Science.gov

Sample records for rapid protein identification

  1. Microwave-assisted specific chemical digestion for rapid protein identification.

    PubMed

    Hua, Lin; Low, Teck Yew; Sze, Siu Kwan

    2006-01-01

    We have developed a rapid microwave-assisted protein digestion technique based on classic acid hydrolysis reaction with 2% formic acid solution. In this mild chemical environment, proteins are hydrolyzed to peptides, which can be directly analyzed by MALDI-MS or ESI-MS without prior sample purification. Dilute formic acid cleaves proteins specifically at the C-terminal of aspartyl (Asp) residues within 10 min of exposure to microwave irradiation. By adjusting the irradiation time, we found that the extent of protein fragmentation can be controlled, as shown by the single fragmentation of myoglobin at the C-terminal of any of the Asp residues. The efficacy and simplicity of this technique for protein identification are demonstrated by the peptide mass maps of in-gel digested myoglobin and BSA, as well as proteins isolated from Escherichia coli K12 cells.

  2. Small acid soluble proteins for rapid spore identification.

    SciTech Connect

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  3. Web-based software for rapid "top-down" proteomic identification of protein biomarkers with implications for bacterial identification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed web-based software for the rapid identification of protein biomarkers of bacterial microorganisms. Proteins from bacterial cell lysates were ionized by matrix-assisted laser desorption/ionization (MALDI), mass-isolated and fragmented using a time-of-flight/time-of-flight (TOF-TOF)...

  4. Rapid on-membrane proteolytic cleavage for Edman sequencing and mass spectrometric identification of proteins.

    PubMed

    Pham, Victoria C; Henzel, William J; Lill, Jennie R

    2005-11-01

    A method for the rapid limited enzymatic cleavage of PVDF membrane-immobilized proteins is described. This method allows the fast characterization of PVDF blotted proteins by peptide mass fingerprinting (Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., Wantanabe, C., Proc. Natl. Acad. Sci. USA 1993, 90, 5011-5015), LC-MS/MS, or N-terminal sequencing and has been demonstrated on a range of proteins using a full complement of proteolytic enzymes. This technique allows the generation of proteolytic fragments between 5 and 60 min (depending on the enzyme employed), which is significantly faster than previously reported on-membrane digestion methods. To date, this on-membrane rapid digestion protocol has aided in the identification and confirmation of mutation sites in over 200 recombinant proteins.

  5. Microbial Protein-Antigenome Determination (MAD) Technology: A Proteomics-Based Strategy for Rapid Identification of Microbial Targets of Host Humoral Immune Responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunogenic, pathogen-specific proteins have excellent potential for development of novel management modalities. Here, we describe an innovative application of proteomics called Microbial protein-Antigenome Determination (MAD) Technology for rapid identification of native microbial proteins that el...

  6. Microbial Protein-Antigenome Determination (MAD) Technology: A Proteomics-Based Strategy for Rapid Identification of Microbial Targets of Host Humoral Immune Responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunogenic, pathogen-specific proteins have excellent potential for development of novel management modalities. Here, we describe an innovative application of proteomics called Microbial protein-Antigenome Determination (MAD) Technology for rapid identification of native microbial proteins that eli...

  7. Identification of a signal for rapid export of proteins from the nucleus.

    PubMed

    Wen, W; Meinkoth, J L; Tsien, R Y; Taylor, S S

    1995-08-11

    Active nuclear import of protein is controlled by nuclear localization signals (NLSs), but nuclear export is not understood well. Nuclear trafficking of the catalytic (C) subunit of cAMP-dependent protein kinase (cAPK) is critical for regulation of gene expression. The heat-stable inhibitor (PKl) of cAPK contains a nuclear export signal (NES) that triggers rapid, active net extrusion of the C-PKl complex from the nucleus. This NES (residues 35-49), fused or conjugated to heterologous proteins, was sufficient for rapid nuclear export. Hydrophobic residues were critical. The NES is a slightly weaker signal than the SV40 NLS. A sequence containing only residues 37-46, LALKLAGLDI, is also sufficient for nuclear export. This is an example of a protein-based NES having no obvious association with RNA. A similar sequence, LQLPPLERLTL, from Rev, an RNA-binding protein of HIV-1, also is an NES.

  8. Cell-Free Expression and In Situ Immobilization of Parasite Proteins from Clonorchis sinensis for Rapid Identification of Antigenic Candidates

    PubMed Central

    Ju, Jung Won; Kim, Ho-Cheol; Shin, Hyun-Il; Kim, Yu Jung; Kim, Dong-Myung

    2015-01-01

    Progress towards genetic sequencing of human parasites has provided the groundwork for a post-genomic approach to develop novel antigens for the diagnosis and treatment of parasite infections. To fully utilize the genomic data, however, high-throughput methodologies are required for functional analysis of the proteins encoded in the genomic sequences. In this study, we investigated cell-free expression and in situ immobilization of parasite proteins as a novel platform for the discovery of antigenic proteins. PCR-amplified parasite DNA was immobilized on microbeads that were also functionalized to capture synthesized proteins. When the microbeads were incubated in a reaction mixture for cell-free synthesis, proteins expressed from the microbead-immobilized DNA were instantly immobilized on the same microbeads, providing a physical linkage between the genetic information and encoded proteins. This approach of in situ expression and isolation enables streamlined recovery and analysis of cell-free synthesized proteins and also allows facile identification of the genes coding antigenic proteins through direct PCR of the microbead-bound DNA. PMID:26599101

  9. Rapid detection, discovery, and identification of post-translationally myristoylated proteins during apoptosis using a bio-orthogonal azidomyristate analog.

    PubMed

    Martin, Dale D O; Vilas, Gonzalo L; Prescher, Jennifer A; Rajaiah, Gurram; Falck, John R; Bertozzi, Carolyn R; Berthiaume, Luc G

    2008-03-01

    Myristoylation is the attachment of the 14-carbon fatty acid myristate to the N-terminal glycine residue of proteins. Typically a co-translational modification, myristoylation of proapoptotic cysteinyl-aspartyl proteases (caspase)-cleaved Bid and PAK2 was also shown to occur post-translationally and is essential for their proper localization and proapoptotic function. Progress in the identification and characterization of myristoylated proteins has been impeded by the long exposure times required to monitor incorporation of radioactive myristate into proteins (typically 1-3 months). Consequently, we developed a nonradioactive detection methodology in which a bio-orthogonal azidomyristate analog is specifically incorporated co- or post-translationally into proteins at N-terminal glycines, chemoselectively ligated to tagged triarylphosphines and detected by Western blotting with short exposure times (seconds to minutes). This represents over a million-fold signal amplification in comparison to using radioactive labeling methods. Using rational prediction analysis to recognize putative internal myristoylation sites in caspase-cleaved proteins combined with our nonradioactive chemical detection method, we identify 5 new post-translationally myristoylatable proteins (PKC epsilon, CD-IC2, Bap31, MST3, and the catalytic subunit of glutamate cysteine ligase). We also demonstrate that 15 proteins undergo post-translational myristoylation in apoptotic Jurkat T cells. This suggests that post-translational myristoylation of caspase-cleaved proteins represents a novel mechanism widely used to regulate cell death.

  10. Rapid Label-Free Identification of Estrogen-Induced Differential Protein Expression In Vivo from Mouse Brain and Uterine Tissue

    PubMed Central

    Prokai, Laszlo; Stevens, Stanley M.; Rauniyar, Navin; Nguyen, Vien

    2009-01-01

    Protein abundance profiling from tissue using liquid chromatograph—tandem mass spectrometry-based ‘shotgun’ proteomics and label-free relative quantitation was evaluated for the investigation of estrogen-regulated protein expression in the mouse brain and uterus. Sample preparation involved a 30-min protein extraction in 8 M aqueous urea solution, followed by disulphide reduction, thiol alkylation and trypsin digestion of the extracted proteins, and was performed on 3–4 mg of tissue in order to evaluate the suitability of this methodology to expedite the survey of cellular pathways that are affected in vivo by an experimental therapeutic intervention in an animal model. The label-free proteomic approach (spectral counting) was suitable to identify even subtle changes in cortical protein levels and revealed significant estrogen-induced upregulation of ATP synthase (both α- and β-isoforms), aspartate aminotransferase 2 and mitochondrial malate dehydrogenase without any prior subcellular fractionation of the tissue or the use of multidimensional chromatographic separation. The methodology was also suitable to observe various up- and downregulated proteins in the uterine tissue of ovariectomized mice upon treatment with 17β-estradiol. In addition to confirming a very significant decrease in the abundance of glutathione S-transferase recognized as a marker of estrogen’s impact, our studies have also revealed potential new protein markers such as desmin and lumican that are critical components of cytoskeletal arrangement and, hence, regulation of their abundance could contribute to major morphological changes in the uterus occurring upon estrogenic stimulation. PMID:19545149

  11. A reversible Renilla luciferase protein complementation assay for rapid identification of protein-protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus.

    PubMed

    Lund, Christian H; Bromley, Jennifer R; Stenbæk, Anne; Rasmussen, Randi E; Scheller, Henrik V; Sakuragi, Yumiko

    2015-01-01

    A growing body of evidence suggests that protein-protein interactions (PPIs) occur amongst glycosyltransferases (GTs) required for plant glycan biosynthesis (e.g. cell wall polysaccharides and N-glycans) in the Golgi apparatus, and may control the functions of these enzymes. However, identification of PPIs in the endomembrane system in a relatively fast and simple fashion is technically challenging, hampering the progress in understanding the functional coordination of the enzymes in Golgi glycan biosynthesis. To solve the challenges, we adapted and streamlined a reversible Renilla luciferase protein complementation assay (Rluc-PCA), originally reported for use in human cells, for transient expression in Nicotiana benthamiana. We tested Rluc-PCA and successfully identified luminescence complementation amongst Golgi-localizing GTs known to form a heterodimer (GAUT1 and GAUT7) and those which homooligomerize (ARAD1). In contrast, no interaction was shown between negative controls (e.g. GAUT7, ARAD1, IRX9). Rluc-PCA was used to investigate PPIs amongst Golgi-localizing GTs involved in biosynthesis of hemicelluloses. Although no PPI was identified among six GTs involved in xylan biosynthesis, Rluc-PCA confirmed three previously proposed interactions and identified seven novel PPIs amongst GTs involved in xyloglucan biosynthesis. Notably, three of the novel PPIs were confirmed by a yeast-based split-ubiquitin assay. Finally, Gateway-enabled expression vectors were generated, allowing rapid construction of fusion proteins to the Rluc reporters and epitope tags. Our results show that Rluc-PCA coupled with transient expression in N. benthamiana is a fast and versatile method suitable for analysis of PPIs between Golgi resident proteins in an easy and mid-throughput fashion in planta.

  12. Rapid identification of microorganisms by intrinsic fluorescence

    NASA Astrophysics Data System (ADS)

    Bhatta, Hemant; Goldys, Ewa M.; Learmonth, Robert

    2005-03-01

    Microbial contamination has serious consequences for the industries that use fermentation processes. Common contaminants such as faster growing lactic acid bacteria or wild yeast can rapidly outnumber inoculated culture yeast and produce undesirable end products. Our study focuses on a rapid method of identification of such contaminants based on autofluorescence spectroscopy of bacterial and yeast species. Lactic acid bacteria (Lac-tobacillus casei), and yeast (Saccharomyces cerevisiae) were cultured under controlled conditions and studied for variations in their autofluorescence. We observed spectral differences in the spectral range representative of tryptophan residues of proteins, with excitation at 290 nm and emission scanned in the 300 nm - 440 nm range. Excitation scans between 240 nm and 310 nm were also performed for the emission at 340 nm. Moreover, we observed clearly pronounced differences in the excitation and emission in the visible range, with 410 nm excitation. These results demonstrate that bacterial and yeast species can be differentiated using their intrinsic fluorescence both in UV and in the visible region. The comparative spectroscopic study of selected strains of Saccharomyces yeast showed clear differences between strains. Spectrally-resolved laser scanning microscopy was carried out to link the results obtained using ensembles of cells with spectral properties of individual cells. Strongly fluorescent subpopulation were observed for all yeast strains with excitation at 405 nm. The fluorescence spectra showed variations correlated with cell brightness. The presented results demonstrate that using autofluorescence, it is possible to differentiate between yeast and lactic acid bacteria and between different yeast species.

  13. A reversible Renilla luciferase protein complementation assay for rapid identification of protein-protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus

    DOE PAGES

    Lund, C. H.; Bromley, J. R.; Stenbaek, A.; ...

    2014-10-18

    A growing body of evidence suggests that protein–protein interactions (PPIs) occur amongst glycosyltransferases (GTs) required for plant glycan biosynthesis (e.g. cell wall polysaccharides and N-glycans) in the Golgi apparatus, and may control the functions of these enzymes. However, identification of PPIs in the endomembrane system in a relatively fast and simple fashion is technically challenging, hampering the progress in understanding the functional coordination of the enzymes in Golgi glycan biosynthesis. To solve the challenges, we adapted and streamlined a reversible Renilla luciferase protein complementation assay (Rluc-PCA), originally reported for use in human cells, for transient expression in Nicotiana benthamiana. Wemore » tested Rluc-PCA and successfully identified luminescence complementation amongst Golgi-localizing GTs known to form a heterodimer (GAUT1 and GAUT7) and those which homooligomerize (ARAD1). In contrast, no interaction was shown between negative controls (e.g. GAUT7, ARAD1, IRX9). Rluc-PCA was used to investigate PPIs amongst Golgi-localizing GTs involved in biosynthesis of hemicelluloses. Although no PPI was identified among six GTs involved in xylan biosynthesis, Rluc-PCA confirmed three previously proposed interactions and identified seven novel PPIs amongst GTs involved in xyloglucan biosynthesis. Notably, three of the novel PPIs were confirmed by a yeast-based split-ubiquitin assay. Finally, Gateway-enabled expression vectors were generated, allowing rapid construction of fusion proteins to the Rluc reporters and epitope tags. In conclusion, our results show that Rluc-PCA coupled with transient expression in N. benthamiana is a fast and versatile method suitable for analysis of PPIs between Golgi resident proteins in an easy and mid-throughput fashion in planta.« less

  14. A reversible Renilla luciferase protein complementation assay for rapid identification of protein-protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus

    SciTech Connect

    Lund, C. H.; Bromley, J. R.; Stenbaek, A.; Rasmussen, R. E.; Scheller, H. V.; Sakuragi, Y.

    2014-10-18

    A growing body of evidence suggests that protein–protein interactions (PPIs) occur amongst glycosyltransferases (GTs) required for plant glycan biosynthesis (e.g. cell wall polysaccharides and N-glycans) in the Golgi apparatus, and may control the functions of these enzymes. However, identification of PPIs in the endomembrane system in a relatively fast and simple fashion is technically challenging, hampering the progress in understanding the functional coordination of the enzymes in Golgi glycan biosynthesis. To solve the challenges, we adapted and streamlined a reversible Renilla luciferase protein complementation assay (Rluc-PCA), originally reported for use in human cells, for transient expression in Nicotiana benthamiana. We tested Rluc-PCA and successfully identified luminescence complementation amongst Golgi-localizing GTs known to form a heterodimer (GAUT1 and GAUT7) and those which homooligomerize (ARAD1). In contrast, no interaction was shown between negative controls (e.g. GAUT7, ARAD1, IRX9). Rluc-PCA was used to investigate PPIs amongst Golgi-localizing GTs involved in biosynthesis of hemicelluloses. Although no PPI was identified among six GTs involved in xylan biosynthesis, Rluc-PCA confirmed three previously proposed interactions and identified seven novel PPIs amongst GTs involved in xyloglucan biosynthesis. Notably, three of the novel PPIs were confirmed by a yeast-based split-ubiquitin assay. Finally, Gateway-enabled expression vectors were generated, allowing rapid construction of fusion proteins to the Rluc reporters and epitope tags. In conclusion, our results show that Rluc-PCA coupled with transient expression in N. benthamiana is a fast and versatile method suitable for analysis of PPIs between Golgi resident proteins in an easy and mid-throughput fashion in planta.

  15. Rapid T cell–based identification of human tumor tissue antigens by automated two-dimensional protein fractionation

    PubMed Central

    Beckhove, Philipp; Warta, Rolf; Lemke, Britt; Stoycheva, Diana; Momburg, Frank; Schnölzer, Martina; Warnken, Uwe; Schmitz-Winnenthal, Hubertus; Ahmadi, Rezvan; Dyckhoff, Gerhard; Bucur, Mariana; Jünger, Simone; Schueler, Thomas; Lennerz, Volker; Woelfel, Thomas; Unterberg, Andreas; Herold-Mende, Christel

    2010-01-01

    Identifying the antigens that have the potential to trigger endogenous antitumor responses in an individual cancer patient is likely to enhance the efficacy of cancer immunotherapy, but current methodologies do not efficiently identify such antigens. This study describes what we believe to be a new method of comprehensively identifying candidate tissue antigens that spontaneously cause T cell responses in disease situations. We used the newly developed automated, two-dimensional chromatography system PF2D to fractionate the proteome of human tumor tissues and tested protein fractions for recognition by preexisting tumor-specific CD4+ Th cells and CTLs. Applying this method using mice transgenic for a TCR that recognizes an OVA peptide presented by MHC class I, we demonstrated efficient separation, processing, and cross-presentation to CD8+ T cells by DCs of OVA expressed by the OVA-transfected mouse lymphoma RMA-OVA. Applying this method to human tumor tissues, we identified MUC1 and EGFR as tumor-associated antigens selectively recognized by T cells in patients with head and neck cancer. Finally, in an exemplary patient with a malignant brain tumor, we detected CD4+ and CD8+ T cell responses against two novel antigens, transthyretin and calgranulin B/S100A9, which were expressed in tumor and endothelial cells. The immunogenicity of these antigens was confirmed in 4 of 10 other brain tumor patients. This fast and inexpensive method therefore appears suitable for identifying candidate T cell antigens in various disease situations, such as autoimmune and malignant diseases, without being restricted to expression by a certain cell type or HLA allele. PMID:20458140

  16. Rapid detection and identification of infectious agents

    SciTech Connect

    Kingsbury, D.T.; Falkow, S.

    1985-01-01

    This book contains papers divided among five sections. Some of the paper titles are: Aspects of Using Nucleic Acid Filter Hybridization to Characterize and Detect Enteroviral RNAs; Rapid Identification of Lesihmania Species using Specific Hybridization of Kinetoplast DNA Sequences; Selection of DNA Probes for use in the Diagnosis of Infectious Disease; and Summary of DNA Probes.

  17. Rapid identification of emerging pathogens: coronavirus.

    PubMed

    Sampath, Rangarajan; Hofstadler, Steven A; Blyn, Lawrence B; Eshoo, Mark W; Hall, Thomas A; Massire, Christian; Levene, Harold M; Hannis, James C; Harrell, Patina M; Neuman, Benjamin; Buchmeier, Michael J; Jiang, Yun; Ranken, Raymond; Drader, Jared J; Samant, Vivek; Griffey, Richard H; McNeil, John A; Crooke, Stanley T; Ecker, David J

    2005-03-01

    We describe a new approach for infectious disease surveillance that facilitates rapid identification of known and emerging pathogens. The process uses broad-range polymerase chain reaction (PCR) to amplify nucleic acid targets from large groupings of organisms, electrospray ionization mass spectrometry for accurate mass measurements of PCR products, and base composition signature analysis to identify organisms in a sample. We demonstrate this principle by using 14 isolates of 9 diverse Coronavirus spp., including the severe acute respiratory syndrome-associated coronavirus (SARS-CoV). We show that this method could identify and distinguish between SARS and other known CoV, including the human CoV 229E and OC43, individually and in a mixture of all 3 human viruses. The sensitivity of detection, measured by using titered SARS-CoV spiked into human serum, was approximate, equals1 PFU/mL. This approach, applicable to the surveillance of bacterial, viral, fungal, or protozoal pathogens, is capable of automated analysis of >900 PCR reactions per day.

  18. Rapid Identification of Emerging Pathogens: Coronavirus

    PubMed Central

    Hofstadler, Steven A.; Blyn, Lawrence B.; Eshoo, Mark W.; Hall, Thomas A.; Massire, Christian; Levene, Harold M.; Hannis, James C.; Harrell, Patina M.; Neuman, Benjamin; Buchmeier, Michael J.; Jiang, Yun; Ranken, Raymond; Drader, Jared J.; Samant, Vivek; Griffey, Richard H.; McNeil, John A.; Crooke, Stanley T.; Ecker, David J.

    2005-01-01

    We describe a new approach for infectious disease surveillance that facilitates rapid identification of known and emerging pathogens. The process uses broad-range polymerase chain reaction (PCR) to amplify nucleic acid targets from large groupings of organisms, electrospray ionization mass spectrometry for accurate mass measurements of PCR products, and base composition signature analysis to identify organisms in a sample. We demonstrate this principle by using 14 isolates of 9 diverse Coronavirus spp., including the severe acute respiratory syndrome–associated coronavirus (SARS-CoV). We show that this method could identify and distinguish between SARS and other known CoV, including the human CoV 229E and OC43, individually and in a mixture of all 3 human viruses. The sensitivity of detection, measured by using titered SARS-CoV spiked into human serum, was ≈1 PFU/mL. This approach, applicable to the surveillance of bacterial, viral, fungal, or protozoal pathogens, is capable of automated analysis of >900 PCR reactions per day. PMID:15757550

  19. Rapid identification of Candida dubliniensis with commercial yeast identification systems.

    PubMed

    Pincus, D H; Coleman, D C; Pruitt, W R; Padhye, A A; Salkin, I F; Geimer, M; Bassel, A; Sullivan, D J; Clarke, M; Hearn, V

    1999-11-01

    Candida dubliniensis is a newly described species that is closely related phylogenetically to Candida albicans and that is commonly associated with oral candidiasis in human immunodeficiency virus-positive patients. Several recent studies have attempted to elucidate phenotypic and genotypic characteristics of use in separating the two species. However, results obtained with simple phenotypic tests were too variable and tests that provided more definitive data were too complex for routine use in the clinical laboratory setting. The objective of this study was to determine if reproducible identification of C. dubliniensis could be obtained with commercial identification kits. The substrate reactivity profiles of 80 C. dubliniensis isolates were obtained by using the API 20C AUX, ID 32 C, RapID Yeast Plus, VITEK YBC, and VITEK 2 ID-YST systems. The percentages of C. dubliniensis isolates capable of assimilating or hydrolyzing each substrate were compared with the percentages from the C. albicans profiles in each kit's database, and the results were expressed as percent C. dubliniensis and percent C. albicans. Any substrate that showed >50% difference in reactivity was considered useful in differentiating the species. In addition, assimilation of methyl-alpha-D-glucoside (MDG), D-trehalose (TRE), and D-xylose (XYL) by the same isolates was investigated by the traditional procedure of Wickerham and Burton (L. J. Wickerham and K. A. Burton, J. Bacteriol. 56:363-371, 1948). At 48 h (the time recommended by the manufacturer for its new database), we found that the assimilation of four carbohydrates in the API 20C AUX system could be used to distinguish the species, i.e., glycerol (GLY; 88 and 14%), XYL (0 and 88%), MDG (0 and 85%), and TRE (15 and 97%). Similarly, results with the ID 32 C system at 48 h showed that XYL (0 and 98%), MDG (0 and 98%), lactate (LAT; 0 and 96%), and TRE (30 and 96%) could be used to separate the two species. Phosphatase (PHS; 9 and 76%) and

  20. Rapid identification of Listeria spp.: an AOAC performance test of the MIT 1000 rapid microbial identification system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods that rapidly confirm the identification of foodborne pathogens are highly desired. The Micro Imaging Technology (MIT) 1000 Rapid Microbial Identification (RMID) System is a benchtop instrument that detects laser light scattered from individual bacterial cells in solution with an array of 35 ...

  1. Rapid visco analysis of food protein pastes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey protein isolate (WPI) powders are used in many formulations to boost nutrients. To predict the pasting behavior of proteins, WPI was tested under varying temperatures, using the Rapid-Visco-Analyzer (RVA), under pasting temperatures from 65 to 75 degrees'C, RVA speeds from 100 to 500 rpm, and ...

  2. Rapid Identification of Protein Biomarkers of E. coli O157:H7 by MALDI-TOF-TOF Mass Spectrometry and Top-Down Proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have identified six protein biomarkers from two strains of E. coli O157:H7 and one non-pathogenic E. coli strain by matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight tandem mass spectrometry (TOF/TOF-MS/MS) and top-down proteomics. Mature, intact proteins were ext...

  3. Rapid Identification of Micro-Organisms.

    DTIC Science & Technology

    1985-08-26

    laboratory microbiology usually base definitive identification of organisms upon growth characteristics in culture, noviable bacteria in samples are excluded...permeant cationic fluorescent dyes as probes for flow cytometry of NP in eukaryotic cells and bacteria, including cyanine , rhodamLne, safranin, and...substrates substrates substrates MDBRAME oxacya- oxacarbo- indocar- thiacar- styryl, indb-& POTENTIAL nines cyanines bocya- bocya- dyes thiadi- .1nines

  4. Rapid Bioinformatic Identification of Thermostabilizing Mutations

    PubMed Central

    Sauer, David B.; Karpowich, Nathan K.; Song, Jin Mei; Wang, Da-Neng

    2015-01-01

    Ex vivo stability is a valuable protein characteristic but is laborious to improve experimentally. In addition to biopharmaceutical and industrial applications, stable protein is important for biochemical and structural studies. Taking advantage of the large number of available genomic sequences and growth temperature data, we present two bioinformatic methods to identify a limited set of amino acids or positions that likely underlie thermostability. Because these methods allow thousands of homologs to be examined in silico, they have the advantage of providing both speed and statistical power. Using these methods, we introduced, via mutation, amino acids from thermoadapted homologs into an exemplar mesophilic membrane protein, and demonstrated significantly increased thermostability while preserving protein activity. PMID:26445442

  5. [Study of Rapid Species Identification of Bacteria in Water].

    PubMed

    Wang, Jiu-yue; Zhao, Nan-jing; Duan, Jing-bo; Fang, Li; Meng, De-shuo; Yang, Rui-fang; Xiao, Xue; Liu, Jian-guo; Liu, Wen-qing

    2015-09-01

    Multi-wavelength ultraviolet visible (UV-Vis) transmission spectra of bacteria combined the forward scattering and absorption properties of microbes, contains substantial information on size, shape, and the other chemical, physiological character of bacterial cells, has the bacterial species specificity, which can be applied to rapid species identification of bacterial microbes. Four different kinds of bacteria including Escherichia coli, Staphylococcus aureus, Salmonella typhimurium and Klebsiella pneumonia which were commonly existed in water were researched in this paper. Their multi-wavelength UV-Vis transmission spectra were measured and analyzed. The rapid identification method and model of bacteria were built which were based on support vector machine (SVM) and multi-wavelength UV-Vis transmission spectra of the bacteria. Using the internal cross validation based on grid search method of the training set for obtaining the best penalty factor C and the kernel parameter g, which the model needed. Established the bacteria fast identification model according to the optimal parameters and one-against-one classification method included in LibSVM. Using different experimental bacteria strains of transmission spectra as a test set of classification accuracy verification of the model, the analysis results showed that the bacterial rapid identification model built in this paper can identification the four kinds bacterial which chosen in this paper as the accuracy was 100%, and the model also can identified different subspecies of E. coli test set as the accuracy was 100%, proved the model had a good stability in identification bacterial species. In this paper, the research results of this study not only can provide a method for rapid identification and early warning of bacterial microbial in drinking water sources, but also can be used as the microbes identified in biomedical a simple, rapid and accurate means.

  6. Evaluation of the enhanced rapid identification method for Gardnerella vaginalis.

    PubMed Central

    Lien, E A; Hillier, S L

    1989-01-01

    The enhanced rapid identification method (RIM; Austin Biological Laboratories), a micromethod for the identification of Gardnerella vaginalis, is based on starch and raffinose fermentation and hippurate hydrolysis. We tested 105 clinical isolates of G. vaginalis with both the RIM and standard biochemical tests. The RIM agreed with the standard biochemical methods for 96 (91.4%) of the strains; nine isolates which were hippurate hydrolysis positive by standard biochemical tests were hippurate hydrolysis negative in the RIM. RIM may serve as a useful adjunct to Gram stain and colony morphology for the identification of G. vaginalis. PMID:2785533

  7. Rapid presumptive identification of Cryptococcus neoformans.

    PubMed Central

    Muchmore, H G; Felton, F G; Scott, E N

    1978-01-01

    Carbohydrate-containing extracts were prepared from mature yeast colonies grown on Sabouraud dextrose agar by mixing a 0.001-ml loopful of yeast cells for 30 s in phenolized saline and removing the cells by centrifugation. Extracts were prepared from 54 Cryptococcus neoformans isolates, 29 isolates of other Cryptococcus species, 16 isolates of Candida species, 2 Rhodotorula, 2 Torulopsis, and 1 Saccharomyces species. Initially the carbohydrate content of each extract was estimated (Molisch method) and adjusted to 1, 5, and 10 microgram/ml. Twofold dilutions of each extract were tested for reactivity with the cryptococcal latex agglutination reagent of Bloomfield et al. (N. Bloomfield, M.A. Gordon, and D.F. Elmendorf, Jr., Proc. Soc. Exp. Biol. Med. 114:64-67, 1963). All 54 C. neoformans extracts gave strong agglutinations (3+ to 4+) in dilutions of 1:4 or greater. None of the other yeasts produced any agglutination, except for 1 of 15 C. laurentii isolates, which showed a 1+ reaction that disappeared at a dilution of 1:4 and above. Subsequent testing established that a single extract made from 0.001 ml of yeast cells in 6 ml of phenolized saline contained less than 5 microgram of carbohydrate per ml, was suitable for a single rapid screening dilution, and eliminated any cross-reaction from the C. laurentii isolates. In our hands this method has provided a reliable differentiation of C. neoformans from other unknown yeast colonies in less than 20 min exclusive of a Molisch determination. PMID:359587

  8. Portable Raman instrument for rapid biological agent detection and identification

    NASA Astrophysics Data System (ADS)

    Lesaicherre, Marie L.; Paxon, Tracy L.; Mondello, Frank J.; Burrell, Michael C.; Linsebigler, Amy

    2009-05-01

    The rapid and sensitive identification of biological species is a critical need for the 1st responder and military communities. Raman spectroscopy is a powerful tool for substance identification that has gained popularity with the respective communities due to the increasing availability of portable Raman spectrometers. Attempts to use Raman spectroscopy for the direct identification of biological pathogens has been hindered by the complexity of the generated Raman spectrum. We report here the use of a sandwich immunoassay containing antibody modified magnetic beads to capture and concentrate target analytes in solution and Surface Enhanced Raman Spectroscopy (SERS) tags conjugated with these same antibodies for specific detection. Using this approach, the biological complexity of a microorganism can be translated into chemical simplicity and Raman can be used for the identification of biological pathogens. The developed assay has a low limit of detection due to the SERS effect, robust to commonly found white powders interferants, and stable at room temperature over extended period of time. This assay is being implemented into a user-friendly interface to be used in conjunction with the GE Homeland Protection StreetLab MobileTM Raman instrument for rapid, field deployable chemical and biological identification.

  9. Data Analysis Strategies for Protein Modification Identification.

    PubMed

    Fu, Yan

    2016-01-01

    Mass spectrometry-based proteomics provides a powerful tool for large-scale analysis of protein modifications. Statistical and computational analysis of mass spectrometry data is a key step in protein modification identification. This chapter presents common and advanced data analysis strategies for modification identification, including variable modification search, unrestrictive approaches for modification discovery, false discovery rate estimation and control methods, and tools for modification site localization.

  10. Rapid identification of single microbes by various Raman spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen

    2006-02-01

    A fast and unambiguous identification of microorganisms is necessary not only for medical purposes but also in technical processes such as the production of pharmaceuticals. Conventional microbiological identification methods are based on the morphology and the ability of microbes to grow under different conditions on various cultivation media depending on their biochemical properties. These methods require pure cultures which need cultivation of at least 6 h but normally much longer. Recently also additional methods to identify bacteria are established e.g. mass spectroscopy, polymerase chain reaction (PCR), flow cytometry or fluorescence spectroscopy. Alternative approaches for the identification of microorganisms are vibrational spectroscopic techniques. With Raman spectroscopy a spectroscopic fingerprint of the microorganisms can be achieved. Using UV-resonance Raman spectroscopy (UVRR) macromolecules like DNA/RNA and proteins are resonantly enhanced. With an excitation wavelength of e.g. 244 nm it is possible to determine the ratio of guanine/cytosine to all DNA bases which allows a genotypic identification of microorganisms. The application of UVRR requires a large amount of microorganisms (> 10 6 cells) e.g. at least a micro colony. For the analysis of single cells micro-Raman spectroscopy with an excitation wavelength of 532 nm can be used. Here, the obtained information is from all type of molecules inside the cells which lead to a chemotaxonomic identification. In this contribution we show how wavelength dependent Raman spectroscopy yields significant molecular information applicable for the identification of microorganisms on a single cell level.

  11. Protein Identification Using Top-Down

    SciTech Connect

    Liu, Xiaowen; Sirotkin, Yakov; Shen, Yufeng; Anderson, Gordon A.; Tsai, Yi-Hsuan S.; Ting, Ying S.; Goodlett, David R.; Smith, Richard D.; Bafna, Vineet; Pevzner, Pavel A.

