Rapid Toxicity Monitoring Final Report CRADA No. TC-02081-04
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, S.; Zhou, P.
The Phase I STTR research project was targeted at meeting the objectives and requirements stated in STTR solicitation A04-T028 for a Portable Cell Maintenance System for Rapid Toxicity Monitoring. In accordance with the requirements for STTR programs, collaboration was formed between a small business, Kionix, Inc., and The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL). The collaboration included CytoDiscovery, Inc. (CDI) which, in collaboration with Kionix, provided access to membrane chip technology and provided program support and coordination. The objective of the overall program (excerpted from the original solicitation) was: “To develop a small, portable cellmore » maintenance system for the transport, storage, and monitoring of viable vertebrate cells and tissues.” The goal of the Phase I project was to demonstrate the feasibility of achieving the program objectives utilizing a system comprised of a small-size, microfluidic chip-based cell maintenance cartridge (CMC) and a portable cell maintenance system (CMS) capable of housing a minimum of four CMCs. The system was designed to be capable of optimally maintaining multiple vertebrate cell types while supporting a wide variety of cellular assays.« less
Karunarathne, W. K. Ajith; Giri, Lopamudra; Kalyanaraman, Vani; Gautam, N.
2013-01-01
G-protein–coupled receptor (GPCR) activity gradients evoke important cell behavior but there is a dearth of methods to induce such asymmetric signaling in a cell. Here we achieved reversible, rapidly switchable patterns of spatiotemporally restricted GPCR activity in a single cell. We recruited properties of nonrhodopsin opsins—rapid deactivation, distinct spectral tuning, and resistance to bleaching—to activate native Gi, Gq, or Gs signaling in selected regions of a cell. Optical inputs were designed to spatiotemporally control levels of second messengers, IP3, phosphatidylinositol (3,4,5)-triphosphate, and cAMP in a cell. Spectrally selective imaging was accomplished to simultaneously monitor optically evoked molecular and cellular response dynamics. We show that localized optical activation of an opsin-based trigger can induce neurite initiation, phosphatidylinositol (3,4,5)-triphosphate increase, and actin remodeling. Serial optical inputs to neurite tips can refashion early neuron differentiation. Methods here can be widely applied to program GPCR-mediated cell behaviors. PMID:23479634
Simulation Environment Synchronizing Real Equipment for Manufacturing Cell
NASA Astrophysics Data System (ADS)
Inukai, Toshihiro; Hibino, Hironori; Fukuda, Yoshiro
Recently, manufacturing industries face various problems such as shorter product life cycle, more diversified customer needs. In this situation, it is very important to reduce lead-time of manufacturing system constructions. At the manufacturing system implementation stage, it is important to make and evaluate facility control programs for a manufacturing cell, such as ladder programs for programmable logical controllers (PLCs) rapidly. However, before the manufacturing systems are implemented, methods to evaluate the facility control programs for the equipment while mixing and synchronizing real equipment and virtual factory models on the computers have not been developed. This difficulty is caused by the complexity of the manufacturing system composed of a great variety of equipment, and stopped precise and rapid support of a manufacturing engineering process. In this paper, a manufacturing engineering environment (MEE) to support manufacturing engineering processes using simulation technologies is proposed. MEE consists of a manufacturing cell simulation environment (MCSE) and a distributed simulation environment (DSE). MCSE, which consists of a manufacturing cell simulator and a soft-wiring system, is emphatically proposed in detail. MCSE realizes making and evaluating facility control programs by using virtual factory models on computers before manufacturing systems are implemented.
Mazzoni, Esteban O; Mahony, Shaun; Closser, Michael; Morrison, Carolyn A; Nedelec, Stephane; Williams, Damian J; An, Disi; Gifford, David K; Wichterle, Hynek
2013-01-01
Efficient transcriptional programming promises to open new frontiers in regenerative medicine. However, mechanisms by which programming factors transform cell fate are unknown, preventing more rational selection of factors to generate desirable cell types. Three transcription factors, Ngn2, Isl1 and Lhx3, were sufficient to program rapidly and efficiently spinal motor neuron identity when expressed in differentiating mouse embryonic stem cells. Replacement of Lhx3 by Phox2a led to specification of cranial, rather than spinal, motor neurons. Chromatin immunoprecipitation–sequencing analysis of Isl1, Lhx3 and Phox2a binding sites revealed that the two cell fates were programmed by the recruitment of Isl1-Lhx3 and Isl1-Phox2a complexes to distinct genomic locations characterized by a unique grammar of homeodomain binding motifs. Our findings suggest that synergistic interactions among transcription factors determine the specificity of their recruitment to cell type–specific binding sites and illustrate how a single transcription factor can be repurposed to program different cell types. PMID:23872598
Davenport, A J; Cross, R S; Watson, K A; Liao, Y; Shi, W; Prince, H M; Beavis, P A; Trapani, J A; Kershaw, M H; Ritchie, D S; Darcy, P K; Neeson, P J; Jenkins, M R
2018-02-27
Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. Copyright © 2018 the Author(s). Published by PNAS.
Davenport, A. J.; Cross, R. S.; Watson, K. A.; Liao, Y.; Shi, W.; Prince, H. M.; Beavis, P. A.; Trapani, J. A.; Kershaw, M. H.; Ritchie, D. S.; Darcy, P. K.; Jenkins, M. R.
2018-01-01
Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. PMID:29440406
Rapid, high efficiency isolation of pancreatic ß-cells.
Clardy, Susan M; Mohan, James F; Vinegoni, Claudio; Keliher, Edmund J; Iwamoto, Yoshiko; Benoist, Christophe; Mathis, Diane; Weissleder, Ralph
2015-09-02
The ability to isolate pure pancreatic ß-cells would greatly aid multiple areas of diabetes research. We developed a fluorescent exendin-4-like neopeptide conjugate for the rapid purification and isolation of functional mouse pancreatic β-cells. By targeting the glucagon-like peptide-1 receptor with the fluorescent conjugate, β-cells could be quickly isolated by flow cytometry and were >99% insulin positive. These studies were confirmed by immunostaining, microscopy and gene expression profiling on isolated cells. Gene expression profiling studies of cytofluorometrically sorted β-cells from 4 and 12 week old NOD mice provided new insights into the genetic programs at play of different stages of type-1 diabetes development. The described isolation method should have broad applicability to the β-cell field.
The RNA binding protein Ars2 supports hematopoiesis at multiple levels.
Elahi, Seerat; Egan, Shawn M; Holling, G Aaron; Kandefer, Rachel L; Nemeth, Michael J; Olejniczak, Scott H
2018-05-15
Recent biochemical characterization of Arsenic resistance protein 2 (Ars2) has established it as central to determining the fate of nascent RNA polymerase II (RNAPII) transcripts. Through interactions with the nuclear 5'-7-methylguanosine (7mG) cap binding complex (CBC), Ars2 promotes co-transcriptional processing coupled with nuclear export or degradation of several classes of RNAPII transcripts, allowing for gene expression programs that facilitate rapid and sustained proliferation of immortalized cells in culture. However, rapidly dividing cells in culture do not represent the physiological condition of the vast majority of cells in an adult mammal. To examine functions of Ars2 in a physiological setting we generated inducible Ars2 knockout mice and found that deletion of Ars2 from adult mice resulted in defective hematopoiesis in bone marrow and thymus. Importantly, only some of this defect could be explained by the requirement of Ars2 for rapid proliferation, which we found to be cell-type specific in vivo. Rather Ars2 was required for survival of developing thymocytes and for limiting differentiation of bone marrow resident long-term hematopoietic stem cells (LT-HSCs). As a result, Ars2 knockout led to rapid thymic involution and loss of the ability of mice to regenerate peripheral blood following myeloablation. These in vivo data demonstrate that Ars2 expression is important at several steps of hematopoiesis, likely because Ars2 acts on gene expression programs underlying essential cell fate decisions such as the decision to die, to proliferate, or to differentiate. Copyright © 2018. Published by Elsevier Inc.
Antkowiak, Maciej; Torres-Mapa, Maria Leilani; Witts, Emily C.; Miles, Gareth B.; Dholakia, Kishan; Gunn-Moore, Frank J.
2013-01-01
A prevailing problem in neuroscience is the fast and targeted delivery of DNA into selected neurons. The development of an appropriate methodology would enable the transfection of multiple genes into the same cell or different genes into different neighboring cells as well as rapid cell selective functionalization of neurons. Here, we show that optimized femtosecond optical transfection fulfills these requirements. We also demonstrate successful optical transfection of channelrhodopsin-2 in single selected neurons. We extend the functionality of this technique for wider uptake by neuroscientists by using fast three-dimensional laser beam steering enabling an image-guided “point-and-transfect” user-friendly transfection of selected cells. A sub-second transfection timescale per cell makes this method more rapid by at least two orders of magnitude when compared to alternative single-cell transfection techniques. This novel technology provides the ability to carry out large-scale cell selective genetic studies on neuronal ensembles and perform rapid genetic programming of neural circuits. PMID:24257461
Antkowiak, Maciej; Torres-Mapa, Maria Leilani; Witts, Emily C; Miles, Gareth B; Dholakia, Kishan; Gunn-Moore, Frank J
2013-11-21
A prevailing problem in neuroscience is the fast and targeted delivery of DNA into selected neurons. The development of an appropriate methodology would enable the transfection of multiple genes into the same cell or different genes into different neighboring cells as well as rapid cell selective functionalization of neurons. Here, we show that optimized femtosecond optical transfection fulfills these requirements. We also demonstrate successful optical transfection of channelrhodopsin-2 in single selected neurons. We extend the functionality of this technique for wider uptake by neuroscientists by using fast three-dimensional laser beam steering enabling an image-guided "point-and-transfect" user-friendly transfection of selected cells. A sub-second transfection timescale per cell makes this method more rapid by at least two orders of magnitude when compared to alternative single-cell transfection techniques. This novel technology provides the ability to carry out large-scale cell selective genetic studies on neuronal ensembles and perform rapid genetic programming of neural circuits.
Rapid Assessment of Genotoxicity by Flow Cytometric Detection of Cell Cycle Alterations.
Bihari, Nevenka
2017-01-01
Flow cytometry is a convenient method for the determination of genotoxic effects of environmental pollution and can reveal genotoxic compounds in unknown environmental mixtures. It is especially suitable for the analyses of large numbers of samples during monitoring programs. The speed of detection is one of the advantages of this technique which permits the acquisition of 10 4 -10 5 cells per sample in 5 min. This method can rapidly detect cell cycle alterations resulting from DNA damage. The outcome of such an analysis is a diagram of DNA content across the cell cycle which indicates cell proliferation, G 2 arrests, G 1 delays, apoptosis, and ploidy.Here, we present the flow cytometric procedure for rapid assessment of genotoxicity via detection of cell cycle alterations. The described protocol simplifies the analysis of genotoxic effects in marine environments and is suitable for monitoring purposes. It uses marine mussel cells in the analysis and can be adapted to investigations on a broad range of marine invertebrates.
At the Edge of Translation – Materials to Program Cells for Directed Differentiation
Arany, Praveen R; Mooney, David J
2010-01-01
The rapid advancement in basic biology knowledge, especially in the stem cell field, has created new opportunities to develop biomaterials capable of orchestrating the behavior of transplanted and host cells. Based on our current understanding of cellular differentiation, a conceptual framework for the use of materials to program cells in situ is presented, namely a domino versus a switchboard model, to highlight the use of single versus multiple cues in a controlled manner to modulate biological processes. Further, specific design principles of material systems to present soluble and insoluble cues that are capable of recruiting, programming and deploying host cells for various applications are presented. The evolution of biomaterials from simple inert substances used to fill defects, to the recent development of sophisticated material systems capable of programming cells in situ is providing a platform to translate our understanding of basic biological mechanisms to clinical care. PMID:20860763
An innovative pre-targeting strategy for tumor cell specific imaging and therapy
NASA Astrophysics Data System (ADS)
Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng
2015-08-01
A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments. Electronic supplementary information (ESI) available: Experimental details, peptide structures, molecular weights, and additional data. See DOI: 10.1039/c5nr03862f
Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering
NASA Astrophysics Data System (ADS)
Rogozhnikov, Dmitry; O'Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.
2016-12-01
There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.
Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions.
Qu, Xiangmeng; Wang, Shaopeng; Ge, Zhilei; Wang, Jianbang; Yao, Guangbao; Li, Jiang; Zuo, Xiaolei; Shi, Jiye; Song, Shiping; Wang, Lihua; Li, Li; Pei, Hao; Fan, Chunhai
2017-08-02
Programmable remodelling of cell surfaces enables high-precision regulation of cell behavior. In this work, we developed in vitro constructed DNA-based chemical reaction networks (CRNs) to program on-chip cell adhesion. We found that the RGD-functionalized DNA CRNs are entirely noninvasive when interfaced with the fluidic mosaic membrane of living cells. DNA toehold with different lengths could tunably alter the release kinetics of cells, which shows rapid release in minutes with the use of a 6-base toehold. We further demonstrated the realization of Boolean logic functions by using DNA strand displacement reactions, which include multi-input and sequential cell logic gates (AND, OR, XOR, and AND-OR). This study provides a highly generic tool for self-organization of biological systems.
Transcriptional Profiling of Antigen-Dependent Murine B Cell Differentiation and Memory Formation1
Bhattacharya, Deepta; Cheah, Ming T.; Franco, Christopher B.; Hosen, Naoki; Pin, Christopher L.; Sha, William C.; Weissman, Irving L.
2015-01-01
Humoral immunity is characterized by the generation of Ab-secreting plasma cells and memory B cells that can more rapidly generate specific Abs upon Ag exposure than their naive counterparts. To determine the intrinsic differences that distinguish naive and memory B cells and to identify pathways that allow germinal center B cells to differentiate into memory B cells, we compared the transcriptional profiles of highly purified populations of these three cell types along with plasma cells isolated from mice immunized with a T-dependent Ag. The transcriptional profile of memory B cells is similar to that of naive B cells, yet displays several important differences, including increased expression of activation-induced deaminase and several antiapoptotic genes, chemotactic receptors, and costimulatory molecules. Retroviral expression of either Klf2 or Ski, two transcriptional regulators specifically enriched in memory B cells relative to their germinal center precursors, imparted a competitive advantage to Ag receptor and CD40-engaged B cells in vitro. These data suggest that humoral recall responses are more rapid than primary responses due to the expression of a unique transcriptional program by memory B cells that allows them to both be maintained at high frequencies and to detect and rapidly respond to antigenic re-exposure. PMID:17982071
A PAIR OF TRANSMEMBRANE RECEPTORS ESSENTIAL FOR THE RETENTION AND PIGMENTATION OF HAIR
Han, Rong; Beppu, Hideyuki; Lee, Yun-Kyoung; Georgopoulos, Katia; Larue, Lionel; Li, En; Weiner, Lorin; Brissette, Janice L.
2012-01-01
Hair follicles are simple, accessible models for many developmental processes. Here, using mutant mice, we show that Bmpr2, a known receptor for bone morphogenetic proteins (Bmps), and Acvr2a, a known receptor for Bmps and activins, are individually redundant but together essential for multiple follicular traits. When Bmpr2/Acvr2a function is reduced in cutaneous epithelium, hair follicles undergo rapid cycles of hair generation and loss. Alopecia results from a failure to terminate hair development properly, as hair clubs never form, and follicular retraction is slowed. Hair regeneration is rapid due to premature activation of new hair-production programs. Hair shafts differentiate aberrantly due to impaired arrest of medullary-cell proliferation. When Bmpr2/Acvr2a function is reduced in melanocytes, gray hair develops, as melanosomes differentiate but fail to grow, resulting in organelle miniaturization. We conclude that Bmpr2 and Acvr2a normally play cell-type-specific, necessary roles in organelle biogenesis and the shutdown of developmental programs and cell division. PMID:22611050
An innovative pre-targeting strategy for tumor cell specific imaging and therapy.
Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng
2015-09-21
A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the "biotin-avidin" interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.
Nakayama, Shingo; Sasaki, Mamoru; Morinaga, Shojiroh
2018-01-01
Giant cell carcinoma, a rare variant of nonsmall cell lung carcinoma (NSCLC), is characterized by aggressive progression and poor response to conventional chemotherapy. This report is the first to describe a patient with NSCLC and giant cell features who was successfully treated with pembrolizumab, an antibody targeting programmed death-1 (PD-1). A 69-year-old woman was diagnosed with NSCLC with multiple brain metastases. Histological evaluation of lung biopsy specimens revealed proliferation of pleomorphic giant tumor cells with poor cohesiveness, findings consistent with giant cell carcinoma. Immunostaining showed that a high proportion of the tumor cells were positive for expression of programmed death-ligand 1 (PD-L1). The patient received stereotactic radiotherapy for the brain metastases, followed by administration of pembrolizumab. Treatment with pembrolizumab resulted in the rapid regression of the primary lung nodule, with the progression-free period maintained for at least four treatment cycles. Immunotherapy targeting PD-1/PD-L1 may be an option for patients with PD-L1-positive NSCLC with giant cell features. PMID:29736285
Nakayama, Shingo; Sasaki, Mamoru; Morinaga, Shojiroh; Minematsu, Naoto
2018-01-01
Giant cell carcinoma, a rare variant of nonsmall cell lung carcinoma (NSCLC), is characterized by aggressive progression and poor response to conventional chemotherapy. This report is the first to describe a patient with NSCLC and giant cell features who was successfully treated with pembrolizumab, an antibody targeting programmed death-1 (PD-1). A 69-year-old woman was diagnosed with NSCLC with multiple brain metastases. Histological evaluation of lung biopsy specimens revealed proliferation of pleomorphic giant tumor cells with poor cohesiveness, findings consistent with giant cell carcinoma. Immunostaining showed that a high proportion of the tumor cells were positive for expression of programmed death-ligand 1 (PD-L1). The patient received stereotactic radiotherapy for the brain metastases, followed by administration of pembrolizumab. Treatment with pembrolizumab resulted in the rapid regression of the primary lung nodule, with the progression-free period maintained for at least four treatment cycles. Immunotherapy targeting PD-1/PD-L1 may be an option for patients with PD-L1-positive NSCLC with giant cell features.
Menichella, G; Lai, M; Pierelli, L; Vittori, M; Serafini, R; Ciarli, M; Foddai, M L; Salerno, G; Sica, S; Scambia, G; Leone, G; Bizzi, B
1997-01-01
Reconstitution of hematopoiesis by means of peripheral blood stem cells is a valid alternative to autologous bone marrow transplantation. The aim of this investigation was to increase the efficiency of collection of circulating blood progenitor cells and to obtain a purer product for transplant. We carried out leukapheresis procedures with the Fresenius AS 104 blood cell separator, using two different protocols, the previously used PBSC-LYM and a new mononuclear cell collection program. Both programs were highly effective in collecting mononuclear cells (MNC) and CD34+ cells. Some differences were found, especially regarding MNC yield and efficiencies. There are remarkable differences in the efficiency of collection of CD34+ cells (62.38% with the new program as opposed to 31.69% with the older one). Linear regression analysis showed a negative correlation between blood volume processed and MNC efficiency only for the PBSC-LYM program. Differences were also observed in the degree of inverse correlation existing in both programs between patients' white blood cell precount and MNC collection efficiency. The inverse correlation was stronger for the PBSC-LYM program. Seven patients with solid tumors and hematologic malignancies received high dose chemotherapy and were subsequently transplanted with peripheral blood stem cells collected using the new protocol. All patients obtained a complete and stable engraftment with the reinfusion product collected with one or two leukapheresis procedures. High efficiencies and yields were observed in the new protocol for MNC and CD34+ cells. These were able to effect rapid and complete bone marrow recovery after myeloablative chemotherapy.
Boquete, Jean-Philippe
2017-01-01
The speed of stem cell differentiation has to be properly coupled with self-renewal, both under basal conditions for tissue maintenance and during regeneration for tissue repair. Using the Drosophila midgut model, we analyze at the cellular and molecular levels the differentiation program required for robust regeneration. We observe that the intestinal stem cell (ISC) and its differentiating daughter, the enteroblast (EB), form extended cell-cell contacts in regenerating intestines. The contact between progenitors is stabilized by cell adhesion molecules, and can be dynamically remodeled to elicit optimal juxtacrine Notch signaling to determine the speed of progenitor differentiation. Notably, increasing the adhesion property of progenitors by expressing Connectin is sufficient to induce rapid progenitor differentiation. We further demonstrate that JAK/STAT signaling, Sox21a and GATAe form a functional relay to orchestrate EB differentiation. Thus, our study provides new insights into the complex and sequential events that are required for rapid differentiation following stem cell division during tissue replenishment. PMID:28662029
Mex3a marks slow-proliferating multilineage progenitors of the intestinal epithelium
Barriga, Francisco M.; Montagni, Elisa; Mana, Miyeko; Guillaumet-Adkins, Amy; Hernando-Momblona, Xavier; Sevillano, Marta; Rodriguez-Esteban, Gustavo; Mendez-Lago, Maria; Buczacki, Simon J. A.; Gut, Ivo; Gut, Marta; Winton, Douglas J.; Yilmaz, Omer; Stephan-Otto, Camille; Hein, Holger; Batlle, Eduard
2017-01-01
SUMMARY The intestinal epithelium is continuously regenerated by highly proliferative Lgr5+ intestinal stem cells (ISCs). The existence of a population of quiescent ISCs has been suggested yet its identity and features remain controversial. Here we describe that the expression of the RNA-binding protein Mex3a labels a subpopulation of Lgr5+ cells that divide less frequently and contribute to regenerate all intestinal lineages with slow kinetics. Single cell transcriptomic analysis revealed two classes of Lgr5-high cells, one of them defined by the Mex3a-expression program and by low levels of proliferation genes. Lineage tracing experiments show that large fraction of Mex3a+ cell population is continuously recalled into the rapidly dividing self-renewing ISC pool in homeostatic conditions. Chemotherapy and radiation target preferentially rapidly dividing Lgr5+ cells but spare the Mex3a-high/Lgr5+ population, which helps sustain the renewal of the intestinal epithelium during treatment. PMID:28285904
DOE perspective on fuel cells in transportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kost, R.
1996-04-01
Fuel cells are one of the most promising technologies for meeting the rapidly growing demand for transportation services while minimizing adverse energy and environmental impacts. This paper reviews the benefits of introducing fuel cells into the transportation sector; in addition to dramatically reduced vehicle emissions, fuel cells offer the flexibility than use petroleum-based or alternative fuels, have significantly greater energy efficiency than internal combustion engines, and greatly reduce noise levels during operation. The rationale leading to the emphasis on proton-exchange-membrane fuel cells for transportation applications is reviewed as are the development issues requiring resolution to achieve adequate performance, packaging, andmore » cost for use in automobiles. Technical targets for power density, specific power, platinum loading on the electrodes, cost, and other factors that become increasingly more demanding over time have been established. Fuel choice issues and pathways to reduced costs and to a renewable energy future are explored. One such path initially introduces fuel cell vehicles using reformed gasoline while-on-board hydrogen storage technology is developed to the point of allowing adequate range (350 miles) and refueling convenience. This scenario also allows time for renewable hydrogen production technologies and the required supply infrastructure to develop. Finally, the DOE Fuel Cells in Transportation program is described. The program, whose goal is to establish the technology for fuel cell vehicles as rapidly as possible, is being implemented by means of the United States Fuel Cell Alliance, a Government-industry alliance that includes Detroit`s Big Three automakers, fuel cell and other component suppliers, the national laboratories, and universities.« less
Nuclear envelope and genome interactions in cell fate
Talamas, Jessica A.; Capelson, Maya
2015-01-01
The eukaryotic cell nucleus houses an organism’s genome and is the location within the cell where all signaling induced and development-driven gene expression programs are ultimately specified. The genome is enclosed and separated from the cytoplasm by the nuclear envelope (NE), a double-lipid membrane bilayer, which contains a large variety of trans-membrane and associated protein complexes. In recent years, research regarding multiple aspects of the cell nucleus points to a highly dynamic and coordinated concert of efforts between chromatin and the NE in regulation of gene expression. Details of how this concert is orchestrated and how it directs cell differentiation and disease are coming to light at a rapid pace. Here we review existing and emerging concepts of how interactions between the genome and the NE may contribute to tissue specific gene expression programs to determine cell fate. PMID:25852741
Merced-Grafals, Emmanuelle J; Dávila, Noraica; Ge, Ning; Williams, R Stanley; Strachan, John Paul
2016-09-09
Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaOx) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapidly reach arbitrary conductance states. Programming is performed by applying an adaptive pulsed algorithm that utilizes the transistor gate voltage to control the SET switching operation and increase programming speed of the 1T1R cells. We show the capability of programming 64 conductance levels with <0.5% average accuracy using 100 ns pulses and studied the trade-offs between programming speed and programming error. The algorithm is also utilized to program 16 conductance levels on a population of cells in the 1T1R array showing robustness to cell-to-cell variability. In general, the proposed algorithm results in approximately 10× improvement in programming speed over standard algorithms that do not use the transistor gate to control memristor switching. In addition, after only two programming pulses (an initialization pulse followed by a programming pulse), the resulting conductance values are within 12% of the target values in all cases. Finally, endurance of more than 10(6) cycles is shown through open-loop (single pulses) programming across multiple conductance levels using the optimized gate voltage of the transistor. These results are relevant for applications that require high speed, accurate, and repeatable programming of the cells such as in neural networks and analog data processing.
Cell-Free Optogenetic Gene Expression System.
Jayaraman, Premkumar; Yeoh, Jing Wui; Jayaraman, Sudhaghar; Teh, Ai Ying; Zhang, Jingyun; Poh, Chueh Loo
2018-04-20
Optogenetic tools provide a new and efficient way to dynamically program gene expression with unmatched spatiotemporal precision. To date, their vast potential remains untapped in the field of cell-free synthetic biology, largely due to the lack of simple and efficient light-switchable systems. Here, to bridge the gap between cell-free systems and optogenetics, we studied our previously engineered one component-based blue light-inducible Escherichia coli promoter in a cell-free environment through experimental characterization and mathematical modeling. We achieved >10-fold dynamic expression and demonstrated rapid and reversible activation of the target gene to generate oscillatory response. The deterministic model developed was able to recapitulate the system behavior and helped to provide quantitative insights to optimize dynamic response. This in vitro optogenetic approach could be a powerful new high-throughput screening technology for rapid prototyping of complex biological networks in both space and time without the need for chemical induction.
Luu, Rachel A.; Gurnani, Komal; Dudani, Renu; Kammara, Rajagopal; van Faassen, Henk; Sirard, Jean-Claude; Krishnan, Lakshmi; Sad, Subash
2014-01-01
Ag presentation to CD8+ T cells often commences immediately after infection, which facilitates their rapid expansion and control of infection. Subsequently, the primed cells undergo rapid contraction. We report that this paradigm is not followed during infection with virulent Salmonella enterica, serovar Typhimurium (ST), an intracellular bacterium that replicates within phagosomes of infected cells. Although susceptible mice die rapidly (~7 days), resistant mice (129×1SvJ) harbor a chronic infection lasting ~60–90 days. Using rOVA-expressing ST (ST-OVA), we show that T cell priming is considerably delayed in the resistant mice. CD8+ T cells that are induced during ST-OVA infection undergo delayed expansion, which peaks around day 21, and is followed by protracted contraction. Initially, ST-OVA induces a small population of cycling central phenotype (CD62LhighIL-7RαhighCD44high) CD8+ T cells. However, by day 14–21, majority of the primed CD8+ T cells display an effector phenotype (CD62LlowIL-7RαlowCD44high). Subsequently, a progressive increase in the numbers of effector memory phenotype cells (CD62LlowIL-7RαhighCD44high) occurs. This differentiation program remained unchanged after accelerated removal of the pathogen with antibiotics, as majority of the primed cells displayed an effector memory phenotype even at 6 mo postinfection. Despite the chronic infection, CD8+ T cells induced by ST-OVA were functional as they exhibited killing ability and cytokine production. Importantly, even memory CD8+ T cells failed to undergo rapid expansion in response to ST-OVA infection, suggesting a delay in T cell priming during infection with virulent ST-OVA. Thus, phagosomal lifestyle may allow escape from host CD8+ T cell recognition, conferring a survival advantage to the pathogen. PMID:16849458
Comparing methods of ploidy estimation in potato.
USDA-ARS?s Scientific Manuscript database
Ploidy manipulation and the resulting need for rapid ploidy screening is an important part of a potato research and breeding program. Determining ploidy by counting chromosomes or measuring DNA in individual cells is definitive, but takes time, technical skills and equipment. We tested three predi...
Zhou, Bangjun; Zeng, Lirong
2018-01-01
Plants have evolved a sophisticated innate immune system to contend with potential infection by various pathogens. Understanding and manipulation of key molecular mechanisms that plants use to defend against various pathogens are critical for developing novel strategies in plant disease control. In plants, resistance to attempted pathogen infection is often associated with hypersensitive response (HR), a form of rapid programmed cell death (PCD) at the site of attempted pathogen invasion. In this chapter, we describe a method for rapid identification of genes that are essential for plant innate immunity. It combines virus-induced gene silencing (VIGS), a tool that is suitable for studying gene function in high-throughput, with the utilization of immunity-associated PCD, particularly HR-linked PCD as the readout of changes in plant innate immunity. The chapter covers from the design of gene fragment for VIGS, the agroinfiltration of the Nicotiana benthamian plants, to the use of immunity-associated PCD induced by twelve elicitors as the indicator of activation of plant immunity.
CCD Camera Detection of HIV Infection.
Day, John R
2017-01-01
Rapid and precise quantification of the infectivity of HIV is important for molecular virologic studies, as well as for measuring the activities of antiviral drugs and neutralizing antibodies. An indicator cell line, a CCD camera, and image-analysis software are used to quantify HIV infectivity. The cells of the P4R5 line, which express the receptors for HIV infection as well as β-galactosidase under the control of the HIV-1 long terminal repeat, are infected with HIV and then incubated 2 days later with X-gal to stain the infected cells blue. Digital images of monolayers of the infected cells are captured using a high resolution CCD video camera and a macro video zoom lens. A software program is developed to process the images and to count the blue-stained foci of infection. The described method allows for the rapid quantification of the infected cells over a wide range of viral inocula with reproducibility, accuracy and at relatively low cost.
Orio, Julie; Carli, Cédric; Janelle, Valérie; Giroux, Martin; Taillefer, Julie; Goupil, Mathieu; Richaud, Manon; Roy, Denis-Claude; Delisle, Jean-Sébastien
2015-04-01
The adoptive transfer of ex vivo-expanded Epstein-Barr virus (EBV)-specific T-cell lines is an attractive strategy to treat EBV-related neoplasms. Current evidence suggests that for adoptive immunotherapy in general, clinical responses are superior if the transferred cells have not reached a late or terminal effector differentiation phenotype before infusion. The cytokine interleukin (IL)-21 has shown great promise at limiting late T-cell differentiation in vitro, but this remains to be demonstrated in anti-viral T-cell lines. We adapted a clinically validated protocol to rapidly generate EBV-specific T-cell lines in 12 to 14 days and tested whether the addition of IL-21 at the initiation of the culture would affect T-cell expansion and differentiation. We generated clinical-scale EBV-restricted T-cell line expansion with balanced T-cell subset ratios. The addition of IL-21 at the beginning of the culture decreased both T-cell expansion and effector memory T-cell accumulation, with a relative increase in less-differentiated T cells. Within CD4 T-cell subsets, exogenous IL-21 was notably associated with the cell surface expression of CD27 and high KLF2 transcript levels, further arguing for a role of IL-21 in the control of late T-cell differentiation. Our results show that IL-21 has profound effects on T-cell differentiation in a rapid T-cell line generation protocol and as such should be further explored as a novel approach to program anti-viral T cells with features associated with early differentiation and optimal therapeutic efficacy. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Mex3a Marks a Slowly Dividing Subpopulation of Lgr5+ Intestinal Stem Cells.
Barriga, Francisco M; Montagni, Elisa; Mana, Miyeko; Mendez-Lago, Maria; Hernando-Momblona, Xavier; Sevillano, Marta; Guillaumet-Adkins, Amy; Rodriguez-Esteban, Gustavo; Buczacki, Simon J A; Gut, Marta; Heyn, Holger; Winton, Douglas J; Yilmaz, Omer H; Attolini, Camille Stephan-Otto; Gut, Ivo; Batlle, Eduard
2017-06-01
Highly proliferative Lgr5+ stem cells maintain the intestinal epithelium and are thought to be largely homogeneous. Although quiescent intestinal stem cell (ISC) populations have been described, the identity and features of such a population remain controversial. Here we report unanticipated heterogeneity within the Lgr5+ ISC pool. We found that expression of the RNA-binding protein Mex3a labels a slowly cycling subpopulation of Lgr5+ ISCs that contribute to all intestinal lineages with distinct kinetics. Single-cell transcriptome profiling revealed that Lgr5+ cells adopt two discrete states, one of which is defined by a Mex3a expression program and relatively low levels of proliferation genes. During homeostasis, Mex3a+ cells continually shift into the rapidly dividing, self-renewing ISC pool. Chemotherapy and radiation preferentially target rapidly dividing Lgr5+ cells but spare the Mex3a-high/Lgr5+ population, helping to promote regeneration of the intestinal epithelium following toxic insults. Thus, Mex3a defines a reserve-like ISC population within the Lgr5+ compartment. Copyright © 2017 Elsevier Inc. All rights reserved.
Metabolic and Epigenetic Coordination of T Cell and Macrophage Immunity.
Phan, Anthony T; Goldrath, Ananda W; Glass, Christopher K
2017-05-16
Recognition of pathogens by innate and adaptive immune cells instructs rapid alterations of cellular processes to promote effective resolution of infection. To accommodate increased bioenergetic and biosynthetic demands, metabolic pathways are harnessed to maximize proliferation and effector molecule production. In parallel, activation initiates context-specific gene-expression programs that drive effector functions and cell fates that correlate with changes in epigenetic landscapes. Many chromatin- and DNA-modifying enzymes make use of substrates and cofactors that are intermediates of metabolic pathways, providing potential cross talk between metabolism and epigenetic regulation of gene expression. In this review, we discuss recent studies of T cells and macrophages supporting a role for metabolic activity in integrating environmental signals with activation-induced gene-expression programs through modulation of the epigenome and speculate as to how this may influence context-specific macrophage and T cell responses to infection. Copyright © 2017 Elsevier Inc. All rights reserved.
Metabolic and epigenetic coordination of T cell and Macrophage immunity
Phan, Anthony T.; Goldrath, Ananda W.; Glass, Christopher K.
2017-01-01
Recognition of pathogens by innate and adaptive immune cells instructs rapid alterations of cellular processes to promote effective resolution of infection. To accommodate increased bioenergetic and biosynthetic demands, metabolic pathways are harnessed to maximize proliferation and effector molecule production. In parallel, activation initiates context-specific gene-expression programs that drive effector functions and cell fates that correlate with changes in epigenetic landscapes. Many chromatin- and DNA-modifying enzymes make use of substrates and cofactors that are intermediates of metabolic pathways, providing potential cross talk between metabolism and epigenetic regulation of gene expression. In this review, we discuss recent studies of T cells and macrophages supporting a role for metabolic activity in integrating environmental signals with activation-induced gene-expression programs through modulation of the epigenome and speculate as to how this may influence context-specific macrophage and T cell responses to infection. PMID:28514673
Regulation of Tumor Progression by Programmed Necrosis
Jeon, Hyun Min; Jeong, Eui Kyong; Lee, Yig Ji; Kim, Cho Hee; Park, Hye Gyeong
2018-01-01
Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose) deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1), which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s) in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness. PMID:29636841
Tichy, Elisia D.; Stephan, Zachary A.; Osterburg, Andrew; Noel, Greg; Stambrook, Peter J.
2013-01-01
Embryonic stem cells (ESCs) are hypersensitive to many DNA damaging agents and can rapidly undergo cell death or cell differentiation following exposure. Treatment of mouse ESCs (mESCs) with etoposide (ETO), a topoisomerase II poison, followed by a recovery period resulted in massive cell death with characteristics of a programmed cell death pathway (PCD). While cell death was both caspase- and necroptosis-independent, it was partially dependent on the activity of lysosomal proteases. A role for autophagy in the cell death process was eliminated, suggesting that ETO induces a novel PCD pathway in mESCs. Inhibition of p53 either as a transcription factor by pifithrin α or in its mitochondrial role by pifithrin μ significantly reduced ESC death levels. Finally, EndoG was newly identified as a protease participating in the DNA fragmentation observed during ETO-induced PCD. We coined the term Charontosis after Charon, the ferryman of the dead in Greek mythology, to refer to the PCD signaling events induced by ETO in mESCs. PMID:23500643
Kalia, Vandana; Penny, Laura Anne; Yuzefpolskiy, Yevgeniy; Baumann, Florian Martin; Sarkar, Surojit
2015-06-16
Immune memory cells are poised to rapidly expand and elaborate effector functions upon reinfection yet exist in a functionally quiescent state. The paradigm is that memory T cells remain inactive due to lack of T cell receptor (TCR) stimuli. Here, we report that regulatory T (Treg) cells orchestrate memory T cell quiescence by suppressing effector and proliferation programs through inhibitory receptor, cytotoxic-T-lymphocyte-associated protein-4 (CTLA-4). Loss of Treg cells resulted in activation of genome-wide transcriptional programs characteristic of effector T cells and drove transitioning as well as established memory CD8(+) T cells toward terminally differentiated KLRG-1(hi)IL-7Rα(lo)GzmB(hi) phenotype, with compromised metabolic fitness, longevity, polyfunctionality, and protective efficacy. CTLA-4 functionally replaced Treg cells in trans to rescue memory T cell defects and restore homeostasis. These studies present the CTLA-4-CD28-CD80/CD86 axis as a potential target to accelerate vaccine-induced immunity and improve T cell memory quality in current cancer immunotherapies proposing transient Treg cell ablation. Copyright © 2015 Elsevier Inc. All rights reserved.
Effector-triggered immunity: from pathogen perception to robust defense.
Cui, Haitao; Tsuda, Kenichi; Parker, Jane E
2015-01-01
In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.
Obata, Fumiaki; Tanaka, Shiho; Kashio, Soshiro; Tsujimura, Hidenobu; Sato, Ryoichi; Miura, Masayuki
2015-07-08
Genetic ablation of target cells is a powerful tool to study the origins and functions of cells, tissue regeneration, or pathophysiology in a human disease model in vivo. Several methods for selective cell ablation by inducing apoptosis have been established, using exogenous toxins or endogenous proapoptotic genes. However, their application is limited to cells with intact apoptotic machinery. Herein, we established a method for inducing rapid and selective cell necrosis by the pore-forming bacterial toxin Cry1Aa, which is specifically active in cells expressing the Cry1Aa receptor (CryR) derived from the silkworm Bombyx mori. We demonstrated that overexpressing CryR in Drosophila melanogaster tissues induced rapid cell death of CryR-expressing cells only, in the presence of Cry1Aa toxin. Cry/CryR system was effective against both proliferating cells in imaginal discs and polyploid postmitotic cells in the fat body. Live imaging analysis of cell ablation revealed swelling and subsequent osmotic lysis of CryR-positive cells after 30 min of incubation with Cry1Aa toxin. Osmotic cell lysis was still triggered when apoptosis, JNK activation, or autophagy was inhibited, suggesting that Cry1Aa-induced necrotic cell death occurred independently of these cellular signaling pathways. Injection of Cry1Aa into the body cavity resulted in specific ablation of CryR-expressing cells, indicating the usefulness of this method for in vivo cell ablation. With Cry toxins from Bacillus thuringiensis, we developed a novel method for genetic induction of cell necrosis. Our system provides a "proteinous drill" for killing target cells through physical injury of the cell membrane, which can potentially be used to ablate any cell type in any organisms, even those that are resistant to apoptosis or JNK-dependent programmed cell death.
Cancer drug discovery: recent innovative approaches to tumor modeling.
Lovitt, Carrie J; Shelper, Todd B; Avery, Vicky M
2016-09-01
Cell culture models have been at the heart of anti-cancer drug discovery programs for over half a century. Advancements in cell culture techniques have seen the rapid evolution of more complex in vitro cell culture models investigated for use in drug discovery. Three-dimensional (3D) cell culture research has become a strong focal point, as this technique permits the recapitulation of the tumor microenvironment. Biologically relevant 3D cellular models have demonstrated significant promise in advancing cancer drug discovery, and will continue to play an increasing role in the future. In this review, recent advances in 3D cell culture techniques and their application in tumor modeling and anti-cancer drug discovery programs are discussed. The topics include selection of cancer cells, 3D cell culture assays (associated endpoint measurements and analysis), 3D microfluidic systems and 3D bio-printing. Although advanced cancer cell culture models and techniques are becoming commonplace in many research groups, the use of these approaches has yet to be fully embraced in anti-cancer drug applications. Furthermore, limitations associated with analyzing information-rich biological data remain unaddressed.
Brennan, Linda M.; Widder, Mark W.; McAleer, Michael K.; Mayo, Michael W.; Greis, Alex P.; van der Schalie, William H.
2016-01-01
This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity testing of drinking water. The manuscript further describes how to run a toxicity test using the prepared biochips. A control water sample and the test water sample are mixed with pre-measured powdered media and injected into separate channels of the biochip. Impedance readings from the sensing electrodes in each of the biochip channels are measured and compared by an automated statistical software program. The screen on the ECIS instrument will indicate either "Contamination Detected" or "No Contamination Detected" within an hour of sample injection. Advantages are ease of use and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the long-term stability of stored biochips in a ready state for testing. Limitations are the requirement for cold storage of the biochips and limited sensitivity to cholinesterase-inhibiting pesticides. Applications for this toxicity detector are for rapid field-portable testing of drinking water supplies by Army Preventative Medicine personnel or for use at municipal water treatment facilities. PMID:27023147
Brennan, Linda M; Widder, Mark W; McAleer, Michael K; Mayo, Michael W; Greis, Alex P; van der Schalie, William H
2016-03-07
This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity testing of drinking water. The manuscript further describes how to run a toxicity test using the prepared biochips. A control water sample and the test water sample are mixed with pre-measured powdered media and injected into separate channels of the biochip. Impedance readings from the sensing electrodes in each of the biochip channels are measured and compared by an automated statistical software program. The screen on the ECIS instrument will indicate either "Contamination Detected" or "No Contamination Detected" within an hour of sample injection. Advantages are ease of use and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the long-term stability of stored biochips in a ready state for testing. Limitations are the requirement for cold storage of the biochips and limited sensitivity to cholinesterase-inhibiting pesticides. Applications for this toxicity detector are for rapid field-portable testing of drinking water supplies by Army Preventative Medicine personnel or for use at municipal water treatment facilities.
USDA-ARS?s Scientific Manuscript database
Disease resistance (R-) genes have been isolated from many plant species. Most encode nucleotide binding leucine-rich-repeat (NLR) proteins that trigger a rapid localized programmed cell death termed the hypersensitive response (HR) upon pathogen recognition. Despite their structural similarities, d...
In risk assessment there is a need to accelerate toxicological evaluation of vast numbers of chemicals. New programs focus on identifying common modes of action and on model systems for rapid screening. In this study we address both these issues. Oxidative stress is a good can...
Multi-layered epigenetic mechanisms contribute to transcriptional memory in T lymphocytes.
Dunn, Jennifer; McCuaig, Robert; Tu, Wen Juan; Hardy, Kristine; Rao, Sudha
2015-05-06
Immunological memory is the ability of the immune system to respond more rapidly and effectively to previously encountered pathogens, a key feature of adaptive immunity. The capacity of memory T cells to "remember" previous cellular responses to specific antigens ultimately resides in their unique patterns of gene expression. Following re-exposure to an antigen, previously activated genes are transcribed more rapidly and robustly in memory T cells compared to their naïve counterparts. The ability for cells to remember past transcriptional responses is termed "adaptive transcriptional memory". Recent global epigenome studies suggest that epigenetic mechanisms are central to establishing and maintaining transcriptional memory, with elegant studies in model organisms providing tantalizing insights into the epigenetic programs that contribute to adaptive immunity. These epigenetic mechanisms are diverse, and include not only classical acetylation and methylation events, but also exciting and less well-known mechanisms involving histone structure, upstream signalling pathways, and nuclear localisation of genomic regions. Current global health challenges in areas such as tuberculosis and influenza demand not only more effective and safer vaccines, but also vaccines for a wider range of health priorities, including HIV, cancer, and emerging pathogens such as Ebola. Understanding the multi-layered epigenetic mechanisms that underpin the rapid recall responses of memory T cells following reactivation is a critical component of this development pathway.
Postdoctoral Fellows | Center for Cancer Research
The Oncogenomics section of the Genetics Branch is a multidisciplinary and interdisciplinary translational research programmatic effort with the goal of utilizing genomics to develop novel immunotherapies for cancer. Our group is applying high throughput applied genomics methods including single cell RNAseq, single cell TCR sequencing, DNA sequencing, CRISPR/Cas9, bioinformatics combined with T cell based therapeutics to identify and develop novel immunotherapeutics for human cancer. We work with other investigators within the intramural program as well as industrial and pharmaceutical partners to rapidly translate our findings to the clinic. The program takes advantage of the uniqueness of the National Cancer Institute, (NCI), Center for Cancer Research (CCR) intramural program in that it spans high-risk basic discovery research in immunology, genomics and tumor biology, through preclinical translational research, to paradigm-shifting clinical trials. The position is available immediately. The appointment duration is up to 5 years. Stipends are commensurate with education and experience. Additional information can be found on Dr. Khan’s profile page: https://ccr.cancer.gov/Genetics-Branch/javed-khan
Liu, Danya; Burd, Eileen M.; Coopersmith, Craig M.; Ford, Mandy L.
2016-01-01
Following T cell encounter with antigen, multiple signals are integrated to collectively induce distinct differentiation programs within antigen-specific CD8+ T cell populations. Several factors contribute to these cell fate decisions including the amount and duration of antigen, exposure to inflammatory cytokines, and degree of ligation of cosignaling molecules. The inducible costimulator (ICOS) is not expressed on resting T cells but is rapidly upregulated upon encounter with antigen. However, the impact of ICOS signaling on programmed differentiation is not well understood. In this study we therefore sought to determine the role of ICOS signaling on CD8+ T cell programmed differentiation. Through the creation of novel ICOS retrogenic antigen-specific TCR transgenic CD8+ T cells, we interrogated the phenotype, functionality, and recall potential of CD8+ T cells that receive early and sustained ICOS signaling during antigen exposure. Our results reveal that these ICOS signals critically impacted cell fate decisions of antigen-specific CD8+ T cells, resulting in increased frequencies of KLRG-1hiCD127lo cells, altered BLIMP-1, T-bet, and eomesodermin expression, and increased cytolytic capacity as compared to empty vector controls. Interestingly, however, ICOS retrogenic CD8+ T cells also preferentially homed to non-lymphoid organs, and exhibited reduced multi-cytokine functionality and reduced ability to mount secondary recall responses upon challenge in vivo. In sum, our results suggest that an altered differentiation program is induced following early and sustained ICOS expression, resulting in the generation of more cytolyticly potent, terminally differentiated effectors that possess limited capacity for recall response. PMID:26729800
Liu, Danya; Burd, Eileen M; Coopersmith, Craig M; Ford, Mandy L
2016-02-01
Following T cell encounter with Ag, multiple signals are integrated to collectively induce distinct differentiation programs within Ag-specific CD8(+) T cell populations. Several factors contribute to these cell fate decisions, including the amount and duration of Ag, exposure to inflammatory cytokines, and degree of ligation of cosignaling molecules. The ICOS is not expressed on resting T cells but is rapidly upregulated upon encounter with Ag. However, the impact of ICOS signaling on programmed differentiation is not well understood. In this study, we therefore sought to determine the role of ICOS signaling on CD8(+) T cell programmed differentiation. Through the creation of novel ICOS retrogenic Ag-specific TCR-transgenic CD8(+) T cells, we interrogated the phenotype, functionality, and recall potential of CD8(+) T cells that receive early and sustained ICOS signaling during Ag exposure. Our results reveal that these ICOS signals critically impacted cell fate decisions of Ag-specific CD8(+) T cells, resulting in increased frequencies of KLRG-1(hi)CD127(lo) cells, altered BLIMP-1, T-bet, and eomesodermin expression, and increased cytolytic capacity as compared with empty vector controls. Interestingly, however, ICOS retrogenic CD8(+) T cells also preferentially homed to nonlymphoid organs and exhibited reduced multicytokine functionality and reduced ability to mount secondary recall responses upon challenge in vivo. In sum, our results suggest that an altered differentiation program is induced following early and sustained ICOS expression, resulting in the generation of more cytolyticly potent, terminally differentiated effectors that possess limited capacity for recall response. Copyright © 2016 by The American Association of Immunologists, Inc.
Osmotic Stress Signaling and Osmoadaptation in Yeasts
Hohmann, Stefan
2002-01-01
The ability to adapt to altered availability of free water is a fundamental property of living cells. The principles underlying osmoadaptation are well conserved. The yeast Saccharomyces cerevisiae is an excellent model system with which to study the molecular biology and physiology of osmoadaptation. Upon a shift to high osmolarity, yeast cells rapidly stimulate a mitogen-activated protein (MAP) kinase cascade, the high-osmolarity glycerol (HOG) pathway, which orchestrates part of the transcriptional response. The dynamic operation of the HOG pathway has been well studied, and similar osmosensing pathways exist in other eukaryotes. Protein kinase A, which seems to mediate a response to diverse stress conditions, is also involved in the transcriptional response program. Expression changes after a shift to high osmolarity aim at adjusting metabolism and the production of cellular protectants. Accumulation of the osmolyte glycerol, which is also controlled by altering transmembrane glycerol transport, is of central importance. Upon a shift from high to low osmolarity, yeast cells stimulate a different MAP kinase cascade, the cell integrity pathway. The transcriptional program upon hypo-osmotic shock seems to aim at adjusting cell surface properties. Rapid export of glycerol is an important event in adaptation to low osmolarity. Osmoadaptation, adjustment of cell surface properties, and the control of cell morphogenesis, growth, and proliferation are highly coordinated processes. The Skn7p response regulator may be involved in coordinating these events. An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects. PMID:12040128
The Microanatomic Segregation of Selection by Apoptosis in the Germinal Center
Mayer, Christian T.; Gazumyan, Anna; Kara, Ervin E.; Gitlin, Alexander D.; Golijanin, Jovana; Viant, Charlotte; Pai, Joy; Oliveira, Thiago Y.; Wang, Qiao; Escolano, Amelia; Medina-Ramirez, Max; Sanders, Rogier W.; Nussenzweig, Michel C.
2018-01-01
B cells undergo rapid cell division and affinity maturation in anatomically distinct sites in lymphoid organs called germinal centers (GCs). Homeostasis is maintained in part by B-cell apoptosis. However, the precise contribution of apoptosis to GC biology and selection is not well defined. We developed apoptosis-indicator mice and used them to visualize, purify, and characterize dying GC B cells. Apoptosis is prevalent in the GC with up to half of all GC B cells dying every 6h. Moreover, programmed cell death is differentially regulated in the light zone (LZ) and the dark zone (DZ): LZ B cells die by default if they are not positively selected, whereas DZ cells die when their antigen receptors are damaged by activation-induced cytidine deaminase (AID). PMID:28935768
Tichy, Elisia D; Stephan, Zachary A; Osterburg, Andrew; Noel, Greg; Stambrook, Peter J
2013-05-01
Embryonic stem cells (ESCs) are hypersensitive to many DNA damaging agents and can rapidly undergo cell death or cell differentiation following exposure. Treatment of mouse ESCs (mESCs) with etoposide (ETO), a topoisomerase II poison, followed by a recovery period resulted in massive cell death with characteristics of a programmed cell death pathway (PCD). While cell death was both caspase- and necroptosis-independent, it was partially dependent on the activity of lysosomal proteases. A role for autophagy in the cell death process was eliminated, suggesting that ETO induces a novel PCD pathway in mESCs. Inhibition of p53 either as a transcription factor by pifithrin α or in its mitochondrial role by pifithrin μ significantly reduced ESC death levels. Finally, EndoG was newly identified as a protease participating in the DNA fragmentation observed during ETO-induced PCD. We coined the term charontosis after Charon, the ferryman of the dead in Greek mythology, to refer to the PCD signaling events induced by ETO in mESCs. Copyright © 2013 Elsevier B.V. All rights reserved.
Wesley-Smith, James; Walters, Christina; Pammenter, N. W.
2015-01-01
Background and Aims Conservation of the genetic diversity afforded by recalcitrant seeds is achieved by cryopreservation, in which excised embryonic axes (or, where possible, embryos) are treated and stored at temperatures lower than −180 °C using liquid nitrogen. It has previously been shown that intracellular ice forms in rapidly cooled embryonic axes of Acer saccharinum (silver maple) but this is not necessarily lethal when ice crystals are small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Methods Embryonic axes of A. saccharinum, not subjected to dehydration or cryoprotection treatments (water content was 1·9 g H2O g−1 dry mass), were cooled to liquid nitrogen temperatures using two methods: plunging into nitrogen slush to achieve a cooling rate of 97 °C s−1 or programmed cooling at 3·3 °C s−1. Samples were thawed rapidly (177 °C s−1) and cell structure was examined microscopically immediately, and at intervals up to 72 h in vitro. Survival was assessed after 4 weeks in vitro. Axes were processed conventionally for optical microscopy and ultrastructural examination. Key Results Immediately following thaw after cryogenic exposure, cells from axes did not show signs of damage at an ultrastructural level. Signs that cells had been damaged were apparent after several hours of in vitro culture and appeared as autophagic decomposition. In surviving tissues, dead cells were sloughed off and pockets of living cells were the origin of regrowth. In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets may determine the possibility for, the extent of and the vigour of regrowth. Conclusions Autophagic degradation and ultimately autolysis of cells following cryo-exposure and formation of small (0·2–0·4 µm) intracellular ice crystals challenges current ideas that ice causes immediate physical damage to cells. Instead, freezing stress may induce a signal for programmed cell death (PCD). Cells that form more ice crystals during cooling have faster PCD responses. PMID:25808653
Program Integrity, Controlled Growth Spell Success for Roots of Empathy
ERIC Educational Resources Information Center
Gordon, Mary; Letchford, Donna
2009-01-01
Childhood is a universal aspect of the human condition. Yet the landscape of childhood is changing rapidly. On playgrounds young children carry cell phones, and in classrooms children are more sophisticated in their use of computers and digital media than the adults in their lives. Most young adolescents are prolific communicators via text and…
Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers
NASA Astrophysics Data System (ADS)
1994-05-01
DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.
Laboratory Innovation Towards Quality Program Sustainability.
Abimiku, Alash'le; Timperi, Ralph; Blattner, William
2016-08-01
Laboratory innovation significantly affects program sustainability of HIV programs in low and middle income countries (LMICs) far beyond its immediate sphere of impact. Innovation in rapid development of diagnostic technologies, improved quality management systems, strengthened laboratory management, affordable external quality assurance and accreditation schemes, and building local capacity have reduced costs, brought quality improvement to point-of-care testing, increased access to testing services, reduced treatment and prevention costs and opened the door to the real possibility of ending the AIDS epidemic. However, for effectively implemented laboratory innovation to contribute to HIV quality program sustainability, it must be implemented within the overall context of the national strategic plan and HIV treatment programs. The high quality of HIV rapid diagnostic test was a breakthrough that made it possible for more persons to learn their HIV status, receive counseling, and if infected to receive treatment. Likewise, the use of dried blood spots made the shipment of samples easier for the assessment of different variables of HIV infection-molecular diagnosis, CD4+ cell counts, HIV antibodies, drug resistance surveillance, and even antiretroviral drug level measurements. Such advancement is critical for to reaching the UNAIDS target of 90-90-90 and for bringing the AIDS epidemic to an end, especially in LMICs.
A platform for rapid prototyping of synthetic gene networks in mammalian cells
Duportet, Xavier; Wroblewska, Liliana; Guye, Patrick; Li, Yinqing; Eyquem, Justin; Rieders, Julianne; Rimchala, Tharathorn; Batt, Gregory; Weiss, Ron
2014-01-01
Mammalian synthetic biology may provide novel therapeutic strategies, help decipher new paths for drug discovery and facilitate synthesis of valuable molecules. Yet, our capacity to genetically program cells is currently hampered by the lack of efficient approaches to streamline the design, construction and screening of synthetic gene networks. To address this problem, here we present a framework for modular and combinatorial assembly of functional (multi)gene expression vectors and their efficient and specific targeted integration into a well-defined chromosomal context in mammalian cells. We demonstrate the potential of this framework by assembling and integrating different functional mammalian regulatory networks including the largest gene circuit built and chromosomally integrated to date (6 transcription units, 27kb) encoding an inducible memory device. Using a library of 18 different circuits as a proof of concept, we also demonstrate that our method enables one-pot/single-flask chromosomal integration and screening of circuit libraries. This rapid and powerful prototyping platform is well suited for comparative studies of genetic regulatory elements, genes and multi-gene circuits as well as facile development of libraries of isogenic engineered cell lines. PMID:25378321
Airoldi, Edoardo M.; Miller, Darach; Athanasiadou, Rodoniki; Brandt, Nathan; Abdul-Rahman, Farah; Neymotin, Benjamin; Hashimoto, Tatsu; Bahmani, Tayebeh; Gresham, David
2016-01-01
Cell growth rate is regulated in response to the abundance and molecular form of essential nutrients. In Saccharomyces cerevisiae (budding yeast), the molecular form of environmental nitrogen is a major determinant of cell growth rate, supporting growth rates that vary at least threefold. Transcriptional control of nitrogen use is mediated in large part by nitrogen catabolite repression (NCR), which results in the repression of specific transcripts in the presence of a preferred nitrogen source that supports a fast growth rate, such as glutamine, that are otherwise expressed in the presence of a nonpreferred nitrogen source, such as proline, which supports a slower growth rate. Differential expression of the NCR regulon and additional nitrogen-responsive genes results in >500 transcripts that are differentially expressed in cells growing in the presence of different nitrogen sources in batch cultures. Here we find that in growth rate–controlled cultures using nitrogen-limited chemostats, gene expression programs are strikingly similar regardless of nitrogen source. NCR expression is derepressed in all nitrogen-limiting chemostat conditions regardless of nitrogen source, and in these conditions, only 34 transcripts exhibit nitrogen source–specific differential gene expression. Addition of either the preferred nitrogen source, glutamine, or the nonpreferred nitrogen source, proline, to cells growing in nitrogen-limited chemostats results in rapid, dose-dependent repression of the NCR regulon. Using a novel means of computational normalization to compare global gene expression programs in steady-state and dynamic conditions, we find evidence that the addition of nitrogen to nitrogen-limited cells results in the transient overproduction of transcripts required for protein translation. Simultaneously, we find that that accelerated mRNA degradation underlies the rapid clearing of a subset of transcripts, which is most pronounced for the highly expressed NCR-regulated permease genes GAP1, MEP2, DAL5, PUT4, and DIP5. Our results reveal novel aspects of nitrogen-regulated gene expression and highlight the need for a quantitative approach to study how the cell coordinates protein translation and nitrogen assimilation to optimize cell growth in different environments. PMID:26941329
Araújo, Manuel; Ligeiro, Dário; Costa, Luís; Marques, Filipa; Trindade, Helder; Correia, José Manuel; Fonseca, Candida
2017-06-01
Programmed cell death-1 protein (PD-1) is an immune checkpoint that has gained popularity in the treatment of several advanced cancers. Inhibiting this checkpoint is known to enhance immune response, but is also known to diminish immune tolerance and to increase autoimmune toxicity. We discuss a case of rapid onset fulminant Type 1 diabetes induced by treatment with anti-programmed cell death-1 monoclonal antibody, nivolumab, in a patient with late-stage non-small-cell lung adenocarcinoma. The patient had no history of previous diabetes but did reveal a high-risk genotype for Type 1 diabetes development (DR3-DQ2; DR4-DQ8). This finding supports that acute Type 1 diabetes can be an important adverse effect of immunotherapies targeting T-cell activation regulation. Because of the severity of this adverse effect, physicians should be aware of it, and studies directed to the detection of new biomarkers for early risk stratification (e.g., HLA) should be sought.
Calcein+/PI- as an early apoptotic feature in Leishmania.
Basmaciyan, Louise; Azas, Nadine; Casanova, Magali
2017-01-01
Although leishmaniases are responsible for high morbidity and mortality all over the world, no really satisfying treatment exists. Furthermore, the corresponding parasite Leishmania undergoes a very characteristic form of programmed cell death. Indeed, different stimuli can induce morphological and biochemical apoptotic-like features. However, the key proteins involved in mammal apoptosis, such as caspases and death receptors, are not encoded in the genome of this parasite. Currently, little is known about Leishmania apoptosis, notably owing to the lack of specific tools for programmed cell death analysis in these parasites. Furthermore, there is a need for a better understanding of Leishmania programmed cell death in order (i) to better understand the role of apoptosis in unicellular organisms, (ii) to better understand apoptosis in general through the study of an ancestral eukaryote, and (iii) to identify new therapeutic targets against leishmaniases. To advance understanding of apoptosis in Leishmania, in this study we developed a new tool based on the quantification of calcein and propidium iodide by flow cytometry. This double labeling can be employed to distinguish early apoptosis, late apoptosis and necrosis in Leishmania live cells with a very simple and rapid assay. This paper should, therefore, be of interest for people working on Leishmania and related parasites.
Barrett, P Noel; Terpening, Sara J; Snow, Doris; Cobb, Ronald R; Kistner, Otfried
2017-09-01
Rapid development and production of vaccines against emerging diseases requires well established, validated, robust technologies to allow industrial scale production and accelerated licensure of products. Areas covered: A versatile Vero cell platform has been developed and utilized to deliver a wide range of candidate and licensed vaccines against emerging viral diseases. This platform builds on the 35 years' experience and safety record with inactivated whole virus vaccines such as polio vaccine. The current platform has been optimized to include a novel double inactivation procedure in order to ensure a highly robust inactivation procedure for novel emerging viruses. The utility of this platform in rapidly developing inactivated whole virus vaccines against pandemic (-like) influenza viruses and other emerging viruses such as West Nile, Chikungunya, Ross River and SARS is reviewed. The potential of the platform for development of vaccines against other emerging viruses such as Zika virus is described. Expert commentary: Use of this platform can substantially accelerate process development and facilitate licensure because of the substantial existing data set available for the cell matrix. However, programs to provide vaccines against emerging diseases must allow alternative clinical development paths to licensure, without the requirement to carry out large scale field efficacy studies.
NASA Astrophysics Data System (ADS)
Austin, Robert; Lee, Sanghyuk; Park, Sungsu
We have developed a microfluidic device consisting of approximately 500 hexagonal micro-compartments which provides a complex ecology with wide ranges of drug and nutrient gradients and local populations. This ecology of a fragmented metapopulation induced the drug resistance in stage IV U87 glioblastoma cells to doxorubicin in seven days. Exome and transcriptome sequencing of the resistant cells identified mutations and differentially expressed genes. Gene ontology and pathway analyses of the genes identified showed that they were functionally relevant with the established mechanisms of doxorubicin action. Functional experiments support the in silico analyses and together demonstrate the effects of these genetic changes. Our findings suggest that given the rapid evolution of resistance and the focused response, this technology could act as a rapid screening modality for genetic aberrations leading to resistance to chemotherapy as well as counter-selection of drugs unlikely to be successful ultimately. Technology Innovation Program of the Ministry of Trade, Industry and Energy, Republic of Korea (10050154 to S.L. and S.P.), the National Research Foundation of Korea (NRF-2014M3C9A3065221 to S.L., NRF-2015K1A4A3047851 to J.K. and S.L.) funded by the Minis.
Increasing RpoS expression causes cell death in Borrelia burgdorferi.
Chen, Linxu; Xu, Qilong; Tu, Jiagang; Ge, Yihe; Liu, Jun; Liang, Fang Ting
2013-01-01
RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.
Klotz, Alexander; Georg, Jens; Bučinská, Lenka; Watanabe, Satoru; Reimann, Viktoria; Januszewski, Witold; Sobotka, Roman; Jendrossek, Dieter; Hess, Wolfgang R; Forchhammer, Karl
2016-11-07
The molecular and physiological mechanisms involved in the transition of microbial cells from a resting state to the active vegetative state are critically relevant for solving problems in fields ranging from microbial ecology to infection microbiology. Cyanobacteria that cannot fix nitrogen are able to survive prolonged periods of nitrogen starvation as chlorotic cells in a dormant state. When provided with a usable nitrogen source, these cells re-green within 48 hr and return to vegetative growth. Here we investigated the resuscitation of chlorotic Synechocystis sp. PCC 6803 cells at the physiological and molecular levels with the aim of understanding the awakening process of a dormant bacterium. Almost immediately upon nitrate addition, the cells initiated a highly organized resuscitation program. In the first phase, they suppressed any residual photosynthetic activity and activated respiration to gain energy from glycogen catabolism. Concomitantly, they restored the entire translational apparatus, ATP synthesis, and nitrate assimilation. After only 12-16 hr, the cells re-activated the synthesis of the photosynthetic apparatus and prepared for metabolic re-wiring toward photosynthesis. When the cells reached full photosynthetic capacity after ∼48 hr, they resumed cell division and entered the vegetative cell cycle. An analysis of the transcriptional dynamics during the resuscitation process revealed a perfect match to the observed physiological processes, and it suggested that non-coding RNAs play a major regulatory role during the lifestyle switch in awakening cells. This genetically encoded program ensures rapid colonization of habitats in which nitrogen starvation imposes a recurring growth limitation. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Douglas; Ulsh, Michael
The results of two Manufacturing Readiness Assessments of PEM fuel cell stacks and material handling equipment (MHE) and backup power (BUP) PEM fuel cell systems are given. Design modifications of fuel cell systems were made because the initial, 2008 designs did not fully meet the operational requirements of the markets. This situation indicates the 2008 risk elements were overstated.For 2010 BUP and MHE fuel cell systems, manufacturers had not reached the Low Rate Initial Production (LRIP) defined in the 2008 MRA Report at 1,000 units per year per manufacturer.For fuel cell stacks, LRIP was demonstrated by more than one manufacturer.Themore » federal tax incentive program has compensated for the initial high cost of fuel cell systems.The Balance-of-Plant (BOP) has not evolved as rapidly as the PEM fuel cell stack manufacturing readiness.The BOP in 2014 is as costly as the fuel cell stack for MHE applications.« less
Zhang, Zhaoyang; Li, Shihui; Chen, Niancao; Yang, Cheng; Wang, Yong
2013-04-08
Extensive studies have been recently carried out to achieve dynamic control of cell-material interactions primarily through physicochemical stimulation. The purpose of this study was to apply reversible intermolecular hybridization to program cell-hydrogel interactions in physiological conditions based on DNA-antibody chimeras and complementary oligonucleotides. The results showed that DNA oligonucleotides could be captured to and released from the immobilizing DNA-functionalized hydrogels with high specificity via DNA hybridization. Accordingly, DNA-antibody chimeras were captured to the hydrogels, successfully inducing specific cell attachment. The cell attachment to the hydrogels reached the plateau at approximately half an hour after the functionalized hydrogels and the cells were incubated together. The attached cells were rapidly released from the bound hydrogels when triggering complementary oligonucleotides were introduced to the system. However, the capability of the triggering complementary oligonucleotides in releasing cells was affected by the length of intermolecular hybridization. The length needed to be at least more than 20 base pairs in the current experimental setting. Notably, because the procedure of intermolecular hybridization did not involve any harsh condition, the released cells maintained the same viability as that of the cultured cells. The functionalized hydrogels also exhibited the potential to catch and release cells repeatedly. Therefore, this study demonstrates that it is promising to regulate cell-material interactions dynamically through the DNA-programmed display of DNA-protein chimeras.
Fabrication of 3D Reconstituted Organoid Arrays by DNA-programmed Assembly of Cells (DPAC)
Todhunter, Michael E; Weber, Robert J; Farlow, Justin; Jee, Noel Y; Cerchiari, Alec E; Gartner, Zev J
2016-01-01
Tissues are the organizational units of function in metazoan organisms. Tissues comprise an assortment of cellular building blocks, soluble factors, and extracellular matrix (ECM) that are composed into specific three dimensional (3D) structures. The capacity to reconstitute tissues in vitro with the structural complexity observed in vivo is key to understanding processes such as morphogenesis, homeostasis, and disease. In this unit, we describe DNA-programmed Assembly of Cells (DPAC), a method to fabricate viable, functional arrays of organoid-like tissues within 3D ECM gels. In DPAC, dissociated cells are chemically functionalized with degradable oligonucleotide “velcro,” allowing rapid, specific, and reversible cell adhesion to a two-dimensional (2D) template patterned with complementary DNA. An iterative assembly process builds up organoids, layer-by-layer, from this initial 2D template and into the third dimension. Cleavage of the DNA releases the completed array of tissues that are captured and fully embedded in ECM gels for culture and observation. DPAC controls the size, shape, composition, and spatial heterogeneity of organoids, and permits positioning constituent cells with single-cell resolution even within cultures several centimeters long. PMID:27622567
Tibaldi, Carmelo; Lunghi, Alice; Baldini, Editta
2017-01-01
The recent discovery of immune checkpoints inhibitors, especially anti-programmed cell death protein 1 (PD-1) and anti-programmed cell death protein ligand 1 (PD-L1) monoclonal antibodies, has opened new scenarios in the management of non-small cell lung cancer (NSCLC) and this new class of drugs has achieved a rapid development in the treatment of this disease. However, considering the costs of these drugs and the fact that only a subset of patients experience long-term disease control, the identification of predictive biomarkers for the selection of candidates suitable for treatment has become a priority. The research focused mainly on the expression of the PD-L1 receptor on both tumor cells and/or immune infiltrates determined by immunohistochemistry (IHC). However, different checkpoint inhibitors were tested, different IHC assays were used, different targets were considered (tumor cells, immune infiltrates or both) and different expression thresholds were employed in clinical trials. In some trials the assay was used prospectively to select the patients, while in other trials it was evaluated retrospectively. Some confusion emerges, which makes it difficult to easily compare the literature data and to translate them in practice management. This mini-review shows the possibilities and pitfalls of the PD-L1 expression to predict the activity and efficacy of anti PD1/PD-L1 monoclonal antibodies in the treatment of NSCLC. PMID:28848698
Wesley-Smith, James; Walters, Christina; Pammenter, N W; Berjak, Patricia
2015-05-01
Conservation of the genetic diversity afforded by recalcitrant seeds is achieved by cryopreservation, in which excised embryonic axes (or, where possible, embryos) are treated and stored at temperatures lower than -180 °C using liquid nitrogen. It has previously been shown that intracellular ice forms in rapidly cooled embryonic axes of Acer saccharinum (silver maple) but this is not necessarily lethal when ice crystals are small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Embryonic axes of A. saccharinum, not subjected to dehydration or cryoprotection treatments (water content was 1·9 g H2O g(-1) dry mass), were cooled to liquid nitrogen temperatures using two methods: plunging into nitrogen slush to achieve a cooling rate of 97 °C s(-1) or programmed cooling at 3·3 °C s(-1). Samples were thawed rapidly (177 °C s(-1)) and cell structure was examined microscopically immediately, and at intervals up to 72 h in vitro. Survival was assessed after 4 weeks in vitro. Axes were processed conventionally for optical microscopy and ultrastructural examination. Immediately following thaw after cryogenic exposure, cells from axes did not show signs of damage at an ultrastructural level. Signs that cells had been damaged were apparent after several hours of in vitro culture and appeared as autophagic decomposition. In surviving tissues, dead cells were sloughed off and pockets of living cells were the origin of regrowth. In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets may determine the possibility for, the extent of and the vigour of regrowth. Autophagic degradation and ultimately autolysis of cells following cryo-exposure and formation of small (0·2-0·4 µm) intracellular ice crystals challenges current ideas that ice causes immediate physical damage to cells. Instead, freezing stress may induce a signal for programmed cell death (PCD). Cells that form more ice crystals during cooling have faster PCD responses. Published by Oxford University Press on behalf of the Annals of Botany Company 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Benoit, G R; Tong, J H; Balajthy, Z; Lanotte, M
2001-01-01
During recent years, reports have shown that biological responses of acute promyelocytic leukemia (APL) cells to retinoids are more complex than initially envisioned. PML-RARalpha chimeric protein disturbs various biological processes such as cell proliferation, differentiation, and apoptosis. The distinct biological programs that regulate these processes stem from specific transcriptional activation of distinct (but overlapping) sets of genes. These programs are sometimes mutually exclusive and depend on whether the signals are delivered by RAR or RXR agonists. Furthermore, evidence that retinoid nuclear signaling by retinoid, on its own, is not enough to trigger these cellular responses is rapidly accumulating. Indeed, work with NB4 cells show that the fate of APL cells treated by retinoid depends on complex signaling cross-talk. Elucidation of the sequence of events and cascades of transcriptional regulation necessary for APL cell maturation will be an additional tool with which to further improve therapy by retinoids. In this task, the classical techniques used to analyze gene expression have proved time consuming, and their yield has been limited. Global analyses of the APL cell transcriptome are needed. We review the technical approaches currently available (differential display, complementary DNA microarrays), to identify novel genes involved in the determination of cell fate.
Schauer, Sonja; Sommer, Regina; Farnleitner, Andreas H.
2012-01-01
A new protocol for rapid, specific, and sensitive cell-based quantification of Vibrio cholerae/Vibrio mimicus in water samples was developed. The protocol is based on catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) in combination with solid-phase cytometry. For pure cultures, we were able to quantify down to 6 V. cholerae cells on one membrane with a relative precision of 39% and down to 12 cells with a relative precision of 17% after hybridization with the horseradish peroxidase (HRP)-labeled probe Vchomim1276 (specific for V. cholerae and V. mimicus) and signal amplification. The corresponding position of the probe on the 16S rRNA is highly accessible even when labeled with HRP. For the first time, we were also able to successfully quantify V. cholerae/V. mimicus via solid-phase cytometry in extremely turbid environmental water samples collected in Austria. Cell numbers ranged from 4.5 × 101 cells ml−1 in the large saline lake Neusiedler See to 5.6 × 104 cells ml−1 in an extremely turbid shallow soda lake situated nearby. We therefore suggest CARD-FISH in combination with solid-phase cytometry as a powerful tool to quantify V. cholerae/V. mimicus in ecological studies as well as for risk assessment and monitoring programs. PMID:22885749
H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response.
Levine, A; Tenhaken, R; Dixon, R; Lamb, C
1994-11-18
Microbial elicitors or attempted infection with an avirulent pathogen strain causes the rapid production of reactive oxygen intermediates. We report here that H2O2 from this oxidative burst not only drives the cross-linking of cell wall structural proteins, but also functions as a local trigger of programmed death in challenged cells and as a diffusible signal for the induction in adjacent cells of genes encoding cellular protectants such as glutathione S-transferase and glutathione peroxidase. Thus, H2O2 from the oxidative burst plays a key role in the orchestration of a localized hypersensitive response during the expression of plant disease resistance.
Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs
Ferry, Quentin R. V.; Lyutova, Radostina; Fulga, Tudor A.
2017-01-01
CRISPR-based transcription regulators (CRISPR-TRs) have transformed the current synthetic biology landscape by allowing specific activation or repression of any target gene. Here we report a modular and versatile framework enabling rapid implementation of inducible CRISPR-TRs in mammalian cells. This strategy relies on the design of a spacer-blocking hairpin (SBH) structure at the 5′ end of the single guide RNA (sgRNA), which abrogates the function of CRISPR-transcriptional activators. By replacing the SBH loop with ligand-controlled RNA-cleaving units, we demonstrate conditional activation of quiescent sgRNAs programmed to respond to genetically encoded or externally delivered triggers. We use this system to couple multiple synthetic and endogenous target genes with specific inducers, and assemble gene regulatory modules demonstrating parallel and orthogonal transcriptional programs. We anticipate that this ‘plug and play' approach will be a valuable addition to the synthetic biology toolkit, facilitating the understanding of natural gene circuits and the design of cell-based therapeutic strategies. PMID:28256578
Blakely, Collin M.; Pazarentzos, Evangelos; Olivas, Victor; Asthana, Saurabh; Yan, Jenny Jiacheng; Tan, Irena; Hrustanovic, Gorjan; Chan, Elton; Lin, Luping; Neel, Dana S.; Newton, William; Bobb, Kathryn; Fouts, Timothy; Meshulam, Jeffrey; Gubens, Matthew A.; Jablons, David M.; Johnson, Jeffrey R.; Bandyopadhyay, Sourav; Krogan, Nevan J.; Bivona, Trever G.
2015-01-01
Summary Although oncogene-targeted therapy often elicits profound initial tumor responses in patients, responses are generally incomplete because some tumor cells survive initial therapy as residual disease that enables eventual acquired resistance. The mechanisms underlying tumor cell adaptation and survival during initial therapy are incompletely understood. Here, through the study of EGFR-mutant lung adenocarcinoma we show that NF-κB signaling is rapidly engaged upon initial EGFR inhibitor treatment to promote tumor cell survival and residual disease. EGFR oncogene inhibition induced an EGFR-TRAF2-RIP1-IKK complex that stimulated an NF-κB-mediated transcriptional survival program. The direct NF-κB inhibitor PBS-1086 suppressed this adaptive survival program and increased the magnitude and duration of initial EGFR inhibitor response in multiple NSCLC models, including a patient-derived xenograft. These findings unveil NF-κB activation as a critical adaptive survival mechanism engaged by EGFR oncogene inhibition and provide rationale for EGFR and NF-κB co-inhibition to eliminate residual disease and enhance patient responses. PMID:25843712
Biomimetic Antigenic Nanoparticles Elicit Controlled Protective Immune Response to Influenza
Patterson, Dustin P.; Rynda-Apple, Agnieszka; Harmsen, Ann L.; Harmsen, Allen G.; Douglas, Trevor
2013-01-01
Here we present a biomimetic strategy towards nanoparticle design for controlled immune response through encapsulation of conserved internal influenza proteins on the interior of virus like particles (VLPs) to direct CD8+ cytotoxic T cell protection. Programmed encapsulation and sequestration of the conserved nucleoprotein (NP) from influenza on the interior of a VLP, derived from the bacteriophage P22, results in a vaccine that provides multi-strain protection against 100 times lethal doses of influenza in an NP specific CD8+ T cell-dependent manner. VLP assembly and encapsulation of the immunogenic NP cargo protein is the result of a genetically programmed self-assembly making this strategy amendable to the quick production of vaccines to rapidly emerging pathogens. Addition of adjuvants or targeting molecules were not required for eliciting the protective response. PMID:23540530
Amigoni, Loredana; Martegani, Enzo; Colombo, Sonia
2013-01-01
We recently showed that activated Ras proteins are localized to the plasma membrane and in the nucleus in wild-type cells growing exponentially on glucose, while in the hxk2Δ strain they accumulated mainly in mitochondria. An aberrant accumulation of activated Ras in these organelles was previously reported and correlated to mitochondrial dysfunction, accumulation of ROS, and cell death. Here we show that addition of acetic acid to wild-type cells results in a rapid recruitment of Ras-GTP from the nucleus and the plasma membrane to the mitochondria, providing a further proof that Ras proteins might be involved in programmed cell death. Moreover, we show that Hxk2 protects against apoptosis in S. cerevisiae. In particular, cells lacking HXK2 and showing a constitutive accumulation of activated Ras at the mitochondria are more sensitive to acetic-acid-induced programmed cell death compared to the wild type strain. Indeed, deletion of HXK2 causes an increase of apoptotic cells with several morphological and biochemical changes that are typical of apoptosis, including DNA fragmentation, externalization of phosphatidylserine, and ROS production. Finally, our results suggest that apoptosis induced by lack of Hxk2 may not require the activation of Yca1, the metacaspase homologue identified in yeast.
Miyakoda, Mana; Kimura, Daisuke; Honma, Kiri; Kimura, Kazumi; Yuda, Masao; Yui, Katsuyuki
2012-11-01
Conditions required for establishing protective immune memory vary depending on the infecting microbe. Although the memory immune response against malaria infection is generally thought to be relatively slow to develop and can be lost rapidly, experimental evidence is insufficient. In this report, we investigated the generation, maintenance, and recall responses of Ag-specific memory CD8(+) T cells using Plasmodium berghei ANKA expressing OVA (PbA-OVA) as a model system. Mice were transferred with OVA-specific CD8(+) T (OT-I) cells and infected with PbA-OVA or control Listeria monocytogenes expressing OVA (LM-OVA). Central memory type OT-I cells were maintained for >2 mo postinfection and recovery from PbA-OVA. Memory OT-I cells produced IFN-γ as well as TNF-α upon activation and were protective against challenge with a tumor expressing OVA, indicating that functional memory CD8(+) T cells can be generated and maintained postinfection with P. berghei ANKA. Cotransfer of memory OT-I cells with naive OT-I cells to mice followed by infection with PbA-OVA or LM-OVA revealed that clonal expansion of memory OT-I cells was limited during PbA-OVA infection compared with expansion of naive OT-I cells, whereas it was more rapid during LM-OVA infection. The expression of inhibitory receptors programmed cell death-1 and LAG-3 was higher in memory-derived OT-I cells than naive-derived OT-I cells during infection with PbA-OVA. These results suggest that memory CD8(+) T cells can be established postinfection with P. berghei ANKA, but their recall responses during reinfection are more profoundly inhibited than responses of naive CD8(+) T cells.
Louzao, Maria Carmen; Rodriguez Vieytes, Mercedes; Garcia Cabado, Ana; Vieites Baptista De Sousa, Juan Manuel; Botana, Luis Miguel
2003-04-01
Paralytic shellfish poisoning is one of the most severe forms of food poisoning. The toxins responsible for this type of poisoning are metabolic products of dinoflagellates, which block neuronal transmission by binding to the voltage-gated Na(+) channel. Accumulation of paralytic toxins in shellfish is an unpredictable phenomenon that necessitates the implementation of a widespread and thorough monitoring program for mollusk toxicity. All of these programs require periodical collection and analysis of a wide range of shellfish. Therefore, development of accurate analytical protocols for the rapid determination of toxicity levels would streamline this process. Our laboratory has developed a fluorimetric microplate bioassay that rapidly and specifically determines the presence of paralytic shellfish toxins in many seafood samples. This method is based on the pharmacological activity of toxins and involves several steps: (i) Incubation of excitable cells in 96 well microtiter plates with the fluorescent dye, bis-oxonol, the distribution of which across the membrane is potential-dependent. (ii) Cell depolarization with veratridine, a sodium channel-activating toxin. (iii) Dose-dependent inhibition of depolarization with saxitoxin or natural samples containing paralytic shellfish toxins. Measuring toxin-induced changes in membrane potential allowed for quantification and estimation of the toxic potency of the samples. This new approach offers significant advantages over classical methods and can be easily automated.
Staged anticonvulsant screening for chronic epilepsy.
Berdichevsky, Yevgeny; Saponjian, Yero; Park, Kyung-Il; Roach, Bonnie; Pouliot, Wendy; Lu, Kimberly; Swiercz, Waldemar; Dudek, F Edward; Staley, Kevin J
2016-12-01
Current anticonvulsant screening programs are based on seizures evoked in normal animals. One-third of epileptic patients do not respond to the anticonvulsants discovered with these models. We evaluated a tiered program based on chronic epilepsy and spontaneous seizures, with compounds advancing from high-throughput in vitro models to low-throughput in vivo models. Epileptogenesis in organotypic hippocampal slice cultures was quantified by lactate production and lactate dehydrogenase release into culture media as rapid assays for seizure-like activity and cell death, respectively. Compounds that reduced these biochemical measures were retested with in vitro electrophysiological confirmation (i.e., second stage). The third stage involved crossover testing in the kainate model of chronic epilepsy, with blinded analysis of spontaneous seizures after continuous electrographic recordings. We screened 407 compound-concentration combinations. The cyclooxygenase inhibitor, celecoxib, had no effect on seizures evoked in normal brain tissue but demonstrated robust antiseizure activity in all tested models of chronic epilepsy. The use of organotypic hippocampal cultures, where epileptogenesis occurs on a compressed time scale, and where seizure-like activity and seizure-induced cell death can be easily quantified with biomarker assays, allowed us to circumvent the throughput limitations of in vivo chronic epilepsy models. Ability to rapidly screen compounds in a chronic model of epilepsy allowed us to find an anticonvulsant that would be missed by screening in acute models.
Spontaneous apoptotic DNA fragmentation in cultured guinea pig gastric mucosal cells.
Tsutsumi, S; Rokutan, K; Tsuchiya, T; Mizushima, T
2000-02-01
The purpose of this study was to elucidate the mechanism of spontaneous and rapid cell death of cultured gastric pit cells. Gastric pit cells have a rapid cell turnover rate in vivo. We here show that guinea pig gastric pit cells in culture undergo spontaneous and rapid apoptotic DNA fragmentation, which may represent the rapid cell turnover cycle of gastric pit cells in vivo. This spontaneous apoptotic DNA fragmentation required the presence of fetal calf serum in the culture media. Furthermore, the spontaneous apoptotic DNA fragmentation was prevented by protein synthesis and caspase inhibitors.
Synthetic Immunology: Hacking Immune Cells to Expand Their Therapeutic Capabilities.
Roybal, Kole T; Lim, Wendell A
2017-04-26
The ability of immune cells to survey tissues and sense pathologic insults and deviations makes them a unique platform for interfacing with the body and disease. With the rapid advancement of synthetic biology, we can now engineer and equip immune cells with new sensors and controllable therapeutic response programs to sense and treat diseases that our natural immune system cannot normally handle. Here we review the current state of engineered immune cell therapeutics and their unique capabilities compared to small molecules and biologics. We then discuss how engineered immune cells are being designed to combat cancer, focusing on how new synthetic biology tools are providing potential ways to overcome the major roadblocks for treatment. Finally, we give a long-term vision for the use of synthetic biology to engineer immune cells as a general sensor-response platform to precisely detect disease, to remodel disease microenvironments, and to treat a potentially wide range of challenging diseases.
From egg to gastrula: How the cell cycle is remodeled during the Drosophila mid-blastula transition
Farrell, Jeffrey A.; O’Farrell, Patrick H.
2015-01-01
Many, if not most, embryos begin development with extremely short cell cycles that exhibit unusually rapid DNA replication and no gap phases. The commitment to the cell cycle in the early embryo appears to preclude many other cellular processes which only emerge as the cell cycle slows, at a major embryonic transition known as the mid-blastula transition (MBT) just prior to gastrulation. As reviewed here, genetic and molecular studies in Drosophila have identified changes that extend S phase and introduce a post-replicative gap phase, G2, to slow the cell cycle. While many mysteries remain about the upstream regulators of these changes, we review the core mechanisms of the change in cell cycle regulation and discuss advances in our understanding of how these might be timed and triggered. Finally, we consider how the elements of this program may be conserved or changed in other organisms. PMID:25195504
Synthetic Immunology: Hacking Immune Cells to Expand Their Therapeutic Capabilities
Roybal, Kole T.; Lim, Wendell A.
2017-01-01
The ability of immune cells to survey tissues and sense pathologic insults and deviations makes them a unique platform for interfacing with the body and disease. With the rapid advancement of synthetic biology, we can now engineer and equip immune cells with new sensors and controllable therapeutic response programs to sense and treat diseases that our natural immune system cannot normally handle. Here we review the current state of engineered immune cell therapeutics and their unique capabilities compared to small molecules and biologics. We then discuss how engineered immune cells are being designed to combat cancer, focusing on how new synthetic biology tools are providing potential ways to overcome the major roadblocks for treatment. Finally, we give a long-term vision for the use of synthetic biology to engineer immune cells as a general sensor-response platform to precisely detect disease, to remodel disease microenvironments, and to treat a potentially wide range of challenging diseases. PMID:28446063
BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells
Maes, Margaret E.; Schlamp, Cassandra L.; Nickells, Robert W.
2017-01-01
Retinal ganglion cell (RGC) death is the principal consequence of injury to the optic nerve. For several decades, we have understood that the RGC death process was executed by apoptosis, suggesting that there may be ways to therapeutically intervene in this cell death program and provide a more direct treatment to the cells and tissues affected in diseases like glaucoma. A major part of this endeavor has been to elucidate the molecular biological pathways active in RGCs from the point of axonal injury to the point of irreversible cell death. A major component of this process is the complex interaction of members of the BCL2 gene family. Three distinct family members of proteins orchestrate the most critical junction in the apoptotic program of RGCs, culminating in the activation of pro-apoptotic BAX. Once active, BAX causes irreparable damage to mitochondria, while precipitating downstream events that finish off a dying ganglion cell. This review is divided into two major parts. First, we summarize the extent of knowledge of how BCL2 gene family proteins interact to facilitate the activation and function of BAX. This area of investigation has rapidly changed over the last few years and has yielded a dramatically different mechanistic understanding of how the intrinsic apoptotic program is run in mammalian cells. Second, we provided a comprehensive analysis of nearly two decades of investigation of the role of BAX in the process of RGC death, much of which has provided many important insights into the overall pathophysiology of diseases like glaucoma. PMID:28064040
BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells.
Maes, Margaret E; Schlamp, Cassandra L; Nickells, Robert W
2017-03-01
Retinal ganglion cell (RGC) death is the principal consequence of injury to the optic nerve. For several decades, we have understood that the RGC death process was executed by apoptosis, suggesting that there may be ways to therapeutically intervene in this cell death program and provide a more direct treatment to the cells and tissues affected in diseases like glaucoma. A major part of this endeavor has been to elucidate the molecular biological pathways active in RGCs from the point of axonal injury to the point of irreversible cell death. A major component of this process is the complex interaction of members of the BCL2 gene family. Three distinct family members of proteins orchestrate the most critical junction in the apoptotic program of RGCs, culminating in the activation of pro-apoptotic BAX. Once active, BAX causes irreparable damage to mitochondria, while precipitating downstream events that finish off a dying ganglion cell. This review is divided into two major parts. First, we summarize the extent of knowledge of how BCL2 gene family proteins interact to facilitate the activation and function of BAX. This area of investigation has rapidly changed over the last few years and has yielded a dramatically different mechanistic understanding of how the intrinsic apoptotic program is run in mammalian cells. Second, we provided a comprehensive analysis of nearly two decades of investigation of the role of BAX in the process of RGC death, much of which has provided many important insights into the overall pathophysiology of diseases like glaucoma. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Zhaoyang; Chen, Niancao; Li, Shihui; Battig, Mark R; Wang, Yong
2012-09-26
The ability to regulate cell-material interactions is important in various applications such as regenerative medicine and cell separation. This study successfully demonstrates that the binding states of cells on a hydrogel surface can be programmed by using hybridized aptamers and triggering complementary sequences (CSs). In the absence of the triggering CSs, the aptamers exhibit a stable, hybridized state in the hydrogel for cell-type-specific catch. In the presence of the triggering CSs, the aptamers are transformed into a new hybridized state that leads to the rapid dissociation of the aptamers from the hydrogel. As a result, the cells are released from the hydrogel. The entire procedure of cell catch and release during the transformation of the aptamers is biocompatible and does not involve any factor destructive to either the cells or the hydrogel. Thus, the programmable hydrogel is regenerable and can be applied to a new round of cell catch and release when needed.
Role of PD-1 during effector CD8 T cell differentiation.
Ahn, Eunseon; Araki, Koichi; Hashimoto, Masao; Li, Weiyan; Riley, James L; Cheung, Jeanne; Sharpe, Arlene H; Freeman, Gordon J; Irving, Bryan A; Ahmed, Rafi
2018-05-01
PD-1 (programmed cell death-1) is the central inhibitory receptor regulating CD8 T cell exhaustion during chronic viral infection and cancer. Interestingly, PD-1 is also expressed transiently by activated CD8 T cells during acute viral infection, but the role of PD-1 in modulating T cell effector differentiation and function is not well defined. To address this question, we examined the expression kinetics and role of PD-1 during acute lymphocytic choriomeningitis virus (LCMV) infection of mice. PD-1 was rapidly up-regulated in vivo upon activation of naive virus-specific CD8 T cells within 24 h after LCMV infection and in less than 4 h after peptide injection, well before any cell division had occurred. This rapid PD-1 expression by CD8 T cells was driven predominantly by antigen receptor signaling since infection with a LCMV strain with a mutation in the CD8 T cell epitope did not result in the increase of PD-1 on antigen-specific CD8 T cells. Blockade of the PD-1 pathway using anti-PD-L1 or anti-PD-1 antibodies during the early phase of acute LCMV infection increased mTOR signaling and granzyme B expression in virus-specific CD8 T cells and resulted in faster clearance of the infection. These results show that PD-1 plays an inhibitory role during the naive-to-effector CD8 T cell transition and that the PD-1 pathway can also be modulated at this stage of T cell differentiation. These findings have implications for developing therapeutic vaccination strategies in combination with PD-1 blockade.
Su, Hsin-Yuan; Waldron, Richard T.; Gong, Raymond; Ramanujan, V. Krishnan; Pandol, Stephen J.; Lugea, Aurelia
2016-01-01
Activated pancreatic stellate cells (PaSC) are key participants in the stroma of pancreatic cancer, secreting extracellular matrix proteins and inflammatory mediators. Tumors are poorly vascularized, creating metabolic stress conditions in cancer and stromal cells that necessitate adaptive homeostatic cellular programs. Activation of autophagy and the endoplasmic reticulum unfolded protein response (UPR) have been described in hepatic stellate cells, but the role of these processes in PaSC responses to metabolic stress is unknown. We reported that the PI3K/mTOR pathway, which AMPK can regulate through multiple inputs, modulates PaSC activation and fibrogenic potential. Here, using primary and immortalized mouse PaSC, we assess the relative contributions of AMPK/mTOR signaling, autophagy and the UPR to cell fate responses during metabolic stress induced by mitochondrial dysfunction. The mitochondrial uncoupler rottlerin at low doses (0.5–2.5 μM) was added to cells cultured in 10% FBS complete media. Mitochondria rapidly depolarized, followed by altered mitochondrial dynamics and decreased cellular ATP levels. This mitochondrial dysfunction elicited rapid, sustained AMPK activation, mTOR pathway inhibition, and blockade of autophagic flux. Rottlerin treatment also induced rapid, sustained PERK/CHOP UPR signaling. Subsequently, high doses (>5 μM) induced loss of cell viability and cell death. Interestingly, AMPK knock-down using siRNA did not prevent rottlerin-induced mTOR inhibition, autophagy, or CHOP upregulation, suggesting that AMPK is dispensable for these responses. Moreover, CHOP genetic deletion, but not AMPK knock-down, prevented rottlerin-induced apoptosis and supported cell survival, suggesting that UPR signaling is a major modulator of cell fate in PaSC during metabolic stress. Further, short-term rottlerin treatment reduced both PaSC fibrogenic potential and IL-6 mRNA expression. In contrast, expression levels of the angiogenic factors HGF and VEGFα were unaffected, and the immune modulator IL-4 was markedly upregulated. These data imply that metabolic stress-induced PaSC reprogramming differentially modulates neighboring cells in the tumor microenvironment. PMID:26849807
Apoptosis is rapidly triggered by antisense depletion of MCL-1 in differentiating U937 cells.
Moulding, D A; Giles, R V; Spiller, D G; White, M R; Tidd, D M; Edwards, S W
2000-09-01
Mcl-1 is a member of the Bcl-2 protein family, which has been shown to delay apoptosis in transfection and/or overexpression experiments. As yet no gene knockout mice have been engineered, and so there is little evidence to show that loss of Mcl-1 expression is sufficient to trigger apoptosis. U937 cells constitutively express the antiapoptotic protein Bcl-2; but during differentiation, in response to the phorbol ester PMA (phorbol 12 beta-myristate 13 alpha-acetate), Mcl-1 is transiently induced. The purpose of this investigation was to determine the functional role played by Mcl-1 in this differentiation program. Mcl-1 expression was specifically disrupted by chimeric methylphosphonate/phosphodiester antisense oligodeoxynucleotides to just 5% of control levels. The depletion of Mcl-1 messenger RNA (mRNA) and protein was both rapid and specific, as indicated by the use of control oligodeoxynucleotides and analysis of the expression of other BCL2 family members and PMA-induced tumor necrosis factor-alpha (TNF-alpha). Specific depletion of Mcl-1 mRNA and protein, in the absence of changes in cellular levels of Bcl-2, results in a rapid entry into apoptosis. Levels of the proapoptotic protein Bax remained unchanged during differentiation, while Bak expression doubled within 24 hours. Apoptosis was detected within 4 hours of Mcl-1 antisense treatment by a variety of parameters including a novel live cell imaging technique allowing correlation of antisense treatment and apoptosis in individual cells. The induction of Mcl-1 is required to prevent apoptosis during differentiation of U937 cells, and the constitutive expression of Bcl-2 is unable to compensate for the loss of Mcl-1. (Blood. 2000;96:1756-1763)
Signature program: a platform of basket trials.
Slosberg, Eric D; Kang, Barinder P; Peguero, Julio; Taylor, Matthew; Bauer, Todd M; Berry, Donald A; Braiteh, Fadi; Spira, Alexander; Meric-Bernstam, Funda; Stein, Steven; Piha-Paul, Sarina A; Salvado, August
2018-04-20
Investigating targeted therapies can be challenging due to diverse tumor mutations and slow patient accrual for clinical studies. The Signature Program is a series of 8 phase 2, agent-specific basket protocols using a rapid study start-up approach involving no predetermined study sites. Each protocol evaluated 1 agent (buparlisib, dovitinib, binimetinib, encorafenib, sonidegib, BGJ398, ceritinib, or ribociclib) in patients with solid or hematologic malignancies and an actionable mutation. The primary endpoint of each study was the clinical benefit rate (ie, complete or partial response, or stable disease) at 16 weeks. A total of 192 individual sites were opened in the United States, with a median start-up time of 3.6 weeks. The most common tumor types among the 595 treated patients were colorectal (9.2%), non-small cell lung adenocarcinoma (9.1%), and ovarian (8.4%). Frequent genetic alterations were in PIK3CA , RAS , p16 , and PTEN . Overall, 30 partial or complete responses were observed with 6 compounds in 16 tumor types. The Signature Program presents a unique and successful approach for rapid signal finding across multiple tumors and allowed various agents to be evaluated in patients with rare alterations. Incorporating these program features in conventional studies could lead to improved trial efficiencies and patient outcomes.
Signature program: a platform of basket trials
Peguero, Julio; Taylor, Matthew; Bauer, Todd M.; Berry, Donald A.; Braiteh, Fadi; Spira, Alexander; Meric-Bernstam, Funda; Stein, Steven; Piha-Paul, Sarina A.; Salvado, August
2018-01-01
Investigating targeted therapies can be challenging due to diverse tumor mutations and slow patient accrual for clinical studies. The Signature Program is a series of 8 phase 2, agent-specific basket protocols using a rapid study start-up approach involving no predetermined study sites. Each protocol evaluated 1 agent (buparlisib, dovitinib, binimetinib, encorafenib, sonidegib, BGJ398, ceritinib, or ribociclib) in patients with solid or hematologic malignancies and an actionable mutation. The primary endpoint of each study was the clinical benefit rate (ie, complete or partial response, or stable disease) at 16 weeks. A total of 192 individual sites were opened in the United States, with a median start-up time of 3.6 weeks. The most common tumor types among the 595 treated patients were colorectal (9.2%), non-small cell lung adenocarcinoma (9.1%), and ovarian (8.4%). Frequent genetic alterations were in PIK3CA, RAS, p16, and PTEN. Overall, 30 partial or complete responses were observed with 6 compounds in 16 tumor types. The Signature Program presents a unique and successful approach for rapid signal finding across multiple tumors and allowed various agents to be evaluated in patients with rare alterations. Incorporating these program features in conventional studies could lead to improved trial efficiencies and patient outcomes. PMID:29765547
Effector CD8 T cells dedifferentiate into long-lived memory cells.
Youngblood, Ben; Hale, J Scott; Kissick, Haydn T; Ahn, Eunseon; Xu, Xiaojin; Wieland, Andreas; Araki, Koichi; West, Erin E; Ghoneim, Hazem E; Fan, Yiping; Dogra, Pranay; Davis, Carl W; Konieczny, Bogumila T; Antia, Rustom; Cheng, Xiaodong; Ahmed, Rafi
2017-12-21
Memory CD8 T cells that circulate in the blood and are present in lymphoid organs are an essential component of long-lived T cell immunity. These memory CD8 T cells remain poised to rapidly elaborate effector functions upon re-exposure to pathogens, but also have many properties in common with naive cells, including pluripotency and the ability to migrate to the lymph nodes and spleen. Thus, memory cells embody features of both naive and effector cells, fuelling a long-standing debate centred on whether memory T cells develop from effector cells or directly from naive cells. Here we show that long-lived memory CD8 T cells are derived from a subset of effector T cells through a process of dedifferentiation. To assess the developmental origin of memory CD8 T cells, we investigated changes in DNA methylation programming at naive and effector cell-associated genes in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection in mice. Methylation profiling of terminal effector versus memory-precursor CD8 T cell subsets showed that, rather than retaining a naive epigenetic state, the subset of cells that gives rise to memory cells acquired de novo DNA methylation programs at naive-associated genes and became demethylated at the loci of classically defined effector molecules. Conditional deletion of the de novo methyltransferase Dnmt3a at an early stage of effector differentiation resulted in reduced methylation and faster re-expression of naive-associated genes, thereby accelerating the development of memory cells. Longitudinal phenotypic and epigenetic characterization of the memory-precursor effector subset of virus-specific CD8 T cells transferred into antigen-free mice revealed that differentiation to memory cells was coupled to erasure of de novo methylation programs and re-expression of naive-associated genes. Thus, epigenetic repression of naive-associated genes in effector CD8 T cells can be reversed in cells that develop into long-lived memory CD8 T cells while key effector genes remain demethylated, demonstrating that memory T cells arise from a subset of fate-permissive effector T cells.
Raman spectroscopic studies on exfoliated cells of oral and cervix
NASA Astrophysics Data System (ADS)
Hole, Arti; Sahu, Aditi; Shaikh, Rubina; Tyagi, Gunjan; Murali Krishna, C.
2018-01-01
Visual inspection followed by biopsy is the standard procedure for cancer diagnosis. Due to invasive nature of the current diagnostic methods, patients are often non-compliant. Hence, it is necessary to explore less invasive and rapid methods for early detection. Exfoliative cytology is a simple, rapid, and less invasive technique. It is thus well accepted by patients and is suitable for routine applications in population screening programs. Raman spectroscopy (RS) has been increasingly explored for disease diagnosis in the recent past. In vivo RS has previously shown promise in management of both oral and cervix cancers. In vivo applications require on-site instrumentation and stringent experimental conditions. Hence, RS of less invasive samples like exfoliated cells has been explored, as this facilitates collection at multiple screening centers followed by analysis at a centralized facility. In the present study, efficacy of Raman spectroscopy in classification of 15 normal and 29 abnormal oral exfoliated cells specimens and 28 normal and 38 abnormal cervix specimens were explored. Spectra were acquired by Raman microprobe (HE 785, Horiba-Jobin-Yvon, France) from several areas to span the pellet. Spectral acquisition parameters were: microscopic objective: 40X, power: 40 mW, acquisition time: 15 s and average: 3. PCA and PC-LDA of pre-processed spectra was carried out on a 4-model system of normal and tumor of both cervix and oral specimens. Leave-one-out-cross-validation findings indicate 73 % correct classification. Findings suggest RS of exfoliated cells may serve as a patient-friendly, non-invasive, rapid and objective method for management of cervix and oral cancers.
Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. [Corrected].
Wu, Liang; Chen, Huan; Curtis, Chad; Fu, Zheng Qing
2014-01-01
Plant resistance (R) proteins perceive specific pathogen effectors from diverse plant pathogens to initiate defense responses, designated effector-triggered immunity (ETI). Plant R proteins are mostly nucleotide binding-leucine rich repeat (NB-LRR) proteins, which recognize pathogen effectors directly or indirectly through sophisticated mechanisms. Upon activation by effector proteins, R proteins elicit robust defense responses, including a rapid burst of reactive oxygen species (ROS), induced biosynthesis and accumulation of salicylic acid (SA), a rapid programmed cell death (PCD) called hypersensitive response (HR) at the infection sites, and increased expression of pathogenesis-related (PR) genes. Initiation of ETI is correlated with a complex network of defense signaling pathways, resulting in defensive cellular responses and large-scale transcriptional reprogramming events. In this review, we highlight important recent advances on the recognition of effectors, regulation and activation of plant R proteins, dynamic intracellular trafficking of R proteins, induction of cell death, and transcriptional reprogramming associated with ETI. Current knowledge gaps and future research directions are also discussed in this review.
Wu, Liang; Chen, Huan; Curtis, Chad; Fu, Zheng Qing
2014-01-01
Plant resistance (R) proteins perceive specific pathogen effectors from diverse plant pathogens to initiate defense responses, designated effector-triggered immunity (ETI). Plant R proteins are mostly nucleotide binding-leucine rich repeat (NB-LRR) proteins, which recognize pathogen effectors directly or indirectly through sophisticated mechanisms. Upon activation by effector proteins, R proteins elicit robust defense responses, including a rapid burst of reactive oxygen species (ROS), induced biosynthesis and accumulation of salicylic acid (SA), a rapid programmed cell death (PCD) called hypersensitive response (HR) at the infection sites, and increased expression of pathogenesis-related (PR) genes. Initiation of ETI is correlated with a complex network of defense signaling pathways, resulting in defensive cellular responses and large-scale transcriptional reprogramming events. In this review, we highlight important recent advances on the recognition of effectors, regulation and activation of plant R proteins, dynamic intracellular trafficking of R proteins, induction of cell death, and transcriptional reprogramming associated with ETI. Current knowledge gaps and future research directions are also discussed in this review. PMID:25513772
Haby, Michelle M; Chapman, Evelina; Clark, Rachel; Barreto, Jorge; Reveiz, Ludovic; Lavis, John N
2016-08-18
The objective of this work was to inform the design of a rapid response program to support evidence-informed decision-making in health policy and practice for the Americas region. Specifically, we focus on the following: (1) What are the best methodological approaches for rapid reviews of the research evidence? (2) What other strategies are needed to facilitate evidence-informed decision-making in health policy and practice? and (3) How best to operationalize a rapid response program? The evidence used to inform the design of a rapid response program included (i) two rapid reviews of methodological approaches for rapid reviews of the research evidence and strategies to facilitate evidence-informed decision-making, (ii) supplementary literature in relation to the "shortcuts" that could be considered to reduce the time needed to complete rapid reviews, (iii) four case studies, and (iv) supplementary literature to identify additional operational issues for the design of the program. There is no agreed definition of rapid reviews in the literature and no agreed methodology for conducting them. Better reporting of rapid review methods is needed. The literature found in relation to shortcuts will be helpful in choosing shortcuts that maximize timeliness while minimizing the impact on quality. Evidence for other strategies that can be used concurrently to facilitate the uptake of research evidence, including evidence drawn from rapid reviews, is presented. Operational issues that need to be considered in designing a rapid response program include the implications of a "user-pays" model, the importance of recruiting staff with the right mix of skills and qualifications, and ensuring that the impact of the model on research use in decision-making is formally evaluated. When designing a new rapid response program, greater attention needs to be given to specifying the rapid review methods and reporting these in sufficient detail to allow a quality assessment. It will also be important to engage in other strategies to facilitate the uptake of the rapid reviews and to evaluate the chosen model in order to make refinements and add to the evidence base for evidence-informed decision-making.
Run-Time Support for Rapid Prototyping
1988-12-01
prototyping. One such system is the Computer-Aided Proto- typing System (CAPS). It combines rapid prototypng with automatic program generation. Some of the...a design database, and a design management system [Ref. 3:p. 66. By using both rapid prototyping and automatic program genera- tion. CAPS will be...Most proto- typing systems perform these functions. CAPS is different in that it combines rapid prototyping with a variant of automatic program
2011-01-01
Background The finding of human umbilical cord blood as one of the most likely sources of hematopoietic stem cells offers a less invasive alternative for the need of hematopoietic stem cell transplantation. Due to the once-in-a-life time chance of collecting it, an optimum cryopreservation method that can preserve the life and function of the cells contained is critically needed. Methods Until now, slow-cooling has been the routine method of cryopreservation; however, rapid-cooling offers a simple, efficient, and harmless method for preserving the life and function of the desired cells. Therefore, this study was conducted to compare the effectiveness of slow- and rapid-cooling to preserve umbilical cord blood of mononucleated cells suspected of containing hematopoietic stem cells. The parameters used in this study were differences in cell viability, malondialdehyde content, and apoptosis level. The identification of hematopoietic stem cells themselves was carried out by enumerating CD34+ in a flow cytometer. Results Our results showed that mononucleated cell viability after rapid-cooling (91.9%) was significantly higher than that after slow-cooling (75.5%), with a p value = 0.003. Interestingly, the malondialdehyde level in the mononucleated cell population after rapid-cooling (56.45 μM) was also significantly higher than that after slow-cooling (33.25 μM), with a p value < 0.001. The apoptosis level in rapid-cooling population (5.18%) was not significantly different from that of the mononucleated cell population that underwent slow-cooling (3.81%), with a p value = 0.138. However, CD34+ enumeration was much higher in the population that underwent slow-cooling (23.32 cell/μl) than in the one that underwent rapid-cooling (2.47 cell/μl), with a p value = 0.001. Conclusions Rapid-cooling is a potential cryopreservation method to be used to preserve the umbilical cord blood of mononucleated cells, although further optimization of the number of CD34+ cells after rapid-cooling is critically needed. PMID:21943045
Forward Technology Solar Cell Experiment First On-Orbit Data
NASA Technical Reports Server (NTRS)
Walters, R. J.; Garner, J. C.; Lam, S. N.; Vazquez, J. A.; Braun, W. R.; Ruth, R. E.; Warner, J. H.; Lorentzen, J. R.; Messenger, S. R.; Bruninga, R.;
2007-01-01
This paper presents first on orbit measured data from the Forward Technology Solar Cell Experiment (FTSCE). FTSCE is a space experiment housed within the 5th Materials on the International Space Station Experiment (MISSE-5). MISSE-5 was launched aboard the Shuttle return to flight mission (STS-114) on July 26, 2005 and deployed on the exterior of the International Space Station (ISS). The experiment will remain in orbit for nominally one year, after which it will be returned to Earth for post-flight testing and analysis. While on orbit, the experiment is designed to measure a 36 point current vs. voltage (IV) curve on each of the experimental solar cells, and the data is continuously telemetered to Earth. The experiment also measures the solar cell temperature and the orientation of the solar cells to the sun. A range of solar cell technologies are included in the experiment including state-of-the-art triple junction InGaP/GaAs/Ge solar cells from several vendors, thin film amorphous Si and CuIn(Ga)Se2 cells, and next-generation technologies like single-junction GaAs cells grown on Si wafers and metamorphic InGaP/InGaAs/Ge triple-junction cells. In addition to FTSCE, MISSE-5 also contains a Thin-Film Materials experiment. This is a passive experiment that will provide data on the effect of the space environment on more than 200 different materials. FTSCE was initially conceived in response to various on-orbit and ground test anomalies associated with space power systems. The Department of Defense (DoD) required a method of rapidly obtaining on orbit validation data for new space solar cell technologies, and NRL was tasked to devise an experiment to meet this requirement. Rapid access to space was provided by the MISSE Program which is a NASA Langley Research Center program. MISSE-5 is a completely self-contained experiment system with its own power generation and storage system and communications system. The communications system, referred to as PCSat, transmits and receives in the Amateur Radio band providing a node on the Amateur Radio Satellite Service. This paper presents an overview of the various aspects of MISSE-5 and a sample of the first measured on orbit data.
Impaired osteoblast differentiation in Annexin A2- and -A5-deficient cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genetos, Damian C.; Wong, Alice; Weber, Thomas J.
Annexins are a class of calcium-binding proteins with diverse functions in the regulation of lipid rafts inflammation,fibrinolysis, transcriptional programming and ion transport. Within bone, they are well-characterized as components of mineralizing matrix vesicles, although little else is known as to their function during osteogenesis. We generated annexin A2 (AnxA2)- or annexin A5 (AnxA5)-knockdown pre-osteoblasts, and asked whether proliferation or osteogenic differentiation was altered in knockdown cells, compared to vector controls. We report that DNA content, a marker of proliferation, was significantly reduced in both AnxA2 and AnxA5 knockdown cells. Alkaline phosphatase expression and staining activity were also suppressed in AnxA2-more » or AnxA5-knockdown after 14 days of culture. The pattern of osteogenic gene expression was altered in knockdown cells, with Col1a1 expressed more rapidly in knock-down cells, compared to controls. In contrast, Runx2, Ibsp, and Bglap all revealed decreased expression after 14 days of culture. Using a murine fracture model, we demonstrate that AnxA2 and AnxA5 are rapidly expressed within the fracture callus. These data demonstrate that AnxA2 and AnxA5 can influence bone formation via regulation of osteoprogenitor proliferation and differentiation in addition to their well-studied function in matrix vesicles.« less
The endomembrane requirement for cell surface repair
NASA Technical Reports Server (NTRS)
McNeil, Paul L.; Miyake, Katsuya; Vogel, Steven S.
2003-01-01
The capacity to reseal a plasma membrane disruption rapidly is required for cell survival in many physiological environments. Intracellular membrane (endomembrane) is thought to play a central role in the rapid resealing response. We here directly compare the resealing response of a cell that lacks endomembrane, the red blood cell, with that of several nucleated cells possessing an abundant endomembrane compartment. RBC membrane disruptions inflicted by a mode-locked Ti:sapphire laser, even those initially smaller than hemoglobin, failed to reseal rapidly. By contrast, much larger laser-induced disruptions made in sea urchin eggs, fibroblasts, and neurons exhibited rapid, Ca(2+)-dependent resealing. We conclude that rapid resealing is not mediated by simple physiochemical mechanisms; endomembrane is required.
$ANBA; a rapid, combined data acquisition and correction program for the SEMQ electron microprobe
McGee, James J.
1983-01-01
$ANBA is a program developed for rapid data acquisition and correction on an automated SEMQ electron microprobe. The program provides increased analytical speed and reduced disk read/write operations compared with the manufacturer's software, resulting in a doubling of analytical throughput. In addition, the program provides enhanced analytical features such as averaging, rapid and compact data storage, and on-line plotting. The program is described with design philosophy, flow charts, variable names, a complete program listing, and system requirements. A complete operating example and notes to assist in running the program are included.
Bauer, Johann; Bussen, Markus; Wise, Petra; Wehland, Markus; Schneider, Sabine; Grimm, Daniela
2016-07-01
More than one hundred reports were published about the characterization of cells from malignant and healthy tissues, as well as of endothelial cells and stem cells exposed to microgravity conditions. We retrieved publications about microgravity related studies on each type of cells, extracted the proteins mentioned therein and analyzed them aiming to identify biological processes affected by microgravity culture conditions. The analysis revealed 66 different biological processes, 19 of them were always detected when papers about the four types of cells were analyzed. Since a response to the removal of gravity is common to the different cell types, some of the 19 biological processes could play a role in cellular adaption to microgravity. Applying computer programs, to extract and analyze proteins and genes mentioned in publications becomes essential for scientists interested to get an overview of the rapidly growing fields of gravitational biology and space medicine.
Breakdown of middle lamella pectin by (●) OH during rapid abscission in Azolla.
Yamada, Yoshiya; Koibuchi, Mizuki; Miyamoto, Kensuke; Ueda, Junichi; Uheda, Eiji
2015-08-01
Azolla, a small water fern, abscises its roots and branches within 30 min upon treatment with various stresses. This study was conducted to test whether, in the rapid abscission that occurs in Azolla, breakdown of wall components of abscission zone cells by (●) OH is involved. Experimentally generated (●) OH caused the rapid separation of abscission zone cells from detached roots and the rapid shedding of roots from whole plants. Electron microscopic observations revealed that (●) OH rapidly and selectively dissolved a well-developed middle lamella between abscission zone cells and resultantly caused rapid cell separation and shedding. Treatment of abscission zones of Impatiens leaf petiole with (●) OH also accelerated the separation of abscission zone cells. However, compared with that of Azolla roots, accelerative effects in Impatiens were weak. A large amount of (●) OH was cytochemically detected in abscission zone cells both of Azolla roots and of Impatiens leaf petioles. These results suggest that (●) OH is involved in the cell separation process not only in the rapid abscission in Azolla but also in the abscission of Impatiens. However, for rapid abscission to occur, a well-developed middle lamella, a unique structure, which is sensitive to the attack of (●) OH, might be needed. © 2015 John Wiley & Sons Ltd.
Ross, James D.; Cullen, D. Kacy; Harris, James P.; LaPlaca, Michelle C.; DeWeerth, Stephen P.
2015-01-01
Three-dimensional (3-D) image analysis techniques provide a powerful means to rapidly and accurately assess complex morphological and functional interactions between neural cells. Current software-based identification methods of neural cells generally fall into two applications: (1) segmentation of cell nuclei in high-density constructs or (2) tracing of cell neurites in single cell investigations. We have developed novel methodologies to permit the systematic identification of populations of neuronal somata possessing rich morphological detail and dense neurite arborization throughout thick tissue or 3-D in vitro constructs. The image analysis incorporates several novel automated features for the discrimination of neurites and somata by initially classifying features in 2-D and merging these classifications into 3-D objects; the 3-D reconstructions automatically identify and adjust for over and under segmentation errors. Additionally, the platform provides for software-assisted error corrections to further minimize error. These features attain very accurate cell boundary identifications to handle a wide range of morphological complexities. We validated these tools using confocal z-stacks from thick 3-D neural constructs where neuronal somata had varying degrees of neurite arborization and complexity, achieving an accuracy of ≥95%. We demonstrated the robustness of these algorithms in a more complex arena through the automated segmentation of neural cells in ex vivo brain slices. These novel methods surpass previous techniques by improving the robustness and accuracy by: (1) the ability to process neurites and somata, (2) bidirectional segmentation correction, and (3) validation via software-assisted user input. This 3-D image analysis platform provides valuable tools for the unbiased analysis of neural tissue or tissue surrogates within a 3-D context, appropriate for the study of multi-dimensional cell-cell and cell-extracellular matrix interactions. PMID:26257609
Dictyostelium discoideum mutants with temperature-sensitive defects in endocytosis
1994-01-01
We have isolated and characterized temperature-sensitive endocytosis mutants in Dictyostelium discoideum. Dictyostelium is an attractive model for genetic studies of endocytosis because of its high rates of endocytosis, its reliance on endocytosis for nutrient uptake, and tractable molecular genetics. Endocytosis-defective mutants were isolated by a fluorescence-activated cell sorting (FACS) as cells unable to take up a fluorescent marker. One temperature-sensitive mutant (indy1) was characterized in detail and found to exhibit a complete block in fluid phase endocytosis at the restrictive temperature, but normal rates of endocytosis at the permissive temperature. Likewise, a potential cell surface receptor that was rapidly internalized in wild-type cells and indy1 cells at the permissive temperature was poorly internalized in indy1 under restrictive conditions. Growth was also completely arrested at the restrictive temperature. The endocytosis block was rapidly induced upon shift to the restrictive temperature and reversed upon return to normal conditions. Inhibition of endocytosis was also specific, as other membrane-trafficking events such as phagocytosis, secretion of lysosomal enzymes, and contractile vacuole function were unaffected at the restrictive temperature. Because recycling and transport to late endocytic compartments were not affected, the site of the defect's action is probably at an early step in the endocytic pathway. Additionally, indy1 cells were unable to proceed through the normal development program at the restrictive temperature. Given the tight functional and growth phenotypes, the indy1 mutant provides an opportunity to isolate genes responsible for endocytosis in Dictyostelium by complementation cloning. PMID:7929583
Off and back-on again: a tumor suppressor's tale.
Acosta, Jonuelle; Wang, Walter; Feldser, David M
2018-06-01
Tumor suppressor genes play critical roles orchestrating anti-cancer programs that are both context dependent and mechanistically diverse. Beyond canonical tumor suppressive programs that control cell division, cell death, and genome stability, unexpected tumor suppressor gene activities that regulate metabolism, immune surveillance, the epigenetic landscape, and others have recently emerged. This diversity underscores the important roles these genes play in maintaining cellular homeostasis to suppress cancer initiation and progression, but also highlights a tremendous challenge in discerning precise context-specific programs of tumor suppression controlled by a given tumor suppressor. Fortunately, the rapid sophistication of genetically engineered mouse models of cancer has begun to shed light on these context-dependent tumor suppressor activities. By using techniques that not only toggle "off" tumor suppressor genes in nascent tumors, but also facilitate the timely restoration of gene function "back-on again" in disease specific contexts, precise mechanisms of tumor suppression can be revealed in an unbiased manner. This review discusses the development and implementation of genetic systems designed to toggle tumor suppressor genes off and back-on again and their potential to uncover the tumor suppressor's tale.
Wang, Hao; Liu, Kan; Chen, Kuan-Ju; Lu, Yujie; Wang, Shutao; Lin, Wei-Yu; Guo, Feng; Kamei, Ken-ichiro; Chen, Yi-Chun; Ohashi, Minori; Wang, Mingwei; Garcia, Mitch André; Zhao, Xing-Zhong; Shen, Clifton K.-F.; Tseng, Hsian-Rong
2010-01-01
Nanoparticles are regarded as promising transfection reagents for effective and safe delivery of nucleic acids into specific type of cells or tissues providing an alternative manipulation/therapy strategy to viral gene delivery. However, the current process of searching novel delivery materials is limited due to conventional low-throughput and time-consuming multistep synthetic approaches. Additionally, conventional approaches are frequently accompanied with unpredictability and continual optimization refinements, impeding flexible generation of material diversity creating a major obstacle to achieving high transfection performance. Here we have demonstrated a rapid developmental pathway toward highly efficient gene delivery systems by leveraging the powers of a supramolecular synthetic approach and a custom-designed digital microreactor. Using the digital microreactor, broad structural/functional diversity can be programmed into a library of DNA-encapsulated supramolecular nanoparticles (DNA⊂SNPs) by systematically altering the mixing ratios of molecular building blocks and a DNA plasmid. In vitro transfection studies with DNA⊂SNPs library identified the DNA⊂SNPs with the highest gene transfection efficiency, which can be attributed to cooperative effects of structures and surface chemistry of DNA⊂SNPs. We envision such a rapid developmental pathway can be adopted for generating nanoparticle-based vectors for delivery of a variety of loads. PMID:20925389
Serrano, Irene; Romero-Puertas, María C.; Rodríguez-Serrano, María; Sandalio, Luisa M.; Olmedilla, Adela
2012-01-01
Programmed cell death (PCD) has been found to be induced after pollination both in papillar cells and in self-incompatible pollen in the olive (Olea europaea L.). Reactive oxygen species (ROS) and nitric oxide (NO) are known to be produced in the pistil and pollen during pollination but their contribution to PCD has so far remained elusive. The possible role of ROS and NO was investigated in olive pollen–pistil interaction during free and controlled pollination and it was found that bidirectional interaction appears to exist between the pollen and the stigma, which seems to regulate ROS and NO production. Biochemical evidence strongly suggesting that both O2˙− and NO are essential for triggering PCD in self-incompatibility processes was also obtained. It was observed for the first time that peroxynitrite, a powerful oxidizing and nitrating agent generated during a rapid reaction between O2˙− and NO, is produced during pollination and that this is related to an increase in protein nitration which, in turn, is strongly associated with PCD. It may be concluded that peroxynitrite mediates PCD during pollen–pistil interaction in Olea europaea L. both in self-incompatible pollen and papillar cells. PMID:22140239
Mammalian Synthetic Biology: Engineering Biological Systems.
Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A
2017-06-21
The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.
Fundamentals of rapid injection molding for microfluidic cell-based assays.
Lee, Ulri N; Su, Xiaojing; Guckenberger, David J; Dostie, Ashley M; Zhang, Tianzi; Berthier, Erwin; Theberge, Ashleigh B
2018-01-30
Microscale cell-based assays have demonstrated unique capabilities in reproducing important cellular behaviors for diagnostics and basic biological research. As these assays move beyond the prototyping stage and into biological and clinical research environments, there is a need to produce microscale culture platforms more rapidly, cost-effectively, and reproducibly. 'Rapid' injection molding is poised to meet this need as it enables some of the benefits of traditional high volume injection molding at a fraction of the cost. However, rapid injection molding has limitations due to the material and methods used for mold fabrication. Here, we characterize advantages and limitations of rapid injection molding for microfluidic device fabrication through measurement of key features for cell culture applications including channel geometry, feature consistency, floor thickness, and surface polishing. We demonstrate phase contrast and fluorescence imaging of cells grown in rapid injection molded devices and provide design recommendations to successfully utilize rapid injection molding methods for microscale cell-based assay development in academic laboratory settings.
Cheng, Dan-Dan; Jia, Yu-Jiao; Gao, Hui-Yuan; Zhang, Li-Tao; Zhang, Zi-Shan; Xue, Zhong-Cai; Meng, Qing-Wei
2011-02-01
Alternaria alternata has received considerable attention in current literature and most of the studies are focused on its pathogenic effects on plant chloroplasts, but little is known about the characteristics of programmed cell death (PCD) induced by metabolic products (MP) of A. alternata, the effects of the MP on mitochondrial respiration and its relation to PCD. The purpose of this study was to explore the mechanism of MP-induced PCD in non-green tobacco BY-2 cells and to explore the role of mitochondrial inhibitory processes in the PCD of tobacco BY-2 cells. MP treatment led to significant cell death that was proven to be PCD by the concurrent cytoplasm shrinkage, chromatin condensation and DNA laddering observed in the cells. Moreover, MP treatment resulted in the overproduction of reactive oxygen species (ROS), rapid ATP depletion and a respiratory decline in the tobacco BY-2 cells. It was concluded that the direct inhibition of the mitochondrial electron transport chain (ETC), alternative pathway (AOX) capacity and catalase (CAT) activity by the MP might be the main contributors to the MP-induced ROS burst observed in tobacco BY-2 cells. The addition of adenosine together with the MP significantly inhibited ATP depletion without preventing PCD; however, when the cells were treated with the MP plus CAT, ROS overproduction was blocked and PCD did not occur. The data presented here demonstrate that the ROS burst played an important role in MP-induced PCD in the tobacco BY-2 cells.
Apoptosis-Like Death in Bacteria Induced by HAMLET, a Human Milk Lipid-Protein Complex
Hakansson, Anders P.; Roche-Hakansson, Hazeline; Mossberg, Ann-Kristin; Svanborg, Catharina
2011-01-01
Background Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. Methodology/Principal Findings We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death. Conclusions/Significance Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells. PMID:21423701
Apoptosis-like death in bacteria induced by HAMLET, a human milk lipid-protein complex.
Hakansson, Anders P; Roche-Hakansson, Hazeline; Mossberg, Ann-Kristin; Svanborg, Catharina
2011-03-10
Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death. Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells.
Semi-automated quantification and neuroanatomical mapping of heterogeneous cell populations.
Mendez, Oscar A; Potter, Colin J; Valdez, Michael; Bello, Thomas; Trouard, Theodore P; Koshy, Anita A
2018-07-15
Our group studies the interactions between cells of the brain and the neurotropic parasite Toxoplasma gondii. Using an in vivo system that allows us to permanently mark and identify brain cells injected with Toxoplasma protein, we have identified that Toxoplasma-injected neurons (TINs) are heterogeneously distributed throughout the brain. Unfortunately, standard methods to quantify and map heterogeneous cell populations onto a reference brain atlas are time consuming and prone to user bias. We developed a novel MATLAB-based semi-automated quantification and mapping program to allow the rapid and consistent mapping of heterogeneously distributed cells on to the Allen Institute Mouse Brain Atlas. The system uses two-threshold background subtraction to identify and quantify cells of interest. We demonstrate that we reliably quantify and neuroanatomically localize TINs with low intra- or inter-observer variability. In a follow up experiment, we show that specific regions of the mouse brain are enriched with TINs. The procedure we use takes advantage of simple immunohistochemistry labeling techniques, use of a standard microscope with a motorized stage, and low cost computing that can be readily obtained at a research institute. To our knowledge there is no other program that uses such readily available techniques and equipment for mapping heterogeneous populations of cells across the whole mouse brain. The quantification method described here allows reliable visualization, quantification, and mapping of heterogeneous cell populations in immunolabeled sections across whole mouse brains. Copyright © 2018 Elsevier B.V. All rights reserved.
Evaluation guidelines for bus rapid transit demonstration projects
DOT National Transportation Integrated Search
2002-02-01
The Federal Transit Administration's (FTA) Bus Rapid Transit Demonstration Program is supporting demonstrations of Bus Rapid Transit (BRT) in selected cities across the United States. The US BRT Demonstration Program aims to adapt the principles of h...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinkamp, J.A.; Ingram, M.; Hansen, K.M.
1976-03-01
This report summarizes results of preliminary experiments to demonstrate the feasibility of using automated flow-systems analysis in detecting early changes of respiratory epithelium exposed to physical and chemical agents associated with the by-products of nonnuclear energy production. The Syrian hamster was selected as the experimental test animal to begin investigation of the effects of toxic agents to cells of the respiratory tract. Since initiation of the program approximately six months ago, the goals have been acquisition of adequate numbers of exfoliated cells from the lung; adaptation of cytological techniques developed on human exfoliated gynecological samples to hamster lung epithelium formore » obtaining single-cell suspensions; utilization of existing cell staining methods to measure DNA content in lung cells; and analysis of DNA content and cell size. As the flow-system cell analysis technology is adapted to the measurement of exfoliated lung cells, rapid and quantitative determination of early changes in the physical and biochemical cellular properties will be attempted as a function of exposure to the toxic agents. (auth)« less
Dewachter, Liselot; Verstraeten, Natalie; Monteyne, Daniel; Kint, Cyrielle Ines; Versées, Wim; Pérez-Morga, David; Michiels, Jan; Fauvart, Maarten
2015-12-22
Programmed cell death (PCD) is an important hallmark of multicellular organisms. Cells self-destruct through a regulated series of events for the benefit of the organism as a whole. The existence of PCD in bacteria has long been controversial due to the widely held belief that only multicellular organisms would profit from this kind of altruistic behavior at the cellular level. However, over the past decade, compelling experimental evidence has established the existence of such pathways in bacteria. Here, we report that expression of a mutant isoform of the essential GTPase ObgE causes rapid loss of viability in Escherichia coli. The physiological changes that occur upon expression of this mutant protein--including loss of membrane potential, chromosome condensation and fragmentation, exposure of phosphatidylserine on the cell surface, and membrane blebbing--point to a PCD mechanism. Importantly, key regulators and executioners of known bacterial PCD pathways were shown not to influence this cell death program. Collectively, our results suggest that the cell death pathway described in this work constitutes a new mode of bacterial PCD. Programmed cell death (PCD) is a well-known phenomenon in higher eukaryotes. In these organisms, PCD is essential for embryonic development--for example, the disappearance of the interdigital web--and also functions in tissue homeostasis and elimination of pathogen-invaded cells. The existence of PCD mechanisms in unicellular organisms like bacteria, on the other hand, has only recently begun to be recognized. We here demonstrate the existence of a bacterial PCD pathway that induces characteristics that are strikingly reminiscent of eukaryotic apoptosis, such as fragmentation of DNA, exposure of phosphatidylserine on the cell surface, and membrane blebbing. Our results can provide more insight into the mechanism and evolution of PCD pathways in higher eukaryotes. More importantly, especially in the light of the looming antibiotic crisis, they may point to a bacterial Achilles' heel and can inspire innovative ways of combating bacterial infections, directed at the targeted activation of PCD pathways. Copyright © 2015 Dewachter et al.
The Respiratory Environment Diverts the Development of Antiviral Memory CD8 T Cells.
Shane, Hillary L; Reagin, Katie L; Klonowski, Kimberly D
2018-06-01
Our understanding of memory CD8 + T cells has been largely derived from acute, systemic infection models. However, memory CD8 + T cells generated from mucosal infection exhibit unique properties and, following respiratory infection, are not maintained in the lung long term. To better understand how infection route modifies memory differentiation, we compared murine CD8 + T cell responses to a vesicular stomatitis virus (VSV) challenge generated intranasally (i.n.) or i.v. The i.n. infection resulted in greater peak expansion of VSV-specific CD8 + T cells. However, this numerical advantage was rapidly lost during the contraction phase of the immune response, resulting in memory CD8 + T cell numerical deficiencies when compared with i.v. infection. Interestingly, the antiviral CD8 + T cells generated in response to i.n. VSV exhibited a biased and sustained proportion of early effector cells (CD127 lo KLRG1 lo ) akin to the developmental program favored after i.n. influenza infection, suggesting that respiratory infection broadly favors an incomplete memory differentiation program. Correspondingly, i.n. VSV infection resulted in lower CD122 expression and eomesodermin levels by VSV-specific CD8 + T cells, further indicative of an inferior transition to bona fide memory. These results may be due to distinct (CD103 + CD11b + ) dendritic cell subsets in the i.n. versus i.v. T cell priming environments, which express molecules that regulate T cell signaling and the balance between tolerance and immunity. Therefore, we propose that distinct immunization routes modulate both the quality and quantity of antiviral effector and memory CD8 + T cells in response to an identical pathogen and should be considered in CD8 + T cell-based vaccine design. Copyright © 2018 by The American Association of Immunologists, Inc.
75 FR 20541 - Homeless Emergency Assistance and Rapid Transition to Housing: Defining “Homeless”
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-20
... Housing Stability Program. The HEARTH Act also codifies in statutory law the Continuum of Care planning... activities and to add rapid re-housing activities. The new Rural Housing Stability program replaces the Rural... Care program, and the Rural Housing Stability program. Each of these programs will include the...
Dimethyl Sulfoxide Protects Escherichia coli from Rapid Antimicrobial-Mediated Killing
Mi, Hongfei; Wang, Dai; Xue, Yunxin; Zhang, Zhi; Hong, Yuzhi; Drlica, Karl
2016-01-01
The contribution of reactive oxygen species (ROS) to antimicrobial lethality was examined by treating Escherichia coli with dimethyl sulfoxide (DMSO), an antioxidant solvent frequently used in antimicrobial studies. DMSO inhibited killing by ampicillin, kanamycin, and two quinolones and had little effect on MICs. DMSO-mediated protection correlated with decreased ROS accumulation and provided evidence for ROS-mediated programmed cell death. These data support the contribution of ROS to antimicrobial lethality and suggest caution when using DMSO-dissolved antimicrobials for short-time killing assays. PMID:27246776
Calcium-mediated apoptosis in a plant hypersensitive disease resistance response.
Levine, A; Pennell, R I; Alvarez, M E; Palmer, R; Lamb, C
1996-04-01
Avirulent pathogens elicit a battery of plant defenses, often accompanied by collapse of the challenged cells. In soybean cells, sustained accumulation of H2O2 from an oxidative burst cues localized host cell death. Such hypersensitive cell death appears to be an active process, but little is known about the mechanisms underlying cellular collapse. We show that H2O2 stimulates a rapid influx of Ca2+ into soybean cells, which activates a physiological cell death program resulting in the generation of large (approximately 50 kb) DNA fragments and cell corpse morphology--including cell shrinkage, plasma membrane blebbing and nuclear condensation--characteristic of apoptosis. In contrast, H2O2 induction of the cellular protectant gene glutathione S-transferase is Ca(2+)-independent. Apoptosis in soybean cells and leaf tissue was induced by avirulent Pseudomonas syringae pv. glycinea but was not observed at comparable stages of the compatible interaction with the isogenic virulent strain, which fails to elicit a hypersensitive response. Apoptosis was also observed at the onset of the hypersensitive response in Arabidopsis leaves inoculated with avirulent P. syringae pv. tomato and in tobacco cells treated with the fungal peptide cryptogein, which is involved in the induction of non-host resistance to Phytophthora cryptogea. These observations establish a signal function for Ca2+ downstream of the oxidative burst in the activation of a physiological cell death program in soybean cells that is similar to apoptosis in animals. That the characteristic cell corpse morphology is also induced in Arabidopsis and tobacco by different avirulence signals suggests that apoptosis may prove to be a common, but not necessarily ubiquitous, feature of incompatible plant-pathogen interactions. Emerging similarities between facets of hypersensitive disease resistance and the mammalian native immune system indicate that apoptosis is a widespread defence mechanism in eukaryotes.
Savic, Daniel; Ramaker, Ryne C; Roberts, Brian S; Dean, Emma C; Burwell, Todd C; Meadows, Sarah K; Cooper, Sara J; Garabedian, Michael J; Gertz, Jason; Myers, Richard M
2016-07-11
The liver X receptors (LXRs, NR1H2 and NR1H3) and peroxisome proliferator-activated receptor gamma (PPARG, NR1C3) nuclear receptor transcription factors (TFs) are master regulators of energy homeostasis. Intriguingly, recent studies suggest that these metabolic regulators also impact tumor cell proliferation. However, a comprehensive temporal molecular characterization of the LXR and PPARG gene regulatory responses in tumor cells is still lacking. To better define the underlying molecular processes governing the genetic control of cellular growth in response to extracellular metabolic signals, we performed a comprehensive, genome-wide characterization of the temporal regulatory cascades mediated by LXR and PPARG signaling in HT29 colorectal cancer cells. For this analysis, we applied a multi-tiered approach that incorporated cellular phenotypic assays, gene expression profiles, chromatin state dynamics, and nuclear receptor binding patterns. Our results illustrate that the activation of both nuclear receptors inhibited cell proliferation and further decreased glutathione levels, consistent with increased cellular oxidative stress. Despite a common metabolic reprogramming, the gene regulatory network programs initiated by these nuclear receptors were widely distinct. PPARG generated a rapid and short-term response while maintaining a gene activator role. By contrast, LXR signaling was prolonged, with initial, predominantly activating functions that transitioned to repressive gene regulatory activities at late time points. Through the use of a multi-tiered strategy that integrated various genomic datasets, our data illustrate that distinct gene regulatory programs elicit common phenotypic effects, highlighting the complexity of the genome. These results further provide a detailed molecular map of metabolic reprogramming in cancer cells through LXR and PPARG activation. As ligand-inducible TFs, these nuclear receptors can potentially serve as attractive therapeutic targets for the treatment of various cancers.
Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype.
Erickson, John J; Lu, Pengcheng; Wen, Sherry; Hastings, Andrew K; Gilchuk, Pavlo; Joyce, Sebastian; Shyr, Yu; Williams, John V
2015-11-01
Acute viral infections typically generate functional effector CD8(+) T cells (TCD8) that aid in pathogen clearance. However, during acute viral lower respiratory infection, lung TCD8 are functionally impaired and do not optimally control viral replication. T cells also become unresponsive to Ag during chronic infections and cancer via signaling by inhibitory receptors such as programmed cell death-1 (PD-1). PD-1 also contributes to TCD8 impairment during viral lower respiratory infection, but how it regulates TCD8 impairment and the connection between this state and T cell exhaustion during chronic infections are unknown. In this study, we show that PD-1 operates in a cell-intrinsic manner to impair lung TCD8. In light of this, we compared global gene expression profiles of impaired epitope-specific lung TCD8 to functional spleen TCD8 in the same human metapneumovirus-infected mice. These two populations differentially regulate hundreds of genes, including the upregulation of numerous inhibitory receptors by lung TCD8. We then compared the gene expression of TCD8 during human metapneumovirus infection to those in acute or chronic lymphocytic choriomeningitis virus infection. We find that the immunophenotype of lung TCD8 more closely resembles T cell exhaustion late into chronic infection than do functional effector T cells arising early in acute infection. Finally, we demonstrate that trafficking to the infected lung alone is insufficient for TCD8 impairment or inhibitory receptor upregulation, but that viral Ag-induced TCR signaling is also required. Our results indicate that viral Ag in infected lungs rapidly induces an exhaustion-like state in lung TCD8 characterized by progressive functional impairment and upregulation of numerous inhibitory receptors. Copyright © 2015 by The American Association of Immunologists, Inc.
Radchuk, Volodymyr; Weier, Diana; Radchuk, Ruslana; Weschke, Winfriede; Weber, Hans
2011-01-01
After fertilization, filial grain organs are surrounded by the maternal nucellus embedded within the integuments and pericarp. Rapid early endosperm growth must be coordinated with maternal tissue development. Parameters of maternal tissue growth and development were analysed during early endosperm formation. In the pericarp, cell proliferation is accomplished around the time of fertilization, followed by cell elongation predominantly in longitudinal directions. The rapid cell expansion coincides with endosperm cellularization. Distribution of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei reveals distinct patterns starting in the nucellus at anthesis and followed later by the inner cell rows of the pericarp, then spreading to the whole pericarp. The pattern suggests timely and spatially regulated programmed cell death (PCD) processes in maternal seed tissues. When the endosperm is coenocytic, PCD events are only observed within the nucellus. Thereby, remobilization of nucellar storage compounds by PCD could nourish the early developing endosperm when functional interconnections are absent between maternal and filial seed organs. Specific proteases promote PCD events. Characterization of the barley vacuolar processing enzyme (VPE) gene family identified seven gene members specifically expressed in the developing grain. HvVPE2a (known as nucellain) together with closely similar HvVPE2b and HvVPE2d might be involved in nucellar PCD. HvVPE4 is strongly cell specific for pericarp parenchyma. Correlative evidence suggests that HvVPE4 plays a role in PCD events in the pericarp. Possible functions of PCD in the maternal tissues imply a potential nutritive role or the relief of a physical restraint for endosperm growth. PCD could also activate post-phloem transport functions.
Sakai, A; Otsuka, K
1967-12-01
Experiments were carried out with cortical cells in twig bark of mulberry trees in winter in order to clarify the mechanism of survival at super-low temperatures with rapid cooling and rewarming. Attention was given to the relation between the existence of intracellular ice crystals and survival.Cortical cells were cooled rapidly by direct immersion into liquid nitrogen or isopentane cooled at various temperatures. After immersion, they were freeze-substituted with absolute ethanol at -78 degrees . They were then embedded, sectioned and examined under the electron microscope for the presence and distribution of cavities left after ice removal.Cells were found to remain alive and contain no ice cavities when immersed rapidly into isopentane baths kept below -60 degrees . Those cells at intermediate temperatures from -20 degrees to -45 degrees , were almost all destroyed. It was also observed that many ice cavities were contained in the cells immersed rapidly into isopentane baths at -30 degrees . The data seem to indicate that no ice crystals were formed when cooled rapidly by direct immersion into isopentane baths below -60 degrees or into liquid nitrogen.The tissue sections immersed in liquid nitrogen were rapidly transferred to isopentane baths at temperatures ranging from -70 degrees to -10 degrees before rapid rewarming. There was little damage when samples were held at temperatures below -50 degrees for 10 minutes or below -60 degrees for 16 hours. No cavities were found in these cells. Above -45 degrees , and especially at -30 degrees , however, all cells were completely destroyed even when exposed only for 1 minute. Many ice cavities were observed throughout these cells. The results obtained may be explained in terms of the growth rate of intracellular ice crystals.
Beksac, Meral
2015-01-01
As cord blood (CB) enables rapid access and tolerance to HLA mismatches, a number of unrelated CB transplants have reached 30,000. Such transplant activity has been the result of international accreditation programs maintaining highly qualified cord blood units (CBUs) reaching more than 600,000 CBUs stored worldwide. Efforts to increase stem cell content or engraftment rate of the graft by ex vivo expansion, modulation by molecules such as fucose, prostaglandin E2 derivative, complement CD26 inhibitors, or CXCR4/CXCL12 axis have been able to accelerate engraftment speed and rate. Furthermore, introduction of reduced intensity conditioning protocols, better HLA matching, and recognition of the importance of HLA-C have improved CB transplants success by decreasing transplant-related mortality. CB progenitor/stem cell content has been compared with adult stem cells revealing higher long-term repopulating capacity compared to bone marrow-mesenchymal stromal cells and lesser oncogenic potential than progenitor-induced stem cells. This chapter summarizes the advantages and disadvantages of CB compared to adult stem cells within the context of stem cell biology and transplantation.