    2012-06-01

    In the last two years, due to advances in protein separation and mass spectrometry, top-down mass spectrometry moved from analyzing single proteins to analyzing complex samples and identifying hundreds and even thousands of proteins. However, computational tools for database search of top-down spectra against protein databases are still in infancy. We describe MS-Align+, a fast algorithm for top-down protein identification based on spectral alignment that enables searches for unexpected post-translational modifications (PTMs). We also propose a method for evaluating statistical significance of top-down protein identifications and further benchmark MS-Align+ along with PIITA, ProSightPTM and SEQUEST, which were previously used for top-down MS/MS database searches. We demonstrate that MS-Align+ and PIITA significantly increase the number of identified proteins as compared to ProSightPTM and SEQUEST.

  12. Sedimentation Patterns of Rapidly Reversible Protein Interactions

    PubMed Central

    Schuck, Peter

    2010-01-01

    Abstract The transport behavior of macromolecular mixtures with rapidly reversible complex formation is of great interest in the study of protein interactions by many different methods. Complicated transport patterns arise even for simple bimolecular reactions, when all species exhibit different migration velocities. Although partial differential equations are available to describe the spatial and temporal evolution of the interacting system given particular initial conditions, a general overview of the phase behavior of the systems in parameter space has not yet been reported. In the case of sedimentation of two-component mixtures, this study presents simple analytical solutions that solve the underlying equations in the diffusion-free limit previously subject to Gilbert-Jenkins theory. The new expressions describe, with high precision, the average sedimentation coefficients and composition of each boundary, which allow the examination of features of the whole parameter space at once, and may be used for experimental design and robust analysis of experimental boundary patterns to derive the stoichiometry and affinity of the complex. This study finds previously unrecognized features, including a phase transition between boundary patterns. The model reveals that the time-average velocities of all components in the reaction mixture must match—a condition that suggests an intuitive physical picture of an effective particle of the coupled cosedimentation of an interacting system. Adding to the existing numerical solutions of the relevant partial differential equations, the effective particle model provides physical insights into the relationships of the parameters that govern sedimentation patterns. PMID:20441765

  13. Pyrosequencing assay for rapid identification of Mycobacterium tuberculosis complex species

    PubMed Central

    2011-01-01

    Background Identification of the Mycobacterium tuberculosis complex organisms to the species level is important for diagnostic, therapeutic and epidemiologic perspectives. Indeed, isolates are routinely identified as belonging to the M. tuberculosis complex without further discrimination in agreement with the high genomic similarity of the M. tuberculosis complex members and the resulting complex available identification tools. Findings We herein develop a pyrosequencing assay analyzing polymorphisms within glpK, pykA and gyrB genes to identify members of the M. tuberculosis complex at the species level. The assay was evaluated with 22 M. tuberculosis, 21 M. bovis, 3 M. caprae, 3 M. microti, 2 M. bovis BCG, 2 M. pinnipedii, 1 M. canettii and 1 M. africanum type I isolates. The resulted pyrograms were consistent with conventional DNA sequencing data and successfully identified all isolates. Additionally, 127 clinical M. tuberculosis complex isolates were analyzed and were unambiguously identified as M. tuberculosis. Conclusion We proposed a pyrosequencing-based scheme for the rapid identification of M. tuberculosis complex isolates at the species level. The assay is robust, specific, rapid and can be easily introduced in the routine activity. PMID:22011383

  14. Continuous-Flow Detector for Rapid Pathogen Identification

    SciTech Connect

    Barrett, Louise M.; Skulan, Andrew J.; Singh, Anup K.; Cummings, Eric B.; Fiechtner, Gregory J.

    2006-09-01

    This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit from the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).

  15. [A rapid quantificational identification model of minerals and its applications].

    PubMed

    Li, Shuai; Lin, Qi-Zhong; Liu, Qing-Jie; Wang, Meng-Fei; Wang, Qin-Jun; Wei, Yong-Ming

    2010-05-01

    Rapid identification of minerals is the key point for enhancing the efficiency of mineral exploration by remote sensing, mineral mapping by remote sensing and many geological investigations. Because of the limitation of technology and other aspects, the amount of models and software concerning rapid identification of minerals is very small. Since 1990s the development in spectrometers and computers has made it possible to apply near infrared spectrum technology to identify minerals. Two models have emerged. Model I is based on analyzing the position of absorption bands, while Model II is founded on waveform matching. In the present paper, characteristic spectrum linear inversion modeling was built. Validated by the data gained from end-members of USGS mineral spectrum library by mixing randomly, this model with the accuracy being approximately 100% is much better than Model I and II. Used to analyze the 23 samples selected in Baogutu area in Xinjiang, the model we built with the accuracy of 64.6% is superior to Model I (the accuracy is 33.8%) and Model II (the accuracy is 8.1%). Though the accuracy of our model is not as high as that of identification by microscope at present, using our model is much more effective and convenient, and there also will be less artificial error and smaller workload. The good performance of our model in the mineral exploration work by remote sensing in Baogutu area in Xinjiang shows wide popularizing prospects.

  16. Rapid Molecular Identification of Human Taeniid Cestodes by Pyrosequencing Approach

    PubMed Central

    Thanchomnang, Tongjit; Tantrawatpan, Chairat; Intapan, Pewpan M.; Sanpool, Oranuch; Janwan, Penchom; Lulitanond, Viraphong; Tourtip, Somjintana; Yamasaki, Hiroshi; Maleewong, Wanchai

    2014-01-01

    Taenia saginata, T. solium, and T. asiatica are causative agents of taeniasis in humans. The difficulty of morphological identification of human taeniids can lead to misdiagnosis or confusion. To overcome this problem, several molecular methods have been developed, but use of these tends to be time-consuming. Here, a rapid and high-throughput pyrosequencing approach was developed for the identification of three human taeniids originating from various countries. Primers targeting the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the three Taenia species were designed. Variations in a 26-nucleotide target region were used for identification. The reproducibility and accuracy of the pyrosequencing technology was confirmed by Sanger sequencing. This technique will be a valuable tool to distinguish between sympatric human taeniids that occur in Thailand, Asia and Pacific countries. This method could potentially be used for the molecular identification of the taeniid species that might be associated with suspicious cysts and lesions, or cyst residues in humans or livestock at the slaughterhouse. PMID:24945530

  17. Rapid Identification of Biotherapeutics with Label-Free Raman Spectroscopy.

    PubMed

    Paidi, Santosh Kumar; Siddhanta, Soumik; Strouse, Robert; McGivney, James B; Larkin, Christopher; Barman, Ishan

    2016-04-19

    Product identification is a critical and required analysis for biotheraputics. In addition to regulatory requirements for identity testing on final drug products, in-process identity testing is implemented to reduce business risks associated with fill operations and can also be used as a tool against counterfeiting. Biotherapeutics, in particular monoclonal antibodies, represent a challenging cohort for identity determination because of their similarity in chemical structure. Traditional methods used for product identification can be time and labor intensive, creating a need for quick, inexpensive and reliable methods of drug identification. Here, driven by its molecular-specific and nonperturbative nature, we present Raman spectroscopy as an alternate analytical tool for identity testing. By exploiting subtle differences in vibrational modes of the biologics, we have developed partial least-squares-discriminant analysis derived decision algorithms that offer excellent differentiation capability using spontaneous Raman spectra as well as label-free plasmon-enhanced Raman spectra. Coupled with the robustness to spurious correlations due to its high information content, our results highlight the potential of Raman spectroscopy as a powerful method for rapid, on-site biotherapeutic product identification.

  18. Rapid molecular identification of human taeniid cestodes by pyrosequencing approach.

    PubMed

    Thanchomnang, Tongjit; Tantrawatpan, Chairat; Intapan, Pewpan M; Sanpool, Oranuch; Janwan, Penchom; Lulitanond, Viraphong; Tourtip, Somjintana; Yamasaki, Hiroshi; Maleewong, Wanchai

    2014-01-01

    Taenia saginata, T. solium, and T. asiatica are causative agents of taeniasis in humans. The difficulty of morphological identification of human taeniids can lead to misdiagnosis or confusion. To overcome this problem, several molecular methods have been developed, but use of these tends to be time-consuming. Here, a rapid and high-throughput pyrosequencing approach was developed for the identification of three human taeniids originating from various countries. Primers targeting the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the three Taenia species were designed. Variations in a 26-nucleotide target region were used for identification. The reproducibility and accuracy of the pyrosequencing technology was confirmed by Sanger sequencing. This technique will be a valuable tool to distinguish between sympatric human taeniids that occur in Thailand, Asia and Pacific countries. This method could potentially be used for the molecular identification of the taeniid species that might be associated with suspicious cysts and lesions, or cyst residues in humans or livestock at the slaughterhouse.

  19. Rapid method for identification of gram-negative, nonfermentative bacilli.

    PubMed Central

    Otto, L A; Pickett, M J

    1976-01-01

    A rapid system (OA), based on oxidative attack of substrates, was developed for identification of gram-negative, nonfermentative bacillia (NFB). One hundred and twelve strains of NFB from 25 species (representing the genera Pseudomonas, Alcaligenes, Acinetobacter, Bordetella, Flavobacterium, Moraxella, and Xanthomonas) were assayed by OA, buffered single substrate, and oxidative/fermentative methods. The 38 substrates consisted of salts of organic acids, nitrogen-containing compounds, alcohols, and carbohydrates. Ninety-four percent of the test strains were identified by the OA method in 24 h, and 99% were identifiable in 48 h. Reproducibility was 99%. Correlation with buffered single substrate was 98% (all substrates) and 90% with the oxidative/fermentative method (carbohydrates only). Biochemical profiles of all strains are presented, as well as tables showing the most useful tests for identification. PMID:780371

  20. Autonomous Metabolomics for Rapid Metabolite Identification in Global Profiling

    SciTech Connect

    Benton, H. Paul; Ivanisevic, Julijana; Mahieu, Nathaniel G.; Kurczy, Michael E.; Johnson, Caroline H.; Franco, Lauren; Rinehart, Duane; Valentine, Elizabeth; Gowda, Harsha; Ubhi, Baljit K.; Tautenhahn, Ralf; Gieschen, Andrew; Fields, Matthew W.; Patti, Gary J.; Siuzdak, Gary

    2014-12-12

    An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. We can analyze large profiling datasets and simultaneously obtain structural identifications, as a result of this unique integration. Furthermore, validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometry data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level.

  1. Rapid Detection and Identification of Biogenic Aerosol Releases and Sources

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Macher, J.; Ghosal, S.; Ahmed, K.; Hemati, K.; Wall, S.; Kumagai, K.

    2011-12-01

    Biogenic aerosols can be important contributors to aerosol chemistry, cloud droplet and ice nucleation, absorption and scattering of radiation, human health and comfort, and plant, animal, and microbial ecology. Many types of bioaerosols, e.g., fungal spores, are released into the atmosphere in response to specific climatological and meteorological conditions. The rapid identification of bioaerosol releases is thus important for better characterization of the above phenomena, as well as enabling public officials to respond quickly and appropriately to releases of infectious agents or biological toxins. One approach to rapid and accurate bioaerosol detection is to employ sequential, automated samples that can be fed directly into an image acquisition and data analysis device. Raman spectroscopy-based identification of bioaerosols, automated analysis of microscopy images, and automated detection of near-monodisperse peaks in aerosol size-distribution data were investigated as complementary approaches to traditional, manual methods for the identification and counting of fungal and actinomycete spores. Manual light microscopy is a widely used analytical technique that is compatible with a number of air sample formats and requires minimal sample preparation. However, a major drawback is its dependence on a human analyst's ability to distinguish particles and accurately count, size, and identify them. Therefore, automated methods, such as those evaluated in this study, have the potential to provide cost-effective and rapid alternatives if demonstrated to be accurate and reliable. An exploratory examination of individual spores for several macro- and microfungi (those with and without large fruiting bodies) by Raman microspectroscopy found unique spectral features that were used to identify fungi to the genus level. Automated analyses of digital spore images accurately recognized and counted single fungal spores and clusters. An automated procedure to discriminate near

  2. Sensitive and Rapid Identification of Biological Threat Agents

    DTIC Science & Technology

    1999-12-01

    suitcase, complete with reagents and HIGGINS et al.: RAPID IDENTIFICATION OF BIOLOGICAL THREAT AGENTS 135 1 U z X o Q UJ O O Q OQ U m < u...BIOLOGICAL THREAT AGENTS 137 MW MW 1 ABCDEFGHIPCNC2 WB *~ 1 PL SRM Z FIGURE 3. Comparison of IsoCode® paper for preparing vegetative cells...FRIEDLANDER, D.J. MCCLAIN, D.L. HOOVER, W.R. BRYNE , J.A. PAVLIN, G.W. CHRISTOPHER & E.M. EITZEN, JR. 1997. Clinical recogni- tion and management of

  3. Rapid Accurate Identification of Bacterial and Viral Pathogens

    SciTech Connect

    Dunn, John

    2007-03-09

    The goals of this program were to develop two assays for rapid, accurate identification of pathogenic organisms at the strain level. The first assay "Quantitative Genome Profiling or QGP" is a real time PCR assay with a restriction enzyme-based component. Its underlying concept is that certain enzymes should cleave genomic DNA at many sites and that in some cases these cuts will interrupt the connection on the genomic DNA between flanking PCR primer pairs thereby eliminating selected PCR amplifications. When this occurs the appearance of the real-time PCR threshold (Ct) signal during DNA amplification is totally eliminated or, if cutting is incomplete, greatly delayed compared to an uncut control. This temporal difference in appearance of the Ct signal relative to undigested control DNA provides a rapid, high-throughput approach for DNA-based identification of different but closely related pathogens depending upon the nucleotide sequence of the target region. The second assay we developed uses the nucleotide sequence of pairs of shmi identifier tags (-21 bp) to identify DNA molecules. Subtle differences in linked tag pair combinations can also be used to distinguish between closely related isolates..

  4. Passive IFF: Autonomous Nonintrusive Rapid Identification of Friendly Assets

    NASA Technical Reports Server (NTRS)

    Moynihan, Philip; Steenburg, Robert Van; Chao, Tien-Hsin

    2004-01-01

    A proposed optoelectronic instrument would identify targets rapidly, without need to radiate an interrogating signal, apply identifying marks to the targets, or equip the targets with transponders. The instrument was conceived as an identification, friend or foe (IFF) system in a battlefield setting, where it would be part of a targeting system for weapons, by providing rapid identification for aimed weapons to help in deciding whether and when to trigger them. The instrument could also be adapted to law-enforcement and industrial applications in which it is necessary to rapidly identify objects in view. The instrument would comprise mainly an optical correlator and a neural processor (see figure). The inherent parallel-processing speed and capability of the optical correlator would be exploited to obtain rapid identification of a set of probable targets within a scene of interest and to define regions within the scene for the neural processor to analyze. The neural processor would then concentrate on each region selected by the optical correlator in an effort to identify the target. Depending on whether or not a target was recognized by comparison of its image data with data in an internal database on which the neural processor was trained, the processor would generate an identifying signal (typically, friend or foe ). The time taken for this identification process would be less than the time needed by a human or robotic gunner to acquire a view of, and aim at, a target. An optical correlator that has been under development for several years and that has been demonstrated to be capable of tracking a cruise missile might be considered a prototype of the optical correlator in the proposed IFF instrument. This optical correlator features a 512-by-512-pixel input image frame and operates at an input frame rate of 60 Hz. It includes a spatial light modulator (SLM) for video-to-optical image conversion, a pair of precise lenses to effect Fourier transforms, a filter SLM

  5. A rapid solid-phase protein microsequencer.

    PubMed Central

    Walker, J E; Fearnley, I M; Blows, R A

    1986-01-01

    A solid-phase protein microsequencer is described that has been designed to determine protein sequences with subnanomolar quantities of protein. Its utility has been demonstrated by the determination of many sequences in subunits of mitochondrial F1-ATPase, in a protein isolated from mouse gap junctions and in the mitochondrial phosphate-transporter protein. It has a number of advantages over liquid- and gas-phase sequencers. Firstly, the degradation cycle takes 24 min, more than twice as fast as any other sequencer. This helps to reduce exposure of proteins to inimical reagents and increases throughput of samples. Secondly, polar amino acids such as phosphoserine, and polar derivatives formed by active-site photoaffinity labelling with 8-azido-ATP, are recovered quantitatively from the reaction column and can be positively identified. In other types of sequencer these polar derivatives, being somewhat insoluble in butyl chloride, tend to remain in the reaction chamber of the instrument and so are more difficult to identify. The solid-phase protein sequencer is also more suited than the liquid-phase instrument for analysis of proteolipids from membranes. These hydrophobic proteins tend to dissolve in organic solvents during washing steps in the liquid-phase instrument and are lost. Covalent attachment as used in the solid-phase instrument solves this problem. PMID:3800890

  6. Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) for analysis of chromatin complexes.

    PubMed

    Mohammed, Hisham; Taylor, Christopher; Brown, Gordon D; Papachristou, Evaggelia K; Carroll, Jason S; D'Santos, Clive S

    2016-02-01

    Rapid immunoprecipitation mass spectrometry of endogenous protein (RIME) is a method that allows the study of protein complexes, in particular chromatin and transcription factor complexes, in a rapid and robust manner by mass spectrometry (MS). The method can be used in parallel with chromatin immunoprecipitation-sequencing (ChIP-seq) experiments to provide information on both the cistrome and interactome for a given protein. The method uses formaldehyde fixation to stabilize protein complexes. By using antibodies against the endogenous target, the cross-linked complex is immunoprecipitated, rigorously washed, and then digested into peptides while avoiding antibody contamination (on-bead digestion). By using this method, MS identification of the target protein and several dozen interacting proteins is possible using a 100-min LC-MS/MS run. The protocol does not require substantial proteomics expertise, and it typically takes 2-3 d from the collection of material to results.

  7. Rapid Protein Separations in Microfluidic Devices

    NASA Technical Reports Server (NTRS)

    Fan, Z. H.; Das, Champak; Xia, Zheng; Stoyanov, Alexander V.; Fredrickson, Carl K.

    2004-01-01

    This paper describes fabrication of glass and plastic microfluidic devices for protein separations. Although the long-term goal is to develop a microfluidic device for two-dimensional gel electrophoresis, this paper focuses on the first dimension-isoelectric focusing (IEF). A laser-induced fluorescence (LIF) imaging system has been built for imaging an entire channel in an IEF device. The whole-channel imaging eliminates the need to migrate focused protein bands, which is required if a single-point detector is used. Using the devices and the imaging system, we are able to perform IEF separations of proteins within minutes rather than hours in traditional bench-top instruments.

  8. Rapid identification of Zygosaccharomyces with genus-specific primers.

    PubMed

    Hulin, Michelle; Wheals, Alan

    2014-03-03

    There has been a recent and rapid increase in the number of species of the genus Zygosaccharomyces which now comprises Z. bailii, Z. bisporus, Z. gambellarensis, Z. kombuchaensis, Z. lentus, Z. machadoi, Z. mellis, Z. parabaillii, Z. pseudobailii, Z. pseudorouxii, Z. rouxii, Z. sapae, and Z. siamensis. Z. pseudorouxii is an unofficial name given to isolates closely related to the newly-described species Z. sapae. The Zygosaccharomyces genus contains species that are important as food and beverage spoilage organisms and others are associated with fermentations and sweet foodstuffs, such as honey. Their economic significance means that the ability to identify them rapidly is of significant importance. Although Z. rouxii and Z. bailii have been genome-sequenced the extent of sequence data for the others, especially the newly-discovered species, is sometimes extremely limited which makes identification slow. However, parts of the ITS1/5.8S/ITS2 rDNA region contain sequences of sufficient similarity within the genus and of sufficient difference with outgroups, to be potential regions for the design of genus-wide specific primers. We report here the development of genus-specific primers that can detect all the major Zygosaccharomyces species including all those associated with foods; the rare and localised species Z. machadoi and Z. gambellarensis are not detected. The size of the single amplicon produced varies between species and in some cases is sufficiently different to assign provisional species identification. Sequence data from rDNA regions are available for virtually all described yeast species in all genera, thus, prior to having sufficient sequence data from structural genes, rDNA regions may provide more generally suitable candidates for both genus-specific and species-specific primer design.

  9. Rapid identification of bacteria with miniaturized pyrolysis/GC analysis

    NASA Astrophysics Data System (ADS)

    Morgan, Catherine H.; Mowry, Curtis; Manginell, Ronald P.; Frye-Mason, Gregory C.; Kottenstette, Richard J.; Lewis, Patrick

    2001-02-01

    Identification of bacteria and other biological moieties finds a broad range of applications in the environmental, biomedical, agricultural, industrial, and military arenas. Linking these applications are biological markers such as fatty acids, whose mass spectral profiles can be used to characterize biological samples and to distinguish bacteria at the gram-type, genera, and even species level. Common methods of sample analysis require sample preparation that is both lengthy and labor intensive, especially for whole cell bacteria. The background technique relied on here utilizes chemical derivatization of fatty acids to the more volatile fatty acid methyl esters (FAMEs), which can be separated on a gas chromatograph column or input directly into a mass spectrometer. More recent publications demonstrate improved sample preparation time with in situ derivatization of whole bacterial samples using pyrolysis at the inlet; although much faster than traditional techniques, these systems still rely on bench-top analytical equipment and individual sample preparation. Development of a miniaturized pyrolysis/GC instrument by this group is intended to realize the benefits of FAME identification of bacteria and other biological samples while further facilitating sample handling and instrument portability. The technologies being fabricated and tested have the potential of achieving pyrolysis and FAME separation on a very small scale, with rapid detection time (1-10 min from introduction to result), and with a modular sample inlet. Performance results and sensor characterization will be presented for the first phase of instrument development, encompassing the microfabricated pyrolysis and gas chromatograph elements.

  10. Autonomous Metabolomics for Rapid Metabolite Identification in Global Profiling

    DOE PAGES

    Benton, H. Paul; Ivanisevic, Julijana; Mahieu, Nathaniel G.; ...

    2014-12-12

    An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. We can analyze large profiling datasets and simultaneously obtain structural identifications, as a result of this unique integration. Furthermore, validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometrymore » data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level.« less

  11. Identification of ABO alleles on forensic-type specimens using rapid-ABO genotyping.

    PubMed

    Crouse, C; Vincek, V

    1995-03-01

    Historically, forensic and clinical laboratories utilize serological techniques to identify ABO blood types. These techniques rely on the detection of ABO-associated proteins and are sensitive with very accurate results. This laboratory has simplified the identification of ABO types by taking advantage of previously reported ABO DNA sequence differences. The Rapid-ABO technique involves a two-step process: (i) amplification of DNA samples using primer sets specific for the ABO alleles and (ii) electrophoresis and visualization of amplified ABO fragments on a 3% MetaPhor agarose gel. The major advantage of the Rapid-ABO technique is the identification of ABO genotypes compared to serological tests for ABO phenotypes. This two-step process identifies six possible ABO genotypes including AB, AA, BB, AO, BO and OO. The Rapid-ABO protocol works well with DNA extracted organically or using Chelex 100. Results can be obtained in less than a day utilizing 2 ng of DNA in the amplification reaction. Analysis of 23 animal species shows the Rapid-ABO primers amplify ABO alleles from only human, chimpanzee and gorilla DNA.

  12. Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep.

    PubMed

    Datta, S; Siwek, D F; Stack, E C

    2009-09-29

    Recent studies have shown that in the pedunculopontine tegmental nucleus (PPT), increased neuronal activity and kainate receptor-mediated activation of intracellular protein kinase A (PKA) are important physiological and molecular steps for the generation of rapid eye movement (REM) sleep. In the present study performed on rats, phosphorylated cyclic AMP response element-binding protein (pCREB) immunostaining was used as a marker for increased intracellular PKA activation and as a reflection of increased neuronal activity. To identify whether activated cells were either cholinergic or noncholinergic, the PPT and laterodorsal tegmental nucleus (LDT) cells were immunostained for choline acetyltransferase (ChAT) in combination with pCREB or c-Fos. The results demonstrated that during high rapid eye movement sleep (HR, approximately 27%), significantly higher numbers of cells expressed pCREB and c-Fos in the PPT, of which 95% of pCREB-expressing cells were ChAT-positive. With HR, the numbers of pCREB-positive cells were also significantly higher in the medial pontine reticular formation (mPRF), pontine reticular nucleus oral (PnO), and dorsal subcoeruleus nucleus (SubCD) but very few in the locus coeruleus (LC) and dorsal raphe nucleus (DRN). Conversely, with low rapid eye movement sleep (LR, approximately 2%), the numbers of pCREB expressing cells were very few in the PPT, mPRF, PnO, and SubCD but significantly higher in the LC and DRN. The results of regression analyses revealed significant positive relationships between the total percentages of REM sleep and numbers of ChAT+/pCREB+ (Rsqr=0.98) cells in the PPT and pCREB+ cells in the mPRF (Rsqr=0.88), PnO (Rsqr=0.87), and SubCD (Rsqr=0.84); whereas significantly negative relationships were associated with the pCREB+ cells in the LC (Rsqr=0.70) and DRN (Rsqr=0.60). These results provide evidence supporting the hypothesis that during REM sleep, the PPT cholinergic neurons are active, whereas the LC and DRN neurons are

  13. Identification of proteins binding coding and non-coding human RNAs using protein microarrays

    PubMed Central

    2012-01-01

    Background The regulation and function of mammalian RNAs has been increasingly appreciated to operate via RNA-protein interactions. With the recent discovery of thousands of novel human RNA molecules by high-throughput RNA sequencing, efficient methods to uncover RNA-protein interactions are urgently required. Existing methods to study proteins associated with a given RNA are laborious and require substantial amounts of cell-derived starting material. To overcome these limitations, we have developed a rapid and large-scale approach to characterize binding of in vitro transcribed labeled RNA to ~9,400 human recombinant proteins spotted on protein microarrays. Results We have optimized methodology to probe human protein microarrays with full-length RNA molecules and have identified 137 RNA-protein interactions specific for 10 coding and non-coding RNAs. Those proteins showed strong enrichment for common human RNA binding domains such as RRM, RBD, as well as K homology and CCCH type zinc finger motifs. Previously unknown RNA-protein interactions were discovered using this technique, and these interactions were biochemically verified between TP53 mRNA and Staufen1 protein as well as between HRAS mRNA and CNBP protein. Functional characterization of the interaction between Staufen 1 protein and TP53 mRNA revealed a novel role for Staufen 1 in preserving TP53 RNA stability. Conclusions Our approach demonstrates a scalable methodology, allowing rapid and efficient identification of novel human RNA-protein interactions using RNA hybridization to human protein microarrays. Biochemical validation of newly identified interactions between TP53-Stau1 and HRAS-CNBP using reciprocal pull-down experiments, both in vitro and in vivo, demonstrates the utility of this approach to study uncharacterized RNA-protein interactions. PMID:23157412

  14. Rapid Identification of Chemical Genetic Interactions in Saccharomyces cerevisiae

    PubMed Central

    Dilworth, David; Nelson, Christopher J.

    2015-01-01

    Determining the mode of action of bioactive chemicals is of interest to a broad range of academic, pharmaceutical, and industrial scientists. Saccharomyces cerevisiae, or budding yeast, is a model eukaryote for which a complete collection of ~6,000 gene deletion mutants and hypomorphic essential gene mutants are commercially available. These collections of mutants can be used to systematically detect chemical-gene interactions, i.e. genes necessary to tolerate a chemical. This information, in turn, reports on the likely mode of action of the compound. Here we describe a protocol for the rapid identification of chemical-genetic interactions in budding yeast. We demonstrate the method using the chemotherapeutic agent 5-fluorouracil (5-FU), which has a well-defined mechanism of action. Our results show that the nuclear TRAMP RNA exosome and DNA repair enzymes are needed for proliferation in the presence of 5-FU, which is consistent with previous microarray based bar-coding chemical genetic approaches and the knowledge that 5-FU adversely affects both RNA and DNA metabolism. The required validation protocols of these high-throughput screens are also described. PMID:25867090

  15. Rapid Identification and Verification of Indirubin-Containing Medicinal Plants

    PubMed Central

    Hu, Zhigang; Tu, Yuan; Xia, Ye; Cheng, Peipei; Sun, Wei; Shi, Yuhua; Guo, Licheng; He, Haibo; Xiong, Chao; Chen, Shilin; Zhang, Xiuqiao

    2015-01-01

    Indirubin, one of the key components of medicinal plants including Isatis tinctoria, Polygonum tinctorium, and Strobilanthes cusia, possesses great medicinal efficacy in the treatment of chronic myelocytic leukemia (CML). Due to misidentification and similar name, materials containing indirubin and their close relatives frequently fall prey to adulteration. In this study, we selected an internal transcribed spacer 2 (ITS2) for distinguishing these indirubin-containing species from five of their usual adulterants, after assessing identification efficiency of matK, rbcL, psbA-trnH, and ITS2 among these species. The results of genetic distances and neighbor-joining (NJ) phylogenetic tree indicated that ITS2 region is a powerful DNA barcode to accurately identify these indirubin-containing species and discriminate them from their adulterants. Additionally, high performance liquid chromatography (HPLC) was used to verify indirubin in different organs of the above species. The results showed that indirubin had been detected in the leaves of Is. tinctoria, P. tinctorium, S. cusia, and Indigo Naturalis (made from their mixture), but not in their roots, or in the leaves of their adulterants. Therefore, this study provides a novel and rapid method to identify and verify indirubin-containing medicinal plants for effective natural treatment of CML. PMID:26089942

  16. Rapid flow cytometric measurement of protein inclusions and nuclear trafficking

    PubMed Central

    Whiten, D. R.; San Gil, R.; McAlary, L.; Yerbury, J. J.; Ecroyd, H.; Wilson, M. R.

    2016-01-01

    Proteinaceous cytoplasmic inclusions are an indicator of dysfunction in normal cellular proteostasis and a hallmark of many neurodegenerative diseases. We describe a simple and rapid new flow cytometry-based method to enumerate, characterise and, if desired, physically recover protein inclusions from cells. This technique can analyse and resolve a broad variety of inclusions differing in both size and protein composition, making it applicable to essentially any model of intracellular protein aggregation. The method also allows rapid quantification of the nuclear trafficking of fluorescently labelled molecules. PMID:27516358

  17. Target identification with quantitative activity based protein profiling (ABPP).

    PubMed

    Chen, Xiao; Wong, Yin Kwan; Wang, Jigang; Zhang, Jianbin; Lee, Yew-Mun; Shen, Han-Ming; Lin, Qingsong; Hua, Zi-Chun

    2017-02-01

    As many small bioactive molecules fulfill their functions through interacting with protein targets, the identification of such targets is crucial in understanding their mechanisms of action (MOA) and side effects. With technological advancements in target identification, it has become possible to accurately and comprehensively study the MOA and side effects of small molecules. While small molecules with therapeutic potential were derived solely from nature in the past, the remodeling and synthesis of such molecules have now been made possible. Presently, while some small molecules have seen successful application as drugs, the majority remain undeveloped, requiring further understanding of their MOA and side effects to fully tap into their potential. Given the typical promiscuity of many small molecules and the complexity of the cellular proteome, a high-flux and high-accuracy method is necessary. While affinity chromatography approaches combined with MS have had successes in target identification, limitations associated with nonspecific results remain. To overcome these complications, quantitative chemical proteomics approaches have been developed including metabolic labeling, chemical labeling, and label-free methods. These new approaches are adopted in conjunction with activity-based protein profiling (ABPP), allowing for a rapid process and accurate results. This review will briefly introduce the principles involved in ABPP, then summarize current advances in quantitative chemical proteomics approaches as well as illustrate with examples how ABPP coupled with quantitative chemical proteomics has been used to detect the targets of drugs and other bioactive small molecules including natural products.

  18. Rapid Identification of Airborne Biological Particles by Flow Cytometry, Gas Chromatography, and Genetic Probes.

    DTIC Science & Technology

    1997-09-01

    isolated culture of Heterobasidion annosum. The yeast and bacterial specimens have not been identified, since their identifications require biochemical...RZ-SZAACH. DEVELOPMENr & E-NONEERINO CENTER U.S. AR..!f CHR ICAL AND SIOLOGIC-NL DEFENSE COMNMA1D RAPID IDENTIFICATION OF AIRBORNE BIOLOGICAL...Ground, Maryland 21010-5423 ERRATUM SHEET 30 October 1997 REPORT NO. ERDEC-TR-443 TITLE RAPID IDENTIFICATION OF AIRBORNE BIOLOGICAL PARTICLES BY FLOW

  19. YahO protein as a calibrant for top-down proteomic identification of Shiga toxin using MALDI-TOF-TOF-MS/MS and post-source decay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF-TOF) mass spectrometry is increasingly utilized for rapid top-down proteomic identification of proteins. This identification may involve analysis of either a pure protein or a protein mixture. For analysis of a pure protein...

  20. Proteomic identification of rainbow trout sperm proteins.

    PubMed

    Nynca, Joanna; Arnold, Georg J; Fröhlich, Thomas; Otte, Kathrin; Ciereszko, Andrzej

    2014-06-01

    Proteomics represents a powerful tool for the analysis of fish spermatozoa, since these cells are transcriptionally inactive. The aim of the present study was to generate an inventory of the most prominent rainbow trout sperm proteins by SDS-PAGE prefractionation combined with nano-LC-MS/MS based identification. This study provides the first in-depth analysis of the rainbow trout sperm proteome, with a total of 206 identified proteins. We found that rainbow trout spermatozoa are equipped with functionally diverse proteins related to energetic metabolism, signal transduction, protein turnover, transport, cytoskeleton, oxidative injuries, and stress and reproduction. The availability of a catalog of rainbow trout sperm proteins provides a crucial tool for the understanding of fundamental molecular processes in fish spermatozoa, for the ongoing development of novel markers of sperm quality and for the optimization of short- and long-term sperm preservation procedures. The MS data are available at ProteomeXchange with the dataset identifier PXD000355 and DOI 10.6019/PXD000355.