A rapid identification system for metallothionein proteins using expert system
Praveen, Bhoopathi; Vincent, Savariar; Murty, Upadhyayula Suryanarayana; Krishna, Amirapu Radha; Jamil, Kaiser
2005-01-01
Metallothioneins (MT) are low molecular weight proteins mostly rich in cysteine residues with high metal content. Generally, MT proteins are responsible for regulating the intracellular supply of biologically essential metal ions and they protect cells from the deleterious effects of non-essential polarizable transition and post-transition metal ions. Due to their biological importance, proper characterization of MT is necessary. Here we describe a computer program (ID3 algorithm, a part of Artificial Intelligence) developed using available data for the rapid identification of MT. Tissue samples contains several low molecular weight proteins with different physical, chemical and biological characteristics. The described software solution proposes to categorize MT proteins without aromatic amino acids and high metal content. The proposed solution can be expanded to other types of proteins with specific known characteristics. PMID:17597844
2012-01-01
Background To simplify clinical scale lymphocyte expansions, we investigated the use of the WAVE®, a closed system bioreactor that utilizes active perfusion to generate high cell numbers in minimal volumes. Methods We have developed an optimized rapid expansion protocol for the WAVE bioreactor that produces clinically relevant numbers of cells for our adoptive cell transfer clinical protocols. Results TIL and genetically modified PBL were rapidly expanded to clinically relevant scales in both static bags and the WAVE bioreactor. Both bioreactors produced comparable numbers of cells; however the cultures generated in the WAVE bioreactor had a higher percentage of CD4+ cells and had a less activated phenotype. Conclusions The WAVE bioreactor simplifies the process of rapidly expanding tumor reactive lymphocytes under GMP conditions, and provides an alternate approach to cell generation for ACT protocols. PMID:22475724
Masserdotti, Giacomo; Gillotin, Sébastien; Sutor, Bernd; Drechsel, Daniela; Irmler, Martin; Jørgensen, Helle F.; Sass, Steffen; Theis, Fabian J.; Beckers, Johannes; Berninger, Benedikt; Guillemot, François; Götz, Magdalena
2015-01-01
Summary Direct lineage reprogramming induces dramatic shifts in cellular identity, employing poorly understood mechanisms. Recently, we demonstrated that expression of Neurog2 or Ascl1 in postnatal mouse astrocytes generates glutamatergic or GABAergic neurons. Here, we take advantage of this model to study dynamics of neuronal cell fate acquisition at the transcriptional level. We found that Neurog2 and Ascl1 rapidly elicited distinct neurogenic programs with only a small subset of shared target genes. Within this subset, only NeuroD4 could by itself induce neuronal reprogramming in both mouse and human astrocytes, while co-expression with Insm1 was required for glutamatergic maturation. Cultured astrocytes gradually became refractory to reprogramming, in part by the repressor REST preventing Neurog2 from binding to the NeuroD4 promoter. Notably, in astrocytes refractory to Neurog2 activation, the underlying neurogenic program remained amenable to reprogramming by exogenous NeuroD4. Our findings support a model of temporal hierarchy for cell fate change during neuronal reprogramming. PMID:26119235
Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa
LeRoux, Michele; Kirkpatrick, Robin L; Montauti, Elena I; Tran, Bao Q; Peterson, S Brook; Harding, Brittany N; Whitney, John C; Russell, Alistair B; Traxler, Beth; Goo, Young Ah; Goodlett, David R; Wiggins, Paul A; Mougous, Joseph D
2015-01-01
The perception and response to cellular death is an important aspect of multicellular eukaryotic life. For example, damage-associated molecular patterns activate an inflammatory cascade that leads to removal of cellular debris and promotion of healing. We demonstrate that lysis of Pseudomonas aeruginosa cells triggers a program in the remaining population that confers fitness in interspecies co-culture. We find that this program, termed P. aeruginosa response to antagonism (PARA), involves rapid deployment of antibacterial factors and is mediated by the Gac/Rsm global regulatory pathway. Type VI secretion, and, unexpectedly, conjugative type IV secretion within competing bacteria, induce P. aeruginosa lysis and activate PARA, thus providing a mechanism for the enhanced capacity of P. aeruginosa to target bacteria that elaborate these factors. Our finding that bacteria sense damaged kin and respond via a widely distributed pathway to mount a complex response raises the possibility that danger sensing is an evolutionarily conserved process. DOI: http://dx.doi.org/10.7554/eLife.05701.001 PMID:25643398
The hatching gland cells of trout embryos: characterisation of N- and O-linked oligosaccharides
DE GASPAR, IGNACIO; BLANQUEZ, MARIA JOSE; FRAILE, BENITO; PANIAGUA, RICARDO; ARENAS, MARIA ISABEL
1999-01-01
A histochemical, light and electron microscopy study of the hatching gland cells (HGCs) in incubated 50-d-old trout embryos is reported. The distribution of carbohydrate residues in the glycoconjugates of these cells was studied by means of a battery of 13 different lectins conjugated with horseradish peroxidase (PNA, ConA, LCA, WGA, SBA, UEA-I, HPA, DBA) or digoxigenin (DSA, MAA, AAA, SNA, GNA). Identification of N- and O-linked oligosaccharides in HGCs was performed by application of both chemical and enzymatic treatments. Present results suggest that HGCs are seromucous cells which store both high choriolytic enzyme (HCE) and low choriolytic enzyme (LCE), and that their cytoplasmic granules, endoplasmic reticulum and Golgi complex contain additional sialic acid-rich glycoproteins. The negative charge of these glycoproteins might be responsible for the rapid expansion of mucin to form a highly hydrated gel, which would facilite the action of these enzymes in programmed cell death and might play a major role during the morphogenic events. PMID:10227672
Rapid Characterization of Magnetic Moment of Cells for Magnetic Separation
Ooi, Chinchun; Earhart, Christopher M.; Wilson, Robert J.; Wang, Shan X.
2014-01-01
NCI-H1650 lung cancer cell lines labeled with magnetic nanoparticles via the Epithelial Cell Adhesion Molecule (EpCAM) antigen were previously shown to be captured at high efficiencies by a microfabricated magnetic sifter. If fine control and optimization of the magnetic separation process is to be achieved, it is vital to be able to characterize the labeled cells’ magnetic moment rapidly. We have thus adapted a rapid prototyping method to obtain the saturation magnetic moment of these cells. This method utilizes a cross-correlation algorithm to analyze the cells’ motion in a simple fluidic channel to obtain their magnetophoretic velocity, and is effective even when the magnetic moments of cells are small. This rapid characterization is proven useful in optimizing our microfabricated magnetic sifter procedures for magnetic cell capture. PMID:24771946
[Clinical Development of Immune Checkpoint Inhibitors in Patients with Small Cell Lung Cancer].
Zhang, Shuang; Liu, Jingjing; Cheng, Ying
2017-09-20
Small cell lung cancer (SCLC) is a poorly differentiated high-grade neuroendocrine tumor, accounts for approximately 14% of all lung cancers. SCLC is characterized by rapid growth, early metastasis without effective treatments after recurrence. It is urgently need to improve the therapy of patients with SCLC. In recent years Tumor immunotherapy has shown promising efficacy, especially in immune checkpoints including inhibitors programmed cell-death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). These immune checkpoint inhibitors of the researches are changing the clinical practice of many kinds of solid tumor. SCLC is a potential ideal type of tumor immunotherapy for tobacco exposure and the highest mutational load. In this report, the authors review the current state of the immunotherapy in SCLC, to discussing the problems, challenge and application development prospect.
Dirks, Wilhelm Gerhard; Faehnrich, Silke; Estella, Isabelle Annick Janine; Drexler, Hans Guenter
2005-01-01
Cell lines have wide applications as model systems in the medical and pharmaceutical industry. Much drug and chemical testing is now first carried out exhaustively on in vitro systems, reducing the need for complicated and invasive animal experiments. The basis for any research, development or production program involving cell lines is the choice of an authentic cell line. Microsatellites in the human genome that harbour short tandem repeat (STR) DNA markers allow individualisation of established cell lines at the DNA level. Fluorescence polymerase chain reaction amplification of eight highly polymorphic microsatellite STR loci plus gender determination was found to be the best tool to screen the uniqueness of DNA profiles in a fingerprint database. Our results demonstrate that cross-contamination and misidentification remain chronic problems in the use of human continuous cell lines. The combination of rapidly generated DNA types based on single-locus STR and their authentication or individualisation by screening the fingerprint database constitutes a highly reliable and robust method for the identification and verification of cell lines.
Life and death of female gametes during oogenesis and folliculogenesis.
Krysko, Dmitri V; Diez-Fraile, Araceli; Criel, Godelieve; Svistunov, Andrei A; Vandenabeele, Peter; D'Herde, Katharina
2008-09-01
The vertebrate ovary is an extremely dynamic organ in which excessive or defective follicles are rapidly and effectively eliminated early in ontogeny and thereafter continuously throughout reproductive life. More than 99% of follicles disappear, primarily due to apoptosis of granulosa cells, and only a minute fraction of the surviving follicles successfully complete the path to ovulation. The balance between signals for cell death and survival determines the destiny of the follicles. An abnormally high rate of cell death followed by atresia can negatively affect fertility and eventually lead irreversibly to premature ovarian failure. In this review we provide a short overview of the role of programmed cell death in prenatal differentiation of the primordial germ cells and in postnatal folliculogenesis. We also discuss the issue of neo-oogenesis. Next, we highlight molecules involved in regulation of granulosa cell apoptosis. We further discuss the potential use of scores for apoptosis in granulosa cells and characteristics of follicular fluid as prognostic markers for predicting the outcome of assisted reproduction. Potential therapeutic strategies for combating premature ovarian failure are also addressed.
Rapid transit system noise abatement program
DOT National Transportation Integrated Search
1972-01-01
This program plan describes a broad program for the reduction of noise and vibration in rapid transit systems, which impacts the patrons and inhabitants of the nearby commuity. An UMTA/TSC survey has provided data on the most urgent needs and state-o...
Khokhlov, A N
2013-01-01
Currently, gerontologists, evaluating the effectiveness of various impacts on the aging process, as a rule, use a variety of molecular cell biomarkers of aging. This provides much more rapid results than in the case of the survival curve obtaining. However, in many cases the usefulness of these biomarkers of aging is grounded in works devoted to what is called cellular/cell senescence. Unfortunately, the evolution of the term in recent years has led to the loss, to a large extent, of its original meaning, that is the changes of the cells during their replicative senescence ("on Hayflick's grounds"), similar to the changes of cells in the aging organism. At present, most of the work in this area is related to the induction of the relevant changes in the cells (usually transformed) by various DNA damaging factors. Such an approach, although is very important to define a strategy to fight cancer, but, yet again, takes us away from the study of the real mechanisms of organismal aging. In addition, there are reasons to believe that the biomarkers of aging, proposed by these studies (and in particular, the most popular of them--the activity of senescence-associated beta-galactosidase), are related, as a rule, to the proliferative status of the cells, which in the whole body is generally determined by proper implementing the program of development and differentiation, leading to the emergence of tissues and organs composed of postmitotic or very slowly proliferating cells. Therefore, the possible disabling the aging program, apparently, will not lead to any changes in the age dynamics of those biomarkers of aging. This conclusion brings us back to the need for obtaining the survival curves of experimental animals or humans as the only true (although the most time- and money-consuming) approach to evaluating the effectiveness of the modification of the aging process.
Merchant, Roland C.; Clark, Melissa A.; Seage, George R.; Mayer, Kenneth H.; DeGruttola, Victor G.; Becker, Bruce M.
2011-01-01
The aim of this investigation was to assess emergency department (ED) patients’ perceptions and preferences about an opt-in, universal, rapid HIV screening program and identify patient groups who expressed stronger beliefs about components of the testing program. From July 2005 to July 2006, ED patients in the opt-in, universal, rapid HIV screening program were interviewed in person. Multivariable regression models were used to compare participants on their beliefs about the program components. Of the 561 participants, 62.0% had previously been tested for HIV. The majority of participants (58.8%) believed the rapid and standard/conventional HIV tests to be equally accurate, 27.7% believed the rapid test to be less or much less accurate, and 8.7% believed the rapid test to be more or much more accurate. Almost two-thirds (65.1%) favored having a rapid instead of a standard/conventional HIV test, 94.6% wanted the test results within one hour, and 61.3% would be likely or very likely to undergo testing in the ED if it prolonged their ED visit. Almost all (92.5%) believed that their medical care was “not at all” delayed because of being tested, 94.1% believed that testing did “not at all” divert attention from the reason for their ED visit, and 80.9% thought that testing in the ED was “not at all” stressful. In multivariable logistic regression models, males and those with more than 12 years of formal education showed greater concerns about the rapid HIV test’s accuracy. Hispanic/Latinos, participants with governmental insurance, and those previously HIV tested were more apt to be screened for HIV even if testing delayed their ED departure. Overall, participants were highly accepting of the components of this opt-in rapid HIV screening program. However, concerns regarding the accuracy of the rapid HIV test might limit test acceptance and should be addressed during pre-test information procedures. PMID:19283644
Zhao, Yuliang; Lai, Hok Sum Sam; Zhang, Guanglie; Lee, Gwo-Bin; Li, Wen Jung
2014-11-21
The density of a single cell is a fundamental property of cells. Cells in the same cycle phase have similar volume, but the differences in their mass and density could elucidate each cell's physiological state. Here we report a novel technique to rapidly measure the density and mass of a single cell using an optically induced electrokinetics (OEK) microfluidic platform. Presently, single cellular mass and density measurement devices require a complicated fabrication process and their output is not scalable, i.e., it is extremely difficult to measure the mass and density of a large quantity of cells rapidly. The technique reported here operates on a principle combining sedimentation theory, computer vision, and microparticle manipulation techniques in an OEK microfluidic platform. We will show in this paper that this technique enables the measurement of single-cell volume, density, and mass rapidly and accurately in a repeatable manner. The technique is also scalable - it allows simultaneous measurement of volume, density, and mass of multiple cells. Essentially, a simple time-controlled projected light pattern is used to illuminate the selected area on the OEK microfluidic chip that contains cells to lift the cells to a particular height above the chip's surface. Then, the cells are allowed to "free fall" to the chip's surface, with competing buoyancy, gravitational, and fluidic drag forces acting on the cells. By using a computer vision algorithm to accurately track the motion of the cells and then relate the cells' motion trajectory to sedimentation theory, the volume, mass, and density of each cell can be rapidly determined. A theoretical model of micro-sized spheres settling towards an infinite plane in a microfluidic environment is first derived and validated experimentally using standard micropolystyrene beads to demonstrate the viability and accuracy of this new technique. Next, we show that the yeast cell volume, mass, and density could be rapidly determined using this technology, with results comparable to those using the existing method suspended microchannel resonator.
Man in space - A time for perspective. [crew performance on Space Shuttle-Spacelab program
NASA Technical Reports Server (NTRS)
Winter, D. L.
1975-01-01
Factors affecting crew performances in long-term space flights are examined with emphasis on the Space Shuttle-Spacelab program. Biomedical investigations carried out during four Skylab missions indicate that initially rapid changes in certain physiological parameters, notably in cardiovascular response and red-blood-cell levels, lead to an adapted condition. Calcium loss remains a potential problem. Space Shuttle environmental control and life-support systems are described together with technology facilitating performance of mission objectives in a weightless environment. It is concluded that crew requirements are within the physical and psychological capability of astronauts, but the extent to which nonastronaut personnel will be able to participate without extensive training and pre-conditioning remains to be determined.
Mastoparan-induced programmed cell death in the unicellular alga Chlamydomonas reinhardtii
Yordanova, Zhenya P.; Woltering, Ernst J.; Kapchina-Toteva, Veneta M.; Iakimova, Elena T.
2013-01-01
Background and Aims Under stress-promoting conditions unicellular algae can undergo programmed cell death (PCD) but the mechanisms of algal cellular suicide are still poorly understood. In this work, the involvement of caspase-like proteases, DNA cleavage and the morphological occurrence of cell death in wasp venom mastoparan (MP)-treated Chlamydomonas reinhardtii were studied. Methods Algal cells were exposed to MP and cell death was analysed over time. Specific caspase inhibitors were employed to elucidate the possible role of caspase-like proteases. YVADase activity (presumably a vacuolar processing enzyme) was assayed by using a fluorogenic caspase-1 substrate. DNA breakdown was evaluated by DNA laddering and Comet analysis. Cellular morphology was examined by confocal laser scanning microscopy. Key Results MP-treated C. reinhardtii cells expressed several features of necrosis (protoplast shrinkage) and vacuolar cell death (lytic vesicles, vacuolization, empty cell-walled corpse-containing remains of digested protoplast) sometimes within one single cell and in different individual cells. Nucleus compaction and DNA fragmentation were detected. YVADase activity was rapidly stimulated in response to MP but the early cell death was not inhibited by caspase inhibitors. At later time points, however, the caspase inhibitors were effective in cell-death suppression. Conditioned medium from MP-treated cells offered protection against MP-induced cell death. Conclusions In C. reinhardtii MP triggered PCD of atypical phenotype comprising features of vacuolar and necrotic cell deaths, reminiscent of the modality of hypersensitive response. It was assumed that depending on the physiological state and sensitivity of the cells to MP, the early cell-death phase might be not mediated by caspase-like enzymes, whereas later cell death may involve caspase-like-dependent proteolysis. The findings substantiate the hypothesis that, depending on the mode of induction and sensitivity of the cells, algal PCD may take different forms and proceed through different pathways. PMID:23250917
Immune checkpoint inhibitors in lung cancer: current status and future directions.
Fan, Yun; Mao, Weimin
2017-04-01
Recently, the immune checkpoint inhibitors that target programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) have made a breakthrough in treating advanced non-small cell lung cancer (NSCLC) with the efficacy of approximately 20%; among which, nivolumab has acquired treatment indications in lung squamous cell carcinoma. The inhibitors targeting cytotoxic T lymphocyte associated antigen 4 (CTLA-4) are also undergoing clinical trials. Researches on immune checkpoint inhibitors have been rapidly implemented in a variety of different types of lung cancer, such as small cell lung cancer (SCLC) and locally advanced NSCLC, and these inhibitors began to be applied in combination with some established treatments, including chemotherapy, targeting therapy and radiotherapy. Undoubtedly, the immune checkpoint inhibitors have become a hot spot in the research and treatment of lung cancer. However, many problems wait to be solved, such as searching for ideal biomarkers, constituting the best criteria for curative effect evaluation, exploring different combination treatment models, and clearly understanding the mechanisms of primary or secondary drug resistance. Along with these problems to be successfully solved, the immune checkpoint inhibitors will have more broad applications in lung cancer therapy.
Cosmetics-triggered percutaneous remote control of transgene expression in mice.
Wang, Hui; Ye, Haifeng; Xie, Mingqi; Daoud El-Baba, Marie; Fussenegger, Martin
2015-08-18
Synthetic biology has significantly advanced the rational design of trigger-inducible gene switches that program cellular behavior in a reliable and predictable manner. Capitalizing on genetic componentry, including the repressor PmeR and its cognate operator OPmeR, that has evolved in Pseudomonas syringae pathovar tomato DC3000 to sense and resist plant-defence metabolites of the paraben class, we have designed a set of inducible and repressible mammalian transcription-control devices that could dose-dependently fine-tune transgene expression in mammalian cells and mice in response to paraben derivatives. With an over 60-years track record as licensed preservatives in the cosmetics industry, paraben derivatives have become a commonplace ingredient of most skin-care products including shower gels, cleansing toners and hand creams. As parabens can rapidly reach the bloodstream of mice following topical application, we used this feature to percutaneously program transgene expression of subcutaneous designer cell implants using off-the-shelf commercial paraben-containing skin-care cosmetics. The combination of non-invasive, transdermal and orthogonal trigger-inducible remote control of transgene expression may provide novel opportunities for dynamic interventions in future gene and cell-based therapies. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Cosmetics-triggered percutaneous remote control of transgene expression in mice
Wang, Hui; Ye, Haifeng; Xie, Mingqi; Daoud El-Baba, Marie; Fussenegger, Martin
2015-01-01
Synthetic biology has significantly advanced the rational design of trigger-inducible gene switches that program cellular behavior in a reliable and predictable manner. Capitalizing on genetic componentry, including the repressor PmeR and its cognate operator OPmeR, that has evolved in Pseudomonas syringae pathovar tomato DC3000 to sense and resist plant-defence metabolites of the paraben class, we have designed a set of inducible and repressible mammalian transcription-control devices that could dose-dependently fine-tune transgene expression in mammalian cells and mice in response to paraben derivatives. With an over 60-years track record as licensed preservatives in the cosmetics industry, paraben derivatives have become a commonplace ingredient of most skin-care products including shower gels, cleansing toners and hand creams. As parabens can rapidly reach the bloodstream of mice following topical application, we used this feature to percutaneously program transgene expression of subcutaneous designer cell implants using off-the-shelf commercial paraben-containing skin-care cosmetics. The combination of non-invasive, transdermal and orthogonal trigger-inducible remote control of transgene expression may provide novel opportunities for dynamic interventions in future gene and cell-based therapies. PMID:25943548
Kuchipudi, Suresh V; Dunham, Stephen P; Nelli, Rahul; White, Gavin A; Coward, Vivien J; Slomka, Marek J; Brown, Ian H; Chang, Kin Chow
2012-01-01
Aquatic birds are the natural reservoir for most subtypes of influenza A, and a source of novel viruses with the potential to cause human pandemics, fatal zoonotic disease or devastating epizootics in poultry. It is well recognised that waterfowl typically show few clinical signs following influenza A infection, in contrast, terrestrial poultry such as chickens may develop severe disease with rapid death following infection with highly pathogenic avian influenza. This study examined the cellular response to influenza infection in primary cells derived from resistant (duck) and susceptible (chicken) avian hosts. Paradoxically, we observed that duck cells underwent rapid cell death following infection with low pathogenic avian H2N3, classical swine H1N1 and 'classical' highly pathogenic H5N1 viruses. Dying cells showed morphological features of apoptosis, increased DNA fragmentation and activation of caspase 3/7. Following infection of chicken cells, cell death occurred less rapidly, accompanied by reduced DNA fragmentation and caspase activation. Duck cells produced similar levels of viral RNA but less infectious virus, in comparison with chicken cells. Such rapid cell death was not observed in duck cells infected with a contemporary Eurasian lineage H5N1 fatal to ducks. The induction of rapid death in duck cells may be part of a mechanism of host resistance to influenza A, with the loss of this response leading to increased susceptibility to emergent strains of H5N1. These studies provide novel insights that should help resolve the long-standing enigma of host-pathogen relationships for highly pathogenic and zoonotic avian influenza.
Gleyzer, Natalie; Scarpulla, Richard C.
2013-01-01
PGC-1-related coactivator (PRC), a growth-regulated member of the PGC-1 coactivator family, contributes to the expression of the mitochondrial respiratory apparatus. PRC also orchestrates a robust response to metabolic stress by promoting the expression of multiple genes specifying inflammation, proliferation, and metabolic reprogramming. Here, we demonstrate that this PRC-dependent stress program is activated during apoptosis and senescence, two major protective mechanisms against cellular dysfunction. Both PRC and its targets (IL1α, SPRR2D, and SPRR2F) were rapidly induced by menadione, an agent that promotes apoptosis through the generation of intracellular oxidants. Menadione-induced apoptosis and the PRC stress program were blocked by the antioxidant N-acetylcysteine. The PRC stress response was also activated by the topoisomerase I inhibitor 7-ethyl-10-hydroxycamptothecin (SN-38), an inducer of premature senescence in tumor cells. Cells treated with SN-38 displayed morphological characteristics of senescence and express senescence-associated β-galactosidase activity. In contrast to menadione, the SN-38 induction of the PRC program occurred over an extended time course and was antioxidant-insensitive. The potential adaptive function of the PRC stress response was investigated by treating cells with meclizine, a drug that promotes glycolytic energy metabolism and has been linked to cardio- and neuroprotection against ischemia-reperfusion injury. Meclizine increased lactate production and was a potent inducer of the PRC stress program, suggesting that PRC may contribute to the protective effects of meclizine. Finally, c-MYC and PRC were coordinately induced under all conditions tested, implicating c-MYC in the biological response to metabolic stress. The results suggest a general role for PRC in the adaptive response to cellular dysfunction. PMID:23364789
Mossman, K; Lee, S F; Barry, M; Boshkov, L; McFadden, G
1996-01-01
Myxoma virus is a pathogenic poxvirus that induces a lethal myxomatosis disease profile in European rabbits, which is characterized by fulminating lesions at the primary site of inoculation, rapid dissemination to secondary internal organs and peripheral external sites, and supervening gram-negative bacterial infection. Here we describe the role of a novel myxoma virus protein encoded by the M-T5 open reading frame during pathogenesis. The myxoma virus M-T5 protein possesses no significant sequence homology to nonviral proteins but is a member of a larger poxviral superfamily designated host range proteins. An M-T5- mutant virus was constructed by disruption of both copies of the M-T5 gene followed by insertion of the selectable marker p7.5Ecogpt. Although the M-T5- deletion mutant replicated with wild-type kinetics in rabbit fibroblasts, infection of a rabbit CD4+ T-cell line (RL5) with the myxoma virus M-T5- mutant virus resulted in the rapid and complete cessation of both host and viral protein synthesis, accompanied by the manifestation of all the classical features of programmed cell death. Infection of primary rabbit peripheral mononuclear cells with the myxoma virus M-T5-mutant virus resulted in the apoptotic death of nonadherent lymphocytes but not adherent monocytes. Within the European rabbit, disruption of the M-T5 open reading frame caused a dramatic attenuation of the rapidly lethal myxomatosis infection, and none of the infected rabbits displayed any of the characteristic features of myxomatosis. The two most significant histological observations in rabbits infected with the M-T5-mutant virus were (i) the lack of progression of the infection past the primary site of inoculation, coupled with the establishment of a rapid and effective inflammatory reaction, and (ii) the inability of the virus to initiate a cellular reaction within secondary immune organs. We conclude that M-T5 functions as a critical virulence factor by allowing productive infection of immune cells such as peripheral lymphocytes, thus facilitating virus dissemination to secondary tissue sites via the lymphatic channels. PMID:8676463
Mossman, K; Lee, S F; Barry, M; Boshkov, L; McFadden, G
1996-07-01
Myxoma virus is a pathogenic poxvirus that induces a lethal myxomatosis disease profile in European rabbits, which is characterized by fulminating lesions at the primary site of inoculation, rapid dissemination to secondary internal organs and peripheral external sites, and supervening gram-negative bacterial infection. Here we describe the role of a novel myxoma virus protein encoded by the M-T5 open reading frame during pathogenesis. The myxoma virus M-T5 protein possesses no significant sequence homology to nonviral proteins but is a member of a larger poxviral superfamily designated host range proteins. An M-T5- mutant virus was constructed by disruption of both copies of the M-T5 gene followed by insertion of the selectable marker p7.5Ecogpt. Although the M-T5- deletion mutant replicated with wild-type kinetics in rabbit fibroblasts, infection of a rabbit CD4+ T-cell line (RL5) with the myxoma virus M-T5- mutant virus resulted in the rapid and complete cessation of both host and viral protein synthesis, accompanied by the manifestation of all the classical features of programmed cell death. Infection of primary rabbit peripheral mononuclear cells with the myxoma virus M-T5-mutant virus resulted in the apoptotic death of nonadherent lymphocytes but not adherent monocytes. Within the European rabbit, disruption of the M-T5 open reading frame caused a dramatic attenuation of the rapidly lethal myxomatosis infection, and none of the infected rabbits displayed any of the characteristic features of myxomatosis. The two most significant histological observations in rabbits infected with the M-T5-mutant virus were (i) the lack of progression of the infection past the primary site of inoculation, coupled with the establishment of a rapid and effective inflammatory reaction, and (ii) the inability of the virus to initiate a cellular reaction within secondary immune organs. We conclude that M-T5 functions as a critical virulence factor by allowing productive infection of immune cells such as peripheral lymphocytes, thus facilitating virus dissemination to secondary tissue sites via the lymphatic channels.
Lee, Jae-Won; Kim, Won; Kwon, Eun-Kyung; Kim, Yuri; Shin, Hyun Mu; Kim, Dong-Hyun; Min, Chan-Ki; Choi, Ji-Yeob; Lee, Won-Woo; Choi, Myung-Sik; Kim, Byeong Gwan; Cho, Nam-Hyuk
2017-01-01
Type I interferons (IFNs) play an important role in antiviral immunity as well as immunopathogenesis of diverse chronic viral infections. However, the precise mechanisms regulating the multifaceted effects of type I IFNs on the immune system and pathological inflammation still remain unclear. In order to assess the immunological dynamics associated with rapid viral clearance in chronic hepatitis C patients during the acute phase of type I IFN therapy, we analyzed multiple parameters of virological and immunological responses in a cohort of 59 Korean hepatitis C patients who received pegylated IFN-α and ribavirin (IFN/RBV). Most of the Korean patients had favorable alleles in the IFN-λ loci for responsiveness to IFN/RBV (i.e., C/C in rs12979860, T/T in rs8099917, and TT/TT in rs368234815). Rapid virological response (RVR) was determined mainly by the hepatitis C virus genotype. Among the cytokines analyzed, higher plasma levels of IL-17A and FGF were observed in non-RVR patients infected with viral genotype 1 and IP-10 was consistently elevated in RVR group infected with genotype 2 during the early phase of antiviral therapy. In addition, these three cytokines were correlated each other, suggesting a functional linkage of the cytokines in antiviral responses during IFN/RBV therapy. A low baseline frequencies of regulatory T cells and γδ T cells, but high level of group 2 innate lymphoid cells, in peripheral bloods were also significantly associated with the RVR group, implicating a potential role of the cellular immunity during the early phase of IFN/RBV therapy. Therefore, the immunological programs established by chronic hepatitis C and rapid disruption of the delicate balance by exogenous type I IFN might be associated with the subsequent virological outcomes in chronic hepatitis C patients.
Lee, Jae-Won; Kim, Won; Kwon, Eun-Kyung; Kim, Yuri; Shin, Hyun Mu; Kim, Dong-Hyun; Min, Chan-Ki; Choi, Ji-Yeob; Lee, Won-Woo; Choi, Myung-Sik; Kim, Byeong Gwan
2017-01-01
Type I interferons (IFNs) play an important role in antiviral immunity as well as immunopathogenesis of diverse chronic viral infections. However, the precise mechanisms regulating the multifaceted effects of type I IFNs on the immune system and pathological inflammation still remain unclear. In order to assess the immunological dynamics associated with rapid viral clearance in chronic hepatitis C patients during the acute phase of type I IFN therapy, we analyzed multiple parameters of virological and immunological responses in a cohort of 59 Korean hepatitis C patients who received pegylated IFN-α and ribavirin (IFN/RBV). Most of the Korean patients had favorable alleles in the IFN-λ loci for responsiveness to IFN/RBV (i.e., C/C in rs12979860, T/T in rs8099917, and TT/TT in rs368234815). Rapid virological response (RVR) was determined mainly by the hepatitis C virus genotype. Among the cytokines analyzed, higher plasma levels of IL-17A and FGF were observed in non-RVR patients infected with viral genotype 1 and IP-10 was consistently elevated in RVR group infected with genotype 2 during the early phase of antiviral therapy. In addition, these three cytokines were correlated each other, suggesting a functional linkage of the cytokines in antiviral responses during IFN/RBV therapy. A low baseline frequencies of regulatory T cells and γδ T cells, but high level of group 2 innate lymphoid cells, in peripheral bloods were also significantly associated with the RVR group, implicating a potential role of the cellular immunity during the early phase of IFN/RBV therapy. Therefore, the immunological programs established by chronic hepatitis C and rapid disruption of the delicate balance by exogenous type I IFN might be associated with the subsequent virological outcomes in chronic hepatitis C patients. PMID:28614389
Automated Microfluidic Instrument for Label-Free and High-Throughput Cell Separation.
Zhang, Xinjie; Zhu, Zhixian; Xiang, Nan; Long, Feifei; Ni, Zhonghua
2018-03-20
Microfluidic technologies for cell separation were reported frequently in recent years. However, a compact microfluidic instrument enabling thoroughly automated cell separation is still rarely reported until today due to the difficult hybrid between the macrosized fluidic control system and the microsized microfluidic device. In this work, we propose a novel and automated microfluidic instrument to realize size-based separation of cancer cells in a label-free and high-throughput manner. Briefly, the instrument is equipped with a fully integrated microfluidic device and a set of robust fluid-driven and control units, and the instrument functions of precise fluid infusion and high-throughput cell separation are guaranteed by a flow regulatory chip and two cell separation chips which are the key components of the microfluidic device. With optimized control programs, the instrument is successfully applied to automatically sort human breast adenocarcinoma cell line MCF-7 from 5 mL of diluted human blood with a high recovery ratio of ∼85% within a rapid processing time of ∼23 min. We envision that our microfluidic instrument will be potentially useful in many biomedical applications, especially cell separation, enrichment, and concentration for the purpose of cell culture and analysis.
Habaza, Mor; Kirschbaum, Michael; Guernth‐Marschner, Christian; Dardikman, Gili; Barnea, Itay; Korenstein, Rafi; Duschl, Claus
2016-01-01
A major challenge in the field of optical imaging of live cells is achieving rapid, 3D, and noninvasive imaging of isolated cells without labeling. If successful, many clinical procedures involving analysis and sorting of cells drawn from body fluids, including blood, can be significantly improved. A new label‐free tomographic interferometry approach is presented. This approach provides rapid capturing of the 3D refractive‐index distribution of single cells in suspension. The cells flow in a microfluidic channel, are trapped, and then rapidly rotated by dielectrophoretic forces in a noninvasive and precise manner. Interferometric projections of the rotated cell are acquired and processed into the cellular 3D refractive‐index map. Uniquely, this approach provides full (360°) coverage of the rotation angular range around any axis, and knowledge on the viewing angle. The experimental demonstrations presented include 3D, label‐free imaging of cancer cells and three types of white blood cells. This approach is expected to be useful for label‐free cell sorting, as well as for detection and monitoring of pathological conditions resulting in cellular morphology changes or occurrence of specific cell types in blood or other body fluids. PMID:28251046
A novel program to design siRNAs simultaneously effective to highly variable virus genomes.
Lee, Hui Sun; Ahn, Jeonghyun; Jun, Eun Jung; Yang, Sanghwa; Joo, Chul Hyun; Kim, Yoo Kyum; Lee, Heuiran
2009-07-10
A major concern of antiviral therapy using small interfering RNAs (siRNAs) targeting RNA viral genome is high sequence diversity and mutation rate due to genetic instability. To overcome this problem, it is indispensable to design siRNAs targeting highly conserved regions. We thus designed CAPSID (Convenient Application Program for siRNA Design), a novel bioinformatics program to identify siRNAs targeting highly conserved regions within RNA viral genomes. From a set of input RNAs of diverse sequences, CAPSID rapidly searches conserved patterns and suggests highly potent siRNA candidates in a hierarchical manner. To validate the usefulness of this novel program, we investigated the antiviral potency of universal siRNA for various Human enterovirus B (HEB) serotypes. Assessment of antiviral efficacy using Hela cells, clearly demonstrates that HEB-specific siRNAs exhibit protective effects against all HEBs examined. These findings strongly indicate that CAPSID can be applied to select universal antiviral siRNAs against highly divergent viral genomes.
Cheung, Kitty K.T.; Yau, Tiffany T.L.; Chow, Elaine; Ozaki, Risa
2018-01-01
The rapid increase in diabetes prevalence globally has contributed to large increases in health care expenditure on diabetic complications, posing a major health burden to countries worldwide. Asians are commonly observed to have poorer β-cell function and greater insulin resistance compared to the Caucasian population, which is attributed by their lower lean body mass and central obesity. This “double phenotype” as well as the rising prevalence of young onset diabetes in Asia has placed Asians with diabetes at high risk of cardiovascular and renal complications, with cancer emerging as an important cause of morbidity and mortality. The experience from Hong Kong had demonstrated that a multifaceted approach, involving team-based integrated care, information technological advances, and patient empowerment programs were able to reduce the incidence of diabetic complications, hospitalizations, and mortality. System change and public policies to enhance implementation of such programs may provide solutions to combat the burgeoning health problem of diabetes at a societal level. PMID:29589385
The Data-to-Action Framework: A Rapid Program Improvement Process.
Zakocs, Ronda; Hill, Jessica A; Brown, Pamela; Wheaton, Jocelyn; Freire, Kimberley E
2015-08-01
Although health education programs may benefit from quality improvement methods, scant resources exist to help practitioners apply these methods for program improvement. The purpose of this article is to describe the Data-to-Action framework, a process that guides practitioners through rapid-feedback cycles in order to generate actionable data to improve implementation of ongoing programs. The framework was designed while implementing DELTA PREP, a 3-year project aimed at building the primary prevention capacities of statewide domestic violence coalitions. The authors describe the framework's main steps and provide a case example of a rapid-feedback cycle and several examples of rapid-feedback memos produced during the project period. The authors also discuss implications for health education evaluation and practice. © 2015 Society for Public Health Education.
Single cell HaloChip assay on paper for point-of-care diagnosis.
Ma, Liyuan; Qiao, Yong; Jones, Ross; Singh, Narendra; Su, Ming
2016-11-01
This article describes a paper-based low cost single cell HaloChip assay that can be used to assess drug- and radiation-induced DNA damage at point-of-care. Printing ink on paper effectively blocks fluorescence of paper materials, provides high affinity to charged polyelectrolytes, and prevents penetration of water in paper. After exposure to drug or ionizing radiation, cells are patterned on paper to create discrete and ordered single cell arrays, embedded inside an agarose gel, lysed with alkaline solution to allow damaged DNA fragments to diffuse out of nucleus cores, and form diffusing halos in the gel matrix. After staining DNA with a fluorescent dye, characteristic halos formed around cells, and the level of DNA damage can be quantified by determining sizes of halos and nucleus with an image processing program based on MATLAB. With its low fabrication cost and easy operation, this HaloChip on paper platform will be attractive to rapidly and accurately determine DNA damage for point-of-care evaluation of drug efficacy and radiation condition. Graphical Abstract Single cell HaloChip on paper.
Measuring Apoptosis by Microscopy and Flow Cytometry.
Hollville, Emilie; Martin, Seamus J
2016-02-02
Apoptosis is a mode of programmed cell death that plays an important role during development and in the maintenance of tissue homeostasis. Numerous physiological as well as pathological stimuli trigger apoptosis such as engagement of Fas, TRAIL, or TNF receptors, growth factor deprivation, hypoxia, or exposure to cytotoxic drugs. Apoptosis is coordinated from within by members of the caspase family of cysteine proteases that, upon activation, trigger a series of morphological changes including cell shrinkage, extensive plasma membrane blebbing, chromatin condensation, DNA hydrolysis, and nuclear fragmentation. These dramatic structural and biochemical alterations result not only in the controlled dismantling of the cell, but also in the efficient recognition and removal of apoptotic cells by phagocytes. Necrosis, which is typically nonprogrammed or imposed upon the cell by overwhelming membrane or organelle damage, is characterized by rapid plasma membrane rupture followed by organelle and cell swelling. Necrosis is often provoked by infectious agents or a severe departure from physiological conditions. This unit describes protocols for the measurement of apoptosis and for distinguishing apoptosis from necrosis. Copyright © 2016 John Wiley & Sons, Inc.
Guidelines and recommendations on yeast cell death nomenclature
Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J.; Breitenbach, Michael; Burhans, William C.; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F.; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B.; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W.; Grant, Chris M.; Greenwood, Michael T.; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M.; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P.; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A.; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D.; Outeiro, Tiago F.; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F.; Sharon, Amir; Sigrist, Stephan J.; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M.; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B.; Tuite, Mick; Vögtle, F.-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J.; Zhao, Richard Y.; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank
2018-01-01
Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research. PMID:29354647
Sojka, Dorothy K.; Fowell, Deborah J.
2011-01-01
CD4+CD25+Forkhead box P3 (Foxp3)+ regulatory T cells (Tregs) control immune responses to self and foreign antigens in secondary lymphoid organs and at tissue sites of inflammation. Tregs can modify the function of many immune cells and have been proposed to block early proliferation, differentiation, and effector function. Acute ablation of Tregs has revealed rapid cytokine production immediately after Treg removal, suggesting that Tregs may regulate effector function acutely rather than regulating the programming for immune function. We developed in vitro and in vivo models that enabled the direct test of Treg regulation of T-helper cell type 1 (Th1) differentiation. CD28 signaling is known to abrogate Treg suppression of IL-2 secretion and proliferation, but our studies show that Treg suppression of IFN-γ during Th1 priming proceeds despite enhanced CD28 signaling. Importantly, during Th1 differentiation, Tregs inhibited early IFN-γ transcription without disrupting expression of Th1-specific T-box transcription factor (Tbet) and Th1 programming. Acute shutoff of effector cytokine production by Tregs was selective for IFN-γ but not TNF-α and was independent of TGF-β and Epstein-Barr virus-induced gene 3. In vivo, Tregs potently controlled CD4 IFN-γ and CD4 effector cell expansion in the lymph node (four- to fivefold reduction) but not Th1 programming, independent of IL-10. Tregs additionally reduced CD4 IFN-γ in the inflamed dermis (twofold reduction) dependent on their production of IL-10. We propose a model for Treg inhibition of effector function based on acute cytokine regulation. Interestingly, Tregs used different regulatory mechanisms to regulate IFN-γ (IL-10–dependent or –independent) subject to the target T-cell stage of activation and its tissue location. PMID:22025707
Dimethyl Sulfoxide Protects Escherichia coli from Rapid Antimicrobial-Mediated Killing.
Mi, Hongfei; Wang, Dai; Xue, Yunxin; Zhang, Zhi; Niu, Jianjun; Hong, Yuzhi; Drlica, Karl; Zhao, Xilin
2016-08-01
The contribution of reactive oxygen species (ROS) to antimicrobial lethality was examined by treating Escherichia coli with dimethyl sulfoxide (DMSO), an antioxidant solvent frequently used in antimicrobial studies. DMSO inhibited killing by ampicillin, kanamycin, and two quinolones and had little effect on MICs. DMSO-mediated protection correlated with decreased ROS accumulation and provided evidence for ROS-mediated programmed cell death. These data support the contribution of ROS to antimicrobial lethality and suggest caution when using DMSO-dissolved antimicrobials for short-time killing assays. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
A Versatile Rocket Engine Hot Gas Facility
NASA Technical Reports Server (NTRS)
Green, James M.
1993-01-01
The capabilities of a versatile rocket engine facility, located in the Rocket Laboratory at the NASA Lewis Research Center, are presented. The gaseous hydrogen/oxygen facility can be used for thermal shock and hot gas testing of materials and structures as well as rocket propulsion testing. Testing over a wide range of operating conditions in both fuel and oxygen rich regimes can be conducted, with cooled or uncooled test specimens. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods with rapid turnaround between programs.
EMERGING BIOLOGICAL PRINCIPLES OF METASTASIS
Lambert, Arthur W.; Pattabiraman, Diwakar R.; Weinberg, Robert A.
2016-01-01
Metastases account for the great majority of cancer-associated deaths, yet this complex process remains the least understood aspect of cancer biology. As the body of research concerning metastasis continues to grow at a rapid rate, the biological programs that underlie the dissemination and metastatic outgrowth of cancer cells are beginning to come into view. In this review we summarize the cellular and molecular mechanisms involved in metastasis, with a focus on carcinomas where the most is known, and highlight the general principles of metastasis that have begun to emerge. PMID:28187288
What is proteomics? Proteomics is a highly automated and rapid method for measuring all the proteins in a biological sample. Proteins are the molecules that actually do most of the work inside a cell. When researchers develop cancer drugs, those drugs typically target proteins, so scientists and clinicians really have to understand what the proteins are doing. Proteomics researchers are now able to measure up to 10,000 proteins per tumor sample.
Indonesia [Population education in countries of the region].
Hardjosawarmono, S
1982-06-01
Indonesia currently faces 5 population problems: 1) large total population, estimated by 1980 census data at 147,383,075; 2) rapid population growth, increasing at the rate of 2.8 million annually by 1980; 3) a young population distribution, with 44% of the population under age 15; 4) uneven population distribution; and 5) rapid urbanization. The National Family Planning Coordinating Board (NFPCB), established in 1970 to plan and control family planning and population education, has set the goal of reducing the 1971 fertility rate by 50% by 1990. Population education is aimed at achieving voluntary acceptance of the small family idea. This is to be attained through awareness of the factors causing rapid population growth and the close interaction between such growth and development programs to enhance the standard of living. The population education program, which is administered by the Department of Education and Culture in cooperation with the NFPCB, underwent an orientation stage in 1970-72 and a pilot project stage in 1973-75. In the latter stage, teaching materials were developed and tested in 30 junior high schools. During the institutionalization stage, 1976-79, the program was systematically integrated into the educational system. Population topics are integrated with relevant subject areas from the 4th grade of elementary school to the 3rd grade of senior high school. A cell system is used to train teachers, who in turn train teachers in their respective schools. Population education has also been introduced into Indonesia's subsidiary schools under religious and Armed Forces jurisdiction. Current population education activities include the training of an additional 50,000 teachers and provision of teaching kits, slide projectors, and textbooks to all of the 160 nonformal learning centers. In addition, a number of government agencies, including the Ministries of Sports and Culture, Education, Health, Transmigration, Information, Religious Affairs, Home Affairs, and Defense, are involved in education programs aimed at those ages 10-45 who are outside of the educational system.
Mo, Xuejun; Li, Qiushi; Yi Lui, Lena Wai; Zheng, Baixue; Kang, Chiang Huen; Nugraha, Bramasta; Yue, Zhilian; Jia, Rui Rui; Fu, Hong Xia; Choudhury, Deepak; Arooz, Talha; Yan, Jie; Lim, Chwee Teck; Shen, Shali; Hong Tan, Choon; Yu, Hanry
2010-10-01
Tissue constructs that mimic the in vivo cell-cell and cell-matrix interactions are especially useful for applications involving the cell- dense and matrix- poor internal organs. Rapid and precise arrangement of cells into functional tissue constructs remains a challenge in tissue engineering. We demonstrate rapid assembly of C3A cells into multi- cell structures using a dendrimeric intercellular linker. The linker is composed of oleyl- polyethylene glycol (PEG) derivatives conjugated to a 16 arms- polypropylenimine hexadecaamine (DAB) dendrimer. The positively charged multivalent dendrimer concentrates the linker onto the negatively charged cell surface to facilitate efficient insertion of the hydrophobic oleyl groups into the cellular membrane. Bringing linker- treated cells into close proximity to each other via mechanical means such as centrifugation and micromanipulation enables their rapid assembly into multi- cellular structures within minutes. The cells exhibit high levels of viability, proliferation, three- dimensional (3D) cell morphology and other functions in the constructs. We constructed defined multi- cellular structures such as rings, sheets or branching rods that can serve as potential tissue building blocks to be further assembled into complex 3D tissue constructs for biomedical applications. 2010 Elsevier Ltd. All rights reserved.
Habertheuer, K H; Kier, P; Ruckser, R; Scherz, M; Höniger, S; Sebesta, C; Tiefengraber, E; Schmid, A; Mandl, A; Sterz, M
1995-01-01
Organization of high dose chemotherapy with stem cell transplantation essentially requires EDV-support. "ONCOBASE" has been adapted into the Donauspital network on May 1, 1992. We report about the 2-year clinical experience with ONCOBASE: 1. ONCOBASE effectively supports communication between the ward, ambulance and hospital pharmacy (where all cytostatics are prepared). 2. ONCOBASE provides better surveillance concerning all therapeutic procedures including cytostatic drugs and supportive therapies. 3. ONCOBASE allows the generation of medical letters which include all drugs and supportive therapies delivered. 4. Since ONCOBASE is a database program, all informations concerning the patients are registered. These include cumulative drug doses, information on side effects, blood cell kinetics after previous therapies, kinetics of tumor markers and results of further examinations. 5. ONCOBASE permits rapid data exchange with other hospital networks using the communication data record governed by the "Arbeitskreis für EDV der deutschen Gesellschaft für Hämatoonkologie".
Non-metabolic functions of glycolytic enzymes in tumorigenesis.
Yu, X; Li, S
2017-05-11
Cancer cells reprogram their metabolism to meet the requirement for survival and rapid growth. One hallmark of cancer metabolism is elevated aerobic glycolysis and reduced oxidative phosphorylation. Emerging evidence showed that most glycolytic enzymes are deregulated in cancer cells and play important roles in tumorigenesis. Recent studies revealed that all essential glycolytic enzymes can be translocated into nucleus where they participate in tumor progression independent of their canonical metabolic roles. These noncanonical functions include anti-apoptosis, regulation of epigenetic modifications, modulation of transcription factors and co-factors, extracellular cytokine, protein kinase activity and mTORC1 signaling pathway, suggesting that these multifaceted glycolytic enzymes not only function in canonical metabolism but also directly link metabolism to epigenetic and transcription programs implicated in tumorigenesis. These findings underscore our understanding about how tumor cells adapt to nutrient and fuel availability in the environment and most importantly, provide insights into development of cancer therapy.
Synthesis and cell-free cloning of DNA libraries using programmable microfluidics
Yehezkel, Tuval Ben; Rival, Arnaud; Raz, Ofir; Cohen, Rafael; Marx, Zipora; Camara, Miguel; Dubern, Jean-Frédéric; Koch, Birgit; Heeb, Stephan; Krasnogor, Natalio; Delattre, Cyril; Shapiro, Ehud
2016-01-01
Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development. PMID:26481354
Bou Ghanem, Elsa N; Nelson, Christina C; D'Orazio, Sarah E F
2011-02-01
A subset of CD44(hi)CD8(+) T cells isolated from C57BL/6/J (B6) mice, but not BALB/c/By/J (BALB/c) mice, rapidly secrete IFN-γ within 16 h of infection with Listeria monocytogenes. This Ag-independent response requires the presence of both IL-12 and IL-18. Previous studies showed that dendritic cells from B6 mice produced more Th1-type cytokines such as IL-12 than did those from BALB/c mice in response to L. monocytogenes infection. In this report, we demonstrate that the microenvironment in L. monocytogenes-infected BALB/c mice is sufficient to induce responsive B6 CD8(+) T cells to rapidly secrete IFN-γ. Furthermore, BALB/c CD8(+) T cells did not rapidly secrete IFN-γ even when they were exposed to high concentrations of IL-12 plus IL-18 in vitro. In the presence of IL-12 and IL-18, B6 CD44(hi)CD8(+) T cells upregulated expression of the receptor subunits for these cytokines more rapidly than did BALB/c T cells. In comparing particular subsets of memory phenotype CD8(+) T cells, we found that virtual memory cells, rather than true Ag-experienced cells, had the greatest level of impairment in BALB/c mice. These data suggest that the degree of cytokine-driven bystander activation of CD8(+) T cells that occurs during infection depends on both APCs and T cell-intrinsic properties that can vary among mouse strains.
Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.A. Christini; R.K. Dawless; S.P. Ray
2001-11-05
During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase andmore » Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be done. The anode composition needs further improvements to attain commercial purity targets. At the present corrosion rate, the vertical plate anodes will wear too rapidly leading to a rapidly increasing anode-cathode gap and thermal instabilities in the cell. Cathode wetting as a function of both cathode plate composition and bath composition needs to be better understood to ensure that complete drainage of the molten aluminum off the plates occurs. Metal buildup appears to lead to back reaction and low current efficiencies.« less
Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices
NASA Astrophysics Data System (ADS)
Singha, Santiswarup; Shao, Kun; Yang, Yang; Clemente-Casares, Xavier; Solé, Patricia; Clemente, Antonio; Blanco, Jesús; Dai, Qin; Song, Fayi; Liu, Shang Wan; Yamanouchi, Jun; Umeshappa, Channakeshava Sokke; Nanjundappa, Roopa Hebbandi; Detampel, Pascal; Amrein, Matthias; Fandos, César; Tanguay, Robert; Newbigging, Susan; Serra, Pau; Khadra, Anmar; Chan, Warren C. W.; Santamaria, Pere
2017-07-01
We have shown that nanoparticles (NPs) can be used as ligand-multimerization platforms to activate specific cellular receptors in vivo. Nanoparticles coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHC) blunted autoimmune responses by triggering the differentiation and expansion of antigen-specific regulatory T cells in vivo. Here, we define the engineering principles impacting biological activity, detail a synthesis process yielding safe and stable compounds, and visualize how these nanomedicines interact with cognate T cells. We find that the triggering properties of pMHC-NPs are a function of pMHC intermolecular distance and involve the sustained assembly of large antigen receptor microclusters on murine and human cognate T cells. These compounds show no off-target toxicity in zebrafish embryos, do not cause haematological, biochemical or histological abnormalities, and are rapidly captured by phagocytes or processed by the hepatobiliary system. This work lays the groundwork for the design of ligand-based NP formulations to re-program in vivo cellular responses using nanotechnology.
Pietras, Eric M.; Mirantes-Barbeito, Cristina; Fong, Sarah; Loeffler, Dirk; Kovtonyuk, Larisa V.; Zhang, SiYi; Lakshminarasimhan, Ranjani; Chin, Chih Peng; Techner, José-Marc; Will, Britta; Nerlov, Claus; Steidl, Ulrich; Manz, Markus G.; Schroeder, Timm; Passegué, Emmanuelle
2016-01-01
Haematopoietic stem cells (HSC) maintain lifelong blood production and increase blood cell numbers in response to chronic and acute injury. However, the mechanism(s) by which inflammatory insults are communicated to HSCs and their consequences for HSC activity remain largely unknown. Here, we demonstrate that interleukin-1 (IL-1), which functions as a key pro-inflammatory ‘emergency’ signal, directly accelerates cell division and myeloid differentiation of HSCs via precocious activation of a PU.1-dependent gene program. While this effect is essential for rapid myeloid recovery following acute injury to the bone marrow (BM), chronic IL-1 exposure restricts HSC lineage output, severely erodes HSC self-renewal capacity, and primes IL-1-exposed HSCs to fail massive replicative challenges like transplantation. Importantly, these damaging effects are transient and fully reversible upon IL-1 withdrawal. Our results identify a critical regulatory circuit that tailors HSC responses to acute needs, and likely underlies deregulated blood homeostasis in chronic inflammation conditions. PMID:27111842
Thrash, Barry R; Menges, Craig W; Pierce, Robert H; McCance, Dennis J
2006-04-28
Keratinocyte differentiation and stratification are complex processes involving multiple signaling pathways, which convert a basal proliferative cell into an inviable rigid squame. Loss of attachment to the basement membrane triggers keratinocyte differentiation, while in other epithelial cells, detachment from the extracellular matrix leads to rapid programmed cell death or anoikis. The potential role of AKT in providing a survival signal necessary for stratification and differentiation of primary human keratinocytes was investigated. AKT activity increased during keratinocyte differentiation and was attributed to the specific activation of AKT1 and AKT2. Targeted reduction of AKT1 expression, but not AKT2, by RNA interference resulted in an abnormal epidermis in organotypic skin cultures with a thin parabasal region and a pronounced but disorganized cornified layer. This abnormal stratification was due to significant cell death in the suprabasal layers and was alleviated by caspase inhibition. Normal expression patterns of both early and late markers of keratinocyte differentiation were also disrupted, producing a poorly developed stratum corneum.
Production of Purified CasRNPs for Efficacious Genome Editing.
Lingeman, Emily; Jeans, Chris; Corn, Jacob E
2017-10-02
CRISPR-Cas systems have been harnessed as modular genome editing reagents for functional genomics and show promise to cure genetic diseases. Directed by a guide RNA, a Cas effector introduces a double stranded break in DNA and host cell DNA repair leads to the introduction of errors (e.g., to knockout a gene) or a programmed change. Introduction of a Cas effector and guide RNA as a purified Cas ribonucleoprotein complex (CasRNP) has recently emerged as a powerful approach to alter cell types and organisms. Not only does CasRNP editing exhibit increased efficacy and specificity, it avoids optimization and iteration of species-specific factors such as codon usage, promoters, and terminators. CasRNP editing has been rapidly adopted for research use in many contexts and is quickly becoming a popular method to edit primary cells for therapeutic application. This article describes how to make a Cas9 RNP and outlines its use for gene editing in human cells. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Large-Scale Culture and Genetic Modification of Human Natural Killer Cells for Cellular Therapy.
Lapteva, Natalia; Parihar, Robin; Rollins, Lisa A; Gee, Adrian P; Rooney, Cliona M
2016-01-01
Recent advances in methods for the ex vivo expansion of human natural killer (NK) cells have facilitated the use of these powerful immune cells in clinical protocols. Further, the ability to genetically modify primary human NK cells following rapid expansion allows targeting and enhancement of their immune function. We have successfully adapted an expansion method for primary NK cells from peripheral blood mononuclear cells or from apheresis products in gas permeable rapid expansion devices (G-Rexes). Here, we describe an optimized protocol for rapid and robust NK cell expansion as well as a method for highly efficient retroviral transduction of these ex vivo expanded cells. These methodologies are good manufacturing practice (GMP) compliant and could be used for clinical-grade product manufacturing.
Staged venting of fuel cell system during rapid shutdown
Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.
2002-01-01
A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.
Staged venting of fuel cell system during rapid shutdown
Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.
2004-09-14
A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.
DNA linkage studies of degenerative retinal diseases.
Daiger, S P; Heckenlively, J R; Lewis, R A; Pelias, M Z
1987-01-01
DNA linkage studies of human genetic diseases have led to rapid characterization of a number of otherwise intractable disease loci. Detection of a linked DNA marker, the first step in "reverse genetics", has permitted cloning of the genes for Duchenne muscular dystrophy, retinoblastoma and chronic granulomatosis disease, among others. Thus, the case for applying these techniques to retinitis pigmentosa and related diseases, and the urgency in capitalizing on molecular developments, is justified and compelling. The first major success regarding RP was in demonstrating linkage of the DNA marker DXS7 (L1.28) to XRP. For autosomal forms of the disease, conventional linkage studies have provided tentative evidence for linkage of ADRP to the Rh blood group on chromosome lp and for linkage of Usher's syndrome to Gc and 4q. These provisional assignments are, at least, an important starting point for DNA analysis. The Support Program for DNA Linkage Studies of Degenerative Retinal Diseases was established to provide access for the scientific community to appropriate families, using the resources of the Human Genetic Mutant Cell Repository to prepare, store and distribute lymphoblast lines. To date, two extensive, well-characterized families are included in the program: the autosomal dominant RP family UCLA-RP01, and the Usher's syndrome families LSU-US01. It is highly likely that rapid progress will be made in mapping and characterizing the inherited retinal dystrophies. We believe the support program will facilitate this progress.
Bus Rapid Transit Demonstration Program
DOT National Transportation Integrated Search
1998-12-31
This report was prepared by the Federal Transit Administration's (FTA) Office of Research, Demonstration and Innovation. It describes the FTA's Bus Rapid Transit Demonstration Program, designed to provide funding and support to transit agencies engag...
Endothelial necrosis at 1h post-burn predicts progression of tissue injury
Hirth, Douglas; McClain, Steve A.; Singer, Adam J.; Clark, Richard A.F.
2013-01-01
Burn injury progression has not been well characterized at the cellular level. To define burn injury progression in terms of cell death, histopathologic spatiotemporal relationships of cellular necrosis and apoptosis were investigated in a validated porcine model of vertical burn injury progression. Cell necrosis was identified by High Mobility Group Box 1 protein and apoptosis by Caspase 3a staining of tissue samples taken 1h, 24h and 7 days post-burn. Level of endothelial cell necrosis at 1h was predictive of level of apoptosis at 24h (Pearson's r=0.87) and of level of tissue necrosis at 7 days (Pearson's r=0.87). Furthermore, endothelial cell necrosis was deeper than interstitial cell necrosis at 1h (p<0.001). Endothelial cell necrosis at 1h divided the zone of injury progression (Jackson's zone of stasis) into an upper subzone with necrotic endothelial cells and initially viable adnexal and interstitial cells at 1h that progressed to necrosis by 24h, and a lower zone with initially viable endothelial cells at 1h, but necrosis and apoptosis of all cell types by 24h. Importantly, this spatiotemporal series of events and rapid progression resembles myocardial infarction and stroke, and implicates mechanisms of these injuries, ischemia, ischemia reperfusion, and programmed cell death, in burn progression. PMID:23627744
Thermal abuse performance of high-power 18650 Li-ion cells
NASA Astrophysics Data System (ADS)
Roth, E. P.; Doughty, D. H.
High-power 18650 Li-ion cells have been developed for hybrid electric vehicle applications as part of the DOE Advanced Technology Development (ATD) program. The thermal abuse response of two advanced chemistries (Gen1 and Gen2) were measured and compared with commercial Sony 18650 cells. Gen1 cells consisted of an MCMB graphite based anode and a LiNi 0.85Co 0.15O 2 cathode material while the Gen2 cells consisted of a MAG10 anode graphite and a LiNi 0.80Co 0.15 Al 0.05O 2 cathode. Accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC) were used to measure the thermal response and properties of the cells and cell materials up to 400 °C. The MCMB graphite was found to result in increased thermal stability of the cells due to more effective solid electrolyte interface (SEI) formation. The Al stabilized cathodes were seen to have higher peak reaction temperatures that also gave improved cell thermal response. The effects of accelerated aging on cell properties were also determined. Aging resulted in improved cell thermal stability with the anodes showing a rapid reduction in exothermic reactions while the cathodes only showed reduced reactions after more extended aging.
Banerjee, Shashwat S; Jalota-Badhwar, Archana; Satavalekar, Sneha D; Bhansali, Sujit G; Aher, Naval D; Mascarenhas, Russel R; Paul, Debjani; Sharma, Somesh; Khandare, Jayant J
2013-06-01
A multicomponent magneto-dendritic nanosystem (MDNS) is designed for rapid tumor cell targeting, isolation, and high-resolution imaging by a facile bioconjugation approach. The highly efficient and rapid-acting MDNS provides a convenient platform for simultaneous isolation and high-resolution imaging of tumor cells, potentially leading towards an early diagnosis of cancer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ZBTB32 restricts the duration of memory B cell recall responses1
Jash, Arijita; Wang, Yinan; Weisel, Florian J.; Scharer, Christopher D.; Boss, Jeremy M.; Shlomchik, Mark J.; Bhattacharya, Deepta
2016-01-01
Memory B cell responses are more rapid and of greater magnitude than are primary antibody responses. The mechanisms by which these secondary responses are eventually attenuated remain unknown. We demonstrate that the transcription factor ZBTB32 limits the rapidity and duration of antibody recall responses. ZBTB32 is highly expressed by mouse and human memory B cells, but not by their naïve counterparts. Zbtb32−/− mice mount normal primary antibody responses to T-dependent antigens. However, Zbtb32−/− memory B cell-mediated recall responses occur more rapidly and persist longer than do control responses. Microarray analyses demonstrate that Zbtb32−/− secondary bone marrow plasma cells display elevated expression of genes that promote cell cycle progression and mitochondrial function relative to wild-type controls. BrdU labeling and adoptive transfer experiments confirm more rapid production and a cell-intrinsic survival advantage of Zbtb32−/− secondary plasma cells relative to wild-type counterparts. ZBTB32 is therefore a novel negative regulator of antibody recall responses. PMID:27357154
Mazur, Peter
1963-01-01
Few, if any, yeast cells survived rapid cooling to -196°C and subsequent slow warming. After rapid freezing, the suspensions absorbed latent heat of fusion between -15° and 0°C during warming, and the relation between the amount of heat absorbed and the concentration of cells was the same as that in equivalent KCl solutions, indicating that frozen suspensions behave thermally like frozen solutions. The amount of heat absorbed was such that more than 80 per cent of the intracellular solution had to be frozen. The conductometric behavior of frozen suspensions showed that cell solutes were still inside the cells and surrounded by an intact cell membrane at the time heat was being absorbed. Two models are consistent with these findings. The first assumes that intracellular freezing has taken place; the second that all freezable water has left the cells and frozen externally. The latter model is ruled out because rapidly cooled cells do not shrink by an amount equal to the volume of water that would have to be withdrawn to prevent internal freezing. PMID:13934216
The Data-to-Action Framework: A Rapid Program Improvement Process
ERIC Educational Resources Information Center
Zakocs, Ronda; Hill, Jessica A.; Brown, Pamela; Wheaton, Jocelyn; Freire, Kimberley E.
2015-01-01
Although health education programs may benefit from quality improvement methods, scant resources exist to help practitioners apply these methods for program improvement. The purpose of this article is to describe the Data-to-Action framework, a process that guides practitioners through rapid-feedback cycles in order to generate actionable data to…
The Rapid Adjustment Farm Program's Influence on Other Farms in the Community.
ERIC Educational Resources Information Center
Simeral, Kenneth D.
The study investigated the diffusion of innovative farming practices from Rapid Adjustment Farms (RAF) to other farms in southeast Ohio. The RAF program, begun in 1968, introduced new technology and management practices to its participant farmers. After reviewing literature of farming programs' information diffusion, a descriptive survey was made…
Increased mitochondrial-encoded gene transcription in immortal DF-1 cells.
Kim, H; You, S; Kim, I J; Farris, J; Foster, L K; Foster, D N
2001-05-01
We have established, in continuous cell culture, a spontaneously immortalized chicken embryo fibroblast (CEF) cell line (DF-1) as well as several other immortal CEF cell lines. The immortal DF-1 cells divided more rapidly than primary and other immortal CEF cells. To identify the genes involved in rapidly dividing DF-1 cells, we have used differential display RT-PCR. Of the numerous genes analyzed, three mitochondrial-encoded genes (ATPase 8/6, 16S rRNA, and cytochrome b) were shown to express at higher levels in DF-1 cells compared to primary and other immortal CEF cells. The inhibition of mitochondrial translation by treatment with chloramphenicol markedly decreased ATP production and cell proliferation in DF-1 cells, while not affecting growth in either primary or other immortal CEF cells. This result suggests a correlation between rapid cell proliferation and the increased mitochondrial respiratory functions. We also determined that the increased transcription of mitochondrial-encoded genes in DF-1 cells is due to increased de novo transcript synthesis as shown by mitochondrial run-on assays, and not the result of either increased mitochondrial biogenesis or mitochondrial transcript half-lives. Together, the present studies suggest that the transcriptional activation of mitochondrial-encoded genes and the elevated respiratory function should be one of the characteristics of rapidly dividing immortal cells. Copyright 2001 Academic Press.
NASA Technical Reports Server (NTRS)
Rakoczy, John; Heater, Daniel; Lee, Ashley
2013-01-01
Marshall Space Flight Center's (MSFC) Small Projects Rapid Integration and Test Environment (SPRITE) is a Hardware-In-The-Loop (HWIL) facility that provides rapid development, integration, and testing capabilities for small projects (CubeSats, payloads, spacecraft, and launch vehicles). This facility environment focuses on efficient processes and modular design to support rapid prototyping, integration, testing and verification of small projects at an affordable cost, especially compared to larger type HWIL facilities. SPRITE (Figure 1) consists of a "core" capability or "plant" simulation platform utilizing a graphical programming environment capable of being rapidly re-configured for any potential test article's space environments, as well as a standard set of interfaces (i.e. Mil-Std 1553, Serial, Analog, Digital, etc.). SPRITE also allows this level of interface testing of components and subsystems very early in a program, thereby reducing program risk.
Computer Model for Sizing Rapid Transit Tunnel Diameters
DOT National Transportation Integrated Search
1976-01-01
A computer program was developed to assist the determination of minimum tunnel diameters for electrified rapid transit systems. Inputs include vehicle shape, walkway location, clearances, and track geometrics. The program written in FORTRAN IV calcul...
Vaccinia Virus Induces Rapid Necrosis in Keratinocytes by a STAT3-Dependent Mechanism
He, Yong; Fisher, Robert; Chowdhury, Soma; Sultana, Ishrat; Pereira, Claudia P.; Bray, Mike; Reed, Jennifer L.
2014-01-01
Rationale Humans with a dominant negative mutation in STAT3 are susceptible to severe skin infections, suggesting an essential role for STAT3 signaling in defense against cutaneous pathogens. Methods To focus on innate antiviral defenses in keratinocytes, we used a standard model of cutaneous infection of severe combined immunodeficient mice with the current smallpox vaccine, ACAM-2000. In parallel, early events post-infection with the smallpox vaccine ACAM-2000 were investigated in cultured keratinocytes of human and mouse origin. Results Mice treated topically with a STAT3 inhibitor (Stattic) developed larger vaccinia lesions with higher virus titers and died more rapidly than untreated controls. Cultured human and murine keratinocytes infected with ACAM-2000 underwent rapid necrosis, but when treated with Stattic or with inhibitors of RIP1 kinase or caspase-1, they survived longer, produced higher titers of virus, and showed reduced activation of type I interferon responses and inflammatory cytokines release. Treatment with inhibitors of RIP1 kinase and STAT3, but not caspase-1, also reduced the inflammatory response of keratinocytes to TLR ligands. Vaccinia growth properties in Vero cells, which are known to be defective in some antiviral responses, were unaffected by inhibition of RIP1K, caspase-1, or STAT3. Conclusions Our findings indicate that keratinocytes suppress the replication and spread of vaccinia virus by undergoing rapid programmed cell death, in a process requiring STAT3. These data offer a new framework for understanding susceptibility to skin infection in patients with STAT3 mutations. Interventions which promote prompt necroptosis/pyroptosis of infected keratinocytes may reduce risks associated with vaccination with live vaccinia virus. PMID:25419841
Frimpong, Jemima A; D'Aunno, Thomas; Perlman, David C; Strauss, Shiela M; Mallow, Alissa; Hernandez, Diana; Schackman, Bruce R; Feaster, Daniel J; Metsch, Lisa R
2016-03-03
More than 1.2 million people in the United States are living with human immunodeficiency virus (HIV), and 3.2 million are living with hepatitis C virus (HCV). An estimated 25 % of persons living with HIV also have HCV. It is therefore of great public health importance to ensure the prompt diagnosis of both HIV and HCV in populations that have the highest prevalence of both infections, including individuals with substance use disorders (SUD). In this theory-driven, efficacy-effectiveness-implementation hybrid study, we will develop and test an on-site bundled rapid HIV/HCV testing intervention for SUD treatment programs. Its aim is to increase the receipt of HIV and HCV test results among SUD treatment patients. Using a rigorous process involving patients, providers, and program managers, we will incorporate rapid HCV testing into evidence-based HIV testing and linkage to care interventions. We will then test, in a randomized controlled trial, the extent to which this bundled rapid HIV/HCV testing approach increases receipt of HIV and HCV test results. Lastly, we will conduct formative research to understand the barriers to, and facilitators of, the adoption, implementation, and sustainability of the bundled rapid testing strategy in SUD treatment programs. Novel approaches that effectively integrate on-site rapid HIV and rapid HCV testing are needed to address both the HIV and HCV epidemics. If feasible and efficacious, bundled rapid HIV/HCV testing may offer a scalable, potentially cost-effective approach to testing high-risk populations, such as patients of SUD treatment programs. It may ultimately lead to improved linkage to care and progress through the HIV and HCV care and treatment cascades. ClinicalTrials.gov: NCT02355080 . (30 January 2015).