  1. Rapid Identification of Pathogens from Pediatric Blood Cultures by Use of the FilmArray Blood Culture Identification Panel

    PubMed Central

    Polanco, Wanda; Carter, Donna; Shulman, Stanford

    2014-01-01

    The performance of the FilmArray blood culture identification (BCID) panel has been studied in adult patients. We describe here an evaluation of this assay for the rapid identification of pathogens in Bactec Peds Plus/F and Bactec standard anaerobic/F bottles that contained blood samples from pediatric patients at a tertiary care children's hospital. PMID:25274998

  2. Identification of Uropathogenic Escherichia coli Surface Proteins by Shotgun Proteomics

    PubMed Central

    Walters, Matthew S.; Mobley, Harry L.T.

    2009-01-01

    Uropathogenic Escherichia coli (UPEC) cause the majority of uncomplicated urinary tract infections in humans. In the process of identifying candidate antigens for a vaccine, two methods for the identification of the UPEC surface proteome during growth in human urine were investigated. The first approach utilized a protease to ‘shave’ surface-exposed peptides from the bacterial cell surface and identify them by mass spectrometry. Although this approach has been successfully applied to a Gram-positive pathogen, the adaptation to Gram-negative UPEC resulted in cytoplasmic protein contamination. In a more direct approach, whole-cell bacteria were labeled with a biotin tag to indicate surface-exposed peptides and two-dimensional liquid chromatography-tandem mass spectrometry (2-DLC-MS/MS) was used to identify proteins isolated from the outer membrane. This method discovered 25 predicted outer membrane proteins expressed by UPEC while growing in human urine. Nine of the 25 predicted outer membrane proteins were part of iron transport systems or putative iron-regulated virulence proteins, indicating the importance of iron acquisition during growth in urine. One of the iron transport proteins identified, Hma, appears to be a promising vaccine candidate is being further investigated. The method described here presents a system to rapidly identify the outer membrane proteome of bacteria, which may prove valuable in vaccine development. PMID:19426766

  3. A rapid sex-identification test for the forest musk deer (Moschus berezovskii) based on the ZFX/ZFY gene.

    PubMed

    Qiao, Yanyun; Zou, Fangdong; Wei, Kun; Yue, Bisong

    2007-05-01

    We describe a rapid sex-identification method for the forest musk deer (Moschus berezovskii) using PCR based on zinc-finger protein-encoding genes (ZFX/ZFY) located on the X and Y chromosomes. Fragments of the ZFX and ZFY genes were amplified and sequenced. The ZFX and ZFY fragments were identical in length and 94% similar in nucleotide sequence. Specific primers for forest musk deer sex identification were designed on the basis of sequence differences between ZFX and ZFY. All the primers were multiplexed in single-tube PCR. Both male and female forest musk deer showed amplification bands of 447 bp and 212 bp separated in agarose gels. A sex-specific 278-bp band was amplified only from males. These results show that testing by PCR for the presence of the 278-bp sequence is a rapid and reliable method for sex identification.

  4. Automated Protein Subfamily Identification and Classification

    PubMed Central

    Brown, Duncan P; Krishnamurthy, Nandini; Sjölander, Kimmen

    2007-01-01

    Function prediction by homology is widely used to provide preliminary functional annotations for genes for which experimental evidence of function is unavailable or limited. This approach has been shown to be prone to systematic error, including percolation of annotation errors through sequence databases. Phylogenomic analysis avoids these errors in function prediction but has been difficult to automate for high-throughput application. To address this limitation, we present a computationally efficient pipeline for phylogenomic classification of proteins. This pipeline uses the SCI-PHY (Subfamily Classification in Phylogenomics) algorithm for automatic subfamily identification, followed by subfamily hidden Markov model (HMM) construction. A simple and computationally efficient scoring scheme using family and subfamily HMMs enables classification of novel sequences to protein families and subfamilies. Sequences representing entirely novel subfamilies are differentiated from those that can be classified to subfamilies in the input training set using logistic regression. Subfamily HMM parameters are estimated using an information-sharing protocol, enabling subfamilies containing even a single sequence to benefit from conservation patterns defining the family as a whole or in related subfamilies. SCI-PHY subfamilies correspond closely to functional subtypes defined by experts and to conserved clades found by phylogenetic analysis. Extensive comparisons of subfamily and family HMM performances show that subfamily HMMs dramatically improve the separation between homologous and non-homologous proteins in sequence database searches. Subfamily HMMs also provide extremely high specificity of classification and can be used to predict entirely novel subtypes. The SCI-PHY Web server at http://phylogenomics.berkeley.edu/SCI-PHY/ allows users to upload a multiple sequence alignment for subfamily identification and subfamily HMM construction. Biologists wishing to provide their own

  5. Rapid microscale in-gel processing and digestion of proteins using surface acoustic waves.

    PubMed

    Kulkarni, Ketav P; Ramarathinam, Sri H; Friend, James; Yeo, Leslie; Purcell, Anthony W; Perlmutter, Patrick

    2010-06-21

    A new method for in-gel sample processing and tryptic digestion of proteins is described. Sample preparation, rehydration, in situ digestion and peptide extraction from gel slices are dramatically accelerated by treating the gel slice with surface acoustic waves (SAWs). Only 30 minutes total workflow time is required for this new method to produce base peak chromatograms (BPCs) of similar coverage and intensity to those observed for traditional processing and overnight digestion. Simple set up, good reproducibility, excellent peptide recoveries, rapid turnover of samples and high confidence protein identifications put this technology at the fore-front of the next generation of proteomics sample processing tools.

  6. Rapid Identification of Mycobacteria and Drug-Resistant Mycobacterium tuberculosis by Use of a Single Multiplex PCR and DNA Sequencing

    PubMed Central

    Pérez-Osorio, Ailyn C.; Boyle, David S.; Ingham, Zachary K.; Ostash, Alla; Gautom, Romesh K.; Colombel, Craig; Houze, Yolanda

    2012-01-01

    Tuberculosis (TB) remains a significant global health problem for which rapid diagnosis is critical to both treatment and control. This report describes a multiplex PCR method, the Mycobacterial IDentification and Drug Resistance Screen (MID-DRS) assay, which allows identification of members of the Mycobacterium tuberculosis complex (MTBC) and the simultaneous amplification of targets for sequencing-based drug resistance screening of rifampin-resistant (rifampinr), isoniazidr, and pyrazinamider TB. Additionally, the same multiplex reaction amplifies a specific 16S rRNA gene target for rapid identification of M. avium complex (MAC) and a region of the heat shock protein 65 gene (hsp65) for further DNA sequencing-based confirmation or identification of other mycobacterial species. Comparison of preliminary results generated with MID-DRS versus culture-based methods for a total of 188 bacterial isolates demonstrated MID-DRS sensitivity and specificity as 100% and 96.8% for MTBC identification; 100% and 98.3% for MAC identification; 97.4% and 98.7% for rifampinr TB identification; 60.6% and 100% for isoniazidr TB identification; and 75.0% and 98.1% for pyrazinamider TB identification. The performance of the MID-DRS was also tested on acid-fast-bacterium (AFB)-positive clinical specimens, resulting in sensitivity and specificity of 100% and 78.6% for detection of MTBC and 100% and 97.8% for detection of MAC. In conclusion, use of the MID-DRS reduces the time necessary for initial identification and drug resistance screening of TB specimens to as little as 2 days. Since all targets needed for completing the assay are included in a single PCR amplification step, assay costs, preparation time, and risks due to user errors are also reduced. PMID:22162548

  7. Identification of ligands for bacterial sensor proteins.

    PubMed

    Fernández, Matilde; Morel, Bertrand; Corral-Lugo, Andrés; Rico-Jiménez, Miriam; Martín-Mora, David; López-Farfán, Diana; Reyes-Darias, José Antonio; Matilla, Miguel A; Ortega, Álvaro; Krell, Tino

    2016-02-01

    Bacteria have evolved a variety of different signal transduction mechanisms. However, the cognate signal molecule for the very large amount of corresponding sensor proteins is unknown and their functional annotation represents a major bottleneck in the field of signal transduction. The knowledge of the signal molecule is an essential prerequisite to understand the signalling mechanisms. Recently, the identification of signal molecules by the high-throughput protein screening of commercially available ligand collections using differential scanning fluorimetry has shown promise to resolve this bottleneck. Based on the analysis of a significant number of different ligand binding domains (LBDs) in our laboratory, we identified two issues that need to be taken into account in the experimental design. Since a number of LBDs require the dimeric state for ligand recognition, it has to be assured that the protein analysed is indeed in the dimeric form. A number of other examples demonstrate that purified LBDs can contain bound ligand which prevents further binding. In such cases, the apo-form can be generated by denaturation and subsequent refolding. We are convinced that this approach will accelerate the functional annotation of sensor proteins which will help to understand regulatory circuits in bacteria.

  8. A rapid biuret assay for protein of whole fatty tissues.

    PubMed

    Beyer, R E

    1983-03-01

    A rapid biuret procedure is described which avoids the turbidity that occurs with protein analysis of intact fatty tissues. Recovery is complete and absorbancy linear with both concentration of the soluble crystalline serum albumin standard and the volume of homogenate of a variety of tissues. This method has been used successfully for the determination of protein concentrations of homogenates of whole rat heart, liver, kidney, brain, lung, and the following muscles: gastrocnemius, interior and exterior obliques, red and white vastus lateralis, and soleus.

  9. A quantum chemical method for rapid optimization of protein structures.

    PubMed

    Wada, Mitsuhito; Sakurai, Minoru

    2005-01-30

    A quantum chemical method for rapid optimization of protein structures is proposed. In this method, a protein structure is treated as an assembly of amino acid units, and the geometry optimization of each unit is performed with taking the effect of its surrounding environment into account. The optimized geometry of a whole protein is obtained by repeated application of such a local optimization procedure over the entire part of the protein. Here, we implemented this method in the MOPAC program and performed geometry optimization for three different sizes of proteins. Consequently, these results demonstrate that the total energies of the proteins are much efficiently minimized compared with the use of conventional optimization methods, including the MOZYME algorithm (a representative linear-scaling method) with the BFGS routine. The proposed method is superior to the conventional methods in both CPU time and memory requirements.

  10. Lattice model for rapidly folding protein-like heteropolymers.

    PubMed Central

    Shrivastava, I; Vishveshwara, S; Cieplak, M; Maritan, A; Banavar, J R

    1995-01-01

    Protein folding is a relatively fast process considering the astronomical number of conformations in which a protein could find itself. Within the framework of a lattice model, we show that one can design rapidly folding sequences by assigning the strongest attractive couplings to the contacts present in a target native state. Our protein design can be extended to situations with both attractive and repulsive contacts. Frustration is minimized by ensuring that all the native contacts are again strongly attractive. Strikingly, this ensures the inevitability of folding and accelerates the folding process by an order of magnitude. The evolutionary implications of our findings are discussed. PMID:7568102

  11. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis.

    PubMed Central

    Telenti, A; Marchesi, F; Balz, M; Bally, F; Böttger, E C; Bodmer, T

    1993-01-01

    A method for the rapid identification of mycobacteria to the species level was developed on the basis of evaluation by the polymerase chain reaction (PCR) of the gene encoding for the 65-kDa protein. The method involves restriction enzyme analysis of PCR products obtained with primers common to all mycobacteria. Using two restriction enzymes, BstEII and HaeIII, medically relevant and other frequent laboratory isolates were differentiated to the species or subspecies level by PCR-restriction enzyme pattern analysis. PCR-restriction enzyme pattern analysis was performed on isolates (n = 330) from solid and fluid culture media, including BACTEC, or from frozen and lyophilized stocks. The procedure does not involve hybridization steps or the use of radioactivity and can be completed within 1 working day. Images PMID:8381805

  12. Evaluation of a new system for the rapid identification of clinically important yeasts.

    PubMed Central

    Segal, E; Ajello, L

    1976-01-01

    The rapid system developed by Huppert et al. (1975) for the identification of yeasts based on assimilation and fermentation patterns and on germ tube and pseudohyphal production was evaluated in a comparative study with conventional procedures. The 95 test cultures were members of the genera Candida, Cryptococcus, Rhodotorula, Saccharomyces, Torulopsis, and Trichosporon. The study revealed that approximately 94% of the isolates were correctly identified by the rapid method in comparison with the standard method. With the rapid method identification was accomplished in 72h, and with the conventional procedures identification was completed in 2 weeks. Although it was difficult with some isolates to obtain definitive speciation by the rapid method, this method promises to be especially useful in clinical laboratories for the identification of yeasts of medical importance. Modifications were made in the procedure of Huppert et al. (1975) to improve the reading of reactions. Commercial media and a disk dispenser to make the method more useful were also investigated. PMID:965478

  13. Applications of graph theory in protein structure identification.

    PubMed

    Yan, Yan; Zhang, Shenggui; Wu, Fang-Xiang

    2011-10-14

    There is a growing interest in the identification of proteins on the proteome wide scale. Among different kinds of protein structure identification methods, graph-theoretic methods are very sharp ones. Due to their lower costs, higher effectiveness and many other advantages, they have drawn more and more researchers' attention nowadays. Specifically, graph-theoretic methods have been widely used in homology identification, side-chain cluster identification, peptide sequencing and so on. This paper reviews several methods in solving protein structure identification problems using graph theory. We mainly introduce classical methods and mathematical models including homology modeling based on clique finding, identification of side-chain clusters in protein structures upon graph spectrum, and de novo peptide sequencing via tandem mass spectrometry using the spectrum graph model. In addition, concluding remarks and future priorities of each method are given.

  14. Rapid identification of nine species of diphyllobothriidean tapeworms by pyrosequencing

    PubMed Central

    Thanchomnang, Tongjit; Tantrawatpan, Chairat; Intapan, Pewpan M.; Sanpool, Oranuch; Lulitanond, Viraphong; Tourtip, Somjintana; Yamasaki, Hiroshi; Maleewong, Wanchai

    2016-01-01

    The identification of diphyllobothriidean tapeworms (Cestoda: Diphyllobothriidea) that infect humans and intermediate/paratenic hosts is extremely difficult due to their morphological similarities, particularly in the case of Diphyllobothrium and Spirometra species. A pyrosequencing method for the molecular identification of pathogenic agents has recently been developed, but as of yet there have been no reports of pyrosequencing approaches that are able to discriminate among diphyllobothriidean species. This study, therefore, set out to establish a pyrosequencing method for differentiating among nine diphyllobothriidean species, Diphyllobothrium dendriticum, Diphyllobothrium ditremum, Diphyllobothrium latum, Diphyllobothrium nihonkaiense, Diphyllobothrium stemmacephalum, Diplogonoporus balaenopterae, Adenocephalus pacificus, Spirometra decipiens and Sparganum proliferum, based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene as a molecular marker. A region of 41 nucleotides in the cox1 gene served as a target, and variations in this region were used for identification using PCR plus pyrosequencing. This region contains nucleotide variations at 12 positions, which is enough for the identification of the selected nine species of diphyllobothriidean tapeworms. This method was found to be a reliable tool not only for species identification of diphyllobothriids, but also for epidemiological studies of cestodiasis caused by diphyllobothriidean tapeworms at public health units in endemic areas. PMID:27853295

  15. Rapid identification of nine species of diphyllobothriidean tapeworms by pyrosequencing.

    PubMed

    Thanchomnang, Tongjit; Tantrawatpan, Chairat; Intapan, Pewpan M; Sanpool, Oranuch; Lulitanond, Viraphong; Tourtip, Somjintana; Yamasaki, Hiroshi; Maleewong, Wanchai

    2016-11-17

    The identification of diphyllobothriidean tapeworms (Cestoda: Diphyllobothriidea) that infect humans and intermediate/paratenic hosts is extremely difficult due to their morphological similarities, particularly in the case of Diphyllobothrium and Spirometra species. A pyrosequencing method for the molecular identification of pathogenic agents has recently been developed, but as of yet there have been no reports of pyrosequencing approaches that are able to discriminate among diphyllobothriidean species. This study, therefore, set out to establish a pyrosequencing method for differentiating among nine diphyllobothriidean species, Diphyllobothrium dendriticum, Diphyllobothrium ditremum, Diphyllobothrium latum, Diphyllobothrium nihonkaiense, Diphyllobothrium stemmacephalum, Diplogonoporus balaenopterae, Adenocephalus pacificus, Spirometra decipiens and Sparganum proliferum, based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene as a molecular marker. A region of 41 nucleotides in the cox1 gene served as a target, and variations in this region were used for identification using PCR plus pyrosequencing. This region contains nucleotide variations at 12 positions, which is enough for the identification of the selected nine species of diphyllobothriidean tapeworms. This method was found to be a reliable tool not only for species identification of diphyllobothriids, but also for epidemiological studies of cestodiasis caused by diphyllobothriidean tapeworms at public health units in endemic areas.

  16. Rapid and Accurate Identification of Candida albicans Isolates by Use of PNA FISHFlow▿

    PubMed Central

    Trnovsky, Jan; Merz, William; Della-Latta, Phyllis; Wu, Fann; Arendrup, Maiken Cavling; Stender, Henrik

    2008-01-01

    We developed the simple, rapid (1 h), and accurate PNA FISHFlow method for the identification of Candida albicans. The method exploits unique in solution in situ hybridization conditions under which the cells are simultaneously fixed and hybridized. This method facilitates the accurate identification of clinical yeast isolates using two scoring techniques: flow cytometry and fluorescence microscopy. PMID:18287325

  17. Rapid Confirmation of Listeria spp. with the MIT 1000 Microbial Identification System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods that can rapidly confirm the identification of foodborne pathogens are highly desired. The USDA has recently entered into a collaborative research agreement with Micro Imaging Technology to evaluate their MIT 1000 microbial identification system for its ability to identify Listeria species ...

  18. Phage display library screening for identification of interacting protein partners.

    PubMed

    Addepalli, Balasubrahmanyam; Rao, Suryadevara; Hunt, Arthur G

    2015-01-01

    Phage display is a versatile high-throughput screening method employed to understand and improve the chemical biology, be it production of human monoclonal antibodies or identification of interacting protein partners. A majority of cell proteins operate in a concerted fashion either by stable or transient interactions. Such interactions can be mediated by recognition of small amino acid sequence motifs on the protein surface. Phage display can play a crucial role in identification of such motifs. This report describes the use of phage display for the identification of high affinity sequence motifs that could be responsible for interactions with a target (bait) protein.

  19. Identification of essential proteins based on ranking edge-weights in protein-protein interaction networks.

    PubMed

    Wang, Yan; Sun, Huiyan; Du, Wei; Blanzieri, Enrico; Viero, Gabriella; Xu, Ying; Liang, Yanchun

    2014-01-01

    Essential proteins are those that are indispensable to cellular survival and development. Existing methods for essential protein identification generally rely on knock-out experiments and/or the relative density of their interactions (edges) with other proteins in a Protein-Protein Interaction (PPI) network. Here, we present a computational method, called EW, to first rank protein-protein interactions in terms of their Edge Weights, and then identify sub-PPI-networks consisting of only the highly-ranked edges and predict their proteins as essential proteins. We have applied this method to publicly-available PPI data on Saccharomyces cerevisiae (Yeast) and Escherichia coli (E. coli) for essential protein identification, and demonstrated that EW achieves better performance than the state-of-the-art methods in terms of the precision-recall and Jackknife measures. The highly-ranked protein-protein interactions by our prediction tend to be biologically significant in both the Yeast and E. coli PPI networks. Further analyses on systematically perturbed Yeast and E. coli PPI networks through randomly deleting edges demonstrate that the proposed method is robust and the top-ranked edges tend to be more associated with known essential proteins than the lowly-ranked edges.

  20. Rapid turbidimetric detection of milk powder adulteration with plant proteins.

    PubMed

    Scholl, Peter F; Farris, Samantha M; Mossoba, Magdi M

    2014-02-19

    Development of assays to screen milk for economically motivated adulteration with foreign proteins has been stalled since 2008 due to strong international reactions to the melamine poisoning incident in China and the surveillance emphasis placed on low molecular weight nitrogen-rich adulterants. New screening assays are still needed to detect high molecular weight foreign protein adulterants and characterize this understudied potential risk. A rapid turbidimetric method was developed to screen milk powder for adulteration with insoluble plant proteins. Milk powder samples spiked with 0.03-3% by weight of soy, pea, rice, and wheat protein isolates were extracted in 96-well plates, and resuspended pellet solution absorbance was measured. Limits of detection ranged from 100 to 200 μg, or 0.1-0.2% of the sample weight, and adulterant pellets were visually apparent even at ∼0.1%. Extraction recoveries ranged from 25 to 100%. Assay sensitivity and simplicity indicate that it would be ideally suitable to rapidly screen milk samples in resource poor environments where adulteration with plant protein is suspected.

  1. Identification of Posttranslational Modification-Dependent Protein Interactions Using Yeast Surface Displayed Human Proteome Libraries.

    PubMed

    Bidlingmaier, Scott; Liu, Bin

    2015-01-01

    The identification of proteins that interact specifically with posttranslational modifications such as phosphorylation is often necessary to understand cellular signaling pathways. Numerous methods for identifying proteins that interact with posttranslational modifications have been utilized, including affinity-based purification and analysis, protein microarrays, phage display, and tethered catalysis. Although these techniques have been used successfully, each has limitations. Recently, yeast surface-displayed human proteome libraries have been utilized to identify protein fragments with affinity for various target molecules, including phosphorylated peptides. When coupled with fluorescently activated cell sorting and high throughput methods for the analysis of selection outputs, yeast surface-displayed human proteome libraries can rapidly and efficiently identify protein fragments with affinity for any soluble ligand that can be fluorescently detected, including posttranslational modifications. In this review we compare the use of yeast surface display libraries to other methods for the identification of interactions between proteins and posttranslational modifications and discuss future applications of the technology.

  2. Evaluation of a rapid protein analyzer for determination of protein in milk and cream.

    PubMed

    Amamcharla, J K; Metzger, L E

    2010-08-01

    Accurate and rapid measurement of the protein content of milk is important from both a product quality and an economic standpoint. The Sprint rapid protein analyzer (CEM Corporation, Matthews, NC) is a commercial system based on a dye-binding technique and can be used for rapid measurement of protein in foods. The objective of the present study was to compare the Sprint method with the reference method (Kjeldahl method). Milk and cream samples were analyzed in duplicate for true protein and crude protein (CP) using the reference method as well as the rapid method. Method comparison statistics (regression analysis, graphical representation, standard deviation of residuals, repeatability, and so on) were used to evaluate the agreement between the 2 methods. Regression coefficients and the intercepts were not significantly different from 1 and zero for CP measurement in milk and cream, respectively. The average coefficient of variance between the duplicate CP measurements for the Sprint method was found to be 0.40, 0.49, and 0.76 for milk, light cream, and heavy cream, respectively. True protein measurement in milk and cream also followed a similar trend. Overall, there exists a sufficient level of agreement between the Sprint rapid protein analyzer and Kjeldahl method for true protein and CP measurement of milk and cream samples.

  3. Identification of secreted bacterial proteins by noncanonical amino acid tagging.

    PubMed

    Mahdavi, Alborz; Szychowski, Janek; Ngo, John T; Sweredoski, Michael J; Graham, Robert L J; Hess, Sonja; Schneewind, Olaf; Mazmanian, Sarkis K; Tirrell, David A

    2014-01-07

    Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins. Selective labeling of microbial proteins is accomplished via translational incorporation of azidonorleucine (Anl), a methionine surrogate that requires a mutant form of the methionyl-tRNA synthetase for activation. Secreted pathogen proteins containing Anl can be tagged by azide-alkyne cycloaddition and enriched by affinity purification. Application of the method to analysis of the type III secretion system of the human pathogen Yersinia enterocolitica enabled efficient identification of secreted proteins, identification of distinct secretion profiles for intracellular and extracellular bacteria, and determination of the order of substrate injection into host cells. This approach should be widely useful for the identification of virulence factors in microbial pathogens and the development of potential new targets for antimicrobial therapy.

  4. Molecular identification of the turf grass rapid blight pathogen.

    PubMed

    Craven, K D; Peterson, P D; Windham, D E; Mitchell, T K; Martin, S B

    2005-01-01

    Rapid blight is a newly described disease on turf grasses, primarily found on golf courses using suboptimal water for irrigation purposes. On the basis of shared morphological characteristics, it has been proposed that the rapid blight pathogen belongs to a genus of stramenopiles, Labyrinthula, which had been known to cause disease of marine plants only. We have collected 10 isolates from four species of turf grass in five states and sequenced portions of the SSU (18S) rDNA gene from each to provide a definitive taxonomic placement for rapid blight pathogens. We also included sequences from Labyrinthuloides yorkensis, Schizochytrium aggregatum, Aplanochytrium sp., Thraustochytrium striatum, Achlya bisexualis and several nonturf-grass isolates of Labyrinthula. We found that rapid blight isolates indeed are placed firmly within the genus Labyrinthula and that they lack detectable genetic diversity in the 18S rDNA region. We propose that the rapid blight pathogens share a recent common ancestor and might have originated from a single, infected population.

  5. Identification of Naegleria fowleri Proteins Linked to Primary Amebic Meningoencephalitis.

    PubMed

    Jamerson, Melissa; Schmoyer, Jacqueline A; Park, Jay; Marciano-Cabral, Francine; Cabral, Guy

    2017-01-12

    Naegleria fowleri (N. fowleri) causes Primary Amebic Meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system (CNS). This opportunistic pathogen can exist in cyst, flagellate, or amebic forms, depending on environmental conditions. The amebic form can invade the brain following introduction into the nasal passages. When applied intranasally to a mouse model, cultured N. fowleri amebae exhibit low virulence. However, upon serial passage in mouse brain the amebae acquire a highly virulent state. In the present study, a proteomics approach was applied to the identification of N. fowleri ameba proteins whose expression was associated with the highly virulent state in mice. Mice were inoculated intranasally with axenically cultured or with mouse-passaged amebae. Examination by light and electron microscopy revealed no morphological differences. However, mouse-passaged amebae were more virulent in mice as indicated by exhibiting a two log10 titer decrease in median infective dose 50 (ID50). Scatter plot analysis of amebic lysates revealed a subset of proteins the expression of which was associated with highly virulent amebae. Tandem mass spectrometry indicated that this subset contained proteins that shared homology with those linked to cytoskeletal rearrangement and the invasion process. Invasion assays were performed in the presence of a select inhibitor to expand on the findings. The collective results suggest that N. fowleri gene products linked to cytoskeletal rearrangement and invasion may be candidate targets in the management of PAM.

  6. Identification of lipopolysaccharide-binding proteins in porcine milk

    PubMed Central

    Shahriar, Farshid; Gordon, John R.; Simko, Elemir

    2006-01-01

    Septicemia and endotoxemia initiated by bacterial lipopolysaccharide (LPS) are relatively common in suckling and weaned piglets. Maternal milk is a source of both nutrition and immune protection for piglets. Passive transfer of colostral antibodies is necessary for protection of neonatal piglets against diseases, but the concentration of immunoglobulins in milk rapidly declines during the 1st wk of lactation in all mammals. We hypothesized, therefore, that nonimmunoglobulin substances in milk contribute to the innate protection of neonates against septicemia during the suckling period. Using LPS-affinity chromatography for isolation of LPS-binding proteins and liquid chromatography–mass spectrometry for their identification, we identified in porcine milk the following proteins with LPS-binding capacity: lactoferrin, soluble CD14, serum amyloid A, α-S1 casein, β-casein, and κ-casein. For lactoferrin, α-S1 casein, and κ-casein, in vitro pepsin digestion did not inhibit LPS-binding activity, whereas combined digestion with pepsin and pancreatin abolished it. The biologic functions of these LPS-binding proteins and peptides were not determined. PMID:17042375

  7. Development of a novel, simple and rapid molecular identification system for clinical Candida species.

    PubMed

    Deák, R; Bodai, L; Aarts, H J M; Maráz, A

    2004-08-01

    Identification of clinical yeast isolates causing candidiasis is routinely performed by commercial yeast identification systems based on biochemical, morphological and physiological tests. These systems require 3-5 days and the proportion of identifications that are incorrect is high. Our novel and rapid molecular identification system for clinical Candida species is based on the analysis of restriction patterns obtained from PCR-generated ribosomal DNA sequences using five restriction enzymes. A software package (CandID) was designed to include a database of restriction fragment length polymorphism (RFLP) patterns for 29 Candida species. For 'in-house' validation, 122 clinical isolates that had previously identified in clinical laboratories were typed by this system. These clinical isolates were also independently re-identified by the API 20C AUX system. The ribosomal DNA RFLP database in the context of supporting analytical software allowed simple and rapid (1 work day) identification.

  8. Rapid microbiochemical method for presumptive identification of gastroenteritis-associated members of the family Enterobacteriaceae.

    PubMed

    Yong, D C; Thompson, J S; Prytula, A

    1985-06-01

    A method for rapid screening of isolates of pathogenic members of the family Enterobacteriaceae is described. Flow charts are used in conjunction with triple sugar iron agar, o-nitrophenyl-beta-D-galactopyranoside-phenylalanine-motility sulfate screening media, oxidase test, and six rapid biochemical tests, namely, lysine decarboxylase, urease, indole, esculin hydrolysis, malonate, and xylose. This scheme is used to provide an inexpensive but rapid presumptive identification of Salmonella, Shigella, Edwardsiella, Aeromonas, Plesiomonas, Vibrio, and Yersinia isolates from stool cultures.

  9. Byonic: Advanced Peptide and Protein Identification Software

    PubMed Central

    Bern, Marshall; Kil, Yong J.; Becker, Christopher

    2013-01-01

    Byonic™ is the name of a software package for peptide and protein identification by tandem mass spectrometry. This software, which has only recently become commercially available, facilitates a much wider range of search possibilities than previous search software such as SEQUEST and Mascot. Byonic allows the user to define an essentially unlimited number of variable modification types. Byonic also allows the user to set a separate limit on the number of occurrences of each modification type, so that a search may consider only one or two chance modifications such as oxidations and deamidations per peptide, yet allow three or four biological modifications such as phosphorylations, which tend to cluster together. Hence Byonic can search for 10s or even 100s of modification types simultaneously without a prohibitively large combinatorial explosion. Byonic’s Wildcard Search™ allows the user to search for unanticipated or even unknown modifications alongside known modifications. Finally, Byonic’s Glycopeptide Search allows the user to identify glycopeptides without prior knowledge of glycan masses or glycosylation sites. PMID:23255153

  10. Use of bacteriophage cell wall-binding proteins for rapid diagnostics of Listeria.

    PubMed

    Schmelcher, Mathias; Loessner, Martin J

    2014-01-01

    Diagnostic protocols for food-borne bacterial pathogens such as Listeria need to be sensitive, specific, rapid, and inexpensive. Conventional culture methods are hampered by lengthy enrichment and incubation steps. Bacteriophage-derived high-affinity binding molecules (cell wall-binding domains, CBDs) specific for Listeria cells have recently been introduced as tools for detection and differentiation of this pathogen in foods. When coupled with magnetic separation, these proteins offer advantages in sensitivity and speed compared to the standard diagnostic methods. Furthermore, fusion of CBDs to differently colored fluorescent reporter proteins enables differentiation of Listeria strains in mixed cultures. This chapter provides protocols for detection of Listeria in food by CBD-based magnetic separation and subsequent multiplexed identification of strains of different serotypes with reporter-CBD fusion proteins.

  11. Identification of Foodborne Bacteria by High Energy Collision-Induced Dissociation of Their Protein Biomarkers by MALDI Tandem-Time-of-Flight Mass Spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of methods for rapid identification of foodborne bacteria is an important area of analytical science and food safety. MALDI-TOF-MS has been utilized to rapidly identify pathogens including foodborne bacteria. Identification typically involves detection of high copy cytosolic proteins i...

  12. New Technologies for Rapid Bacterial Identification and Antibiotic Resistance Profiling.

    PubMed

    Kelley, Shana O

    2017-04-01

    Conventional approaches to bacterial identification and drug susceptibility testing typically rely on culture-based approaches that take 2 to 7 days to return results. The long turnaround times contribute to the spread of infectious disease, negative patient outcomes, and the misuse of antibiotics that can contribute to antibiotic resistance. To provide new solutions enabling faster bacterial analysis, a variety of approaches are under development that leverage single-cell analysis, microfluidic concentration and detection strategies, and ultrasensitive readout mechanisms. This review discusses recent advances in this area and the potential of new technologies to enable more effective management of infectious disease.

  13. A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei.

    PubMed

    Saroj, Dina B; Dengeti, Shrinivas N; Aher, Supriya; Gupta, Anil K

    2015-06-01

    Trichoderma species are widely used as production hosts for industrial enzymes. Identification of Trichoderma species requires a complex molecular biology based identification involving amplification and sequencing of multiple genes. Industrial laboratories are required to run identification tests repeatedly in cell banking procedures and also to prove absence of production host in the product. Such demands can be fulfilled by a brief method which enables confirmation of strain identity. This communication describes one step identification method for two common Trichoderma species; T. citrinoviride and T. reesei, based on identification of polymorphic region in the nucleotide sequence of translation elongation factor 1 alpha. A unique forward primer and common reverse primer resulted in 153 and 139 bp amplicon for T. citrinoviride and T. reesei, respectively. Simplification was further introduced by using mycelium as template for PCR amplification. Method described in this communication allows rapid, one step identification of two Trichoderma species.

  14. Rapid Temporal Dynamics of Transcription, Protein Synthesis, and Secretion during Macrophage Activation*

    PubMed Central

    Eichelbaum, Katrin; Krijgsveld, Jeroen

    2014-01-01

    Macrophages provide the first line of host defense with their capacity to react to an array of cytokines and bacterial components requiring tight regulation of protein expression and secretion to invoke a properly tuned innate immune response. To capture the dynamics of this system, we introduce a novel method combining pulsed stable isotope labeling with amino acids in cell culture (SILAC) with pulse labeling using the methionine analog azidohomoalanine that allows the enrichment of newly synthesized proteins via click-chemistry followed by their identification and quantification by mass spectrometry. We show that this permits the analysis of proteome changes on a rapid time scale, as evidenced by the detection of 4852 newly synthesized proteins after only a 20-min SILAC pulse. We have applied this methodology to study proteome response during macrophage activation in a time-course manner. We have combined this with full proteome, transcriptome, and secretome analyses, producing an integrative analysis of the first 3 h of lipopolysaccharide-induced macrophage activation. We observed the rapid induction of multiple processes well known to TLR4 signaling, as well as anti-inflammatory proteins and proteins not previously associated with immune response. By correlating transcriptional, translational, and secretory events, we derived novel mechanistic principles of processes specifically induced by lipopolysaccharides, including ectodomain shedding and proteolytic processing of transmembrane and extracellular proteins and protein secretion independent of transcription. In conclusion, we demonstrate that the combination of pulsed azidohomoalanine and pulsed SILAC permits the detailed characterization of proteomic events on a rapid time scale. We anticipate that this approach will be very useful in probing the immediate effects of cellular stimuli and will provide mechanistic insight into cellular perturbation in multiple biological systems. The data have been deposited

  15. APols-aided protein precipitation: a rapid method for concentrating proteins for proteomic analysis.

    PubMed

    Ning, Zhibin; Hawley, Brett; Seebun, Deeptee; Figeys, Daniel

    2014-10-01

    Amphipols (APols) are a newly designed and milder class of detergent. They have been used primarily in protein structure analysis for membrane protein trapping and stabilization. We have recently demonstrated that APols can be used as an alternative detergent for proteome extraction and digestion, to achieve a "One-stop" single-tube workflow for proteomics. In this workflow, APols are removed by precipitation after protein digestion without depleting the digested peptides. Here, we took further advantage of this precipitation characteristic of APols to concentrate proteins from diluted samples. In contrast with tryptic peptides, a decrease in pH leads to the unbiased co-precipitation of APols with proteins, including globular hydrophilic proteins. We demonstrated that this precipitation is a combined effect of acid precipitation and the APols' protein interactions. Also, we have been able to demonstrate that APols-aided protein precipitation works well on diluted samples, such as secretome sample, and provides a rapid method for protein concentration.

  16. Flunitrazepam rapidly reduces GABAA receptor subunit protein expression via a protein kinase C-dependent mechanism

    PubMed Central

    Johnston, Jonathan D; Price, Sally A; Bristow, David R

    1998-01-01

    Acute flunitrazepam (1 μM) exposure for 1 h reduced GABAA receptor α1 (22±4%, mean±s.e.mean) and β2/3 (21±4%) subunit protein levels in cultured rat cerebellar granule cells. This rapid decrease in subunit proteins was completely prevented by bisindolymaleimide 1 (1 μM), an inhibitor of protein kinase C, but not by N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide (H-89, 4.8 μM), an inhibitor of protein kinases A and G. These results suggest the existence of a benzodiazepine-induced mechanism to rapidly alter GABAA receptor protein expression, that appears to be dependent on protein kinase C activity. PMID:9723942

  17. Seed Storage Proteins as a System for Teaching Protein Identification by Mass Spectrometry in Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Wilson, Karl A.; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed,…

  18. Essential protein identification based on essential protein-protein interaction prediction by Integrated Edge Weights.

    PubMed

    Jiang, Yuexu; Wang, Yan; Pang, Wei; Chen, Liang; Sun, Huiyan; Liang, Yanchun; Blanzieri, Enrico

    2015-07-15

    Essential proteins play a crucial role in cellular survival and development process. Experimentally, essential proteins are identified by gene knockouts or RNA interference, which are expensive and often fatal to the target organisms. Regarding this, an alternative yet important approach to essential protein identification is through computational prediction. Existing computational methods predict essential proteins based on their relative densities in a protein-protein interaction (PPI) network. Degree, betweenness, and other appropriate criteria are often used to measure the relative density. However, no matter what criterion is used, a protein is actually ordered by the attributes of this protein per se. In this research, we presented a novel computational method, Integrated Edge Weights (IEW), to first rank protein-protein interactions by integrating their edge weights, and then identified sub PPI networks consisting of those highly-ranked edges, and finally regarded the nodes in these sub networks as essential proteins. We evaluated IEW on three model organisms: Saccharomyces cerevisiae (S. cerevisiae), Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegans). The experimental results showed that IEW achieved better performance than the state-of-the-art methods in terms of precision-recall and Jackknife measures. We had also demonstrated that IEW is a robust and effective method, which can retrieve biologically significant modules by its highly-ranked protein-protein interactions for S. cerevisiae, E. coli, and C. elegans. We believe that, with sufficient data provided, IEW can be used to any other organisms' essential protein identification. A website about IEW can be accessed from http://digbio.missouri.edu/IEW/index.html.

  19. Evaluation of an immunochromatographic assay for rapid identification of Mycobacterium tuberculosis complex in clinical isolates.

    PubMed

    Marzouk, Manel; Kahla, Imen Ben; Hannachi, Naila; Ferjeni, Asma; Salma, Walid Ben; Ghezal, Samira; Boukadida, Jalel

    2011-04-01

    Identification of Mycobacterium tuberculosis complex (MTC) remains slow. Over the years, several new technologies have been proposed to accelerate and simplify the detection of MTC. In this context, we evaluated an immunochromatographic assay (ICA) (BIO-LINE SD Ag MPT64 TB) for rapid identification of MTC, based on detection of a specific MPT64 antigen of MTC. We have tested it on i) mycobacterial cultures: 210 MTC strains and 28 nontuberculous mycobacteria; ii) M. bovis bacille Calmette-Guérin strain SSI (Statens Serum Institut, Denmark); and iii) 22 microorganisms other than mycobacteria, isolated from cultures. We concluded that this kit has an excellent specificity (100%) and sensitivity (99%) from isolated cultures. The ICA (BIO-LINE SD Ag MPT64 TB) allows excellent MTC identification from clinical isolates. It is a rapid, simple, and inexpensive test, and has a definite contribution in the rapid laboratory diagnosis of tuberculosis.

  20. A novel microbead-based microfluidic device for rapid bacterial identification and antibiotic susceptibility testing.

    PubMed

    He, J; Mu, X; Guo, Z; Hao, H; Zhang, C; Zhao, Z; Wang, Q

    2014-12-01

    Effective treatment of infectious diseases depends on the ability to rapidly identify the infecting bacteria and the use of sensitive antibiotics. The currently used identification assays usually take more than 72 h to perform and have a low sensitivity. Herein, we present a microbead-based microfluidic platform that is highly sensitive and rapid for bacterial detection and antibiotic sensitivity testing. The platform includes four units, one of which is used for bacterial identification and the other three are used for susceptibility testing. Our results showed that Escherichia coli O157 at a cell density range of 10(1)-10(5) CFU/μL could be detected within 30 min. Additionally, the effects of three antibiotics on E. coli O157 were evaluated within 4-8 h. Overall, this integrated microbead-based microdevice provides a sensitive, rapid, reliable, and highly effective platform for the identification of bacteria, as well as antibiotic sensitivity testing.

  1. Preparation of a blood culture pellet for rapid bacterial identification and antibiotic susceptibility testing.

    PubMed

    Croxatto, Antony; Prod'hom, Guy; Durussel, Christian; Greub, Gilbert

    2014-10-15

    Bloodstream infections and sepsis are a major cause of morbidity and mortality. The successful outcome of patients suffering from bacteremia depends on a rapid identification of the infectious agent to guide optimal antibiotic treatment. The analysis of Gram stains from positive blood culture can be rapidly conducted and already significantly impact the antibiotic regimen. However, the accurate identification of the infectious agent is still required to establish the optimal targeted treatment. We present here a simple and fast bacterial pellet preparation from a positive blood culture that can be used as a sample for several essential downstream applications such as identification by MALDI-TOF MS, antibiotic susceptibility testing (AST) by disc diffusion assay or automated AST systems and by automated PCR-based diagnostic testing. The performance of these different identification and AST systems applied directly on the blood culture bacterial pellets is very similar to the performance normally obtained from isolated colonies grown on agar plates. Compared to conventional approaches, the rapid acquisition of a bacterial pellet significantly reduces the time to report both identification and AST. Thus, following blood culture positivity, identification by MALDI-TOF can be reported within less than 1 hr whereas results of AST by automated AST systems or disc diffusion assays within 8 to 18 hr, respectively. Similarly, the results of a rapid PCR-based assay can be communicated to the clinicians less than 2 hr following the report of a bacteremia. Together, these results demonstrate that the rapid preparation of a blood culture bacterial pellet has a significant impact on the identification and AST turnaround time and thus on the successful outcome of patients suffering from bloodstream infections.

  2. Preparation of a Blood Culture Pellet for Rapid Bacterial Identification and Antibiotic Susceptibility Testing

    PubMed Central

    Croxatto, Antony; Prod'hom, Guy; Durussel, Christian; Greub, Gilbert

    2014-01-01

    Bloodstream infections and sepsis are a major cause of morbidity and mortality. The successful outcome of patients suffering from bacteremia depends on a rapid identification of the infectious agent to guide optimal antibiotic treatment. The analysis of Gram stains from positive blood culture can be rapidly conducted and already significantly impact the antibiotic regimen. However, the accurate identification of the infectious agent is still required to establish the optimal targeted treatment. We present here a simple and fast bacterial pellet preparation from a positive blood culture that can be used as a sample for several essential downstream applications such as identification by MALDI-TOF MS, antibiotic susceptibility testing (AST) by disc diffusion assay or automated AST systems and by automated PCR-based diagnostic testing. The performance of these different identification and AST systems applied directly on the blood culture bacterial pellets is very similar to the performance normally obtained from isolated colonies grown on agar plates. Compared to conventional approaches, the rapid acquisition of a bacterial pellet significantly reduces the time to report both identification and AST. Thus, following blood culture positivity, identification by MALDI-TOF can be reported within less than 1 hr whereas results of AST by automated AST systems or disc diffusion assays within 8 to 18 hr, respectively. Similarly, the results of a rapid PCR-based assay can be communicated to the clinicians less than 2 hr following the report of a bacteremia. Together, these results demonstrate that the rapid preparation of a blood culture bacterial pellet has a significant impact on the identification and AST turnaround time and thus on the successful outcome of patients suffering from bloodstream infections. PMID:25350577

  3. Rapid identification of mycobacteria and rapid detection of drug resistance in Mycobacterium tuberculosis in cultured isolates and in respiratory specimens.

    PubMed

    Yam, Wing-Cheong; Siu, Kit-Hang Gilman

    2013-01-01

    Recent advances in molecular biology and better understanding of the genetic basis of drug resistance have allowed rapid identification of mycobacteria and rapid detection of drug resistance of Mycobacterium tuberculosis present in cultured isolates or in respiratory specimens. In this chapter, several simple nucleic acid amplification-based techniques are introduced as molecular approach for clinical diagnosis of tuberculosis. A one-tube nested IS6110-based polymerase chain reaction (PCR) is used for M. tuberculosis complex identification; the use of a multiplex allele-specific PCR is demonstrated to detect the isoniazid resistance; PCR-sequencing assays are applied for rifampicin and ofloxacin resistance detection and 16S rDNA sequencing is utilized for identification of mycobacterial species from cultures of acid fast bacilli (AFB). Despite the high specificity and sensitivity of the molecular techniques, mycobacterial culture remains the "Gold Standard" for tuberculosis diagnosis. Negative results of molecular tests never preclude the infection or the presence of drug resistance. These technological advancements are, therefore, not intended to replace the conventional tests, but rather have major complementary roles in tuberculosis diagnosis.

  4. Micro-apparatus for rapid determinations of protein solubilities

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Munson, Sibyl

    1991-01-01

    We have developed a column-based micro-technique for rapid determinations of protein solubilities. While retaining a large crystal surface area, the column dead volume has been reduced to equal to or less than 5 micro liters. The technique was tested with tetragonal lysozyme (pH 4.5, 0.1 M acetate, 3.0 percent NaCl, 5-25 C) and column volumes of about 60, 300, and 900 micro liters. Identical solubility data were obtained, indicating that equilibration was obtained even in the smallest columns. In addition, solubility data for Br- and I- salts of lysozyme (pH 4.5, 0.1 M acetate buffer, 0.5 M salt concentrations) were obtained. It appears that the technique can be further miniaturized. The limit in further reducing the crystalline column volume is determined by the minimum solution sample size needed to determine the protein concentration.

  5. IDENTIFICATION OF CHOLINERGIC AND NONCHOLINERGIC NEURONS IN THE PONS EXPRESSING PHOSPHORYLATED cAMP RESPONSE ELEMENT-BINDING PROTEIN (pCREB) AS A FUNCTION OF RAPID EYE MOVEMENT (REM) SLEEP

    PubMed Central

    DATTA, S.; SIWEK, D. F.; STACK, E. C.

    2009-01-01

    Recent studies have shown that in the pedunculopontine tegmental nucleus (PPT), increased neuronal activity and kainate receptor-mediated activation of intracellular protein kinase A (PKA) are important physiological and molecular steps for the generation of REM sleep. In the present study performed on rats, phosphorylated cAMP response element-binding protein (pCREB) immunostaining was used as a marker for increased intracellular PKA activation and as a reflection of increased neuronal activity. To identify whether activated cells were either cholinergic or noncholinergic, the PPT and laterodorsal tegmental nucleus (LDT) cells were immunostained for choline acetyltransferase (ChAT) in combination with pCREB or c-Fos. The results demonstrated that during high REM sleep (HR, ~27%), significantly higher numbers of cells expressed pCREB and c-Fos in the PPT, of which 95% of pCREB-expressing cells were ChAT-positive. With high REM sleep, the numbers of pCREB-positive cells were also significantly higher in the medial pontine reticular formation (mPRF), pontine reticular nucleus oral (PnO), and dorsal subcoeruleus nucleus (SubCD) but very few in the locus coeruleus (LC) and dorsal raphe nucleus (DRN). Conversely, with low REM sleep (LR, ~2%), the numbers of pCREB expressing cells were very few in the PPT, mPRF, PnO, and SubCD but significantly higher in the LC and DRN. The results of regression analyses revealed significant positive relationships between the total percentages of REM sleep and numbers of ChAT+/pCREB+ (Rsqr = 0.98) cells in the PPT and pCREB+ cells in the mPRF (Rsqr = 0.88), PnO (Rsqr = 0.87), and SubCD (Rsqr = 0.84); whereas significantly negative relationships were associated with the pCREB+ cells in the LC (Rsqr = 0.70) and DRN (Rsqr = 0.60). These results provide evidence supporting the hypothesis that during REM sleep, the PPT cholinergic neurons are active, whereas the LC and DRN neurons are inactive. More importantly, the regression analysis

  6. Rapid biological agent identification by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Smith, Wayne W.; Elliott, Susan; Sperry, Jay F.

    1999-11-01

    The Chemical Weapons Convention prohibits the development, production, stockpiling, and use of warfare agents (chemical and biological), and requires their destruction. Yet their use persists and has been included in the terrorist's arsenal. Currently, a number of analytical methods are being developed to perform rapid measurements of trace agents to ensure treaty compliance, as well as safe environments for military personal and the public at large. We have been investigating the ability of surface-enhanced Raman spectroscopy to detect bacterial nucleic acid-base pairs with sufficient sensitivity and selectivity to eliminate the need for enumeration used in polymerase chain reactions and culture growth, required by other measurement techniques. The design of a small volume, fiber optic coupled, electrolytic sample cell is presented along with analysis of DNA and RNA separated from non-toxic bacteria.

  7. Rapid Identification of GRB Afterglows with Swift/UVOT

    NASA Technical Reports Server (NTRS)

    Marshall, F. E.

    2006-01-01

    As part of the automated response to a new gamma-ray burst (GRB), the Ultraviolet and Optical Telescope (UVOT) instrument on Swift starts a 200-second exposure with the V filter within approximately 100 seconds of the BAT burst trigger. The instrument searches for sources in a 8' x 8' region, and sends the list of sources and a 160" x 160" sub-image centered on the burst position to the ground via Tracking and Data Relay Satellite System (TDRSS). These raw products and additional products calculated on the ground are then distributed through the GCN within a few minutes of the trigger. We describe the sensitivity of these data for detecting afterglows, summarize current results, and outline plans for rapidly distributing future detections.

  8. Rapidly Learned Identification of Epileptic Seizures from Sonified EEG

    PubMed Central

    Loui, Psyche; Koplin-Green, Matan; Frick, Mark; Massone, Michael

    2014-01-01

    Sonification refers to a process by which data are converted into sound, providing an auditory alternative to visual display. Currently, the prevalent method for diagnosing seizures in epilepsy is by visually reading a patient’s electroencephalogram (EEG). However, sonification of the EEG data provides certain advantages due to the nature of human auditory perception. We hypothesized that human listeners will be able to identify seizures from EEGs using the auditory modality alone, and that accuracy of seizure identification will increase after a short training session. Here, we describe an algorithm that we have used to sonify EEGs of both seizure and non-seizure activity, followed by a training study in which subjects listened to short clips of sonified EEGs and determined whether each clip was of seizure or normal activity, both before and after a short training session. Results show that before training subjects performed at chance level in differentiating seizures from non-seizures, but there was a significant improvement of accuracy after the training session. After training, subjects successfully distinguished seizures from non-seizures using the auditory modality alone. Further analyses using signal detection theory demonstrated improvement in sensitivity and reduction in response bias as a result of training. This study demonstrates the potential of sonified EEGs to be used for the detection of seizures. Future studies will attempt to increase accuracy using novel training and sonification modifications, with the goals of managing, predicting, and ultimately controlling seizures using sonification as a possible biofeedback-based intervention for epilepsy. PMID:25352802

  9. Rapid identification of chromosomal rearrangements by PRINS technique

    SciTech Connect

    Pellestor, F.; Giradet, A.; Andreo, B.

    1994-09-01

    Chromosomal rearrangements contribute significantly to human reproductive failure, malformation/mental retardation syndromes and carcinogenesis. The variety of structural rearrangements is almost infinite and an identification by conventional cytogenetics is often labor intensive and may remain doubtful. Recent advances in molecular cytogenetics have provided new tools for detecting chromosomal abnormalities. The fluorescence in situ hybridization (FISH) procedure is actually the most employed technique and has led to numerous clinical applications. However, techniques required to produce suitable probes are time consuming and not accessible to all cytogenetics laboratories. The PRimed In Situ labeling (PRINS) method provides an alternate way for in situ chromosome screening. In this procedure, the chromosomal detection is performed by in situ annealing of a specific primer and subsequent primer extension by a Taq DNA polymerase in the presence of labeled nucleotides. Application of PRINS in clinical diagnosis is still limited. We have developed a semi-automatic PRINS protocol and used it to identify the origin of several chromosomal abnormalities. We report here the results of studies of three structural rearrangements: a translocation t(21;21), a supernumerary ring marker chromosome 18 and a complex chromosome 13 mosaicism involving a 13;13 Robertsonian translocation and a ring chromosome 13.

  10. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response

    NASA Astrophysics Data System (ADS)

    Nikiforov, M. P.; Reukov, V. V.; Thompson, G. L.; Vertegel, A. A.; Guo, S.; Kalinin, S. V.; Jesse, S.

    2009-10-01

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  11. Prenatal protein malnutrition and hippocampal function: rapid kindling.

    PubMed

    Austin-Lafrance, R J; Morgane, P J; Bronzino, J D

    1991-12-01

    A stimulation paradigm evoking rapidly recurring seizure activity from the hippocampal dentate gyrus was used to examine perforant path kindling in prenatally protein malnourished adult rats. Biphasic electrical stimulations (50 Hz) of five s duration were applied to the perforant path every five min for one hour over five consecutive days. Behavioral manifestations of seizure activity were assessed using the standard 0-5 scale. Prenatally malnourished rats exhibited significantly fewer convulsive seizures (stage 5) and required significantly more stimulations to attain the first stage 5 seizure than controls. Animals of the malnourished group also exhibited significantly more stage 1 seizures than control animals, indicating a significant retardation in the kindling rate of these animals. Additionally, 3 of the 11 malnourished animals failed to exhibit a single stage 5 seizure during the 60 stimulation test period. These findings parallel previous results reported for prenatally protein malnourished rats using the traditional one stimulation-per-day kindling paradigm and indicate that this rapid kindling paradigm can be effectively used to study the impact of various insults on seizure susceptibility and development in a shortened time frame.

  12. Rapid Identification of Aldose Reductase Inhibitory Compounds from Perilla frutescens

    PubMed Central

    Paek, Ji Hun; Shin, Kuk Hyun; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung

    2013-01-01

    The ethyl acetate (EtOAc) soluble fraction of methanol extracts of Perilla frutescens (P. frutescens) inhibits aldose reductase (AR), the key enzyme in the polyol pathway. Our investigation of inhibitory compounds from the EtOAc soluble fraction of P. frutescens was followed by identification of the inhibitory compounds by a combination of HPLC microfractionation and a 96-well enzyme assay. This allowed the biological activities to be efficiently matched with selected HPLC peaks. Structural analyses of the active compounds were performed by LC-MSn. The main AR inhibiting compounds were tentatively identified as chlorogenic acid and rosmarinic acid by LC-MSn. A two-step high speed counter current chromatography (HSCCC) isolation method was developed with a solvent system of n-hexane-ethyl acetate-methanol-water at 1.5 : 5 : 1 : 5, v/v and 3 : 7 : 5 : 5, v/v. The chemical structures of the isolated compounds were determined by 1H- and 13C-nuclear magnetic resonance spectrometry (NMR). The main compounds inhibiting AR in the EtOAc fraction of methanol extracts of P. frutescens were identified as chlorogenic acid (2) (IC50 = 3.16 μM), rosmarinic acid (4) (IC50 = 2.77 μM), luteolin (5) (IC50 = 6.34 μM), and methyl rosmarinic acid (6) (IC50 = 4.03 μM). PMID:24308003

  13. Rapid Detection and Identification of Respiratory Viruses by Direct Immunofluorescence

    PubMed Central

    D'Alessio, Donn; Williams, Stanley; Dick, Elliot C.

    1970-01-01

    The use of fluorescein-conjugated antiserum against respiratory syncytial (RS) and parainfluenza 1 and 3 viruses was compared with conventional techniques in the rapid detection of virus in tissue cultures inoculated with pharyngeal specimens known to contain these viruses. Twenty-three specimens were tested: 9 RS, 8 parainfluenza 1, and 6 parainfluenza 3. The fluorescent-antibody technique (FA) detected virus in 52% of the tissue cultures in 24 hr, and, by 72 hr, 22 of the 23 cultures were FA-positive whereas only 5 were positive by conventional techniques. Additionally, conjugated antisera were prepared against herpes simplex, influenza A2, and adenovirus type 5. All conjugates stained only the homologous virus and were 100- to 10,000-fold more sensitive than conventional techniques in detecting descending dilutions of virus inocula by 24 hr. With the procedures described, several antisera could be conjugated and ready for use within 24 hr. Serum fractionation was by ammonium sulfate precipitation, and with the procedure outlined virtually complete recovery of the globulin fraction and elimination of all of the albumin were accomplished. Images PMID:4098101

  14. Rapid identification of antibiotic resistance using droplet microfluidics

    PubMed Central

    Keays, Marie C.; O'Brien, Mark; Hussain, Anam; Kiely, Patrick A.; Dalton, Tara

    2016-01-01

    ABSTRACT Culturing bacteria and monitoring bacterial cell growth is a critical issue when dealing with patients who present with bacterial infections. One of the main challenges that arises is the time taken to identify the particular strain of bacteria and consequently, decide the correct treatment. In the majority of cases, broad spectrum antibiotics are used to target infections when a narrow spectrum drug would be more appropriate. The efficient monitoring of bacterial growth and potential antibiotic resistance is necessary to identify the best treatment options for patients. Minturising the reactions into microfluidic droplets offers a novel method to rapidy analyze bacteria. Microfluidics facilitates low volume reactions that provide a unique system where each droplet reaction acts as an individual bioreactor. Here, we designed and built a novel platform that allowed us to create and monitor E.coli microfluidic droplet cultures. Optical capacity was built in and measurements of bacterial cultures were captured facilitating the continuous monitoring of individual reactions. The capacity of the instrument was demonstrated by the application of treatments to both bacteria and drug resistant strains of bacteria. We were able to detect responses within one hour in the droplet cultures, demonstrating the capacity of this workflow to the culture and rapid characterization of bacterial strains. PMID:26942773

  15. Growth medium for the rapid isolation and identification of anthrax

    NASA Astrophysics Data System (ADS)

    Kiel, Johnathan L.; Parker, Jill E.; Grubbs, Teri R.; Alls, John L.

    2000-07-01

    Anthrax has been recognized as a highly likely biological warfare or terrorist agent. The purpose of this work was to design a culture technique to rapidly isolate and identify `live' anthrax. In liquid or solid media form, 3AT medium (3-amino-L-tyrosine, the main ingredient) accelerated germination and growth of anthrax spores in 5 to 6 hours to a point expected at 18 to 24 hours with ordinary medium. During accelerated growth, standard definitive diagnostic tests such as sensitivity to lysis by penicillin or bacteriophage can be run. During this time, the bacteria synthesized a fluorescent and thermochemiluminescent polymer. Bacteria captured by specific antibody are, therefore, already labeled. Because living bacteria are required to generate the polymer, the test converts immunoassays for anthrax into viability assays. Furthermore, the polymer formation leads to the death of the vegetative form and non-viability of the spores produced in the medium. By altering the formulation of the medium, other microbes and even animal and human cells can be grown in it and labeled (including viruses grown in the animal or human cells).

  16. Rapid identification of antibiotic resistance using droplet microfluidics.

    PubMed

    Keays, Marie C; O'Brien, Mark; Hussain, Anam; Kiely, Patrick A; Dalton, Tara

    2016-04-02

    Culturing bacteria and monitoring bacterial cell growth is a critical issue when dealing with patients who present with bacterial infections. One of the main challenges that arises is the time taken to identify the particular strain of bacteria and consequently, decide the correct treatment. In the majority of cases, broad spectrum antibiotics are used to target infections when a narrow spectrum drug would be more appropriate. The efficient monitoring of bacterial growth and potential antibiotic resistance is necessary to identify the best treatment options for patients. Minturising the reactions into microfluidic droplets offers a novel method to rapidy analyze bacteria. Microfluidics facilitates low volume reactions that provide a unique system where each droplet reaction acts as an individual bioreactor. Here, we designed and built a novel platform that allowed us to create and monitor E.coli microfluidic droplet cultures. Optical capacity was built in and measurements of bacterial cultures were captured facilitating the continuous monitoring of individual reactions. The capacity of the instrument was demonstrated by the application of treatments to both bacteria and drug resistant strains of bacteria. We were able to detect responses within one hour in the droplet cultures, demonstrating the capacity of this workflow to the culture and rapid characterization of bacterial strains.

  17. STRAP PTM: Software Tool for Rapid Annotation and Differential Comparison of Protein Post-Translational Modifications

    PubMed Central

    Spencer, Jean L.; Bhatia, Vivek N.; Whelan, Stephen A.; Costello, Catherine E.

    2014-01-01

    The identification of protein post-translational modifications (PTMs) is an increasingly important component of proteomics and biomarker discovery, but very few tools exist for performing fast and easy characterization of global PTM changes and differential comparison of PTMs across groups of data obtained from liquid chromatography-tandem mass spectrometry experiments. STRAP PTM (Software Tool for Rapid Annotation of Proteins: Post-Translational Modification edition) is a program that was developed to facilitate the characterization of PTMs using spectral counting and a novel scoring algorithm to accelerate the identification of differential PTMs from complex data sets. The software facilitates multi-sample comparison by collating, scoring, and ranking PTMs and by summarizing data visually. The freely available software (beta release) installs on a PC and processes data in protXML format obtained from files parsed through the Trans-Proteomic Pipeline. The easy-to-use interface allows examination of results at protein, peptide, and PTM levels, and the overall design offers tremendous flexibility that provides proteomics insight beyond simple assignment and counting. PMID:25422678

  18. Rapid PCR of STR markers: Applications to human identification.

    PubMed

    Romsos, Erica L; Vallone, Peter M

    2015-09-01

    Multiplex PCR with fluorescently labeled primers has been an essential method for the amplification of short tandem repeats used in human identify testing. Within the STR workflow of extraction, quantitation, amplification, separation, and detection, multiplex PCR is commonly identified as the bottleneck in the process. The time requirement of up to three hours to complete 28-30 cycles of multiplex PCR for STR genotyping is the greatest amount of time required for a single step within the process. The historical use of commercially available thermal cyclers and heat stable polymerases may have given the impression that large multiplex will always require long PCR cycling times to ensure that all of the varying sized targets (typically 100-400bp) can be amplified in a balanced manner throughout the multiplex. However, with the advent of improved polymerases and faster thermal cyclers the time required for the amplification of large STR multiplexes is no longer on the order of three hours, but as little as 14min. Faster amplification times can be performed while retaining the balance and integrity of large multiplex PCRs by implementation of alternate polymerases and thermal cyclers. With the reduction in PCR cycling times there has also been an impact on the development of integrated and microfluidics devices which employ the use of reduced or rapid thermal cycling protocols as part of their integration. Similarly, PCR inhibitor resistant polymerases can also reduce overall STR processing times for reference samples by eliminating the need for DNA extraction and purification that is additionally implemented within the development of integrated DNA typing devices.

  19. Rapid and Accurate Identification of Animal Species in Natural Leather Goods by Liquid Chromatography/Mass Spectrometry

    PubMed Central

    Izuchi, Yukari; Takashima, Tsuneo; Hatano, Naoya

    2016-01-01

    The demand for leather goods has grown globally in recent years. Industry revenue is forecast to reach $91.2 billion by 2018. There is an ongoing labelling problem in the leather items market, in that it is currently impossible to identify the species that a given piece of leather is derived from. To address this issue, we developed a rapid and simple method for the specific identification of leather derived from cattle, horses, pigs, sheep, goats, and deer by analysing peptides produced by the trypsin-digestion of proteins contained in leather goods using liquid chromatography/mass spectrometry. We determined species-specific amino acid sequences by liquid chromatography/tandem mass spectrometry analysis using the Mascot software program and demonstrated that collagen α-1(I), collagen α-2(I), and collagen α-1(III) from the dermal layer of the skin are particularly useful in species identification. PMID:27313979

  20. Network understanding of herb medicine via rapid identification of ingredient-target interactions.

    PubMed

    Zhang, Hai-Ping; Pan, Jian-Bo; Zhang, Chi; Ji, Nan; Wang, Hao; Ji, Zhi-Liang

    2014-01-16

    Today, herb medicines have become the major source for discovery of novel agents in countermining diseases. However, many of them are largely under-explored in pharmacology due to the limitation of current experimental approaches. Therefore, we proposed a computational framework in this study for network understanding of herb pharmacology via rapid identification of putative ingredient-target interactions in human structural proteome level. A marketing anti-cancer herb medicine in China, Yadanzi (Brucea javanica), was chosen for mechanistic study. Total 7,119 ingredient-target interactions were identified for thirteen Yadanzi active ingredients. Among them, about 29.5% were estimated to have better binding affinity than their corresponding marketing drug-target interactions. Further Bioinformatics analyses suggest that simultaneous manipulation of multiple proteins in the MAPK signaling pathway and the phosphorylation process of anti-apoptosis may largely answer for Yadanzi against non-small cell lung cancers. In summary, our strategy provides an efficient however economic solution for systematic understanding of herbs' power.

  1. Network Understanding of Herb Medicine via Rapid Identification of Ingredient-Target Interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Ping; Pan, Jian-Bo; Zhang, Chi; Ji, Nan; Wang, Hao; Ji, Zhi-Liang

    2014-01-01

    Today, herb medicines have become the major source for discovery of novel agents in countermining diseases. However, many of them are largely under-explored in pharmacology due to the limitation of current experimental approaches. Therefore, we proposed a computational framework in this study for network understanding of herb pharmacology via rapid identification of putative ingredient-target interactions in human structural proteome level. A marketing anti-cancer herb medicine in China, Yadanzi (Brucea javanica), was chosen for mechanistic study. Total 7,119 ingredient-target interactions were identified for thirteen Yadanzi active ingredients. Among them, about 29.5% were estimated to have better binding affinity than their corresponding marketing drug-target interactions. Further Bioinformatics analyses suggest that simultaneous manipulation of multiple proteins in the MAPK signaling pathway and the phosphorylation process of anti-apoptosis may largely answer for Yadanzi against non-small cell lung cancers. In summary, our strategy provides an efficient however economic solution for systematic understanding of herbs' power.