Development of a Thin Film Solar Cell Interconnect for the Powersphere Concept
NASA Technical Reports Server (NTRS)
Simburger, Edward J.; Matsumoto, James H.; Giants, Thomas W.; Garcia, Alexander, III; Liu, Simon; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig H.; Lin, John K.; Scarborough, Stephen
2003-01-01
Progressive development of microsatellite technologies has resulted in increased demand for lightweight electrical power subsystems including solar arrays. The use of thin film photovoltaics has been recognized as a key solution to meet the power needs. The lightweight cells can generate sufficient power and still meet critical mass requirements. Commercially available solar cells produced on lightweight substrates are being studied as an option to fulfill the power needs. The commercially available solar cells are relatively inexpensive and have a high payoff potential. Commercially available thin film solar cells are primarily being produced for terrestrial applications. The need to convert the solar cell from a terrestrial to a space compatible application is the primary challenge. Solar cell contacts, grids and interconnects need to be designed to be atomic oxygen resistant and withstand rapid thermal cycling environments. A mechanically robust solar cell interconnect is also required in order to withstand handling during fabrication and survive during launch. The need to produce the solar cell interconnects has been identified as a primary goal of the Powersphere program and is the topic of this paper. Details of the trade study leading to the final design involving the solar cell wrap around contact, flex blanket, welding process, and frame will be presented at the conference.
Feldman, Ross D; Limbird, Lee E
2017-01-06
Although the rapid effects of steroids, such as estrogen and aldosterone, were postulated originally to be nongenomic, it is now appreciated that activation of such signaling pathways via a steroid-acting G protein-coupled receptor, the G protein estrogen receptor (GPER), has important transcription-dependent outcomes in the regulation of cell growth and programmed cell death secondary to GPER-regulated second-messenger pathways. GPER is expressed ubiquitously and has diverse biological effects, including regulation of endocrine, immune, neuronal, and cardiovascular functions. Perhaps the most biologically important consequences of GPER activation are the regulation of cell growth, migration, and apoptotic cell death. These cell growth regulatory effects, important in cancer biology, are also relevant in the regulation of cardiac and vascular hypertrophy and in the response to ischemia. This review provides a summary of relevant findings of the impact of GPER regulation by either estradiol or aldosterone in in vitro model systems and extends those findings to in vivo studies of direct clinical relevance for development of GPER-directed agents for treatment of cancer and cardiovascular diseases associated with cellular proliferation.
Kageyama, Tatsuto; Kakegawa, Takahiro; Osaki, Tatsuya; Enomoto, Junko; Ito, Taichi; Nittami, Tadashi; Fukuda, Junji
2014-06-01
Fabrication of perfusable vascular networks in vitro is one of the most critical challenges in the advancement of tissue engineering. Because cells consume oxygen and nutrients during the fabrication process, a rapid fabrication approach is necessary to construct cell-dense vital tissues and organs, such as the liver. In this study, we propose a rapid molding process using an in situ crosslinkable hydrogel and electrochemical cell transfer for the fabrication of perfusable vascular structures. The in situ crosslinkable hydrogel was composed of hydrazide-modified gelatin (gelatin-ADH) and aldehyde-modified hyaluronic acid (HA-CHO). By simply mixing these two solutions, the gelation occurred in less than 20 s through the formation of a stable hydrazone bond. To rapidly transfer cells from a culture surface to the hydrogel, we utilized a zwitterionic oligopeptide, which forms a self-assembled molecular layer on a gold surface. Human umbilical vein endothelial cells adhering on a gold surface via the oligopeptide layer were transferred to the hydrogel within 5 min, along with electrochemical desorption of the oligopeptides. This approach was applicable to cylindrical needles 200-700 µm in diameter, resulting in the formation of perfusable microchannels where the internal surface was fully enveloped with the transferred endothelial cells. The entire fabrication process was completed within 10 min, including 20 s for the hydrogel crosslinking and 5 min for the electrochemical cell transfer. This rapid fabrication approach may provide a promising strategy to construct perfusable vasculatures in cell-dense tissue constructs and subsequently allow cells to organize complicated and fully vascularized tissues while preventing hypoxic cell injury.
Germain, Todd; Ansari, Megan; Pappas, Dimitri
2016-09-14
Hypoxia is a major stimulus for increased drug resistance and for survival of tumor cells. Work from our group and others has shown that hypoxia increases resistance to anti-cancer compounds, radiation, and other damage-pathway cytotoxic agents. In this work we utilize a microfluidic culture system capable of rapid switching of local oxygen concentrations to determine changes in drug resistance in prostate cancer cells. We observed rapid adaptation to hypoxia, with drug resistance to 2 μM staurosporine established within 30 min of hypoxia. Annexin-V/Sytox Green apoptosis assays over 9 h showed 78.0% viability, compared to 84.5% viability in control cells (normoxic cells with no staurosporine). Normoxic cells exposed to the same staurosporine concentration had a viability of 48.6% after 9 h. Hypoxia adaptation was rapid and reversible, with Hypoxic cells treated with 20% oxygen for 30 min responding to staurosporine with 51.6% viability after drug treatment for 9 h. Induction of apoptosis through the receptor-mediated pathway, which bypasses anti-apoptosis mechanisms induced by hypoxia, resulted in 39.4 ± 7% cell viability. The rapid reversibility indicates co-treatment of oxygen with anti-cancer compounds may be a potential therapeutic target. Copyright © 2016 Elsevier B.V. All rights reserved.
Flexible thermal cycle test equipment for concentrator solar cells
Hebert, Peter H [Glendale, CA; Brandt, Randolph J [Palmdale, CA
2012-06-19
A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.
Investigation of test methods, material properties, and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.
1982-01-01
Technical investigations concerned the development of advanced cure chemistries for lamination type pottants; the continued evaluation of soil resistant surface treatments, and the results of an accelerated aging test program for the comparison of material stabilities. New compounds were evaluated for efficiency in curing both ethylene/vinyl acetate and ethylene/methyl acrylate pottants intended for vacuum bag lamination of solar cells. One compound in particular, designated Lupersol - TBEC (Lucidol Division of Pennwalt Corp.) was found to be unusually effective in promoting the rapid cure of both these materials. Formulation of these resins with TBEC resulted in compositions of very high gel content, lower temperatures of activation, and much lower cure times, even in the ethylene/methyl acrylate polymer that is more difficult to cure. It is expected that TBEC modified pottant formulations may permit the lamination/encapsulation step to be operated at lower temperatures, higher speed, higher throughput and a much wider tolerance for intentional or accidental variations in the cure schedule. An experimental program continued to determine the effectiveness of soil resistant coatings.
Bantug, Glenn R; Fischer, Marco; Grählert, Jasmin; Balmer, Maria L; Unterstab, Gunhild; Develioglu, Leyla; Steiner, Rebekah; Zhang, Lianjun; Costa, Ana S H; Gubser, Patrick M; Burgener, Anne-Valérie; Sauder, Ursula; Löliger, Jordan; Belle, Réka; Dimeloe, Sarah; Lötscher, Jonas; Jauch, Annaïse; Recher, Mike; Hönger, Gideon; Hall, Michael N; Romero, Pedro; Frezza, Christian; Hess, Christoph
2018-03-20
Glycolysis is linked to the rapid response of memory CD8 + T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8 + T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3β (GSK3β) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3β at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8 + T cells to rapidly acquire effector function. Copyright © 2018 Elsevier Inc. All rights reserved.
Schackman, Bruce R.; Leff, Jared A.; Barter, Devra M.; DiLorenzo, Madeline A.; Feaster, Daniel J.; Metsch, Lisa R.; Freedberg, Kenneth A.; Linas, Benjamin P.
2014-01-01
Aims To evaluate the cost-effectiveness of rapid hepatitis C virus (HCV) and simultaneous HCV/HIV antibody testing in substance abuse treatment programs. Design We used a decision analytic model to compare the cost-effectiveness of no HCV testing referral or offer, off-site HCV testing referral, on-site rapid HCV testing offer, and on-site rapid HCV and HIV testing offer. Base case inputs included 11% undetected chronic HCV, 0.4% undetected HIV, 35% HCV co-infection among HIV-infected, 53% linked to HCV care after testing antibody positive, and 67% linked to HIV care. Disease outcomes were estimated from established computer simulation models of HCV (HEP-CE) and HIV (CEPAC). Setting and Participants Data on test acceptance and costs were from a national randomized trial of HIV testing strategies conducted at 12 substance abuse treatment programs in the USA. Measurements Lifetime costs (2011 US dollars) and quality-adjusted life years (QALYs) discounted at 3% annually; incremental cost-effectiveness ratios (ICERs) Findings On-site rapid HCV testing had an ICER of $18,300/QALY compared with no testing, and was more efficient than (dominated) off-site HCV testing referral. On-site rapid HCV and HIV testing had an ICER of $64,500/QALY compared with on-site rapid HCV testing alone. In one and two-way sensitivity analyses, the ICER of on-site rapid HCV and HIV testing remained <$100,000/QALY, except when undetected HIV prevalence was <0.1% or when we assumed frequent HIV testing elsewhere. The ICER remained <$100,000/QALY in approximately 90% of probabilistic sensitivity analyses. Conclusions On-site rapid hepatitis C virus and HIV testing in substance abuse treatment programs is cost-effective at a <$100,000/ quality-adjusted life years threshold. PMID:25291977
NASA Astrophysics Data System (ADS)
Spungin, Dina; Pfreundt, Ulrike; Berthelot, Hugo; Bonnet, Sophie; AlRoumi, Dina; Natale, Frank; Hess, Wolfgang R.; Bidle, Kay D.; Berman-Frank, Ilana
2016-07-01
The globally important marine diazotrophic cyanobacterium Trichodesmium is abundant in the New Caledonian lagoon (southwestern Pacific Ocean) during austral spring/summer. We investigated the cellular processes mediating Trichodesmium mortality from large surface accumulations (blooms) in the lagoon. Trichodesmium cells (and associated microbiota) were collected at the time of surface accumulation, enclosed under simulated ambient conditions, and sampled over time to elucidate the stressors and subcellular underpinning of rapid biomass demise (> 90 % biomass crashed within ˜ 24 h). Metatranscriptomic profiling of Trichodesmium biomass, 0, 8 and 22 h after incubations of surface accumulations, demonstrated upregulated expression of genes required to increase phosphorus (P) and iron (Fe) availability and transport, while genes responsible for nutrient storage were downregulated. Total viral abundance oscillated throughout the experiment and showed no significant relationship with the development or demise of the Trichodesmium biomass. Enhanced caspase-specific activity and upregulated expression of a suite of metacaspase genes, as the Trichodesmium biomass crashed, implied autocatalytic programmed cell death (PCD) as the mechanistic cause. Concurrently, genes associated with buoyancy and gas vesicle production were strongly downregulated concomitant with increased production and high concentrations of transparent exopolymeric particles (TEP). The rapid, PCD-mediated, decline of the Trichodesmium biomass, as we observed from our incubations, parallels mortality rates reported from Trichodesmium blooms in situ. Our results suggest that, whatever the ultimate factor, PCD-mediated death in Trichodesmium can rapidly terminate blooms, facilitate aggregation, and expedite vertical flux to depth.
Orchestrating rapid long-distance signaling in plants with Ca2+ , ROS and electrical signals.
Choi, Won-Gyu; Miller, Gad; Wallace, Ian; Harper, Jeffrey; Mittler, Ron; Gilroy, Simon
2017-05-01
Plants show a rapid systemic response to a wide range of environmental stresses, where the signals from the site of stimulus perception are transmitted to distal organs to elicit plant-wide responses. A wide range of signaling molecules are trafficked through the plant, but a trio of potentially interacting messengers, reactive oxygen species (ROS), Ca 2+ and electrical signaling ('trio signaling') appear to form a network supporting rapid signal transmission. The molecular components underlying this rapid communication are beginning to be identified, such as the ROS producing NAPDH oxidase RBOHD, the ion channel two pore channel 1 (TPC1), and glutamate receptor-like channels GLR3.3 and GLR3.6. The plant cell wall presents a plant-specific route for possible propagation of signals from cell to cell. However, the degree to which the cell wall limits information exchange between cells via transfer of small molecules through an extracellular route, or whether it provides an environment to facilitate transmission of regulators such as ROS or H + remains to be determined. Similarly, the role of plasmodesmata as both conduits and gatekeepers for the propagation of rapid cell-to-cell signaling remains a key open question. Regardless of how signals move from cell to cell, they help prepare distant parts of the plant for impending challenges from specific biotic or abiotic stresses. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Wilson, Michael G; Lavis, John N; Gauvin, Francois-Pierre
2015-03-11
There is currently no mechanism in place outside of government to provide rapid syntheses of the best available research evidence about problems, options and/or implementation considerations related to a specific health system challenge that Canadian health system decision-makers need to address in a timely manner. A 'rapid-response' program could address this gap by providing access to optimally packaged, relevant and high-quality research evidence over short periods of time (i.e. days or weeks). We prepared an issue brief that describes the best available research evidence related to the problem, three broad features of a program that addresses the problem and implementation considerations. We identified systematic reviews by searching for organization-targeted implementation strategies in Health Systems Evidence ( www.healthsystemsevidence.org ) and drew on an existing analytical framework for how knowledge-brokering organizations can organize themselves to operationalize the program features. The issue brief was then used to inform a half-day stakeholder dialogue about whether and how to develop a rapid-response program for health system decision-makers in Canada. We thematically synthesized the deliberations. We found very few relevant systematic reviews but used frameworks and examples from existing programs to 1) outline key considerations for organizing a rapid-response program,, 2) determine what can be done in timelines ranging from 3 to 10 and 30 business days, and 3) define success and measure it. The 11 dialogue participants from across Canada largely agreed with the content presented in the brief, but noted two key challenges to consider: securing stable, long-term funding and finding a way to effectively and equitably manage the expected demand. Recommendations and suggestions for next steps from dialogue participants included taking an 'organic' approach to developing a pan-Canadian network and including jurisdictional scans as a type of product to deliver through the program (rather than only syntheses of research evidence). Dialogue participants clearly signalled that there is an appetite for a rapid-response program for health system decision-makers in Canada. To 'organically' build such a program, we are currently engaging in efforts to build partnerships and secure funding to support the creation of a pan-Canadian network for conducting rapid syntheses for health system decision-makers in Canada.
Wu, Ning
2017-01-01
Glucocorticoids rapidly stimulate endocannabinoid synthesis and modulation of synaptic transmission in hypothalamic neuroendocrine cells via a nongenomic signaling mechanism. The endocannabinoid actions are synapse-constrained by astrocyte restriction of extracellular spatial domains. Exogenous cannabinoids have been shown to modulate postsynaptic potassium currents, including the A-type potassium current (IA), in different cell types. The activity of magnocellular neuroendocrine cells is shaped by a prominent IA. We tested for a rapid glucocorticoid modulation of the postsynaptic IK and IA in magnocellular neuroendocrine cells of the hypothalamic paraventricular nucleus (PVN) using whole-cell recordings in rat brain slices. Application of the synthetic glucocorticoid dexamethasone (Dex) had no rapid effect on the IK or IA amplitude, voltage dependence, or kinetics in magnocellular neurons in slices from untreated rats. In magnocellular neurons from salt-loaded rats, however, Dex application caused a rapid suppression of the IA and a depolarizing shift in IA voltage dependence. Exogenously applied endocannabinoids mimicked the rapid Dex modulation of the IA, and CB1 receptor antagonists and agonists blocked and occluded the Dex-induced changes in the IA, respectively, suggesting an endocannabinoid dependence of the rapid glucocorticoid effect. Preincubation of control slices in a gliotoxin resulted in the partial recapitulation of the glucocorticoid-induced rapid suppression of the IA. These findings demonstrate a glucocorticoid suppression of the postsynaptic IA in PVN magnocellular neurons via an autocrine endocannabinoid-dependent mechanism following chronic dehydration, and suggest a possible role for astrocytes in the control of the autocrine endocannabinoid actions. PMID:28966975
Rapid determination of antibiotic resistance in E. coli using dielectrophoresis
NASA Astrophysics Data System (ADS)
Hoettges, Kai F.; Dale, Jeremy W.; Hughes, Michael P.
2007-09-01
In recent years, infections due to antibiotic-resistant strains of bacteria such as methillicin-resistant Staphylococcus aureus and ciprofloxacin-resistant Escherichia coli are on the rise, and with them the demand for rapid antibiotic testing is also rising. Conventional tests, such as disc diffusion testing, require a primary sample to be tested in the presence of a number of antibiotics to verify which antibiotics suppress growth, which take approximately 24 h to complete and potentially place the patient at severe risk. In this paper we describe the use of dielectrophoresis as a rapid marker of cell death, by detecting changes in the electrophysiology of the cell caused by the administration of an antibiotic. In contrast to other markers, the electrophysiology of the cell changes rapidly during cell death allowing live cells to be distinguished from dead (or dying) cells without the need for culturing. Using polymyxin B as an example antibiotic, our studies indicate that significant changes in cell characteristics can be observed as soon as 1 h passes after isolating a culture from nutrient broth.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-07
...). SUPPLEMENTARY INFORMATION: The Homeless Emergency Assistance and Rapid Transition to Housing Act of 2009 (HEARTH... Homelessness Grant program. The HEARTH Act also directs HUD to promulgate regulations for these new programs...
Rapidly Deployed Modular Telemetry System
NASA Technical Reports Server (NTRS)
Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)
2013-01-01
The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.
Xiang, Kun; Li, Yinglei; Ford, William; Land, Walker; Schaffer, J David; Congdon, Robert; Zhang, Jing; Sadik, Omowunmi
2016-02-21
We hereby report the design and implementation of an Autonomous Microbial Cell Culture and Classification (AMC(3)) system for rapid detection of food pathogens. Traditional food testing methods require multistep procedures and long incubation period, and are thus prone to human error. AMC(3) introduces a "one click approach" to the detection and classification of pathogenic bacteria. Once the cultured materials are prepared, all operations are automatic. AMC(3) is an integrated sensor array platform in a microbial fuel cell system composed of a multi-potentiostat, an automated data collection system (Python program, Yocto Maxi-coupler electromechanical relay module) and a powerful classification program. The classification scheme consists of Probabilistic Neural Network (PNN), Support Vector Machines (SVM) and General Regression Neural Network (GRNN) oracle-based system. Differential Pulse Voltammetry (DPV) is performed on standard samples or unknown samples. Then, using preset feature extractions and quality control, accepted data are analyzed by the intelligent classification system. In a typical use, thirty-two extracted features were analyzed to correctly classify the following pathogens: Escherichia coli ATCC#25922, Escherichia coli ATCC#11775, and Staphylococcus epidermidis ATCC#12228. 85.4% accuracy range was recorded for unknown samples, and within a shorter time period than the industry standard of 24 hours.
Herbal medicine as inducers of apoptosis in cancer treatment.
Safarzadeh, Elham; Sandoghchian Shotorbani, Siamak; Baradaran, Behzad
2014-10-01
Cancer is uncontrolled growth of abnormal cells in the body. Nowadays, cancer is considered as a human tragedy and one of the most prevalent diseases in the wide, and its mortality resulting from cancer is being increased. It seems necessary to identify new strategies to prevent and treat such a deadly disease. Control survival and death of cancerous cell are important strategies in the management and therapy of cancer. Anticancer agents should kill the cancerous cell with the minimal side effect on normal cells that is possible through the induction of apoptosis. Apoptosis is known as programmed cell death in both normal and damaged tissues. This process includes some morphologically changes in cells such as rapid condensation and budding of the cell, formation of membrane-enclosed apoptotic bodies with well-preserved organelles. Induction of apoptosis is one of the most important markers of cytotoxic antitumor agents. Some natural compounds including plants induce apoptotic pathways that are blocked in cancer cells through various mechanisms in cancer cells. Multiple surveys reported that people with cancer commonly use herbs or herbal products. Vinca Alkaloids, Texans, podo phyllotoxin, Camptothecins have been clinically used as Plant derived anticancer agents. The present review summarizes the literature published so far regarding herbal medicine used as inducers of apoptosis in cancer.
SATB1 Expression Governs Epigenetic Repression of PD-1 in Tumor-Reactive T Cells.
Stephen, Tom L; Payne, Kyle K; Chaurio, Ricardo A; Allegrezza, Michael J; Zhu, Hengrui; Perez-Sanz, Jairo; Perales-Puchalt, Alfredo; Nguyen, Jenny M; Vara-Ailor, Ana E; Eruslanov, Evgeniy B; Borowsky, Mark E; Zhang, Rugang; Laufer, Terri M; Conejo-Garcia, Jose R
2017-01-17
Despite the importance of programmed cell death-1 (PD-1) in inhibiting T cell effector activity, the mechanisms regulating its expression remain poorly defined. We found that the chromatin organizer special AT-rich sequence-binding protein-1 (Satb1) restrains PD-1 expression induced upon T cell activation by recruiting a nucleosome remodeling deacetylase (NuRD) complex to Pdcd1 regulatory regions. Satb1 deficienct T cells exhibited a 40-fold increase in PD-1 expression. Tumor-derived transforming growth factor β (Tgf-β) decreased Satb1 expression through binding of Smad proteins to the Satb1 promoter. Smad proteins also competed with the Satb1-NuRD complex for binding to Pdcd1 enhancers, releasing Pdcd1 expression from Satb1-mediated repression, Satb1-deficient tumor-reactive T cells lost effector activity more rapidly than wild-type lymphocytes at tumor beds expressing PD-1 ligand (CD274), and these differences were abrogated by sustained CD274 blockade. Our findings suggest that Satb1 functions to prevent premature T cell exhaustion by regulating Pdcd1 expression upon T cell activation. Dysregulation of this pathway in tumor-infiltrating T cells results in diminished anti-tumor immunity. Copyright © 2017 Elsevier Inc. All rights reserved.
Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro
2013-01-01
It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg') and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.
Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro
2013-01-01
It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. ‘Iceberg’) and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury. PMID:23451194
Improving the quality of physician communication with rapid-throughput analysis and report cards.
Farrell, Michael H; Christopher, Stephanie A; La Pean Kirschner, Alison; Roedl, Sara J; O'Tool, Faith O; Ahmad, Nadia Y; Farrell, Philip M
2014-11-01
Problems with clinician-patient communication negatively impact newborn screening, genetics, and all of healthcare. Training programs teach communication, but educational methods are not feasible for entire populations of clinicians. To address this healthcare quality gap, we developed a Communication Quality Assurance intervention. Child health providers volunteered for a randomized controlled trial of assessment and a report card. Participants provided telephone counseling to a standardized parent regarding a newborn screening result showing heterozygous status for cystic fibrosis or sickle cell disease. Our rapid-throughput timeline allows individualized feedback within a week. Two encounters were recorded (baseline and after a random sample received the report card) and abstracted for four groups of communication quality indicators. 92 participants finished both counseling encounters within our rapid-throughput time limits. Participants randomized to receive the report card improved communication behaviors more than controls, including request for teach-back (p<0.01), opening behaviors (p=0.01), anticipate/validate emotion (p<0.001) and the ratio of explained to unexplained jargon words (p<0.03). The rapid-throughput report card is effective at improving specific communication behaviors. Communication can be taught, but this project shows how healthcare organizations can assure communication quality everywhere. Further implementation could improve newborn screening, genetics, and healthcare in general. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Shaler, Christopher R.; Choi, Joshua; Rudak, Patrick T.; Memarnejadian, Arash; Szabo, Peter A.; Tun-Abraham, Mauro E.; Rossjohn, Jamie; Corbett, Alexandra J.; McCluskey, James; McCormick, John K.; Lantz, Olivier; Hernandez-Alejandro, Roberto; Haeryfar, S.M. Mansour
2017-01-01
Superantigens (SAgs) are potent exotoxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They target a large fraction of T cell pools to set in motion a “cytokine storm” with severe and sometimes life-threatening consequences typically encountered in toxic shock syndrome (TSS). Given the rapidity with which TSS develops, designing timely and truly targeted therapies for this syndrome requires identification of key mediators of the cytokine storm’s initial wave. Equally important, early host responses to SAgs can be accompanied or followed by a state of immunosuppression, which in turn jeopardizes the host’s ability to combat and clear infections. Unlike in mouse models, the mechanisms underlying SAg-associated immunosuppression in humans are ill-defined. In this work, we have identified a population of innate-like T cells, called mucosa-associated invariant T (MAIT) cells, as the most powerful source of pro-inflammatory cytokines after exposure to SAgs. We have utilized primary human peripheral blood and hepatic mononuclear cells, mouse MAIT hybridoma lines, HLA-DR4-transgenic mice, MAIThighHLA-DR4+ bone marrow chimeras, and humanized NOD-scid IL-2Rγnull mice to demonstrate for the first time that: i) mouse and human MAIT cells are hyperresponsive to SAgs, typified by staphylococcal enterotoxin B (SEB); ii) the human MAIT cell response to SEB is rapid and far greater in magnitude than that launched by unfractionated conventional T, invariant natural killer T (iNKT) or γδ T cells, and is characterized by production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-2, but not IL-17A; iii) high-affinity MHC class II interaction with SAgs, but not MHC-related protein 1 (MR1) participation, is required for MAIT cell activation; iv) MAIT cell responses to SEB can occur in a T cell receptor (TCR) Vβ–specific manner but are largely contributed by IL-12 and IL-18; v) as MAIT cells are primed by SAgs, they also begin to develop a molecular signature consistent with exhaustion and failure to participate in antimicrobial defense. Accordingly, they upregulate lymphocyte-activation gene 3 (LAG-3), T cell immunoglobulin and mucin-3 (TIM-3), and/or programmed cell death-1 (PD-1), and acquire an anergic phenotype that interferes with their cognate function against Klebsiella pneumoniae and Escherichia coli; vi) MAIT cell hyperactivation and anergy co-utilize a signaling pathway that is governed by p38 and MEK1/2. Collectively, our findings demonstrate a pathogenic, rather than protective, role for MAIT cells during infection. Furthermore, we propose a novel mechanism of SAg-associated immunosuppression in humans. MAIT cells may therefore provide an attractive therapeutic target for the management of both early and late phases of severe SAg-mediated illnesses. PMID:28632753
Transcriptional programming during cell wall maturation in the expanding Arabidopsis stem.
Hall, Hardy; Ellis, Brian
2013-01-25
Plant cell walls are complex dynamic structures that play a vital role in coordinating the directional growth of plant tissues. The rapid elongation of the inflorescence stem in the model plant Arabidopsis thaliana is accompanied by radical changes in cell wall structure and chemistry, but analysis of the underlying mechanisms and identification of the genes that are involved has been hampered by difficulties in accurately sampling discrete developmental states along the developing stem. By creating stem growth kinematic profiles for individual expanding Arabidopsis stems we have been able to harvest and pool developmentally-matched tissue samples, and to use these for comparative analysis of global transcript profiles at four distinct phases of stem growth: the period of elongation rate increase, the point of maximum growth rate, the point of stem growth cessation and the fully matured stem. The resulting profiles identify numerous genes whose expression is affected as the stem tissues pass through these defined growth transitions, including both novel loci and genes identified in earlier studies. Of particular note is the preponderance of highly active genes associated with secondary cell wall deposition in the region of stem growth cessation, and of genes associated with defence and stress responses in the fully mature stem. The use of growth kinematic profiling to create tissue samples that are accurately positioned along the expansion growth continuum of Arabidopsis inflorescence stems establishes a new standard for transcript profiling analyses of such tissues. The resulting expression profiles identify a substantial number of genes whose expression is correlated for the first time with rapid cell wall extension and subsequent fortification, and thus provide an important new resource for plant biologists interested in gene discovery related to plant biomass accumulation.
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka
2016-03-01
Near infrared (NIR) photoimmunotherapy (PIT) is a new type of molecularly-targeted cancer photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (MAb) targeting cancer-specific cell-surface molecules. When exposed to NIR light, the conjugate induces a highly-selective necrotic/ immunogenic cell death (ICD) only in receptor-positive, MAb-IR700-bound cancer cells. This cell death occurs as early as 1 minute after exposure to NIR light. Meanwhile, immediately adjacent receptor-negative cells including immune cells are unharmed. Therefore, we hypothesized that NIR-PIT could efficiently elicit host immunity against treated cancer cells. Three-dimensional dynamic quantitative phase contrast microscopy and selective plane illumination microscopy of tumor cells undergoing PIT showed rapid swelling in treated cells immediately after light exposure suggesting rapid water influx into cells, followed by irreversible morphologic changes such as bleb formation, and rupture of vesicles. Furthermore, biological markers of ICD including relocation of HSP70/90 and calreticulin, and release of ATP and High Mobility Group Box 1 (HMGB1), were clearly detected immediately after NIR-PIT. When NIR-PIT was performed in a mixture of cancer cells and immature dendritic cells, maturation of immature dendritic cells was strongly induced rapidly after NIR-PIT. In summary, NIR-PIT can induce necrotic/ immunogenic cell death that promotes rapid maturation of immature dendritic cells adjacent to dying cancer cells. Therefore, NIR-PIT could efficiently initiate host immune response against NIR-PIT treated cancer cells growing in patients.
Jansen, Chad; Speck, Mark; Greineisen, William E; Maaetoft-Udsen, Kristina; Cordasco, Edward; Shimoda, Lori MN; Stokes, Alexander J; Turner, Helen
2018-01-01
Objective Secretory granules (SG) and lipid bodies (LB) are the primary organelles that mediate functional responses in mast cells. SG contains histamine and matrix-active proteases, while LB are reservoirs of arachidonic acid and its metabolites, precursors for rapid synthesis of eicosanoids such as LTC4. Both of these compartments can be dynamically or ontologically regulated, with metabolic and immunological stimuli altering lipid body content and granule numbers responding to contextual signals from tissue. We previously described that chronic in vitro or in vivo hyperinsulinemia expands the LB compartment with a concomitant loss of SG capacity, suggesting that this ratio is dynamically regulated. The objective of the current study is to determine if chronic insulin exposure initiates a transcriptional program that biases model mast cells towards a lipogenic state with accompanying loss of secretory granule biogenesis. Methods We used a basophilic leukemic cell line with mucosal mast cell-like features as a model system. We tested the hypothesis that chronic insulin exposure initiates a transcriptional program that biases these model mast cells towards a lipogenic state with accompanying loss of secretory granule biogenesis. Transcriptional arrays were used to map gene expression patterns. Biochemical, immunocytochemical and mediator release assays were used to evaluate organelle numbers and functional responses. Results In a mucosal mast cell model, the rat basophilic leukemia line RBL2H3, mast cell granularity and SG numbers are inversely correlated with LB numbers. Chronic insulin exposure appears to modulate gene networks involved in both lipid body biogenesis and secretory granule formation. Western blot analysis confirms upregulation of protein levels for LB proteins, and decreases in proteins that are markers for SG cargo. Conclusions The levels of insulin in the extracellular milieu may modify the phenotype of mast cell-like cells in vitro. PMID:29430572
Clinical trials for stem cell transplantation: when are they needed?
Van Pham, Phuc
2016-04-27
In recent years, both stem cell research and the clinical application of these promising cells have increased rapidly. About 1000 clinical trials using stem cells have to date been performed globally. More importantly, more than 10 stem cell-based products have been approved in some countries. With the rapid growth of stem cell applications, some countries have used clinical trials as a tool to diminish the rate of clinical stem cell applications. However, the point at which stem cell clinical trials are essential remains unclear. This commentary discusses when stem cell clinical trials are essential for stem cell transplantation therapies.
Ducar, Constance; Smith, Donna; Pinzon, Cris; Stirewalt, Michael; Cooper, Cristine; McElrath, M. Juliana; Hural, John
2014-01-01
The HIV Vaccine Trials Network (HVTN) is a global network of 28 clinical trial sites dedicated to identifying an effective HIV vaccine. Cryopreservation of high-quality peripheral blood mononuclear cells (PBMC) is critical for the assessment of vaccine-induced cellular immune functions. The HVTN PBMC Quality Management Program is designed to ensure viable PBMC are processed, stored and shipped for clinical trial assays from all HVTN clinical trial sites. The program has evolved by developing and incorporating best practices for laboratory and specimen quality and implementing automated, web-based tools. These tools allow the site-affiliated processing laboratories and the central Laboratory Operations Unit to rapidly collect, analyze and report PBMC quality data. The HVTN PBMC Quality Management Program includes five key components: 1) Laboratory Assessment, 2) PBMC Training and Certification, 3) Internal Quality Control, 4) External Quality Control (EQC), and 5) Assay Specimen Quality Control. Fresh PBMC processing data is uploaded from each clinical site processing laboratory to a central HVTN Statistical and Data Management Center database for access and analysis on a web portal. Samples are thawed at a central laboratory for assay or specimen quality control and sample quality data is uploaded directly to the database by the central laboratory. Four year cumulative data covering 23,477 blood draws reveals an average fresh PBMC yield of 1.45×106 ±0.48 cells per milliliter of useable whole blood. 95% of samples were within the acceptable range for fresh cell yield of 0.8–3.2×106 cells/ml of usable blood. Prior to full implementation of the HVTN PBMC Quality Management Program, the 2007 EQC evaluations from 10 international sites showed a mean day 2 thawed viability of 83.1% and recovery of 67.5%. Since then, four year cumulative data covering 3338 specimens used in immunologic assays shows that 99.88% had acceptable viabilities (>66%) for use in cellular assays (mean, 91.46% ±4.5%), and 96.2% had acceptable recoveries (50%–130%) with a mean of recovery of 85.8% ±19.12% of the originally cryopreserved cells. EQC testing revealed that since August 2009, failed recoveries dropped from 4.1% to 1.6% and failed viabilities dropped from 1.0% to 0.3%. The HVTN PBMC quality program provides for laboratory assessment, training and tools for identifying problems, implementing corrective action and monitoring for improvements. These data support the benefits of implementing a comprehensive, web-based PBMC quality program for large clinical trials networks. PMID:24709391
Maintenance of sweat glands by stem cells located in the acral epithelium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohe, Shuichi; Department of Dermatology, Kansai Medical University, Osaka 573-1010; Tanaka, Toshihiro
The skin is responsible for a variety of physiological functions and is critical for wound healing and repair. Therefore, the regenerative capacity of the skin is important. However, stem cells responsible for maintaining the acral epithelium had not previously been identified. In this study, we identified the specific stem cells in the acral epithelium that participate in the long-term maintenance of sweat glands, ducts, and interadnexal epidermis and that facilitate the regeneration of these structures following injury. Lgr6-positive cells and Bmi1-positive cells were found to function as long-term multipotent stem cells that maintained the entire eccrine unit and the interadnexalmore » epidermis. However, while Lgr6-positive cells were rapidly cycled and constantly supplied differentiated cells, Bmi1-positive cells were slow to cycle and occasionally entered the cell cycle under physiological conditions. Upon irradiation-induced injury, Bmi1-positive cells rapidly proliferated and regenerated injured epithelial tissue. Therefore, Bmi1-positive stem cells served as reservoir stem cells. Lgr5-positive cells were rapidly cycled and maintained only sweat glands; therefore, we concluded that these cells functioned as lineage-restricted progenitors. Taken together, our data demonstrated the identification of stem cells that maintained the entire acral epithelium and supported the different roles of three cellular classes. - Highlights: • The acral epithelium have two types of stem cells. • Lgr6-positive cells are rapid-cycling, short-term stem cells. • Bmi1-positive cells are slow-cycling stem cells that act as reserver stem cells. • Lgr5 may be a useful sweat gland marker in mice.« less
Aptamer-Nanoparticle Strip Biosensor for Rapid and Sensitive Detection of Cancer Cells
Mao, Xun; Phillips, Joseph A.; Xu, Hui; Tan, Weihong; Zeng, Lingwen; Liu, Guodong
2009-01-01
We report an aptamer-nanoparticle strip biosensor (ANSB) for the rapid, specific, sensitive and low-cost detection of circulating cancer cells. Known for their high specificity and affinity, aptamers were first selected from live cells by the cell-SELEX (systematic evolution of ligands by exponential enrichment) process. When next combined with the unique optical properties of gold nanoparticles (Au-NPs), ANSBs were prepared on a lateral flow device. Ramos cells were used as a model target cell to demonstrate proof of principle. Under optimal conditions, the ANSB was capable of detecting a minimum of 4000 Ramos cells without instrumentation (visual judgment) and 800 Ramos cells with a portable strip reader within 15 minutes. Importantly, ANSB has successfully detected Ramos cells in human blood, thus providing a rapid, sensitive and low-cost quantitative tool for the detection of circulating cancer cells. ANSB therefore shows great promise for in-field and point-of-care cancer diagnosis and therapy. PMID:19904989
NASA Technical Reports Server (NTRS)
Chan, Agnes; Conley, Kristin; Javorski, Christian T.; Cheung, Kwok-Hung; Crivelli, Paul M.; Torrey, Nancy P.; Traver, Michael L.
1992-01-01
Increase in energy demands coupled with rapid depletion of natural energy resources have deemed solar energy as the most logical alternative source of power. The major objective of this project was to build a solar powered remotely controlled aircraft to demonstrate the feasibility of solar energy as an effective, alternate source of power. The final design was optimized for minimum weight and maximum strength of the structure. These design constraints necessitated a carbon fiber composite structure. Surya is a lightweight, durable aircraft capable of achieving level flight powered entirely by solar cells.
Human developmental biology viewed from a microbial perspective
Charbonneau, Mark R.; Blanton, Laura V.; DiGiulio, Daniel B.; Relman, David A.; Lebrilla, Carlito B.; Mills, David A.; Gordon, Jeffrey I.
2017-01-01
Preface Most people think of human development only in terms of ‘human’ cells and organs. Here, we discuss another facet involving human-associated microbial communities. A microbial perspective of human development provides opportunities to refine our definitions of healthy pre- and postnatal growth and to develop new strategies for disease prevention and treatment. Considering the dramatic changes in lifestyles and disease patterns that are occurring with globalization, we issue a call for human microbial observatory programs designed to examine microbial community development in birth cohorts representing populations with diverse anthropologic characteristics, including those undergoing rapid change. PMID:27383979
Remodeling of ribosomal genes in somatic cells by Xenopus egg extract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrup, Olga, E-mail: osvarcova@gmail.com; Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo; Norwegian Center for Stem Cell Research, Oslo
Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression.more » This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.« less
Tennessen, Jason M; Bertagnolli, Nicolas M; Evans, Janelle; Sieber, Matt H; Cox, James; Thummel, Carl S
2014-03-12
Rapidly proliferating cells such as cancer cells and embryonic stem cells rely on a specialized metabolic program known as aerobic glycolysis, which supports biomass production from carbohydrates. The fruit fly Drosophila melanogaster also utilizes aerobic glycolysis to support the rapid growth that occurs during larval development. Here we use singular value decomposition analysis of modENCODE RNA-seq data combined with GC-MS-based metabolomic analysis to analyze the changes in gene expression and metabolism that occur during Drosophila embryogenesis, spanning the onset of aerobic glycolysis. Unexpectedly, we find that the most common pattern of co-expressed genes in embryos includes the global switch to glycolytic gene expression that occurs midway through embryogenesis. In contrast to the canonical aerobic glycolytic pathway, however, which is accompanied by reduced mitochondrial oxidative metabolism, the expression of genes involved in the tricarboxylic cycle (TCA cycle) and the electron transport chain are also upregulated at this time. Mitochondrial activity, however, appears to be attenuated, as embryos exhibit a block in the TCA cycle that results in elevated levels of citrate, isocitrate, and α-ketoglutarate. We also find that genes involved in lipid breakdown and β-oxidation are upregulated prior to the transcriptional initiation of glycolysis, but are downregulated before the onset of larval development, revealing coordinated use of lipids and carbohydrates during development. These observations demonstrate the efficient use of nutrient stores to support embryonic development, define sequential metabolic transitions during this stage, and demonstrate striking similarities between the metabolic state of late-stage fly embryos and tumor cells. Copyright © 2014 Tennessen et al.
US lung cancer trends by histologic type.
Lewis, Denise Riedel; Check, David P; Caporaso, Neil E; Travis, William D; Devesa, Susan S
2014-09-15
Lung cancer incidence rates overall are declining in the United States. This study investigated the trends by histologic type and demographic characteristics. Surveillance, Epidemiology, and End Results (SEER) program rates of microscopically confirmed lung cancer overall and squamous cell, small cell, adenocarcinoma, large cell, other, and unspecified carcinomas among US whites and blacks diagnosed from 1977 to 2010 and white non-Hispanics, Asian/Pacific Islanders, and white Hispanics diagnosed from 1992 to 2010 were analyzed by sex and age. Squamous and small cell carcinoma rates declined since the 1990s, although less rapidly among females than males. Adenocarcinoma rates decreased among males and only through 2005, after which they then rose during 2006 to 2010 among every racial/ethnic/sex group; rates for unspecified type declined. Male/female rate ratios declined among whites and blacks more than among other groups. Recent rates among young females were higher than among males for adenocarcinoma among all racial/ethnic groups and for other specified carcinomas among whites. US lung cancer trends vary by sex, histologic type, racial/ethnic group, and age, reflecting historical cigarette smoking rates, duration, cessation, cigarette composition, and exposure to other carcinogens. Substantial excesses among males have diminished and higher rates of adenocarcinoma among young females have emerged as rates among males declined more rapidly. The recognition of EGFR mutation and ALK rearrangements that occur primarily in adenocarcinomas are the primary basis for the molecular revolution that has transformed lung cancer diagnosis and treatment over the past decade, and these changes have affected recent type-specific trends. © 2014 American Cancer Society.
Immunological responsiveness of frozen-thawed human lymphocytes.
Strong, D M; Woody, J N; Factor, M A; Ahmed, A; Sell, K W
1975-01-01
Mononuclear cells (10--20 X 10(6)) obtained from human peripheral blood by a standard Ficoll-Hypaque technique were suspended in RPMI 1640 media at 4 degrees C containing 10% foetal calf serum and 7-5% dimethyl sulphoxide (DMSO). Two-millilitre aliquots were cooled at -1 degree C/min in a Cryoson BV-4 programmed freezing system to -30 degrees C, then -5 degrees C/min to -80 degrees C and stored in liquid nitrogen vapor. On the day of testing, cell suspensions were thawed rapidly in a 37 degree C water bath. DMSO was diluted slowly out of the sample and cells resuspended in fresh RPMI 1640. It was found that frozen stored human lymphocytes (FSHL) demonstrated all the characteristics of fresh unfrozen cells. These included their ability to form spontaneous rosettes with sheep erythrocytes ('E' rosettes) and sheep erythrocyte--antibody--complement rosettes ('EAC' rosettes). The presence of surface immunoglobulins and Fc receptors were shown by membrane immunofluorescence to be comparable. In addition, the results show that FSHL respond to mitogens, specific antigens; act as both stimulators and responders in the mixed lymphocyte culture reaction; and exhibit cell-mediated lymphocytotoxicity following in vitro sensitization, or against antibody-coated target cells. PMID:128429
Guidelines and recommendations on yeast cell death nomenclature.
Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J; Breitenbach, Michael; Burhans, William C; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W; Grant, Chris M; Greenwood, Michael T; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D; Outeiro, Tiago F; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F; Sharon, Amir; Sigrist, Stephan J; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B; Tuite, Mick; Vögtle, F-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J; Zhao, Richard Y; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank
2018-01-01
Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi-nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differ-ential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death rou-tines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the au-thors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the pro-gress of this vibrant field of research.
Engineering experimental program on the effects of near-space radiation on lithium doped solar cells
NASA Technical Reports Server (NTRS)
1971-01-01
The results of an experimental evaluation of the real-time degradation characteristics of lithium-diffused silicon solar cells are reported. A strontium-90 radioisotope was used for simulation of a typical earth-orbital electron environment. The experiment was performed in an ion pump vacuum chamber with samples maintained at -50, +20, +50, and +80 C. Samples were illuminated during the 6-month exposure run with solar cell 1-5 characteristics measured periodically in situ. This 6-month exposure corresponded to a 1 MeV equivalent fluence of approximately 10 to the 14th power electrons/sq cm. Several types of lithium cells were irradiatied and compared directly with conventional N/P cells. The best lithium cells compared favorably with N/P cells, particularly at the higher test temperatures. With a slight improvement of initial performance characteristics, lithium cells appear feasible for 5 to 10 year missions at synchronous altitude. Based on the reported results and those of other irradiation experiments, lithium cells would appear to be superior to N/P cells in proton-dominated earth-orbital environments. Another important conclusion of the effort was that illuminated/loaded cells degrade more rapidly than do dark/unloaded cells. The irradiation experiment provided data of high quality with a high degree of confidence because of the experimental and statistical analysis techniques utilized.
Whalen, A M; Galasinski, S C; Shapiro, P S; Nahreini, T S; Ahn, N G
1997-01-01
The K562 erythroleukemia cell line was used to study the molecular mechanisms regulating lineage commitment of hematopoietic stem cells. Phorbol esters, which initiate megakaryocyte differentiation in this cell line, caused a rapid increase in extracellular-signal-regulated kinase (ERK), which remained elevated for 2 h and returned to near-basal levels by 24 h. In the absence of extracellular stimuli, ERK could be activated by expression of constitutively active mutants of mitogen-activated protein (MAP) kinase kinase (MKK), resulting in cell adhesion and spreading, increased cell size, inhibition of cell growth, and induction of the platelet-specific integrin alphaIIb beta3, all hallmarks of megakaryocytic differentiation. In contrast, expression of wild-type MKK had little effect. In addition, constitutively active MKK suppressed the expression of an erythroid marker, alpha-globin, indicating the ability to suppress cellular responses necessary for alternative cell lineages. The MKK inhibitor PD98059 blocked MKK/ERK activation and cellular responses to phorbol ester, demonstrating that activation of MKK is necessary and sufficient to induce a differentiation program along the megakaryocyte lineage. Thus, the MAP kinase cascade, which promotes cell growth and proliferation in many cell types, instead inhibits cell proliferation and initiates lineage-specific differentiation in K562 cells, establishing a model system to investigate the mechanisms by which this signal transduction pathway specifies cell fate and developmental processes. PMID:9121442
Whalen, A M; Galasinski, S C; Shapiro, P S; Nahreini, T S; Ahn, N G
1997-04-01
The K562 erythroleukemia cell line was used to study the molecular mechanisms regulating lineage commitment of hematopoietic stem cells. Phorbol esters, which initiate megakaryocyte differentiation in this cell line, caused a rapid increase in extracellular-signal-regulated kinase (ERK), which remained elevated for 2 h and returned to near-basal levels by 24 h. In the absence of extracellular stimuli, ERK could be activated by expression of constitutively active mutants of mitogen-activated protein (MAP) kinase kinase (MKK), resulting in cell adhesion and spreading, increased cell size, inhibition of cell growth, and induction of the platelet-specific integrin alphaIIb beta3, all hallmarks of megakaryocytic differentiation. In contrast, expression of wild-type MKK had little effect. In addition, constitutively active MKK suppressed the expression of an erythroid marker, alpha-globin, indicating the ability to suppress cellular responses necessary for alternative cell lineages. The MKK inhibitor PD98059 blocked MKK/ERK activation and cellular responses to phorbol ester, demonstrating that activation of MKK is necessary and sufficient to induce a differentiation program along the megakaryocyte lineage. Thus, the MAP kinase cascade, which promotes cell growth and proliferation in many cell types, instead inhibits cell proliferation and initiates lineage-specific differentiation in K562 cells, establishing a model system to investigate the mechanisms by which this signal transduction pathway specifies cell fate and developmental processes.
Ng, Ivy H Y; Cheung, Kitty K T; Yau, Tiffany T L; Chow, Elaine; Ozaki, Risa; Chan, Juliana C N
2018-03-01
The rapid increase in diabetes prevalence globally has contributed to large increases in health care expenditure on diabetic complications, posing a major health burden to countries worldwide. Asians are commonly observed to have poorer β-cell function and greater insulin resistance compared to the Caucasian population, which is attributed by their lower lean body mass and central obesity. This "double phenotype" as well as the rising prevalence of young onset diabetes in Asia has placed Asians with diabetes at high risk of cardiovascular and renal complications, with cancer emerging as an important cause of morbidity and mortality. The experience from Hong Kong had demonstrated that a multifaceted approach, involving team-based integrated care, information technological advances, and patient empowerment programs were able to reduce the incidence of diabetic complications, hospitalizations, and mortality. System change and public policies to enhance implementation of such programs may provide solutions to combat the burgeoning health problem of diabetes at a societal level. Copyright © 2018 Korean Endocrine Society.
Kwon, Soon Il; Cho, Hong Joo; Kim, Sung Ryul; Park, Ohkmae K.
2013-01-01
A central component of the plant defense response to pathogens is the hypersensitive response (HR), a form of programmed cell death (PCD). Rapid and localized induction of HR PCD ensures that pathogen invasion is prevented. Autophagy has been implicated in the regulation of HR cell death, but the functional relationship between autophagy and HR PCD and the regulation of these processes during the plant immune response remain controversial. Here, we show that a small GTP-binding protein, RabG3b, plays a positive role in autophagy and promotes HR cell death in response to avirulent bacterial pathogens in Arabidopsis (Arabidopsis thaliana). Transgenic plants overexpressing a constitutively active RabG3b (RabG3bCA) displayed accelerated, unrestricted HR PCD within 1 d of infection, in contrast to the autophagy-defective atg5-1 mutant, which gradually developed chlorotic cell death through uninfected sites over several days. Microscopic analyses showed the accumulation of autophagic structures during HR cell death in RabG3bCA cells. Our results suggest that RabG3b contributes to HR cell death via the activation of autophagy, which plays a positive role in plant immunity-triggered HR PCD. PMID:23404918
Kinetics of apoptotic markers in exogeneously induced apoptosis of EL4 cells.
Jessel, Robert; Haertel, Steffen; Socaciu, Carmen; Tykhonova, Svetlana; Diehl, Horst A
2002-01-01
We investigated the time-dependence of apoptotic events in EL4 cells by monitoring plasma membrane changes in correlation to DNA fragmentation and cell shrinkage. We applied three apoptosis inducers (staurosporine, tubericidine and X-rays) and we looked at various markers to follow the early-to-late apoptotic events: phospholipid translocation (identified through annexin V-fluorescein assay and propidium iodide), lipid package (via merocyanine assay), membrane fluidity and anisotropy (via fluorescent measurements), DNA fragmentation by the fluorescence-labeling test and cell size measurements. The different apoptotic inducers caused different reactions of the cells: staurosporine induced apoptosis most rapidly in a high number of cells, tubercidine triggered apoptosis only in the S phase cells, while X-rays caused a G2/M arrest and subsequently apoptosis. Loss of lipid asymmetry is promptly detectable after one hour of incubation time. The phosphatidylserine translocation, decrease of lipid package and anisotropy, and the increase of membrane fluidity appeared to be based on the same process of lipid asymmetry loss. Therefore, the DNA fragmentation and the cell shrinkage appear to be parallel and independent processes running on different time scales but which are kinetically inter-related. The results indicate different signal steps to apoptosis dependent on inducer characteristics but the kinetics of "early-to-late" apoptosis appears to be a fixed program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, David L; Duleep, Dr. K. G.
2008-10-01
The North American Proton Exchange Membrane (PEM) fuel cell industry may be at a critical juncture. A large-scale market for automotive fuel cells appears to be several years away and in any case will require a long-term, coordinated commitment by government and industry to insure the co-evolution of hydrogen infrastructure and fuel cell vehicles (Greene et al., 2008). The market for non-automotive PEM fuel cells, on the other hand, may be much closer to commercial viability (Stone, 2006). Cost targets are less demanding and manufacturers appear to be close, perhaps within a factor of two, of meeting them. Hydrogen supplymore » is a significant obstacle to market acceptance but may not be as great a barrier as it is for hydrogen-powered vehicles due to the smaller quantities of hydrogen required. PEM fuel cells appear to be potentially competitive in two markets: (1) Backup power (BuP) supply, and (2) electrically-powered MHE (Mahadevan et al., 2007a, 2007b). There are several Original Equipment Manufacturers (OEMs) of PEM fuel cell systems for these applications but production levels have been quite low (on the order of 100-200 per year) and cumulative production experience is also limited (on the order of 1,000 units to date). As a consequence, costs remain above target levels and PEM fuel cell OEMs are not yet competitive in these markets. If cost targets can be reached and acceptable solutions to hydrogen supply found, a sustainable North American PEM fuel cell industry could be established. If not, the industry and its North American supply chain could disappear within a year or two. The Hydrogen Fuel Cell and Infrastructure Technologies (HFCIT) program of the U.S. Department of Energy (DOE) requested a rapid assessment of the potential for a government acquisition program to bootstrap the market for non-automotive PEM fuel cells by driving down costs via economies of scale and learning-by-doing. The six week study included in-depth interviews of three manufacturers, visits to two production facilities, review of the literature on potential markets in North America and potential federal government procurements, development of a cost model reflecting economies of scale and learning-by-doing, and estimation of the impact of federal PEM fuel cell procurements on fuel cell system costs and the evolution of private market demand. This report presents the findings of that study. Section 2 outlines the status of the industry and describes potential markets based on interviews of manufacturers and the existing literature. Section 3 describes the modeling methodology including key premises and assumptions, and presents estimates of market evolution under four scenarios: (1) Base Case with no federal government procurement program, (2) Scenario 1, an aggressive program beginning with less than 200 units procured in 2008 ramping up to more than 2,000 units in 2012, (3) Scenario 2 which is identical to Scenario 1 except that the private market is assumed to be twice as sensitive to price, and (4) Scenario 3, a delayed, smaller federal procurement program beginning in 2011 increasing to a maximum of just over 1,000 units per year in 2012. The analysis suggests that the aggressive program of Scenario 1 would likely stimulate a sustainable, competitive North American non-automotive PEM fuel cell industry. Given plausible assumptions about learning rates and scale economies, the procurements assumed in Scenario 1 appear to be sufficient to drive down costs to target levels. These findings are conditional on the evolution of acceptable hydrogen supply strategies, which were not explicitly analyzed in this study. Success is less certain under Scenarios 2 and 3, and there appears to be a strong probability that existing OEMs would not survive until 2011. In the Base Case, no program, a viable North American industry does not emerge before 2020.« less
Leijtens, Tomas; Giovenzana, Tommaso; Habisreutinger, Severin N; Tinkham, Jonathan S; Noel, Nakita K; Kamino, Brett A; Sadoughi, Golnaz; Sellinger, Alan; Snaith, Henry J
2016-03-09
Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance.
Gainey, Melanie A; Aman, Joseph W; Feldman, Daniel E
2018-04-20
Rapid plasticity of layer (L) 2/3 inhibitory circuits is an early step in sensory cortical map plasticity, but its cellular basis is unclear. We show that, in mice of either sex, 1 day whisker deprivation drives rapid loss of L4-evoked feedforward inhibition and more modest loss of feedforward excitation in L2/3 pyramidal (PYR) cells, increasing E-I conductance ratio. Rapid disinhibition was due to reduced L4-evoked spiking by L2/3 parvalbumin (PV) interneurons, caused by reduced PV intrinsic excitability. This included elevated PV spike threshold, associated with an increase in low-threshold, voltage activated delayed rectifier (presumed Kv1) and A-type potassium currents. Excitatory synaptic input and unitary inhibitory output of PV cells were unaffected. Functionally, the loss of feedforward inhibition and excitation were precisely coordinated in L2/3 PYR cells, so that peak feedforward synaptic depolarization remained stable. Thus, rapid plasticity of PV intrinsic excitability offsets early weakening of excitatory circuits to homeostatically stabilize synaptic potentials in PYR cells of sensory cortex. SIGNIFICANCE STATEMENT Inhibitory circuits in cerebral cortex are highly plastic, but the cellular mechanisms and functional importance of this plasticity are incompletely understood. We show that brief (1-day) sensory deprivation rapidly weakens parvalbumin (PV) inhibitory circuits by reducing the intrinsic excitability of PV neurons. This involved a rapid increase in voltage-gated potassium conductances that control near-threshold spiking excitability. Functionally, the loss of PV-mediated feedforward inhibition in L2/3 pyramidal cells was precisely balanced with the separate loss of feedforward excitation, resulting in a net homeostatic stabilization of synaptic potentials. Thus, rapid plasticity of PV intrinsic excitability implements network-level homeostasis to stabilize synaptic potentials in sensory cortex. Copyright © 2018 the authors.
Müller, Lars U W; Milsom, Michael D; Kim, Mi-Ok; Schambach, Axel; Schuesler, Todd; Williams, David A
2008-06-01
Fanconi anemia (FA) is a rare recessive syndrome, characterized by congenital anomalies, bone marrow failure, and predisposition to cancer. Two earlier clinical trials utilizing gamma-retroviral vectors for the transduction of autologous FA hematopoietic stem cells (HSCs) required extensive in vitro manipulation and failed to achieve detectable long-term engraftment of transduced HSCs. As a strategy for minimizing ex vivo manipulation, we investigated the use of a "rapid" lentiviral transduction protocol in a murine Fanca(-/-) model. Importantly, while this and most murine models of FA fail to completely mimic the human hematopoietic phenotype, we observed a high incidence of HSC transplant engraftment failure and low donor chimerism after conventional transduction (CT) of Fanca(-/-) donor cells. In contrast, rapid transduction (RT) of Fanca(-/-) HSCs preserved engraftment to the level achieved in wild-type cells, resulting in long-term multilineage engraftment of gene-modified cells. We also demonstrate the correction of the characteristic hypersensitivity of FA cells against the cross-linking agent mitomycin C (MMC), and provide evidence for the advantage of using pharmacoselection as a means of further increasing gene-modified cells after RT. Collectively, these data support the use of rapid lentiviral transduction for gene therapy in FA.
Excitation Light Dose Engineering to Reduce Photo-bleaching and Photo-toxicity
Boudreau, Colton; Wee, Tse-Luen (Erika); Duh, Yan-Rung (Silvia); Couto, Melissa P.; Ardakani, Kimya H.; Brown, Claire M.
2016-01-01
It is important to determine the most effective method of delivering light onto a specimen for minimal light induced damage. Assays are presented to measure photo-bleaching of fluorophores and photo-toxicity to living cells under different illumination conditions. Turning the light off during part of the experimental time reduced photo-bleaching in a manner proportional to the time of light exposure. The rate of photo-bleaching of EGFP was reduced by 9-fold with light pulsing on the micro-second scale. Similarly, in living cells, rapid line scanning resulted in reduced cell stress as measured by mitochondrial potential, rapid cell protrusion and reduced cell retraction. This was achieved on a commercial confocal laser scanning microscope, without any compromise in image quality, by using rapid laser scan settings and line averaging. Therefore this technique can be implemented broadly without any software or hardware upgrades. Researchers can use the rapid line scanning option to immediately improve image quality on fixed samples, reduce photo-bleaching for large high resolution 3D datasets and improve cell health in live cell experiments. The assays developed here can be applied to other microscopy platforms to measure and optimize light delivery for minimal sample damage and photo-toxicity. PMID:27485088
Excitation Light Dose Engineering to Reduce Photo-bleaching and Photo-toxicity.
Boudreau, Colton; Wee, Tse-Luen Erika; Duh, Yan-Rung Silvia; Couto, Melissa P; Ardakani, Kimya H; Brown, Claire M
2016-08-03
It is important to determine the most effective method of delivering light onto a specimen for minimal light induced damage. Assays are presented to measure photo-bleaching of fluorophores and photo-toxicity to living cells under different illumination conditions. Turning the light off during part of the experimental time reduced photo-bleaching in a manner proportional to the time of light exposure. The rate of photo-bleaching of EGFP was reduced by 9-fold with light pulsing on the micro-second scale. Similarly, in living cells, rapid line scanning resulted in reduced cell stress as measured by mitochondrial potential, rapid cell protrusion and reduced cell retraction. This was achieved on a commercial confocal laser scanning microscope, without any compromise in image quality, by using rapid laser scan settings and line averaging. Therefore this technique can be implemented broadly without any software or hardware upgrades. Researchers can use the rapid line scanning option to immediately improve image quality on fixed samples, reduce photo-bleaching for large high resolution 3D datasets and improve cell health in live cell experiments. The assays developed here can be applied to other microscopy platforms to measure and optimize light delivery for minimal sample damage and photo-toxicity.
2017-04-01
ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH (VISRIDER) PROGRAM TASK 6: POINT CLOUD...To) OCT 2013 – SEP 2014 4. TITLE AND SUBTITLE ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH...various point cloud visualization techniques for viewing large scale LiDAR datasets. Evaluate their potential use for thick client desktop platforms
Rapid polyclonal desensitization with antibodies to IgE and FcεRIα.
Khodoun, Marat V; Kucuk, Zeynep Yesim; Strait, Richard T; Krishnamurthy, Durga; Janek, Kevin; Lewkowich, Ian; Morris, Suzanne C; Finkelman, Fred D
2013-06-01
Rapid desensitization, a procedure in which persons allergic to an antigen are treated at short intervals with increasing doses of that antigen until they tolerate a large dose, is an effective, but risky, way to induce temporary tolerance. We wanted to determine whether this approach can be adapted to suppress all IgE-mediated allergies in mice by injecting serially increasing doses of monoclonal antibodies (mAbs) to IgE or FcεRIα. Active and passive models of antigen- and anti-IgE mAb-induced IgE-mediated anaphylaxis were used. Mice were desensitized with serially increasing doses of anti-IgE mAb, anti-FcεRIα mAb, or antigen. Development of shock (hypothermia), histamine and mast cell protease release, cytokine secretion, calcium flux, and changes in cell number and FcεRI and IgE expression were evaluated. Rapid desensitization with anti-IgE mAb suppressed IgE-mediated immediate hypersensitivity; however, some mice developed mild anaphylaxis during desensitization. Rapid desensitization with anti-FcεRIα mAb that only binds FcεRI that is not occupied by IgE suppressed both active and passive IgE-mediated anaphylaxis without inducing disease. It quickly, but temporarily, suppressed IgE-mediated anaphylaxis by decreasing mast cell signaling through FcεRI, then slowly induced longer lasting mast cell unresponsiveness by removing membrane FcεRI. Rapid desensitization with anti-FcεRIα mAb was safer and longer lasting than rapid desensitization with antigen. A rapid desensitization approach with anti-FcεRIα mAb safely desensitizes mice to IgE-mediated anaphylaxis by inducing mast cell anergy and later removing all mast cell IgE. Rapid desensitization with an anti-human FcεRIα mAb may be able to prevent human IgE-mediated anaphylaxis. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Rapid polyclonal desensitization with antibodies to IgE and FcεRIα
Khodoun, Marat V.; Kucuk, Zeynep Yesim; Strait, Richard T.; Krishnamurthy, Durga; Janek, Kevin; Lewkowich, Ian; Morris, Suzanne C.; Finkelman, Fred D.
2013-01-01
Background Rapid desensitization,a procedure in which individuals allergic to an antigen are treated at short intervals with increasing doses of that antigen until they tolerate a large dose, is an effective, but risky way to induce temporary tolerance. Objective To determine whether this approach can be adapted to suppress all IgE-mediated in mice by injecting serially increasing doses of monoclonal antibodies (mAbs) to IgE or FcεRIα. Methods Active and passive models of antigen- and anti-IgE mAb-induced IgE-mediated anaphylaxis were used. Mice were desensitized with serially increasing doses of anti-IgE mAb, anti-FcεRIα mAb or antigen. Development of shock (hypothermia), histamine and mast cell protease release, cytokine secretion, calcium flux and changes in cell number and FcεRI and IgE expression were evaluated. Results Rapid desensitization with anti-IgE mAb suppressed IgE-mediated immediate hypersensitivity; however, some mice developed mild anaphylaxis during desensitization. Rapid desensitization with anti-FcεRIα mAb that only binds FcεRI that is not occupied by IgE suppressed both active and passive IgE-mediated anaphylaxis without inducing disease. It quickly, but temporarily, suppressed IgE-mediated anaphylaxis by decreasing mast cell signaling through FcεRI, then slowly slowlyinduced longer lasting mast cell unresponsiveness by removing membrane FcεRI. Rapid desensitization with anti-FcεRIα mAb was safer and longer-lasting than rapid desensitization with antigen. Conclusion A rapid desensitization approach with anti-FcεRIα mAb safely desensitizes mice to IgE-mediated anaphylaxis by inducing mast cell anergy and later, removing all mast cell IgE. Rapid desensitization with an anti-human FcεRIα mAb may be able to prevent human IgE-mediated anaphylaxis. PMID:23632296
Jung, Sung Han; Hwang, Jeong Ho; Kim, Sang Eun; Kim, Young Kyu; Park, Hyo Chang; Lee, Hoon Taek
2017-07-01
In xenotransplantation, immune rejection by macrophages occurs rapidly and remains a major obstacle. Studies to control immune rejection in macrophages have been continuing to date. Recent studies have reported that human galectin-9 (hGal-9) can regulate the function of regulatory T cells (Treg), as well as cytotoxicity T cells (CTL) and natural killer cells (NK). Although the effect of hGal-9 on lymphocytes has been well studied, the relationship between hGal-9 and myeloid cells has been scarcely studied. To confirm the decreased cytotoxic activity effect by hGal-9 in M1-differentiated THP-1 cells, we established the hGal-9 expressing transgenic porcine cell line. hGal-9 siRNA was transfected to transgenic cells and recombinant hGal-9 (rhGal-9) was treated to co-culturing condition, and then, flow cytometry assay was conducted for analyzing the cytotoxic activity of M1-differentiated THP-1 cells. Related inflammatory cytokines (IL-1β, IL-10, TNF-α, IL-6, IL-12, IL-23, and TGF-β) and related enzymes (iNOS and Arginase 1) were analyzed by qPCR and Western blot assay. To identify the shift in M1/M2-differentiated THP-1 cells, expression levels of CCR7, CD163, iNOS, and Arginase 1 and population of M2 marker positive cells were analyzed. The expression levels of pro-inflammatory cytokines in M1-differentiated THP-1 cells co-cultured with hGal-9-expressing porcine kidney epithelial cells were decreased, but not in co-cultured THP-1 cells. However, the expression levels of anti-inflammatory cytokines were also increased in co-cultured M1-differentiated THP-1 cells. The cytotoxicity effect of M1-differentiated THP-1 cells on transgenic cells was decreased while the expression levels of anti-inflammatory cytokines and M2 macrophages-related molecules were increased. M2 differentiation program was turned on while M1 program was turned down by enhancing the phosphorylation levels of Akt and PI3K and the expression level of PPAR-γ. Due to these changes, differentiation of M2 program was enhanced in cells co-cultured with hGal-9. These data suggested that hGal-9 has a reduction in M1-differentiated THP-1 cell cytotoxic activity-related acute immune rejection in pig-to-human xenotransplantation in addition to its role in lymphoid lineage immune cell regulation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Metal-air battery research and development
NASA Astrophysics Data System (ADS)
Behrin, E.; Cooper, J. F.
1982-05-01
This report summarizes the activities of the Metal-air Battery Program during the calendar year 1981. The principal objective is to develop a refuelable battery as an automotive energy source for general-purpose electric vehicles and to conduct engineering demonstrations of its ability to provide vehicles with the range, acceleration, and rapid refueling capability of current internal-combustion-engine automobiles. The second objective is to develop an electrically-rechargeable battery for specific-mission electric vehicles, such as commuter vehicles, that can provide low-cost transportation. The development progression is to: (1) develop a mechanically rechargeable aluminum-air power cell using model electrodes, (2) develop cost-effective anode and cathode materials and structures as required to achieve reliability and efficiency goals, and to establish the economic competitiveness of this technology, and (3) develop and integrated propulsion system utilizing the power cell.
Specification of haematopoietic stem cell fate via modulation of mitochondrial activity
Vannini, Nicola; Girotra, Mukul; Naveiras, Olaia; Nikitin, Gennady; Campos, Vasco; Giger, Sonja; Roch, Aline; Auwerx, Johan; Lutolf, Matthias P.
2016-01-01
Haematopoietic stem cells (HSCs) differ from their committed progeny by relying primarily on anaerobic glycolysis rather than mitochondrial oxidative phosphorylation for energy production. However, whether this change in the metabolic program is the cause or the consequence of the unique function of HSCs remains unknown. Here we show that enforced modulation of energy metabolism impacts HSC self-renewal. Lowering the mitochondrial activity of HSCs by chemically uncoupling the electron transport chain drives self-renewal under culture conditions that normally induce rapid differentiation. We demonstrate that this metabolic specification of HSC fate occurs through the reversible decrease of mitochondrial mass by autophagy. Our data thus reveal a causal relationship between mitochondrial metabolism and fate choice of HSCs and also provide a valuable tool to expand HSCs outside of their native bone marrow niches. PMID:27731316
Hyperkalemia caused by rapid red cell transfusion and the potassium absorption filter
Imashuku, Yasuhiko; Kitagawa, Hirotoshi; Mizuno, Takayoshi; Fukushima, Yutaka
2017-01-01
We report a case of transient hyperkalemia during hysterectomy after cesarean section, due to preoperatively undiagnosed placenta accreta that caused unforeseen massive hemorrhage and required rapid red cell transfusion. Hyperkalemia-induced by rapid red cell transfusion is a well-known severe complication of transfusion; however, in patients with sudden massive hemorrhage, rapid red cell transfusion is necessary to save their life. In such cases, it is extremely important to monitor serum potassium levels. For an emergency situation, a system should be developed to ensure sufficient preparation for immediate transfusion and laboratory tests. Furthermore, sufficient stock of preparations to treat hyperkalemia, such as calcium preparations, diuretics, glucose, and insulin is required. Moreover, a transfusion filter that absorbs potassium has been developed and is now available for clinical use in Japan. The filter is easy to use and beneficial, and should be prepared when it is available. PMID:28217070
Rapid prototyping and AI programming environments applied to payload modeling
NASA Technical Reports Server (NTRS)
Carnahan, Richard S., Jr.; Mendler, Andrew P.
1987-01-01
This effort focused on using artificial intelligence (AI) programming environments and rapid prototyping to aid in both space flight manned and unmanned payload simulation and training. Significant problems addressed are the large amount of development time required to design and implement just one of these payload simulations and the relative inflexibility of the resulting model to accepting future modification. Results of this effort have suggested that both rapid prototyping and AI programming environments can significantly reduce development time and cost when applied to the domain of payload modeling for crew training. The techniques employed are applicable to a variety of domains where models or simulations are required.
Metabolism of murine TH 17 cells: Impact on cell fate and function.
Wang, Ran; Solt, Laura A
2016-04-01
An effective adaptive immune response relies on the ability of lymphocytes to rapidly act upon a variety of insults. In T lymphocytes, this response includes cell growth, clonal expansion, differentiation, and cytokine production, all of which place a significant energy burden on the cell. Recent evidence shows that T-cell metabolic reprogramming is an essential component of the adaptive immune response and specific metabolic pathways dictate T-cell fate decisions, including the development of TH 17 versus T regulatory (Treg) cells. TH 17 cells have garnered significant attention due to their roles in the pathology of immune-mediated inflammatory diseases. Attempts to characterize TH 17 cells have demonstrated that they are highly dynamic, adjusting their function to environmental cues, which dictate their metabolic program. In this review, we highlight recent data demonstrating the impact of cellular metabolism on the TH 17/Treg balance and present factors that mediate TH 17-cell metabolism. Some examples of these include the differential impact of the mTOR signaling complexes on T-helper-cell differentiation, hypoxia inducible factor 1 alpha (HIF1α) promotion of glycolysis to favor TH 17-cell development, and ACC1-dependent de novo fatty acid synthesis favoring TH 17-cell development over Treg cells. Finally, we discuss the potential therapeutic options and the implications of modulating TH 17-cell metabolism for the treatment of TH 17-mediated diseases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Programming cells by multiplex genome engineering and accelerated evolution.
Wang, Harris H; Isaacs, Farren J; Carr, Peter A; Sun, Zachary Z; Xu, George; Forest, Craig R; Church, George M
2009-08-13
The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties.
MyoD undergoes a distinct G2/M-specific regulation in muscle cells.
Batonnet-Pichon, Sabrina; Tintignac, Lionel J; Castro, Anna; Sirri, Valentina; Leibovitch, Marie Pierre; Lorca, Thierry; Leibovitch, Serge A
2006-12-10
The transcription factors MyoD and Myf5 present distinct patterns of expression during cell cycle progression and development. In contrast to the mitosis-specific disappearance of Myf5, which requires a D-box-like motif overlapping the basic domain, here we describe a stable and inactive mitotic form of MyoD phosphorylated on its serine 5 and serine 200 residues by cyclin B-cdc2. In mitosis, these modifications are required for releasing MyoD from condensed chromosomes and inhibiting its DNA-binding and transcriptional activation ability. Then, nuclear MyoD regains instability in the beginning of G1 phase due to rapid dephosphorylation events. Moreover, a non-phosphorylable MyoD S5A/S200A is not excluded from condensed chromatin and alters mitotic progression with apparent abnormalities. Thus, the drop of MyoD below a threshold level and its displacement from the mitotic chromatin could present another window in the cell cycle for resetting the myogenic transcriptional program and to maintain the myogenic determination of the proliferating cells.