  2. Rapid alteration of protein phosphorylation during postmortem: implication in the study of protein phosphorylation

    PubMed Central

    Wang, Yifan; Zhang, Yanchong; Hu, Wen; Xie, Shutao; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2015-01-01

    Protein phosphorylation is an important post-translational modification of proteins. Postmortem tissues are widely being utilized in the biomedical studies, but the effects of postmortem on protein phosphorylation have not been received enough attention. In the present study, we found here that most proteins in mouse brain, heart, liver, and kidney were rapidly dephosphorylated to various degrees during 20 sec to 10 min postmortem. Phosphorylation of tau at Thr212 and glycogen synthase kinase 3β (GSK-3β) at Ser9 was reduced by 50% in the brain with 40 sec postmortem, a regular time for tissue processing. During postmortem, phosphorylation of cAMP-dependent protein kinase (PKA) and AMP activated kinase (AMPK) was increased in the brain, but not in other organs. Perfusion of the brain with cold or room temperature phosphate-buffered saline (PBS) also caused significant alteration of protein phosphorylation. Cooling down and maintaining mouse brains in the ice-cold buffer prevented the alteration effectively. This study suggests that phosphorylation of proteins is rapidly changed during postmortem. Thus, immediate processing of tissues followed by cooling down in ice-cold buffer is vitally important and perfusion has to be avoided when protein phosphorylation is to be studied. PMID:26511732

  3. Dealing with the identification of protein species in ancient amphorae.

    PubMed

    Dallongeville, Sophie; Garnier, Nicolas; Casasola, Dario Bernal; Bonifay, Michel; Rolando, Christian; Tokarski, Caroline

    2011-03-01

    This manuscript deals with the identification of protein residues in amphorae, including particularly identification of protein species. The work described was performed on fishes, the anchovy (Engraulis encrasicolus) and bonito (Sarda sarda) species frequently found in the Mediterranean area. Based on proteomic techniques, the analytical strategy was adapted to analysis of protein residues from tiny ceramic fragments. The major difficulty was to extract proteins and limit their hydrolysis during the sample preparation; consequently, multiple soft extraction techniques were evaluated. The most valuable results were obtained using a solution containing high amounts of denaturing agents, urea and thiourea, reducing agent, dithiothreitol, and detergent, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The analysis using nano liquid chromatography-nano electrospray ionization double quadrupole time-of-flight mass spectrometry resulted in the identification of up to 200 proteins for the anchovy and bonito species, among which 73 peptides were found to be fish-specific. Because bonito and anchovy species are not documented and fully sequenced in genomic databases, the preliminary protein identification was realized via sequence homology to other fish sequenced species. Amino acid substitutions of peptides were assigned on the basis of the interpretation of tandem mass spectrometry spectra using de novo sequencing; these peptides, not reported up to now in databases, constitute species-specific markers. The method developed was finally applied to an archaeological sample replica impregnated with a mixture of fish tissue from both species; this experiment successfully led to the identification of 17 fish proteins, including 33 fish-specific peptides. This work shows that the analytical method developed has great potential for the identification of protein species in complex archaeological samples.

  4. Evaluation of the rapid NFT system for identification of gram-negative, nonfermenting rods.

    PubMed Central

    Appelbaum, P C; Leathers, D J

    1984-01-01

    This study evaluated the ability of the Rapid NFT system (API System SA, Montalieu-Vercieu, France) to accurately identify 262 clinically isolated, gram-negative, nonfermentative rods without additional tests. Identifications were classified as correct; low discrimination, with a spectrum of two or more possibilities (additional tests necessary for accurate identification); and incorrect. Correct identification rates were analyzed in two categories: (i) correct to species or biotype for all organism groups except Alcaligenes faecalis-odorans, Moraxella, Pseudomonas testosteroni-alcaligenes-pseudoalcaligenes, and Acinetobacter calcoaceticus biotype haemolyticus-alcaligenes (in this category, the latter four genus-biotype group identifications were taken as correct) and (ii) correct to species or biotype in all cases, including the above four groups. In category i, 87.4% of the strains were correctly identified, with 4.2% low discrimination and 8.4% incorrect. When the criteria of category ii were used, 71.8% of the strains were correctly identified, with 19.9% low discrimination. The Rapid NFT system provided excellent species identification of Pseudomonas and Flavobacterium spp., Bordetella bronchiseptica, and Achromobacter xylosoxidans strains. Within Acinetobacter calcoaceticus, differentiation between biotypes anitratus and lwoffi was satisfactory, but the system did not differentiate between biotypes haemolyticus and alcaligenes. Species resolution within the genera Moraxella and Alcaligenes was incomplete. All Alcaligenes faecalis strains were misidentified and accounted for 50% of misidentifications with the Rapid NFT system; however, these results may reflect taxonomic differences rather than true misidentifications. The Rapid NFT system is easy to inoculate and interpret and represents a worthwhile advance in the identification of gram-negative, nonfermentative rods. PMID:6490857

  5. Stable isotope, site-specific mass tagging for protein identification

    DOEpatents

    Chen, Xian

    2006-10-24

    Proteolytic peptide mass mapping as measured by mass spectrometry provides an important method for the identification of proteins, which are usually identified by matching the measured and calculated m/z values of the proteolytic peptides. A unique identification is, however, heavily dependent upon the mass accuracy and sequence coverage of the fragment ions generated by peptide ionization. The present invention describes a method for increasing the specificity, accuracy and efficiency of the assignments of particular proteolytic peptides and consequent protein identification, by the incorporation of selected amino acid residue(s) enriched with stable isotope(s) into the protein sequence without the need for ultrahigh instrumental accuracy. Selected amino acid(s) are labeled with .sup.13C/.sup.15N/.sup.2H and incorporated into proteins in a sequence-specific manner during cell culturing. Each of these labeled amino acids carries a defined mass change encoded in its monoisotopic distribution pattern. Through their characteristic patterns, the peptides with mass tag(s) can then be readily distinguished from other peptides in mass spectra. The present method of identifying unique proteins can also be extended to protein complexes and will significantly increase data search specificity, efficiency and accuracy for protein identifications.

  6. Identification Of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies

    DTIC Science & Technology

    2007-12-01

    subcellular localization can be found using the TargetP 105 localization predictor. Identification of possible cell membrane or cell wall...analyzed as vaccine candidates. Examples of this include membrane proteins that localized to subcellular organelle membranes, or proteins with...403-410. 105. Emanuelsson, O., H. Nielsen, S. Brunak, et al. 2000. Predicting subcellular localization of proteins based on their N-terminal amino

  7. IDENTIFICATION OF PROTEIN FRACTIONS OF MILK COWS CASEIN COMPLEX.

    PubMed

    Iukalo, A V

    2015-01-01

    To date, dozens of biologically active peptides formed during proteolysis of casein fractions have been discovered. The use of these peptides is closely related to the necessity of their rapid identification. The aim of this work was the development of an electrophoresis system for rapid identification of individual fractions in serial studies and the separation of the milk casein complex. Considering the abnormal nature of the interaction of caseins with the sodium dodecyl sulfate and similar values of their molecular masses, the anode electrophoresis system in a homogeneous polyacrylamide gel was taken as a basis. Caseins, in this system, are separated according to their charge and located on the electrophoregram in accordance with the modern classification. Urea was used as a disaggregating agent in gel. It was shown that the use of Studier type apparatus for electrophoresis with changeable dimensions of electrophoretic chamber significantly reduces (to 45 min) the time for identification of casein fractions. This method may be useful for rapid identification of casein fractions, as well as for rapid analysis of natural milk and milk products.

  8. Rapid Identification of Candida Species and Other Clinically Important Yeast Species by Flow Cytometry†

    PubMed Central

    Page, Brent T.; Kurtzman, Cletus P.

    2005-01-01

    Two rapid diagnostic assays, utilizing two different Luminex flow cytometry methods, were developed for identification of clinically important ascomycetous yeast species. Direct hybridization and allele-specific primer extension methods were both successful in establishing a DNA-based assay that can rapidly and accurately identify Candida albicans, Candida krusei, Candida parapsilosis, Candida glabrata, and Candida tropicalis as well as other clinical species. The direct hybridization assay was designed to identify a total of 19 ascomycetous yeast species, and the allele-specific primer extension assay was designed to identify a total of 34 species. Probes were validated against 438 strains representing 303 species. From culture to identification, the allele-specific primer extension method takes 8 h and the direct hybridization method takes less than 5 h to complete. These assays represent comprehensive, rapid tests that are well suited for the clinical laboratory. PMID:16145099

  9. Multilaboratory Validation of Rapid Spot Tests for Identification of Escherichia coli

    PubMed Central

    York, Mary K.; Baron, Ellen Jo; Clarridge, Jill E.; Thomson, Richard B.; Weinstein, Melvin P.

    2000-01-01

    To validate the accuracy of rapid tests for identification of Escherichia coli, five laboratories sequentially collected 1,064 fresh, clinically significant strains with core criteria of indole-positive, oxidase-negative, nonspreading organisms on sheep blood agar plates (BAP), having typical gram-negative rod plate morphology, defined as good growth on gram-negative rod-selective media. An algorithm using beta-hemolysis on BAP, lactose reaction on eosin-methylene blue or MacConkey agar, l-pyrrolidonyl-β-naphthylamide (PYR), and 4-methylumbelliferyl-β-d-glucuronide (MUG) was evaluated. Identifications using the algorithm were compared to those obtained using commercial kit system identifications. One thousand strains were E. coli and 64 were not E. coli by kit identifications, which were supplemented with conventional biochemical testing of low probability profiles. Of the 1,064 isolates meeting the core criteria, 294 were beta-hemolytic and did not require further testing to be identified as E. coli. None of the 64 non-E. coli strains were hemolytic, although other indole-positive, lactose-negative species were found to be hemolytic when further strains were examined in a follow-up study. Of the remaining strains, 628 were identified as E. coli by a lactose-positive and PYR-negative reaction. For nonhemolytic, lactose-negative E. coli, PYR was not helpful, but a positive MUG reaction identified 65 of 78 isolates as E. coli. The remaining 13 E. coli strains required kit identifications. This scheme for E. coli identification misidentified three non-E. coli strains as E. coli, for an error rate of 0.3%. A total of 13 kit identifications, 657 PYR tests, and 113 MUG tests were needed to identify 1,000 E. coli strains with the algorithm. The use of this rapid system saves laboratory resources, provides timely identifications, and yields rare misidentifications. PMID:10970389

  10. A rapid method for detecting protein-nucleic acid interactions by protein induced fluorescence enhancement

    PubMed Central

    Valuchova, Sona; Fulnecek, Jaroslav; Petrov, Alexander P.; Tripsianes, Konstantinos; Riha, Karel

    2016-01-01

    Many fundamental biological processes depend on intricate networks of interactions between proteins and nucleic acids and a quantitative description of these interactions is important for understanding cellular mechanisms governing DNA replication, transcription, or translation. Here we present a versatile method for rapid and quantitative assessment of protein/nucleic acid (NA) interactions. This method is based on protein induced fluorescence enhancement (PIFE), a phenomenon whereby protein binding increases the fluorescence of Cy3-like dyes. PIFE has mainly been used in single molecule studies to detect protein association with DNA or RNA. Here we applied PIFE for steady state quantification of protein/NA interactions by using microwell plate fluorescence readers (mwPIFE). We demonstrate the general applicability of mwPIFE for examining various aspects of protein/DNA interactions with examples from the restriction enzyme BamHI, and the DNA repair complexes Ku and XPF/ERCC1. These include determination of sequence and structure binding specificities, dissociation constants, detection of weak interactions, and the ability of a protein to translocate along DNA. mwPIFE represents an easy and high throughput method that does not require protein labeling and can be applied to a wide range of applications involving protein/NA interactions. PMID:28008962

  11. Proteomics: Protein Identification Using Online Databases

    ERIC Educational Resources Information Center

    Eurich, Chris; Fields, Peter A.; Rice, Elizabeth

    2012-01-01

    Proteomics is an emerging area of systems biology that allows simultaneous study of thousands of proteins expressed in cells, tissues, or whole organisms. We have developed this activity to enable high school or college students to explore proteomic databases using mass spectrometry data files generated from yeast proteins in a college laboratory…

  12. Processed Meat Protein and Heat-Stable Peptide Marker Identification Using Microwave-Assisted Tryptic Digestion.

    PubMed

    Montowska, Magdalena; Pospiech, Edward

    2016-12-01

    New approaches to rapid examination of proteins and peptides in complex food matrices are of great interest to the community of food scientists. The aim of the study is to examine the influence of microwave irradiation on the acceleration of enzymatic cleavage and enzymatic digestion of denatured proteins in cooked meat of five species (cattle, horse, pig, chicken and turkey) and processed meat products (coarsely minced, smoked, cooked and semi-dried sausages). Severe protein aggregation occurred not only in heated meat under harsh treatment at 190 °C but also in processed meat products. All the protein aggregates were thoroughly hydrolyzed after 1 h of trypsin treatment with short exposure times of 40 and 20 s to microwave irradiation at 138 and 303 W. There were much more missed cleavage sites observed in all microwave-assisted digestions. Despite the incompleteness of microwave-assisted digestion, six unique peptide markers were detected, which allowed unambiguous identification of processed meat derived from the examined species. Although the microwave-assisted tryptic digestion can serve as a tool for rapid and high-throughput protein identification, great caution and pre-evaluation of individual samples is recommended in protein quantitation.

  13. Processed Meat Protein and Heat-Stable Peptide Marker Identification Using Microwave-Assisted Tryptic Digestion

    PubMed Central

    Pospiech, Edward

    2016-01-01

    Summary New approaches to rapid examination of proteins and peptides in complex food matrices are of great interest to the community of food scientists. The aim of the study is to examine the influence of microwave irradiation on the acceleration of enzymatic cleavage and enzymatic digestion of denatured proteins in cooked meat of five species (cattle, horse, pig, chicken and turkey) and processed meat products (coarsely minced, smoked, cooked and semi-dried sausages). Severe protein aggregation occurred not only in heated meat under harsh treatment at 190 °C but also in processed meat products. All the protein aggregates were thoroughly hydrolyzed after 1 h of trypsin treatment with short exposure times of 40 and 20 s to microwave irradiation at 138 and 303 W. There were much more missed cleavage sites observed in all microwave-assisted digestions. Despite the incompleteness of microwave-assisted digestion, six unique peptide markers were detected, which allowed unambiguous identification of processed meat derived from the examined species. Although the microwave-assisted tryptic digestion can serve as a tool for rapid and high-throughput protein identification, great caution and pre-evaluation of individual samples is recommended in protein quantitation. PMID:28115907

  14. [Evaluation of a rapid trehalase test for the identification of Candida glabrata].

    PubMed

    Kirdar, Sevin; Gültekin, Berna; Evcil, Gonca; Ozkütük, Aydan; Sener, Asli Gamze; Aydin, Neriman

    2009-04-01

    Candida species which cause local infections, may also lead to fatal systemic infections. The increasing incidence of non-albicans Candida, especially fluconazole susceptible or resistant dose-dependent C. glabrata, increased the importance of rapid and accurate species level identification for Candida. Rapid and correct identification of C. glabrata is essential for the initiation of the appropriate antifungal therapy. This study was conducted to evaluate the performance of the rapid trehalase test in the diagnosis of C. glabrata isolates. A total of 173 Candida strains isolated from various clinical specimens and identified according to germ tube test, growth on cornmeal Tween 80 agar and the colony morphologies on Mast-CHROMagar Candida medium (Mast Diagnostics, UK), were included to the study. The identification of non-albicans Candida species were also confirmed by API 20CAUX (BioMerieux, France) system. Accordingly 86 (50%) of the isolates were identified as C. glabrata, 48 (28%) C. albicans, 17 (10%) C. krusei, 13 (8%) C. tropicalis, 5 (3%) C. parapsilosis, 3 (2%) C. kefyr and 1 (1%) Cutilis. In order to detect the presence of trehalase enzyme in Condida strains, all isolates were grown on Sabouraud dextrose agar containing 4% glucose and then one yeast colony was emulsified in 50 microl of citrate buffer containing 4% (wt/vol) trehalose for 3 h at 37 degrees C. Presence of glucose which emerged after the action of trehalase on trehalose, was detected by a commercial "urinary glucose detection dipstick" (Spinreacta, Spain). All C. glabrata strains yielded positive result by trehalase test. None C. glabrata isolates were found negative by trehalase test except for one strain of C. tropicalis. In this study, the trehalase test allowed identification of C. globrata with 100% sensitivity and 98.9% specificity. It was concluded that trehalase test is a rapid, cost-effective and simple test that can be used for the accurate identification of C. glabrata.

  15. Imaging metals in proteins by combining electrophoresis with rapid x-ray fluorescence mapping.

    SciTech Connect

    Finney, L.; Chishti, Y.; Khare, T.; Giometti, C.; Levina, A.; Lay, P. A.; Vogt, S.; Univ. of Sydney; Northwestern Univ.

    2010-01-01

    Growing evidence points toward a very dynamic role for metals in biology. This suggests that physiological circumstance may mandate metal ion redistribution among ligands. This work addresses a critical need for technology that detects, identifies, and measures the metal-containing components of complex biological matrixes. We describe a direct, user-friendly approach for identifying and quantifying metal?protein adducts in complex samples using native- or SDS-PAGE, blotting, and rapid synchrotron X-ray fluorescence mapping with micro-XANES (X-ray absorption near-edge structure) of entire blots. The identification and quantification of each metal bound to a protein spot has been demonstrated, and the technique has been applied in two exemplary cases. In the first, the speciation of the in vitro binding of exogenous chromium to blood serum proteins was influenced markedly by both the oxidation state of chromium exposed to the serum proteins and the treatment conditions, which is of relevance to the biochemistry of Cr dietary supplements. In the second case, in vivo changes in endogenous metal speciation were examined to probe the influence of oxygen depletion on iron speciation in Shewanella oneidensis.

  16. Evaluation of latex reagents for rapid identification of Candida albicans and C. krusei colonies.

    PubMed Central

    Freydiere, A M; Buchaille, L; Guinet, R; Gille, Y

    1997-01-01

    A total of 322 yeast strains and yeastlike organisms belonging to the genera Candida, Cryptococcus, Geotrichum, Saccharomyces, and Trichosporon were tested with the new monoclonal antibody-based Bichro-latex albicans and Krusei color latex tests. Comparison of results with those obtained by conventional identification methods showed 100% sensitivity for both latex tests and 100% and 95% specificity for the Bichro-latex albicans and Krusei color tests, respectively. Because the test is easy to read and quick to perform, the Bichro-latex albicans test may be useful for rapid identification of Candida albicans colonies in the clinical laboratory. PMID:9157146

  17. Rapid identification of Yersinia pestis and Brucella melitensis by chip-based continuous flow PCR

    NASA Astrophysics Data System (ADS)

    Dietzsch, Michael; Hlawatsch, Nadine; Melzer, Falk; Tomaso, Herbert; Gärtner, Claudia; Neubauer, Heinrich

    2012-06-01

    To combat the threat of biological agents like Yersinia pestis and Brucella melitensis in bioterroristic scenarios requires fast, easy-to-use and safe identification systems. In this study we describe a system for rapid amplification of specific genetic markers for the identification of Yersinia pestis and Brucella melitensis. Using chip based PCR and continuous flow technology we were able to amplify the targets simultaneously with a 2-step reaction profile within 20 minutes. The subsequent analysis of amplified fragments by standard gel electrophoresis requires another 45 minutes. We were able to detect both pathogens within 75 minutes being much faster than most other nucleic acid amplification technologies.

  18. Identification of Ina proteins from Fusarium acuminatum

    NASA Astrophysics Data System (ADS)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Freezing of water above -36° C is based on ice nucleation activity (INA) mediated by ice nucleators (IN) which can be of various origins. Beside mineral IN, biological particles are a potentially important source of atmospheric IN. The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is induced by a surface protein on the outer cell membrane, which is fully characterized. In contrast, much less is known about the nature of fungal IN. The fungal genus Fusarium is widely spread throughout the earth. It belongs to the Ascomycota and is one of the most severe fungal pathogens. It can affect a variety of organisms from plants to animals including humans. INA of Fusarium was already described about 30 years ago and INA of Fusarium as well as other fungal genera is assumed to be mediated by proteins or at least to contain a proteinaceous compound. Although many efforts were made the precise INA machinery of Fusarium and other fungal species including the proteins and their corresponding genes remain unidentified. In this study preparations from living fungal samples of F. acuminatum were fractionated by liquid chromatography and IN active fractions were identified by freezing assays. SDS-page and de novo sequencing by mass spectrometry were used to identify the primary structure of the protein. Preliminary results show that the INA protein of F. acuminatum is contained in the early size exclusion chromatography fractions indicating a high molecular size. Moreover we could identify a single protein band from IN active fractions at 130-145 kDa corresponding to sizes of IN proteins from bacterial species. To our knowledge this is for the first time an isolation of a single protein from in vivo samples, which can be assigned as IN active from Fusarium.

  19. Lack of impact of rapid identification of rotavirus-infected patients on nosocomial rotavirus infections.

    PubMed

    Dennehy, P H; Tente, W E; Fisher, D J; Veloudis, B A; Peter, G

    1989-05-01

    The efficacy of rapid identification of rotavirus-infected patients in the control of nosocomial rotavirus infections on an infant and young toddler ward by use of a rotavirus antigen detection test on stool from patients with diarrhea was evaluated by comparing the rate of nosocomial rotavirus infection in children during two separate 5-week periods in the winters of 1984 and 1986. In contrast to 1984 rapid rotavirus antigen testing by latex agglutination of stool from patients with diarrhea was instituted in 1986, in addition to testing for rotavirus by enzyme immunoassay, to determine whether use of rapid antigen testing resulted in an increased incidence of appropriate isolation and a decrease in nosocomial infections. In 1986 rapid identification of rotavirus resulted in an increase in hospitalization of rotavirus-infected patients in single bed rooms from 68% to 100% (P = 0.02, chi square test) but no significant increase in the use of enteric precautions for these patients. The total number of cases of nosocomial rotavirus infection in the two periods did not differ. In both periods 11 cases occurred; the nosocomial infection rate in 1984 was 18.9 cases/1000 days of exposure whereas in 1986 it was 20.2 cases/1000 days. These findings indicate that the use of rapid rotavirus antigen testing of patients with diarrhea is not of appreciable benefit in preventing the nosocomial spread of rotavirus to infants on the ward.

  20. Rapid identification and antibiotic susceptibility testing of Yersinia pestis using bioluminescent reporter phage

    PubMed Central

    Schofield, David A.; Molineux, Ian J.; Westwater, Caroline

    2012-01-01

    The rapid identification and antibiotic susceptibility testing of Yersinia pestis is paramount for a positive prognosis. We previously engineered a Y. pestis-specific ‘bioluminescent’ reporter phage for the identification of Y. pestis. In this study, we generated an improved reporter phage and evaluated the ability of this phage to provide direct and rapid susceptibility testing. Compared to the first generation reporter, the second generation reporter exhibited a 100-fold increase in signal strength, leading to a 10-fold increase in assay sensitivity. Y. pestis antimicrobial testing in the presence of the reporter elicited bioluminescent signals that were drug concentration-dependent, and produced susceptibility profiles that mirrored the standard CLSI method. The phage-generated susceptibility profiles, however, were obtained within hours in contrast to days with the conventional method. PMID:22579583

  1. Rapid identification and antibiotic susceptibility testing of Yersinia pestis using bioluminescent reporter phage.

    PubMed

    Schofield, David A; Molineux, Ian J; Westwater, Caroline

    2012-08-01

    The rapid identification and antibiotic susceptibility testing of Yersinia pestis is paramount for a positive prognosis. We previously engineered a Y. pestis-specific 'bioluminescent' reporter phage for the identification of Y. pestis. In this study, we generated an improved reporter phage and evaluated the ability of this phage to provide direct and rapid susceptibility testing. Compared to the first generation reporter, the second generation reporter exhibited a 100-fold increase in signal strength, leading to a 10-fold increase in assay sensitivity. Y. pestis antimicrobial testing in the presence of the reporter elicited bioluminescent signals that were drug concentration-dependent, and produced susceptibility profiles that mirrored the standard CLSI method. The phage-generated susceptibility profiles, however, were obtained within hours in contrast to days with the conventional method.

  2. Unbiased identification of protein-bait interactions using biochemical enrichment and quantitative proteomics.

    PubMed

    Ong, Shao-En

    2010-03-01

    The use of recombinant proteins, antibodies, small molecules, or nucleic acids as affinity reagents is a simple yet powerful strategy to study the protein-bait interactions that drive biological processes. However, such experiments are often analyzed by Western blotting, limiting the ability to detect novel protein interactors. Unbiased protein identification by mass spectrometry (MS) extends these experiments beyond the study of pairwise interactions, allowing analyses of whole networks of protein-bait interactions. With the latest advances in MS, it is not uncommon to identify thousands of proteins from complex mixtures. Paradoxically, the improved sensitivity of proteomic analyses can make it more difficult to distinguish bait-specific interactions from the large background of identified proteins. In quantitative proteomics, MS signals from protein populations labeled with stable isotopes such as (13)C and (15)N can be identified and quantified relative to unlabeled counterparts. Using quantitative proteomics to compare biochemical enrichments with the bait of interest against those obtained with control baits allows sensitive detection and discrimination of specific protein-bait interactions among the large number of nonspecific interactions with beads. Ad hoc optimization of enrichment conditions is minimized, and mild purification conditions preserve secondary or high-order protein-protein interactions. The combination of biochemical enrichment and quantitative proteomics allows rapid characterization of molecular baits with their interacting proteins, providing tremendous insight into their biological mechanisms of action.

  3. Two-Component Direct Fluorescent-Antibody Assay for Rapid Identification of Bacillus Anthracis

    DTIC Science & Technology

    2002-10-01

    Bacillus spp. (n=56) Five closely related Bacillus species—B. cereus (n=23), B. megaterium (n=11), B. subtilis (n=9), B. thuringiensis (n=12), and B...Rapid Identification of Bacillus anthracis Barun K. De,* Sandra L. Bragg,* Gary N. Sanden,* Kathy E. Wilson,* Lois A. Diem,* Chung K. Marston...antibody (DFA) assay, using fluorescein-labeled monoclonal antibodies specific to the Bacillus anthracis cell wall (CW-DFA) and capsule (CAP-DFA

  4. Rapid Bacterial Identification, Resistance, Virulence and Type Profiling using Selected Reaction Monitoring Mass Spectrometry

    PubMed Central

    Charretier, Yannick; Dauwalder, Olivier; Franceschi, Christine; Degout-Charmette, Elodie; Zambardi, Gilles; Cecchini, Tiphaine; Bardet, Chloe; Lacoux, Xavier; Dufour, Philippe; Veron, Laurent; Rostaing, Hervé; Lanet, Veronique; Fortin, Tanguy; Beaulieu, Corinne; Perrot, Nadine; Dechaume, Dominique; Pons, Sylvie; Girard, Victoria; Salvador, Arnaud; Durand, Géraldine; Mallard, Frédéric; Theretz, Alain; Broyer, Patrick; Chatellier, Sonia; Gervasi, Gaspard; Van Nuenen, Marc; Ann Roitsch, Carolyn; Van Belkum, Alex; Lemoine, Jérôme; Vandenesch, François; Charrier, Jean-Philippe

    2015-01-01

    Mass spectrometry (MS) in Selected Reaction Monitoring (SRM) mode is proposed for in-depth characterisation of microorganisms in a multiplexed analysis. Within 60–80 minutes, the SRM method performs microbial identification (I), antibiotic-resistance detection (R), virulence assessment (V) and it provides epidemiological typing information (T). This SRM application is illustrated by the analysis of the human pathogen Staphylococcus aureus, demonstrating its promise for rapid characterisation of bacteria from positive blood cultures of sepsis patients. PMID:26350205

  5. Methods and Approaches to Mass Spectroscopy Based Protein Identification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter is a review of current mass spectrometers and the role in the field of proteomics. Various instruments are discussed and their strengths and weaknesses are highlighted. In addition, the methods of protein identification using a mass spectrometer are explained as well as data vali...

  6. Use of immunochromatographic assay for rapid identification of Mycobacterium tuberculosis complex from liquid culture

    PubMed Central

    Považan, Anika; Vukelić, Anka; Savković, Tijana; Kurucin, Tatjana

    2012-01-01

    A new, simple immunochromatographic assay for rapid identification of Mycobacterium tuberculosis complex in liquid cultures has been developed. The principle of the assay is binding of the Mycobacterium tuberculosis complex specific antigen to the monoclonal antibody conjugated on the test strip. The aim of this study is evaluation of the performance of immunochromatographic assay in identification of Mycobacterium tuberculosis complex in primary positive liquid cultures of BacT/Alert automated system. A total of 159 primary positive liquid cultures were tested using the immunochromatographic assay (BD MGIT TBc ID) and the conventional subculture, followed by identification using biochemical tests. Of 159 positive liquid cultures, using the conventional method, Mycobacterium tuberculos is was identified in 119 (74.8%), nontuberculous mycobacteria were found in 4 (2.5%), 14 (8.8%) cultures were contaminated and 22 (13.8%) cultures were found to be negative. Using the immunochromatographic assay, Mycobacterium tuberculosis complex was detected in 118 (74.2%) liquid cultures, and 41 (25.8%) tests were negative. Sensitivity, specificity, positive and negative predictive values of the test were 98.3%; 97.5%; 99.15%; 95.12%, respectively. The value of kappa test was 0.950, and McNemar test was 1.00. The immunochromatographic assay is a simple and rapid test which represents a suitable alternative to the conventional subculture method for the primary identification of Mycobacterium tuberculosis complex in liquid cultures of BacT/Alert automated system. PMID:22364301

  7. Rapid and inexpensive body fluid identification by RNA profiling-based multiplex High Resolution Melt (HRM) analysis.

    PubMed

    Hanson, Erin K; Ballantyne, Jack

    2013-01-01

    Positive identification of the nature of biological material present on evidentiary items can be crucial for understanding the circumstances surrounding a crime. However, traditional protein-based methods do not permit the identification of all body fluids and tissues, and thus molecular based strategies for the conclusive identification of all forensically relevant biological fluids and tissues need to be developed. Messenger RNA (mRNA) profiling is an example of such a molecular-based approach. Current mRNA body fluid identification assays involve capillary electrophoresis (CE) or quantitative RT-PCR (qRT-PCR) platforms, each with its own limitations. Both platforms require the use of expensive fluorescently labeled primers or probes. CE-based assays require separate amplification and detection steps thus increasing the analysis time. For qRT-PCR assays, only 3-4 markers can be included in a single reaction since each requires a different fluorescent dye. To simplify mRNA profiling assays, and reduce the time and cost of analysis, we have developed single- and multiplex body fluid High Resolution Melt (HRM) assays for the identification of common forensically relevant biological fluids and tissues. The incorporated biomarkers include IL19 (vaginal secretions), IL1F7 (skin), ALAS2 (blood), MMP10 (menstrual blood), HTN3 (saliva) and TGM4 (semen).  The HRM assays require only unlabeled PCR primers and a single saturating intercalating fluorescent dye (Eva Green). Each body-fluid-specific marker can easily be identified by the presence of a distinct melt peak. Usually, HRM assays are used to detect variants or isoforms for a single gene target. However, we have uniquely developed duplex and triplex HRM assays to permit the simultaneous detection of multiple targets per reaction. Here we describe the development and initial performance evaluation of the developed HRM assays. The results demonstrate the potential use of HRM assays for rapid, and relatively inexpensive

  8. Identification of Protein Components of Yeast Telomerase

    DTIC Science & Technology

    2000-09-01

    for forming telomeres at sites with stretches of telomere- like DNA. The pifl mutants also exhibit increased loss and decreased recombination of...like DNA. The pifl mutants also exhibit increased loss 6 and decreased recombination of mitochondrial DNA and thus have a high fraction of...the fission yeast Schizosaccharomyces pombe that was predicted to encode a 805 amino acid protein. The S. pombe gene was called rphl+ (RRM3/PIF1

  9. Identification & Characterization of Fungal Ice Nucleation Proteins

    NASA Astrophysics Data System (ADS)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Kampf, Christopher Johannes; Mauri, Sergio; Weidner, Tobias; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Freezing of water at relatively warm subfreezing temperatures is dependent on ice nucleation catalysis facilitated by ice nuclei (IN). These IN can be of various origins and although extensive research was done and progress was achieved, the nature and mechanisms leading to an effective IN are to date still poorly understood. Some of the most important processes of our geosphere like the water cycle are highly dependent on effective ice nucleation at temperatures between -2°C - -8°C, a temperature range which is almost exclusively covered by biological IN (BioIN). BioIN are usually macromolecular structures of biological polymers. Sugars as well as proteins have been reported to serve as IN and the best characterized BioIN are ice nucleation proteins (IN-P) from gram negative bacteria. Fungal strains from Fusarium spp. were described to be effective IN at subfreezing temperatures up to -2°C already 25 years ago and more and more fungal species are described to serve as efficient IN. Fungal IN are also thought to be proteins or at least contain a proteinaceous compound, but to date the fungal IN-P primary structure as well as their coding genetic elements of all IN active fungi are unknown. The aim of this study is a.) to identify the proteins and their coding genetic elements from IN active fungi (F. acuminatum, F. avenaceum, M. alpina) and b.) to characterize the mechanisms by which fungal IN serve as effective IN. We designed an interdisciplinary approach using biological, analytical and physical methods to identify fungal IN-P and describe their biological, chemical, and physical properties.

  10. Identification of intracellular receptor proteins for activated protein kinase C.

    PubMed Central

    Mochly-Rosen, D; Khaner, H; Lopez, J

    1991-01-01

    Protein kinase C (PKC) translocates from the cytosol to the particulate fraction on activation. This activation-induced translocation of PKC is thought to reflect PKC binding to the membrane lipids. However, immunological and biochemical data suggest that PKC may bind to proteins in the cytoskeletal elements in the particulate fraction and in the nuclei. Here we describe evidence for the presence of intracellular receptor proteins that bind activated PKC. Several proteins from the detergent-insoluble material of the particulate fraction bound PKC in the presence of phosphatidylserine and calcium; binding was further increased with the addition of diacylglycerol. Binding of PKC to two of these proteins was concentration-dependent, saturable, and specific, suggesting that these binding proteins are receptors for activated C-kinase, termed here "RACKs." PKC binds to RACKs via a site on PKC distinct from the substrate binding site. We suggest that binding to RACKs may play a role in activation-induced translocation of PKC. Images PMID:1850844

  11. Rapid and Efficient Protein Digestion using Trypsin Coated Magnetic Nanoparticles under Pressure Cycles

    SciTech Connect

    Lee, Byoungsoo; Lopez-Ferrer, Daniel; Kim, Byoung Chan; Na, Hyon Bin; Park, Yong Il; Weitz, Karl K.; Warner, Marvin G.; Hyeon, Taeghwan; Lee, Sang-Won; Smith, Richard D.; Kim, Jungbae

    2011-01-01

    Trypsin-coated magnetic nanoparticles (EC-TR/NPs), prepared via a simple crosslinking of the enzyme to magnetic nanoparticles, were highly stable and could be easily captured using a magnet after the digestion was complete. EC-TR/NPs showed a negligible loss of trypsin activity after multiple uses and continuous shaking, while a control sample of covalently-attached trypsin on NPs resulted in a rapid inactivation under the same conditions due to the denaturation and autolysis of trypsin. Digestions were carried out on a single model protein, a five protein mixture, and a whole mouse brain proteome, and also compared for digestion at atmospheric pressure and 37 ºC for 12 h, and in combination with pressure cycling technology (PCT) at room temperature for 1 min. In all cases, the EC-TR/NPs performed equally as well or better than free trypsin in terms of the number of peptide/protein identifications and reproducibility across technical replicates. However, the concomitant use of EC-TR/NPs and PCT resulted in very fast (~1 min) and more reproducible digestions.

  12. Rapid identification of moulds and arthroconidial yeasts from positive blood cultures by MALDI-TOF mass spectrometry.

    PubMed

    de Almeida, João N; Sztajnbok, Jaques; da Silva, Afonso Rafael; Vieira, Vinicius Adriano; Galastri, Anne Layze; Bissoli, Leandro; Litvinov, Nadia; Del Negro, Gilda Maria Barbaro; Motta, Adriana Lopes; Rossi, Flávia; Benard, Gil

    2016-11-01

    Moulds and arthroconidial yeasts are potential life-threatening agents of fungemia in immunocompromised patients. Fast and accurate identification (ID) of these pathogens hastens initiation of targeted antifungal therapy, thereby improving the patients' prognosis. We describe a new strategy that enabled the identification of moulds and arthroconidial yeasts directly from positive blood cultures by MALDI-TOF mass spectrometry (MS). Positive blood cultures (BCs) with Gram staining showing hyphae and/or arthroconidia were prospectively selected and submitted to an in-house protein extraction protocol. Mass spectra were obtained by Vitek MS™ system, and identifications were carried out with in the research use only (RUO) mode with an extended database (SARAMIS™ [v.4.12] plus in-house database). Fusarium solani, Fusarium verticillioides, Exophiala dermatitidis, Saprochaete clavata, and Trichosporon asahii had correct species ID by MALDI-TOF MS analysis of positive BCs. All cases were related to critically ill patients with high mortality fungemia and direct ID from positive BCs was helpful for rapid administration of targeted antifungal therapy.

  13. Ribosomal proteins as biomarkers for bacterial identification by mass spectrometry in the clinical microbiology laboratory

    PubMed Central

    Suarez, Stéphanie; Ferroni, Agnès; Lotz, Aurélie; Jolley, Keith A.; Guérin, Philippe; Leto, Julie; Dauphin, Brunhilde; Jamet, Anne; Maiden, Martin C.J.; Nassif, Xavier; Armengaud, Jean

    2014-01-01

    Whole-cell matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a rapid method for identification of microorganisms that is increasingly used in microbiology laboratories. This identification is based on the comparison of the tested isolate mass spectrum with reference databases. Using Neisseria meningitidis as a model organism, we showed that in one of the available databases, the Andromas database, 10 of the 13 species-specific biomarkers correspond to ribosomal proteins. Remarkably, one biomarker, ribosomal protein L32, was subject to inter-strain variability. The analysis of the ribosomal protein patterns of 100 isolates for which whole genome sequences were available, confirmed the presence of inter-strain variability in the molecular weight of 29 ribosomal proteins, thus establishing a correlation between the sequence type (ST) and/or clonal complex (CC) of each strain and its ribosomal protein pattern. Since the molecular weight of three of the variable ribosomal proteins (L30, L31 and L32) was included in the spectral window observed by MALDI-TOF MS in clinical microbiology, i.e., 3640–12000 m/z, we were able by analyzing the molecular weight of these three ribosomal proteins to classify each strain in one of six subgroups, each of these subgroups corresponding to specific STs and/or CCs. Their detection by MALDI-TOF allows therefore a quick typing of N. meningitidis isolates. PMID:23916798

  14. A rapid (less than 10 minute) electrophoresis method for identification of wheat varieties.

    PubMed

    Wrigley, C W; Gore, P J; Manusu, H P

    1991-05-01

    Conventional procedures for electrophoretic identification of grain samples according to variety are too slow to permit checking at the time of delivery. The method described permits electrophoretic identification within an hour. It involves extraction of gliadin proteins from crushed grain with 6% urea solution or ethylene glycol, cathodic electrophoresis for 9 min at 300 V in a Micrograd gel (MG 315 from Gradipore Ltd, Sydney, Australia) using sodium lactate buffer (pH 3.1), and staining in Gradipore (at about 50 degrees C). Distinction between a set of Australian varieties was similar to that obtainable with the Australian Standard Procedure.

  15. Bioinformatics pipeline for functional identification and characterization of proteins

    NASA Astrophysics Data System (ADS)

    Skarzyńska, Agnieszka; Pawełkowicz, Magdalena; Krzywkowski, Tomasz; Świerkula, Katarzyna; PlÄ der, Wojciech; Przybecki, Zbigniew

    2015-09-01

    The new sequencing methods, called Next Generation Sequencing gives an opportunity to possess a vast amount of data in short time. This data requires structural and functional annotation. Functional identification and characterization of predicted proteins could be done by in silico approches, thanks to a numerous computational tools available nowadays. However, there is a need to confirm the results of proteins function prediction using different programs and comparing the results or confirm experimentally. Here we present a bioinformatics pipeline for structural and functional annotation of proteins.

  16. Protein identification using nano liquid chromatography-tandem mass spectrometry.

    PubMed

    Negroni, Luc

    2007-01-01

    Tandem mass spectrometry is an efficient technique for the identification of peptides on the basis of their fragmentation pattern (MS/MS scan). It can generate individual spectra for each peptide, thereby creating a powerful tool for protein identification on the basis of peptide characterization. This important advance in automatic data acquisition has allowed an efficient association between liquid chromatography and tandem mass spectrometry, and the use of nanocolumns and nanoelectrospray ionization has dramatically increased the efficiency of this method. Now large sets of peptides can be identified at a femtomole level. At the end of the process, batch processing of the MS/MS spectra produces peptide lists that identify purified proteins or protein mixtures with high confidence.

  17. Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry

    PubMed Central

    2010-01-01

    Background Accurate identification is necessary to discriminate harmless environmental Yersinia species from the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis and from the group A bioterrorism plague agent Yersinia pestis. In order to circumvent the limitations of current phenotypic and PCR-based identification methods, we aimed to assess the usefulness of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) protein profiling for accurate and rapid identification of Yersinia species. As a first step, we built a database of 39 different Yersinia strains representing 12 different Yersinia species, including 13 Y. pestis isolates representative of the Antiqua, Medievalis and Orientalis biotypes. The organisms were deposited on the MALDI-TOF plate after appropriate ethanol-based inactivation, and a protein profile was obtained within 6 minutes for each of the Yersinia species. Results When compared with a 3,025-profile database, every Yersinia species yielded a unique protein profile and was unambiguously identified. In the second step of analysis, environmental and clinical isolates of Y. pestis (n = 2) and Y. enterocolitica (n = 11) were compared to the database and correctly identified. In particular, Y. pestis was unambiguously identified at the species level, and MALDI-TOF was able to successfully differentiate the three biotypes. Conclusion These data indicate that MALDI-TOF can be used as a rapid and accurate first-line method for the identification of Yersinia isolates. PMID:21073689

  18. Seed storage proteins as a system for teaching protein identification by mass spectrometry in biochemistry laboratory.

    PubMed

    Wilson, Karl A; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed, requiring more time and expertise than instructors of large laboratory classes can devote. We have developed an experimental module for our Biochemistry Laboratory course that engages students in MS-based protein identification following protein separation by one-dimensional SDS-PAGE, a technique that is usually taught in this type of course. The module is based on soybean seed storage proteins, a relatively simple mixture of proteins present in high levels in the seed, allowing the identification of the main protein bands by MS/MS and in some cases, even by peptide mass fingerprinting. Students can identify their protein bands using software available on the Internet, and are challenged to deduce post-translational modifications that have occurred upon germination. A collection of mass spectral data and tutorials that can be used as a stand-alone computer-based laboratory module were also assembled.

  19. Automatic and rapid identification of glycopeptides by nano-UPLC-LTQ-FT-MS and proteomic search engine.

    PubMed

    Giménez, Estela; Gay, Marina; Vilaseca, Marta

    2017-01-30

    Here we demonstrate the potential of nano-UPLC-LTQ-FT-MS and the Byonic™ proteomic search engine for the separation, detection, and identification of N- and O-glycopeptide glycoforms in standard glycoproteins. The use of a BEH C18 nanoACQUITY column allowed the separation of the glycopeptides present in the glycoprotein digest and a baseline-resolution of the glycoforms of the same glycopeptide on the basis of the number of sialic acids. Moreover, we evaluated several acquisition strategies in order to improve the detection and characterization of glycopeptide glycoforms with the maximum number of identification percentages. The proposed strategy is simple to set up with the technology platforms commonly used in proteomic labs. The method allows the straightforward and rapid obtention of a general glycosylated map of a given protein, including glycosites and their corresponding glycosylated structures. The MS strategy selected in this work, based on a gas phase fractionation approach, led to 136 unique peptides from four standard proteins, which represented 78% of the total number of peptides identified. Moreover, the method does not require an extra glycopeptide enrichment step, thus preventing the bias that this step could cause towards certain glycopeptide species. Data are available via ProteomeXchange with identifier PXD003578.

  20. General qPCR and Plate Reader Methods for Rapid Optimization of Membrane Protein Purification and Crystallization Using Thermostability Assays.

    PubMed

    Tomasiak, Thomas M; Pedersen, Bjørn P; Chaudhary, Sarika; Rodriguez, Andrew; Colmanares, Yaneth Robles; Roe-Zurz, Zygy; Thamminana, Sobha; Tessema, Meseret; Stroud, Robert M

    2014-08-01

    This unit describes rapid and generally applicable methods to identify conditions that stabilize membrane proteins using temperature-based denaturation measurements as a proxy for target time-dependent stability. Recent developments with thiol-reactive dyes sensitive to the unmasking of cysteine residues upon protein unfolding have allowed for routine application of thermostability assays to systematically evaluate the stability of membrane protein preparations after various purification procedures. Test conditions can include different lipid cocktails, lipid-detergent micelles, pH, salts, osmolytes, and potential active-site ligands. Identification and use of conditions that stabilize the structure have proven successful in enabling the structure determination of numerous families of membrane proteins that otherwise were intractable.

  1. Proteomic identification of erythrocyte membrane protein deficiency in hereditary spherocytosis.

    PubMed

    Peker, Selen; Akar, Nejat; Demiralp, Duygu Ozel

    2012-03-01

    Hereditary spherocytosis (HS) is the most common congenital hemolytic anemia in Caucasians, with an estimated prevalence ranging from 1:2000 to 1:5000. The molecular defect in one of the erythrocytes (RBC) membrane proteins underlying HS like; spectrin-α, spectrin-β, ankyrin, band 3 and protein 4.2 that lead to membrane destabilization and vesiculation, may change the RBCs into denser and more rigid cells (spherocytes), which are removed by the spleen, leading to the development of hemolytic anemia. It is classified as mild, moderate and severe, according to the degree of the hemolytic anemia and the associated symptoms. Two-dimensional gel electrophoresis (2-DE) is potentially valuable method for studying heritable disorders as HS that involve membrane proteins. This separation technique of proteins based upon two biophysically unrelated parameters; molecular weight and charge, is a good option in clinical proteomics in terms of ability to separate complex mixtures, display post-translational modifications and changes after phosphorylation. In this study, we have used contemporary methods with some modifications for the solubilisation, separation and identification of erythrocyte membrane proteins in normal and in HS RBCs. Spectrin alpha and beta chain, ankyrin and band 3 proteins expression differences were found with PDQuest software 8.0.1. and peptide mass fingerprinting (PMF) analysis performed for identification of proteins in this study.

  2. Integrating gene synthesis and microfluidic protein analysis for rapid protein engineering

    PubMed Central

    Blackburn, Matthew C.; Petrova, Ekaterina; Correia, Bruno E.; Maerkl, Sebastian J.

    2016-01-01

    The capability to rapidly design proteins with novel functions will have a significant impact on medicine, biotechnology and synthetic biology. Synthetic genes are becoming a commodity, but integrated approaches have yet to be developed that take full advantage of gene synthesis. We developed a solid-phase gene synthesis method based on asymmetric primer extension (APE) and coupled this process directly to high-throughput, on-chip protein expression, purification and characterization (via mechanically induced trapping of molecular interactions, MITOMI). By completely circumventing molecular cloning and cell-based steps, APE-MITOMI reduces the time between protein design and quantitative characterization to 3–4 days. With APE-MITOMI we synthesized and characterized over 400 zinc-finger (ZF) transcription factors (TF), showing that although ZF TFs can be readily engineered to recognize a particular DNA sequence, engineering the precise binding energy landscape remains challenging. We also found that it is possible to engineer ZF–DNA affinity precisely and independently of sequence specificity and that in silico modeling can explain some of the observed affinity differences. APE-MITOMI is a generic approach that should facilitate fundamental studies in protein biophysics, and protein design/engineering. PMID:26704969

  3. Integrating gene synthesis and microfluidic protein analysis for rapid protein engineering.

    PubMed

    Blackburn, Matthew C; Petrova, Ekaterina; Correia, Bruno E; Maerkl, Sebastian J

    2016-04-20

    The capability to rapidly design proteins with novel functions will have a significant impact on medicine, biotechnology and synthetic biology. Synthetic genes are becoming a commodity, but integrated approaches have yet to be developed that take full advantage of gene synthesis. We developed a solid-phase gene synthesis method based on asymmetric primer extension (APE) and coupled this process directly to high-throughput, on-chip protein expression, purification and characterization (via mechanically induced trapping of molecular interactions, MITOMI). By completely circumventing molecular cloning and cell-based steps, APE-MITOMI reduces the time between protein design and quantitative characterization to 3-4 days. With APE-MITOMI we synthesized and characterized over 400 zinc-finger (ZF) transcription factors (TF), showing that although ZF TFs can be readily engineered to recognize a particular DNA sequence, engineering the precise binding energy landscape remains challenging. We also found that it is possible to engineer ZF-DNA affinity precisely and independently of sequence specificity and that in silico modeling can explain some of the observed affinity differences. APE-MITOMI is a generic approach that should facilitate fundamental studies in protein biophysics, and protein design/engineering.

  4. A novel multiplex isothermal amplification method for rapid detection and identification of viruses

    PubMed Central

    Nyan, Dougbeh-Chris; Swinson, Kevin L.

    2015-01-01

    A rapid multiplex isothermal amplification assay has been developed for detection and identification of multiple blood-borne viruses that infect millions of people world-wide. These infections may lead to chronic diseases or death if not diagnosed and treated in a timely manner. Sets of virus-specific oligonucleotides and oligofluorophores were designed and used in a reverse-transcription loop-mediated multiplexed isothermal amplification reaction for detection and gel electrophoretic identification of human Immunodeficiency virus (HIV), hepatitis-B virus (HBV), hepatitis-C virus (HCV), hepatitis-E virus (HEV), dengue virus (DENV), and West Nile (WNV) virus infection in blood plasma. Amplification was catalyzed with two thermostable enzymes for 30–60 minutes under isothermal condition, utilizing a simple digital heat source. Electrophoretic analysis of amplified products demonstrated simultaneous detection of 6 viruses that were distinctly identified by unique ladder-like banding patterns. Naked-eye fluorescent visualization of amplicons revealed intensely fluorescing products that indicated positive detection. The test demonstrated a 97% sensitivity and a 100% specificity, with no cross-reaction with other viruses observed. This portable detection tool may have clinical and field utility in the developing and developed world settings. This may enable rapid diagnosis and identification of viruses for targeted therapeutic intervention and prevention of disease transmission. PMID:26643761

  5. Rapid Multi-Damage Identification for Health Monitoring of Laminated Composites Using Piezoelectric Wafer Sensor Arrays

    PubMed Central

    Si, Liang; Wang, Qian

    2016-01-01

    Through the use of the wave reflection from any damage in a structure, a Hilbert spectral analysis-based rapid multi-damage identification (HSA-RMDI) technique with piezoelectric wafer sensor arrays (PWSA) is developed to monitor and identify the presence, location and severity of damage in carbon fiber composite structures. The capability of the rapid multi-damage identification technique to extract and estimate hidden significant information from the collected data and to provide a high-resolution energy-time spectrum can be employed to successfully interpret the Lamb waves interactions with single/multiple damage. Nevertheless, to accomplish the precise positioning and effective quantification of multiple damage in a composite structure, two functional metrics from the RMDI technique are proposed and used in damage identification, which are the energy density metric and the energy time-phase shift metric. In the designed damage experimental tests, invisible damage to the naked eyes, especially delaminations, were detected in the leftward propagating waves as well as in the selected sensor responses, where the time-phase shift spectra could locate the multiple damage whereas the energy density spectra were used to quantify the multiple damage. The increasing damage was shown to follow a linear trend calculated by the RMDI technique. All damage cases considered showed completely the developed RMDI technique potential as an effective online damage inspection and assessment tool. PMID:27153070

  6. Rapid Multi-Damage Identification for Health Monitoring of Laminated Composites Using Piezoelectric Wafer Sensor Arrays.

    PubMed

    Si, Liang; Wang, Qian

    2016-05-04

    Through the use of the wave reflection from any damage in a structure, a Hilbert spectral analysis-based rapid multi-damage identification (HSA-RMDI) technique with piezoelectric wafer sensor arrays (PWSA) is developed to monitor and identify the presence, location and severity of damage in carbon fiber composite structures. The capability of the rapid multi-damage identification technique to extract and estimate hidden significant information from the collected data and to provide a high-resolution energy-time spectrum can be employed to successfully interpret the Lamb waves interactions with single/multiple damage. Nevertheless, to accomplish the precise positioning and effective quantification of multiple damage in a composite structure, two functional metrics from the RMDI technique are proposed and used in damage identification, which are the energy density metric and the energy time-phase shift metric. In the designed damage experimental tests, invisible damage to the naked eyes, especially delaminations, were detected in the leftward propagating waves as well as in the selected sensor responses, where the time-phase shift spectra could locate the multiple damage whereas the energy density spectra were used to quantify the multiple damage. The increasing damage was shown to follow a linear trend calculated by the RMDI technique. All damage cases considered showed completely the developed RMDI technique potential as an effective online damage inspection and assessment tool.

  7. FlexPlex27-highly multiplexed rapid DNA identification for law enforcement, kinship, and military applications.

    PubMed

    Grover, Ranjana; Jiang, Hua; Turingan, Rosemary S; French, Julie L; Tan, Eugene; Selden, Richard F

    2017-03-03

    Rapid DNA identification is the use of a rugged, field-deployable system to generate short tandem repeat (STR) profiles in law enforcement, military, immigration, and homeland security applications. A performance verification study was conducted on the ANDE Rapid DNA identification system using FlexPlex27, a highly multiplexed, 27 locus assay that generates data for the expanded CODIS core loci and all additional STR loci required for international databasing. The assay contains 23 autosomal loci (D1S1656, D2S1338, D2S441, D3S1358, D5S81, D6S1043, D7S820, D8S1179, D10S1248, D12S391, D13S317, D16S539, D18S51, D19S433, D21S11, D22S1045, FGA, CSF1PO, Penta E, TH01, vWA, TPOX, and SE33), three Y-chromosomal loci (DYS391, DYS576, and DYS570), and Amelogenin. Study results demonstrate that the instrument is reliable, reproducible, accurate, robust, and ready for a large scale, comprehensive developmental validation by NDIS-participating laboratories. The additional loci in the FlexPlex assay allow for improved STR profile sharing globally, increase the power of discrimination for identification matches, and improve the effectiveness of kinship analyses.

  8. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes

    PubMed Central

    Luo, Jiawei; Qi, Yi

    2015-01-01

    Background Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins. Method In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC), based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID), of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification. Results Experimental results based on three different PPI(protein-protein interaction) networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC). Conclusions LIDC is more effective for the prediction of essential proteins than other recently developed methods. PMID:26125187

  9. Characterization and identification of clinically relevant microorganisms using rapid evaporative ionization mass spectrometry.

    PubMed

    Strittmatter, Nicole; Rebec, Monica; Jones, Emrys A; Golf, Ottmar; Abdolrasouli, Alireza; Balog, Julia; Behrends, Volker; Veselkov, Kirill A; Takats, Zoltan

    2014-07-01

    Rapid evaporative ionization mass spectrometry (REIMS) was investigated for its suitability as a general identification system for bacteria and fungi. Strains of 28 clinically relevant bacterial species were analyzed in negative ion mode, and corresponding data was subjected to unsupervised and supervised multivariate statistical analyses. The created supervised model yielded correct cross-validation results of 95.9%, 97.8%, and 100% on species, genus, and Gram-stain level, respectively. These results were not affected by the resolution of the mass spectral data. Blind identification tests were performed for strains cultured on different culture media and analyzed using different instrumental platforms which led to 97.8-100% correct identification. Seven different Escherichia coli strains were subjected to different culture conditions and were distinguishable with 88% accuracy. In addition, the technique proved suitable to distinguish five pathogenic Candida species with 98.8% accuracy without any further modification to the experimental workflow. These results prove that REIMS is sufficiently specific to serve as a culture condition-independent tool for the identification and characterization of microorganisms.

  10. Evaluation of Verigene Blood Culture Test Systems for Rapid Identification of Positive Blood Cultures.

    PubMed

    Kim, Jae-Seok; Kang, Go-Eun; Kim, Han-Sung; Kim, Hyun Soo; Song, Wonkeun; Lee, Kyu Man

    2016-01-01

    The performance of molecular tests using the Verigene Gram-Positive and Gram-Negative Blood Culture nucleic acid tests (BC-GP and BC-GN, resp.; Naosphere, Northbrook, IL, USA) was evaluated for the identification of microorganisms detected from blood cultures. Ninety-nine blood cultures containing Gram-positive bacteria and 150 containing Gram-negative bacteria were analyzed using the BC-GP and BC-GN assays, respectively. Blood cultures were performed using the Bactec blood culture system (BD Diagnostic Systems, Franklin Lakes, NJ, USA) and conventional identification and antibiotic-susceptibility tests were performed using a MicroScan system (Siemens, West Sacramento, CA, USA). When a single strain of bacteria was isolated from the blood culture, Verigene assays correctly identified 97.9% (94/96) of Gram-positive bacteria and 93.8% (137/146) of Gram-negative bacteria. Resistance genes mecA and vanA were correctly detected by the BC-GP assay, while the extended-spectrum β-lactamase CTX-M and the carbapenemase OXA resistance gene were detected from 30 cases cultures by the BC-GN assay. The BC-GP and BC-GN assays showed high agreement with conventional identification and susceptibility tests. These tests are useful for rapid identification of microorganisms and the detection of clinically important resistance genes from positive Bactec blood cultures.

  11. Final Progress Report: Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes Feasibility Study

    SciTech Connect

    Rawool-Sullivan, Mohini; Bounds, John Alan; Brumby, Steven P.; Prasad, Lakshman; Sullivan, John P.

    2012-04-30

    This is the final report of the project titled, 'Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes,' PMIS project number LA10-HUMANID-PD03. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). It summarizes work performed over the FY10 time period. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). Human analysts begin analyzing a spectrum based on features in the spectrum - lines and shapes that are present in a given spectrum. The proposed work was to carry out a feasibility study that will pick out all gamma ray peaks and other features such as Compton edges, bremsstrahlung, presence/absence of shielding and presence of neutrons and escape peaks. Ultimately success of this feasibility study will allow us to collectively explain identified features and form a realistic scenario that produced a given spectrum in the future. We wanted to develop and demonstrate machine learning algorithms that will qualitatively enhance the automated identification capabilities of portable radiological sensors that are currently being used in the field.

  12. Fluorescence in situ hybridization for rapid identification of Achromobacter xylosoxidans and Alcaligenes faecalis recovered from cystic fibrosis patients.

    PubMed

    Wellinghausen, Nele; Wirths, Beate; Poppert, Sven

    2006-09-01

    Achromobacter xylosoxidans is frequently isolated from the respiratory secretions of cystic fibrosis (CF) patients, but identification with biochemical tests is unreliable. We describe fluorescence in situ hybridization assays for the rapid identification of Achromobacter xylosoxidans and Alcaligenes faecalis. Both assays showed high sensitivities and high specificities with a collection of 155 nonfermenters from CF patients.

  13. Rapid diagnosis of tuberculosis by identification of Antigen 85 in mycobacterial culture system.

    PubMed

    Phunpae, Ponrut; Chanwong, Sakarin; Tayapiwatana, Chatchai; Apiratmateekul, Napaporn; Makeudom, Anupong; Kasinrerk, Watchara

    2014-03-01

    The standard culture for identification of Mycobacterium tuberculosis takes a long time to perform. We introduce here a method for fast identification of M. tuberculosis in mycobacterial culture system. Antibodies to Antigen (Ag) 85 of M. tuberculosis were produced and subsequently used to develop enzyme-linked immunosorbent assay (ELISA) for detecting Ag85 in the culture filtrate. By this detection, rapid tuberculosis (TB) diagnosis was achieved in comparison to the standard culture system with 89.6% sensitivity and 94% specificity. We thus suggest a new TB diagnosis strategy in which clinical samples are cultured in mycobacteria liquid culture medium. The culture filtrates are taken for detection of the Ag85 by ELISA. Using this strategy, 25%, 50%, 80%, and 90% of TB patients will be detected within day 3, week 1, 2, and 4, respectively. The established assay will enable a faster diagnosis of TB, leading to more efficient treatment of TB patients and control of disease transmission.

  14. Systematic identification of protein combinations mediating chromatin looping

    PubMed Central

    Zhang, Kai; Li, Nan; Ainsworth, Richard I.; Wang, Wei

    2016-01-01

    Chromatin looping plays a pivotal role in gene expression and other biological processes through bringing distal regulatory elements into spatial proximity. The formation of chromatin loops is mainly mediated by DNA-binding proteins (DBPs) that bind to the interacting sites and form complexes in three-dimensional (3D) space. Previously, identification of DBP cooperation has been limited to those binding to neighbouring regions in the proximal linear genome (1D cooperation). Here we present the first study that integrates protein ChIP-seq and Hi-C data to systematically identify both the 1D- and 3D-cooperation between DBPs. We develop a new network model that allows identification of cooperation between multiple DBPs and reveals cell-type-specific and -independent regulations. Using this framework, we retrieve many known and previously unknown 3D-cooperations between DBPs in chromosomal loops that may be a key factor in influencing the 3D organization of chromatin. PMID:27461729

  15. Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry.

    PubMed

    Angelakis, Emmanouil; Million, Matthieu; Henry, Mireille; Raoult, Didier

    2011-10-01

    Probiotic food is manufactured by adding probiotic strains simultaneously with starter cultures in fermentation tanks. Here, we investigate the accuracy and feasibility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) for bacterial identification at the species level in probiotic food and yoghurts. Probiotic food and yoghurts were cultured in Columbia and Lactobacillus specific agar and tested by quantitative real-time PCR (qPCR) for the detection and quantification of Lactobacillus sp. Bacterial identification was performed by MALDI-TOF analysis and by amplification and sequencing of tuf and 16S rDNA genes. We tested 13 probiotic food and yoghurts and we identified by qPCR that they presented 10(6) to 10(7) copies of Lactobacillus spp. DNA/g. All products contained very large numbers of living bacteria varying from 10(6) to 10(9) colony forming units/g. These bacteria were identified as Lactobacillus casei, Lactococcus lactis, Bifidobacterium animalis, Lactobacillus delbrueckii, and Streptococcus thermophilus. MALDI-TOF MS presented 92% specificity compared to the molecular assays. In one product we found L. lactis, instead of Bifidus spp. which was mentioned on the label and for another L. delbrueckii and S. thermophilus instead of Bifidus spp. MALDI-TOF MS allows a rapid and accurate bacterial identification at the species level in probiotic food and yoghurts. Although the safety and functionality of probiotics are species and strain dependent, we found a discrepancy between the bacterial strain announced on the label and the strain identified. Practical Application:  MALDI-TOF MS is rapid and specific for the identification of bacteria in probiotic food and yoghurts. Although the safety and functionality of probiotics are species and strain dependent, we found a discrepancy between the bacterial strain announced on the label and the strain identified.

  16. Can the rapid identification of mature spermatozoa during microdissection testicular sperm extraction guide operative planning?

    PubMed

    Alrabeeah, K; Doucet, R; Boulet, E; Phillips, S; Al-Hathal, N; Bissonnette, F; Kadoch, I J; Zini, A

    2015-05-01

    The minimum sperm count and quality that must be identified during microdissection testicular sperm extraction (micro-TESE) to deem the procedure successful remains to be established. We conducted a retrospective study of 81 consecutive men with non-obstructive azoospermia who underwent a primary (first) micro-TESE between March 2007 and October 2013. Final assessment of sperm recovery [reported on the day of (intracytoplasmic sperm injection) ICSI] was recorded as (i) successful (available spermatozoa for ICSI) or (ii) unsuccessful (no spermatozoa for ICSI). The decision to perform a unilateral (with limited or complete microdissection) or bilateral micro-TESE was guided by the intra-operative identification of sperm recovery (≥5 motile or non-motile sperm) from the first testicle. Overall, sperm recovery was successful in 56% (45/81) of the men. A unilateral micro-TESE was performed in 47% (38/81) of the men (based on intra-operative identification of sperm) and in 100% (38/38) of these men, spermatozoa was found on final assessment. In 42% (16/38) of the unilateral cases, a limited microdissection was performed (owing to the rapid intra-operative identification of sperm). The remaining 43 men underwent a bilateral micro-TESE and 16% (7/43) of these men had sperm identified on final assessment. The cumulative ICSI pregnancy rates (per cycle started and per embryo transfer) were 47% (21/45) and 60% (21/35), respectively, with a mean (±SD) of 1.9 ± 1.0 embryos transferred. The data demonstrate that intra-operative assessment of sperm recovery can correctly identify those men that require a unilateral micro-TESE. Moreover, the rapid identification of sperm recovery can allow some men to undergo a limited unilateral micro-TESE and avoid the need for complete testicular microdissection.

  17. [Rapid identification of potato cultivars using NIR-excited fluorescence and Raman spectroscopy].

    PubMed

    Dai, Fen; Bergholt, Mads Sylvest; Benjamin, Arnold Julian Vinoj; Hong, Tian-Sheng; Zhiwei, Huang

    2014-03-01

    Potato is one of the most important food in the world. Rapid and noninvasive identification of potato cultivars plays a important role in the better use of varieties. In this study, The identification ability of optical spectroscopy techniques, including near-infrared (NIR) Raman spectroscopy and NIR fluorescence spectroscopy, for invasive detection of potato cultivars was evaluated. A rapid NIR Raman spectroscopy system was applied to measure the composite Raman and NIR fluorescence spectroscopy of 3 different species of potatoes (98 samples in total) under 785 nm laser light excitation. Then pure Raman and NIR fluorescence spectroscopy were abstracted from the composite spectroscopy, respectively. At last, the partial least squares-discriminant analysis (PLS-DA) was utilized to analyze and classify Raman spectra of 3 different types of potatoes. All the samples were divided into two sets at random: the calibration set (74samples) and prediction set (24 samples), the model was validated using a leave-one-out, cross-validation method. The results showed that both the NIR-excited fluorescence spectra and pure Raman spectra could be used to identify three cultivars of potatoes. The fluorescence spectrum could distinguish the Favorita variety well (sensitivity: 1, specificity: 0.86 and accuracy: 0.92), but the result for Diamant (sensitivity: 0.75, specificity: 0.75 and accuracy: 0. 75) and Granola (sensitivity: 0.16, specificity: 0.89 and accuracy: 0.71) cultivars identification were a bit poorer. We demonstrated that Raman spectroscopy uncovered the main biochemical compositions contained in potato species, and provided a better classification sensitivity, specificity and accuracy (sensitivity: 1, specificity: 1 and accuracy: 1 for all 3 potato cultivars identification) among the three types of potatoes as compared to fluorescence spectroscopy.