The Role of Endoplasmic Reticulum Stress in Human Pathology
Oakes, Scott A.; Papa, Feroz R.
2017-01-01
Numerous genetic and environmental insults impede the ability of cells to properly fold and posttranslationally modify secretory and transmembrane proteins in the endoplasmic reticulum (ER), leading to a buildup of misfolded proteins in this organelle—a condition called ER stress. ER-stressed cells must rapidly restore protein-folding capacity to match protein-folding demand if they are to survive. In the presence of high levels of misfolded proteins in the ER, an intracellular signaling pathway called the unfolded protein response (UPR) induces a set of transcriptional and translational events that restore ER homeostasis. However, if ER stress persists chronically at high levels, a terminal UPR program ensures that cells commit to self-destruction. Chronic ER stress and defects in UPR signaling are emerging as key contributors to a growing list of human diseases, including diabetes, neurodegeneration, and cancer. Hence, there is much interest in targeting components of the UPR as a therapeutic strategy to combat these ER stress–associated pathologies. PMID:25387057
Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells.
Nahire, Rahul; Haldar, Manas K; Paul, Shirshendu; Ambre, Avinash H; Meghnani, Varsha; Layek, Buddhadev; Katti, Kalpana S; Gange, Kara N; Singh, Jagdish; Sarkar, Kausik; Mallik, Sanku
2014-08-01
Although liposomes are widely used as carriers of drugs and imaging agents, they suffer from a lack of stability and the slow release of the encapsulated contents at the targeted site. Polymersomes (vesicles of amphiphilic polymers) are considerably more stable compared to liposomes; however, they also demonstrate a slow release for the encapsulated contents, limiting their efficacy as a drug-delivery tool. As a solution, we prepared and characterized echogenic polymersomes, which are programmed to release the encapsulated drugs rapidly when incubated with cytosolic concentrations of glutathione. These vesicles encapsulated air bubbles inside and efficiently reflected diagnostic-frequency ultrasound. Folate-targeted polymersomes showed an enhanced uptake by breast and pancreatic-cancer cells in a monolayer as well as in three-dimensional spheroid cultures. Polymersomes encapsulated with the anticancer drugs gemcitabine and doxorubicin showed significant cytotoxicity to these cells. With further improvements, these vesicles hold the promise to serve as multifunctional nanocarriers, offering a triggered release as well as diagnostic ultrasound imaging. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guan, Qingdong; Li, Yun; Shpiruk, Tanner; Bhagwat, Swaroop; Wall, Donna A
2018-05-01
Establishment of a potency assay in the manufacturing of clinical-grade mesenchymal stromal cells (MSCs) has been a challenge due to issues of relevance to function, timeline and variability of responder cells. In this study, we attempted to develop a potency assay for MSCs. Clinical-grade bone marrow-derived MSCs were manufactured. The phenotype and immunosuppressive functions of the MSCs were evaluated based on the International Society for Cellular Therapy guidelines. Resting MSCs licensed by interferon (IFN)-γ exposure overnight were evaluated for changes in immune suppression and immune-relevant proteins. The relationship of immune-relevant protein expression with immunosuppression of MSCs was analyzed. MSC supressed third-party T-lymphocyte proliferation with high inter-donor and inter-test variability. The suppression of T-lymphocyte proliferation by IFN-γ-licensed MSCs correlated with that by resting MSCs. Many cellular proteins were up-regulated after IFN-γ exposure, including indoleamine 2,3-dioxygenase 1 (IDO-1), programmed death ligand 1 (PD-L1), vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1) and bone marrow stromal antigen 2 (BST-2). The expression levels of IDO-1 and PD-L1 on licensed MSCs, not VCAM-1, ICAM-1 or BST-2 on licensed MSCs, correlated with MSC suppression of third-party T-cell proliferation. A flow cytometry-based assay of MSCs post-IFN-γ exposure measuring expression of intracellular protein IDO-1 and cell surface protein PD-L1 captures two mechanisms of suppression and offers the potential of a relevant, rapid assay for MSC-mediated immune suppression that would fit with the manufacturing process. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Rapid immunohistochemical detection of tumor cells in gastric carcinoma.
Mönig, Stefan P; Luebke, Thomas; Soheili, Afsoon; Landsberg, Stephanie; Dienes, H P; Hölscher, Arnulf H; Baldus, Stephan E
2006-11-01
The detection of single tumor cells or tumor cell clusters represents an important issue in intraoperative frozen section analysis. For example, surgical margins may be evaluated in order to minimize the number of additional operations. Furthermore, intraoperative diagnosis of lymph node micrometastasis (LNM) may help to define the area of appropriate lymph node dissection. In addition to haematoxylin and eosin (H&E)-stained sections, immunohistochemical detection of single tumor cells or cell clusters may be helpful in this context. The aim of this study was to evaluate the clinical significance, reliability and sensitivity of intraoperative rapid immunostaining of frozen sections. Therefore, we compared the results of rapid immunohistochemical staining of frozen sections and paraffin sections applying the EnVision and Histofine(R) detection systems. In a prospective immunohistochemical study, paraffin and frozen sections of 20 gastric cancer specimens were analyzed. Paraffin as well as frozen sections were stained immunohistochemically applying the EnVision and Histofine detection systems. As primary antibodies, AE1/AE3 (anti-cytokeratin), EMA (anti-MUC1) and B lymphocyte marker anti-CD20 were applied. The rapid immunostaining procedure was able to be completed within 10-13 min. Rapid immunohistochemical staining of frozen and paraffin sections of the same tumors resulted in comparable immunoreactivity. The rapid EnVision and Histofine procedures allowed immunostaining of frozen sections in less than 13 min. These methods can represent useful additional tools in routine surgical pathology and research, enabling a more accurate frozen section diagnosis compared to staining with H&E alone. Intraoperative rapid immunostaining can be a simple and useful technique to detect LNM.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-31
... Re-Housing for Families Demonstration program and the Homelessness Prevention and Rapid Re-Housing... to quickly rehouse homeless individuals and families while minimizing the trauma and dislocation caused to homeless individuals, families, and communities by homelessness; promote access to and...
How we treat Waldenström's macroglobulinemia.
Dimopoulos, Meletios A; Merlini, Giampaolo; Leblond, Veronique; Anagnostopoulos, Athanasios; Alexanian, Raymond
2005-01-01
Waldenström's macroglobulinemia (WM) is a lymphoplasmacytic lymphoma which produces monoclonal immunoglobulin M (IgM). Over the last decade, new treatment modalites have been developed for the management of this disorder. Our objective is to provide treatment recommendations for WM. A review of published reports was facilitated by a MEDLINE computer search and by a manual search of Index Medicus. Other sources included abstracts and conference proceedings. Most patients with WM who are diagnosed by chance without symptoms should not be treated. Initiation of treatment should not be based on level of serum monoclonal protein per se. The presence of cytopenia, significant adenopathy or organomegaly, symptomatic hyperviscosity, severe neuropathy or cryoglobulinemia indicates the need for treatment. The main choices for primary treatment of symptomatic patients with WM include alkylating agents, the nucleoside analogs fludarabine or cladribine and the monoclonal antibody rituximab or combinations of these programs. There are no data from prospective randomized studies to recommend the use of one program over another. Nevertheless, the need for rapid disease control may favor the use of nucleoside analogs, whereas the presence of significant cytopenia may favor rituximab. High dose therapy with autologous stem cell transplantation may induce responses even in patients with resistance to all three class of agents. It may be prudent to avoid nucleoside analogs in patients who are candidates for high dose therapy. Despite the lack of randomized trials, a rational approach to the treatment of patients with WM is possible. Several factors, including the presence of cytopenias, need for rapid disease control, candidacy for autologous stem cell transplantation, age and co-morbid conditions, should be taken into consideration when choosing the most appropriate primary treatment.
Strategies of seedlings to overcome their sessile nature: auxin in mobility control.
Žádníková, Petra; Smet, Dajo; Zhu, Qiang; Van Der Straeten, Dominique; Benková, Eva
2015-01-01
Plants are sessile organisms that are permanently restricted to their site of germination. To compensate for their lack of mobility, plants evolved unique mechanisms enabling them to rapidly react to ever changing environmental conditions and flexibly adapt their postembryonic developmental program. A prominent demonstration of this developmental plasticity is their ability to bend organs in order to reach the position most optimal for growth and utilization of light, nutrients, and other resources. Shortly after germination, dicotyledonous seedlings form a bended structure, the so-called apical hook, to protect the delicate shoot meristem and cotyledons from damage when penetrating through the soil. Upon perception of a light stimulus, the apical hook rapidly opens and the photomorphogenic developmental program is activated. After germination, plant organs are able to align their growth with the light source and adopt the most favorable orientation through bending, in a process named phototropism. On the other hand, when roots and shoots are diverted from their upright orientation, they immediately detect a change in the gravity vector and bend to maintain a vertical growth direction. Noteworthy, despite the diversity of external stimuli perceived by different plant organs, all plant tropic movements share a common mechanistic basis: differential cell growth. In our review, we will discuss the molecular principles underlying various tropic responses with the focus on mechanisms mediating the perception of external signals, transduction cascades and downstream responses that regulate differential cell growth and consequently, organ bending. In particular, we highlight common and specific features of regulatory pathways in control of the bending of organs and a role for the plant hormone auxin as a key regulatory component.
Strategies of seedlings to overcome their sessile nature: auxin in mobility control
Žádníková, Petra; Smet, Dajo; Zhu, Qiang; Straeten, Dominique Van Der; Benková, Eva
2015-01-01
Plants are sessile organisms that are permanently restricted to their site of germination. To compensate for their lack of mobility, plants evolved unique mechanisms enabling them to rapidly react to ever changing environmental conditions and flexibly adapt their postembryonic developmental program. A prominent demonstration of this developmental plasticity is their ability to bend organs in order to reach the position most optimal for growth and utilization of light, nutrients, and other resources. Shortly after germination, dicotyledonous seedlings form a bended structure, the so-called apical hook, to protect the delicate shoot meristem and cotyledons from damage when penetrating through the soil. Upon perception of a light stimulus, the apical hook rapidly opens and the photomorphogenic developmental program is activated. After germination, plant organs are able to align their growth with the light source and adopt the most favorable orientation through bending, in a process named phototropism. On the other hand, when roots and shoots are diverted from their upright orientation, they immediately detect a change in the gravity vector and bend to maintain a vertical growth direction. Noteworthy, despite the diversity of external stimuli perceived by different plant organs, all plant tropic movements share a common mechanistic basis: differential cell growth. In our review, we will discuss the molecular principles underlying various tropic responses with the focus on mechanisms mediating the perception of external signals, transduction cascades and downstream responses that regulate differential cell growth and consequently, organ bending. In particular, we highlight common and specific features of regulatory pathways in control of the bending of organs and a role for the plant hormone auxin as a key regulatory component. PMID:25926839
DECISION-MAKING ALIGNED WITH RAPID-CYCLE EVALUATION IN HEALTH CARE.
Schneeweiss, Sebastian; Shrank, William H; Ruhl, Michael; Maclure, Malcolm
2015-01-01
Availability of real-time electronic healthcare data provides new opportunities for rapid-cycle evaluation (RCE) of health technologies, including healthcare delivery and payment programs. We aim to align decision-making processes with stages of RCE to optimize the usefulness and impact of rapid results. Rational decisions about program adoption depend on program effect size in relation to externalities, including implementation cost, sustainability, and likelihood of broad adoption. Drawing on case studies and experience from drug safety monitoring, we examine how decision makers have used scientific evidence on complex interventions in the past. We clarify how RCE alters the nature of policy decisions; develop the RAPID framework for synchronizing decision-maker activities with stages of RCE; and provide guidelines on evidence thresholds for incremental decision-making. In contrast to traditional evaluations, RCE provides early evidence on effectiveness and facilitates a stepped approach to decision making in expectation of future regularly updated evidence. RCE allows for identification of trends in adjusted effect size. It supports adapting a program in midstream in response to interim findings, or adapting the evaluation strategy to identify true improvements earlier. The 5-step RAPID approach that utilizes the cumulating evidence of program effectiveness over time could increase policy-makers' confidence in expediting decisions. RCE enables a step-wise approach to HTA decision-making, based on gradually emerging evidence, reducing delays in decision-making processes after traditional one-time evaluations.
Rapid DNA replication origin licensing protects stem cell pluripotency
Matson, Jacob Peter; Dumitru, Raluca; Coryell, Philip; Baxley, Ryan M; Chen, Weili; Twaroski, Kirk; Webber, Beau R; Tolar, Jakub; Bielinsky, Anja-Katrin; Purvis, Jeremy E
2017-01-01
Complete and robust human genome duplication requires loading minichromosome maintenance (MCM) helicase complexes at many DNA replication origins, an essential process termed origin licensing. Licensing is restricted to G1 phase of the cell cycle, but G1 length varies widely among cell types. Using quantitative single-cell analyses, we found that pluripotent stem cells with naturally short G1 phases load MCM much faster than their isogenic differentiated counterparts with long G1 phases. During the earliest stages of differentiation toward all lineages, MCM loading slows concurrently with G1 lengthening, revealing developmental control of MCM loading. In contrast, ectopic Cyclin E overproduction uncouples short G1 from fast MCM loading. Rapid licensing in stem cells is caused by accumulation of the MCM loading protein, Cdt1. Prematurely slowing MCM loading in pluripotent cells not only lengthens G1 but also accelerates differentiation. Thus, rapid origin licensing is an intrinsic characteristic of stem cells that contributes to pluripotency maintenance. PMID:29148972
Ndhlovu, Zaza; Kamya, Philomena; Mewalal, Nikoshia; Kløverpris, Henrik N.; Nkosi, Thandeka; Pretorius, Karyn; Laher, Faatima; Ogunshola, Funsho; Chopera, Denis; Shekhar, Karthik; Ghebremichael, Musie; Ismail, Nasreen; Moodley, Amber; Malik, Amna; Leslie, Alasdair; Goulder, Philip J.R; Buus, Søren; Chakraborty, Arup; Dong, Krista; Ndung’u, Thumbi; Walker, Bruce D.
2015-01-01
Summary CD8+ T cells contribute to the control of HIV, but it is not clear whether initial immune responses modulate the viral set point. We screened high-risk uninfected women twice a week for plasma HIV RNA and identified twelve hyperacute infections. Onset of viremia elicited a massive HIV-specific CD8+ T cell response, with limited bystander activation of non-HIV memory CD8+ T cells. HIV-specific CD8+ T cells secreted little interferon-γ, underwent rapid apoptosis and failed to upregulate the interleukin 7 receptor, known to be important for T cell survival. The rapidity to peak CD8+ T cell activation and the absolute magnitude of activation induced by the exponential rise in viremia were inversely correlated with set point viremia. These data indicate that rapid, high magnitude HIV-induced CD8+ T cell responses are crucial for subsequent immune control of acute infection, which has important implications for HIV vaccine design. PMID:26362266
Meshki, John; Douglas, Steven D.; Hu, Mingyue; Leeman, Susan E.; Tuluc, Florin
2011-01-01
U373MG astrocytoma cells endogenously express the full-length neurokinin 1 receptor (NK1R). Substance P (SP), the natural ligand for NK1R, triggers rapid and transient membrane blebbing and we report that these morphological changes have different dynamics and intracellular signaling as compared to the changes that we have previously described in HEK293-NK1R cells. In both cell lines, the SP-induced morphological changes are Gq-independent, and they require the Rho, Rho-associated coiled-coil kinase (ROCK) signaling pathway. Using confocal microscopy we have demonstrated that tubulin is phosphorylated subsequent to cell stimulation with SP and that tubulin accumulates inside the blebs. Colchicine, a tubulin polymerization inhibitor, blocked SP-induced blebbing in U373MG but not in HEK293-NK1R cells. Although p21-activated kinase (PAK) is expressed in both cell lines, SP induced rapid phosphorylation of PAK in U373MG, but failed to phosphorylate PAK in HEK293-NK1R cells. The cell-permeable Rho inhibitor C3 transferase inhibited SP-induced PAK phosphorylation, but the ROCK inhibitor Y27632 had no effect on PAK phosphorylation, suggesting that Rho activates PAK in a ROCK-independent manner. Our study demonstrates that SP triggers rapid changes in cell morphology mediated by distinct intracellular signaling mechanisms in U373MG versus HEK293-NK1R cells. PMID:21966499
Rapid cell death in Xanthomonas campestris pv. glycines.
Gautam, Satyendra; Sharma, Arun
2002-04-01
Xanthomonas campestris pv. glycines strain AM2 (XcgAM2), the etiological agent of bacterial pustule disease of soybean, exhibited post-exponential rapid cell death (RCD) in LB medium. X. campestris pv. malvacearum NCIM 2310 and X. campestris NCIM 2961 also displayed RCD, though less pronouncedly than XcgAM2. RCD was not observed in Pseudomonas syringae pv. glycines, or Escherichia coli DH5alpha. Incubation of the post-exponential LB-grown XcgAM2 cultures at 4 degrees C arrested the RCD. RCD was also inhibited by the addition of starch during the exponential phase of LB-growing XcgAM2. Protease negative mutants of XcgAM2 were found to be devoid of RCD behavior observed in the wild type XcgAM2. While undergoing RCD, the organism was found to transform to spherical membrane bodies. The presence of membrane bodies was confirmed by using a membrane specific fluorescent label, 1,6-diphenyl 1,3,5-hexatriene (DPH), and also by visualizing these structures under microscope. The membrane bodies of XcgAM2 were found to contain DNA, which was devoid of the indigenous plasmids of the organism. The membrane bodies were found to bind annexin V indicative of the externalization of membrane phosphatidyl serine. Nicking of DNA in XcgAM2 cultures undergoing RCD in LB medium was also detected using a TUNEL assay. The RCD in XcgAM2 appeared to have features similar to the programmed cell death in eukaryotes.
Junker, Niels; Andersen, Mads Hald; Wenandy, Lynn; Dombernowsky, Sarah Louise; Kiss, Katalin; Sørensen, Christian Hjort; Therkildsen, Marianne Hamilton; Von Buchwald, Christian; Andersen, Elo; Straten, Per Thor; Svane, Inge Marie
2011-08-01
Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has proven effective in metastatic melanoma and should therefore be explored in other types of cancer. The aim of this study was to examine the feasibility of potentially expanding clinically relevant quantities of tumor-specific T-cell cultures from TIL from patients with head and neck squamous cell carcinoma (HNSCC) using a more rapid expansion procedure compared with previous HNSCC studies. In a two-step expansion process, initially TIL bulk cultures were established from primary and recurrent HNSCC tumors in high-dose interleukin (IL)-2. Secondly, selected bulk cultures were rapidly expanded using anti-CD3 antibody, feeder cells and high-dose IL-2. T-cell subsets were phenotypically characterized using flow cytometry. T-cell receptor (TCR) clonotype mapping was applied to examine clonotype dynamics during culture. Interferon (INF)-γ detection by Elispot and Cr(51) release assay determined the specificity and functional capacity of selected TIL pre- and post-rapid expansion. TIL bulk cultures were expanded in 80% of the patients included, showing tumor specificity in 60% of the patients. Rapid expansions generated up to 3500-fold expansion of selected TIL cultures within 17 days. The cultures mainly consisted of T-effector memory cells, with varying distributions of CD8(+) and CD4(+) subtypes both among cultures and patients. TCR clonotype mapping demonstrated oligoclonal expanded cultures, ranging from approximately 10 to 30 T-cell clonotypes. TIL from large-scale rapid expansions maintained functional capacity, and contained tumor-specific T cells. The procedure is feasible for expansion of TIL from HNSCC, ensuring clinically relevant expansion folds within 7 weeks. The cell culture kinetics and phenotypes of the TIL resemble previously published results on TIL from melanoma, setting the stage for clinical testing of this promising treatment strategy for patients with HNSCC.
Aldosterone mediates its rapid effects in vascular endothelial cells through GPER activation.
Gros, Robert; Ding, Qingming; Liu, Bonan; Chorazyczewski, Jozef; Feldman, Ross D
2013-03-01
The importance of the rapid vascular effects of aldosterone is increasingly appreciated. Through these rapid pathways, aldosterone has been shown to regulate vascular contractility, cell growth, and apoptosis. In our most recent studies, we demonstrated the effects of aldosterone on cell growth and contractility in vascular smooth muscle cells. We showed that these effects could occur via activation of the classic mineralocorticoid receptor, as well the recently characterized G protein-coupled estrogen receptor (GPER), initially characterized as an estrogen-specific receptor. However, the mechanisms underlying aldosterone's endothelium-dependent actions are unknown. Furthermore, the ERK regulatory and proapoptotic effects of aldosterone mediated by GPER activation in cultured vascular smooth muscle cells were only apparent when GPER was reintroduced into these cells by gene transfer. Whether GPER activation via aldosterone might be an important regulator in native vascular cells has been questioned. Therefore, to determine the role of GPER in mediating aldosterone's effects on cell growth and vascular reactivity in native cells, we examined rat aortic vascular endothelial cells, a model characterized by persistent robust expression of GPER, but without detectable mineralocorticoid receptor expression. In these endothelial cells, the GPER agonist G1 mediates a rapid increase in ERK phosphorylation that is wholly GPER-dependent, paralleling the actions of aldosterone. The effects of G1 and aldosterone to stimulate ERK phosphorylation paralleled their proapoptotic and antiproliferative effects. In previous studies, we reported that aldosterone mediates a rapid endothelium-dependent vasodilatory effect, antagonistic to its direct vasoconstrictor effect in endothelium-denuded preparations. Using a rat aortic ring/organ bath preparation to determine the GPER dependence of aldosterone's endothelium-dependent vasodilator effects, we demonstrate that aldosterone inhibits phenylephrine-mediated contraction. This vasodilator effect parallels the actions of the GPER agonist G1. Furthermore, the effects of aldosterone were completely ablated by the GPER antagonist G15. These data support an important role of GPER activation in aldosterone-mediated regulation of endothelial cell growth, as well as in aldosterone's endothelium-mediated regulation of vasoreactivity.
The Rapid Integration and Test Environment: A Process for Achieving Software Test Acceptance
2010-05-01
Test Environment : A Process for Achieving Software Test Acceptance 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...mlif`v= 365= k^s^i=mlpqdo^ar^qb=p`elli= The Rapid Integration and Test Environment : A Process for Achieving Software Test Acceptance Patrick V...was awarded the Bronze Star. Introduction The Rapid Integration and Test Environment (RITE) initiative, implemented by the Program Executive Office
FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramin Yazdani; Jeff Kieffer; Heather Akau
2003-08-01
The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes ofmore » air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.« less
NASA Astrophysics Data System (ADS)
Kessel, David
2007-02-01
Cellular targets of photodynamic therapy include mitochondria, lysosomes, the endoplasmic reticulum (ER) and the plasma membrane. PDT can evoke necrosis, autophagy and apoptosis, or combinations of these, depending on the PDT dose, the site(s) of photodamage and the cellular phenotype. It has been established that loss of viability occurs even when the apoptotic program is inhibited. Studies assessing effects of ER or mitochondrial photodamage, involving loss of Bcl-2 function, indicate that low-dose PDT elicited a rapid autophagic response in L1210 cells. This was attributed to the ability of autophagy to recycle photodamaged organelles, and there was partial protection from loss of viability. This effect was not observed in L1210/Atg7, where autophagy was silenced. At higher PDT doses, apoptotic cells were observed within 60 min in both cell lines, but more so in L1210. The ability of L1210 cells to undergo autophagy did not offer protection from cell death at the higher PDT dose. Previous studies had indicated that autophagy can contribute to cell death, since L1210 cells that do not undergo an initial apoptotic response often contain multiple autophagic vacuoles 24 hr later. With L1210/Atg7, apoptosis alone may account for the loss of viability at an LD 90 PDT dose.
Fann, Monchou; Godlove, Jason M.; Catalfamo, Marta; Wood, William H.; Chrest, Francis J.; Chun, Nicholas; Granger, Larry; Wersto, Robert; Madara, Karen; Becker, Kevin; Henkart, Pierre A.; Weng, Nan-ping
2006-01-01
To understand the molecular basis for the rapid and robust memory T-cell responses, we examined gene expression and chromatin modification by histone H3 lysine 9 (H3K9) acetylation in resting and activated human naive and memory CD8+ T cells. We found that, although overall gene expression patterns were similar, a number of genes are differentially expressed in either memory or naive cells in their resting and activated states. To further elucidate the basis for differential gene expression, we assessed the role of histone H3K9 acetylation in differential gene expression. Strikingly, higher H3K9 acetylation levels were detected in resting memory cells, prior to their activation, for those genes that were differentially expressed following activation, indicating that hyperacetylation of histone H3K9 may play a role in selective and rapid gene expression of memory CD8+ T cells. Consistent with this model, we showed that inducing high levels of H3K9 acetylation resulted in an increased expression in naive cells of those genes that are normally expressed differentially in memory cells. Together, these findings suggest that differential gene expression mediated at least in part by histone H3K9 hyperacetylation may be responsible for the rapid and robust memory CD8+ T-cell response. PMID:16868257
A versatile system for rapid multiplex genome-edited CAR T cell generation
Ren, Jiangtao; Zhang, Xuhua; Liu, Xiaojun; Fang, Chongyun; Jiang, Shuguang; June, Carl H.; Zhao, Yangbing
2017-01-01
The therapeutic potential of CRISPR system has already been demonstrated in many instances and begun to overlap with the rapidly expanding field of cancer immunotherapy, especially on the production of genetically modified T cell receptor or chimeric antigen receptor (CAR) T cells. Efficient genomic disruption of multiple gene loci to generate universal donor cells, as well as potent effector T cells resistant to multiple inhibitory pathways such as PD-1 and CTLA4 is an attractive strategy for cell therapy. In this study, we accomplished rapid and efficient multiplex genomic editing, and re-directing T cells with antigen specific CAR via a one-shot CRISPR protocol by incorporation of multiple gRNAs in a CAR lentiviral vector. High efficient double knockout of endogenous TCR and HLA class I could be easily achieved to generate allogeneic universal CAR T cells. We also generated Fas-resistant universal CAR T cells by triple gene disruption. Simultaneous gene editing of four gene loci using the one-shot CRISPR protocol to generate allogeneic universal T cells deficient of both PD1 and CTLA-4 was also attempted. PMID:28199983
Sakai, Yusuke; Koike, Makiko; Hasegawa, Hideko; Yamanouchi, Kosho; Soyama, Akihiko; Takatsuki, Mitsuhisa; Kuroki, Tamotsu; Ohashi, Kazuo; Okano, Teruo; Eguchi, Susumu
2013-01-01
Cell sheet engineering is attracting attention from investigators in various fields, from basic research scientists to clinicians focused on regenerative medicine. However, hepatocytes have a limited proliferation potential in vitro, and it generally takes a several days to form a sheet morphology and multi-layered sheets. We herein report our rapid and efficient technique for generating multi-layered human hepatic cell (HepaRG® cell) sheets using pre-cultured fibroblast monolayers derived from human skin (TIG-118 cells) as a feeder layer on a temperature-responsive culture dish. Multi-layered TIG-118/HepaRG cell sheets with a thick morphology were harvested on day 4 of culturing HepaRG cells by forceful contraction of the TIG-118 cells, and the resulting sheet could be easily handled. In addition, the human albumin and alpha 1-antitrypsin synthesis activities of TIG-118/HepaRG cells were approximately 1.2 and 1.3 times higher than those of HepaRG cells, respectively. Therefore, this technique is considered to be a promising modality for rapidly fabricating multi-layered human hepatocyte sheets from cells with limited proliferation potential, and the engineered cell sheet could be used for cell transplantation with highly specific functions.
Nugen, Sam R; Leonard, Barbara; Baeumner, Antje J
2007-05-15
We developed a software program for the rapid selection of detection probes to be used in nucleic acid-based assays. In comparison to commercially available software packages, our program allows the addition of oligotags as required by nucleic acid sequence-based amplification (NASBA) as well as automatic BLAST searches for all probe/primer pairs. We then demonstrated the usefulness of the program by designing a novel lateral flow biosensor for Streptococcus pyogenes that does not rely on amplification methods such as the polymerase chain reaction (PCR) or NASBA to obtain low limits of detection, but instead uses multiple reporter and capture probes per target sequence and an instantaneous amplification via dye-encapsulating liposomes. These assays will decrease the detection time to just a 20 min hybridization reaction and avoid costly enzymatic gene amplification reactions. The lateral flow assay was developed quantifying the 16S rRNA from S. pyogenes by designing reporter and capture probes that specifically hybridize with the RNA and form a sandwich. DNA reporter probes were tagged with dye-encapsulating liposomes, biotinylated DNA oligonucleotides were used as capture probes. From the initial number of capture and reporter probes chosen, a combination of two capture and three reporter probes were found to provide optimal signal generation and significant enhancement over single capture/reporter probe combinations. The selectivity of the biosensor was proven by analyzing organisms closely related to S. pyogenes, such as other Streptococcus and Enterococcus species. All probes had been selected by the software program within minutes and no iterative optimization and re-design of the oligonucleotides was required which enabled a very rapid biosensor prototyping. While the sensitivity obtained with the biosensor was only 135 ng, future experiments will decrease this significantly by the addition of more reporter and capture probes for either the same rRNA or a different nucleic acid target molecule. This will lead to the possibility of detecting S. pyogenes with a rugged assay that does not require a cell culturing or gene amplification step and will therefore enable rapid, specific and sensitive onsite testing.
William Wenerick; Ken M. Fritz; Mitchell S. Kostich
2016-01-01
Classifying streams according to permanence is important in determining regulatory jurisdiction and in implementing pollution control programs. Administrators of these programs need rapid methods for making timely and defensible decisions.
USASOC Injury Prevention/Performance Optimization Musculoskeletal Screening Initiative
2011-11-01
Tactical Human Optimization , Rapid Rehabilitation , and Reconditioning (THOR3) program to identify the...Special Operations Command (USASOC) to support development of USASOC’s Tactical Human Optimization , Rapid Rehabilitation , and Reconditioning (THOR3...biomechanical, musculoskeletal, physiological, tactical , and injury data and refine its current human performance program to address the
Development of bacterial display peptides for use in biosensing applications
NASA Astrophysics Data System (ADS)
Stratis-Cullum, Dimitra N.; Kogot, Joshua M.; Sellers, Michael S.; Hurley, Margaret M.; Sarkes, Deborah A.; Pennington, Joseph M.; Val-Addo, Irene; Adams, Bryn L.; Warner, Candice R.; Carney, James P.; Brown, Rebecca L.; Pellegrino, Paul M.
2012-06-01
Recent advances in synthetic library engineering continue to show promise for the rapid production of reagent technology in response to biological threats. A synthetic library of peptide mutants built off a bacterial host offers a convenient means to link the peptide sequence, (i.e., identity of individual library members) with the desired molecular recognition traits, but also allows for a relatively simple protocol, amenable to automation. An improved understanding of the mechanisms of recognition and control of synthetic reagent isolation and evolution remain critical to success. In this paper, we describe our approach to development of peptide affinity reagents based on peptide bacterial display technology with improved control of binding interactions for stringent evolution of reagent candidates, and tailored performance capabilities. There are four key elements to the peptide affinity reagent program including: (1) the diverse bacterial library technology, (2) advanced reagent screening amenable to laboratory automation and control, (3) iterative characterization and feedback on both affinity and specificity of the molecular interactions, and (3) integrated multiscale computational prescreening of candidate peptide ligands including in silico prediction of improved binding performance. Specific results on peptides binders to Protective Antigen (PA) protein of Bacillus anthracis and Staphylococcal Enterotoxin B (SEB) will be presented. Recent highlights of on cell vs. off-cell affinity behavior and correlation of the results with advanced docking simulations on the protein-peptide system(s) are included. The potential of this technology and approach to enable rapid development of a new affinity reagent with unprecedented speed (less than one week) would allow for rapid response to new and constantly emerging threats.
Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules
Chen, Xu; Grandont, Laurie; Li, Hongjiang; Hauschild, Robert; Paque, Sébastien; Abuzeineh, Anas; Rakusová, Hana; Benkova, Eva; Perrot-Rechenmann, Catherine; Friml, Jiří
2014-01-01
The prominent and evolutionary ancient effect of the plant hormone auxin is the regulation of cell expansion1. Cell expansion requires ordered cytoskeleton arrangement2 but molecular mechanisms underlying its regulation by signaling molecules including auxin are unknown. Here we show in the model plant Arabidopsis thaliana that in elongating cells exogenous application of auxin or redistribution of endogenous auxin induces very rapid microtubule reorientation from transversal to longitudinal, coherent with the inhibition of cell expansion. This fast auxin effect requires Auxin Binding Protein1 (ABP1) and involves a contribution of downstream signaling components such as ROP6 GTPase, ROP-interactive protein RIC1 and microtubule severing protein Katanin. These components are required for rapid auxin and ABP1-mediated reorientation of microtubules to regulate cell elongation in roots and dark grown hypocotyls as well as asymmetric growth during gravitropic responses. PMID:25409144
Testing Microshutter Arrays Using Commercial FPGA Hardware
NASA Technical Reports Server (NTRS)
Rapchun, David
2008-01-01
NASA is developing micro-shutter arrays for the Near Infrared Spectrometer (NIRSpec) instrument on the James Webb Space Telescope (JWST). These micro-shutter arrays allow NIRspec to do Multi Object Spectroscopy, a key part of the mission. Each array consists of 62414 individual 100 x 200 micron shutters. These shutters are magnetically opened and held electrostatically. Individual shutters are then programmatically closed using a simple row/column addressing technique. A common approach to provide these data/clock patterns is to use a Field Programmable Gate Array (FPGA). Such devices require complex VHSIC Hardware Description Language (VHDL) programming and custom electronic hardware. Due to JWST's rapid schedule on the development of the micro-shutters, rapid changes were required to the FPGA code to facilitate new approaches being discovered to optimize the array performance. Such rapid changes simply could not be made using conventional VHDL programming. Subsequently, National Instruments introduced an FPGA product that could be programmed through a Labview interface. Because Labview programming is considerably easier than VHDL programming, this method was adopted and brought success. The software/hardware allowed the rapid change the FPGA code and timely results of new micro-shutter array performance data. As a result, numerous labor hours and money to the project were conserved.
Liang, Sitai; Mele, James; Wu, Yuehong; Buffenstein, Rochelle; Hornsby, Peter J.
2013-01-01
Summary The naked mole-rat (NMR, Heterocephalus glaber) is a long-lived mammal in which spontaneous cancer has not been observed. In order to investigate possible mechanisms for cancer resistance in this species, we studied the properties of skin fibroblasts from the NMR following transduction with oncogenes that cause cells of other mammalian species to form malignant tumors. NMR fibroblasts were transduced with a retrovirus encoding SV40 large T antigen and oncogenic RasG12V. Following transplantation of transduced cells into immunodeficient mice, cells rapidly entered crisis, as evidenced by the presence of anaphase bridges, giant cells with enlarged nuclei, multinucleated cells, and cells with large number of chromosomes or abnormal chromatin material. In contrast, similarly transduced mouse and rat fibroblasts formed tumors that grew rapidly without crisis. Crisis was also observed after >40 population doublings in SV40 TAg/Ras-expressing NMR cells in culture. Crisis in culture was prevented by additional infection of the cells with a retrovirus encoding hTERT (telomerase reverse transcriptase). SV40 TAg/Ras/hTERT-expressing NMR cells formed tumors that grew rapidly in immunodeficient mice without evidence of crisis. Crisis could also be induced in SV40 TAg/Ras-expressing NMR cells by loss of anchorage, but after hTERT transduction cells were able to proliferate normally following loss of anchorage. Thus, rapid crisis is a response of oncogene-expressing NMR cells to growth in an in vivo environment, which requires anchorage independence, and hTERT permits cells to avoid crisis and to achieve malignant tumor growth. The unique reaction of NMR cells to oncogene expression may form part of the cancer resistance of this species. PMID:20550519
Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells.
Shipony, Zohar; Mukamel, Zohar; Cohen, Netta Mendelson; Landan, Gilad; Chomsky, Elad; Zeliger, Shlomit Reich; Fried, Yael Chagit; Ainbinder, Elena; Friedman, Nir; Tanay, Amos
2014-09-04
Stable maintenance of gene regulatory programs is essential for normal function in multicellular organisms. Epigenetic mechanisms, and DNA methylation in particular, are hypothesized to facilitate such maintenance by creating cellular memory that can be written during embryonic development and then guide cell-type-specific gene expression. Here we develop new methods for quantitative inference of DNA methylation turnover rates, and show that human embryonic stem cells preserve their epigenetic state by balancing antagonistic processes that add and remove methylation marks rather than by copying epigenetic information from mother to daughter cells. In contrast, somatic cells transmit considerable epigenetic information to progenies. Paradoxically, the persistence of the somatic epigenome makes it more vulnerable to noise, since random epimutations can accumulate to massively perturb the epigenomic ground state. The rate of epigenetic perturbation depends on the genomic context, and, in particular, DNA methylation loss is coupled to late DNA replication dynamics. Epigenetic perturbation is not observed in the pluripotent state, because the rapid turnover-based equilibrium continuously reinforces the canonical state. This dynamic epigenetic equilibrium also explains how the epigenome can be reprogrammed quickly and to near perfection after induced pluripotency.
Neutrophil Apoptosis: Relevance to the Innate Immune Response and Inflammatory Disease
Fox, Sarah; Leitch, Andrew E.; Duffin, Rodger; Haslett, Christopher; Rossi, Adriano G.
2010-01-01
Neutrophils are the most abundant cell type involved in the innate immune response. They are rapidly recruited to sites of injury or infection where they engulf and kill invading microorganisms. Neutrophil apoptosis, the process of programmed cell death that prevents the release of neutrophil histotoxic contents, is tightly regulated and limits the destructive capacity of neutrophil products to surrounding tissue. The subsequent recognition and phagocytosis of apoptotic cells by phagocytic cells such as macrophages is central to the successful resolution of an inflammatory response and it is increasingly apparent that the dying neutrophil itself exerts an anti-inflammatory effect through modulation of surrounding cell responses, particularly macrophage inflammatory cytokine release. Apoptosis may be delayed, induced or enhanced by micro-organisms dependent on their immune evasion strategies and the health of the host they encounter. There is now an established field of research aimed at understanding the regulation of apoptosis and its potential as a target for therapeutic intervention in inflammatory and infective diseases. This review focuses on the physiological regulation of neutrophil apoptosis with respect to the innate immune system and highlights recent advances in mechanistic understanding of apoptotic pathways and their therapeutic manipulation in appropriate and excessive innate immune responses. PMID:20375550
Innate cell communication kick-starts pathogen-specific immunity
Rivera, Amariliz; Siracusa, Mark C.; Yap, George S.; Gause, William C.
2016-01-01
Innate cells are responsible for the rapid recognition of infection and mediate essential mechanisms of pathogen elimination, and also facilitate adaptive immune responses. We review here the numerous intricate interactions among innate cells that initiate protective immunity. The efficient eradication of pathogens depends on the coordinated actions of multiple cells, including innate cells and epithelial cells. Rather than acting as isolated effector cells, innate cells are in constant communication with other responding cells of the immune system, locally and distally. These interactions are critically important for the efficient control of primary infections as well for the development of ‘trained’ innate cells that facilitate the rapid elimination of homologous or heterologous infections. PMID:27002843
Cisplatin-induced Casepase-3 activation in different tumor cells
NASA Astrophysics Data System (ADS)
Shi, Hua; Li, Xiao; Su, Ting; Zhang, Yu-Hai
2008-12-01
Apoptosis plays an essential role in normal organism development which is one of the main types of programmed cell death to help tissues maintain homeostasis. Defective apoptosis can result in cell accumulation and therefore effects on tumor pathogenesis, progression and therapy resistance. A family of proteins, known as caspases, is typically activated in the early stages of apoptosis. Therefore, studying the kinetics of activation of caspases induced by antitumor drugs can contribute to antitumor drug discovery and explanation of the molecular mechanisms. This paper detected the Caspase-3 activity induced by cisplatin in human adenoid cystic carcinoma cell line (ACC-M), human hepatocellular liver carcinoma cell line (HepG2) and human epithelial carcinoma cell line (Hela) with stably expressing ECFP-DEVDDsRed (CD3) probe, a fluorescent probe consisting of Enhanced Cyan Fluorescent Protein (ECFP), red fluorescent protein (DsRed) and a linker with a recognition site of Caspase-3, by using the capillary electrophoresis (CE) and fluorescence resonance energy transfer (FRET) imaging system. Under the same concentration of cisplatin, ACC-M cells responded the most rapidly, and then HepG2 cells and Hela cells, respectively, in the early 30 hours. Later, HepG2 cells represented acceleration in the Caspase-3 activation speed and reached full activation the earliest comparing to other two cell types. The results demonstrated that ACC-M cell is more sensitive than the other two cell types under the treatment of cisplatin.
Rapid discovery of protein interactions by cell-free protein technologies.
He, M; Taussig, M J
2007-11-01
Cell-free transcription and translation provides an open, controllable environment for production of correctly folded, soluble proteins and allows the rapid generation of proteins from DNA without the need for cloning. Thus it is becoming an increasingly attractive alternative to conventional in vivo expression systems, especially when parallel expression of multiple proteins is required. Through novel design and exploitation, powerful cell-free technologies of ribosome display and protein in situ arrays have been developed for in vitro production and isolation of protein-binding molecules from large libraries. These technologies can be combined for rapid detection of protein interactions.
The effect of pre-storage cooling on 2,3-DPG levels in red cells stored in SAG-M.
Llohn, Abid Hussain; Vetlesen, Annette; Fagerhol, Magne Kristoffer; Kjeldsen-Kragh, Jens
2005-10-01
The concentration of red cell 2,3-DPG (2,3-diphosphoglycerate) rapidly decreases during storage. A favourable effect on red cell 2,3-DPG has been demonstrated by rapid cooling of whole blood prior to storage. In our study we have investigated how different methods of cooling whole blood immediately after donation effect 2,3-DPG levels during storage. Thirty-six whole blood units (in 6 groups) of 450 ml were collected in 63 ml CPD. SAG-M was used as preservative solution for red cell concentrates (RCC). The units in one group were cooled down at ambient temperature, while units in the other groups were cooled down rapidly by different ways immediately after bleeding. Samples from the whole blood units were collected at various days during storage for 2,3-DPG measurements. The decline in 2,3-DPG during the first two weeks of storage was significantly slower in the groups which were cooled down rapidly to 17-18 degrees C within 1h after bleeding (all p
Kakegawa, Takahiro; Mochizuki, Naoto; Sadr, Nasser; Suzuki, Hiroaki
2013-01-01
In this study, we describe the development of oligopeptide-modified cell culture surfaces from which adherent cells can be rapidly detached by application of an electrical stimulus. An oligopeptide, CGGGKEKEKEK, was designed with a terminal cysteine residue to mediate binding to a gold surface via a gold–thiolate bond. The peptide forms a self-assembled monolayer through the electrostatic force between the sequence of alternating charged glutamic acid (E) and lysine (K) residues. The dense and electrically neutral oligopeptide zwitterionic layer of the modified surface was resistant to nonspecific adsorption of proteins and adhesion of cells, while the surface was altered to cell adhesive by the addition of a second oligopeptide (CGGGKEKEKEKGRGDSP) containing the RGD cell adhesion motif. Application of a negative electrical potential to this gold surface cleaved the gold–thiolate bond, leading to desorption of the oligopeptide layer, and rapid (within 2 min) detachment of virtually all cells. This approach was applicable not only to detachment of cell sheets but also for transfer of cell micropatterns to a hydrogel. This electrochemical approach of cell detachment may be a useful tool for tissue-engineering applications. PMID:22853640
Programmed cell delivery from biodegradable microcapsules for tissue repair.
Draghi, L; Brunelli, D; Farè, S; Tanzi, M C
2015-01-01
Injectable and resorbable hydrogels are an extremely attractive class of biomaterials. They make it possible to fill tissue defects accurately with an undoubtedly minimally invasive approach and to locally deliver cells that support repair or regeneration processes. However, their use as a cell carrier is often hindered by inadequate diffusion in bulk. A possible strategy for overcoming this transport limitation might be represented by injection of rapidly degradable cell-loaded microcapsules, so that maximum material thickness is limited by sphere radius. Here, the possibility of achieving programmable release of viable cells from alginate-based microcapsules was explored in vitro, by evaluating variations in material stability resulting from changes in hydrogel composition and assessing cell viability after encapsulation and in vitro release from microcapsules. Degradation of pure alginate microspheres was varied from a few days to several weeks by varying sodium alginate and calcium chloride concentrations. The addition of poloxamer was also found to accelerate degradation significantly, with capsule breakdown almost complete by two weeks, while chitosan was confirmed to strengthen alginate cross-linking. The presence of viable cells inside microspheres was revealed after encapsulation, and released cells were observed for all the formulations tested after a time interval dependent on bead degradation speed. These findings suggest that it may be possible to fine tune capsule breakdown by means of simple changes in material formulation and regulate, and eventually optimize, cell release for tissue repair.
Wienecke, Sarah; Ishwarbhai, Alka; Tsipa, Argyro; Aw, Rochelle; Kylilis, Nicolas; Bell, David J.; McClymont, David W.; Jensen, Kirsten; Biedendieck, Rebekka
2018-01-01
Native cell-free transcription–translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megaterium, is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to B. megaterium to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription–translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription–translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications. PMID:29666238
Yenuganti, Vengala Rao; Vanselow, Jens
2017-05-01
Cell culture models are essential for the detailed study of molecular processes. We analyze the dynamics of changes in a culture model of bovine granulosa cells. The cells were cultured for up to 8 days and analyzed for steroid production and gene expression. According to the expression of the marker genes CDH1, CDH2 and VIM, the cells maintained their mesenchymal character throughout the time of culture. In contrast, the levels of functionally important transcripts and of estradiol and progesterone production were rapidly down-regulated but showed a substantial up-regulation from day 4. FOXL2, a marker for granulosa cell identity, was also rapidly down-regulated after plating but completely recovered towards the end of culture. In contrast, expression of the Sertoli cell marker SOX9 and the lesion/inflammation marker PTGS2 increased during the first 2 days after plating but gradually decreased later on. We conclude that only long-term culture conditions (>4 days) allow the cells to recover from plating stress and to re-acquire characteristic granulosa cell features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haasch, Richard T.; Abraham, Daniel A.
High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopymore » (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.« less
Programmed cell death in the marine cyanobacterium Trichodesmium mediates carbon and nitrogen export
Bar-Zeev, Edo; Avishay, Itamar; Bidle, Kay D; Berman-Frank, Ilana
2013-01-01
The extent of carbon (C) and nitrogen (N) export to the deep ocean depends upon the efficacy of the biological pump that transports primary production to depth, thereby preventing its recycling in the upper photic zone. The dinitrogen-fixing (diazotrophic) Trichodesmium spp. contributes significantly to oceanic C and N cycling by forming extensive blooms in nutrient-poor tropical and subtropical regions. These massive blooms generally collapse several days after forming, but the cellular mechanism responsible, along with the magnitude of associated C and N export processes, are as yet unknown. Here, we used a custom-made, 2-m high water column to simulate a natural bloom and to specifically test and quantify whether the programmed cell death (PCD) of Trichodesmium mechanistically regulates increased vertical flux of C and N. Our findings demonstrate that extremely rapid development and abrupt, PCD-induced demise (within 2–3 days) of Trichodesmium blooms lead to greatly elevated excretions of transparent exopolymers and a massive downward pulse of particulate organic matter. Our results mechanistically link autocatalytic PCD and bloom collapse to quantitative C and N export fluxes, suggesting that PCD may have an impact on the biological pump efficiency in the oceans. PMID:23887173
Rapid gas hydrate formation processes: Will they work?
Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.
2010-06-07
Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuousmore » formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.« less
Fan, Sabrina Mai-Yi; Chang, Yi-Ting; Chen, Chih-Lung; Wang, Wei-Hung; Pan, Ming-Kai; Chen, Wen-Pin; Huang, Wen-Yen; Xu, Zijian; Huang, Hai-En; Chen, Ting; Plikus, Maksim V; Chen, Shih-Kuo; Lin, Sung-Jan
2018-06-29
Changes in external light patterns can alter cell activities in peripheral tissues through slow entrainment of the central clock in suprachiasmatic nucleus (SCN). It remains unclear whether cells in otherwise photo-insensitive tissues can achieve rapid responses to changes in external light. Here we show that light stimulation of animals' eyes results in rapid activation of hair follicle stem cells with prominent hair regeneration. Mechanistically, light signals are interpreted by M1-type intrinsically photosensitive retinal ganglion cells (ipRGCs), which signal to the SCN via melanopsin. Subsequently, efferent sympathetic nerves are immediately activated. Increased norepinephrine release in skin promotes hedgehog signaling to activate hair follicle stem cells. Thus, external light can directly regulate tissue stem cells via an ipRGC-SCN autonomic nervous system circuit. Since activation of sympathetic nerves is not limited to skin, this circuit can also facilitate rapid adaptive responses to external light in other homeostatic tissues.
Cell-free synthetic biology for in vitro prototype engineering.
Moore, Simon J; MacDonald, James T; Freemont, Paul S
2017-06-15
Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. © 2017 The Author(s).
Cell-free synthetic biology for in vitro prototype engineering
Moore, Simon J.; MacDonald, James T.
2017-01-01
Cell-free transcription–translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. PMID:28620040
A Rapid Assessment Tool for affirming good practice in midwifery education programming.
Fullerton, Judith T; Johnson, Peter; Lobe, Erika; Myint, Khine Haymar; Aung, Nan Nan; Moe, Thida; Linn, Nay Aung
2016-03-01
to design a criterion-referenced assessment tool that could be used globally in a rapid assessment of good practices and bottlenecks in midwifery education programs. a standard tool development process was followed, to generate standards and reference criteria; followed by external review and field testing to document psychometric properties. review of standards and scoring criteria were conducted by stakeholders around the globe. Field testing of the tool was conducted in Myanmar. eleven of Myanmar׳s 22 midwifery education programs participated in the assessment. the clinimetric tool was demonstrated to have content validity and high inter-rater reliability in use. a globally validated tool, and accompanying user guide and handbook are now available for conducting rapid assessments of compliance with good practice criteria in midwifery education programming. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Phagocytosis of Candida albicans Enhances Malignant Behavior of Murine Tumor Cells
NASA Astrophysics Data System (ADS)
Ginsburg, Isaac; Fligiel, Suzanne E. G.; Kunkel, Robin G.; Riser, Bruce L.; Varani, James
1987-12-01
Murine tumor cells were induced to phagocytize either Candida albicans or group A streptococcal cells. The presence of microbial particles within the tumor cell cytoplasm had no effect on in vitro tumor cell growth. However, when Candida albicans-infected tumor cells were injected into syngeneic mice, they formed tumors that grew faster, invaded the surrounding normal tissue more rapidly and metastasized more rapidly than control tumor cells. Tumor cells infected with group A streptococcal particles did not grow faster or show increased malignant behavior. These data indicate that the in vivo behavior of malignant tumor cells can be modulated by microbial particles, which are often present in the microenvironment of the growing tumor.
Singh, Upasana; Akhtar, Shamim; Mishra, Abhishek; Sarkar, Dhiman
2011-02-01
A microplate-based rapid, inexpensive and robust technique is developed by using tetrazolium salt 2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) and menadione to determine the viability of Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis bacilli in microplate format. In general, XTT reduction is an extremely slow process which takes almost 24 h to produce a detectable signal. Menadione could drastically induce this reduction to an almost equal extent within a few minutes in a dose dependent manner. The reduction of XTT is directly proportional to the cell concentration in the presence of menadione. The standardized protocol used 200 μM of XTT and 60 μM of menadione in 250 μl of cell suspension grown either in aerobic or anaerobic conditions. The cell suspension of M. bovis BCG and M. tuberculosis were incubated for 40 min before reading the optical density at 470 nm whereas M. smegmatis was incubated for 20 min. Calculated Signal/Noise (S/N) ratios obtained by applying this protocol were 5.4, 6.4 and 9.4 using M. bovis BCG, M. tuberculosis and M. smegmatis respectively. The calculated Z' factors were >0.8 for all mycobacterium bacilli indicating the robustness of the XTT Reduction Menadione Assay (XRMA) for rapid screening of inhibitors. The assay protocol was validated by applying 10 standard anti-tubercular agents on M. tuberculosis, M. bovis BCG and M. smegmatis. The Minimum Inhibitory Concentration (MIC) values were found to be similar to reported values from Colony Forming Unit (CFU) and REMA (resazurin microplate assay) assays. Altogether, XRMA is providing a novel anti-tubercular screening protocol which could be useful in high throughput screening programs against different physiological stages of the bacilli. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Zipser, Edward J.; Lutz, Kurt R.
1994-01-01
Reflectivity data from Doppler radars are used to construct vertical profiles of radar reflectivity (VPRR) of convective cells in mesoscale convective systems (MCSs) in three different environmental regimes. The National Center for Atmospheric Research CP-3 and CP-4 radars are used to calculate median VPRR for MCSs in the Oklahoma-Kansas Preliminary Regional Experiment for STORM-Central in 1985. The National Oceanic and Atmospheric Administration-Tropical Ocean Global Atmosphere radar in Darwin, Australia, is used to calculate VPRR for MCSs observed both in oceanic, monsoon regimes and in continental, break period regimes during the wet seasons of 1987/88 and 1988/89. The midlatitude and tropical continental VPRRs both exhibit maximum reflectivity somewhat above the surface and have a gradual decrease in reflectivity with height above the freezing level. In sharp contrast, the tropical oceanic profile has a maximum reflectivity at the lowest level and a very rapid decrease in reflectivity with height beginning just above the freezing level. The tropical oceanic profile in the Darwin area is almost the same shape as that for two other tropical oceanic regimes, leading to the conclustion that it is characteristic. The absolute values of reflectivity in the 0 to 20 C range are compared with values in the literature thought to represent a threshold for rapid storm electrification leading to lightning, about 40 dBZ at -10 C. The large negative vertical gradient of reflectivity in this temperature range for oceanic storms is hypothesized to be a direct result of the characteristically weaker vertical velocities observed in MCSs over tropical oceans. It is proposed, as a necessary condition for rapid electrification, that a convective cell must have its updraft speed exceed some threshold value. Based upon field program data, a tentative estimate for the magnitude of this threshold is 6-7 m/s for mean speed and 10-12 m/s for peak speed.
NASA Astrophysics Data System (ADS)
Hansel, C. M.; Buchwald, C.; Diaz, J. M.; Dyhrman, S.; Van Mooy, B. A. S.
2014-12-01
Reactive oxygen species (ROS) are key players in the biogeochemistry of the ocean, where they serve a critical role in the cycling of carbon and metals. Research in the past decade has introduced phytoplankton and, most recently, heterotrophic bacteria as significant sources of ROS, including superoxide, within both photic and aphotic regions of the ocean. ROS are both beneficial and detrimental to life. For instance, superoxide is a vital inter- and intra-cellular signaling molecule, yet at high concentrations it induces lipid peroxidation and initiates programmed cell death (PCD). In fact, superoxide has been implicated in PCD in the nitrogen-fixing diazotroph Trichodesmium, presumably leading to the demise of blooms within oligotrophic marine systems. Here, we explore the rates of superoxide production and decay by natural Trichodesmium populations obtained from various surface waters in the Sargasso Sea. We investigate also the role of light and colony density and morphology (puff v. raft) on superoxide fluxes. We find that Trichodesmium colonies produce extracellular superoxide at extremely high rates in the dark that are on par with those of the toxic raphidophyte Chattonella. The rates of superoxide production, however, rapidly decline with increasing cell density pointing to a role for superoxide in cell signaling in these organisms. We also find extremely rapid extracellular superoxide degradation by Trichodesmium. Together, this likely reflects a need for these organisms to maintain ROS at levels that will support signaling but below the threshold level that triggers PCD or oxidative damage. We also show differences in the effect of light on superoxide fluxes as a function of Trichodesmium colony morphology, suggesting differences in either colony physiology or associated bacterial symbionts. These findings point to complex physiological, ecological, and physical influences on ROS dynamics in phytoplankton that require further exploration.
Endothelin Induces Rapid, Dynamin-mediated Budding of Endothelial Caveolae Rich in ET-B*
Oh, Phil; Horner, Thierry; Witkiewicz, Halina; Schnitzer, Jan E.
2012-01-01
Clathrin-independent trafficking pathways for internalizing G protein-coupled receptors (GPCRs) remain undefined. Clathrin-mediated endocytosis of receptors including ligand-engaged GPCRs can be very rapid and comprehensive (<10 min). Caveolae-mediated endocytosis of ligands and antibodies has been reported to be much slower in cell culture (≫10 min). Little is known about the role of physiological ligands and specific GPCRs in regulating caveolae trafficking. Here, we find that one receptor for endothelin, ET-B but not ET-A, resides on endothelial cell surfaces in both tissue and cell culture primarily concentrated within caveolae. Reconstituted cell-free budding assays show that endothelins (ETs) induce the fission of caveolae from endothelial plasma membranes purified from rat lungs. Electron microcopy of lung tissue sections and tissue subcellular fractionation both show that endothelin administered intravascularly in rats also induces a significant loss of caveolae at the luminal surface of lung vascular endothelium. Endothelial cells in culture show that ET stimulates very rapid internalization of caveolae and cargo including caveolin, caveolae-targeting antibody, and itself. The ET-B inhibitor BQ788, but not the ET-A inhibitor BQ123, blocks the ET-induced budding of caveolae. Both the pharmacological inhibitor Dynasore and the genetic dominant negative K44A mutant of dynamin prevent this induced budding and internalization of caveolae. Also shRNA lentivirus knockdown of caveolin-1 expression prevents rapid internalization of ET and ET-B. It appears that endothelin can engage ET-B already highly concentrated in caveolae of endothelial cells to induce very rapid caveolae fission and endocytosis. This transport requires active dynamin function. Caveolae trafficking may occur more rapidly than previously documented when it is stimulated by a specific ligand to signaling receptors already located in caveolae before ligand engagement. PMID:22457360
ZANDVOORT, A; TIMENS, W
2002-01-01
The splenic marginal zone (S-MZ) is especially well equipped for rapid humoral responses and is unique in its ability to initiate an immune response to encapsulated bacteria (T-cell independent type 2 (TI-2) antigens). Because of the rapid spreading through the blood, infections with blood-borne bacteria form a major health risk. To cope with blood-borne antigens, a system is needed that can respond rapidly to a great diversity of organisms. Because of a number of unique features, S-MZ B cells can respond rapid and efficient to all sorts of blood-borne antigens. These unique features include a low blood flow microenvironment, low threshold for activation, high expression of complement receptor 2 (CR2, CD21) and multireactivity. Because of the unique high expression of CD21 in a low flow compartment, S-MZ B cells can bind and respond to TI-2 antigens even with relatively low-avid B cell receptors. Although TI-2 antigens are in general poorly opsonized by classic opsonins, a particular characteristic of these antigens is their ability to bind very rapidly to complement fragment C3d without the necessity of previous immunoglobulin binding. TI-2 primed S-MZ B cells, already by first passage through the germinal centre, will meet antigen-C3d complexes bound to follicular dendritic cells, allowing unique immediate isotype switching. This explains that the primary humoral response to TI-2 antigens is unique in its characterization by a rapid increase in IgM concurrent with IgG antibody levels. PMID:12296846
Repetitive elements dynamics in cell identity programming, maintenance and disease.
Bodega, Beatrice; Orlando, Valerio
2014-12-01
The days of 'junk DNA' seem to be over. The rapid progress of genomics technologies has been unveiling unexpected mechanisms by which repetitive DNA and in particular transposable elements (TEs) have evolved, becoming key issues in understanding genome structure and function. Indeed, rather than 'parasites', recent findings strongly suggest that TEs may have a positive function by contributing to tissue specific transcriptional programs, in particular as enhancer-like elements and/or modules for regulation of higher order chromatin structure. Further, it appears that during development and aging genomes experience several waves of TEs activation, and this contributes to individual genome shaping during lifetime. Interestingly, TEs activity is major target of epigenomic regulation. These findings are shedding new light on the genome-phenotype relationship and set the premises to help to explain complex disease manifestation, as consequence of TEs activity deregulation. Copyright © 2014. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammons, T.
The 1994 World Electricity Conference was held in London, England, November 7--8, 1994. This year it shifted its focus to an examination of the firm advance in power sector restructuring across Europe, from Scandinavia to the Mediterranean and the Iberian Peninsula. Its speakers examined the rapid progress being made in the introduction of cooperation and competition within the continent`s electricity supply industry. Delegates heard news from Eastern Europe on the drive to improve energy efficiency across the region as part of the region`s program of priorities for the power industry. In North America, California`s progressive deregulation program was highlighted, andmore » the opening up of the power equipment supply market in both the US and Europe post-GATT was discussed. The meeting also featured papers on new fuels and new technologies in power generation where developments in superconductivity, biomass, combined heat and power, and in fuel cells were evaluated.« less
Rapid Growth of Psychology Programs in Turkey: Undergraduate Curriculum and Structural Challenges
ERIC Educational Resources Information Center
Sümer, Nebi
2016-01-01
Similar to the other developing countries, undergraduate psychology programs in Turkish universities have rapidly grown in the last two decades. Although this sharp increment signifies the need for psychologists, it has also caused a number of challenges for effective teaching of psychology. The department chairs (N = 42) were interviewed with an…
Ducar, Constance; Smith, Donna; Pinzon, Cris; Stirewalt, Michael; Cooper, Cristine; McElrath, M Juliana; Hural, John
2014-07-01
The HIV Vaccine Trials Network (HVTN) is a global network of 28 clinical trial sites dedicated to identifying an effective HIV vaccine. Cryopreservation of high-quality peripheral blood mononuclear cells (PBMC) is critical for the assessment of vaccine-induced cellular immune functions. The HVTN PBMC Quality Management Program is designed to ensure that viable PBMC are processed, stored and shipped for clinical trial assays from all HVTN clinical trial sites. The program has evolved by developing and incorporating best practices for laboratory and specimen quality and implementing automated, web-based tools. These tools allow the site-affiliated processing laboratories and the central Laboratory Operations Unit to rapidly collect, analyze and report PBMC quality data. The HVTN PBMC Quality Management Program includes five key components: 1) Laboratory Assessment, 2) PBMC Training and Certification, 3) Internal Quality Control, 4) External Quality Control (EQC), and 5) Assay Specimen Quality Control. Fresh PBMC processing data is uploaded from each clinical site processing laboratory to a central HVTN Statistical and Data Management Center database for access and analysis on a web portal. Samples are thawed at a central laboratory for assay or specimen quality control and sample quality data is uploaded directly to the database by the central laboratory. Four year cumulative data covering 23,477 blood draws reveals an average fresh PBMC yield of 1.45×10(6)±0.48 cells per milliliter of useable whole blood. 95% of samples were within the acceptable range for fresh cell yield of 0.8-3.2×10(6) cells/ml of usable blood. Prior to full implementation of the HVTN PBMC Quality Management Program, the 2007 EQC evaluations from 10 international sites showed a mean day 2 thawed viability of 83.1% and a recovery of 67.5%. Since then, four year cumulative data covering 3338 specimens used in immunologic assays shows that 99.88% had acceptable viabilities (>66%) for use in cellular assays (mean, 91.46% ±4.5%), and 96.2% had acceptable recoveries (50%-130%) with a mean of recovery of 85.8% ±19.12% of the originally cryopreserved cells. EQC testing revealed that since August 2009, failed recoveries dropped from 4.1% to 1.6% and failed viabilities dropped from 1.0% to 0.3%. The HVTN PBMC quality program provides for laboratory assessment, training and tools for identifying problems, implementing corrective action and monitoring for improvements. These data support the benefits of implementing a comprehensive, web-based PBMC quality program for large clinical trials networks. Copyright © 2014 Elsevier B.V. All rights reserved.
Huang, Ying; Zitta, Karina; Bein, Berthold; Steinfath, Markus; Albrecht, Martin
2013-01-01
SUMMARY Ischemia-reperfusion injury and tissue hypoxia are of high clinical relevance because they are associated with various pathophysiological conditions such as myocardial infarction and stroke. Nevertheless, the underlying mechanisms causing cell damage are still not fully understood, which is at least partially due to the lack of cell culture systems for the induction of rapid and transient hypoxic conditions. The aim of the study was to establish a model that is suitable for the investigation of cellular and molecular effects associated with transient and long-term hypoxia and to gain insights into hypoxia-mediated mechanisms employing a neuronal culture system. A semipermeable membrane insert system in combination with the hypoxia-inducing enzymes glucose oxidase and catalase was employed to rapidly and reversibly generate hypoxic conditions in the culture medium. Hydrogen peroxide assays, glucose measurements and western blotting were performed to validate the system and to evaluate the effects of the generated hypoxia on neuronal IMR-32 cells. Using the insert-based two-enzyme model, hypoxic conditions were rapidly induced in the culture medium. Glucose concentrations gradually decreased, whereas levels of hydrogen peroxide were not altered. Moreover, a rapid and reversible (onoff) generation of hypoxia could be performed by the addition and subsequent removal of the enzyme-containing inserts. Employing neuronal IMR-32 cells, we showed that 3 hours of hypoxia led to morphological signs of cellular damage and significantly increased levels of lactate dehydrogenase (a biochemical marker of cell damage). Hypoxic conditions also increased the amounts of cellular procaspase-3 and catalase as well as phosphorylation of the pro-survival kinase Akt, but not Erk1/2 or STAT5. In summary, we present a novel framework for investigating hypoxia-mediated mechanisms at the cellular level. We claim that the model, the first of its kind, enables researchers to rapidly and reversibly induce hypoxic conditions in vitro without unwanted interference of the hypoxia-inducing agent on the cultured cells. The system could help to further unravel hypoxia-associated mechanisms that are clinically relevant in various tissues and organs. PMID:24046359
Heery, Richard; Finn, Stephen P.; Cuffe, Sinead; Gray, Steven G.
2017-01-01
Epithelial mesenchymal transition (EMT), the adoption by epithelial cells of a mesenchymal-like phenotype, is a process co-opted by carcinoma cells in order to initiate invasion and metastasis. In addition, it is becoming clear that is instrumental to both the development of drug resistance by tumour cells and in the generation and maintenance of cancer stem cells. EMT is thus a pivotal process during tumour progression and poses a major barrier to the successful treatment of cancer. Non-coding RNAs (ncRNA) often utilize epigenetic programs to regulate both gene expression and chromatin structure. One type of ncRNA, called long non-coding RNAs (lncRNAs), has become increasingly recognized as being both highly dysregulated in cancer and to play a variety of different roles in tumourigenesis. Indeed, over the last few years, lncRNAs have rapidly emerged as key regulators of EMT in cancer. In this review, we discuss the lncRNAs that have been associated with the EMT process in cancer and the variety of molecular mechanisms and signalling pathways through which they regulate EMT, and finally discuss how these EMT-regulating lncRNAs impact on both anti-cancer drug resistance and the cancer stem cell phenotype. PMID:28430163
Joint Program on Rapid Prototyping. RaPIER (Rapid Prototyping to Investigate End-User Requirements).
1985-03-28
can be found in [PATCH83]. In this section, we will discuss three systems which represent the state-of-the-technology. A . The DRACO - System . The DRACO ... System [NEIGHBORS8O] provides a programming environment in which the design and analysis of programs are reused. DRACO provides mechanisms for...automatic in the sense that the user can make individual implementation choices (called refinements in DRACO ) or even insert new tactics into the system
Sakai, Yusuke; Koike, Makiko; Hasegawa, Hideko; Yamanouchi, Kosho; Soyama, Akihiko; Takatsuki, Mitsuhisa; Kuroki, Tamotsu; Ohashi, Kazuo; Okano, Teruo; Eguchi, Susumu
2013-01-01
Cell sheet engineering is attracting attention from investigators in various fields, from basic research scientists to clinicians focused on regenerative medicine. However, hepatocytes have a limited proliferation potential in vitro, and it generally takes a several days to form a sheet morphology and multi-layered sheets. We herein report our rapid and efficient technique for generating multi-layered human hepatic cell (HepaRG® cell) sheets using pre-cultured fibroblast monolayers derived from human skin (TIG-118 cells) as a feeder layer on a temperature-responsive culture dish. Multi-layered TIG-118/HepaRG cell sheets with a thick morphology were harvested on day 4 of culturing HepaRG cells by forceful contraction of the TIG-118 cells, and the resulting sheet could be easily handled. In addition, the human albumin and alpha 1-antitrypsin synthesis activities of TIG-118/HepaRG cells were approximately 1.2 and 1.3 times higher than those of HepaRG cells, respectively. Therefore, this technique is considered to be a promising modality for rapidly fabricating multi-layered human hepatocyte sheets from cells with limited proliferation potential, and the engineered cell sheet could be used for cell transplantation with highly specific functions. PMID:23923035
Stzepourginski, Igor; Nigro, Giulia; Jacob, Jean-Marie; Dulauroy, Sophie; Sansonetti, Philippe J; Eberl, Gérard; Peduto, Lucie
2017-01-24
The intestinal epithelium is continuously renewed by intestinal epithelial stem cells (IESCs) positioned at the base of each crypt. Mesenchymal-derived factors are essential to maintain IESCs; however, the cellular composition and development of such mesenchymal niche remains unclear. Here, we identify pericryptal CD34 + Gp38 + αSMA - mesenchymal cells closely associated with Lgr5 + IESCs. We demonstrate that CD34 + Gp38 + cells are the major intestinal producers of the niche factors Wnt2b, Gremlin1, and R-spondin1, and are sufficient to promote maintenance of Lgr5 + IESCs in intestinal organoids, an effect mainly mediated by Gremlin1. CD34 + Gp38 + cells develop after birth in the intestinal submucosa and expand around the crypts during the third week of life in mice, independently of the microbiota. We further show that pericryptal CD34 + gp38 + cells are rapidly activated by intestinal injury, up-regulating niche factors Gremlin1 and R-spondin1 as well as chemokines, proinflammatory cytokines, and growth factors with key roles in gut immunity and tissue repair, including IL-7, Ccl2, Ptgs2, and Amphiregulin. Our results indicate that CD34 + Gp38 + mesenchymal cells are programmed to develop in the intestine after birth to constitute a specialized microenvironment that maintains IESCs at homeostasis and contribute to intestinal inflammation and repair after injury.
Gater, Deborah L; Widatalla, Namareq; Islam, Kinza; AlRaeesi, Maryam; Teo, Jeremy C M; Pearson, Yanthe E
2017-12-13
The transformation of normal macrophage cells into lipid-laden foam cells is an important step in the progression of atherosclerosis. One major contributor to foam cell formation in vivo is the intracellular accumulation of cholesterol. Here, we report the effects of various combinations of low-density lipoprotein, sterols, lipids and other factors on human macrophages, using an automated image analysis program to quantitatively compare single cell properties, such as cell size and lipid content, in different conditions. We observed that the addition of cholesterol caused an increase in average cell lipid content across a range of conditions. All of the sterol-lipid mixtures examined were capable of inducing increases in average cell lipid content, with variations in the distribution of the response, in cytotoxicity and in how the sterol-lipid combination interacted with other activating factors. For example, cholesterol and lipopolysaccharide acted synergistically to increase cell lipid content while also increasing cell survival compared with the addition of lipopolysaccharide alone. Additionally, ergosterol and cholesteryl hemisuccinate caused similar increases in lipid content but also exhibited considerably greater cytotoxicity than cholesterol. The use of automated image analysis enables us to assess not only changes in average cell size and content, but also to rapidly and automatically compare population distributions based on simple fluorescence images. Our observations add to increasing understanding of the complex and multifactorial nature of foam-cell formation and provide a novel approach to assessing the heterogeneity of macrophage response to a variety of factors.