  18. Identification and Characterization of β-Sitosterol Target Proteins

    PubMed Central

    Lomenick, Brett; Shi, Heping; Huang, Jing; Chen, Chuo

    2015-01-01

    β-Sitosterol is the most abundant plant sterol in the human diet. It is also the major component of several traditional medicines, including saw palmetto and devil’s claw. Although β-sitosterol is effective against enlarged prostate in human clinical trials and has anti-cancer and anti-inflammatory activities, the mechanisms of action are poorly understood. Here, we report the identification of two new binding proteins for β-sitosterol that may underlie its beneficial effects. PMID:25804720

  19. Seed oil polyphenols: rapid and sensitive extraction method and high resolution-mass spectrometry identification.

    PubMed

    Koubaa, Mohamed; Mhemdi, Houcine; Vorobiev, Eugène

    2015-05-01

    Phenolic content is a primary parameter for vegetables oil quality evaluation, and directly involved in the prevention of oxidation and oil preservation. Several methods have been reported in the literature for polyphenols extraction from seed oil but the approaches commonly used remain manually handled. In this work, we propose a rapid and sensitive method for seed oil polyphenols extraction and identification. For this purpose, polyphenols were extracted from Opuntia stricta Haw seed oil, using high frequency agitation, separated, and then identified using a liquid chromatography-high resolution mass spectrometry method. Our results showed good sensitivity and reproducibility of the developed methods.

  20. Rapid Identification and Characterization of Francisella by Molecular Biology and Other Techniques

    PubMed Central

    Lai, Xin-He; Zhao, Long-Fei; Chen, Xiao-Ming; Ren, Yi

    2016-01-01

    Francisella tularensis is the causative pathogen of tularemia and a Tier 1 bioterror agent on the CDC list. Considering the fact that some subpopulation of the F. tularensis strains is more virulent, more significantly associated with mortality, and therefore poses more threat to humans, rapid identification and characterization of this subpopulation strains is of invaluable importance. This review summarizes the up-to-date developments of assays for mainly detecting and characterizing F. tularensis and a touch of caveats of some of the assays. PMID:27335619

  1. Identification of GI cancers utilising rapid mid-infrared spectral imaging

    NASA Astrophysics Data System (ADS)

    Nallala, Jayakrupakar; Lloyd, Gavin R.; Kendall, Catherine; Barr, Hugh; Shepherd, Neil; Stone, Nick

    2016-03-01

    Pathologists find it notoriously difficult to provide both inter- and intra-observer agreement on a diagnosis of early gastrointestinal cancers. Vibrational spectroscopic approaches have shown their value in providing molecular compositional data from tissue samples and therefore enabling the identification of disease specific changes, when combined with multivariate techniques. Mid-infrared microscopic imaging is undergoing rapid developments in sources, detectors and spectrometers. Here we explore the use of high magnification FTIR for GI cancers and consider how the MINERVA (MId- to NEaR infrared spectroscopy for improVed medical diAgnostics) project, which is developing discrete frequency IR imaging tools will enable histopathologists to obtain rapid molecular images form unstained tissue sections.

  2. Identification of the Species of Origin for Meat Products by Rapid Evaporative Ionization Mass Spectrometry.

    PubMed

    Balog, Julia; Perenyi, Dora; Guallar-Hoyas, Cristina; Egri, Attila; Pringle, Steven D; Stead, Sara; Chevallier, Olivier P; Elliott, Chris T; Takats, Zoltan

    2016-06-15

    Increasingly abundant food fraud cases have brought food authenticity and safety into major focus. This study presents a fast and effective way to identify meat products using rapid evaporative ionization mass spectrometry (REIMS). The experimental setup was demonstrated to be able to record a mass spectrometric profile of meat specimens in a time frame of <5 s. A multivariate statistical algorithm was developed and successfully tested for the identification of animal tissue with different anatomical origin, breed, and species with 100% accuracy at species and 97% accuracy at breed level. Detection of the presence of meat originating from a different species (horse, cattle, and venison) has also been demonstrated with high accuracy using mixed patties with a 5% detection limit. REIMS technology was found to be a promising tool in food safety applications providing a reliable and simple method for the rapid characterization of food products.

  3. Evaluation of the VITEK 2 System for Rapid Identification of Yeasts and Yeast-Like Organisms

    PubMed Central

    Graf, Barbara; Adam, Thomas; Zill, Edith; Göbel, Ulf B.

    2000-01-01

    The new VITEK 2 system is a fully automated system dedicated to the identification and susceptibility testing of microorganisms. In conjunction with the VITEK ID-YST card the VITEK 2 system allows the identification of clinically important yeasts and yeast-like organisms in 15 h due to a sensitive fluorescence-based technology. The ID-YST card consists of 47 biochemical reactions. The database comprises 51 taxa, including newly described species. In this study we evaluated the reliability of the VITEK ID-YST card for the identification of yeasts and yeast-like organisms encountered in a clinical microbiology laboratory. A total of 241 strains representing 21 species were studied. The strains were isolated from clinical samples within a period of 60 days prior to the identification. The tests were performed using 24-h to 55-h subcultures on Sabouraud-gentamicin-chloramphenicol agar. Each strain was tested in parallel using the ID 32C strip as a comparison method combined with microscopic morphology and an agglutination test for C. krusei. Overall, 222 strains (92.1%) were unequivocally identified including 11 isolates (4.6%) identified with low discrimination resolved by simple additional tests. Ten strains (4.1%) for which results were given with low discrimination could not be unequivocally identified with supplemental tests, 4 strains (1.7%) were misidentified and 5 strains (2.1%) could not be identified. In conclusion, we found that the VITEK 2 system is a rapid and accurate method for the identification of medically important yeasts and yeast-like organisms. PMID:10790099

  4. DNA-Templated Aptamer Probe for Identification of Target Proteins.

    PubMed

    Bi, Wenjing; Bai, Xue; Gao, Fan; Lu, Congcong; Wang, Ye; Zhai, Guijin; Tian, Shanshan; Fan, Enguo; Zhang, Yukui; Zhang, Kai

    2017-04-04

    Using aptamers as molecular probes for biomarker discovery has attracted a great deal of attention in recent years. However, it is still a big challenge to accurately identify those protein markers that are targeted by aptamers under physiological conditions due to weak and noncovalent aptamer-protein interactions. Herein, we developed an aptamer based dual-probe using DNA-templated chemistry and photo-cross-linking technique for the identification of target proteins that are recognized by aptamers. In this system, the aptamer was modified by a single strand DNA as binding probe (BP), and another complementary DNA with a photoactive group and reporter group was modified as capture probe (CP). BP was first added to recruit the binding protein via aptamer recognition, and subsequently CP was added to let the cross-linker close to the target via DNA self-assembly, and then a covalent bond between CP and its binding protein was achieved via photo-cross-linking reaction. The captured protein can be detected or affinity enrichment using the tag, finally identified by MS. By use of lysozyme as a model substrate, we demonstrated that this multiple functionalized probe can be utilized for a successful labeling and enrichment of target protein even under a complicated and real environment. Thus, a novel method to precisely identify the aptamer-targeted proteins has been developed and it has a potential application for discovery of aptamer-based biomarkers.

  5. Identification of novel CBP interacting proteins in embryonic orofacial tissue

    SciTech Connect

    Yin Xiaolong; Warner, Dennis R.; Roberts, Emily A.; Pisano, M. Michele; Greene, Robert M. . E-mail: greene@louisville.edu

    2005-04-15

    cAMP response element-binding protein (CREB)-binding protein (CBP) plays an important role as a general co-integrator of multiple signaling pathways and interacts with a large number of transcription factors and co-factors, through its numerous protein-binding domains. To identify nuclear factors associated with CBP in developing orofacial tissue, a yeast two-hybrid screen of a cDNA library derived from orofacial tissue from gestational day 11 to 13 mouse embryos was conducted. Using the carboxy terminus (amino acid residues 1676-2441) of CBP as bait, several novel proteins that bind CBP were identified, including an Msx-interacting-zinc finger protein, CDC42 interaction protein 4/thyroid hormone receptor interactor 10, SH3-domain GRB2-like 1, CCR4-NOT transcription complex subunit 3, adaptor protein complex AP-1 {beta}1 subunit, eukaryotic translation initiation factor 2B subunit 1 ({alpha}), and cyclin G-associated kinase. Results of the yeast two-hybrid screen were confirmed by glutathione S-transferase pull-down assays. The identification of these proteins as novel CBP-binding partners allows exploration of new mechanisms by which CBP regulates and integrates diverse cell signaling pathways.

  6. Top-down protein identification using isotopic envelope fingerprinting.

    PubMed

    Xiao, Kaijie; Yu, Fan; Tian, Zhixin

    2017-01-30

    For top-down protein database search and identification from tandem mass spectra, our isotopic envelope fingerprinting search algorithm and ProteinGoggle search engine have demonstrated their strength of efficiently resolving heavily overlapping data as well separating non-ideal data with non-ideal isotopic envelopes from ideal ones with ideal isotopic envelopes. Here we report our updated ProteinGoggle 2.0 for intact protein database search with full-capacity. The indispensable updates include users' optional definition of dynamic post-translational modifications and static chemical labeling during database creation, comprehensive dissociation methods and ion series, as well as a Proteoform Score for each proteoform. ProteinGoggle has previously been benchmarked with both collision-based dissociation (CID, HCD) and electron-based dissociation (ETD) data of either intact proteins or intact proteomes. Here we report our further benchmarking of the new version of ProteinGoggle with publically available photon-based dissociation (UVPD) data (http://hdl.handle.net/2022/17316) of intact E. coli ribosomal proteins.

  7. Identification of the human testis protein phosphatase 1 interactome.

    PubMed

    Fardilha, Margarida; Esteves, Sara L C; Korrodi-Gregório, Luís; Vintém, Ana Paula; Domingues, Sara C; Rebelo, Sandra; Morrice, Nick; Cohen, Patricia T W; da Cruz e Silva, Odete A B; da Cruz e Silva, Edgar F

    2011-11-15

    Protein phosphorylation is a critical regulatory mechanism in cellular signalling. To this end, PP1 is a major eukaryotic serine/threonine-specific phosphatase whose cellular functions, in turn, depend on complexes it forms with PP1 interacting proteins-PIPs. The importance of the testis/sperm-enriched variant, PP1γ2, in sperm motility and spermatogenesis has previously been shown. Given the key role of PIPs, it is imperative to identify the physiologically relevant PIPs in testis and sperm. Hence, we performed Yeast Two-Hybrid screens of a human testis cDNA library using as baits the different PP1 isoforms and also a proteomic approach aimed at identifying PP1γ2 binding proteins. To the best of our knowledge this is the largest data set of the human testis PP1 interactome. We report the identification of 77 proteins in human testis and 7 proteins in human sperm that bind PP1. The data obtained increased the known PP1 interactome by reporting 72 novel interactions. Confirmation of the interaction of PP1 with 5 different proteins was also further validated by co-immunoprecipitation or protein overlays. The data here presented provides important insights towards the function of these proteins and opens new possibilities for future research. In fact, such diversity in PP1 regulators makes them excellent targets for pharmacological intervention.

  8. SIMULTANEOUS AND RAPID IDENTIFICATION OF ESCHERICHIA COLI, LISTERIA MONOCYTOGENES, AND SALMONELLA TYPHIMONIUM BY SURFACE-ENHANCED RAMAN SCATTERING SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of rapid and routine identification methods for foodborne bacteria is of considerable importance due to concerns regarding bio-/agro-terrorism, public health, and economic loss. The traditional techniques are time consuming and are not sufficiently rapid to assure the safety of ready...

  9. Rapid Detection and Identification of Yersinia pestis from Food Using Immunomagnetic Separation and Pyrosequencing.

    PubMed

    Amoako, Kingsley K; Shields, Michael J; Goji, Noriko; Paquet, Chantal; Thomas, Matthew C; Janzen, Timothy W; Bin Kingombe, Cesar I; Kell, Arnold J; Hahn, Kristen R

    2012-01-01

    Interest has recently been renewed in the possible use of Y. pestis, the causative agent of plague, as a biological weapon by terrorists. The vulnerability of food to intentional contamination coupled with reports of humans having acquired plague through eating infected animals that were not adequately cooked or handling of meat from infected animals makes the possible use of Y. pestis in a foodborne bioterrorism attack a reality. Rapid, efficient food sample preparation and detection systems that will help overcome the problem associated with the complexity of the different matrices and also remove any ambiguity in results will enable rapid informed decisions to be made regarding contamination of food with biothreat agents. We have developed a rapid detection assay that combines the use of immunomagnetic separation and pyrosequencing in generating results for the unambiguous identification of Y. pestis from milk (0.9 CFU/mL), bagged salad (1.6 CFU/g), and processed meat (10 CFU/g). The low detection limits demonstrated in this assay provide a novel tool for the rapid detection and confirmation of Y. pestis in food without the need for enrichment. The combined use of the iCropTheBug system and pyrosequencing for efficient capture and detection of Y. pestis is novel and has potential applications in food biodefence.

  10. Rapid and efficient glycoprotein identification through microwave-assisted enzymatic digestion.

    PubMed

    Segu, Zaneer M; Hammad, Loubna A; Mechref, Yehia

    2010-12-15

    Identification of protein glycosylation sites is analytically challenging due to the diverse glycan structures associated with a glycoprotein. Mass spectrometry (MS)-based identification and characterization of glycoproteins has been achieved predominantly with the bottom-up approach, which typically involves the enzymatic cleavage of proteins to peptides prior to LC/MS or LC/MS/MS analysis. However, the process can be challenging due to the structural variations and steric hindrance imposed by the attached glycans. Alternatives to conventional heating protocols, that increase the rate of enzymatic cleavage of glycoproteins, may aid in addressing these challenges. An enzymatic digestion of a glycoprotein can be accelerated and made more efficient through microwave-assisted digestion. In this paper, a systematic study was conducted to explore the efficiency of microwave-assisted enzymatic (trypsin) digestion (MAED) of glycoproteins as compared with the conventional method. In addition, the optimum experimental parameters for the digestion such as temperature, reaction time, and microwave radiation power were investigated. It was determined that efficient tryptic digestion of glycoproteins was attained in 15 min, allowing comparable if not better sequence coverage through LC/MS/MS analysis. Optimum tryptic cleavage was achieved at 45°C irrespective of the size and complexity of the glycoprotein. Moreover, MAED allowed the detection and identification of more peptides and subsequently higher sequence coverage for all model glycoprotein. MAED also did not appear to prompt a loss or partial cleavage of the glycan moieties attached to the peptide backbones.

  11. A rapid method to improve protein detection by indirect ELISA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The enzyme-linked immunosorbant assay (ELISA) is a rapid, high-throughput, quantitative immunoassay for the selective detection of target antigens. The general principle behind an ELISA is antibody mediated capture and detection of an antigen with a measureable substrate. Numerous incarnations of th...

  12. Platform for identification of Salmonella serovar differentiating bacterial proteins by top-down mass spectrometry: S. Typhimurium vs S. Heidelberg.

    PubMed

    McFarland, Melinda A; Andrzejewski, Denis; Musser, Steven M; Callahan, John H

    2014-07-15

    Intact protein expression profiling has proven to be a powerful tool for bacterial subspecies differentiation. To facilitate typing, epidemiology, and trace-back of Salmonella contamination in the food supply, a minimum of serovar level differentiation is required. Subsequent identification and validation of marker proteins is integral to rapid screening development and to determining which proteins are subject to environmental pressure. Bacterial sequencing efforts have expanded the number of sequenced genomes available for single-nucleotide polymorphism (SNP) analyses, but annotation is often missing, start site errors are not uncommon, and the likelihood of expression is not known. In this work we show that the combination of intact protein expression profiles and top-down liquid chromatography-mass spectrometry (LC-MS/MS) facilitates the identification of proteins that result from expressed serovar specific nonsynonymous SNPs. Combinations of these marker proteins can be used in assays for rapid differentiation of bacteria. LC-MS generated intact protein expression profiles establish which bacterial protein masses differ across samples and can be determined without prior knowledge of the sample. Subsequent top-down LC-MS/MS is used to identify expressed proteins and their post-translational modifications (PTM), identify serovar specific markers, and validate genomic predicted orthologues as expressed biomarkers.

  13. Rapid identification of novel antigens of Salmonella Enteritidis by microarray-based immunoscreening.

    PubMed

    Danckert, Lena; Hoppe, Sebastian; Bier, Frank F; von Nickisch-Rosenegk, Markus

    2014-01-01

    We report on an approach to rapidly screen thousands of Salmonella Enteritidis proteins with the goal of identifying novel immunodominant proteins. We used a microarray-based system that warrants high throughput and easy handling. Seven immunogenic candidates were selected after screening. Comparative analyses by ELISA and microarrays manifested their immunodominant character. The large repetitive protein (SEN4030) that plays a role as a putative adhesin in initial cell surface interaction and is highly specific to Salmonella is considered to be the most suitable protein for a diagnostic approach. The results further demonstrate that the strategy applied herein is convenient for specifically identifying immunogenic proteins of pathogenic microorganisms. Consequently, it enables a sound assessment of promising candidates for diagnostic applications and vaccine development. Moreover, the elucidation of immunogenic proteins may assist in unveiling unknown virulence-associated factors, thus furthering the understanding of the underlying pathogenicity of Salmonella in general, and of S. Enteritidis, one of the most frequently detected serovars of this pathogen, in particular. FigureThe microarray-based approach was aimed at identifying novel immunodominant proteins of S. Enteritidis. Seven antigens were revealed by screening a cDNA expression library. SEN4030, a large repetitive protein specific for salmonella, is considered an optimal candidate for future applications.

  14. LAMP technology: Rapid identification of Brucella and Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Trangoni, Marcos D.; Gioffré, Andrea K.; Cerón Cucchi, María E.; Caimi, Karina C.; Ruybal, Paula; Zumárraga, Martín J.; Cravero, Silvio L.

    2015-01-01

    In this study, we developed new sets of primers to detect Brucella spp. and M. avium subsp. paratuberculosis (MAP) through isothermal amplification. We selected a previously well-characterized target gene, bscp31, specific for Brucella spp. and IS900 for MAP. The limits of detection using the loop-mediated isothermal amplification (LAMP) protocols described herein were similar to those of conventional PCR targeting the same sequences. Hydroxynaphtol blue and SYBR GreenTM allowed direct naked-eye detection with identical sensitivity as agarose gel electrophoresis. We included the LAMP-based protocol in a rapid identification scheme of the respective pathogens, and all tested isolates were correctly identified within 2 to 3 h. In addition, both protocols were suitable for specifically identifying the respective pathogens; in the case of Brucella, it also allowed the identification of all the biovars tested. We conclude that LAMP is a suitable rapid molecular typing tool that could help to shorten the time required to identify insidious bacteria in low-complexity laboratories, mainly in developing countries. PMID:26273282

  15. [Rapid identification of microorganisms by mass spectrometry in a blood culture system. Comparison of two procedures].

    PubMed

    Cattani, María E; Posse, Tamara; Hermes, Ricardo L; Kaufman, Sara C

    2015-01-01

    Rapid identification of microorganisms is critical in hospitalized infected patients. Blood culture is currently the gold standard for detecting and identifying microorganisms causing bacteremia or sepsis. The introduction of mass spectrometry by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF MS) in microbiology laboratories, especially in microorganisms growing in blood culture bottles, provides rapid identification. This study evaluates the performance of the Maldi Sepsityper Biotyper procedure (hereinafter, MS) compared to that of an in-home method (hereinafter, HF). Eight hundred and forty (840) positive blood culture bottles were processed using the HF procedure, 542 of which were also processed using MS. The organisms were identified in 670 (79.76%) and 391 (72.14%) bottles respectively (p = 0,0013). This study demonstrates the effectiveness of both procedures for identifying microorganisms directly from positive blood culture bottles. However, the HF procedure proved to be more effective than MS, especially in the presence of Gram positive organisms.

  16. Rapid identification of Streptococcus intermedius by PCR with the ily gene as a species marker gene.

    PubMed

    Goto, Takatsugu; Nagamune, Hideaki; Miyazaki, Aiko; Kawamura, Yoshiaki; Ohnishi, Ooki; Hattori, Kanako; Ohkura, Kazuto; Miyamoto, Kazuaki; Akimoto, Shigeru; Ezaki, Takayuki; Hirota, Katsuhiko; Miyake, Yoichiro; Maeda, Takuya; Kourai, Hiroki

    2002-02-01

    Streptococcus intermedius belongs to the anginosus group of streptococci (AGS) and is associated with endogenous infections leading to abscesses in the oral cavity and at deepseated sites, such as the brain and liver. Two other species, S. anginosus and S. constellatus, and some presently unnamed taxa, are also classified as AGS. Recently, S. constellatus subsp. pharyngis, a new subspecies with biochemical characteristics similar to S. intermedius, was described with the potential for causing confusion when trying to identify isolates of these two species routinely with commercial identification kits, such as Rapid ID32 Strep and Fluo-Card Milleri. To correctly identify S. intermedius, this study attempted to develop an accurate PCR identification system with the ily gene as a species marker. This approach relies on amplification of an 819-bp fragment of the ily gene and its 3'-flanking region and is shown here to be specific for S. intermedius strains among all other streptococcal species. Moreover, this PCR system was applicable in direct rapid PCR with whole bacterial cells and TaKaRa Z-Taq (TaKaRa), a highly efficient DNA polymerase, as the template and DNA amplification enzyme, respectively.

  17. LAMP technology: Rapid identification of Brucella and Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Trangoni, Marcos D; Gioffré, Andrea K; Cerón Cucchi, María E; Caimi, Karina C; Ruybal, Paula; Zumárraga, Martín J; Cravero, Silvio L

    2015-06-01

    In this study, we developed new sets of primers to detect Brucella spp. and M. avium subsp. paratuberculosis (MAP) through isothermal amplification. We selected a previously well-characterized target gene, bscp31, specific for Brucella spp. and IS900 for MAP. The limits of detection using the loop-mediated isothermal amplification (LAMP) protocols described herein were similar to those of conventional PCR targeting the same sequences. Hydroxynaphtol blue and SYBR Green(TM) allowed direct naked-eye detection with identical sensitivity as agarose gel electrophoresis. We included the LAMP-based protocol in a rapid identification scheme of the respective pathogens, and all tested isolates were correctly identified within 2 to 3 h. In addition, both protocols were suitable for specifically identifying the respective pathogens; in the case of Brucella, it also allowed the identification of all the biovars tested. We conclude that LAMP is a suitable rapid molecular typing tool that could help to shorten the time required to identify insidious bacteria in low-complexity laboratories, mainly in developing countries.

  18. Identification of Protein Interactions Involved in Cellular Signaling

    PubMed Central

    Westermarck, Jukka; Ivaska, Johanna; Corthals, Garry L.

    2013-01-01

    Protein-protein interactions drive biological processes. They are critical for all intra- and extracellular functions, and the technologies to analyze them are widely applied throughout the various fields of biological sciences. This study takes an in-depth view of some common principles of cellular regulation and provides a detailed account of approaches required to comprehensively map signaling protein-protein interactions in any particular cellular system or condition. We provide a critical review of the benefits and disadvantages of the yeast two-hybrid method and affinity purification coupled with mass spectrometric procedures for identification of signaling protein-protein interactions. In particular, we emphasize the quantitative and qualitative differences between tandem affinity and one-step purification (such as FLAG and Strep tag) methods. Although applicable to all types of interaction studies, a special section is devoted in this review to aspects that should be considered when attempting to identify signaling protein interactions that often are transient and weak by nature. Finally, we discuss shotgun and quantitative information that can be gleaned by MS-coupled methods for analysis of multiprotein complexes. PMID:23481661

  19. Fluorescent In Situ Hybridization Allows Rapid Identification of Microorganisms in Blood Cultures

    PubMed Central

    Kempf, Volkhard A. J.; Trebesius, Karlheinz; Autenrieth, Ingo B.

    2000-01-01

    Using fluorescent in situ hybridization (FISH) with rRNA-targeted fluorescently labelled oligonucleotide probes, pathogens were rapidly detected and identified in positive blood culture bottles without cultivation and biotyping. In this study, 115 blood cultures with a positive growth index as determined by a continuous-reading automated blood culture system were examined by both conventional laboratory methods and FISH. For this purpose, oligonucleotide probes that allowed identification of approximately 95% of those pathogens typically associated with bacteremia were produced. The sensitivity and specificity of these probes were 100%. From all 115 blood cultures, microorganisms were grown after 1 day and identification to the family, genus, or species level was achieved after 1 to 3 days while 111 samples (96.5%) were similarly identified by FISH within 2.5 h. Staphylococci were identified in 62 of 62 samples, streptococci and enterococci were identified in 19 of 20 samples, gram-negative rods were identified in 28 of 30 samples, and fungi were identified in two of two samples. Thus, FISH is an appropriate method for identification of pathogens grown in blood cultures from septicemic patients. PMID:10655393

  20. Rapid and Reliable Identification of Food-Borne Yeasts by Fourier-Transform Infrared Spectroscopy

    PubMed Central

    Kümmerle, Michael; Scherer, Siegfried; Seiler, Herbert

    1998-01-01

    Computer-based Fourier-transform infrared spectroscopy (FT-IR) was used to identify food-borne, predominantly fermentative yeasts. Dried yeast suspensions provided the films suitable for FT-IR measurement. Informative windows in the spectrum were selected and combined to achieve optimal results. A reference spectrum library was assembled, based on 332 defined yeast strains from international yeast collections and our own isolates. All strains were identified with conventional methods using physiological and morphological characteristics. In order to assess identification quality, another 722 unknown yeast isolates not included in the reference spectrum library were identified both by classical methods and by comparison of their FT-IR spectra with those of the reference spectrum library. Ninety-seven and one-half percent of these isolates were identified correctly by FT-IR. Easy handling, rapid identification within 24 h when starting from a single colony, and a high differentiation capacity thus render FT-IR technology clearly superior to other routine methods for the identification of yeasts. PMID:9603836

  1. Development of a PCR Method for Rapid Identification of New Streptococcus mutans Serotype k Strains

    PubMed Central

    Nakano, Kazuhiko; Nomura, Ryota; Shimizu, Noriko; Nakagawa, Ichiro; Hamada, Shigeyuki; Ooshima, Takashi

    2004-01-01

    In a previous study, we isolated and characterized a new serotype k of Streptococcus mutans from human blood and oral cavities. Analysis of the genes involved in biosynthesis of the serotype-specific polysaccharide of serotype k strains revealed that the serotype k-specific nucleotide alignment was commonly present in the 5′ region of the rgpF gene (350 bp from the initial sequence) compared to the reference strains, and then a method for rapid identification of serotype k strains was developed by use of PCR with primers designed on the basis of the sequence of the variable region. PCR assays with primers specific for amplification of serotype k strains showed a negative reaction with serotype c, e, and f strains and a positive reaction with serotype k strains, with the sensitivity for identification of the serotype k strains shown to range from 5 to 50 cells. Next, the frequency of positive reactions for serotype k-specific primers was surveyed with DNA taken from saliva samples from 200 subjects (2 to 18 years of age), and 10 of those showed a positive reaction, which was higher than the frequency in our previous survey with a serological method. In addition, all saliva samples from subjects with serotype k strains in our previous study were shown to be positive with the serotype k-specific primers. These results indicate that this new PCR method is effective for identification of subjects with S. mutans serotype k. PMID:15528675

  2. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    NASA Technical Reports Server (NTRS)

    Pierson, Duane; Botkin, Douglas; Gazda, Daniel

    2014-01-01

    Microbial control in the spacecraft environment is a daunting task, especially in the presence of human crew members. Currently, assessing the potential crew health risk associated with a microbial contamination event requires return of representative environmental samples that are analyzed in a ground-based laboratory. It is therefore not currently possible to quickly identify microbes during spaceflight. This project addresses the unmet need for spaceflight-compatible microbial identification technology. The electrochemical detection and identification platform is expected to provide a sensitive, specific, and rapid sample-to-answer capability for in-flight microbial monitoring that can distinguish between related microorganisms (pathogens and non-pathogens) as well as chemical contaminants. This will dramatically enhance our ability to monitor the spacecraft environment and the health risk to the crew. Further, the project is expected to eliminate the need for sample return while significantly reducing crew time required for detection of multiple targets. Initial work will focus on the optimization of bacterial detection and identification. The platform is designed to release nucleic acids (DNA and RNA) from microorganisms without the use of harmful chemicals. Bacterial DNA or RNA is captured by bacteria-specific probe molecules that are bound to a microelectrode, and that capture event can generate a small change in the electrical current (Lam, et al. 2012. Anal. Chem. 84(1): 21-5.). This current is measured, and a determination is made whether a given microbe is present in the sample analyzed. Chemical detection can be accomplished by directly applying a sample to the microelectrode and measuring the resulting current change. This rapid microbial and chemical detection device is designed to be a low-cost, low-power platform anticipated to be operated independently of an external power source, characteristics optimal for manned spaceflight and areas where power

  3. Rapid visualization of hydrogen positions in protein neutron crystallographic structures.

    PubMed

    Munshi, Parthapratim; Chung, Shang-Lin; Blakeley, Matthew P; Weiss, Kevin L; Myles, Dean A A; Meilleur, Flora

    2012-01-01

    Neutron crystallography is a powerful technique for experimental visualization of the positions of light atoms, including hydrogen and its isotope deuterium. In recent years, structural biologists have shown increasing interest in the technique as it uniquely complements X-ray crystallographic data by revealing the positions of D atoms in macromolecules. With this regained interest, access to macromolecular neutron crystallography beamlines is becoming a limiting step. In this report, it is shown that a rapid data-collection strategy can be a valuable alternative to longer data-collection times in appropriate cases. Comparison of perdeuterated rubredoxin structures refined against neutron data sets collected over hours and up to 5 d shows that rapid neutron data collection in just 14 h is sufficient to provide the positions of 269 D atoms without ambiguity.

  4. Rapid visualization of hydrogen positions in neutron protein crystallography structures

    SciTech Connect

    Blakeley, Matthew P.; Meilleur, Flora; Myles, Dean A A; Weiss, Kevin L; Munshi, Parthapratim; Shang-Lin, Chung

    2012-01-01

    Neutron crystallography is a powerful technique to visualize experimentally the position of light atoms, including hydrogen and its isotope deuterium. Over the last several years, structural biologists have shown an increasing interest for the technique as it uniquely complements X-ray crystallographic data by revealing the position of hydrogen/deuterium atoms in macromolecules. With this regained interest, access to macromolecule neutron crystallography beam lines is becoming a limiting step. In this report we show that rapid data collection could be a valuable alternative to long data collection time when appropriate. Comparison of perdeuterated Rubredoxin structures refined against neutron data sets collected over hours and up to five days shows that rapid neutron data collection in just 14 hours is sufficient to provide the position of 262 hydrogen positions atoms without ambiguity.

  5. Identification of Sequences Encoding Symbiodinium minutum Mitochondrial Proteins

    PubMed Central

    Butterfield, Erin R.; Howe, Christopher J.; Nisbet, R. Ellen R.

    2016-01-01

    The dinoflagellates are an extremely diverse group of algae closely related to the Apicomplexa and the ciliates. Much work has previously been undertaken to determine the presence of various biochemical pathways within dinoflagellate mitochondria. However, these studies were unable to identify several key transcripts including those encoding proteins involved in the pyruvate dehydrogenase complex, iron–sulfur cluster biosynthesis, and protein import. Here, we analyze the draft nuclear genome of the dinoflagellate Symbiodinium minutum, as well as RNAseq data to identify nuclear genes encoding mitochondrial proteins. The results confirm the presence of a complete tricarboxylic acid cycle in the dinoflagellates. Results also demonstrate the difficulties in using the genome sequence for the identification of genes due to the large number of introns, but show that it is highly useful for the determination of gene duplication events. PMID:26798115

  6. Identification of potential protein markers of noble rot infected grapes.

    PubMed

    Lorenzini, Marilinda; Millioni, Renato; Franchin, Cinzia; Zapparoli, Giacomo; Arrigoni, Giorgio; Simonato, Barbara

    2015-07-15

    The evaluation of Botrytis cinerea as noble rot on withered grapes is of great importance to predict the wine sensory/organoleptic properties and to manage the winemaking process of Amarone, a passito dry red wine. This report describes the first proteomic analysis of grapes infected by noble rot under withering conditions to identify possible markers of fungal infection. 2-D gel electrophoresis revealed that protein profiles of infected and not infected grape samples are significantly different in terms of number of spots and relative abundance. Protein identification by MS analysis allowed to identify only in infected berries proteins of B. cinerea that represent potential markers of the presence of the fungus in the withered grapes.

  7. Identification of Sequences Encoding Symbiodinium minutum Mitochondrial Proteins.

    PubMed

    Butterfield, Erin R; Howe, Christopher J; Nisbet, R Ellen R

    2016-01-21

    The dinoflagellates are an extremely diverse group of algae closely related to the Apicomplexa and the ciliates. Much work has previously been undertaken to determine the presence of various biochemical pathways within dinoflagellate mitochondria. However, these studies were unable to identify several key transcripts including those encoding proteins involved in the pyruvate dehydrogenase complex, iron-sulfur cluster biosynthesis, and protein import. Here, we analyze the draft nuclear genome of the dinoflagellate Symbiodinium minutum, as well as RNAseq data to identify nuclear genes encoding mitochondrial proteins. The results confirm the presence of a complete tricarboxylic acid cycle in the dinoflagellates. Results also demonstrate the difficulties in using the genome sequence for the identification of genes due to the large number of introns, but show that it is highly useful for the determination of gene duplication events.