Functional Differences between Human NKp44(-) and NKp44(+) RORC(+) Innate Lymphoid Cells.
Hoorweg, Kerim; Peters, Charlotte P; Cornelissen, Ferry; Aparicio-Domingo, Patricia; Papazian, Natalie; Kazemier, Geert; Mjösberg, Jenny M; Spits, Hergen; Cupedo, Tom
2012-01-01
Human RORC(+) lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human homeostasis and disease is hampered by a poor characterization of RORC(+) innate cell subsets and a lack of knowledge on the distribution of these cells in adults. Here we show that functionally distinct subsets of human RORC(+) innate lymphoid cells are enriched for secretion of IL-17a or IL-22. Both subsets have an activated phenotype and can be distinguished based on the presence or absence of the natural cytotoxicity receptor NKp44. NKp44(+) IL-22 producing cells are present in tonsils while NKp44(-) IL-17a producing cells are present in fetal developing lymph nodes. Development of human intestinal NKp44(+) ILC is a programmed event that is independent of bacterial colonization and these cells colonize the fetal intestine during the first trimester. In the adult intestine, NKp44(+) ILC are the main ILC subset producing IL-22. NKp44(-) ILC remain present throughout adulthood in peripheral non-inflamed lymph nodes as resting, non-cytokine producing cells. However, upon stimulation lymph node ILC can swiftly initiate cytokine transcription suggesting that secondary human lymphoid organs may function as a reservoir for innate lymphoid cells capable of participating in inflammatory responses.
Immunohistochemistry for predictive biomarkers in non-small cell lung cancer.
Mino-Kenudson, Mari
2017-10-01
In the era of targeted therapy, predictive biomarker testing has become increasingly important for non-small cell lung cancer. Of multiple predictive biomarker testing methods, immunohistochemistry (IHC) is widely available and technically less challenging, can provide clinically meaningful results with a rapid turn-around-time and is more cost efficient than molecular platforms. In fact, several IHC assays for predictive biomarkers have already been implemented in routine pathology practice. In this review, we will discuss: (I) the details of anaplastic lymphoma kinase (ALK) and proto-oncogene tyrosine-protein kinase ROS (ROS1) IHC assays including the performance of multiple antibody clones, pros and cons of IHC platforms and various scoring systems to design an optimal algorithm for predictive biomarker testing; (II) issues associated with programmed death-ligand 1 (PD-L1) IHC assays; (III) appropriate pre-analytical tissue handling and selection of optimal tissue samples for predictive biomarker IHC.
Immunohistochemistry for predictive biomarkers in non-small cell lung cancer
2017-01-01
In the era of targeted therapy, predictive biomarker testing has become increasingly important for non-small cell lung cancer. Of multiple predictive biomarker testing methods, immunohistochemistry (IHC) is widely available and technically less challenging, can provide clinically meaningful results with a rapid turn-around-time and is more cost efficient than molecular platforms. In fact, several IHC assays for predictive biomarkers have already been implemented in routine pathology practice. In this review, we will discuss: (I) the details of anaplastic lymphoma kinase (ALK) and proto-oncogene tyrosine-protein kinase ROS (ROS1) IHC assays including the performance of multiple antibody clones, pros and cons of IHC platforms and various scoring systems to design an optimal algorithm for predictive biomarker testing; (II) issues associated with programmed death-ligand 1 (PD-L1) IHC assays; (III) appropriate pre-analytical tissue handling and selection of optimal tissue samples for predictive biomarker IHC. PMID:29114473
The Molecular Timeline of a Reviving Bacterial Spore
Sinai, Lior; Rosenberg, Alex; Smith, Yoav; Segev, Einat; Ben-Yehuda, Sigal
2015-01-01
Summary The bacterial spore can rapidly convert from a dormant to a fully active cell. Here we study this remarkable cellular transition in Bacillus subtilis and reveal the identity of the newly synthesized proteins throughout spore revival. Our analysis uncovers a highly ordered developmental program that correlates with the spore morphological changes and reveals the spatial and temporal molecular events fundamental to reconstruct a cell. As opposed to current knowledge, we found that translation takes place during the earliest revival event, termed germination, a process hitherto considered to occur without the need for any macromolecule synthesis. Furthermore, we demonstrate that translation is required for execution of germination and relies on the bona fide translational factors RpmE and Tig. Our study sheds light on the spore revival process and on the vital building blocks underlying cellular awakening, thereby paving the way for designing new antimicrobial agents to eradicate spore-forming pathogens. PMID:25661487
Rapid selection of escape mutants by the first CD8 T cell responses in acute HIV-1 infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korber, Bette Tina Marie
2008-01-01
The recent failure of a vaccine that primes T cell responses to control primary HIV-1 infection has raised doubts about the role of CD8+ T cells in early HIV-1 infection. We studied four patients who were identified shortly after HIV-1 infection and before seroconversion. In each patient there was very rapid selection of multiple HIV-1 escape mutants in the transmitted virus by CD8 T cells, including examples of complete fixation of non-synonymous substitutions within 2 weeks. Sequencing by single genome amplification suggested that the high rate of virus replication in acute infection gave a selective advantage to virus molecules thatmore » contained simultaneous and gained sequential T cell escape mutations. These observations show that whilst early HIV-1 specific CD8 T cells can act against virus, rapid escape means that these T cell responses are unlikely to benefit the patient and may in part explain why current HIV-1 T cell vaccines may not be protective.« less
Genome Editing of Erythroid Cell Culture Model Systems.
Yik, Jinfen J; Crossley, Merlin; Quinlan, Kate G R
2018-01-01
Genome editing to introduce specific mutations or to knock out genes in model cell systems has become an efficient platform for research in the fields of molecular biology, genetics, and cell biology. With recent rapid improvements in genome editing techniques, bench-top manipulation of the genome in cell culture has become progressively easier. The application of this knowledge to erythroid cell culture systems now allows the rapid analysis of the downstream effects of virtually any engineered gene disruption or modification in cell systems. Here, we describe a CRISPR/Cas9-based approach to making genomic modifications in erythroid lineage cells which we have successfully used in both murine (MEL) and human (K562) erythroleukaemia immortalized cell lines.
Parallel grid library for rapid and flexible simulation development
NASA Astrophysics Data System (ADS)
Honkonen, I.; von Alfthan, S.; Sandroos, A.; Janhunen, P.; Palmroth, M.
2013-04-01
We present an easy to use and flexible grid library for developing highly scalable parallel simulations. The distributed cartesian cell-refinable grid (dccrg) supports adaptive mesh refinement and allows an arbitrary C++ class to be used as cell data. The amount of data in grid cells can vary both in space and time allowing dccrg to be used in very different types of simulations, for example in fluid and particle codes. Dccrg transfers the data between neighboring cells on different processes transparently and asynchronously allowing one to overlap computation and communication. This enables excellent scalability at least up to 32 k cores in magnetohydrodynamic tests depending on the problem and hardware. In the version of dccrg presented here part of the mesh metadata is replicated between MPI processes reducing the scalability of adaptive mesh refinement (AMR) to between 200 and 600 processes. Dccrg is free software that anyone can use, study and modify and is available at https://gitorious.org/dccrg. Users are also kindly requested to cite this work when publishing results obtained with dccrg. Catalogue identifier: AEOM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOM_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU Lesser General Public License version 3 No. of lines in distributed program, including test data, etc.: 54975 No. of bytes in distributed program, including test data, etc.: 974015 Distribution format: tar.gz Programming language: C++. Computer: PC, cluster, supercomputer. Operating system: POSIX. The code has been parallelized using MPI and tested with 1-32768 processes RAM: 10 MB-10 GB per process Classification: 4.12, 4.14, 6.5, 19.3, 19.10, 20. External routines: MPI-2 [1], boost [2], Zoltan [3], sfc++ [4] Nature of problem: Grid library supporting arbitrary data in grid cells, parallel adaptive mesh refinement, transparent remote neighbor data updates and load balancing. Solution method: The simulation grid is represented by an adjacency list (graph) with vertices stored into a hash table and edges into contiguous arrays. Message Passing Interface standard is used for parallelization. Cell data is given as a template parameter when instantiating the grid. Restrictions: Logically cartesian grid. Running time: Running time depends on the hardware, problem and the solution method. Small problems can be solved in under a minute and very large problems can take weeks. The examples and tests provided with the package take less than about one minute using default options. In the version of dccrg presented here the speed of adaptive mesh refinement is at most of the order of 106 total created cells per second. http://www.mpi-forum.org/. http://www.boost.org/. K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, Zoltan data management services for parallel dynamic applications, Comput. Sci. Eng. 4 (2002) 90-97. http://dx.doi.org/10.1109/5992.988653. https://gitorious.org/sfc++.
McNiece, Ian K; Almeida-Porada, Graça; Shpall, Elizabeth J; Zanjani, Esmail
2002-06-01
Cord blood (CB) products are becoming routinely used in unrelated allogeneic transplantation for smaller pediatric patients. Because of the low numbers of cells in CB compared to bone marrow or peripheral blood progenitor cells, their use is more limited in larger adults. Therefore, we developed ex vivo expansion conditions for CB and currently are transplanting ex vivo expanded CB products to patients receiving high-dose chemotherapy. As there is concern that ex vivo expansion may exhaust long-term engrafting cells, the current clinical protocols consist of both an expanded fraction and an unexpanded fraction. To determine the effect of expansion culture on long-term engrafting cells, we evaluated the short- and long-term engrafting potential of ex vivo expanded CB using a fetal sheep xenogeneic transplant model. CD 34(+) cells were selected from CB products and cultured in a two-step procedure in the presence of stem cell factor, megakaryocyte growth and differentiation factor, and granulocyte colony-stimulating factor for 14 days. Starting cells (CD34(+) cells), and cultured cells (day 7 and day 14 cells) were transplanted in 60-day-old fetal sheep and evaluated at various time points post transplant for the presence of human cells. Long-term engrafting cells were assessed by serial passage into secondary and tertiary recipients. Day 14 expanded CB cells provided more rapid engraftment than either the day 7 expanded cells or the day 0 cells; however, this engraftment was transient, and no human cells were detectable at 16 months post transplant in the animals that received the day 14 expanded cells. Day 0 cells had engrafted animals at 2 months post transplant and both the day 0 and day 7 cells persisted to 16 months or longer. In the secondary animals, the day 0 and day 7 cells engrafted equivalently at 3 months post transplant; however, no secondary engraftment resulted from the day 14 cells. The levels of engraftment in secondary animals receiving day 7 cells decreased with time to barely detectable levels at 12 months post transplant. Ex vivo expansion of CB CD34(+) cells under the conditions described results in the generation of increased mature cells and progenitors that are capable of more rapid engraftment in fetal sheep compared to unexpanded CB CD34(+) cells. The expanded cells engrafted primary sheep but lacked secondary and tertiary engrafting potential. These studies demonstrate that although ex vivo expanded cells may be able to provide rapid short-term engraftment, the long-term potential of expanded grafts may be compromised. Therefore, clinical protocols may require transplantation of two fractions of cells, an expanded CB graft to provide rapid short-term engraftment and an unmanipulated fraction of CB graft to provide stem cells for long-term engraftment.
Maintenance of sweat glands by stem cells located in the acral epithelium.
Ohe, Shuichi; Tanaka, Toshihiro; Yanai, Hirotsugu; Komai, Yoshihiro; Omachi, Taichi; Kanno, Shohei; Tanaka, Kiyomichi; Ishigaki, Kazuhiko; Saiga, Kazuho; Nakamura, Naohiro; Ohsugi, Haruyuki; Tokuyama, Yoko; Atsumi, Naho; Hisha, Hiroko; Yoshida, Naoko; Kumano, Keiki; Yamazaki, Fumikazu; Okamoto, Hiroyuki; Ueno, Hiroo
2015-10-23
The skin is responsible for a variety of physiological functions and is critical for wound healing and repair. Therefore, the regenerative capacity of the skin is important. However, stem cells responsible for maintaining the acral epithelium had not previously been identified. In this study, we identified the specific stem cells in the acral epithelium that participate in the long-term maintenance of sweat glands, ducts, and interadnexal epidermis and that facilitate the regeneration of these structures following injury. Lgr6-positive cells and Bmi1-positive cells were found to function as long-term multipotent stem cells that maintained the entire eccrine unit and the interadnexal epidermis. However, while Lgr6-positive cells were rapidly cycled and constantly supplied differentiated cells, Bmi1-positive cells were slow to cycle and occasionally entered the cell cycle under physiological conditions. Upon irradiation-induced injury, Bmi1-positive cells rapidly proliferated and regenerated injured epithelial tissue. Therefore, Bmi1-positive stem cells served as reservoir stem cells. Lgr5-positive cells were rapidly cycled and maintained only sweat glands; therefore, we concluded that these cells functioned as lineage-restricted progenitors. Taken together, our data demonstrated the identification of stem cells that maintained the entire acral epithelium and supported the different roles of three cellular classes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Ho, Hoang-Yen; Moffat, Ryan C; Patel, Rupal V; Awah, Franklin N; Baloue, Kaitrin; Crowe, David L
2010-09-01
Embryonic stem (ES) cells are derived from early stage mammalian embryos and have broad developmental potential. These cells can be manipulated experimentally to generate cells of multiple tissue types which could be important in treating human diseases. The ability to produce relevant amounts of these differentiated cell populations creates the basis for clinical interventions in tissue regeneration and repair. Understanding how embryonic stem cells differentiate also can reveal important insights into cell biology. A previously reported mouse embryonic stem cell model demonstrated that differentiated epithelial cells migrated out of embryoid bodies attached to reconstituted basement membrane. We used genomic technology to profile ES cell populations in order to understand the molecular mechanisms leading to epithelial differentiation. Cells with characteristics of cultured epithelium migrated from embryoid bodies attached to reconstituted basement membrane. However, cells that comprised embryoid bodies also rapidly lost ES cell-specific gene expression and expressed proteins characteristic of stratified epithelia within hours of attachment to basement membrane. Gene expression profiling of sorted cell populations revealed upregulation of the BMP/TGFbeta signaling pathway, which was not sufficient for epithelial differentiation in the absence of basement membrane attachment. Activation of c-jun N-terminal kinase 1 (JNK1) and increased expression of Jun family transcription factors was observed during epithelial differentiation of ES cells. Inhibition of JNK signaling completely blocked epithelial differentiation in this model, revealing a key mechanism by which ES cells adopt epithelial characteristics via basement membrane attachment. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Schackman, Bruce R; Metsch, Lisa R; Colfax, Grant N; Leff, Jared A; Wong, Angela; Scott, Callie A; Feaster, Daniel J; Gooden, Lauren; Matheson, Tim; Haynes, Louise F; Paltiel, A David; Walensky, Rochelle P
2013-02-01
The President's National HIV/AIDS Strategy calls for coupling HIV screening and prevention services with substance abuse treatment programs. Fewer than half of US community-based substance abuse treatment programs make HIV testing available on-site or through referral. We measured the cost-effectiveness of three HIV testing strategies evaluated in a randomized trial conducted in 12 community-based substance abuse treatment programs in 2009: off-site testing referral, on-site rapid testing with information only, on-site rapid testing with risk-reduction counseling. Data from the trial included patient demographics, prior testing history, test acceptance and receipt of results, undiagnosed HIV prevalence (0.4%) and program costs. The Cost-Effectiveness of Preventing AIDS Complications (CEPAC) computer simulation model was used to project life expectancy, lifetime costs, and quality-adjusted life years (QALYs) for HIV-infected individuals. Incremental cost-effectiveness ratios (2009 US $/QALY) were calculated after adding costs of testing HIV-uninfected individuals; costs and QALYs were discounted at 3% annually. Referral for off-site testing is less efficient (dominated) compared to offering on-site testing with information only. The cost-effectiveness ratio for on-site testing with information is $60,300/QALY in the base case, or $76,300/QALY with 0.1% undiagnosed HIV prevalence. HIV risk-reduction counseling costs $36 per person more without additional benefit. A strategy of on-site rapid HIV testing offer with information only in substance abuse treatment programs increases life expectancy at a cost-effectiveness ratio <$100,000/QALY. Policymakers and substance abuse treatment leaders should seek funding to implement on-site rapid HIV testing in substance abuse treatment programs for those not recently tested. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Schackman, Bruce R.; Metsch, Lisa R.; Colfax, Grant N.; Leff, Jared A.; Wong, Angela; Scott, Callie A.; Feaster, Daniel J.; Gooden, Lauren; Matheson, Tim; Haynes, Louise F.; Paltiel, A. David; Walensky, Rochelle P.
2012-01-01
BACKGROUND The President’s National HIV/AIDS Strategy calls for coupling HIV screening and prevention services with substance abuse treatment programs. Fewer than half of US community-based substance abuse treatment programs make HIV testing available on-site or through referral. METHODS We measured the cost-effectiveness of three HIV testing strategies evaluated in a randomized trial conducted in 12 community-based substance abuse treatment programs in 2009: off-site testing referral, on-site rapid testing with information only, on-site rapid testing with risk reduction counseling. Data from the trial included patient demographics, prior testing history, test acceptance and receipt of results, undiagnosed HIV prevalence (0.4%) and program costs. The Cost Effectiveness of Preventing AIDS Complications (CEPAC) computer simulation model was used to project life expectancy, lifetime costs, and quality-adjusted life years (QALYs) for HIV-infected individuals. Incremental cost-effectiveness ratios (2009 US $/QALY) were calculated after adding costs of testing HIV-uninfected individuals; costs and QALYs were discounted at 3% annually. RESULTS Referral for off-site testing is less efficient (dominated) compared to offering on-site testing with information only. The cost-effectiveness ratio for on-site testing with information is $60,300/QALY in the base case, or $76,300/QALY with 0.1% undiagnosed HIV prevalence. HIV risk-reduction counseling costs $36 per person more without additional benefit. CONCLUSIONS A strategy of on-site rapid HIV testing offer with information only in substance abuse treatment programs increases life expectancy at a cost-effectiveness ratio <$100,000/QALY. Policymakers and substance abuse treatment leaders should seek funding to implement on-site rapid HIV testing in substance abuse treatment programs for those not recently tested. PMID:22971593
Rapid recovery protocol for peri-operative care of total hip and total knee arthroplasty patients.
Berend, Keith R; Lombardi, Adolph V; Mallory, Thomas H
2004-01-01
Total hip arthroplasty (THA) and total knee arthroplasty (TKA) are among the most successful procedures performed in terms of quality-of-life years gained. The long-term goals of arthroplasty, to relieve pain, increase function, provide stability, and obtain durability, are accomplished in the vast majority of cases. The short-term goals, however, have become the target of aggressive peri-operative programs that aim to speed recovery, reduce morbidity and complications, and create a program of efficiency while maintaining the highest level of patient care. The concept of rapid recovery is built upon the burgeoning interest in less-invasive and small-incision surgeries for (THA and TKA). However, the incision size does not appear to be the most critical aspect of the program. This article outlines the specific elements of the rapid-recovery program for lower-extremity arthroplasty patients, including pre-operative patient education, peri-operative nutrition, vitamin and herbal medication supplementation, preemptive analgesia, and post-operative rehabilitation. A holistic peri-operative, rapid-recovery program has lead to a significantly decreased hospital length of stay and significantly lower hospital readmission rates in patients who undergo primary THAs and TKAs. Combining these results with minimally invasive techniques and instrumentation should make recovery even faster.
Social Security Disability Insurance: Time for Fundamental Change
ERIC Educational Resources Information Center
Burkhauser, Richard V.; Daly, Mary C.
2012-01-01
The Social Security Disability Insurance (SSDI) program is growing at an unsustainable pace. Over the past 40 years the number of disabled worker beneficiaries has increased nearly sixfold, rising from 1.5 million in 1970 to 8.2 million in 2010. Rapid growth in the rolls has put increasing pressure on program finances. The rapid rise in SSDI…
Imaging Electron Spectrometer (IES) Electron Preprocessor (EPP) Design
NASA Technical Reports Server (NTRS)
Fennell, J. F.; Osborn, J. V.; Christensen, John L. (Technical Monitor)
2001-01-01
The Aerospace Corporation developed the Electron PreProcessor (EPP) to support the Imaging Electron Spectrometer (IES) that is part of the RAPID experiment on the ESA/NASA CLUSTER mission. The purpose of the EPP is to collect raw data from the IES and perform processing and data compression on it before transferring it to the RAPID microprocessor system for formatting and transmission to the CLUSTER satellite data system. The report provides a short history of the RAPID and CLUSTER programs and describes the EPP design. Four EPP units were fabricated, tested, and delivered for the original CLUSTER program. These were destroyed during a launch failure. Four more EPP units were delivered for the CLUSTER II program. These were successfully launched and are operating nominally on orbit.
Chigaev, Alexandre; Smagley, Yelena; Sklar, Larry A
2011-05-17
Integrin activation in response to inside-out signaling serves as the basis for rapid leukocyte arrest on endothelium, migration, and mobilization of immune cells. Integrin-dependent adhesion is controlled by the conformational state of the molecule, which is regulated by seven-transmembrane Guanine nucleotide binding Protein-Coupled Receptors (GPCRs). α4β1-integrin (CD49d/CD29, Very Late Antigen-4, VLA-4) is expressed on leukocytes, hematopoietic progenitors, stem cells, hematopoietic cancer cells, and others. VLA-4 conformation is rapidly up-regulated by inside-out signaling through Gαi-coupled GPCRs and down-regulated by Gαs-coupled GPCRs. However, other signaling pathways, which include nitric oxide-dependent signaling, have been implicated in the regulation of cell adhesion. The goal of the current report was to study the effect of nitric oxide/cGMP signaling pathway on VLA-4 conformational regulation. Using fluorescent ligand binding to evaluate the integrin activation state on live cells in real-time, we show that several small molecules, which specifically modulate nitric oxide/cGMP signaling pathway, as well as a cell permeable cGMP analog, can rapidly down-modulate binding of a VLA-4 specific ligand on cells pre-activated through three Gαi-coupled receptors: wild type CXCR4, CXCR2 (IL-8RB), and a non-desensitizing mutant of formyl peptide receptor (FPR ΔST). Upon signaling, we detected rapid changes in the ligand dissociation rate. The dissociation rate after inside-out integrin de-activation was similar to the rate for resting cells. In a VLA-4/VCAM-1-specific myeloid cell adhesion system, inhibition of the VLA-4 affinity change by nitric oxide had a statistically significant effect on real-time cell aggregation. We conclude that nitric oxide/cGMP signaling pathway can rapidly down-modulate the affinity state of the VLA-4 binding pocket, especially under the condition of sustained Gαi-coupled GPCR signaling, generated by a non-desensitizing receptor mutant. This suggests a fundamental role of this pathway in de-activation of integrin-dependent cell adhesion.
Mukhey, Dev; Phillips, James B; Daniels, Julie T; Kureshi, Alvena K
2018-02-01
The architecture of the human corneal stroma consists of a highly organized extracellular matrix (ECM) interspersed with keratocytes. Their progenitor cells; corneal stromal stem cells (CSSC) are located at the periphery, in the limbal stroma. A highly organized corneal ECM is critical for effective transmission of light but this structure may be compromised during injury or disease, resulting in loss of vision. Re-creating normal organization in engineered tissue equivalents for transplantation often involves lengthy culture times that are inappropriate for clinical use or utilisation of synthetic substrates that bring complications such as corneal melting. CSSC have great therapeutic potential owing to their ability to reorganize a disorganized matrix, restoring transparency in scarred corneas. We examined CSSC contractile behavior to assess whether this property could be exploited to rapidly generate cell and ECM organization in Real Architecture For 3D Tissues (RAFT) tissue equivalents (TE) for transplantation. Free-floating collagen gels were characterized to assess contractile behavior of CSSC and establish optimum cell density and culture times. To mediate cell and collagen organization, tethered collagen gels seeded with CSSC were cultured and subsequently stabilized with the RAFT process. We demonstrated rapid creation of biomimetic RAFT TE with tunable structural properties. These displayed three distinct regions of varying degrees of cellular and collagen organization. Interestingly, increased organization coincided with a dramatic loss of PAX6 expression in CSSC, indicating rapid differentiation into keratocytes. The organized RAFT TE system could be a useful bioengineering tool to rapidly create an organized ECM while simultaneously controlling cell phenotype. For the first time, we have demonstrated that human CSSC exhibit the phenomenon of cellular self-alignment in tethered collagen gels. We found this mediated rapid co-alignment of collagen fibrils and thus subsequently exploited this property in vitro to improve the architecture of engineered RAFT tissue equivalents of the corneal stroma. Existing techniques are extremely lengthy and carry significant risk and cost for GMP manufacture. This rapid and tunable technique takes just 8 h of culture and is therefore ideal for clinical manufacture, creating biomimetic tissue equivalents with both cellular and ECM organization. Thus, cellular self-alignment can be a useful bioengineering tool for the development of organized tissue equivalents in a variety of applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Remakus, Sanda; Ma, Xueying; Tang, Lingjuan; Xu, Ren-Huan; Knudson, Cory; Melo-Silva, Carolina R; Rubio, Daniel; Kuo, Yin-Ming; Andrews, Andrew; Sigal, Luis J
2018-05-15
Numerous attempts to produce antiviral vaccines by harnessing memory CD8 T cells have failed. A barrier to progress is that we do not know what makes an Ag a viable target of protective CD8 T cell memory. We found that in mice susceptible to lethal mousepox (the mouse homolog of human smallpox), a dendritic cell vaccine that induced memory CD8 T cells fully protected mice when the infecting virus produced Ag in large quantities and with rapid kinetics. Protection did not occur when the Ag was produced in low amounts, even with rapid kinetics, and protection was only partial when the Ag was produced in large quantities but with slow kinetics. Hence, the amount and timing of Ag expression appear to be key determinants of memory CD8 T cell antiviral protective immunity. These findings may have important implications for vaccine design. Copyright © 2018 by The American Association of Immunologists, Inc.
Rapid, directed transport of DC-SIGN clusters in the plasma membrane
Liu, Ping; Weinreb, Violetta; Ridilla, Marc; Betts, Laurie; Patel, Pratik; de Silva, Aravinda M.; Thompson, Nancy L.; Jacobson, Ken
2017-01-01
C-type lectins, including dendritic cell–specific intercellular adhesion molecule-3–grabbing nonintegrin (DC-SIGN), are all-purpose pathogen receptors that exist in nanoclusters in plasma membranes of dendritic cells. A small fraction of these clusters, obvious from the videos, can undergo rapid, directed transport in the plane of the plasma membrane at average speeds of more than 1 μm/s in both dendritic cells and MX DC-SIGN murine fibroblasts ectopically expressing DC-SIGN. Surprisingly, instantaneous speeds can be considerably greater. In MX DC-SIGN cells, many cluster trajectories are colinear with microtubules that reside close to the ventral membrane, and the microtubule-depolymerizing drug, nocodazole, markedly reduced the areal density of directed movement trajectories, suggesting a microtubule motor–driven transport mechanism; by contrast, latrunculin A, which affects the actin network, did not depress this movement. Rapid, retrograde movement of DC-SIGN may be an efficient mechanism for bringing bound pathogen on the leading edge and projections of dendritic cells to the perinuclear region for internalization and processing. Dengue virus bound to DC-SIGN on dendritic projections was rapidly transported toward the cell center. The existence of this movement within the plasma membrane points to an unexpected lateral transport mechanism in mammalian cells and challenges our current concepts of cortex-membrane interactions. PMID:29134199
Petiot, Emma; Fournier, Frantz; Gény, Cécile; Pinton, Hervé; Marc, Annie
2010-03-01
The paper proposes a rapid screening method for a first step improvement of an animal component-free medium dedicated to the growth of the anchorage-dependent Vero cell line. A new, rapid, and non-invasive technique is presented to specifically monitor cultures of adherent cells in 96-well plates. The operating conditions of an image analyzer are adapted to take into account the decrease of cell size when the attached cell density increases. An experimental design is carried out to assess the influence of ten component groups in the original medium. Two groups including protein extracts, growth factor, insulin, glucose, and pyruvate show significant positive effects. The groups with vitamins and molecules related to nitrogenous bases display a less pronounced influence. The mixture of amino acids, B(1) vitamin, magnesium sulfate, and sodium phosphate as well as the couple sodium citrate and ferric chloride lead to a downward trend. The screening results are proved to be scalable in stirred cultures with cells on microcarriers. An improved serum-free medium, with some component groups being removed or added, can be rapidly formulated to reach respectively similar or 1.6 times higher cell density than in the original medium. The results from this global approach could be helpful to further focus experiments on identified medium components.
Jaffar, Zeina; Ferrini, Maria E.; Shaw, Pamela K.; FitzGerald, Garret A.; Roberts, Kevan
2011-01-01
γδ T cells rapidly produce cytokines and represent a first line of defence against microbes and other environmental insults at mucosal tissues and are thus thought to play a local immunoregulatory role. We show that allergic airway inflammation was associated with an increase in innate IL-17-producing γδ T (γδ-17) cells that expressed the αEβ7 integrin and were closely associated with the airway epithelium. Importantly, prostaglandin (PG)I2 and its receptor IP, which downregulated airway eosinophilic inflammation, promoted the emergence of these intraepithelial γδ-17 cells into the airways by enhancing IL-6 production by lung eosinophils and dendritic cells. Accordingly, a pronounced reduction of γδ-17 cells was observed in the thymus of naïve mice lacking the PGI2 receptor IP, as well as in the lungs during allergic inflammation, implying a critical role for PGI2 in the programming of “natural” γδ-17 cells. Conversely, iloprost, a stable analog of PGI2, augmented IL-17 production by γδ T cells but significantly reduced the airway inflammation. Together, these findings suggest that PGI2 plays a key immunoregulatory role by promoting the development of innate intraepithelial γδ-17 cells through an IL-6-dependent mechanism. By enhancing γδ-17 cell responses, stable analogs of PGI2 may be exploited in the development of new immunotherapeutic approaches. PMID:21976777
Proceedings from the 6th Annual University of Calgary Leaders in Medicine Research Symposium.
Roberts, Jodie I; Beatty, Jennifer K; Peplowski, Michael A; Keough, Michael B; Yipp, Bryan G; Hollenberg, Morley D; Beck, Paul L
2015-12-04
On November 14, 2014, the Leaders in Medicine (LIM) program at the Cumming School of Medicine, University of Calgary hosted its 6th Annual Research Symposium. Dr. Danuta Skowronski, Epidemiology Lead for Influenza and Emerging Respiratory Pathogens at the British Columbia Centre for Disease Control (BCCDC), was the keynote speaker and presented a lecture entitled "Rapid response research during emerging public health crises: influenza and reflections from the five year anniversary of the 2009 pandemic". The LIM symposium provides a forum for both LIM and non-LIM medical students to present their research work, either as an oral or poster presentation. There were a total of six oral presentations and 77 posters presented. The oral presentations included: Swathi Damaraju, "The role of cell communication and 3D Cell-Matrix environment in a stem cell-based tissue engineering strategy for bone repair"; Menglin Yang, "The proteolytic activity of Nepenthes pitcher fluid as a therapeutic for the treatment of celiac disease"; Amelia Kellar, "Monitoring pediatric inflammatory bowel disease - a retrospective analysis of transabdominal ultrasound"; Monica M. Faria-Crowder, "The design and application of a molecular profiling strategy to identify polymicrobial acute sepsis infections"; Waleed Rahmani, "Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla and modulate hair type"; and, Laura Palmer, "A novel role for amyloid beta protein during hypoxia/ischemia". The article on the University of Calgary Leaders in Medicine Program, "A Prescription that Addresses the Decline of Basic Science Education in Medical School," in a previous issue of CIM (2014 37(5):E292) provides more details on the program. Briefly, the LIM Research Symposium has the following objectives: (1) to showcase the impressive variety of projects undertaken by students in the LIM Program as well as University of Calgary medical students; (2) to encourage medical student participation in research and special projects; and, (3) to inform students and faculty about the diversity of opportunities available for research and special projects during medical school and beyond. The following abstracts were submitted for publication.
Synthetic biology approaches to engineer T cells.
Wu, Chia-Yung; Rupp, Levi J; Roybal, Kole T; Lim, Wendell A
2015-08-01
There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bridging the Generation Gap: A Rapid Early Career Hire Training Program
NASA Technical Reports Server (NTRS)
Rieber, Richard R.; Coffee, Thomas; Dong, Shuonan; Infield, Samantha I.; Kilbride, Kendra B.; Seibert, Michael A.; Solish, Benjamin S.
2008-01-01
This paper describes a training program to provide Early Career Hires (ECHs) in the aerospace industry with real, rapid, hands-on exposure to multiple phases and multiple disciplines of flight project development. Such a program has become necessary to close the Generation Gap and ensure that aerospace organizations maintain a highly skilled workforce as experienced personnel begin to retire. This paper discusses the specific motivations for and implementation of such a program at the Jet Propulsion Laboratory. However, the essential features are widely applicable to other NASA centers and organizations delivering large llight systems. This paper details the overall program concept, stages of participation by an ECH, oversight and mentoring, program assessment, training project selection, and facilities requirements.
Rapid and efficient nonviral gene delivery of CD154 to primary chronic lymphocytic leukemia cells.
Li, L H; Biagi, E; Allen, C; Shivakumar, R; Weiss, J M; Feller, S; Yvon, E; Fratantoni, J C; Liu, L N
2006-02-01
Interactions between CD40 and CD40 ligand (CD154) are essential in the regulation of both humoral and cellular immune responses. Forced expression of human CD154 in B chronic lymphocytic leukemia (B-CLL) cells can upregulate costimulatory and adhesion molecules and restore antigen-presenting capacity. Unfortunately, B-CLL cells are resistant to direct gene manipulation with most currently available gene transfer systems. In this report, we describe the use of a nonviral, clinical-grade, electroporation-based gene delivery system and a standard plasmid carrying CD154 cDNA, which achieved efficient (64+/-15%) and rapid (within 3 h) transfection of primary B-CLL cells. Consistent results were obtained from multiple human donors. Transfection of CD154 was functional in that it led to upregulated expression of CD80, CD86, ICAM-I and MHC class II (HLA-DR) on the B-CLL cells and induction of allogeneic immune responses in MLR assays. Furthermore, sustained transgene expression was demonstrated in long-term cryopreserved transfected cells. This simple and rapid gene delivery technology has been validated under the current Good Manufacturing Practice conditions, and multiple doses of CD154-expressing cells were prepared for CLL patients from one DNA transfection. Vaccination strategies using autologous tumor cells manipulated ex vivo for patients with B-CLL and perhaps with other hematopoietic malignancies could be practically implemented using this rapid and efficient nonviral gene delivery system.
Origin of tumor-promoter released fibronectin in fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrous, B.A.; Wolf, G.
1986-05-01
Previous work from the laboratory showed that the chemical tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulated release of the cell surface glycoprotein, fibronectin (FN) from human lung fibroblasts (HLF), leading to depletion of cell surface FN, while FN synthesis is not altered by TPA. To further investigate the mechanism(s) by which TPA stimulates FN release, two types of experiments were performed. In the first, HLF were pulsed with /sup 35/S-methionine-labeled medium with or without TPA. In the second, cell-surface proteins were labeled by iodination (/sup 125/I) and then incubated in unlabeled medium with or without TPA. In both cases, the fate ofmore » labeled FN was followed over 12 hr. The /sup 35/S-meth-labeled HLF showed a rapid loss of labeled FN, first into a small, highly-labeled pool of cell surface FN (1 hr), later into the medium (4 hr or longer). Specific activities showed that this small pool in the cell surface turned over rapidly. TPA treatment resulted in more rapid movement of /sup 35/S-meth pulse-labeled FN to the cell surface and into the medium than in control cells. TPA thus affected the fate of intracellular FN. TPA treatment of HLF also resulted in more rapid removal of /sup 125/I-cell surface-labeled FN into the medium than in control cells. Thus, TPA affects the fate of preexisting cell surface FN in HLF. From these results, they hypothesize that TPA has two separate effects: it stimulates depletion of preexisting intracellular FN during the first hr of treatment, and it stimulates release of preexisting cell surface FN over all treatment times.« less
Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure.
Liu, Zongbin; Huang, Fei; Du, Jinghui; Shu, Weiliang; Feng, Hongtao; Xu, Xiaoping; Chen, Yan
2013-01-01
This work reports a microfluidic device with deterministic lateral displacement (DLD) arrays allowing rapid and label-free cancer cell separation and enrichment from diluted peripheral whole blood, by exploiting the size-dependent hydrodynamic forces. Experiment data and theoretical simulation are presented to evaluate the isolation efficiency of various types of cancer cells in the microfluidic DLD structure. We also demonstrated the use of both circular and triangular post arrays for cancer cell separation in cell solution and blood samples. The device was able to achieve high cancer cell isolation efficiency and enrichment factor with our optimized design. Therefore, this platform with DLD structure shows great potential on fundamental and clinical studies of circulating tumor cells.
Rapid micropatterning of cell lines and human pluripotent stem cells on elastomeric membranes.
Paik, Isha; Scurr, David J; Morris, Bryan; Hall, Graham; Denning, Chris; Alexander, Morgan R; Shakesheff, Kevin M; Dixon, James E
2012-10-01
Tissue function during development and in regenerative medicine completely relies on correct cell organization and patterning at micro and macro scales. We describe a rapid method for patterning mammalian cells including human embryonic stem cells (HESCs) and induced pluripotent stem cells (iPSCs) on elastomeric membranes such that micron-scale control of cell position can be achieved over centimeter-length scales. Our method employs surface engineering of hydrophobic polydimethylsiloxane (PDMS) membranes by plasma polymerization of allylamine. Deposition of plasma polymerized allylamine (ppAAm) using our methods may be spatially restricted using a micro-stencil leaving faithful hydrophilic ppAAm patterns. We employed airbrushing to create aerosols which deposit extracellular matrix (ECM) proteins (such as fibronectin and Matrigel™) onto the same patterned ppAAm rich regions. Cell patterns were created with a variety of well characterized cell lines (e.g., NIH-3T3, C2C12, HL1, BJ6, HESC line HUES7, and HiPSC line IPS2). Individual and multiple cell line patterning were also achieved. Patterning remains faithful for several days and cells are viable and proliferate. To demonstrate the utility of our technique we have patterned cells in a variety of configurations. The ability to rapidly pattern cells at high resolution over macro scales should aid future tissue engineering efforts for regenerative medicine applications and in creating in vitro stem cell niches. Copyright © 2012 Wiley Periodicals, Inc.
Human Parainfluenza Virus-3 can be Targeted by Rapidly ex vivo Expanded T-Lymphocytes
McLaughlin, Lauren P.; Lang, Haili; Williams, Elizabeth; Wright, Kaylor E.; Powell, Allison; Cruz, Conrad R; Colberg-Poley, Anamaris M.; Barese, Cecilia; Hanley, Patrick J.; Bollard, Catherine M.; Keller, Michael D.
2016-01-01
Background Human Parainfluenza virus-3 (HPIV) is a common cause of respiratory infection in immunocompromised patients, and presently has no effective therapies. Virus-specific T-cell therapy has been successful for the treatment or prevention of viral infections in immunocompromised patients, but requires determination of T-cell antigens on targeted viruses. Methods HPIV3-specific T cells were expanded from peripheral blood of healthy donors using a rapid generation protocol targeting four HPIV3 proteins. Immunophenotyping was performed by flow cytometry. Viral specificity was determined by IFN-γ ELISpot, intracellular cytokine staining, and cytokine measurements from culture supernatants by Luminex assay. Cytotoxic activity was tested by 51Cr release and CD107a mobilization assays. Virus-specific T-cells targeting 6 viruses were then produced by rapid protocol, and the phenotype of HPIV3-specific T-cells was determined by immunomagnetic sorting for IFN-γ producing cells. Results HPIV3-specific T cells were expanded from 13 healthy donors. HPIV3-specific T-cells showed a CD4+ predominance (mean CD4:CD8 ratio 2.89), and demonstrated specificity for multiple HPIV3 antigens. The expanded T-cells were polyfunctional based on cytokine production, but only had a minor cytotoxic component. T cells targeting six viruses in a single product similarly showed HPIV3 specificity, with a predominant effector memory phenotype (CD3+/CD45RA-/CCR7-) in responder cells. Discussion HPIV3-specific T cells can be produced using a rapid ex vivo protocol from healthy donors and are predominantly CD4+ T-cells with Th1 activity. HPIV3 epitopes can also be successfully targeted alongside multiple other viral epitopes in production of 6-virus T-cells, without loss of HPIV3 specificity. These products may be clinically beneficial to combat HPIV3 infections by adoptive T-cell therapy in immune compromised patients. PMID:27692559
Rhee, Ho Sung; Closser, Michael; Guo, Yuchun; Bashkirova, Elizaveta V; Tan, G Christopher; Gifford, David K; Wichterle, Hynek
2016-12-21
Generic spinal motor neuron identity is established by cooperative binding of programming transcription factors (TFs), Isl1 and Lhx3, to motor-neuron-specific enhancers. How expression of effector genes is maintained following downregulation of programming TFs in maturing neurons remains unknown. High-resolution exonuclease (ChIP-exo) mapping revealed that the majority of enhancers established by programming TFs are rapidly deactivated following Lhx3 downregulation in stem-cell-derived hypaxial motor neurons. Isl1 is released from nascent motor neuron enhancers and recruited to new enhancers bound by clusters of Onecut1 in maturing neurons. Synthetic enhancer reporter assays revealed that Isl1 operates as an integrator factor, translating the density of Lhx3 or Onecut1 binding sites into transient enhancer activity. Importantly, independent Isl1/Lhx3- and Isl1/Onecut1-bound enhancers contribute to sustained expression of motor neuron effector genes, demonstrating that outwardly stable expression of terminal effector genes in postmitotic neurons is controlled by a dynamic relay of stage-specific enhancers. Copyright © 2016 Elsevier Inc. All rights reserved.
Maor-Nof, Maya; Romi, Erez; Sar Shalom, Hadas; Ulisse, Valeria; Raanan, Calanit; Nof, Aviv; Leshkowitz, Dena; Lang, Roland; Yaron, Avraham
2016-12-07
Developmental neuronal cell death and axonal elimination are controlled by transcriptional programs, of which their nature and the function of their components remain elusive. Here, we identified the dual specificity phosphatase Dusp16 as part of trophic deprivation-induced transcriptome in sensory neurons. Ablation of Dusp16 enhanced axonal degeneration in response to trophic withdrawal, suggesting that it has a protective function. Moreover, axonal skin innervation was severely reduced while neuronal elimination was increased in the Dusp16 knockout. Mechanistically, Dusp16 negatively regulates the transcription factor p53 and antagonizes the expression of the pro-degenerative factor, Puma (p53 upregulated modulator of apoptosis). Co-ablation of Puma with Dusp16 protected axons from rapid degeneration and specifically reversed axonal innervation loss early in development with no effect on neuronal deficits. Overall, these results reveal that physiological axonal elimination is regulated by a transcriptional program that integrates regressive and progressive elements and identify Dusp16 as a new axonal preserving factor. Copyright © 2016 Elsevier Inc. All rights reserved.
Can Cell to Cell Thermal Runaway Propagation be Prevented in a Li-ion Battery Module?
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith; Lopez, Carlos; Orieukwu, Josephat
2014-01-01
Increasing cell spacing decreased adjacent cell damage center dotElectrically connected adjacent cells drained more than physically adjacent cells center dotRadiant barrier prevents propagation when fully installed between BP cells center dotBP cells vent rapidly and expel contents at 100% SOC -Slower vent with flame/smoke at 50% -Thermal runaway event typically occurs at 160 degC center dotLG cells vent but do not expel contents -Thermal runaway event typically occurs at 200 degC center dotSKC LFP modules did not propagate; fuses on negative terminal of cell may provide a benefit in reducing cell to cell damage propagation. New requirement in NASA-Battery Safety Requirements document: JSC 20793 Rev C 5.1.5.1 Requirements - Thermal Runaway Propagation a. For battery designs greater than a 80-Wh energy employing high specific energy cells (greater than 80 watt-hours/kg, for example, lithium-ion chemistries) with catastrophic failure modes, the battery shall be evaluated to ascertain the severity of a worst-case single-cell thermal runaway event and the propensity of the design to demonstrate cell-to-cell propagation in the intended application and environment. NASA has traditionally addressed the threat of thermal runaway incidents in its battery deployments through comprehensive prevention protocols. This prevention-centered approach has included extensive screening for manufacturing defects, as well as robust battery management controls that prevent abuse-induced runaway even in the face of multiple system failures. This focused strategy has made the likelihood of occurrence of such an event highly improbable. b. The evaluation shall include all necessary analysis and test to quantify the severity (consequence) of the event in the intended application and environment as well as to identify design modifications to the battery or the system that could appreciably reduce that severity. In addition to prevention protocols, programs developing battery designs with catastrophic failure modes should take the steps necessary to assess the severity of a possible thermal runaway event. Programs should assess whether there are reasonable design changes that could appreciably affect the severity of the outcome. Evaluation should include environmental effects to surrounding hardware (i.e., temperature, pressure, shock), contamination effects due to any expelled contaminates, and venting propulsive effects when venting overboard.
Sprowl-Tanio, Stephanie; Habowski, Amber N; Pate, Kira T; McQuade, Miriam M; Wang, Kehui; Edwards, Robert A; Grun, Felix; Lyou, Yung; Waterman, Marian L
2016-01-01
There is increasing evidence that oncogenic Wnt signaling directs metabolic reprogramming of cancer cells to favor aerobic glycolysis or Warburg metabolism. In colon cancer, this reprogramming is due to direct regulation of pyruvate dehydrogenase kinase 1 ( PDK1 ) gene transcription. Additional metabolism genes are sensitive to Wnt signaling and exhibit correlative expression with PDK1. Whether these genes are also regulated at the transcriptional level, and therefore a part of a core metabolic gene program targeted by oncogenic WNT signaling, is not known. Here, we identify monocarboxylate transporter 1 (MCT-1; encoded by SLC16A1 ) as a direct target gene supporting Wnt-driven Warburg metabolism. We identify and validate Wnt response elements (WREs) in the proximal SLC16A1 promoter and show that they mediate sensitivity to Wnt inhibition via dominant-negative LEF-1 (dnLEF-1) expression and the small molecule Wnt inhibitor XAV939. We also show that WREs function in an independent and additive manner with c-Myc, the only other known oncogenic regulator of SLC16A1 transcription. MCT-1 can export lactate, the byproduct of Warburg metabolism, and it is the essential transporter of pyruvate as well as a glycolysis-targeting cancer drug, 3-bromopyruvate (3-BP). Using sulforhodamine B (SRB) assays to follow cell proliferation, we tested a panel of colon cancer cell lines for sensitivity to 3-BP. We observe that all cell lines are highly sensitive and that reduction of Wnt signaling by XAV939 treatment does not synergize with 3-BP, but instead is protective and promotes rapid recovery. We conclude that MCT-1 is part of a core Wnt signaling gene program for glycolysis in colon cancer and that modulation of this program could play an important role in shaping sensitivity to drugs that target cancer metabolism.
Reed, William; Noga, Stephen J; Gee, Adrian P; Rooney, Cliona M; Wagner, John E; McCullough, Jeffrey; McKenna, David H; Whiteside, Theresa L; Donnenberg, Albert D; Baker, Acacia K; Lindblad, Robert W; Wagner, Elizabeth L; Mondoro, Traci Heath
2009-04-01
In 2002, the US National Heart, Lung, and Blood Institute (NHLBI) conducted a workshop to determine needs of the cell therapy community. A consensus emerged that improved access to cGMP facilities, regulatory assistance, and training would foster the advancement of cellular therapy. A 2003 NHLBI request for proposals resulted in four contracts being awarded to three cell-manufacturing facilities (Baylor College of Medicine, University of Minnesota, and University of Pittsburgh) and one administrative center (The EMMES Corporation). As a result, Production Assistance for Cellular Therapies (PACT) was formed. As of October 1, 2008, PACT has received 65 preliminary applications of which 45 have been approved for product manufacture. A variety of cell therapies are represented including T-regulatory cells, natural killer cells, adipose-derived stem cells, cardiac progenitor cells for cardiac disease, hematopoietic progenitor cells (HPCs) for central nervous system applications, cytotoxic T lymphocytes, and dendritic cells. A total of 169 products have been administered under 12 applications and 2 reagents were manufactured and delivered. Fourteen peer-reviewed publications and 15 abstracts have resulted from the PACT project to date. A cell therapy textbook is nearly complete. PACT technical projects have addressed assay development, rapid endotoxin testing, shipping of cell products, and CD34+ HPC isolation from low-volume marrow. Educational Web seminars and on-site training through workshops have been conducted. PACT is an active and successful cell therapy manufacturing resource in the United States, addressing research and training while forging relationships among academia, industry, and participating institutions.
FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramin Yazdani; Jeff Kieffer; Heather Akau
2003-12-01
The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes ofmore » air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.« less
LaCount, Robert B.
1993-01-01
A furnace with two hot zones holds multiple analysis tubes. Each tube has a separable sample-packing section positioned in the first hot zone and a catalyst-packing section positioned in the second hot zone. A mass flow controller is connected to an inlet of each sample tube, and gas is supplied to the mass flow controller. Oxygen is supplied through a mass flow controller to each tube to either or both of an inlet of the first tube and an intermediate portion between the tube sections to intermingle with and oxidize the entrained gases evolved from the sample. Oxidation of those gases is completed in the catalyst in each second tube section. A thermocouple within a sample reduces furnace temperature when an exothermic condition is sensed within the sample. Oxidized gases flow from outlets of the tubes to individual gas cells. The cells are sequentially aligned with an infrared detector, which senses the composition and quantities of the gas components. Each elongated cell is tapered inward toward the center from cell windows at the ends. Volume is reduced from a conventional cell, while permitting maximum interaction of gas with the light beam. Reduced volume and angulation of the cell inlets provide rapid purgings of the cell, providing shorter cycles between detections. For coal and other high molecular weight samples, from 50% to 100% oxygen is introduced to the tubes.
Jimenez, Laura; Wang, Jindong; Morrison, Monique A.; Whatcott, Clifford; Soh, Katherine K.; Warner, Steven; Bearss, David; Jette, Cicely A.; Stewart, Rodney A.
2016-01-01
ABSTRACT The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, called Tg(snai1b:GFP), which labels epithelial cells undergoing EMT to produce sox10-positive neural crest (NC) cells. Time-lapse and lineage analysis of Tg(snai1b:GFP) embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. Treating Tg(snai1b:GFP) embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RA in vivo and raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. PMID:26794130
Regulation of expression of the ligand for CD40 on T helper lymphocytes.
Castle, B E; Kishimoto, K; Stearns, C; Brown, M L; Kehry, M R
1993-08-15
Activated Th cells deliver contact-dependent signals to resting B lymphocytes that initiate and drive B cell proliferation. Recently, a ligand for the B lymphocyte membrane protein, CD40, has been identified that delivers contact-dependent Th cell signals to B cells. A dimeric soluble form of CD40 was produced and used to further characterize the regulation of expression of the CD40 ligand. Expression of the CD40 ligand was rapidly induced after Th lymphocyte activation, and its stability depended upon whether Th cells were activated with soluble or plastic-bound stimuli. Th cells activated with soluble stimuli rapidly turned over cell-surface CD40 ligand whereas Th cells activated with plastic-bound stimuli exhibited more stable CD40 ligand expression for up to 48 h. Removal of activated Th cells from the plastic-bound stimulus resulted in a rapid turnover of CD40 ligand, suggesting that continuous stimulation could maintain CD40 ligand expression. Ligation by soluble CD40 could also stabilize expression of CD40 ligand on the Th cell surface. Both CD40 ligand and IL-2 were transiently synthesized from 1 to 12 h after Th cell activation and had similar kinetics of synthesis. In Con A-activated Th cells newly synthesized CD40 ligand exhibited an initial high turnover (1.5 h t1/2) and after 5 h of Th cell activation became more stable (10-h t1/2). In Th cells activated with plastic-bound anti-CD3, CD40 ligand exhibited a similar biphasic turnover except that the rapid turnover phase began significantly later. This delay could allow more time for newly synthesized CD40 ligand to assemble or associate with other molecules and thus become stabilized on the cell surface. Newly synthesized CD40 ligand in Con A-activated Th cells appeared to not be efficient in delivering Th cell-dependent contact signals to resting B cells, implying the need for assembly or accessory proteins. Regulation of CD40 ligand expression was consistent with all the characteristics of Th cell-delivered contact signals to B cells and may contribute to the high degree of specificity in B cell responses.
Hatta, Yasuko; Hershberger, Karen; Shinya, Kyoko; Proll, Sean C; Dubielzig, Richard R; Hatta, Masato; Katze, Michael G; Kawaoka, Yoshihiro; Suresh, M
2010-10-07
Since the first recorded infection of humans with H5N1 viruses of avian origin in 1997, sporadic human infections continue to occur with a staggering mortality rate of >60%. Although sustained human-to-human transmission has not occurred yet, there is a growing concern that these H5N1 viruses might acquire this trait and raise the specter of a pandemic. Despite progress in deciphering viral determinants of pathogenicity, we still lack crucial information on virus/immune system interactions pertaining to severe disease and high mortality associated with human H5N1 influenza virus infections. Using two human isolates of H5N1 viruses that differ in their pathogenicity in mice, we have defined mechanistic links among the rate of viral replication, mortality, CD8 T cell responses, and immunopathology. The extreme pathogenicity of H5N1 viruses was directly linked to the ability of the virus to replicate rapidly, and swiftly attain high steady-state titers in the lungs within 48 hours after infection. The remarkably high replication rate of the highly pathogenic H5N1 virus did not prevent the induction of IFN-β or activation of CD8 T cells, but the CD8 T cell response was ineffective in controlling viral replication in the lungs and CD8 T cell deficiency did not affect viral titers or mortality. Additionally, BIM deficiency ameliorated lung pathology and inhibited T cell apoptosis without affecting survival of mice. Therefore, rapidly replicating, highly lethal H5N1 viruses could simply outpace and overwhelm the adaptive immune responses, and kill the host by direct cytopathic effects. However, therapeutic suppression of early viral replication and the associated enhancement of CD8 T cell responses improved the survival of mice following a lethal H5N1 infection. These findings suggest that suppression of early H5N1 virus replication is key to the programming of an effective host response, which has implications in treatment of this infection in humans.
Construction of an easy-to-use CRISPR-Cas9 system by patching a newly designed EXIT circuit.
Tang, Qiang; Lou, Chunbo; Liu, Shuang-Jiang
2017-01-01
Plasmid-borne genetic editing tools, including the widely used CRISPR-Cas9 system, have greatly facilitated bacterial programming to obtain novel functionalities. However, the lack of effective post-editing plasmid elimination methods impedes follow-up genetic manipulation or application. Conventional strategies including exposure to physical and chemical treatments, or exploiting temperature-sensitive replication origins have several drawbacks (e.g., they are limited for efficiency and are time-consuming). Therefore, the demand is apparent for easy and rapid elimination of the tool plasmids from their bacterial hosts after genetic manipulation. To bridge this gap, we designed a novel EXIT circuit with the homing endonuclease, which can be exploited for rapid and efficient elimination of various plasmids with diverse replication origins. As a proof of concept, we validated the EXIT circuit in Escherichia coli by harnessing homing endonuclease I- Sce I and its cleavage site. When integrated into multiple plasmids with different origins, the EXIT circuit allowed them to be eliminated from the host cells, simultaneously. By combining the widely used plasmid-borne CRISPR-Cas9 system and the EXIT circuit, we constructed an easy-to-use CRISPR-Cas9 system that eliminated the Cas9- and the single-guide RNA (sgRNA)-encoding plasmids in one-step. Within 3 days, we successfully constructed an atrazine-degrading E. coli strain, thus further demonstrating the advantage of this new CRISPR-Cas9 system for bacterial genome editing. Our novel EXIT circuit, which exploits the homing endonuclease I- Sce I, enables plasmid(s) with different replication origins to be eliminated from their host cells rapidly and efficiently. We also developed an easy-to-use CRISPR-Cas9 system with the EXIT circuit, and this new system can be widely applied to bacterial genome editing.
Sedhom, Ramy; Hu, Sophia; Ohri, Anupam; Infantino, Dorian; Lubitz, Sara
2016-10-12
Malignant steroid cell tumors of the ovary are rare and frequently associated with hormonal abnormalities. There are no guidelines on how to treat rapidly progressive Cushing's syndrome, a medical emergency. A 67-year-old white woman presented to our hospital with rapidly developing signs and symptoms of Cushing's syndrome secondary to a steroid-secreting tumor. Her physical and biochemical manifestations of Cushing's syndrome progressed, and she was not amenable to undergoing conventional chemotherapy secondary to the debilitating effects of high cortisol. Her rapidly progressive Cushing's syndrome ultimately led to her death, despite aggressive medical management with spironolactone, ketoconazole, mitotane, and mifepristone. We report an unusual and rare case of Cushing's syndrome secondary to a malignant steroid cell tumor of the ovary. The case is highlighted to discuss the complications of rapidly progressive Cushing's syndrome, an underreported and often unrecognized endocrine emergency, and the best available evidence for treatment.
Can "Special" Programs for Children with Autism Spectrum Disorders Be Inclusive?
ERIC Educational Resources Information Center
Marks, Susan Unok
2007-01-01
With the increased public attention to a rapidly growing number of children being diagnosed with autism spectrum disorder (ASD), it seems as if there is an equally rapid growth of new specialized programs catering to this group of children. The question to be considered is, if there are indeed promising models based on inclusive settings, why does…
The rapid sampling provided by the DART in ambient air will allow rapid delineation of areas of dispersed chemicals after natural or man-made disasters. Exact masses and RIAs of dimer, precursor, and product ions measured by the oa-TOFMS entered dinto the Ion Correlation Program...
ERIC Educational Resources Information Center
Murray, Elizabeth; McCabe, Patricia; Ballard, Kirrie J.
2015-01-01
Purpose: This randomized controlled trial compared the experimental Rapid Syllable Transition (ReST) treatment to the Nuffield Dyspraxia Programme-Third Edition (NDP3; Williams & Stephens, 2004), used widely in clinical practice in Australia and the United Kingdom. Both programs aim to improve speech motor planning/programming for children…
Liu, Jiabin; Behrens, Timothy W.; Kearney, John F.
2014-01-01
Marginal Zone (MZ) B cells play an important role in the clearance of blood-borne bacterial infections via rapid T-independent IgM responses. We have previously demonstrated that MZ B cells respond rapidly and robustly to bacterial particulates. To determine the MZ-specific genes that are expressed to allow for this response, MZ and Follicular (FO) B cells were sort-purified and analyzed via DNA microarray analysis. We identified 181 genes that were significantly different between the two B cell populations. 99 genes were more highly expressed in MZ B cells while 82 genes were more highly expressed in FO B cells. To further understand the molecular mechanisms by which MZ B cells respond so rapidly to bacterial challenge, idiotype positive and negative MZ B cells were sort-purified before (0 hour) or after (1 hour) i.v. immunization with heat killed Streptococcus pneumoniae, R36A, and analyzed via DNA microarray analysis. We identified genes specifically up regulated or down regulated at 1 hour following immunization in the idiotype positive MZ B cells. These results give insight into the gene expression pattern in resting MZ vs. FO B cells and the specific regulation of gene expression in antigen-specific MZ B cells following interaction with antigen. PMID:18453586
NASA Astrophysics Data System (ADS)
Li, Shuang; Zhu, Yongsheng; Wang, Yukai
2014-02-01
Asteroid deflection techniques are essential in order to protect the Earth from catastrophic impacts by hazardous asteroids. Rapid design and optimization of low-thrust rendezvous/interception trajectories is considered as one of the key technologies to successfully deflect potentially hazardous asteroids. In this paper, we address a general framework for the rapid design and optimization of low-thrust rendezvous/interception trajectories for future asteroid deflection missions. The design and optimization process includes three closely associated steps. Firstly, shape-based approaches and genetic algorithm (GA) are adopted to perform preliminary design, which provides a reasonable initial guess for subsequent accurate optimization. Secondly, Radau pseudospectral method is utilized to transcribe the low-thrust trajectory optimization problem into a discrete nonlinear programming (NLP) problem. Finally, sequential quadratic programming (SQP) is used to efficiently solve the nonlinear programming problem and obtain the optimal low-thrust rendezvous/interception trajectories. The rapid design and optimization algorithms developed in this paper are validated by three simulation cases with different performance indexes and boundary constraints.
Hallgren, Oskar; Aits, Sonja; Brest, Patrick; Gustafsson, Lotta; Mossberg, Ann-Kristin; Wullt, Björn; Svanborg, Catharina
2008-01-01
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded alpha-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells to HAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.
Mechanisms of allergen-specific immunotherapy and novel ways for vaccine development.
Jutel, Marek; Van de Veen, Willem; Agache, Ioana; Azkur, Kürsat A; Akdis, Mübeccel; Akdis, Cezmi A
2013-12-01
Allergen-specific immunotherapy (SIT) is the only available curative treatment of allergic diseases. Recent evidence provided a plausible explanation to its multiple mechanisms inducing both rapid desensitization and long-term allergen-specific immune tolerance, and suppression of allergic inflammation in the affected tissues. During SIT, peripheral tolerance is induced by the generation of allergen-specific regulatory T cells, which suppress proliferative and cytokine responses against the allergen of interest. Regulatory T cells are characterized by IL-10 and TGF-beta secretion and expression of important cell surface suppressive molecules such as cytotoxic T lymphocyte antigen-4 and programmed death-1 that directly or indirectly influence effector cells of allergic inflammation, such as mast cells, basophils and eosinophils. Regulatory T cells and particularly IL-10 also have an influence on B cells, suppressing IgE production and inducing the production of blocking type IgG4 antibodies. In addition, development of allergen-specific B regulatory cells that produce IL-10 and develop into IgG4 producing plasma cells represent essential players in peripheral tolerance. These findings together with the new biotechnological approaches create a platform for development of the advanced vaccines. Moreover, reliable biomarkers could be selected and validated with the intention to select the patients who will benefit most from this immune-modifying treatment. Thus, allergen-SIT could provide a complete cure for a larger number of allergic patients and novel preventive approaches need to be elaborated.
The acoustic sensor for rapid analysis of bacterial cells in the conductive suspensions.
Borodina, I A; Zaitsev, B D; Guliy, O; Teplykh, A A; Shikhabudinov, A M
2017-11-01
The possibility of using the acoustic sensor on the basis of a two-channel delay line for rapid analysis of bacterial cells in the conductive suspensions was investigated. The dependencies of change in phase and insertion loss of output signal of the sensor on conductivity of buffer solution with various concentrations of cells due to a specific interaction "bacterial cells - mini-antibodies" for electrically open and electrically shorted channels of delay line were measured. It has been found that these changes have the most values for the electrically open channel. It has been also shown that the sensor rapidly responds to the specific interaction and the time stabilization of the phase and insertion loss of output signal is less than 10min. Copyright © 2017 Elsevier B.V. All rights reserved.
Molecular Viability Testing of UV-Inactivated Bacteria.
Weigel, Kris M; Nguyen, Felicia K; Kearney, Moira R; Meschke, John S; Cangelosi, Gerard A
2017-05-15
PCR is effective in detecting bacterial DNA in samples, but it is unable to differentiate viable bacteria from inactivated cells or free DNA fragments. New PCR-based analytical strategies have been developed to address this limitation. Molecular viability testing (MVT) correlates bacterial viability with the ability to rapidly synthesize species-specific rRNA precursors (pre-rRNA) in response to brief nutritional stimulation. Previous studies demonstrated that MVT can assess bacterial inactivation by chlorine, serum, and low-temperature pasteurization. Here, we demonstrate that MVT can detect inactivation of Escherichia coli , Aeromonas hydrophila , and Enterococcus faecalis cells by UV irradiation. Some UV-inactivated E. coli cells transiently retained the ability to synthesize pre-rRNA postirradiation (generating false-positive MVT results), but this activity ceased within 1 h following UV exposure. Viable but transiently undetectable (by culture) E. coli cells were consistently detected by MVT. An alternative viability testing method, viability PCR (vPCR), correlates viability with cell envelope integrity. This method did not distinguish viable bacteria from UV-inactivated bacteria under some conditions, indicating that the inactivated cells retained intact cell envelopes. MVT holds promise as a means to rapidly assess microbial inactivation by UV treatment. IMPORTANCE UV irradiation is increasingly being used to disinfect water, food, and other materials for human use. Confirming the effectiveness of UV disinfection remains a challenging task. In particular, microbiological methods that rely on rapid detection of microbial DNA can yield misleading results, due to the detection of remnant DNA associated with dead microbial cells. This report describes a novel method that rapidly distinguishes living microbial cells from dead microbial cells after UV disinfection. Copyright © 2017 American Society for Microbiology.
Single-cell isolation by a modular single-cell pipette for RNA-sequencing.
Zhang, Kai; Gao, Min; Chong, Zechen; Li, Ying; Han, Xin; Chen, Rui; Qin, Lidong
2016-11-29
Single-cell transcriptome sequencing highly requires a convenient and reliable method to rapidly isolate a live cell into a specific container such as a PCR tube. Here, we report a modular single-cell pipette (mSCP) consisting of three modular components, a SCP-Tip, an air-displacement pipette (ADP), and ADP-Tips, that can be easily assembled, disassembled, and reassembled. By assembling the SCP-Tip containing a hydrodynamic trap, the mSCP can isolate single cells from 5-10 cells per μL of cell suspension. The mSCP is compatible with microscopic identification of captured single cells to finally achieve 100% single-cell isolation efficiency. The isolated live single cells are in submicroliter volumes and well suitable for single-cell PCR analysis and RNA-sequencing. The mSCP possesses merits of convenience, rapidness, and high efficiency, making it a powerful tool to isolate single cells for transcriptome analysis.
Defective calmodulin-dependent rapid apical endocytosis in zebrafish sensory hair cell mutants.
Seiler, C; Nicolson, T
1999-11-15
Vertebrate mechanosensory hair cells contain a narrow "pericuticular" zone which is densely populated with small vesicles between the cuticular plate and cellular junctions near the apical surface. The presence of many cytoplasmic vesicles suggests that the apical surface of hair cells has a high turnover rate. The significance of intense membrane trafficking at the apical surface is not known. Using a marker of endocytosis, the styryl dye FM1-43, this report shows that rapid apical endocytosis in zebrafish lateral line sensory hair cells is calcium and calmodulin dependent and is partially blocked by the presence of amiloride and dihydrostreptomycin, known inhibitors of mechanotransduction channels. As seen in lateral line hair cells, sensory hair cells within the larval otic capsule also exhibit rapid apical endocytosis. Defects in internalization of the dye in both lateral line and inner ear hair cells were found in five zebrafish auditory/vestibular mutants: sputnik, mariner, orbiter, mercury, and skylab. In addition, lateral line hair cells in these mutants were not sensitive to prolonged exposure to streptomycin, which is toxic to hair cells. The presence of endocytic defects in the majority of zebrafish mechanosensory mutants points to a important role of apical endocytosis in hair cell function. Copyright 1999 John Wiley & Sons, Inc.
An optimized rapid bisulfite conversion method with high recovery of cell-free DNA.
Yi, Shaohua; Long, Fei; Cheng, Juanbo; Huang, Daixin
2017-12-19
Methylation analysis of cell-free DNA is a encouraging tool for tumor diagnosis, monitoring and prognosis. Sensitivity of methylation analysis is a very important matter due to the tiny amounts of cell-free DNA available in plasma. Most current methods of DNA methylation analysis are based on the difference of bisulfite-mediated deamination of cytosine between cytosine and 5-methylcytosine. However, the recovery of bisulfite-converted DNA based on current methods is very poor for the methylation analysis of cell-free DNA. We optimized a rapid method for the crucial steps of bisulfite conversion with high recovery of cell-free DNA. A rapid deamination step and alkaline desulfonation was combined with the purification of DNA on a silica column. The conversion efficiency and recovery of bisulfite-treated DNA was investigated by the droplet digital PCR. The optimization of the reaction results in complete cytosine conversion in 30 min at 70 °C and about 65% of recovery of bisulfite-treated cell-free DNA, which is higher than current methods. The method allows high recovery from low levels of bisulfite-treated cell-free DNA, enhancing the analysis sensitivity of methylation detection from cell-free DNA.
Dieye, Yakou; Storey, Helen L; Barrett, Kelsey L; Gerth-Guyette, Emily; Di Giorgio, Laura; Golden, Allison; Faulx, Dunia; Kalnoky, Michael; Ndiaye, Marie Khemesse Ngom; Sy, Ngayo; Mané, Malang; Faye, Babacar; Sarr, Mamadou; Dioukhane, Elhadji Mamadou; Peck, Roger B; Guinot, Philippe; de Los Santos, Tala
2017-10-01
As effective onchocerciasis control efforts in Africa transition to elimination efforts, different diagnostic tools are required to support country programs. Senegal, with its long standing, successful control program, is transitioning to using the SD BIOLINE Onchocerciasis IgG4 (Ov16) rapid test over traditional skin snip microscopy. The aim of this study is to demonstrate the feasibility of integrating the Ov16 rapid test into onchocerciasis surveillance activities in Senegal, based on the following attributes of acceptability, usability, and cost. A cross-sectional study was conducted in 13 villages in southeastern Senegal in May 2016. Individuals 5 years and older were invited to participate in a demographic questionnaire, an Ov16 rapid test, a skin snip biopsy, and an acceptability interview. Rapid test technicians were interviewed and a costing analysis was conducted. Of 1,173 participants, 1,169 (99.7%) agreed to the rapid test while 383 (32.7%) agreed to skin snip microscopy. The sero-positivity rate of the rapid test among those tested was 2.6% with zero positives 10 years and younger. None of the 383 skin snips were positive for Ov microfilaria. Community members appreciated that the rapid test was performed quickly, was not painful, and provided reliable results. The total costs for this surveillance activity was $22,272.83, with a cost per test conducted at $3.14 for rapid test, $7.58 for skin snip microscopy, and $13.43 for shared costs. If no participants had refused skin snip microscopy, the total cost per method with shared costs would have been around $16 per person tested. In this area with low onchocerciasis sero-positivity, there was high acceptability and perceived value of the rapid test by community members and technicians. This study provides evidence of the feasibility of implementing the Ov16 rapid test in Senegal and may be informative to other country programs transitioning to Ov16 serologic tools.
Dieye, Yakou; Barrett, Kelsey L.; Gerth-Guyette, Emily; Di Giorgio, Laura; Golden, Allison; Faulx, Dunia; Kalnoky, Michael; Ndiaye, Marie Khemesse Ngom; Sy, Ngayo; Mané, Malang; Faye, Babacar; Sarr, Mamadou; Dioukhane, Elhadji Mamadou; Peck, Roger B.; Guinot, Philippe; de los Santos, Tala
2017-01-01
As effective onchocerciasis control efforts in Africa transition to elimination efforts, different diagnostic tools are required to support country programs. Senegal, with its long standing, successful control program, is transitioning to using the SD BIOLINE Onchocerciasis IgG4 (Ov16) rapid test over traditional skin snip microscopy. The aim of this study is to demonstrate the feasibility of integrating the Ov16 rapid test into onchocerciasis surveillance activities in Senegal, based on the following attributes of acceptability, usability, and cost. A cross-sectional study was conducted in 13 villages in southeastern Senegal in May 2016. Individuals 5 years and older were invited to participate in a demographic questionnaire, an Ov16 rapid test, a skin snip biopsy, and an acceptability interview. Rapid test technicians were interviewed and a costing analysis was conducted. Of 1,173 participants, 1,169 (99.7%) agreed to the rapid test while 383 (32.7%) agreed to skin snip microscopy. The sero-positivity rate of the rapid test among those tested was 2.6% with zero positives 10 years and younger. None of the 383 skin snips were positive for Ov microfilaria. Community members appreciated that the rapid test was performed quickly, was not painful, and provided reliable results. The total costs for this surveillance activity was $22,272.83, with a cost per test conducted at $3.14 for rapid test, $7.58 for skin snip microscopy, and $13.43 for shared costs. If no participants had refused skin snip microscopy, the total cost per method with shared costs would have been around $16 per person tested. In this area with low onchocerciasis sero-positivity, there was high acceptability and perceived value of the rapid test by community members and technicians. This study provides evidence of the feasibility of implementing the Ov16 rapid test in Senegal and may be informative to other country programs transitioning to Ov16 serologic tools. PMID:28972982
Shaw, B E; Chapman, J; Fechter, M; Foeken, L; Greinix, H; Hwang, W; Phillips-Johnson, L; Korhonen, M; Lindberg, B; Navarro, W H; Szer, J
2013-11-01
Safety of living donors is critical to the success of blood, tissue and organ transplantation. Structured and robust vigilance and surveillance systems exist as part of some national entities, but historically no global systems are in place to ensure conformity, harmonisation and the recognition of rare adverse events (AEs). The World Health Assembly has recently resolved to require AE/reaction (AE/R) reporting both nationally and globally. The World Marrow Donor Association (WMDA) is an international organisation promoting the safety of unrelated donors and progenitor cell products for use in haematopoietic progenitor cell (HPC) transplantation. To address this issue, we established a system for collecting, collating, analysing, distributing and reacting to serious adverse events and reactions (SAE/R) in unrelated HPC donors. The WMDA successfully instituted this reporting system with 203 SAE/R reported in 2011. The committee generated two rapid reports, reacting to specific SAE/R, resulting in practice changing policies. The system has a robust governance structure, formal feedback to the WMDA membership and transparent information flows to other agencies, specialist physicians and transplant programs and the general public.
Immunity to fish rhabdoviruses
Purcell, Maureen K.; Laing, Kerry J.; Winton, James R.
2012-01-01
Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non-virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.
Immunity to fish rhabdoviruses.
Purcell, Maureen K; Laing, Kerry J; Winton, James R
2012-01-01
Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non‑virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.
Expression of different functional isoforms in haematopoiesis.
Grech, Godfrey; Pollacco, Joel; Portelli, Mark; Sacco, Keith; Baldacchino, Shawn; Grixti, Justine; Saliba, Christian
2014-01-01
Haematopoiesis is a complex process regulated at various levels facilitating rapid responses to external factors including stress, modulation of lineage commitment and terminal differentiation of progenitors. Although the transcription program determines the RNA pool of a cell, various mRNA strands can be obtained from the same template, giving rise to multiple protein isoforms. The majority of variants and isoforms co-occur in normal haematopoietic cells or are differentially expressed at various maturity stages of progenitor maturation and cellular differentiation within the same lineage or across lineages. Genetic aberrations or specific cellular states result in the predominant expression of abnormal isoforms leading to deregulation and disease. The presence of upstream open reading frames (uORF) in 5' untranslated regions (UTRs) of a transcript, couples the utilization of start codons with the cellular status and availability of translation initiation factors (eIFs). In addition, tissue-specific and cell lineage-specific alternative promoter use, regulates several transcription factors producing transcript variants with variable 5' exons. In this review, we propose to give a detailed account of the differential isoform formation, causing haematological malignancies.
Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury
Overall, Christopher C.
2017-01-01
The meningeal space is occupied by a diverse repertoire of immune cells. Central nervous system (CNS) injury elicits a rapid immune response that affects neuronal survival and recovery, but the role of meningeal inflammation remains poorly understood. Here, we describe type 2 innate lymphocytes (ILC2s) as a novel cell type resident in the healthy meninges that are activated after CNS injury. ILC2s are present throughout the naive mouse meninges, though are concentrated around the dural sinuses, and have a unique transcriptional profile. After spinal cord injury (SCI), meningeal ILC2s are activated in an IL-33–dependent manner, producing type 2 cytokines. Using RNAseq, we characterized the gene programs that underlie the ILC2 activation state. Finally, addition of wild-type lung-derived ILC2s into the meningeal space of IL-33R−/− animals partially improves recovery after SCI. These data characterize ILC2s as a novel meningeal cell type that responds to SCI and could lead to new therapeutic insights for neuroinflammatory conditions. PMID:27994070
Lin, Wei-Hsiang; Yeh, Shiou-Hwei; Yeh, Kun-Huei; Chen, Kai-Wei; Cheng, Ya-Wen; Su, Tung-Hung; Jao, Ping; Ni, Lin-Chun; Chen, Pei-Jer; Chen, Ding-Shinn
2016-01-01
Transarterial chemoembolization (TACE) is the main treatment for intermediate stage hepatocellular carcinoma (HCC) with Barcelona Clinic Liver Cancer classification because of its exclusive arterial blood supply. Although TACE achieves substantial necrosis of the tumor, complete tumor necrosis is uncommon, and the residual tumor generally rapidly recurs. We combined tirapazamine (TPZ), a hypoxia-activated cytotoxic agent, with hepatic artery ligation (HAL), which recapitulates transarterial embolization in mouse models, to enhance the efficacy of TACE. The effectiveness of this combination treatment was examined in HCC that spontaneously developed in hepatitis B virus X protein (HBx) transgenic mice. We proved that the tumor blood flow in this model was exclusively supplied by the hepatic artery, in contrast to conventional orthotopic HCC xenografts that receive both arterial and venous blood supplies. At levels below the threshold oxygen levels created by HAL, TPZ was activated and killed the hypoxic cells, but spared the normoxic cells. This combination treatment clearly limited the toxicity of TPZ to HCC, which caused the rapid and near-complete necrosis of HCC. In conclusion, the combination of TPZ and HAL showed a synergistic tumor killing activity that was specific for HCC in HBx transgenic mice. This preclinical study forms the basis for the ongoing clinical program for the TPZ-TACE regimen in HCC treatment. PMID:27702890
Mathas, Stephan; Kreher, Stephan; Meaburn, Karen J; Jöhrens, Korinna; Lamprecht, Björn; Assaf, Chalid; Sterry, Wolfram; Kadin, Marshall E; Daibata, Masanori; Joos, Stefan; Hummel, Michael; Stein, Harald; Janz, Martin; Anagnostopoulos, Ioannis; Schrock, Evelin; Misteli, Tom; Dörken, Bernd
2009-04-07
Although the identification and characterization of translocations have rapidly increased, little is known about the mechanisms of how translocations occur in vivo. We used anaplastic large cell lymphoma (ALCL) with and without the characteristic t(2;5)(p23;q35) translocation to study the mechanisms of formation of translocations and of ALCL transformation. We report deregulation of several genes located near the ALCL translocation breakpoint, regardless of whether the tumor contains the t(2;5). The affected genes include the oncogenic transcription factor Fra2 (located on 2p23), the HLH protein Id2 (2p25), and the oncogenic tyrosine kinase CSF1-receptor (5q33.1). Their up-regulation promotes cell survival and repression of T cell-specific gene expression programs that are characteristic for ALCL. The deregulated genes are in spatial proximity within the nuclear space of t(2;5)-negative ALCL cells, facilitating their translocation on induction of double-strand breaks. These data suggest that deregulation of breakpoint-proximal genes occurs before the formation of translocations, and that aberrant transcriptional activity of genomic regions is linked to their propensity to undergo chromosomal translocations. Also, our data demonstrate that deregulation of breakpoint-proximal genes has a key role in ALCL.
Mathas, Stephan; Kreher, Stephan; Meaburn, Karen J.; Jöhrens, Korinna; Lamprecht, Björn; Assaf, Chalid; Sterry, Wolfram; Kadin, Marshall E.; Daibata, Masanori; Joos, Stefan; Hummel, Michael; Stein, Harald; Janz, Martin; Anagnostopoulos, Ioannis; Schrock, Evelin; Misteli, Tom; Dörken, Bernd
2009-01-01
Although the identification and characterization of translocations have rapidly increased, little is known about the mechanisms of how translocations occur in vivo. We used anaplastic large cell lymphoma (ALCL) with and without the characteristic t(2;5)(p23;q35) translocation to study the mechanisms of formation of translocations and of ALCL transformation. We report deregulation of several genes located near the ALCL translocation breakpoint, regardless of whether the tumor contains the t(2;5). The affected genes include the oncogenic transcription factor Fra2 (located on 2p23), the HLH protein Id2 (2p25), and the oncogenic tyrosine kinase CSF1-receptor (5q33.1). Their up-regulation promotes cell survival and repression of T cell-specific gene expression programs that are characteristic for ALCL. The deregulated genes are in spatial proximity within the nuclear space of t(2;5)-negative ALCL cells, facilitating their translocation on induction of double-strand breaks. These data suggest that deregulation of breakpoint-proximal genes occurs before the formation of translocations, and that aberrant transcriptional activity of genomic regions is linked to their propensity to undergo chromosomal translocations. Also, our data demonstrate that deregulation of breakpoint-proximal genes has a key role in ALCL. PMID:19321746
Dunne, Karl A.; Allam, Amr; McIntosh, Anne; Houston, Stephanie A.; Cerovic, Vuk; Goodyear, Carl S.; Roe, Andrew J.; Beatson, Scott A.; Milling, Simon W.; Walker, Daniel; Wall, Daniel M.
2013-01-01
Adherent invasive Escherichia coli (AIEC) have been implicated as a causative agent of Crohn’s disease (CD) due to their isolation from the intestines of CD sufferers and their ability to persist in macrophages inducing granulomas. The rapid intracellular multiplication of AIEC sets it apart from other enteric pathogens such as Salmonella Typhimurium which after limited replication induce programmed cell death (PCD). Understanding the response of infected cells to the increased AIEC bacterial load and associated metabolic stress may offer insights into AIEC pathogenesis and its association with CD. Here we show that AIEC persistence within macrophages and dendritic cells is facilitated by increased proteasomal degradation of caspase-3. In addition S-nitrosylation of pro- and active forms of caspase-3, which can inhibit the enzymes activity, is increased in AIEC infected macrophages. This S-nitrosylated caspase-3 was seen to accumulate upon inhibition of the proteasome indicating an additional role for S-nitrosylation in inducing caspase-3 degradation in a manner independent of ubiquitination. In addition to the autophagic genetic defects that are linked to CD, this delay in apoptosis mediated in AIEC infected cells through increased degradation of caspase-3, may be an essential factor in its prolonged persistence in CD patients. PMID:23861899
Asmussen, Niels; Lin, Zhao; McClure, Michael J; Schwartz, Zvi; Boyan, Barbara D
2017-12-09
Endochondral bone formation is a precise and highly ordered process whose exact regulatory framework is still being elucidated. Multiple regulatory pathways are known to be involved. In some cases, regulation impacts gene expression, resulting in changes in chondrocyte phenotypic expression and extracellular matrix synthesis. Rapid regulatory mechanisms are also involved, resulting in release of enzymes, factors and micro RNAs stored in extracellular matrisomes called matrix vesicles. Vitamin D metabolites modulate endochondral development via both genomic and rapid membrane-associated signaling pathways. 1α,25-dihydroxyvitamin D3 [1α,25(OH) 2 D 3 ] acts through the vitamin D receptor (VDR) and a membrane associated receptor, protein disulfide isomerase A3 (PDIA3). 24R,25-dihydroxyvitamin D3 [24R,25(OH) 2 D 3 ] affects primarily chondrocytes in the resting zone (RC) of the growth plate, whereas 1α,25(OH) 2 D 3 affects cells in the prehypertrophic and upper hypertrophic cell zones (GC). This includes genomically directing the cells to produce matrix vesicles with zone specific characteristics. In addition, vitamin D metabolites produced by the cells interact directly with the matrix vesicle membrane via rapid signal transduction pathways, modulating their activity in the matrix. The matrix vesicle payload is able to rapidly impact the extracellular matrix via matrix processing enzymes as well as providing a feedback mechanism to the cells themselves via the contained micro RNAs. Copyright © 2017. Published by Elsevier Inc.
Eguiara, Arrate; Holgado, Olaia; Beloqui, Izaskun; Abalde, Leire; Sanchez, Yolanda; Callol, Carles; Martin, Angel G
2011-11-01
The cancer stem cell is defined by its capacity to self-renew, the potential to differentiate into all cells of the tumor and the ability to proliferate and drive the expansion of the tumor. Thus, targeting these cells may provide novel anti-cancer treatment strategies. Breast cancer stem cells have been isolated according to surface marker expression, ability to efflux fluorescent dyes, increased activity of aldehyde dehydrogenase or the capacity to form spheres in non-adherent culture conditions. In order to test novel drugs directed towards modulating self-renewal of cancer stem cells, rapid, easy and inexpensive assays must be developed. Using 2 days-post-fertilization (dpf) zebrafish embryos as transplant recipients, we show that cells grown in mammospheres from breast carcinoma cell lines migrate to the tail of the embryo and form masses with a significantly higher frequency than parental monolayer populations. When stem-like self-renewal was targeted in the parental population by the use of the dietary supplement curcumin, cell migration and mass formation were reduced, indicating that these effects were associated with stem-like cell content. This is a proof of principle report that proposes a rapid and inexpensive assay to target in vivo cancer stem-like cells, which may be used to unravel basic cancer stem cell biology and for drug screening.
Dizon, Don S; Dias-Santagata, Dora; Bregar, Amy; Sullivan, Laura; Filipi, Jennifer; DiTavi, Elizabeth; Miller, Lucy; Ellisen, Leif; Birrer, Michael; DelCarmen, Marcela
2018-02-22
Endometrial cancer is the most common gynecologic malignancy in the U.S. and, although the majority of cases present at an early stage and can be treated with curative intent, those who present with advanced disease, or develop metastatic or recurrent disease, have a poorer prognosis. A subset of endometrial cancers exhibit mismatch repair (MMR) deficiency. It is now recognized that MMR-deficient cancers are particularly susceptible to programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors, and in a landmark judgement in 2017, the U.S. Food and Drug Administration granted accelerated approval to pembrolizumab for these tumors, the first tumor-agnostic approval of a drug. However, less is known about the sensitivity to PD-1 blockade among patients with known mutations in double-strand break DNA repair pathways involving homologous recombination, such as those in BRCA1 or BRCA2 . Here we report a case of a patient with an aggressive somatic MMR-deficient endometrial cancer and a germline BRCA1 who experienced a rapid complete remission to pembrolizumab. Endometrial cancers, and in particular endometrioid carcinomas, should undergo immunohistochemical testing for mismatch repair proteins.Uterine cancers with documented mismatch repair deficiency are candidates for treatment with programmed cell death protein 1 inhibition.Genomic testing of recurrent, advanced, or metastatic tumors may be useful to determine whether patients are candidates for precision therapies. © AlphaMed Press 2018.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting, E-mail: BTZhu@kumc.edu
Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K{sub 3}) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid developmentmore » of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of ATP. ► The release of AIF and Endo G contributes importantly to cell death. ► Alterations of SOD1 or SOD2 levels alter menadione-induced neuronal cytotoxicity.« less
Chtanova, Tatyana; Han, Seong-Ji; Schaeffer, Marie; van Dooren, Giel G; Herzmark, Paul; Striepen, Boris; Robey, Ellen A
2009-08-21
Memory T cells circulate through lymph nodes where they are poised to respond rapidly upon re-exposure to a pathogen; however, the dynamics of memory T cell, antigen-presenting cell, and pathogen interactions during recall responses are largely unknown. We used a mouse model of infection with the intracellular protozoan parasite, Toxoplasma gondii, in conjunction with two-photon microscopy, to address this question. After challenge, memory T cells migrated more rapidly than naive T cells, relocalized toward the subcapsular sinus (SCS) near invaded macrophages, and engaged in prolonged interactions with infected cells. Parasite invasion of T cells occurred by direct transfer of the parasite from the target cell into the T cell and corresponded to an antigen-specific increase in the rate of T cell invasion. Our results provide insight into cellular interactions during recall responses and suggest a mechanism of pathogen subversion of the immune response.
Ogawa, Mikako; Tomita, Yusuke; Nakamura, Yuko; Lee, Min-Jung; Lee, Sunmin; Tomita, Saori; Nagaya, Tadanobu; Sato, Kazuhide; Yamauchi, Toyohiko; Iwai, Hidenao; Kumar, Abhishek; Haystead, Timothy; Shroff, Hari; Choyke, Peter L; Trepel, Jane B; Kobayashi, Hisataka
2017-02-07
Immunogenic cell death (ICD) is a form of cell death that activates an adaptive immune response against dead-cell-associated antigens. Cancer cells killed via ICD can elicit antitumor immunity. ICD is efficiently induced by near-infrared photo-immunotherapy (NIR-PIT) that selectively kills target-cells on which antibody-photoabsorber conjugates bind and are activated by NIR light exposure. Advanced live cell microscopies showed that NIR-PIT caused rapid and irreversible damage to the cell membrane function leading to swelling and bursting, releasing intracellular components due to the influx of water into the cell. The process also induces relocation of ICD bio markers including calreticulin, Hsp70 and Hsp90 to the cell surface and the rapid release of immunogenic signals including ATP and HMGB1 followed by maturation of immature dendritic cells. Thus, NIR-PIT is a therapy that kills tumor cells by ICD, eliciting a host immune response against tumor.
Seppänen, P; Alhonen-Hongisto, L; Siimes, M; Jänne, J
1980-11-15
Methylglyoxal bis(guanylhydrazone), a cytostatic compound which apparently interferes with the metabolism and/or functions of the natural polyamines (spermidine and spermine), was effectively taken up by cultured human lymphocytic leukemia cells, rapidly resulting in the formation of a concentration gradient of up to 1,000-fold across the cell membrane in cells grown in the presence of micromolar concentrations of the drug. For an anti-proliferative effect on the leukemia cells, an intracellular concentration of more than 0.5 mM was required. The uptake of methylglyoxal bis(guanylhydrazone) was critically dependent on the growth rate of the leukemia cells. Low intracellular concentrations of the drug were present in cells growing slowly, whereas in rapidly dividing cells the intracellular concentration of the drug approached 5mM. When given as repeated intravenous infusions to two leukemic children, methylglyoxal bis(guanylhydrazone) exhibited sharp and transient peaks of plasma concentration, the drug having an apparent half-life in plasma of only 1-2 h. However, as in cultured cells, the drug was rapidly concentrated in the leukemia cells, reaching concentrations that were distinctly anti-proliferative. In contrast to the rapid disappearance of methylglyoxal bis(guanylhydrazone) from plasma, the circulation leukemia cells retained the drug for a period of several days with only minimal decrease in the initial concentrations. Methylglyoxal bis(guanylhydrazone) was given to the patients for 1 to 2 months as intravenous infusions, the timing of which was determined by regular assays of the drug concentrations in the leukemia cells. In agreement with the results obtained with the cultured cells, and intracellular concentration of about 0.5 to 1mM was apparently required for growth-inhibitory action to occur. Regular determination of the cellular drug concentrations indicated that methylglyoxal bis(quanylhydrazone) could be given as weekly infusions. This treatment schedule represents much lower dosing of the drug than the earlier daily regimens which were commonly associated with unacceptable toxicity.
Fabry, M E; Romero, J R; Buchanan, I D; Suzuka, S M; Stamatoyannopoulos, G; Nagel, R L; Canessa, M
1991-07-01
We have previously demonstrated that young normal (AA) and sickle cell anemia (SS) red blood cells are capable of a volume regulatory decrease response (VRD) driven by a K:Cl cotransporter that is activated by low pH or hypotonic conditions. We now report on the characteristics of young SS cells (SS2, discocytes) capable of rapid increase in density in response to swelling. We have isolated cells with high VRD response (H-VRD) and low VRD response (L-VRD) cells by incubation and density-gradient centrifugation under hypotonic conditions. Comparison of these cells in patients homozygous for hemoglobin (Hb)S indicated that H-VRD cells have 91% more reticulocytes (P less than 9 x 10(-9) than L-VRD cells, 25% less HbF (P less than 5.5 x 10(-5), 106% more NEM (N-methylmaleimide)-stimulated K:Cl cotransport activity (P less than 2 x 10(-4), and 86% more volume-stimulated K:Cl cotransport activity (P less than 1.8 x 10(-3). H-VRD and L-VRD cells have similar G-6-PD and Na+/H+ antiport activity. In agreement with the reduced percent HbF in H-VRD cells, F cells (red blood cells that contain fetal Hb) are depleted from the H-VRD population; however, F reticulocytes are enriched in the H-VRD population to the same extent as non-F reticulocytes, which suggests that both F and non-F reticulocytes have a similar initial distribution of volume-sensitive K:Cl cotransport activity but that it may be more rapidly inactivated in F than in S reticulocytes. We find that H-VRD cells consist of 20% reticulocytes (or 79% of all reticulocytes in SS2) and 80% more mature cells. This study demonstrates the role of K:Cl cotransport in determining red blood cell density, the heterogeneity of K:Cl cotransport activity in reticulocytes, and the capacity for rapid change in the density of reticulocytes with high K:Cl cotransport activity. We speculate that the H-VRD population may be more susceptible to generation of dense and irreversibly sickled cells.
Feig, Christine; Jones, James O; Kraman, Matthew; Wells, Richard J B; Deonarine, Andrew; Chan, Derek S; Connell, Claire M; Roberts, Edward W; Zhao, Qi; Caballero, Otavia L; Teichmann, Sarah A; Janowitz, Tobias; Jodrell, Duncan I; Tuveson, David A; Fearon, Douglas T
2013-12-10
An autochthonous model of pancreatic ductal adenocarcinoma (PDA) permitted the analysis of why immunotherapy is ineffective in this human disease. Despite finding that PDA-bearing mice had cancer cell-specific CD8(+) T cells, the mice, like human patients with PDA, did not respond to two immunological checkpoint antagonists that promote the function of T cells: anti-cytotoxic T-lymphocyte-associated protein 4 (α-CTLA-4) and α-programmed cell death 1 ligand 1 (α-PD-L1). Immune control of PDA growth was achieved, however, by depleting carcinoma-associated fibroblasts (CAFs) that express fibroblast activation protein (FAP). The depletion of the FAP(+) stromal cell also uncovered the antitumor effects of α-CTLA-4 and α-PD-L1, indicating that its immune suppressive activity accounts for the failure of these T-cell checkpoint antagonists. Three findings suggested that chemokine (C-X-C motif) ligand 12 (CXCL12) explained the overriding immunosuppression by the FAP(+) cell: T cells were absent from regions of the tumor containing cancer cells, cancer cells were coated with the chemokine, CXCL12, and the FAP(+) CAF was the principal source of CXCL12 in the tumor. Administering AMD3100, a CXCL12 receptor chemokine (C-X-C motif) receptor 4 inhibitor, induced rapid T-cell accumulation among cancer cells and acted synergistically with α-PD-L1 to greatly diminish cancer cells, which were identified by their loss of heterozygosity of Trp53 gene. The residual tumor was composed only of premalignant epithelial cells and inflammatory cells. Thus, a single protein, CXCL12, from a single stromal cell type, the FAP(+) CAF, may direct tumor immune evasion in a model of human PDA.
A fluorescence anisotropy method for measuring protein concentration in complex cell culture media.
Groza, Radu Constantin; Calvet, Amandine; Ryder, Alan G
2014-04-22
The rapid, quantitative analysis of the complex cell culture media used in biopharmaceutical manufacturing is of critical importance. Requirements for cell culture media composition profiling, or changes in specific analyte concentrations (e.g. amino acids in the media or product protein in the bioprocess broth) often necessitate the use of complicated analytical methods and extensive sample handling. Rapid spectroscopic methods like multi-dimensional fluorescence (MDF) spectroscopy have been successfully applied for the routine determination of compositional changes in cell culture media and bioprocess broths. Quantifying macromolecules in cell culture media is a specific challenge as there is a need to implement measurements rapidly on the prepared media. However, the use of standard fluorescence spectroscopy is complicated by the emission overlap from many media components. Here, we demonstrate how combining anisotropy measurements with standard total synchronous fluorescence spectroscopy (TSFS) provides a rapid, accurate quantitation method for cell culture media. Anisotropy provides emission resolution between large and small fluorophores while TSFS provides a robust measurement space. Model cell culture media was prepared using yeastolate (2.5 mg mL(-1)) spiked with bovine serum albumin (0 to 5 mg mL(-1)). Using this method, protein emission is clearly discriminated from background yeastolate emission, allowing for accurate bovine serum albumin (BSA) quantification over a 0.1 to 4.0 mg mL(-1) range with a limit of detection (LOD) of 13.8 μg mL(-1). Copyright © 2014. Published by Elsevier B.V.
Improved Cell Sensitivity and Longevity in a Rapid Impedance-based Toxicity Sensor
2009-01-06
sensitivity and longevity in a rapid impedance-based toxicity sensor† Improved cell sensitivity and longevityTheresa M. Curtis,a** Joel Tabb,a Lori...Romeo,a Steven J. Schwager,b Mark W. Widderc* and William H. van der Schaliec ABSTRACT: A number of toxicity sensors for testing field water using a...range of eukaryotic cell types have been proposed, but it has been difficult to identify sensors with both appropriate sensitivity to toxicants and the
Rapid Column-Free Enrichment of Mononuclear Cells from Solid Tissues
Scoville, Steven D.; Keller, Karen A.; Cheng, Stephanie; Zhang, Michael; Zhang, Xiaoli; Caligiuri, Michael A.; Freud, Aharon G.
2015-01-01
We have developed a rapid negative selection method to enrich rare mononuclear cells from human tissues. Unwanted and antibody-tethered cells are selectively depleted during a Ficoll separation step, and there is no need for magnetic-based reagents and equipment. The new method is fast, customizable, inexpensive, remarkably efficient, and easy to perform, and per sample the overall cost is less than one-tenth the cost associated with a magnetic column-based method. PMID:26223896
Farnoushi, Y; Cipok, M; Kay, S; Jan, H; Ohana, A; Naparstek, E; Goldstein, R S; Deutsch, V R
2011-01-01
Background: The best current xenograft model of multiple myeloma (MM) in immune-deficient non-obese diabetic/severe-combined immunodeficient mice is costly, animal maintenance is complex and several weeks are required to establish engraftment and study drug efficacy. More practical in vivo models may reduce time and drug development cost. We recently described a rapid low-cost xenograft model of human blood malignancies in pre-immune turkey. Here, we report application of this system for studying MM growth and the preclinical assessment of anticancer therapies. Methods: Cell lines and MM patient cells were injected intravenously into embryonic veins on embryonic day 11 (E11). Engraftment of human cells in haematopoietic organs was detected by quantitative real-time polymerase chain reaction, immunohistochemistry, flow cytometry and circulating free light chain. Results: Engraftment was detected after 1 week in all embryos injected with cell lines and in 50% of those injected with patient cells. Injection of bortezomib or lenalinomide 48 h after cell injection at therapeutic levels that were not toxic to the bone marrow dramatically reduced MM engraftment. Conclusion: The turkey embryo provides a practical, xenograft system to study MM and demonstrates the utility of this model for rapid and affordable testing therapeutics in vivo. With further development, this model may enable rapid, inexpensive personalised drug screening. PMID:22045188
Mechanisms Limiting Body Growth in Mammals
Lui, Julian C.
2011-01-01
Recent studies have begun to provide insight into a long-standing mystery in biology—why body growth in animals is rapid in early life but then progressively slows, thus imposing a limit on adult body size. This growth deceleration in mammals is caused by potent suppression of cell proliferation in multiple tissues and is driven primarily by local, rather than systemic, mechanisms. Recent evidence suggests that this progressive decline in proliferation results from a genetic program that occurs in multiple organs and involves the down-regulation of a large set of growth-promoting genes. This program does not appear to be driven simply by time, but rather depends on growth itself, suggesting that the limit on adult body size is imposed by a negative feedback loop. Different organs appear to use different types of information to precisely target their adult size. For example, skeletal and cardiac muscle growth are negatively regulated by myostatin, the concentration of which depends on muscle mass itself. Liver growth appears to be modulated by bile acid flux, a parameter that reflects organ function. In pancreas, organ size appears to be limited by the initial number of progenitor cells, suggesting a mechanism based on cell-cycle counting. Further elucidation of the fundamental mechanisms suppressing juvenile growth is likely to yield important insights into the pathophysiology of childhood growth disorders and of the unrestrained growth of cancer. In addition, improved understanding of these growth-suppressing mechanisms may someday allow their therapeutic suspension in adult tissues to facilitate tissue regeneration. PMID:21441345
Immune checkpoint inhibitor colitis: the flip side of the wonder drugs.
Assarzadegan, Naziheh; Montgomery, Elizabeth; Anders, Robert A
2018-01-01
Immune checkpoint inhibitors block the co-inhibitory receptors on T cells to activate their cytotoxic immune function and are rapidly being explored for the treatment of various advanced-stage malignancies. These novel drugs have already significantly increased survival rates. The first available immune checkpoint inhibitors were cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors (such as ipilimumab), followed by programmed cell death protein 1 (PD-1) and programmed cell death protein ligand 1 (PD-L1) inhibitors (such as pembrolizumab and nivolumab). Anti-PD-1 and anti-PD-L1 therapies have demonstrated better efficacy and tolerability and less severe adverse effects compared to anti-CTLA-4 agents. Idelalisib, a PI3Kδ isoform inhibitor, is another immunotherapeutic agent that is often classified separately and is currently used in treatment of chronic lymphocytic leukemia and non-Hodgkin lymphomas. Despite successful therapeutic responses, immune-related adverse events have been reported with the use of these agents. The gastrointestinal side effects, particularly diarrhea, are among the most commonly reported symptoms. The histologic features of immune checkpoint inhibitor-associated colitis show a spectrum of patterns of injury among various drug classes. There is significant overlap between immune checkpoint inhibitor-associated colitis and other colitides, making the differential diagnosis difficult-especially in the absence of clinical history. The histopathology data on immune checkpoint inhibitor-associated colitis are limited. Here we review clinical features as well as various histologic patterns of colitis associated with these groups of medications.
Single-Pass, Closed-System Rapid Expansion of Lymphocyte Cultures for Adoptive Cell Therapy
Klapper, Jacob A.; Thomasian, Armen A.; Smith, Douglas M.; Gorgas, Gayle C.; Wunderlich, John R.; Smith, Franz O.; Hampson, Brian S.; Rosenberg, Steven A.; Dudley, Mark E.
2009-01-01
Adoptive cell therapy (ACT) for metastatic melanoma involves the ex vivo expansion and re-infusion of tumor infiltrating lymphocytes (TIL) obtained from resected specimens. With an overall objective response rate of fifty-six percent, this T-cell immunotherapy provides an appealing alternative to other therapies, including conventional therapies with lower response rates. However, there are significant regulatory and logistical concerns associated with the ex vivo activation and large scale expansion of these cells. The best current practice uses a rapid expansion protocol (REP) consisting of an ex vivo process that occurs in tissue culture flasks (T-flasks) and gas-permeable bags, utilizes OKT3 (anti-CD3 monoclonal antibody), recombinant human interleukin-2, and irradiated peripheral blood mononuclear cells to initiate rapid lymphocyte growth. A major limitation to the widespread delivery of therapy to large numbers of melanoma patients is the open system in which a REP is initiated. To address this problem, we have investigated the initiation, expansion and harvest at clinical scale of TIL in a closed-system continuous perfusion bioreactor. Each cell product met all safety criteria for patient treatment and by head-to-head comparison had a similar potency and phenotype as cells grown in control T-flasks and gas-permeable bags. However, the currently available bioreactor cassettes were limited in the total cell numbers that could be generated. This bioreactor may simplify the process of the rapid expansion of TIL under stringent regulatory conditions thereby enabling other institutions to pursue this form of ACT. PMID:19389403
Meadows, Adam L; Kong, Becky; Berdichevsky, Marina; Roy, Siddhartha; Rosiva, Rosiva; Blanch, Harvey W; Clark, Douglas S
2008-01-01
The metabolic and morphological characteristics of two human epithelial breast cell populations--MCF7 cells, a cancerous cell line, and 48R human mammary epithelial cells (48R HMECs), a noncancerous, finite lifespan cell strain--were compared at identical growth rates. Both cell types were induced to grow rapidly in nutrient-rich media containing 13C-labeled glucose, and the isotopic enrichment of cellular metabolites was quantified to calculate metabolic fluxes in key pathways. Despite their similar growth rates, the cells exhibited distinctly different metabolic and morphological profiles. MCF7 cells have an 80% smaller exposed surface area and contain 26% less protein per cell than the 48R cells. Surprisingly, rapidly proliferating 48R cells exhibited a 225% higher per-cell glucose consumption rate, a 250% higher per-cell lactate production rate, and a nearly identical per-cell glutamine consumption rate relative to the cancer cell line. However, when fluxes were considered on the basis of exposed area, the cancer cells were observed to have higher glucose, lactate, and glutamine fluxes, demonstrating superior transport capabilities per unit area of cell membrane. MCF7 cells also consumed amino acids at rates much higher than are generally required for protein synthesis, whereas 48R cells generally did not. Pentose phosphate pathway activity was higher in MCF7 cells, and the flux of glutamine to glutamate was less reversible. Energy efficiency was significantly higher in MCF7 cells, as a result of a combination of their smaller size and greater reliance on the TCA cycle than the 48R cells. These observations support evolutionary models of cancer cell metabolism and suggest targets for metabolic drugs in metastatic breast cancers.
ERIC Educational Resources Information Center
Laughlin, Jerry W.
2007-01-01
There was rapid growth of Alabama community colleges in the late 1960s. At the same time, there was rapid growth nationally of fire science associate degree programs. With these concurrent events, one would expect fire department personnel in Alabama to benefit from new community college opportunities in fire science and fire administration.…
Sumerall, S W; Israel, A R; Brewer, R; Prew, R E
1999-01-01
With the rapid changes occurring in the American healthcare system, questions regarding various aspects of care have arisen. These changes have led to the need for individuals working within an Employee Assistance Program (EAP) to respond quickly and effectively to crisis situations. This article summarizes the different roles and responsibilities of EAP workers in the healthcare marketplace.
Efficient Strategies for Active Interface-Level Network Topology Discovery
2013-09-01
Network Information Centre API Application Programming Interface APNIC Asia-Pacific Network Information Centre ARIN American Registry for Internet Numbers...very convenient Application Programming Interface ( API ) for easy primitive implementation. Ark’s API facilitates easy development and rapid...prototyping – important attributes as the char- acteristics of our primitives evolve. The API allows a high-level of abstraction, which in turn leads to rapid
Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |
NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation
Structural changes in endometrial basal glands during menstruation.
Garry, R; Hart, R; Karthigasu, K A; Burke, C
2010-09-01
To prospectively observe the changes occurring in endometrial glandular morphology during menstrual shedding and regeneration. Prospective observational study. The academic gynaecological endoscopy unit of a university teaching hospital. Population Thirteen patients investigated for a variety of benign, non-infective gynaecological disorders during the active bleeding phase of the menstrual cycle. The morphological appearances of concurrent histological and scanning electron microscopic images of endometrium taken at different stages of the active bleeding phase of menstruation were studied and correlated with the simultaneous immunohistochemical expression of the Ki-67 proliferation marker and the CD68 marker of macrophage activity. Change in morphology of endometrial glands at various stages of menstruation. Endometrial glands within the basalis show evidence of apoptosis and associated macrophage activity immediately before and during menstruation. There is subsequent destruction and removal of old secretory glandular epithelial elements, and rapid replacement with new narrow glands lined with small epithelial cells. There is no evidence of mitotic cell division or expression of Ki-67 in the glandular cells during this replacement process, but there is evidence of marked macrophage activity prior to glandular cell loss. Early endometrial epithelial repair after menstruation is not a consequence of mitotic cell division. It occurs without evidence of Ki-67 expression. There is structural evidence of programmed cell death and intense macrophage activity associated with glandular remodelling. Dead epithelial cells are shed from the glands and accumulate within the endometrial cavity to be replaced by new small epithelial cells that appear to arise by differentiation of the surrounding stromal cells. We propose that these stromal cells are endometrial progenitor/stem cells.
Neural mechanism for sensing fast motion in dim light.
Li, Ran; Wang, Yi
2013-11-07
Luminance is a fundamental property of visual scenes. A population of neurons in primary visual cortex (V1) is sensitive to uniform luminance. In natural vision, however, the retinal image often changes rapidly. Consequently the luminance signals visual cells receive are transiently varying. How V1 neurons respond to such luminance changes is unknown. By applying large static uniform stimuli or grating stimuli altering at 25 Hz that resemble the rapid luminance changes in the environment, we show that approximately 40% V1 cells responded to rapid luminance changes of uniform stimuli. Most of them strongly preferred luminance decrements. Importantly, when tested with drifting gratings, the preferred speeds of these cells were significantly higher than cells responsive to static grating stimuli but not to uniform stimuli. This responsiveness can be accounted for by the preferences for low spatial frequencies and high temporal frequencies. These luminance-sensitive cells subserve the detection of fast motion under the conditions of dim illumination.
Rapid desensitization induces internalization of antigen-specific IgE on mouse mast cells.
Oka, Tatsuya; Rios, Eon J; Tsai, Mindy; Kalesnikoff, Janet; Galli, Stephen J
2013-10-01
Rapid desensitization transiently prevents severe allergic reactions, allowing administration of life-saving therapies in previously sensitized patients. However, the mechanisms underlying successful rapid desensitization are not fully understood. We sought to investigate whether the mast cell (MC) is an important target of rapid desensitization in mice sensitized to exhibit IgE-dependent passive systemic anaphylaxis in vivo and to investigate the antigen specificity and underlying mechanisms of rapid desensitization in our mouse model. C57BL/6 mice (in vivo) or primary isolated C57BL/6 mouse peritoneal mast cells (PMCs; in vitro) were passively sensitized with antigen-specific anti-2,4-dinitrophenyl IgE, anti-ovalbumin IgE, or both. MCs were exposed over a short period of time to increasing amounts of antigen (2,4-dinitrophenyl-human serum albumin or ovalbumin) in the presence of extracellular calcium in vitro or by means of intravenous administration to sensitized mice in vivo before challenging the mice with or exposing the PMCs to optimal amounts of specific or irrelevant antigen. Rapidly exposing mice or PMCs to progressively increasing amounts of specific antigen inhibited the development of antigen-induced hypothermia in sensitized mice in vivo and inhibited antigen-induced PMC degranulation and prostaglandin D2 synthesis in vitro. Such MC hyporesponsiveness was induced antigen-specifically and was associated with a significant reduction in antigen-specific IgE levels on MC surfaces. Rapidly exposing MCs to progressively increasing amounts of antigen can both enhance the internalization of antigen-specific IgE on the MC surface and also desensitize these cells in an antigen-specific manner in vivo and in vitro. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Rapid desensitization induces internalization of antigen-specific IgE on mouse mast cells
Oka, Tatsuya; Rios, Eon J.; Tsai, Mindy; Kalesnikoff, Janet; Galli, Stephen J.
2013-01-01
Background Rapid desensitization transiently prevents severe allergic reactions, allowing administration of life-saving therapies in previously sensitized patients. However, the mechanisms underlying successful rapid desensitization are not fully understood. Objectives We sought to investigate whether the mast cell (MC) is an important target of rapid desensitization in mice sensitized to exhibit IgE-dependent passive systemic anaphylaxis in vivo and to investigate the antigen specificity and underlying mechanisms of rapid desensitization in our mouse model. Methods C57BL/6 mice (in vivo) or primary isolated C57BL/6 mouse peritoneal mast cells (PMCs; in vitro) were passively sensitized with antigen-specific anti–2,4-dinitrophenyl IgE, anti-ovalbumin IgE, or both. MCs were exposed over a short period of time to increasing amounts of antigen (2,4-dinitrophenyl–human serum albumin or ovalbumin) in the presence of extracellular calcium in vitro or by means of intravenous administration to sensitized mice in vivo before challenging the mice with or exposing the PMCs to optimal amounts of specific or irrelevant antigen. Results Rapidly exposing mice or PMCs to progressively increasing amounts of specific antigen inhibited the development of antigen-induced hypothermia in sensitized mice in vivo and inhibited antigen-induced PMC degranulation and prostaglandin D2 synthesis in vitro. Such MC hyporesponsiveness was induced antigen-specifically and was associated with a significant reduction in antigen-specific IgE levels on MC surfaces. Conclusions Rapidly exposing MCs to progressively increasing amounts of antigen can both enhance the internalization of antigen-specific IgE on the MC surface and also desensitize these cells in an antigen-specific manner in vivo and in vitro. PMID:23810240
Optimal low thrust geocentric transfer. [mission analysis computer program
NASA Technical Reports Server (NTRS)
Edelbaum, T. N.; Sackett, L. L.; Malchow, H. L.
1973-01-01
A computer code which will rapidly calculate time-optimal low thrust transfers is being developed as a mission analysis tool. The final program will apply to NEP or SEP missions and will include a variety of environmental effects. The current program assumes constant acceleration. The oblateness effect and shadowing may be included. Detailed state and costate equations are given for the thrust effect, oblateness effect, and shadowing. A simple but adequate model yields analytical formulas for power degradation due to the Van Allen radiation belts for SEP missions. The program avoids the classical singularities by the use of equinoctial orbital elements. Kryloff-Bogoliuboff averaging is used to facilitate rapid calculation. Results for selected cases using the current program are given.
Andersen, Natalia D.; Srinivas, Shruthi; Piñero, Gonzalo; Monje, Paula V.
2016-01-01
We herein developed a protocol for the rapid procurement of adult nerve-derived Schwann cells (SCs) that was optimized to implement an immediate enzymatic dissociation of fresh nerve tissue while maintaining high cell viability, improving yields and minimizing fibroblast and myelin contamination. This protocol introduces: (1) an efficient method for enzymatic cell release immediately after removal of the epineurium and extensive teasing of the nerve fibers; (2) an adaptable drop-plating method for selective cell attachment, removal of myelin debris, and expansion of the initial SC population in chemically defined medium; (3) a magnetic-activated cell sorting purification protocol for rapid and effective fibroblast elimination; and (4) an optional step of cryopreservation for the storage of the excess of cells. Highly proliferative SC cultures devoid of myelin and fibroblast growth were obtained within three days of nerve processing. Characterization of the initial, expanded, and cryopreserved cell products confirmed maintenance of SC identity, viability and growth rates throughout the process. Most importantly, SCs retained their sensitivity to mitogens and potential for differentiation even after cryopreservation. To conclude, this easy-to-implement and clinically relevant protocol allows for the preparation of expandable homogeneous SC cultures while minimizing time, manipulation of the cells, and exposure to culture variables. PMID:27549422
Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel.
Iwami, K; Noda, T; Ishida, K; Morishima, K; Nakamura, M; Umeda, N
2010-03-01
This paper reports a method for rapid prototyping of cell tissues, which is based on a system that extrudes, aspirates and refills a mixture of cells and thermoreversible hydrogel as a scaffold. In the extruding mode, a cell-mixed scaffold solution in the sol state is extruded from a cooled micronozzle into a temperature-controlled substrate, which keeps the scaffold in the gel state. In the aspiration mode, the opposite process is performed by Bernoulli suction. In the refilling mode, the solution is extruded into a groove created in the aspiration mode. The minimum width of extruded hydrogel pattern is 114 +/- 15 microm by employing a nozzle of diameter 100 microm, and that of aspirated groove was 355 +/- 10 microm using a 500 microm-diameter nozzle. Gum arabic is mixed with the scaffold solution to avoid peeling-off of the gel pattern from the substrate. Patterning of Sf-9 cell tissue is demonstrated, and the stability of the patterned cell is investigated. This system offers a procedure for rapid prototyping and local modification of cell scaffolds for tissue engineering.
Reflection coefficients of permeant molecules in human red cell suspensions.
Owen, J D; Eyring, E M
1975-08-01
The Staverman reflection coefficient, sigma for several permeant molecules was determined in human red cell suspensions with a Durrum stopped-flow spectrophotometer. This procedure was first used with dog, cat, and beef red cells and with human red cells. The stopped-flow technique used was similar to the rapid-flow method used by those who originally reported sigma measurements in human red cells for molecules which rapidly penetrate the red cell membrane. The sigma values we obtained agreed with those previously reported for most of the slow penetrants, except malonamide, but disagreed with all the sigma values previously reported for the rapid penetrants. We were unable to calculate an "equivalent pore radius" with our sigma data. The advantages of our equipment and our experimental procedure are discussed. Our sigma data suggest that sigma is indirectly proportional to the log of the nonelectrolyte permeability coefficient, omega. Since a similar trend has been previously shown for log omega and molar volume of the permeant molecules, a correlatioo was shown between sigma and molar volume suggesting the membrane acts as a sieve.
Thomas, Peter; Pang, Yefei
2013-06-01
The protective functions of progesterone in the cardiovascular system have received little attention even though evidence has accumulated that progesterone lowers blood pressure, inhibits coronary hyperactivity and has powerful vasodilatory and natriuretic effects. One possible reason why potential beneficial actions of progesterone on cardiovascular functions have not been extensively studied is that divergent effects to those of progesterone have been observed in many clinical trials with synthetic progestins such as medroxyprogesterone acetate which are associated with increased risk of coronary disease. Evidence that progesterone exerts protective effects on cardiovascular functions is briefly reviewed. The finding that progesterone administration decreases blood vessel vasoconstriction in several animal models within a few minutes suggests that rapid, nongenomic progesterone mechanisms are of physiological importance in regulating vascular tone. Rapid activation of second messenger pathways by progesterone has been observed in vascular endothelial and smooth muscle cells, resulting in alterations in endothelial nitric oxide synthase (eNOS) activity and calcium influx, respectively. Both nuclear progesterone receptors (PRs) and novel membrane progesterone receptors (mPRs) are candidates for the intermediaries in these rapid, cell-surface initiated progesterone actions in endothelial and smooth muscle vascular cells. PRs have been detected in both cell types. New data are presented showing mPRα, mPRβ and mPRγ are also present in human endothelial and smooth muscle vascular cells. Preliminary evidence suggests mPRs mediate rapid progestin signaling in these endothelial cells, resulting in down-regulation of cAMP production and increased nitric oxide synthesis. The role of mPRs in progesterone regulation of cardiovascular functions warrants further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haasch, Richard T.; Abraham, Daniel A.
2016-12-01
High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopymore » (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haasch, Richard T.; Abraham, Daniel A.
2016-12-01
High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopymore » (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.« less
Aldosterone interaction with epidermal growth factor receptor signaling in MDCK cells.
Gekle, Michael; Freudinger, Ruth; Mildenberger, Sigrid; Silbernagl, Stefan
2002-04-01
Epidermal growth factor (EGF) regulates cell proliferation, differentiation, and ion transport by using extracellular signal-regulated kinase (ERK)1/2 as a downstream signal. Furthermore, the EGF-receptor (EGF-R) is involved in signaling by G protein-coupled receptors, growth hormone, and cytokines by means of transactivation. It has been suggested that steroids interact with peptide hormones, in part, by rapid, potentially nongenomic, mechanisms. Previously, we have shown that aldosterone modulates Na(+)/H(+) exchange in Madin-Darby canine kidney (MDCK) cells by means of ERK1/2 in a way similar to growth factors. Here, we tested the hypothesis that aldosterone uses the EGF-R as a heterologous signal transducer in MDCK cells. Nanomolar concentrations of aldosterone induce a rapid increase in ERK1/2 phosphorylation, cellular Ca(2+) concentration, and Na(+)/H(+) exchange activity similar to increases induced by EGF. Furthermore, aldosterone induced a rapid increase in EGF-R-Tyr phosphorylation, and inhibition of EGF-R kinase abolished aldosterone-induced signaling. Inhibition of ERK1/2 phosphorylation reduced the Ca(2+) response, whereas prevention of Ca(2+) influx did not abolish ERK1/2 phosphorylation. Our data show that aldosterone uses the EGF-R-ERK1/2 signaling cascade to elicit its rapid effects in MDCK cells.
The Center for Cancer Research’s ability to rapidly deploy integrated basic and clinical research teams at a single site facilitated the rapid FDA approval of the immunotherapy drug avelumab for metastatic Merkel cell carcinoma, a rare, aggressive form of skin cancer. Learn more...
All-in-One Nanowire-Decorated Multifunctional Membrane for Rapid Cell Lysis and Direct DNA Isolation
2015-01-01
This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour. PMID:25420232
Zhang, Dapeng; Lu, Hongyan; Zhuang, Minghua; Wu, Guohui; Yan, Hongjing; Xu, Jun; Wei, Xiaoli; Li, Chengmei; Meng, Sining; Fu, Xiaojing; Qi, Jinlei; Wang, Peng; Luo, Mei; Dai, Min; Yip, Ray; Sun, Jiangping; Wu, Zunyou
2016-01-01
To explore models to improve HIV testing, linkage to care and treatment among men who have sex with men (MSM) in cooperation with community-based organizations (CBOs) in China. We introduced a new model for HIV testing services targeting MSM in six cities in 2013.These models introduced provision of rapid HIV testing by CBO staff and streamlined processes for HIV screening, confirmation of initial reactive screening results, and linkage to care among diagnosed people. We monitored attrition along each step of the continuum of care from screening to treatment and compared program performance between 2012 and 2013. According to the providers of two rapid tests (HIV screening), four different services delivery models were examined in 2013: Model A = first screen at CDC, second at CDC (Model A = CDC+CDC), Model B = first and second screens at CBOs (Model B = CBO+CBO), Model C = first screen at CBO, second at Hospital (Model C = CBO+Hosp), and Model D = first screen at CBO, second at CDC (Model D = CBO+CDC). Logistic regressions were performed to assess advantages of different screening models of case finding and case management. Compared to 2012, the number of HIV screening tests performed for MSM increased 35.8% in 2013 (72,577 in 2013 vs. 53,455 in 2012). We observed a 5.6% increase in proportion of cases screened reactive receiving HIV confirmatory tests (93.9% in 2013 vs. 89.2% in 2012, χ2 = 48.52, p<0.001) and 65% reduction in loss to CD4 cell count tests (15% in 2013 vs. 43% in 2012, χ2 = 628.85, p<0.001). Regarding linkage to care and treatment, the 2013 pilot showed that the Model D had the highest rate of loss between screening reactive and confirmatory test among the four models, with 18.1% fewer receiving a second screening test and a further 5.9% loss among those receiving HIV confirmatory tests. The Model B and the Model C showed lower losses (0.8% and 1.3%) for newly diagnosed HIV positives receiving CD4 cell count tests, and higher rates of HIV positives referred to designated ART hospitals (88.0% and 93.3%) than the Model A and Model D (4.6% and 5.7% for CD4 cell count test, and 68.9% and 64.4% for referring to designated ART hospitals). The proportion of cases where the screening test was reactive that were commenced on ART was highest in Model C; 52.8% of cases commenced on ART compared to 38.9%, 34.2% and 21.1% in Models A, B and D respectively. Using Model A as a reference group, the multivariate logistic regression results also showed the advantages of Models B, C and D, which increased CD4 cell count test, referral to designated ART hospitals and initiation of ART, when controlling for program city and other factors. This study has demonstrated that involvement of CBOs in HIV rapid testing provision, streamlining testing and care procedures and early hospital case management can improve testing, linkage to, and retention in care and treatment among MSM in China.
Riley, Eammon P; Trinquier, Aude; Reilly, Madeline L; Durchon, Marine; Perera, Varahenage R; Pogliano, Kit; Lopez-Garrido, Javier
2018-04-01
Sporulation in Bacillus subtilis is a paradigm of bacterial development, which involves the interaction between a larger mother cell and a smaller forespore. The mother cell and the forespore activate different genetic programs, leading to the production of sporulation-specific proteins. A critical gap in our understanding of sporulation is how vegetative proteins, made before sporulation initiation, contribute to spore formation. Here we present a system, spatiotemporally regulated proteolysis (STRP), which enables the rapid, developmentally regulated degradation of target proteins, thereby providing a suitable method to dissect the cell- and developmental stage-specific role of vegetative proteins. STRP has been used to dissect the role of two major vegetative sigma factors, σ H and σ A , during sporulation. The results suggest that σ H is only required in predivisional cells, where it is essential for sporulation initiation, but that it is dispensable during subsequent steps of spore formation. However, evidence has been provided that σ A plays different roles in the mother cell, where it replenishes housekeeping functions, and in the forespore, where it plays an unexpected role in promoting spore germination and outgrowth. Altogether, the results demonstrate that STRP has the potential to provide a comprehensive molecular dissection of every stage of sporulation, germination and outgrowth. © 2018 John Wiley & Sons Ltd.
Lam, Christine; Ferguson, Ian D; Mariano, Margarette C; Lin, Yu-Hsiu T; Murnane, Megan; Liu, Hui; Smith, Geoffrey A; Wong, Sandy W; Taunton, Jack; Liu, Jun O; Mitsiades, Constantine S; Hann, Byron C; Aftab, Blake T; Wiita, Arun P
2018-04-05
The myeloma bone marrow microenvironment promotes proliferation of malignant plasma cells and resistance to therapy. Activation of JAK/STAT signaling is thought to be a central component of these microenvironment-induced phenotypes. In a prior drug repurposing screen, we identified tofacitinib, a pan-JAK inhibitor FDA-approved for rheumatoid arthritis, as an agent that may reverse the tumor-stimulating effects of bone marrow mesenchymal stromal cells. Here, we validated in vitro, in stromal-responsive human myeloma cell lines, and in vivo, in orthotopic disseminated xenograft models of myeloma, that tofacitinib showed efficacy in myeloma models. Furthermore, tofacitinib strongly synergized with venetoclax in co-culture with marrow stromal cells but not in monoculture. Surprisingly, we found that ruxolitinib, an FDA-approved agent targeting JAK1 and JAK2, did not lead to the same anti-myeloma effects. Combination with a novel irreversible JAK3-selective inhibitor also did not enhance ruxolitinib effects. RNA-seq and unbiased phosphoproteomics revealed that marrow stromal cells stimulate a JAK/STAT-mediated proliferative program in myeloma plasma cells, and tofacitinib reversed the large majority of these pro-growth signals. Taken together, our results suggest that tofacitinib reverses the growth-promoting effects of the tumor microenvironment. As tofacitinib is already FDA-approved, these results can be rapidly translated into potential clinical benefits for myeloma patients. Copyright © 2018, Ferrata Storti Foundation.
Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.
Stępiński, Dariusz
2016-08-01
Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.
Front-to-rear membrane tension gradient in rapidly moving cells.
Lieber, Arnon D; Schweitzer, Yonatan; Kozlov, Michael M; Keren, Kinneret
2015-04-07
Membrane tension is becoming recognized as an important mechanical regulator of motile cell behavior. Although membrane-tension measurements have been performed in various cell types, the tension distribution along the plasma membrane of motile cells has been largely unexplored. Here, we present an experimental study of the distribution of tension in the plasma membrane of rapidly moving fish epithelial keratocytes. We find that during steady movement the apparent membrane tension is ∼30% higher at the leading edge than at the trailing edge. Similar tension differences between the front and the rear of the cell are found in keratocyte fragments that lack a cell body. This front-to-rear tension variation likely reflects a tension gradient developed in the plasma membrane along the direction of movement due to viscous friction between the membrane and the cytoskeleton-attached protein anchors embedded in the membrane matrix. Theoretical modeling allows us to estimate the area density of these membrane anchors. Overall, our results indicate that even though membrane tension equilibrates rapidly and mechanically couples local boundary dynamics over cellular scales, steady-state variations in tension can exist in the plasma membranes of moving cells. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hooie, D. T.; Harrington, B. C., III; Mayfield, M. J.; Parsons, E. L.
1992-07-01
The primary objective of DOE's Fossil Energy Fuel Cell program is to fund the development of key fuel cell technologies in a manner that maximizes private sector participation and in a way that will give contractors the opportunity for a competitive posture, early market entry, and long-term market growth. This summary includes an overview of the Fuel Cell program, an elementary explanation of how fuel cells operate, and a synopsis of the three major fuel cell technologies sponsored by the DOE/Fossil Energy Phosphoric Acid Fuel Cell program, the Molten Carbonate Fuel Cell program, and the Solid Oxide Fuel Cell program.
Hood, Kristina B; Robertson, Angela A; Baird-Thomas, Connie
2015-04-01
Due to the scarcity of resources for implementing rapid on-site HIV testing, many substance abuse treatment programs do not offer these services. This study sought to determine whether addressing previously identified implementation barriers to integrating on-site rapid HIV testing into the treatment admissions process would increase offer and acceptance rates. Results indicate that it is feasible to integrate rapid HIV testing into existing treatment programs for substance abusers when resources are provided. Addressing barriers such as providing start-up costs for HIV testing, staff training, addressing staffing needs to reduce competing job responsibilities, and helping treatment staff members overcome their concerns about clients' reactions to positive test results is paramount for the integration and maintenance of such programs. Copyright © 2014 Elsevier Ltd. All rights reserved.
1998-04-13
and Sydnor, 1968). The lymphoid system can also be affected resulting in lymphopenia. Toxic effects have been observed in the rapidly dividing cells ...polycyclic aromatic hydrocarbons have demonstrated the toxic effects of these compounds on rapidly proliferating cells . An intraperitoneal injection...b); however, higher doses are reported to result in testicular effects and decreased hemoglobin and packed cell volume (Kluwe et al, 1982; Gray et
Jolly, Clare
2011-01-01
It has been known for some time that retroviruses can disseminate between immune cells either by conventional cell-free transmission or by directed cell-to-cell spread. Over the past few years there has been increasing interest in how retroviruses may use cell-to-cell spread to promote more rapid infection kinetics and circumvent humoral immunity. Effective humoral immune responses are intimately linked with innate immunity and the interplay between retroviruses and innate immunity is a rapidly expanding area of research that has been advanced considerably by the identification of cellular restriction factors that provide barriers to retroviral infection. The effect of innate immunity and restriction factors on retroviral cell-to-cell spread has been comparatively little studied; however recent work suggests this maybe changing. Here I will review some recent advances in what is a budding area of retroviral research. PMID:21247613
Intestinal stem cells and their defining niche.
Tan, David Wei-Min; Barker, Nick
2014-01-01
The intestinal epithelium is a classic example of a rapidly self-renewing tissue fueled by dedicated resident stem cells. These stem cells reside at the crypt base, generating committed progeny that mature into the various functional epithelial lineages while following a rapid migratory path toward the villi. Two models of intestinal stem cell location were proposed half a century ago and data have been presented in support of both models, dividing the scientific community. Molecular markers have been identified and validated using new techniques such as in vivo lineage tracing and ex vivo organoid culture. The intestinal stem cell niche comprises both epithelial cells, in particular the Paneth cell, and the stromal compartment, where cell-associated ligands and soluble factors regulate stem cell behavior. This review highlights the recent advances in identifying and characterizing the intestinal stem cells and their defining niche. © 2014 Elsevier Inc. All rights reserved.
Rapid cell separation with minimal manipulation for autologous cell therapies
NASA Astrophysics Data System (ADS)
Smith, Alban J.; O'Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.
2017-02-01
The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities.
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka
2017-02-01
Near infrared photoimmunotherapy (NIR-PIT) is a new molecularly-targeted cancer photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (mAb) targeting cell-surface molecules. When exposed to NIR light, the conjugate induces a highly-selective necrotic/immunogenic cell death (ICD) only in target-positive, mAb-IR700-bound cancer cells. This cell death occurs as early as 1 minute after exposure to NIR light. Meanwhile, immediately adjacent target-negative cells are unharmed. Dynamic 3D-microscopy of live tumor cells undergoing NIR-PIT showed rapid swelling in treated cells immediately after light exposure, followed by irreversible morphologic changes such as bleb formation, and rupture of vesicles within several minutes. Furthermore, biological markers of ICD including relocation of HSP70/90 and calreticulin, and release of ATP and High Mobility Group Box 1 (HMGB1), were clearly detected immediately after NIR-PIT. When NIR-PIT was performed in a mixture of cancer cells and immature dendritic cells, maturation of immature dendritic cells was strongly induced rapidly after NIR-PIT. Alternatively, NIR-PIT can also target negative regulatory immune cells such as Treg only in the tumor bed. Treg targeting NIR-PIT against CD25 can deplete >80% of Treg in tumor bed within 20 min that induces activation of tumor cell-specific CD8+-T and NK cells within 1.5 hour, and then these activated cells killed cancer cells in local tumor within 1 day and also in distant tumors of the same cell origin within 2 days. In summary, cancer cell-targeting and immuno-suppressor cell-targeting NIR-PITs effectively induce innate and acquired immunity specifically against cancer cells growing in patients, respectively.
Morada, Mary; Pendyala, Lakhsmi; Wu, Gang; Merali, Salim; Yarlett, Nigel
2013-01-01
Invasion of human intestinal epithelial cells (HCT-8) by Cryptosporidium parvum resulted in a rapid induction of host cell spermidine/spermine N1-acetyltransferase 1 (hSSAT-1) mRNA, causing a 4-fold increase in SSAT-1 enzyme activity after 24 h of infection. In contrast, host cell SSAT-2, spermine oxidase, and acetylpolyamine oxidase (hAPAO) remained unchanged during this period. Intracellular polyamine levels of C. parvum-infected human epithelial cells were determined, and it was found that spermidine remained unchanged and putrescine increased by 2.5-fold after 15 h and then decreased after 24 h, whereas spermine decreased by 3.9-fold after 15 h. Concomitant with these changes, N1-acetylspermine and N1-acetylspermidine both increased by 115- and 24-fold, respectively. Increased SSAT-1 has previously been shown to be involved in the endoplasmic reticulum (ER) stress response leading to apoptosis. Several stress response proteins were increased in HCT-8 cells infected with C. parvum, including calreticulin, a major calcium-binding chaperone in the ER; GRP78/BiP, a prosurvival ER chaperone; and Nrf2, a transcription factor that binds to antioxidant response elements, thus activating them. However, poly(ADP-ribose) polymerase, a protein involved in DNA repair and programmed cell death, was decreased. Cumulatively, these results suggest that the invasion of HCT-8 cells by C. parvum results in an ER stress response by the host cell that culminates in overexpression of host cell SSAT-1 and elevated N1-acetylpolyamines, which can be used by a parasite that lacks ornithine decarboxylase. PMID:23986438
Rayet, Béatrice; Lopez-Guerrero, José-Antonio; Rommelaere, Jean; Dinsart, Christiane
1998-01-01
The human promonocytic cell line U937 undergoes apoptosis upon treatment with tumor necrosis factor alpha (TNF-α). This cell line has previously been shown to be very sensitive to the lytic effect of the autonomous parvovirus H-1. Parvovirus infection leads to the activation of the CPP32 ICE-like cysteine protease which cleaves the enzyme poly(ADP-ribose)polymerase and induces morphologic changes that are characteristic of apoptosis in a way that is similar to TNF-α treatment. This effect is also observed when the U937 cells are infected with a recombinant H-1 virus which expresses the nonstructural (NS) proteins but in which the capsid genes are replaced by a reporter gene, indicating that the induction of apoptosis can be assigned to the cytotoxic nonstructural proteins in this cell system. The c-Myc protein, which is overexpressed in U937 cells, is rapidly downregulated during infection, in keeping with a possible role of this product in mediating the apoptotic cell death induced by H-1 virus infection. Interestingly, four clones (designated RU) derived from the U937 cell line and selected for their resistance to H-1 virus (J. A. Lopez-Guerrero et al., Blood 89:1642–1653, 1997) failed to decrease c-Myc expression upon treatment with differentiation agents and also resisted the induction of cell death after TNF-α treatment. Our data suggest that the RU clones have developed defense strategies against apoptosis, either by their failure to downregulate c-Myc and/or by activating antiapoptotic factors. PMID:9765434
Autheman, Delphine; Wyder, Marianne; Popoff, Michel; D'Herde, Katharina; Christen, Stephan; Posthaus, Horst
2013-01-01
Clostridium perfringens β-toxin (CPB) is a β-barrel pore-forming toxin and an essential virulence factor of C. perfringens type C strains, which cause fatal hemorrhagic enteritis in animals and humans. We have previously shown that CPB is bound to endothelial cells within the intestine of affected pigs and humans, and that CPB is highly toxic to primary porcine endothelial cells (pEC) in vitro. The objective of the present study was to investigate the type of cell death induced by CPB in these cells, and to study potential host cell mechanisms involved in this process. CPB rapidly induced lactate dehydrogenase (LDH) release, propidium iodide uptake, ATP depletion, potassium efflux, a marked rise in intracellular calcium [Ca(2+)]i, release of high-mobility group protein B1 (HMGB1), and caused ultrastructural changes characteristic of necrotic cell death. Despite a certain level of caspase-3 activation, no appreciable DNA fragmentation was detected. CPB-induced LDH release and propidium iodide uptake were inhibited by necrostatin-1 and the two dissimilar calpain inhibitors PD150606 and calpeptin. Likewise, inhibition of potassium efflux, chelation of intracellular calcium and treatment of pEC with cyclosporin A also significantly inhibited CPB-induced LDH release. Our results demonstrate that rCPB primarily induces necrotic cell death in pEC, and that necrotic cell death is not merely a passive event caused by toxin-induced membrane disruption, but is propagated by host cell-dependent biochemical pathways activated by the rise in intracellular calcium and inhibitable by necrostatin-1, consistent with the emerging concept of programmed necrosis ("necroptosis").
Abdolahad, Mohammad; Taghinejad, Mohammad; Taghinejad, Hossein; Janmaleki, Mohsen; Mohajerzadeh, Shams
2012-03-21
A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tips and entrapped cell membranes, changing the impedance of the biosensor. CNT-ECIS was fabricated through a photolithography process on Ni/SiO(2)/Si layers. Carbon nanotube arrays have been grown on 9 nm thick patterned Ni microelectrodes by DC-PECVD. SW48 colon cancer cells were passed over the surface of CNT covered electrodes to be specifically entrapped on elastic nanotube beams. CNT arrays act as both adhesive and conductive agents and impedance changes occurred as fast as 30 s (for whole entrapment and signaling processes). CNT-ECIS detected the cancer cells with the concentration as low as 4000 cells cm(-2) on its surface and a sensitivity of 1.7 × 10(-3)Ω cm(2). Time and cell efficiency factor (TEF and CEF) parameters were defined which describe the sensor's rapidness and resolution, respectively. TEF and CEF of CNT-ECIS were much higher than other cell based electrical biosensors which are compared in this paper.
Cost-effective and Rapid Blood Analysis on a Cell-phone
Zhu, Hongying; Sencan, Ikbal; Wong, Justin; Dimitrov, Stoyan; Tseng, Derek; Nagashima, Keita; Ozcan, Aydogan
2013-01-01
We demonstrate a compact and cost-effective imaging cytometry platform installed on a cell-phone for the measurement of the density of red and white blood cells as well as hemoglobin concentration in human blood samples. Fluorescent and bright-field images of blood samples are captured using separate optical attachments to the cell-phone and are rapidly processed through a custom-developed smart application running on the phone for counting of blood cells and determining hemoglobin density. We evaluated the performance of this cell-phone based blood analysis platform using anonymous human blood samples and achieved comparable results to a standard bench-top hematology analyser. Test results can either be stored on the cell-phone memory or be transmitted to a central server, providing remote diagnosis opportunities even in field settings. PMID:23392286
Cost-effective and rapid blood analysis on a cell-phone.
Zhu, Hongying; Sencan, Ikbal; Wong, Justin; Dimitrov, Stoyan; Tseng, Derek; Nagashima, Keita; Ozcan, Aydogan
2013-04-07
We demonstrate a compact and cost-effective imaging cytometry platform installed on a cell-phone for the measurement of the density of red and white blood cells as well as hemoglobin concentration in human blood samples. Fluorescent and bright-field images of blood samples are captured using separate optical attachments to the cell-phone and are rapidly processed through a custom-developed smart application running on the phone for counting of blood cells and determining hemoglobin density. We evaluated the performance of this cell-phone based blood analysis platform using anonymous human blood samples and achieved comparable results to a standard bench-top hematology analyser. Test results can either be stored on the cell-phone memory or be transmitted to a central server, providing remote diagnosis opportunities even in field settings.
Yamaguchi, Nobuyasu; Tokunaga, Yusuke; Goto, Satoko; Fujii, Yudai; Banno, Fumiya; Edagawa, Akiko
2017-06-08
Legionnaires' disease, predominantly caused by the bacterium Legionella pneumophila, has increased in prevalence worldwide. The most common mode of transmission of Legionella is inhalation of contaminated aerosols, such as those generated by cooling towers. Simple, rapid and accurate methods to enumerate L. pneumophila are required to prevent the spread of this organism. Here, we applied a microfluidic device for on-chip fluorescent staining and semi-automated counting of L. pneumophila in cooling tower water. We also constructed a portable system for rapid on-site monitoring and used it to enumerate target bacterial cells rapidly flowing in the microchannel. A fluorescently-labelled polyclonal antibody was used for the selective detection of L. pneumophila serogroup 1 in the samples. The counts of L. pneumophila in cooling tower water obtained using the system and fluorescence microscopy were similar. The detection limit of the system was 10 4 cells/ml, but lower numbers of L. pneumophila cells (10 1 to 10 3 cells/ml) could be detected following concentration of 0.5-3 L of the water sample by filtration. Our technique is rapid to perform (1.5 h), semi-automated (on-chip staining and counting), and portable for on-site measurement, and it may therefore be effective in the initial screening of Legionella contamination in freshwater.
Chan, Angel T.; Karakas, Mehmet F.; Vakrou, Styliani; Afzal, Junaid; Rittenbach, Andrew; Lin, Xiaoping; Wahl, Richard L.; Pomper, Martin G.; Steenbergen, Charles J.; Tsui, Benjamin M.W.; Elisseeff, Jennifer H.; Abraham, M. Roselle
2015-01-01
Background Cell death due to anoikis, necrosis and cell egress from transplantation sites limits functional benefits of cellular cardiomyoplasty. Cell dissociation and suspension, which are a pre-requisite for most cell transplantation studies, lead to depression of cellular metabolism and anoikis, which contribute to low engraftment. Objective We tissue engineered scaffolds with the goal of rapidly restoring metabolism, promoting viability, proliferation and engraftment of encapsulated stem cells. Methods The carboxyl groups of HA were functionalized with N-hydroxysuccinimide (NHS) to yield HA succinimidyl succinate (HA-NHS) groups that react with free amine groups to form amide bonds. HA-NHS was cross-linked by serum to generate HA:Serum (HA:Ser) hydrogels. Physical properties of HA:Ser hydrogels were measured. Effect of encapsulating cardiosphere-derived cells (CDCs) in HA:Ser hydrogels on viability, proliferation, glucose uptake and metabolism was assessed in vitro. In vivo acute intra-myocardial cell retention of 18FDG-labeled CDCs encapsulated in HA:Ser hydrogels was quantified. Effect of CDC encapsulation in HA:Ser hydrogels on in vivo metabolism and engraftment at 7 days was assessed by serial, dual isotope SPECT-CT and bioluminescence imaging of CDCs expressing the Na-iodide symporter and firefly luciferase genes respectively. Effect of HA:Ser hydrogels +/− CDCs on cardiac function was assessed at 7 days & 28 days post-infarct. Results HA:Ser hydrogels are highly bio-adhesive, biodegradable, promote rapid cell adhesion, glucose uptake and restore bioenergetics of encapsulated cells within 1 h of encapsulation, both in vitro and in vivo. These metabolic scaffolds can be applied epicardially as a patch to beating hearts or injected intramyocardially. HA:Ser hydrogels markedly increase acute intramyocardial retention (~6 fold), promote in vivo viability, proliferation, engraftment of encapsulated stem cells and angiogenesis. Conclusion HA:Ser hydrogels serve as ‘synthetic stem cell niches’ that rapidly restore metabolism of encapsulated stem cells, promote stem cell engraftment and angiogenesis. These first ever, tissue engineered metabolic scaffolds hold promise for clinical translation in conjunction with CDCs and possibly other stem cell types. PMID:26378976
Haley, Shannon L.; Tzvetkov, Evgeni P.; Meuwissen, Samantha; Plummer, Joseph R.
2017-01-01
ABSTRACT Vaccine-induced B cells differentiate along two pathways. The follicular pathway gives rise to germinal centers (GCs) that can take weeks to fully develop. The extrafollicular pathway gives rise to short-lived plasma cells (PCs) that can rapidly secrete protective antibodies within days of vaccination. Rabies virus (RABV) postexposure prophylaxis (PEP) requires rapid vaccine-induced humoral immunity for protection. Therefore, we hypothesized that targeting extrafollicular B cell responses for activation would improve the speed and magnitude of RABV PEP. To test this hypothesis, we constructed, recovered, and characterized a recombinant RABV-based vaccine expressing murine B cell activating factor (BAFF) (rRABV-mBAFF). BAFF is an ideal molecule to improve early pathways of B cell activation, as it links innate and adaptive immunity, promoting potent B cell responses. Indeed, rRABV-mBAFF induced a faster, higher antibody response in mice and enhanced survivorship in PEP settings compared to rRABV. Interestingly, rRABV-mBAFF and rRABV induced equivalent numbers of GC B cells, suggesting that rRABV-mBAFF augmented the extrafollicular B cell pathway. To confirm that rRABV-mBAFF modulated the extrafollicular pathway, we used a signaling lymphocytic activation molecule (SLAM)-associated protein (SAP)-deficient mouse model. In response to antigen, SAP-deficient mice form extrafollicular B cell responses but do not generate GCs. rRABV-mBAFF induced similar anti-RABV antibody responses in SAP-deficient and wild-type mice, demonstrating that BAFF modulated immunity through the extrafollicular and not the GC B cell pathway. Collectively, strategies that manipulate pathways of B cell activation may facilitate the development of a single-dose RABV vaccine that replaces current complicated and costly RABV PEP. IMPORTANCE Effective RABV PEP is currently resource- and cost-prohibitive in regions of the world where RABV is most prevalent. In order to diminish the requirements for rabies immunoglobulin (RIG) and multiple vaccinations for effective prevention of clinical rabies, a more rapidly protective vaccine is needed. This work presents a successful approach to rapidly generate antibody-secreting PCs in response to vaccination by targeting the extrafollicular B cell pathway. We demonstrate that the improved early antibody responses induced by rRABV-mBAFF confer improved protection against RABV in a PEP model. Significantly, activation of the early extrafollicular B cell pathway, such as that demonstrated here, could improve the efficacy of vaccines targeting other pathogens against which rapid protection would decrease morbidity and mortality. PMID:28148792
Haley, Shannon L; Tzvetkov, Evgeni P; Meuwissen, Samantha; Plummer, Joseph R; McGettigan, James P
2017-04-15
Vaccine-induced B cells differentiate along two pathways. The follicular pathway gives rise to germinal centers (GCs) that can take weeks to fully develop. The extrafollicular pathway gives rise to short-lived plasma cells (PCs) that can rapidly secrete protective antibodies within days of vaccination. Rabies virus (RABV) postexposure prophylaxis (PEP) requires rapid vaccine-induced humoral immunity for protection. Therefore, we hypothesized that targeting extrafollicular B cell responses for activation would improve the speed and magnitude of RABV PEP. To test this hypothesis, we constructed, recovered, and characterized a recombinant RABV-based vaccine expressing murine B cell activating factor (BAFF) (rRABV-mBAFF). BAFF is an ideal molecule to improve early pathways of B cell activation, as it links innate and adaptive immunity, promoting potent B cell responses. Indeed, rRABV-mBAFF induced a faster, higher antibody response in mice and enhanced survivorship in PEP settings compared to rRABV. Interestingly, rRABV-mBAFF and rRABV induced equivalent numbers of GC B cells, suggesting that rRABV-mBAFF augmented the extrafollicular B cell pathway. To confirm that rRABV-mBAFF modulated the extrafollicular pathway, we used a signaling lymphocytic activation molecule (SLAM)-associated protein (SAP)-deficient mouse model. In response to antigen, SAP-deficient mice form extrafollicular B cell responses but do not generate GCs. rRABV-mBAFF induced similar anti-RABV antibody responses in SAP-deficient and wild-type mice, demonstrating that BAFF modulated immunity through the extrafollicular and not the GC B cell pathway. Collectively, strategies that manipulate pathways of B cell activation may facilitate the development of a single-dose RABV vaccine that replaces current complicated and costly RABV PEP. IMPORTANCE Effective RABV PEP is currently resource- and cost-prohibitive in regions of the world where RABV is most prevalent. In order to diminish the requirements for rabies immunoglobulin (RIG) and multiple vaccinations for effective prevention of clinical rabies, a more rapidly protective vaccine is needed. This work presents a successful approach to rapidly generate antibody-secreting PCs in response to vaccination by targeting the extrafollicular B cell pathway. We demonstrate that the improved early antibody responses induced by rRABV-mBAFF confer improved protection against RABV in a PEP model. Significantly, activation of the early extrafollicular B cell pathway, such as that demonstrated here, could improve the efficacy of vaccines targeting other pathogens against which rapid protection would decrease morbidity and mortality. Copyright © 2017 American Society for Microbiology.
Xu, Huanbin; Wang, Xiaolei; Pahar, Bapi; Alvarez, Xavier; Rasmussen, Kelsi K.; Lackner, Andrew A.; Veazey, Ronald S.
2012-01-01
The common γc subunit molecule is shared among all γc cytokines and clearly involved in T-cell function, but its role in HIV infection and immunity is not well understood. Here, we examined expression and function of γc on T cells during SIV infection in Rhesus macaques. Surface γc distribution was differentially expressed on CD4+ and CD8+ T cells, and CD4+ naive/memory cell populations in various lymphoid tissues of normal macaques. However, surface γc expression was rapidly and significantly down-regulated on T cells in acute infection with pathogenic SIV, compared to infection with a less virulent SHIV or controls and did not recover on CD8+ T cells in the chronic stage. Moreover, the peripheral and CD4+T cell loss was inversely correlated with γc+ CD8+ T cells in individual tissues. γc+ T cells were mainly functional as evidenced by higher cytokine secretion and proliferative capacity. Further in vitro experiments found that surface γc expression could be down-regulated following high level of IL-7 treatment by both internalization and shedding. Down-regulation of γc during early HIV/SIV infection may inhibit T-cell function, particularly of CD8+ T cells, and, may be linked with immune failure and loss of viral containment.—Xu, H., Wang, X., Pahar, B., Alvarez, X., Rasmussen, K. K., Lackner, A. A., Veazey, R. S. Rapid down-regulation of γc on T cells in early SIV infection correlates with impairment of T-cell function. PMID:22375017
NASA Technical Reports Server (NTRS)
1973-01-01
A computer program for rapid parametric evaluation of various types of cryogenics spacecraft systems is presented. The mathematical techniques of the program provide the capability for in-depth analysis combined with rapid problem solution for the production of a large quantity of soundly based trade-study data. The program requires a large data bank capable of providing characteristics performance data for a wide variety of component assemblies used in cryogenic systems. The program data requirements are divided into: (1) the semipermanent data tables and source data for performance characteristics and (2) the variable input data which contains input parameters which may be perturbated for parametric system studies.
NASA Technical Reports Server (NTRS)
Mclain, A. G.; Rao, C. S. R.
1976-01-01
A hybrid chemical kinetic computer program was assembled which provides a rapid solution to problems involving flowing or static, chemically reacting, gas mixtures. The computer program uses existing subroutines for problem setup, initialization, and preliminary calculations and incorporates a stiff ordinary differential equation solution technique. A number of check cases were recomputed with the hybrid program and the results were almost identical to those previously obtained. The computational time saving was demonstrated with a propane-oxygen-argon shock tube combustion problem involving 31 chemical species and 64 reactions. Information is presented to enable potential users to prepare an input data deck for the calculation of a problem.
Telomere dynamics in an immortal human cell line.
Murnane, J P; Sabatier, L; Marder, B A; Morgan, W F
1994-01-01
The integration of transfected plasmid DNA at the telomere of chromosome 13 in an immortalized simian virus 40-transformed human cell line provided the first opportunity to study polymorphism in the number of telomeric repeat sequences on the end of a single chromosome. Three subclones of this cell line were selected for analysis: one with a long telomere on chromosome 13, one with a short telomere, and one with such extreme polymorphism that no distinct band was discernible. Further subcloning demonstrated that telomere polymorphism resulted from both gradual changes and rapid changes that sometimes involved many kilobases. The gradual changes were due to the shortening of telomeres at a rate similar to that reported for telomeres of somatic cells without telomerase, eventually resulting in the loss of nearly all of the telomere. However, telomeres were not generally lost completely, as shown by the absence of polymorphism in the subtelomeric plasmid sequences. Instead, telomeres that were less than a few hundred base pairs in length showed a rapid, highly heterogeneous increase in size. Rapid changes in telomere length also occurred on longer telomeres. The frequency of this type of change in telomere length varied among the subclones and correlated with chromosome fusion. Therefore, the rapid changes in telomere length appeared occasionally to result in the complete loss of telomeric repeat sequences. Rapid changes in telomere length have been associated with telomere loss and chromosome instability in yeast and could be responsible for the high rate of chromosome fusion observed in many human tumor cell lines. Images PMID:7957062
Martin, Gilles; O’Connell, Robert J.; Pietrzykowski, Andrzej Z.; Treistman, Steven N.; Ethier, Michael F.; Madison, J. Mark
2014-01-01
Large-conductance, calcium-activated potassium (BKCa) channels are regulated by voltage and near-membrane calcium concentrations and are determinants of membrane potential and excitability in airway smooth muscle cells. Since the T helper–2 (Th2) cytokine, interleukin (IL)-4, is an important mediator of airway inflammation, we investigated whether IL-4 rapidly regulated BKCa activity in normal airway smooth muscle cells. On-cell voltage clamp recordings were made on subconfluent, cultured human bronchial smooth muscle cells (HBSMC). Interleukin-4 (50 ng ml−1), IL-13 (50 ng ml−1) or histamine (10 μm) was added to the bath during the recordings. Immunofluorescence studies with selective antibodies against the α and β1 subunits of BKCa were also performed. Both approaches demonstrated that HBSMC membranes contained large-conductance channels (>200 pS) with both calcium and voltage sensitivity, all of which is characteristic of the BKCa channel. Histamine caused a rapid increase in channel activity, as expected. A new finding was that perfusion with IL-4 stimulated rapid, large increases in BKCa channel activity (77.2 ± 63.3-fold increase, P < 0.05, n = 18). This large potentiation depended on the presence of external calcium. In contrast, IL-13 (50 ng ml−1) had little effect on BKCa channel activity, but inhibited the effect of IL-4. Thus, HBSMC contain functional BKCa channels whose activity is rapidly potentiated by the cytokine, IL-4, but not by IL-13.These findings are consistent with a model in which IL-4 rapidly increases near-membrane calcium concentrations to regulate BKCa activity. PMID:18403443
Redox regulation in metabolic programming and inflammation.
Griffiths, Helen R; Gao, Dan; Pararasa, Chathyan
2017-08-01
Energy metabolism and redox state are intrinsically linked. In order to mount an adequate immune response, cells must have an adequate and rapidly available energy resource to migrate to the inflammatory site, to generate reactive oxygen species using NADPH as a cofactor and to engulf bacteria or damaged tissue. The first responder cells of the innate immune response, neutrophils, are largely dependent on glycolysis. Neutrophils are relatively short-lived, dying via apoptosis in the process of bacterial killing through production of hypochlorous acid and release of extracellular NETs. Later on, the most prevalent recruited innate immune cells are monocytes. Their role is to complete a damage limitation exercise initiated by neutrophils and then, as re-programmed M2 macrophages, to resolve the inflammatory event. Almost twenty five years ago, it was noted that macrophages lose their glycolytic capacity and become anti-inflammatory after treatment with corticosteroids. In support of this we now understand that, in contrast to early responders, M2 macrophages are predominantly dependent on oxidative phosphorylation for energy. During early inflammation, polarisation towards M1 macrophages is dependent on NOX2 activation which, via protein tyrosine phosphatase oxidation and AKT activation, increases trafficking of glucose transporters to the membrane and consequently increases glucose uptake for glycolysis. In parallel, mitochondrial efficiency is likely to be compromised via nitrosylation of the electron transport chain. Resolution of inflammation is triggered by encounter with apoptotic membranes exposing oxidised phosphatidylserine that interact with the scavenger receptor, CD36. Downstream of CD36, activation of AMPK and PPARγ elicits mitochondrial biogenesis, arginase expression and a switch towards oxidative phosphorylation in the M2 macrophage. Proinflammatory cytokine production by M2 cells decreases, but anti-inflammatory and wound healing growth factor production is maintained to support restoration of normal function. Copyright © 2017. Published by Elsevier B.V.
Xu, Chun-Xiu; Yin, Xue-Feng
2011-02-04
A chip-based microfluidic system for high-throughput single-cell analysis is described. The system was integrated with continuous introduction of individual cells, rapid dynamic lysis, capillary electrophoretic (CE) separation and laser induced fluorescence (LIF) detection. A cross microfluidic chip with one sheath-flow channel located on each side of the sampling channel was designed. The labeled cells were hydrodynamically focused by sheath-flow streams and sequentially introduced into the cross section of the microchip under hydrostatic pressure generated by adjusting liquid levels in the reservoirs. Combined with the electric field applied on the separation channel, the aligned cells were driven into the separation channel and rapidly lysed within 33ms at the entry of the separation channel by Triton X-100 added in the sheath-flow solution. The maximum rate for introducing individual cells into the separation channel was about 150cells/min. The introduction of sheath-flow streams also significantly reduced the concentration of phosphate-buffered saline (PBS) injected into the separation channel along with single cells, thus reducing Joule heating during electrophoretic separation. The performance of this microfluidic system was evaluated by analysis of reduced glutathione (GSH) and reactive oxygen species (ROS) in single erythrocytes. A throughput of 38cells/min was obtained. The proposed method is simple and robust for high-throughput single-cell analysis, allowing for analysis of cell population with considerable size to generate results with statistical significance. Copyright © 2010 Elsevier B.V. All rights reserved.
Reed, William; Noga, Stephen J.; Gee, Adrian P.; Rooney, Cliona M.; Wagner, John E.; McCullough, Jeffrey; McKenna, David H.; Whiteside, Theresa L.; Donnenberg, Albert D.; Baker, Acacia K.; Lindblad, Robert W.; Wagner, Elizabeth L.; Mondoro, Traci Heath
2014-01-01
BACKGROUND In 2002, the US National Heart, Lung, and Blood Institute (NHLBI) conducted a workshop to determine needs of the cell therapy community. A consensus emerged that improved access to cGMP facilities, regulatory assistance, and training would foster the advancement of cellular therapy. STUDY DESIGN AND METHODS A 2003 NHLBI request for proposals resulted in four contracts being awarded to three cell-manufacturing facilities (Baylor College of Medicine, University of Minnesota, and University of Pittsburgh) and one administrative center (The EMMES Corporation). As a result, Production Assistance for Cellular Therapies (PACT) was formed. RESULTS As of October 1, 2008, PACT has received 65 preliminary applications of which 45 have been approved for product manufacture. A variety of cell therapies are represented including T-regulatory cells, natural killer cells, adipose-derived stem cells, cardiac progenitor cells for cardiac disease, hematopoietic progenitor cells (HPCs) for central nervous system applications, cytotoxic T lymphocytes, and dendritic cells. A total of 169 products have been administered under 12 applications and 2 reagents were manufactured and delivered. Fourteen peer-reviewed publications and 15 abstracts have resulted from the PACT project to date. A cell therapy textbook is nearly complete. PACT technical projects have addressed assay development, rapid endotoxin testing, shipping of cell products, and CD34+ HPC isolation from low-volume marrow. Educational Web seminars and onsite training through workshops have been conducted. CONCLUSIONS PACT is an active and successful cell therapy manufacturing resource in the United States, addressing research and training while forging relationships among academia, industry, and participating institutions. PMID:19170985
Reversible Cryopreservation of Living Cells Using an Electron Microscopy Cryo-Fixation Method.
Huebinger, Jan; Han, Hong-Mei; Grabenbauer, Markus
2016-01-01
Rapid cooling of aqueous solutions is a useful approach for two important biological applications: (I) cryopreservation of cells and tissues for long-term storage, and (II) cryofixation for ultrastructural investigations by electron and cryo-electron microscopy. Usually, both approaches are very different in methodology. Here we show that a novel, fast and easy to use cryofixation technique called self-pressurized rapid freezing (SPRF) is-after some adaptations-also a useful and versatile technique for cryopreservation. Sealed metal tubes with high thermal diffusivity containing the samples are plunged into liquid cryogen. Internal pressure builds up reducing ice crystal formation and therefore supporting reversible cryopreservation through vitrification of cells. After rapid rewarming of pressurized samples, viability rates of > 90% can be reached, comparable to best-performing of the established rapid cooling devices tested. In addition, the small SPRF tubes allow for space-saving sample storage and the sealed containers prevent contamination from or into the cryogen during freezing, storage, or thawing.
Cumulative versus rapid introduction of new information.
Gleason, M; Carnine, D; Vala, N
1991-02-01
This study investigated the way new information is presented to students. Subjects were 60 elementary and middle school students, most with learning disabilities. Students used two versions of a specially designed computer-assisted instruction (CAI) program. One version rapidly presented students with seven pieces of information (rapid-introduction group); the other cumulatively presented smaller "chunks" of information (cumulative-introduction group). Both groups worked to mastery level successfully but students in the cumulative group spent one-third the time, required fewer responses, showed less frustration, and made fewer errors in the process. Results suggest that students with learning disabilities need much more practice than most commercial CAI programs supply.
Coping with cancer - hair loss
Cancer treatment - alopecia; Chemotherapy - hair loss; Radiation - hair loss ... Many chemotherapy drugs attack fast-growing cells. This is because cancer cells divide rapidly. Since the cells in hair ...
Effects of rapid thermal annealing on the optical properties of strain-free quantum ring solar cells
2013-01-01
Strain-free GaAs/Al0.33Ga0.67As quantum rings are fabricated by droplet epitaxy. Both photoresponse and photoluminescence spectra confirm optical transitions in quantum rings, suggesting that droplet epitaxial nanomaterials are applicable to intermediate band solar cells. The effects of post-growth annealing on the quantum ring solar cells are investigated, and the optical properties of the solar cells with and without thermal treatment are characterized by photoluminescence technique. Rapid thermal annealing treatment has resulted in the significant improvement of material quality, which can be served as a standard process for quantum structure solar cells grown by droplet epitaxy. PMID:23281811
Emerging microengineering tools for functional analysis and phenotyping of blood cells
Li, Xiang; Chen, Weiqiang; Li, Zida; Li, Ling; Gu, Hongchen; Fu, Jianping
2014-01-01
The available techniques for assessing blood cell functions are limited considering the various types of blood cells and their diverse functions. In the past decade, rapid advancement in microengineering has enabled an array of blood cell functional measurements that are difficult or impossible to achieve using conventional bulk platforms. Such miniaturized blood cell assay platforms also provide attractive capabilities of reducing chemical consumption, cost, assay time, as well as exciting opportunities of device integration, automation, and assay standardization. This review summarizes these contemporary microengineering tools and discusses their promising potential for constructing accurate in vitro models and rapid clinical diagnosis using minimal amount of whole blood samples. PMID:25283971
Three-Dimensional Microstructure of Biological Tissues during Freezing and Thawing
NASA Astrophysics Data System (ADS)
Ishiguro, Hiroshi; Horimizu, Takashi; Kataori, Akinobu; Kajigaya, Hiroshi
Three-dimensional behavior of ice crystals and cells during the freezing and thawing of biological tissues was investigated microscopically in real time by using a confocal laser scanning microscope(CLSM) and a fluorescent dye, acridine orange (AO). Fresh tender meat (2nd pectoral muscles) of chicken was stained with the AO in physiological saline to distinguish ice crystals and cells by their different colors, and then frozen and thawed under two different thermal protocols: a) slow-cooling and rapid-warming and b) rapid-cooling and rapid-warming. The CLSM noninvasively produced optical tomograms of the tissues to clarify the pattern of freezing, morphology of ice crystals in the tissues, and the interaction between ice crystals and cells. Also, the tissues were morphologically investigated by pathological means after the freezing and thawing. Typical freezing pattern during the slow-cooling was extracellular-freezing, and those during the rapid-cooling were extracellular-freezing and intracellular freezing with a lot of fine ice crystals in the cells. Cracks caused by the extracellular and intracellular ice crystals remained in the muscle tissues after the thawing. The results obtained by using the CLSM/dye method were consistent with pathologically morphological changes in the tissues through freezing and thawing.
2011-01-01
Background Development of a standardized platform for the rapid expansion of tumor-infiltrating lymphocytes (TILs) with anti-tumor function from patients with limited TIL numbers or tumor tissues challenges their clinical application. Methods To facilitate adoptive immunotherapy, we applied genetically-engineered K562 cell-based artificial antigen presenting cells (aAPCs) for the direct and rapid expansion of TILs isolated from primary cancer specimens. Results TILs outgrown in IL-2 undergo rapid, CD28-independent expansion in response to aAPC stimulation that requires provision of exogenous IL-2 cytokine support. aAPCs induce numerical expansion of TILs that is statistically similar to an established rapid expansion method at a 100-fold lower feeder cell to TIL ratio, and greater than those achievable using anti-CD3/CD28 activation beads or extended IL-2 culture. aAPC-expanded TILs undergo numerical expansion of tumor antigen-specific cells, remain amenable to secondary aAPC-based expansion, and have low CD4/CD8 ratios and FOXP3+ CD4+ cell frequencies. TILs can also be expanded directly from fresh enzyme-digested tumor specimens when pulsed with aAPCs. These "young" TILs are tumor-reactive, positively skewed in CD8+ lymphocyte composition, CD28 and CD27 expression, and contain fewer FOXP3+ T cells compared to parallel IL-2 cultures. Conclusion Genetically-enhanced aAPCs represent a standardized, "off-the-shelf" platform for the direct ex vivo expansion of TILs of suitable number, phenotype and function for use in adoptive immunotherapy. PMID:21827675
Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan
2016-11-01
Monitoring yeast cell viability and concentration is important in brewing, baking and biofuel production. However, existing methods of measuring viability and concentration are relatively bulky, tedious and expensive. Here we demonstrate a compact and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm 2 . This lens-free microscope weighs 70 g and utilizes a partially-coherent illumination source and an opto-electronic image sensor chip. A touch-screen user interface based on a tablet-PC is developed to reconstruct the holographic shadows captured by the image sensor chip and use a support vector machine (SVM) model to automatically classify live and dead cells in a yeast sample stained with methylene blue. In order to quantify its accuracy, we varied the viability and concentration of the cells and compared AYAP's performance with a fluorescence exclusion staining based gold-standard using regression analysis. The results agree very well with this gold-standard method and no significant difference was observed between the two methods within a concentration range of 1.4 × 10 5 to 1.4 × 10 6 cells per mL, providing a dynamic range suitable for various applications. This lensfree computational imaging technology that is coupled with machine learning algorithms would be useful for cost-effective and rapid quantification of cell viability and density even in field and resource-poor settings.
1991-01-01
The effect of receptor occupancy on insulin receptor endocytosis was examined in CHO cells expressing normal human insulin receptors (CHO/IR), autophosphorylation- and internalization-deficient receptors (CHO/IRA1018), and receptors which undergo autophosphorylation but lack a sequence required for internalization (CHO/IR delta 960). The rate of [125I]insulin internalization in CHO/IR cells at 37 degrees C was rapid at physiological concentrations, but decreased markedly in the presence of increasing unlabeled insulin (ED50 = 1-3 nM insulin, or 75,000 occupied receptors/cell). In contrast, [125I]insulin internalization by CHO/IRA1018 and CHO/IR delta 960 cells was slow and was not inhibited by unlabeled insulin. At saturating insulin concentrations, the rate of internalization by wild-type and mutant receptors was similar. Moreover, depletion of intracellular potassium, which has been shown to disrupt coated pit formation, inhibited the rapid internalization of [125I]insulin at physiological insulin concentrations by CHO/IR cells, but had little or no effect on [125I]insulin uptake by CHO/IR delta 960 and CHO/IRA1018 cells or wild-type cells at high insulin concentrations. These data suggest that the insulin-stimulated entry of the insulin receptor into a rapid, coated pit-mediated internalization pathway is saturable and requires receptor autophosphorylation and an intact juxtamembrane region. Furthermore, CHO cells also contain a constitutive nonsaturable pathway which does not require receptor autophosphorylation or an intact juxtamembrane region; this second pathway is unaffected by depletion of intracellular potassium, and therefore may be independent of coated pits. Our data suggest that the ligand-stimulated internalization of the insulin receptor may require specific saturable interactions between the receptor and components of the endocytic system. PMID:1757462
Pogrmic-Majkic, Kristina; Fa, Svetlana; Samardzija, Dragana; Hrubik, Jelena; Kaisarevic, Sonja; Andric, Nebojsa
2016-08-10
Atrazine (ATR) is an endocrine disruptor that affects steroidogenic process, resulting in disruption of reproductive function of the male and female gonads. In this study, we used the primary culture of peripubertal Leydig cells to investigate the effect of ATR on the rapid androgen production stimulated by human chorionic gonadotropin (hCG). We demonstrated that ATR activated multiple signaling pathways enhancing the rapid hCG-stimulated androgen biosynthesis in Leydig cells. Low hCG concentration (0.25ng/mL) caused cAMP-independent, but ERK1/2-dependent increase in androgen production after 60min of incubation. Co-treatment with ATR for 60min enhanced the cAMP production in hCG-stimulated cells. Accumulation of androgens was prevented by addition of U0126, N-acetyl-l-cysteine and AG1478. Co-treatment with hCG and ATR for 60min did not alter steroidogenic acute regulatory protein (Star) mRNA level in Leydig cells. After 120min, hCG further increased androgenesis in Leydig cells that was sensitive to inhibition of the cAMP/PKA, ERK1/2 and ROS signaling pathways. Co-treatment with ATR for 120min further enhanced the hCG-induced androgen production, which was prevented by inhibition of the calcium, PKC and EGFR signaling cascades. After 120min, ATR enhanced the expression of Star mRNA in hCG-stimulated Leydig cells through activation of the PKA and PKC pathway. Collectively, these data suggest that exposure to ATR caused perturbations in multiple signaling pathways, thus enhancing the rapid hCG-dependent androgen biosynthesis in peripubertal Leydig cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
THE DECADE OF THE RABiT (2005–15)
Garty, G.; Turner, H. C.; Salerno, A.; Bertucci, A.; Zhang, J.; Chen, Y.; Dutta, A.; Sharma, P.; Bian, D.; Taveras, M.; Wang, H.; Bhatla, A.; Balajee, A.; Bigelow, A. W.; Repin, M.; Lyulko, O. V.; Simaan, N.; Yao, Y. L.; Brenner, D. J.
2016-01-01
The RABiT (Rapid Automated Biodosimetry Tool) is a dedicated Robotic platform for the automation of cytogenetics-based biodosimetry assays. The RABiT was developed to fulfill the critical requirement for triage following a mass radiological or nuclear event. Starting from well-characterized and accepted assays we developed a custom robotic platform to automate them. We present here a brief historical overview of the RABiT program at Columbia University from its inception in 2005 until the RABiT was dismantled at the end of 2015. The main focus of this paper is to demonstrate how the biological assays drove development of the custom robotic systems and in turn new advances in commercial robotic platforms inspired small modifications in the assays to allow replacing customized robotics with ‘off the shelf’ systems. Currently, a second-generation, RABiT II, system at Columbia University, consisting of a PerkinElmer cell::explorer, was programmed to perform the RABiT assays and is undergoing testing and optimization studies. PMID:27412510
B cells expressing the transcription factor T-bet drive lupus-like autoimmunity
Rubtsov, Anatoly V.; Thurman, Joshua M.; Mennona, Johanna M.; Kappler, John W.; Marrack, Philippa
2017-01-01
B cells contribute to multiple aspects of autoimmune disorders and may play a role in triggering disease. Thus, targeting B cells may be a promising strategy for treating autoimmune disorders. Better understanding of the B cell subsets that are responsible for the development of autoimmunity will be critical for developing efficient therapies. Here we have reported that B cells expressing the transcription factor T-bet promote the rapid appearance of autoantibodies and germinal centers in spontaneous murine models of systemic lupus erythematosus (SLE). Conditional deletion of T-bet from B cells impaired the formation of germinal centers and mitigated the development of kidney damage and rapid mortality in SLE mice. B cell–specific deletion of T-bet was also associated with lower activation of both B cells and T cells. Taken together, our results suggest that targeting T-bet–expressing B cells may be a potential target for therapy for autoimmune diseases. PMID:28240602
Evidence of drug-response heterogeneity rapidly generated from a single cancer cell.
Wang, Rong; Jin, Chengmeng; Hu, Xun
2017-06-20
One cancer cell line is believed to be composed of numerous clones with different drug sensitivity. We sought to investigate the difference of drug-response pattern in clones from a cell line or from a single cell. We showed that 22 clones derived from 4T1 cells were drastically different from each other with respect to drug-response pattern against 11 anticancer drugs and expression profile of 19 genes associated with drug resistance or sensitivity. Similar results were obtained using daughter clones derived from a single 4T1 cell. Each daughter clone showed distinct drug-response pattern and gene expression profile. Similar results were also obtained using Bcap37 cells. We conclude that a single cancer cell can rapidly produce a population of cells with high heterogeneity of drug response and the acquisition of drug-response heterogeneity is random.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ling; Gan, Xueqi; Zhu, Zhuoli
Although many previous studies have shown that refractory period-dependent memory effect of vibration stress is anabolic for skeletal homeostasis, little is known about the rapid response of osteoblasts simply derived from vibration itself. In view of the potential role of reactive oxygen species (ROS) in mediating differentiated activity of osteoblasts, whether and how ROS regulates the rapid effect of vibration deserve to be demonstrated. Our findings indicated that MC3T3-E1 cells underwent decreased gene expression of Runx2, Col-I and ALP and impaired ALP activity accompanied by increased mitochondrial fission immediately after vibration loading. Moreover, we also revealed the involvement of ERK-Drp1more » signal transduction in ROS regulatory mechanisms responsible for the rapid effect of vibration stress. - Highlights: • ROS contributed to the rapid response of MC3T3-E1 cells for vibration stress. • Imbalance of mitochondrial dynamics were linked to the LMHFV-derived rapid response. • The role of ERK-Drp1 signal pathway in the LMHFV-derived osteoblast rapid response.« less
Long-distance signaling within Coleus x hybridus leaves; mediated by changes in intra-leaf CO2?
NASA Technical Reports Server (NTRS)
Stahlberg, R.; Van Volkenburgh, E.; Cleland, R. E.
2001-01-01
Rapid long-distance signaling in plants can occur via several mechanisms, including symplastic electric coupling and pressure waves. We show here in variegated Coleus leaves a rapid propagation of electrical signals that appears to be caused by changes in intra-leaf CO2 concentrations. Green leaf cells, when illuminated, undergo a rapid depolarization of their membrane potential (Vm) and an increase in their apoplastic pH (pHa) by a process that requires photosynthesis. This is followed by a slower hyperpolarization of Vm and apoplastic acidification, which do not require photosynthesis. White (chlorophyll-lacking) leaf cells, when in isolated white leaf segments, show only the slow response, but when in mixed (i.e. green and white) segments, the rapid Vm depolarization and increase in pHa propagate over more than 10 mm from the green to the white cells. Similarly, these responses propagate 12-20 mm from illuminated to unilluminated green cells. The fact that the propagation of these responses is eliminated when the leaf air spaces are infiltrated with solution indicates that the signal moves in the apoplast rather than the symplast. A depolarization of the mesophyll cells is induced in the dark by a decrease in apoplastic CO2 but not by an increase in pHa. These results support the hypothesis that the propagating signal for the depolarization of the white mesophyll cells is a photosynthetically induced decrease in the CO2 level of the air spaces throughout the leaf.
Microcinematographic analysis of tethered Leptospira illini.
Charon, N W; Daughtry, G R; McCuskey, R S; Franz, G N
1984-01-01
A model of Leptospira motility was recently proposed. One element of the model states that in translating cells the anterior spiral-shaped end gyrates counterclockwise and the posterior hook-shaped end gyrates clockwise. We tested these predictions by analyzing cells tethered to a glass surface. Leptospira illini was incubated with antibody-coated latex beads (Ab-beads). These beads adhered to the cells, and subsequently some cells became attached to either the slide or the cover glass via the Ab-beads. As previously reported, these cells rapidly moved back and forth across the surface of the beads. In addition, a general trend was observed: cells tethered to the cover glass rotated clockwise around the Ab-bead; cells tethered to the slide rotated counterclockwise around the Ab-bead. A computer-aided microcinematographic analysis of tethered cells indicated that the direction of rotation of cells around the Ab-bead was a function of both the surface of attachment and the shape of the cell ends. The results can best be explained by assuming that the gyrating ends interact with the glass surface to cause rotation around the Ab-beads. The analysis obtained indicates that the hook- and spiral-shaped ends rotate in the directions predicted by the model. In addition, the tethered cell assay permitted detection of rapid, coordinated reversals of the cell ends, e.g., cells rapidly switched from a hook-spiral configuration to a spiral-hook configuration. These results suggest the existance of a mechanism which coordinates the shape of the cell ends of L. illini. Images PMID:6501226
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glueckstern, P.; Wilson, J.V.; Reed, S.A.
1976-06-01
Design and cost modifications were made to ORNL's Computer Programs MSF-21 and VTE-21 originally developed for the rapid calculation and design optimization of multistage flash (MSF) and multieffect vertical tube evaporator (VTE) desalination plants. The modifications include additional design options to make possible the evaluation of desalting plants based on current technology (the original programs were based on conceptual designs applying advanced and not yet proven technological developments and design features) and new materials and equipment costs updated to mid-1975.
Rapid mapping of chromosomal breakpoints: from blood to BAC in 20 days.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Chun-Mei; Kwan, Johnson; Weier, Jingly F.
2009-02-25
Structural chromosome aberrations and associated segmental or chromosomal aneusomies are major causes of reproductive failure in humans. Despite the fact that carriers of reciprocal balanced translocation often have no other clinical symptoms or disease, impaired chromosome homologue pairing in meiosis and karyokinesis errors lead to over-representation of translocations carriers in the infertile population and in recurrent pregnancy loss patients. At present, clinicians have no means to select healthy germ cells or balanced zygotes in vivo, but in vitro fertilization (IVF) followed by preimplantation genetic diagnosis (PGD) offers translocation carriers a chance to select balanced or normal embryos for transfer. Althoughmore » a combination of telomeric and centromeric probes can differentiate embryos that are unbalanced from normal or unbalanced ones, a seemingly random position of breakpoints in these IVF-patients poses a serious obstacle to differentiating between normal and balanced embryos, which for most translocation couples, is desirable. Using a carrier with reciprocal translocation t(4;13) as an example, we describe our state-of-the-art approach to the preparation of patient-specific DNA probes that span or 'extent' the breakpoints. With the techniques and resources described here, most breakpoints can be accurately mapped in a matter of days using carrier lymphocytes, and a few extra days are allowed for PGD-probe optimization. The optimized probes will then be suitable for interphase cell analysis, a prerequisite for PGD since blastomeres are biopsied from normally growing day 3 - embryos regardless of their position in the mitotic cell cycle. Furthermore, routine application of these rapid methods should make PGD even more affordable for translocation carriers enrolled in IVF programs.« less
Preparative electrophoresis of cultured human cells: Effect of cell cycle phase
NASA Technical Reports Server (NTRS)
Kunze, M. E.; Todd, P. W.; Goolsby, C. L.; Walker, J. T.
1985-01-01
Human epithelioid T-1E cells were cultured in suspension and subjected to density gradient electrophoresis upward in a vertical column. It is indicated that the most rapidly migrating cells were at the beginning of the cell cycle and the most slowly migrating cells were at the end of the cell cycle. The fastest migrating cells divided 24 hr later than the slowest migrating cells. Colonies developing from slowly migrating cells had twice as many cells during exponential growth as did the most rapidly migrating cells, and the numbers of cells per colony at any time was inversely related to the electrophoretic migration rate. The DNA measurements by fluorescence flow cytometry indicates that the slowest migrating cell populations are enriched in cells that have twice as much DNA as the fastest migrating cells. It is concluded that electrophoretic mobility of these cultured human cells declines steadily through the cell cycle and that the mobility is lowest at the end of G sub 2 phase and highest at the beginning of G sub 1 phase.
NASA Technical Reports Server (NTRS)
Flemings, M. C.; Matson, D. M.; Loser, W.; Hyers, R. W.; Rogers, J. R.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The paper is an overview of the status and science for the LODESTARS (Levitation Observation of Dendrite Evolution in Steel Ternary Alloy Rapid Solidification) research project. The program is aimed at understanding how melt convection influences phase selection and the evolution of rapid solidification microstructures.
Solaymani-Mohammadi, Shahram; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Frey, Blake F; Billeskov, Rolf; Singer, Steven M; Berzofsky, Jay A; Eckmann, Lars; Kagnoff, Martin F
2016-03-01
The programmed death-1 receptor is expressed on a wide range of immune effector cells, including T cells, natural killer T cells, dendritic cells, macrophages, and natural killer cells. In malignancies and chronic viral infections, increased expression of programmed death-1 by T cells is generally associated with a poor prognosis. However, its role in early host microbial defense at the intestinal mucosa is not well understood. We report that programmed death-1 expression is increased on conventional natural killer cells but not on CD4(+), CD8(+) or natural killer T cells, or CD11b(+) or CD11c(+) macrophages or dendritic cells after infection with the mouse pathogen Citrobacter rodentium. Mice genetically deficient in programmed death-1 or treated with anti-programmed death-1 antibody were more susceptible to acute enteric and systemic infection with Citrobacter rodentium. Wild-type but not programmed death-1-deficient mice infected with Citrobacter rodentium showed significantly increased expression of the conventional mucosal NK cell effector molecules granzyme B and perforin. In contrast, natural killer cells from programmed death-1-deficient mice had impaired expression of those mediators. Consistent with programmed death-1 being important for intracellular expression of natural killer cell effector molecules, mice depleted of natural killer cells and perforin-deficient mice manifested increased susceptibility to acute enteric infection with Citrobacter rodentium. Our findings suggest that increased programmed death-1 signaling pathway expression by conventional natural killer cells promotes host protection at the intestinal mucosa during acute infection with a bacterial gut pathogen by enhancing the expression and production of important effectors of natural killer cell function. © Society for Leukocyte Biology.
Extracellular vesicle-mediated transfer of processed and functional RNY5 RNA
Chakrabortty, Sudipto K.; Prakash, Ashwin; Nechooshtan, Gal; Hearn, Stephen; Gingeras, Thomas R.
2015-01-01
Extracellular vesicles (EVs) have been proposed as a means to promote intercellular communication. We show that when human primary cells are exposed to cancer cell EVs, rapid cell death of the primary cells is observed, while cancer cells treated with primary or cancer cell EVs do not display this response. The active agents that trigger cell death are 29- to 31-nucleotide (nt) or 22- to 23-nt processed fragments of an 83-nt primary transcript of the human RNY5 gene that are highly likely to be formed within the EVs. Primary cells treated with either cancer cell EVs, deproteinized total RNA from either primary or cancer cell EVs, or synthetic versions of 31- and 23-nt fragments trigger rapid cell death in a dose-dependent manner. The transfer of processed RNY5 fragments through EVs may reflect a novel strategy used by cancer cells toward the establishment of a favorable microenvironment for their proliferation and invasion. PMID:26392588
Visualizing the Rapid and Dynamic Elimination of Allogeneic T Cells in Secondary Lymphoid Organs.
Kanda, Yasuhiro; Takeuchi, Arata; Ozawa, Madoka; Kurosawa, Yoichi; Kawamura, Toshihiko; Bogdanova, Dana; Iioka, Hidekazu; Kondo, Eisaku; Kitazawa, Yusuke; Ueta, Hisashi; Matsuno, Kenjiro; Kinashi, Tatsuo; Katakai, Tomoya
2018-06-20
Allogeneic organ transplants are rejected by the recipient immune system within several days or weeks. However, the rejection process of allogeneic T (allo-T) cells is poorly understood. In this study, using fluorescence-based monitoring and two-photon live imaging in mouse adoptive transfer system, we visualized the fate of allo-T cells in the in vivo environment and showed rapid elimination in secondary lymphoid organs (SLOs). Although i.v. transferred allo-T cells efficiently entered host SLOs, including lymph nodes and the spleen, ∼70% of the cells had disappeared within 24 h. At early time points, allo-T cells robustly migrated in the T cell area, whereas after 8 h, the numbers of arrested cells and cell fragments were dramatically elevated. Apoptotic breakdown of allo-T cells released a large amount of cell debris, which was efficiently phagocytosed and cleared by CD8 + dendritic cells. Rapid elimination of allo-T cells was also observed in nu/nu recipients. Depletion of NK cells abrogated allo-T cell reduction only in a specific combination of donor and recipient genetic backgrounds. In addition, F 1 hybrid transfer experiments showed that allo-T cell killing was independent of the missing-self signature typically recognized by NK cells. These suggest the presence of a unique and previously uncharacterized modality of allorecognition by the host immune system. Taken together, our findings reveal an extremely efficient and dynamic process of allogeneic lymphocyte elimination in SLOs, which could not be recapitulated in vitro and is distinct from the rejection of solid organ and bone marrow transplants. Copyright © 2018 by The American Association of Immunologists, Inc.
Bierlein De la Rosa, Metzere; Sharma, Anup D; Mallapragada, Surya K; Sakaguchi, Donald S
2017-11-01
The use of genetically modified mesenchymal stem cells (MSCs) is a rapidly growing area of research targeting delivery of therapeutic factors for neuro-repair. Cells can be programmed to hypersecrete various growth/trophic factors such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and nerve growth factor (NGF) to promote regenerative neurite outgrowth. In addition to genetic modifications, MSCs can be subjected to transdifferentiation protocols to generate neural cell types to physically and biologically support nerve regeneration. In this study, we have taken a novel approach by combining these two unique strategies and evaluated the impact of transdifferentiating genetically modified MSCs into a Schwann cell-like phenotype. After 8 days in transdifferentiation media, approximately 30-50% of transdifferentiated BDNF-secreting cells immunolabeled for Schwann cell markers such as S100β, S100, and p75 NTR . An enhancement was observed 20 days after inducing transdifferentiation with minimal decreases in expression levels. BDNF production was quantified by ELISA, and its biological activity tested via the PC12-TrkB cell assay. Importantly, the bioactivity of secreted BDNF was verified by the increased neurite outgrowth of PC12-TrkB cells. These findings demonstrate that not only is BDNF actively secreted by the transdifferentiated BDNF-MSCs, but also that it has the capacity to promote neurite sprouting and regeneration. Given the fact that BDNF production remained stable for over 20 days, we believe that these cells have the capacity to produce sustainable, effective, BDNF concentrations over prolonged time periods and should be tested within an in vivo system for future experiments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bloch, J. T.; Hanger, R. T.; Nichols, F. W.
1979-01-01
Modified 70 mm movie film editor automatically attaches solar cells to flexible film substrate. Machine can rapidly and inexpensively assemble cells for solar panels at rate of 250 cells per minute. Further development is expected to boost production rate to 1000 cells per minute.
Cellular mechanisms to survive salt in the halophyte Cakile maritima.
Arbelet-Bonnin, Delphine; Ben Hamed-Laouti, Ibtissem; Laurenti, Patrick; Abdelly, Chedly; Ben Hamed, Karim; Bouteau, François
2018-07-01
We recently identified two behaviours in cultured cells of the salt accumulating halophyte Cakile maritima: one related to a sustained depolarization due to Na + influx through the non-selective cation channels leading to programmed cell death of these cells, a second one related to a transient depolarization allowing cells to survive (Ben Hamed-Laouti, 2016). In this study, we considered at the cellular level mechanisms that could participate to the exclusion of Na + out of the cell and thus participate in the regulation of the internal contents of Na + and cell survival. Upon addition of NaCl in the culture medium of suspension cells of C. maritima, we observed a rapid influx of Na + followed by an efflux dependent of the activity of plasma membrane H + -ATPases, in accordance with the functioning of a Na + /H + antiporter and the ability of some cells to repolarize. The Na + efflux was shown to be dependent on Na + -dependent on Ca 2+ influx like the SOS1 Na + /H + antiporter. We further could observe in response to salt addition, an early production of singlet oxygen ( 1 O 2 ) probably due to peroxidase activities. This early 1 O 2 production seemed to be a prerequisite to the Na + efflux. Our findings suggest that in addition to the pathway leading to PCD (Ben Hamed-Laouti, 2016), a second pathway comprising an SOS-like system could participate to the survival of a part of the C. maritima cultured cells challenged by salt stress. Copyright © 2018 Elsevier B.V. All rights reserved.
Energy deprivation by silibinin in colorectal cancer cells
Raina, Komal; Agarwal, Chapla; Wadhwa, Ritambhara; Serkova, Natalie J.; Agarwal, Rajesh
2013-01-01
Small molecules with the potential to initiate different types of programmed cell death could be useful ‘adjunct therapy’ where current anticancer modalities fail to generate significant activity due to a defective apoptotic machinery or resistance of cancer cells to the specific death mechanism induced by that treatment. The current study identified silibinin, for the first time, as one such natural agent, having dual efficacy against colorectal cancer (CRC) cells. First, silibinin rapidly induced oxidative stress in CRC SW480 cells due to reactive oxygen species (ROS) generation with a concomitant dissipation of mitchondrial potential (ΔΨm) and cytochrome c release leading to mild apoptosis as a biological effect. However, with increased exposure to silibinin, cytoplasmic vacuolization intensified within the cells followed by sequestration of the organelles, which inhibits the further release of cytochrome c. Interestingly, this decrease in apoptotic response correlated with increased autophagic events as evidenced by tracking the dynamics of LC3-II within the cells. Mechanistic studies revealed that silibinin strongly inhibited PIK3CA-AKT–MTOR but activated MAP2K1/2-MAPK1/3 pathways for its biological effects. Corroborating these effects, endoplasmic reticulum stress was generated and glucose uptake inhibition as well as energy restriction were induced by silibinin, thus, mimicking starvation-like conditions. Further, the cellular damage to tumor cells by silibinin was severe and irreparable due to sustained interference in essential cellular processes such as mitochondrial metabolism, phospholipid and protein synthesis, suggesting that silibinin harbors a deadly ‘double-edged sword’ against CRC cells thereby further advocating its clinical effectiveness against this malignancy. PMID:23445752
Graham, Madge Y
2005-12-01
Lactofen belongs to the diphenylether class of herbicides, which targets protoporphyrinogen oxidase, which in turn causes singlet oxygen generation. In tolerant plants like soybean (Glycine max), the chemical nonetheless causes necrotic patches called "bronzing" in contact areas. Here it is shown that such bronzing is accompanied by cell death, which was quantified from digital microscopic images using Assess Software. Cellular autofluorescence accompanied cell death, and a homolog of the cell death marker gene, Hsr203j, was induced by lactofen in treated soybean tissues. Thus, this form of chemically induced cell death shares some hallmarks of certain types of programmed cell death. In addition to the cell death phenotype, lactofen caused enhanced expressions of chalcone synthase and chalcone reductase genes, mainly in the exposed and immediately adjacent (proximal) cells. Furthermore, isoflavone synthase genes, which are wound inducible in soybean, were up-regulated by lactofen in both proximal and distal cell zones in minimally wounded cotyledons and further enhanced in wounded tissues. Moreover, if the wall glucan elicitor from Phytophthora sojae was present during lactofen treatment, the induction of isoflavone synthase was even more rapid. These results are consistent with the fact that lactofen triggers massive isoflavone accumulations and activates the capacity for glyceollin elicitation competency. In addition, lactofen induces late expression of a selective set of pathogenesis-related (PR) protein genes, including PR-1a, PR-5, and PR-10, mainly in treated proximal tissues. These various results are discussed in the context of singlet oxygen-induced responses and lactofen's potential as a disease resistance-inducing agent.
Chiappini, Ciro; Martinez, Jonathan O.; De Rosa, Enrica; Almeida, Carina S.
2016-01-01
Nanoneedles display potential in mediating the delivery of drugs and biologicals, as well as intracellular sensing and single cell stimulation through direct access to the cell cytoplasm. Nanoneedles enable cytosolic delivery, negotiating the cell membrane and the endolysosomal system, thus overcoming these major obstacles to the efficacy of nanotherapeutics. The low toxicity and minimal invasiveness of nanoneedles has a potential for the sustained non-immunogenic delivery of payloads in vivo, provided that the development of biocompatible nanoneedles with a simple deployment strategy is achieved. Here we present a mesoporous silicon nanoneedle array that achieves a tight interface with the cell, rapidly negotiating local biological barriers to grant temporary access to the cytosol with minimal impact on cell viability. The tightness of this interfacing enables both delivery of cell-impermeant quantum dots in vivo and live intracellular sensing of pH. Dissecting the biointerface over time elucidated the dynamics of cell association and nanoneedle biodegradation, showing rapid interfacing leading to cytosolic payload delivery within less than 30 minutes in vitro. The rapid and simple application of nanoneedles in vivo to the surface of tissues with different architectures invariably resulted in the localized delivery of quantum dots to the superficial cells and their prolonged retention. This investigation provides an understanding of the dynamics of nanoneedles’ biointerface and delivery outlining a strategy for highly local intracellular delivery of nanoparticles and cell-impermeant payloads within live tissues. PMID:25858596
Spielberg, Freya; Kurth, Ann; Reidy, William; McKnight, Teka; Dikobe, Wame; Wilson, Charles
2011-06-01
This article highlights findings from an evaluation that explored the impact of mobile versus clinic-based testing, rapid versus central-lab based testing, incentives for testing, and the use of a computer counseling program to guide counseling and automate evaluation in a mobile program reaching people of color at risk for HIV. The program's results show that an increased focus on mobile outreach using rapid testing, incentives and health information technology tools may improve program acceptability, quality, productivity and timeliness of reports. This article describes program design decisions based on continuous quality assessment efforts. It also examines the impact of the Computer Assessment and Risk Reduction Education computer tool on HIV testing rates, staff perception of counseling quality, program productivity, and on the timeliness of evaluation reports. The article concludes with a discussion of implications for programmatic responses to the Centers for Disease Control and Prevention's HIV testing recommendations.
Automated structure determination of proteins with the SAIL-FLYA NMR method.
Takeda, Mitsuhiro; Ikeya, Teppei; Güntert, Peter; Kainosho, Masatsune
2007-01-01
The labeling of proteins with stable isotopes enhances the NMR method for the determination of 3D protein structures in solution. Stereo-array isotope labeling (SAIL) provides an optimal stereospecific and regiospecific pattern of stable isotopes that yields sharpened lines, spectral simplification without loss of information, and the ability to collect rapidly and evaluate fully automatically the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as those that can be analyzed using conventional methods. Here, we describe a protocol for the preparation of SAIL proteins by cell-free methods, including the preparation of S30 extract and their automated structure analysis using the FLYA algorithm and the program CYANA. Once efficient cell-free expression of the unlabeled or uniformly labeled target protein has been achieved, the NMR sample preparation of a SAIL protein can be accomplished in 3 d. A fully automated FLYA structure calculation can be completed in 1 d on a powerful computer system.
Li, Xiuying; Yang, Qiwei; Bai, Jinping; Xuan, Yali; Wang, Yimin
2015-01-01
Normalization to a reference gene is the method of choice for quantitative reverse transcription-PCR (RT-qPCR) analysis. The stability of reference genes is critical for accurate experimental results and conclusions. We have evaluated the expression stability of eight commonly used reference genes found in four different human mesenchymal stem cells (MSC). Using geNorm, NormFinder and BestKeeper algorithms, we show that beta-2-microglobulin and peptidyl-prolylisomerase A were the optimal reference genes for normalizing RT-qPCR data obtained from MSC, whereas the TATA box binding protein was not suitable due to its extensive variability in expression. Our findings emphasize the significance of validating reference genes for qPCR analyses. We offer a short list of reference genes to use for normalization and recommend some commercially-available software programs as a rapid approach to validate reference genes. We also demonstrate that the two reference genes, β-actin and glyceraldehyde-3-phosphate dehydrogenase, are frequently used are not always successful in many cases.
Li, Xiangzhi; Li, Li; Pandey, Ruchi; Byun, Jung S.; Gardner, Kevin; Qin, Zhaohui; Dou, Yali
2012-01-01
SUMMARY Pluripotent embryonic stem cells (ESCs) maintain self-renewal and the potential for rapid response to differentiation cues. Both ESC features are subject to epigenetic regulation. Here we show that histone acetyltransferase Mof plays an essential role in the maintenance of ESC self-renewal and pluripotency. ESCs with Mof deletion lose characteristic morphology, alkaline phosphatase (AP) staining and differentiation potential. They also have aberrant expression of core transcription factors Nanog, Oct4 and Sox2. Importantly, the phenotypes of Mof null ESCs can be partially suppressed by Nanog overexpression, supporting that Mof functions as an upstream regulator of Nanog in ESCs. Genome-wide ChIP sequencing and transcriptome analyses further demonstrate that Mof is an integral component of ESC core transcription network and Mof primes genes for diverse developmental programs. Mof is also required for Wdr5 recruitment and H3 K4 methylation at key regulatory loci, highlighting complexity and interconnectivity of various chromatin regulators in ESCs. PMID:22862943
Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss
Newton, Joseph M.; Schofield, Desmond; Vlahopoulou, Joanna
2016-01-01
Monitoring the physical or chemical properties of cell broths to infer cell status is often challenging due to the complex nature of the broth. Key factors indicative of cell status include cell density, cell viability, product leakage, and DNA release to the fermentation broth. The rapid and accurate prediction of cell status for hosts with intracellular protein products can minimise product loss due to leakage at the onset of cell lysis in fermentation. This article reports the rheological examination of an industrially relevant E. coli fermentation producing antibody fragments (Fab'). Viscosity monitoring showed an increase in viscosity during the exponential phase in relation to the cell density increase, a relatively flat profile in the stationary phase, followed by a rapid increase which correlated well with product loss, DNA release and loss of cell viability. This phenomenon was observed over several fermentations that a 25% increase in broth viscosity (using induction‐point viscosity as a reference) indicated 10% product loss. Our results suggest that viscosity can accurately detect cell lysis and product leakage in postinduction cell cultures, and can identify cell lysis earlier than several other common fermentation monitoring techniques. This work demonstrates the utility of rapidly monitoring the physical properties of fermentation broths, and that viscosity monitoring has the potential to be a tool for process development to determine the optimal harvest time and minimise product loss. © 2016 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers, 32:1069–1076, 2016 PMID:27111912
Vocational Teacher Education at Ferris State College: Product of Constant Evaluation and Revision
ERIC Educational Resources Information Center
Storm, George
1974-01-01
The trade-technical education program at Ferris State College, Big Rapids, Michigan, is reviewed. The curriculum of the college, its intern programs, and the teacher preparation technical programs are described. (DS)
NASA Astrophysics Data System (ADS)
Sivanantha, Ninnuja; Ma, Charles; Collins, David J.; Sesen, Muhsincan; Brenker, Jason; Coppel, Ross L.; Neild, Adrian; Alan, Tuncay
2014-09-01
This letter presents a method which employs surface acoustic wave induced acoustic streaming to differentially peel treated red blood cells (RBCs) off a substrate based on their adhesive properties and separate populations of pathological cells from normal ones. We demonstrate the principle of operation by comparing the applied power and time required to overcome the adhesion displayed by healthy, glutaraldehyde-treated or malaria-infected human RBCs. Our experiments indicate that the method can be used to differentiate between various cell populations contained in a 9 μl droplet within 30 s, suggesting potential for rapid diagnostics.
Therapeutic PD-L1 and LAG-3 blockade rapidly clears established blood-stage Plasmodium infection
Butler, Noah S.; Moebius, Jacqueline; Pewe, Lecia L.; Traore, Boubacar; Doumbo, Ogobara K.; Tygrett, Lorraine T.; Waldschmidt, Thomas J.; Crompton, Peter D.; Harty, John T.
2011-01-01
Plasmodium infection of erythrocytes induces clinical malaria. Parasite-specific CD4+ T cells correlate with reduced parasite burdens and severity of human malaria, and are required to control blood-stage infection in mice. However, the characteristics of CD4+ T cells that determine protection or parasite persistence remain unknown. Here we show that P. falciparum infection of humans increased expression of an inhibitory receptor (PD-1) associated with T cell dysfunction. In vivo blockade of PD-L1 and LAG-3 restored CD4+ T cell function, amplified T follicular helper cell and germinal center B cell and plasmablast numbers, enhanced protective antibodies and rapidly cleared blood-stage malaria in mice. Thus, chronic malaria drives specific T cell dysfunction, which can be rescued to enhance parasite control using inhibitory therapies. PMID:22157630
Rubio, Alicia; Luoni, Mirko; Giannelli, Serena G; Radice, Isabella; Iannielli, Angelo; Cancellieri, Cinzia; Di Berardino, Claudia; Regalia, Giulia; Lazzari, Giovanna; Menegon, Andrea; Taverna, Stefano; Broccoli, Vania
2016-11-18
The CRISPR/Cas9 system is a rapid and customizable tool for gene editing in mammalian cells. In particular, this approach has widely opened new opportunities for genetic studies in neurological disease. Human neurons can be differentiated in vitro from hPSC (human Pluripotent Stem Cells), hNPCs (human Neural Precursor Cells) or even directly reprogrammed from fibroblasts. Here, we described a new platform which enables, rapid and efficient CRISPR/Cas9-mediated genome targeting simultaneously with three different paradigms for in vitro generation of neurons. This system was employed to inactivate two genes associated with neurological disorder (TSC2 and KCNQ2) and achieved up to 85% efficiency of gene targeting in the differentiated cells. In particular, we devised a protocol that, combining the expression of the CRISPR components with neurogenic factors, generated functional human neurons highly enriched for the desired genome modification in only 5 weeks. This new approach is easy, fast and that does not require the generation of stable isogenic clones, practice that is time consuming and for some genes not feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaram, S. K.; Sacksteder, Colette A.; Weber, T. J.
2013-01-01
A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live-cells interact with an external stimulus, e.g., a nanosized particle (NSP), and the toxicity and broad risk associated with these stimuli. NSPs are increasingly used in medicine with largely undetermined hazards in complex cell dynamics and environments. It is difficult to capture the complexity and dynamics of these interactions by following an omics-based approach exclusively, which are expensive and time-consuming. Additionally, this approach needs destructive sampling methods. Live-cell attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry is well suited tomore » provide noninvasive approach to provide rapid screening of cellular responses to potentially toxic NSPs or any stimuli. Herein we review the technical basis of the approach, the instrument configuration and interface with the biological media, and various effects that impact the data, data analysis, and toxicity. Our preliminary results on live-cell monitoring show promise for rapid screening the NSPs.« less
Rapid Thermal Processing (RTP) of semiconductors in space
NASA Technical Reports Server (NTRS)
Anderson, T. J.; Jones, K. S.
1993-01-01
The progress achieved on the project entitled 'Rapid Thermal Processing of Semiconductors in Space' for a 12 month period of activity ending March 31, 1993 is summarized. The activity of this group is being performed under the direct auspices of the ROMPS program. The main objective of this program is to develop and demonstrate the use of advanced robotics in space with rapid thermal process (RTP) of semiconductors providing the test technology. Rapid thermal processing is an ideal processing step for demonstration purposes since it encompasses many of the characteristics of other processes used in solid state device manufacturing. Furthermore, a low thermal budget is becoming more important in existing manufacturing practice, while a low thermal budget is critical to successful processing in space. A secondary objective of this project is to determine the influence of microgravity on the rapid thermal process for a variety of operating modes. In many instances, this involves one or more fluid phases. The advancement of microgravity processing science is an important ancillary objective.
Aron, Miles; Browning, Richard; Carugo, Dario; Sezgin, Erdinc; Bernardino de la Serna, Jorge; Eggeling, Christian; Stride, Eleanor
2017-05-12
Spectral imaging with polarity-sensitive fluorescent probes enables the quantification of cell and model membrane physical properties, including local hydration, fluidity, and lateral lipid packing, usually characterized by the generalized polarization (GP) parameter. With the development of commercial microscopes equipped with spectral detectors, spectral imaging has become a convenient and powerful technique for measuring GP and other membrane properties. The existing tools for spectral image processing, however, are insufficient for processing the large data sets afforded by this technological advancement, and are unsuitable for processing images acquired with rapidly internalized fluorescent probes. Here we present a MATLAB spectral imaging toolbox with the aim of overcoming these limitations. In addition to common operations, such as the calculation of distributions of GP values, generation of pseudo-colored GP maps, and spectral analysis, a key highlight of this tool is reliable membrane segmentation for probes that are rapidly internalized. Furthermore, handling for hyperstacks, 3D reconstruction and batch processing facilitates analysis of data sets generated by time series, z-stack, and area scan microscope operations. Finally, the object size distribution is determined, which can provide insight into the mechanisms underlying changes in membrane properties and is desirable for e.g. studies involving model membranes and surfactant coated particles. Analysis is demonstrated for cell membranes, cell-derived vesicles, model membranes, and microbubbles with environmentally-sensitive probes Laurdan, carboxyl-modified Laurdan (C-Laurdan), Di-4-ANEPPDHQ, and Di-4-AN(F)EPPTEA (FE), for quantification of the local lateral density of lipids or lipid packing. The Spectral Imaging Toolbox is a powerful tool for the segmentation and processing of large spectral imaging datasets with a reliable method for membrane segmentation and no ability in programming required. The Spectral Imaging Toolbox can be downloaded from https://uk.mathworks.com/matlabcentral/fileexchange/62617-spectral-imaging-toolbox .
Evaluation of Distant Education Programs with Regards to Various Shareholder Opinions
ERIC Educational Resources Information Center
Tonbuloglu, Betül; Gürol, Aysun
2016-01-01
The strong demand and rapid increase in the number of programs concerning distant education programs has put the quality problem of distant education services into the agenda. It is crucial to determine the strengths and weaknesses of distant education programs, the problems encountered by these programs and making the required improvements. The…
CHO cell enlargement oscillates with a temperature-compensated period of 24 min
NASA Technical Reports Server (NTRS)
Pogue, R.; Morre, D. M.; Morre, D. J.
2000-01-01
The rate of increase in cell area of CHO cells when measured at intervals of 1 min using a light microscope equipped with a video measurement system, oscillated with a minimum period of about 24 min. The pattern of oscillations paralleled those of the 24 min period observed with the oxidation of NADH by an external cell surface or plasma membrane NADH oxidase. The increase in cell area was non-linear. Intervals of rapid increase in area alternated with intervals of rapid decrease in area. The length of the 24 min period was temperature-compensated (approximately the same when measured at 14 degrees C, 24 degrees C or 34 degrees C) while the rate of cell enlargement increased with temperature over this same range of temperatures.
NASA Technical Reports Server (NTRS)
Stowe, R. P.; Cubbage, M. L.; Sams, C. F.; Pierson, D. L.; Barrett, A. D.
1998-01-01
A rapid and highly sensitive fluorescent in situ hybridization (FISH) assay was developed to detect Epstein Barr virus (EBV)-infected cells in peripheral blood. Multiple fluorescein-labeled antisense oligonucleotide probes were designed to hybridize to the EBER1 transcript, which is highly expressed in latently infected cells. After a rapid (30 min) hybridization, the cells were analyzed by flow cytometry. EBER1 was detected in several positive control cell lines that have variable numbers of EBV genome copies. No EBER1 was detected in two known EBV-negative cell lines. Northern blot analyses confirmed the presence and quantity of EBER1 transcripts in each cell line. This method was used to quantify the number of EBV-infected cells in peripheral blood from a patient with chronic mononucleosis. These results indicate that EBV-infected cells can be detected at the single cell level, and that this assay can be used to quantify the number of EBV-infected cells in clinical samples.
Rapid cell-free forward engineering of novel genetic ring oscillators
Niederholtmeyer, Henrike; Sun, Zachary Z; Hori, Yutaka; Yeung, Enoch; Verpoorte, Amanda; Murray, Richard M; Maerkl, Sebastian J
2015-01-01
While complex dynamic biological networks control gene expression in all living organisms, the forward engineering of comparable synthetic networks remains challenging. The current paradigm of characterizing synthetic networks in cells results in lengthy design-build-test cycles, minimal data collection, and poor quantitative characterization. Cell-free systems are appealing alternative environments, but it remains questionable whether biological networks behave similarly in cell-free systems and in cells. We characterized in a cell-free system the ‘repressilator’, a three-node synthetic oscillator. We then engineered novel three, four, and five-gene ring architectures, from characterization of circuit components to rapid analysis of complete networks. When implemented in cells, our novel 3-node networks produced population-wide oscillations and 95% of 5-node oscillator cells oscillated for up to 72 hr. Oscillation periods in cells matched the cell-free system results for all networks tested. An alternate forward engineering paradigm using cell-free systems can thus accurately capture cellular behavior. DOI: http://dx.doi.org/10.7554/eLife.09771.001 PMID:26430766
Ultra-localized single cell electroporation using silicon nanowires.
Jokilaakso, Nima; Salm, Eric; Chen, Aaron; Millet, Larry; Guevara, Carlos Duarte; Dorvel, Brian; Reddy, Bobby; Karlstrom, Amelie Eriksson; Chen, Yu; Ji, Hongmiao; Chen, Yu; Sooryakumar, Ratnasingham; Bashir, Rashid
2013-02-07
Analysis of cell-to-cell variation can further the understanding of intracellular processes and the role of individual cell function within a larger cell population. The ability to precisely lyse single cells can be used to release cellular components to resolve cellular heterogeneity that might be obscured when whole populations are examined. We report a method to position and lyse individual cells on silicon nanowire and nanoribbon biological field effect transistors. In this study, HT-29 cancer cells were positioned on top of transistors by manipulating magnetic beads using external magnetic fields. Ultra-rapid cell lysis was subsequently performed by applying 600-900 mV(pp) at 10 MHz for as little as 2 ms across the transistor channel and the bulk substrate. We show that the fringing electric field at the device surface disrupts the cell membrane, leading to lysis from irreversible electroporation. This methodology allows rapid and simple single cell lysis and analysis with potential applications in medical diagnostics, proteome analysis and developmental biology studies.
Pro-inflammatory Cytokine Expression of Spleen Dendritic Cells in Mouse Toxoplasmosis
Nam, Ho-Woo; Ahn, Hye-Jin
2011-01-01
Dendritic cells have been known as a member of strong innate immune cells against infectious organelles. In this study, we evaluated the cytokine expression of splenic dendritic cells in chronic mouse toxoplasmosis by tissue cyst-forming Me49 strain and demonstrated the distribution of lymphoid dendritic cells by fluorescence-activated cell sorter (FACS). Pro-inflammatory cytokines, such as IL-1α, IL-1β, IL-6, and IL-10 increased rapidly at week 1 post-infection (PI) and peaked at week 3 PI. Serum IL-10 level followed the similar patterns. FACS analysis showed that the number of CD8α+/CD11c+ splenic dendritic cells increased at week 1 and peaked at week 3 PI. In conclusion, mouse splenic dendritic cells showed early and rapid cytokine changes and may have important protective roles in early phases of murine toxoplasmosis. PMID:21738265
Rapid and highly fieldable viral diagnostic
McKnight, Timothy E.
2016-12-20
The present invention relates to a rapid, highly fieldable, nearly reagentless diagnostic to identify active RNA viral replication in a live, infected cells, and more particularly in leukocytes and tissue samples (including biopsies and nasal swabs) using an array of a plurality of vertically-aligned nanostructures that impale the cells and introduce a DNA reporter construct that is expressed and amplified in the presence of active viral replication.
A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring.
Wan, Lei; Megarity, Clare F; Siritanaratkul, Bhavin; Armstrong, Fraser A
2018-01-23
A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP + and NADPH with a Pt electrode catalysing 2H + /H 2 interconversion. This Communication demonstrates its performance and characteristics using the reductive amination of 2-oxoglutarate as a test system.
Entrepreneurial Education in Europe.
ERIC Educational Resources Information Center
Dana, Leo Paul
1992-01-01
Study of a cross-section of entrepreneurship programs in several European countries found that the principal strength of European programs is their practical approach and that entrepreneurship programs have spread more rapidly into rural areas than in the United States. Strengths of U.S. programs include greater diversification and numerous…
NASA Astrophysics Data System (ADS)
Ohuchida, Satoshi; Endoh, Tetsuo
2018-06-01
In this paper, we propose a new model of inter-cell interference phenomenon in a 10 nm magnetic tunnel junction with perpendicular anisotropy (p-MTJ) array and investigated the interference effect between a program cell and unselected cells due to the oscillatory stray field from neighboring cells by Landau–Lifshitz–Gilbert micromagnetic simulation. We found that interference brings about a switching delay in a program cell and excitation of magnetization precession in unselected cells even when no programing current passes through. The origin of interference is ferromagnetic resonance between neighboring cells. During the interference period, the precession frequency of the program cell is 20.8 GHz, which synchronizes with that of the theoretical precession frequency f = γH eff in unselected cells. The disturbance strength of unselected cells decreased to be inversely proportional to the cube of the distance from the program cell, which is in good agreement with the dependence of stray field on the distance from the program cell calculated by the dipole approximation method.
NASA Astrophysics Data System (ADS)
Georges, Joseph F.; Liu, Xiaowei; Eschbacher, Jennifer; Nichols, Joshua; Mooney, Michael A.; Joy, Anna; Spetzler, Robert F.; Feuerstein, Burt G.; Anderson, Trent; Preul, Mark C.; Yan, Hao; Nakaji, Peter
2018-02-01
Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific labeling using a novel lymphoma-specific fluorescent switchable aptamer. Our B-cell lymphoma-specific switchable aptamer produced only low-level fluorescence in its unbound conformation and generated an 8-fold increase in fluorescence once bound to its target on CD20-positive lymphoma cells. The aptamer demonstrated strong binding to B-cell lymphoma cells within 10 minutes of incubation. We applied the switchable aptamer to ex vivo xenograft tissue harboring B-cell lymphoma and astrocytoma, and within one hour specific visual identification of lymphoma was routinely possible. In this proof-of-concept study in human cell culture and orthotopic xenografts, we conclude that a fluorescent switchable aptamer can provide rapid and specific labeling of B-cell lymphoma, and that developing aptamer-based labeling approaches could simplify tissue staining and drastically reduce time to histopathological diagnoses compared with IHC-based methods. We propose that switchable aptamers could enhance expeditious, accurate intraoperative decision-making.
Aptamer-Based Dual-Functional Probe for Rapid and Specific Counting and Imaging of MCF-7 Cells.
Yang, Bin; Chen, Beibei; He, Man; Yin, Xiao; Xu, Chi; Hu, Bin
2018-02-06
Development of multimodal detection technologies for accurate diagnosis of cancer at early stages is in great demand. In this work, we report a novel approach using an aptamer-based dual-functional probe for rapid, sensitive, and specific counting and visualization of MCF-7 cells by inductively coupled plasma-mass spectrometry (ICP-MS) and fluorescence imaging. The probe consists of a recognition unit of aptamer to catch cancer cells specifically, a fluorescent dye (FAM) moiety for fluorescence resonance energy transfer (FRET)-based "off-on" fluorescence imaging as well as gold nanoparticles (Au NPs) tag for both ICP-MS quantification and fluorescence quenching. Due to the signal amplification effect and low spectral interference of Au NPs in ICP-MS, an excellent linearity and sensitivity were achieved. Accordingly, a limit of detection of 81 MCF-7 cells and a relative standard deviation of 5.6% (800 cells, n = 7) were obtained. The dynamic linear range was 2 × 10 2 to 1.2 × 10 4 cells, and the recoveries in human whole blood were in the range of 98-110%. Overall, the established method provides quantitative and visualized information on MCF-7 cells with a simple and rapid process and paves the way for a promising strategy for biomedical research and clinical diagnostics.
Léguillier, Teddy; Vandormael-Pournin, Sandrine; Artus, Jérôme; Houlard, Martin; Picard, Christel; Bernex, Florence; Robine, Sylvie; Cohen-Tannoudji, Michel
2012-07-15
Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.