  8. Identification of hydrophobic proteins as biomarker candidates for colorectal cancer.

    PubMed

    Alvarez-Chaver, Paula; Rodríguez-Piñeiro, Ana M; Rodríguez-Berrocal, Francisco J; Martínez-Zorzano, Vicenta S; Páez de la Cadena, María

    2007-01-01

    Nowadays, colorectal cancer is one of the major causes of cancer death in Western countries. Due to the lack of biomarkers with clinical utility for this pathology, and considering that membrane and hydrophobic proteins have not been studied in depth, we performed a prefractionation of colorectal tissues prior to two-dimensional gel electrophoresis in order to identify hydrophobic proteins differentially expressed in colorectal cancer patients. Fractions enriched in hydrophobic proteins were obtained from healthy mucosa and tumor tissue by a specific extraction method based on temperature-dependent phase partitioning with Triton X-114. Proteins were separated by two-dimensional gel electrophoresis and gels were silver-stained, scanned and compared using the PDQuest software. Those spots presenting significantly different abundance were submitted to mass spectrometry for protein identification. Alterations in the expression of cytoskeletal proteins, including a decrease of vimentin and the absence of desmin, were found. We also detected alterations in antioxidant and transport proteins, chaperones, and in two isoforms of the calcium-binding protein S100A6. On the other hand, vimentin was chosen to corroborate the electrophoretic results by specific immunodetection. Most of the altered proteins have been related to cellular membranes, many of them to lipid rafts microdomains in the plasma membrane, and they have also been implicated in the control of cell proliferation, apoptosis, or metastasis. In conclusion, all the proteins found altered in colorectal tumor samples could be considered as candidates for future studies focused on their utility as markers for colorectal diagnosis and prognosis, or as targets for colorectal cancer therapy.

  9. Identification of Contractile Vacuole Proteins in Trypanosoma cruzi

    PubMed Central

    Park, Miyoung; Martins, Vicente P.; Atwood, James; Moles, Kristen; Collins, Dalis; Rohloff, Peter; Tarleton, Rick; Moreno, Silvia N. J.; Orlando, Ron; Docampo, Roberto

    2011-01-01

    Contractile vacuole complexes are critical components of cell volume regulation and have been shown to have other functional roles in several free-living protists. However, very little is known about the functions of the contractile vacuole complex of the parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, other than a role in osmoregulation. Identification of the protein composition of these organelles is important for understanding their physiological roles. We applied a combined proteomic and bioinfomatic approach to identify proteins localized to the contractile vacuole. Proteomic analysis of a T. cruzi fraction enriched for contractile vacuoles and analyzed by one-dimensional gel electrophoresis and LC-MS/MS resulted in the addition of 109 newly detected proteins to the group of expressed proteins of epimastigotes. We also identified different peptides that map to at least 39 members of the dispersed gene family 1 (DGF-1) providing evidence that many members of this family are simultaneously expressed in epimastigotes. Of the proteins present in the fraction we selected several homologues with known localizations in contractile vacuoles of other organisms and others that we expected to be present in these vacuoles on the basis of their potential roles. We determined the localization of each by expression as GFP-fusion proteins or with specific antibodies. Six of these putative proteins (Rab11, Rab32, AP180, ATPase subunit B, VAMP1, and phosphate transporter) predominantly localized to the vacuole bladder. TcSNARE2.1, TcSNARE2.2, and calmodulin localized to the spongiome. Calmodulin was also cytosolic. Our results demonstrate the utility of combining subcellular fractionation, proteomic analysis, and bioinformatic approaches for localization of organellar proteins that are difficult to detect with whole cell methodologies. The CV localization of the proteins investigated revealed potential novel roles of these organelles in phosphate metabolism

  10. High-throughput identification of proteins with AMPylation using self-assembled human protein (NAPPA) microarrays

    PubMed Central

    Yu, Xiaobo; LaBaer, Joshua

    2015-01-01

    Summary AMPylation (adenylylation) has been recognized as an important post translational modification employed by pathogens to regulate host cellular proteins and their associated signaling pathways. AMPylation has potential functions in various cellular processes and is widely conserved across both prokaryotes and eukaryotes. However, despite the identification of many AMPylators, relatively few candidate substrates of AMPylation are known. This is changing with the recent development of a robust and reliable method to identify new substrates using protein microarrays, which can significantly expand the list of potential substrates. Here, we describe procedures to detect AMPylated and auto-AMPylated proteins in a sensitive, high throughput, and non-radioactive manner. The approach employs high-density protein microarrays fabricated using NAPPA (Nucleic Acid Programmable Protein Arrays) technology, which enables the highly successful display of fresh recombinant human proteins in situ. The modification of target proteins is determined via copper-catalyzed azide–alkyne cycloaddition. The assay can be accomplished within 11 hours. PMID:25881200

  11. A Simple and Rapid Identification Method for Mycobacterium bovis BCG with Loop-Mediated Isothermal Amplification

    PubMed Central

    Kouzaki, Yuji; Maeda, Takuya; Sasaki, Hiroaki; Tamura, Shinsuke; Hamamoto, Takaaki; Yuki, Atsushi; Sato, Akinori; Miyahira, Yasushi; Kawana, Akihiko

    2015-01-01

    Bacillus Calmette-Guérin (BCG) is widely used as a live attenuated vaccine against Mycobacterium tuberculosis and is an agent for standard prophylaxis against the recurrence of bladder cancer. Unfortunately, it can cause severe infectious diseases, especially in immunocompromised patients, and the ability to immediately distinguish BCG from other M. tuberculosis complexes is therefore important. In this study, we developed a simple and easy-to-perform identification procedure using loop-mediated amplification (LAMP) to detect deletions within the region of difference, which is deleted specifically in all M. bovis BCG strains. Reactions were performed at 64°C for 30 min and successful targeted gene amplifications were detected by real-time turbidity using a turbidimeter and visual inspection of color change. The assay had an equivalent detection limit of 1.0 pg of genomic DNA using a turbidimeter whereas it was 10 pg with visual inspection, and it showed specificity against 49 strains of 44 pathogens, including M. tuberculosis complex. The expected LAMP products were confirmed through identical melting curves in real-time LAMP procedures. We employed the Procedure for Ultra Rapid Extraction (PURE) kit to isolate mycobacterial DNA and found that the highest sensitivity limit with a minimum total cell count of mycobacterium (including DNA purification with PURE) was up to 1 × 103 cells/reaction, based on color changes under natural light with FDA reagents. The detection limit of this procedure when applied to artificial serum, urine, cerebrospinal fluid, and bronchoalveolar lavage fluid samples was also about 1 × 103 cells/reaction. Therefore, this substitute method using conventional culture or clinical specimens followed by LAMP combined with PURE could be a powerful tool to enable the rapid identification of M. bovis BCG as point-of-care testing. It is suitable for practical use not only in resource-limited situations, but also in any clinical situation

  12. Rapid Context-based Identification of Target Sounds in an Auditory Scene.

    PubMed

    Gamble, Marissa L; Woldorff, Marty G

    2015-09-01

    To make sense of our dynamic and complex auditory environment, we must be able to parse the sensory input into usable parts and pick out relevant sounds from all the potentially distracting auditory information. Although it is unclear exactly how we accomplish this difficult task, Gamble and Woldorff [Gamble, M. L., & Woldorff, M. G. The temporal cascade of neural processes underlying target detection and attentional processing during auditory search. Cerebral Cortex (New York, N.Y.: 1991), 2014] recently reported an ERP study of an auditory target-search task in a temporally and spatially distributed, rapidly presented, auditory scene. They reported an early, differential, bilateral activation (beginning at 60 msec) between feature-deviating target stimuli and physically equivalent feature-deviating nontargets, reflecting a rapid target detection process. This was followed shortly later (at 130 msec) by the lateralized N2ac ERP activation, that reflects the focusing of auditory spatial attention toward the target sound and parallels the attentional-shifting processes widely studied in vision. Here we directly examined the early, bilateral, target-selective effect to better understand its nature and functional role. Participants listened to midline-presented sounds that included target and nontarget stimuli that were randomly either embedded in a brief rapid stream or presented alone. The results indicate that this early bilateral effect results from a template for the target that utilizes its feature deviancy within a stream to enable rapid identification. Moreover, individual-differences analysis showed that the size of this effect was larger for participants with faster RTs. The findings support the hypothesis that our auditory attentional systems can implement and utilize a context-based relational template for a target sound, making use of additional auditory information in the environment when needing to rapidly detect a relevant sound.

  13. Enzyme capture assay for rapid identification of Escherichia coli in blood cultures.

    PubMed Central

    Huang, S W; Wu, J J; Chang, T C

    1994-01-01

    An enzyme capture assay (ECA) for rapid identification of Escherichia coli in blood cultures by using beta-D-glucuronidase as a marker was developed. Microdilution plates coated with antiglucuronidase were used to capture this enzyme from the cell lysates of blood cultures which showed growth of gram-negative bacteria. The assay, using 4-methylumbelliferyl-beta-D-glucuronide as a fluorogenic substrate, had a detection limit of 0.1 ng/ml (3 x 10(-13) M) for the enzyme; this was approximately equal to a cell concentration of 10(6) CFU of E. coli per ml. Among 212 blood cultures showing growth of gram-negative bacteria, 77 specimens were found to contain E. coli by conventional culture procedures and 73 samples were positive by ECA. Among the 135 blood cultures from which E. coli was not isolated, ECA gave one false-positive (Salmonella enteritidis) reaction. Thus, the sensitivity and specificity for the identification of E. coli in blood cultures by ECA were 94.8% (73/77) and 99.3% (134/135), respectively. From the finding of positive growth in the culture bottle, the assay can be completed within 4 h. In view of the high rate of isolation of E. coli from bacteremic patients, the test can be performed in parallel with conventional culture protocols; this may shorten the identification time for E. coli, and proper antimicrobial treatments may be started 24 h earlier than when results of conventional identification systems are used. PMID:8077387

  14. Rapid Identification of Emerging Human-Pathogenic Sporothrix Species with Rolling Circle Amplification

    PubMed Central

    Rodrigues, Anderson M.; Najafzadeh, Mohammad J.; de Hoog, G. Sybren; de Camargo, Zoilo P.

    2015-01-01

    Sporothrix infections are emerging as an important human and animal threat among otherwise healthy patients, especially in Brazil and China. Correct identification of sporotrichosis agents is beneficial for epidemiological surveillance, enabling implementation of adequate public-health policies and guiding antifungal therapy. In areas of limited resources where sporotrichosis is endemic, high-throughput detection methods that are specific and sensitive are preferred over phenotypic methods that usually result in misidentification of closely related Sporothrix species. We sought to establish rolling circle amplification (RCA) as a low-cost screening tool for species-specific identification of human-pathogenic Sporothrix. We developed six species-specific padlock probes targeting polymorphisms in the gene encoding calmodulin. BLAST-searches revealed candidate probes that were conserved intraspecifically; no significant homology with sequences from humans, mice, plants or microorganisms outside members of Sporothrix were found. The accuracy of our RCA-based assay was demonstrated through the specificity of probe-template binding to 25 S. brasiliensis, 58 S. schenckii, 5 S. globosa, 1 S. luriei, 4 S. mexicana, and 3 S. pallida samples. No cross reactivity between closely related species was evident in vitro, and padlock probes yielded 100% specificity and sensitivity down to 3 × 106 copies of the target sequence. RCA-based speciation matched identifications via phylogenetic analysis of the gene encoding calmodulin and the rDNA operon (kappa 1.0; 95% confidence interval 1.0-1.0), supporting its use as a reliable alternative to DNA sequencing. This method is a powerful tool for rapid identification and specific detection of medically relevant Sporothrix, and due to its robustness has potential for ecological studies. PMID:26696992

  15. Rapid method for protein quantitation by Bradford assay after elimination of the interference of polysorbate 80.

    PubMed

    Cheng, Yongfeng; Wei, Haiming; Sun, Rui; Tian, Zhigang; Zheng, Xiaodong

    2016-02-01

    Bradford assay is one of the most common methods for measuring protein concentrations. However, some pharmaceutical excipients, such as detergents, interfere with Bradford assay even at low concentrations. Protein precipitation can be used to overcome sample incompatibility with protein quantitation. But the rate of protein recovery caused by acetone precipitation is only about 70%. In this study, we found that sucrose not only could increase the rate of protein recovery after 1 h acetone precipitation, but also did not interfere with Bradford assay. So we developed a method for rapid protein quantitation in protein drugs even if they contained interfering substances.

  16. Genome-Wide Identification and Expression of Xenopus F-Box Family of Proteins.

    PubMed

    Saritas-Yildirim, Banu; Pliner, Hannah A; Ochoa, Angelica; Silva, Elena M

    2015-01-01

    Protein degradation via the multistep ubiquitin/26S proteasome pathway is a rapid way to alter the protein profile and drive cell processes and developmental changes. Many key regulators of embryonic development are targeted for degradation by E3 ubiquitin ligases. The most studied family of E3 ubiquitin ligases is the SCF ubiquitin ligases, which use F-box adaptor proteins to recognize and recruit target proteins. Here, we used a bioinformatics screen and phylogenetic analysis to identify and annotate the family of F-box proteins in the Xenopus tropicalis genome. To shed light on the function of the F-box proteins, we analyzed expression of F-box genes during early stages of Xenopus development. Many F-box genes are broadly expressed with expression domains localized to diverse tissues including brain, spinal cord, eye, neural crest derivatives, somites, kidneys, and heart. All together, our genome-wide identification and expression profiling of the Xenopus F-box family of proteins provide a foundation for future research aimed to identify the precise role of F-box dependent E3 ubiquitin ligases and their targets in the regulatory circuits of development.

  17. Identification of immunoreactive proteins of Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Piras, Cristian; Soggiu, Alessio; Bonizzi, Luigi; Greco, Viviana; Ricchi, Matteo; Arrigoni, Norma; Bassols, Anna; Urbani, Andrea; Roncada, Paola

    2015-02-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is the cause of a chronic enteritis of ruminants (bovine paratuberculosis (PTB)--Johne's disease) that is associated with enormous worldwide economic losses for the animal production. Diagnosis is based on observation of clinical signs, the detection of antibodies in milk or serum, or evaluation of bacterial culture from feces. The limit of these methods is that they are not able to detect the disease in the subclinical stage and are applicable only when the disease is already advanced. For this reason, the main purpose of this study is to use the MAP proteome to detect novel immunoreactive proteins that may be helpful for PTB diagnoses. 2DE and 2D immunoblotting of MAP proteins were performed using sera of control cattle and PTB-infected cattle in order to highlight the specific immunoreactive proteins. Among the assigned identifiers to immunoreactive spots it was found that most of them correspond to surface-located proteins while three of them have never been described before as antigens. The identification of these proteins improves scientific knowledge that could be useful for PTB diagnoses. The sequence of the identified protein can be used for the synthesis of immunoreactive peptides that could be screened for their immunoreaction against bovine sera infected with MAP. All MS data have been deposited in the ProteomeXchange consortium with identifier PXD001159 and DOI 10.6019/PXD001159.

  18. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins.

    PubMed

    Lewis, Lauren A; Radulović, Željko M; Kim, Tae K; Porter, Lindsay M; Mulenga, Albert

    2015-04-01

    Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24h post attachment to be transmitted. This study describes identification of 24h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ∼19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ∼81% (147/182) of contigs were provisionally identified based on matches in GenBank including ∼18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (∼3%, 5/147), transporters and/or ligand binding proteins (∼6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (∼31%, 46/147), and those classified as miscellaneous (∼24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24h, before the majority of TBD agents can be transmitted.

  19. Identification of 24 h Ixodes scapularis immunogenic tick saliva proteins

    PubMed Central

    Lewis, Lauren A.; Radulović, Željko M.; Kim, Tae K.; Porter, Lindsay M.; Mulenga, Albert

    2015-01-01

    Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24 h post attachment to be transmitted. This study describes identification of 24 h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24 h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24 h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ~19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ~81% (147/182) of contigs were provisionally identified based on matches in GenBank including ~18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (~3%, 5/147), transporters and/or ligand binding proteins (~6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (~31%, 46/147), and those classified as miscellaneous (~24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24 h, before the majority of TBD agents can be transmitted. PMID:25825233

  20. Age-Related Declines in Early Sensory Memory: Identification of Rapid Auditory and Visual Stimulus Sequences

    PubMed Central

    Fogerty, Daniel; Humes, Larry E.; Busey, Thomas A.

    2016-01-01

    Age-related temporal-processing declines of rapidly presented sequences may involve contributions of sensory memory. This study investigated recall for rapidly presented auditory (vowel) and visual (letter) sequences presented at six different stimulus onset asynchronies (SOA) that spanned threshold SOAs for sequence identification. Younger, middle-aged, and older adults participated in all tasks. Results were investigated at both equivalent performance levels (i.e., SOA threshold) and at identical physical stimulus values (i.e., SOAs). For four-item sequences, results demonstrated best performance for the first and last items in the auditory sequences, but only the first item for visual sequences. For two-item sequences, adults identified the second vowel or letter significantly better than the first. Overall, when temporal-order performance was equated for each individual by testing at SOA thresholds, recall accuracy for each position across the age groups was highly similar. These results suggest that modality-specific processing declines of older adults primarily determine temporal-order performance for rapid sequences. However, there is some evidence for a second amodal processing decline in older adults related to early sensory memory for final items in a sequence. This selective deficit was observed particularly for longer sequence lengths and was not accounted for by temporal masking. PMID:27199737

  1. Rapid identification of HPV 16 and 18 by multiplex nested PCR-immunochromatographic test.

    PubMed

    Kuo, Yung-Bin; Li, Yi-Shuan; Chan, Err-Cheng

    2015-02-01

    Human papillomavirus (HPV) types 16 and 18 are known to be high-risk viruses that cause cervical cancer. An HPV rapid testing kit that could help physicians to make early and more informed decisions regarding patient care is needed urgently but not yet available. This study aimed to develop a multiplex nested polymerase chain reaction-immunochromatographic test (PCR-ICT) for the rapid identification of HPV 16 and 18. A multiplex nested PCR was constructed to amplify the HPV 16 and 18 genotype-specific L1 gene fragments and followed by ICT which coated with antibodies to identify rapidly the different PCR products. The type-specific gene regions of high-risk HPV 16 and 18 could be amplified successfully by multiplex nested PCR at molecular sizes of approximately 99 and 101bp, respectively. The capture antibodies raised specifically against the moleculars labeled on the PCR products could be detected simultaneously both HPV 16 and 18 in one strip. Under optimal conditions, this PCR-ICT assay had the capability to detect HPV in a sample with as low as 100 copies of HPV viral DNA. The PCR-ICT system has the advantage of direct and simultaneous detection of two high-risk HPV 16 and 18 DNA targets in one sample, which suggested a significant potential of this assay for clinical application.

  2. Identification of lipid synthesis and secretion proteins in bovine milk.

    PubMed

    Lu, Jing; van Hooijdonk, Toon; Boeren, Sjef; Vervoort, Jacques; Hettinga, Kasper

    2014-02-01

    Lactation physiology is a process that is only partly understood. Proteomics techniques have shown to be useful to help advance the knowledge on lactation physiology in human and rodent species but have not been used as major tools for dairy cows, except for mastitis. In this paper, advanced non-targeted proteomics techniques (Filter aided sample preparation and NanoLC-Orbitrap-MS/MS) were applied to study the milk fat globule membrane and milk serum fraction, resulting in the identification of 246 proteins. Of these, 23 transporters and enzymes were related to lipid synthesis and secretion in mammary gland and their functions are discussed in detail. The identification of these intracellular transporters and enzymes in milk provides a possibility of using milk itself to study lipid synthesis and secretion pathways. This full-scale scan of milk proteins by using non-targeted proteomic analysis helps to reveal the important proteins involved in lipid synthesis and secretion for further examination in targeted studies.

  3. Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS.

    PubMed

    Ziegler, Dominik; Pothier, Joël F; Ardley, Julie; Fossou, Romain Kouakou; Pflüger, Valentin; de Meyer, Sofie; Vogel, Guido; Tonolla, Mauro; Howieson, John; Reeve, Wayne; Perret, Xavier

    2015-07-01

    Accurate identification of soil bacteria that form nitrogen-fixing associations with legume crops is challenging given the phylogenetic diversity of root nodule bacteria (RNB). The labor-intensive and time-consuming 16S ribosomal RNA (rRNA) sequencing and/or multilocus sequence analysis (MLSA) of conserved genes so far remain the favored molecular tools to characterize symbiotic bacteria. With the development of mass spectrometry (MS) as an alternative method to rapidly identify bacterial isolates, we recently showed that matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) can accurately characterize RNB found inside plant nodules or grown in cultures. Here, we report on the development of a MALDI-TOF RNB-specific spectral database built on whole cell MS fingerprints of 116 strains representing the major rhizobial genera. In addition to this RNB-specific module, which was successfully tested on unknown field isolates, a subset of 13 ribosomal proteins extracted from genome data was found to be sufficient for the reliable identification of nodule isolates to rhizobial species as shown in the putatively ascribed ribosomal protein masses (PARPM) database. These results reveal that data gathered from genome sequences can be used to expand spectral libraries to aid the accurate identification of bacterial species by MALDI-TOF MS.

  4. Tetramer-guided epitope mapping: rapid identification and characterization of immunodominant CD4+ T cell epitopes from complex antigens.

    PubMed

    Novak, E J; Liu, A W; Gebe, J A; Falk, B A; Nepom, G T; Koelle, D M; Kwok, W W

    2001-06-01

    T cell responses to Ags involve recognition of selected peptide epitopes contained within the antigenic protein. In this report, we describe a new approach for direct identification of CD4+ T cell epitopes of complex Ags that uses human class II tetramers to identify reactive cells. With a panel of 60 overlapping peptides covering the entire sequence of the VP16 protein, a major Ag for HSV-2, we generated a panel of class II MHC tetramers loaded with peptide pools that were used to stain peripheral lymphocytes of an HSV-2 infected individual. With this approach, we identified four new DRA1*0101/DRB1*0401- and two DRA1*0101/DRB1*0404-restricted, VP16-specific epitopes. By using tetramers to sort individual cells, we easily obtained a large number of clones specific to these epitopes. Although DRA1*0101/DRB1*0401 and DRA1*0101/DRB1*0404 are structurally very similar, nonoverlapping VP16 epitopes were identified, illustrating high selectivity of individual allele polymorphisms within common MHC variants. This rapid approach to detecting CD4+ T cell epitopes from complex Ags can be applied to any known Ag that gives a T cell response.

  5. [Study on rapid identification of Cornu saigae tataricae and Cornu antelopis block by Fourier transform infrared spectroscopy].

    PubMed

    Liu, Yan; Zhang, Gui-jun; Sun, Su-qin

    2010-01-01

    In the present paper, Fourier transform infrared (FTIR) spectroscopy was used to study the chemical characterizations of cornu saigae tataricae, cornu antelopis block and the mixed sample of them. The results show that there are significant differences between FTIR characterizations of cornu saigae tataricae and cornu antelopes block. The infrared spectra of cornu saigae tataricae are mainly composed of the absorption bands of protein, but in cornu antelopis block the absorption bands of Ca3 (PO4)2 are observed beside protein. And other obvious differences were detected in the FTIR spectra of the two samples: amide bands, C--O stretching vibration bands, and CH stretching vibration bands. The drug of cornu saigae tataricae, cornu antelopis block, and the mixed sample of them could be identified rapidly according to the differences. This experiment gave the scientific data for the researches on chemical components and quality evaluation system of cornu saigae tataricae, and provides the identification method of cornu saigae tataricae and cornu antelopis block.

  6. Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins.

    PubMed

    Kadota, Yasuhiro; Macho, Alberto P; Zipfel, Cyril

    2016-01-01

    Membrane proteins are difficult to study for numerous reasons. The surface of membrane proteins is relatively hydrophobic and sometimes very unstable, additionally requiring detergents for their extraction from the membrane. This leads to challenges at all levels, including expression, solubilization, purification, identification of associated proteins, and the identification of post-translational modifications. However, recent advances in immunoprecipitation technology allow to isolate membrane proteins efficiently, facilitating the study of protein-protein interactions, the identification of novel associated proteins, and to identify post-translational modifications, such as phosphorylation. Here, we describe an optimized immunoprecipitation protocol for plant plasma membrane receptor-like kinases.

  7. Identification of Proteins that Modify Cataract of the Eye Lens

    PubMed Central

    Hoehenwarter, Wolfgang; Tang, Yajun; Ackermann, Renate; Pleissner, Klaus-Peter; Schmid, Monika; Stein, Robert; Zimny-Arndt, Ursula; Kumar, Nalin M.; Jungblut, Peter R.

    2010-01-01

    The occurrence of a nuclear cataract in the eye lens due to disruption of theα3Cx46 connexin gene, Gja3, is dependent on strain background in a mouse model, implicating factors that modify the pathology. The differences upon cataractogenesis in the urea soluble proteins of the lens of two mouse strains, C57BL/6J and 129/SvJ, were analyzed by a comparative proteomics approach. Determination of the complete proteome of an organ offers the opportunity to characterize at a molecular level, differences in gene expression and post-translational modifications occurring during pathology and between individuals. The abundance of 63 protein species was altered between the strains. A unique aspect of this study is the identification of chaperonin subunit 6A, mortalin, ERp29 and syntaxin binding protein 6 in the eye lens. DNA polymorphisms resulting in non-conservative amino acid changes that led to altered physicochemical properties of the proteins were detected for mortalin, chaperonin subunit 6A, annexin A1 and possibly gamma N crystallin. The results show HSP27/25 and/or ERp29 are the likely major modifying factors for cataractogenesis. Extension of the results suggests that small heat shock proteins have a major role for influencing cataract formation in humans. PMID:19003866

  8. Identification of proteins that modify cataract of mouse eye lens.

    PubMed

    Hoehenwarter, Wolfgang; Tang, Yajun; Ackermann, Renate; Pleissner, Klaus-Peter; Schmid, Monika; Stein, Robert; Zimny-Arndt, Ursula; Kumar, Nalin M; Jungblut, Peter R

    2008-12-01

    The occurrence of a nuclear cataract in the eye lens due to disruption of the alpha3Cx46 connexin gene, Gja3, is dependent on strain background in a mouse model, implicating factors that modify the pathology. The differences upon cataractogenesis in the urea soluble proteins of the lens of two mouse strains, C57BL/6J and 129/SvJ, were analyzed by a comparative proteomics approach. Determination of the complete proteome of an organ offers the opportunity to characterize at a molecular level, differences in gene expression and PTMs occurring during pathology and between individuals. The abundance of 63 protein species was altered between the strains. A unique aspect of this study is the identification of chaperonin subunit 6A, mortalin, ERp29, and syntaxin-binding protein 6 in the eye lens. DNA polymorphisms resulting in nonconservative amino acid changes that led to altered physicochemical properties of the proteins were detected for mortalin, chaperonin subunit 6A, annexin A1, and possibly gamma-N crystallin. The results show HSP27/25 and/or ERp29 are the likely major modifying factors for cataractogenesis. Extension of the results suggests that small heat-shock proteins have a major role for influencing cataract formation in humans.

  9. Identification of a fibronectin-binding protein from Staphylococcus epidermidis.

    PubMed

    Williams, Rachel J; Henderson, Brian; Sharp, Lindsay J; Nair, Sean P

    2002-12-01

    Staphylococcus epidermidis has been reported to bind to a number of host cell extracellular matrix proteins, including fibronectin. Here we report the identification of a fibronectin-binding protein from S. epidermidis. A phage display library of S. epidermidis genomic DNA was constructed and panned against immobilized fibronectin. A number of phagemid clones containing overlapping inserts were identified, and one of these clones, pSE109FN, contained a 1.4-kb insert. Phage pSE109FN was found to bind to fibronectin but not to collagen, fibrinogen, laminin, or vitronectin. However, pSE109FN also bound to heparin, hyaluronate, and plasminogen, although to a lesser extent than it bound to fibronectin. Analysis of The Institute for Genomic Research S. epidermidis genome sequence database revealed a 1.85-kb region within a putative 30.5-kb open reading frame, to which the overlapping DNA inserts contained within the fibronectin-binding phagemids mapped. We have designated the gene encoding the fibronectin-binding domain embp. A recombinant protein, Embp32, which encompassed the fibronectin-binding domain of Embp, blocked the binding of S. epidermidis, but not the binding of Staphylococcus aureus, to fibronectin. In contrast, a recombinant protein, FnBPB[D1-D4], spanning the fibronectin-binding domain of the S. aureus fibronectin-binding protein FnBPB, blocked binding of S. aureus to fibronectin but had a negligible effect on the binding of S. epidermidis.

  10. Rapid word identification in pure alexia is lexical but not semantic.

    PubMed

    Friedman, R B; Lott, S N

    2000-05-01

    Following the notion that patients with pure alexia have access to two distinct reading strategies-letter-by-letter reading and semantic reading-a training program was devised to facilitate reading via semantics in a patient with pure alexia. Training utilized brief stimulus presentations and required category judgments rather than explicit word identification. The training was successful for trained words, but generalized poorly to untrained words. Additional studies involving oral reading of nouns and of functors also resulted in improved reading of trained words. Pseudowords could not be trained to criterion. The results suggest that improved reading can be achieved in pure alexia by pairing rapidly presented words with feedback. Focusing on semantic processing is not essential to this process. It is proposed that the training strengthens connections between the output of visual processing and preexisting orthographic representations.

  11. A PCR Detection Method for Rapid Identification of Melissococcus pluton in Honeybee Larvae

    PubMed Central

    Govan, V. A.; Brözel, V.; Allsopp, M. H.; Davison, S.

    1998-01-01

    Melissococcus pluton is the causative agent of European foulbrood, a disease of honeybee larvae. This bacterium is particularly difficult to isolate because of its stringent growth requirements and competition from other bacteria. PCR was used selectively to amplify specific rRNA gene sequences of M. pluton from pure culture, from crude cell lysates, and directly from infected bee larvae. The PCR primers were designed from M. pluton 16S rRNA sequence data. The PCR products were visualized by agarose gel electrophoresis and confirmed as originating from M. pluton by sequencing in both directions. Detection was highly specific, and the probes did not hybridize with DNA from other bacterial species tested. This method enabled the rapid and specific detection and identification of M. pluton from pure cultures and infected bee larvae. PMID:9572987

  12. Rapid identification of Escherichia coli from urine by using Fluorocult media.

    PubMed

    Mori, T; Takahashi, H; Maehata, E; Naka, H

    1991-01-01

    For rapid identification of Escherichia coli, we evaluated Fluorocult MacConkey Agar, Fluorocult Laurylsulfate Broth and Bactident E. coli, which are incorporating fluorogenic substrate, MUG (4-methylumbeliferyl-beta-D-Glucuronide) that specifically reacts with E. coli. To assess the specificity and sensitivity of Fluorocult MacConkey Agar and Laurylsulfate Broth, beta-D-glucuronidase; beta-GUR activities of 264 strains from urine including 72 of E. coli were investigated. For both media, sensitivity was 92% and specificity was 100%. When there was 10(8) c.f.u./ml of E. coli in urine specimen, incubation times required for positive fluorescence by Fluorocult MacConkey Agar, Laurylsulfate Broth, and Bactident E. coli were 8 h, 4 h and 15 min, respectively. Influence of drugs in urine to fluorescence reaction was not observed.

  13. Rapid identification of pathogenic streptococci isolated from moribund red tilapia (Oreochromis spp.).

    PubMed

    Abdelsalam, Mohamed; Elgendy, Mamdouh Y; Shaalan, Mohamed; Moustafa, Mohamed; Fujino, Masayuki

    2017-03-01

    Accurate and rapid identification of bacterial pathogens of fish is essential for the effective treatment and speedy control of infections. Massive mortalities in market-sized red tilapia (Oreochromis spp.) were noticed in mariculture concrete ponds in northern Egypt. Histopathological examination revealed marked congestion in the central vein of the liver with the presence of bacterial aggregates inside the lumen and in the vicinity of the central vein. A total of 12 isolates of streptococci were obtained from the moribund fish. This study documented the ability of the MicroSeq 500 16S bacterial sequencing method to accurately identify Streptococcus agalactiae and S. dysgalactiae mixed infections from moribund red tilapia that were difficult to be recognised by the commercial biochemical systems. The continuously decreasing cost of the sequencing technique should encourage its application in routine diagnostic procedures.

  14. Multi-primer target PCR for rapid identification of bovine DRB3 alleles.

    PubMed

    Ledwidge, S A; Mallard, B A; Gibson, J P; Jansen, G B; Jiang, Z H

    2001-08-01

    Multi-primer target polymerase chain reaction (MPT-PCR) is a rapid method for the identification of specific BoLA-DRB3 alleles. In a single PCR reaction, the presence of two alleles associated with increased risk, DRB3.2*23 (DRB3*2701-2703, 2705-2707) and decreased risk, DRB3.2*16 (DRB3*1501, 1502), of mastitis in Canadian Holstein can be detected. Two outer primers amplify exon 2 of DRB3. Simultaneously, two inner, allele-specific primers amplify individual alleles. Initially, 40 cows previously typed by PCR-restriction fragment length polymorphism (PCR-RFLP) were genotyped using the multi-primer approach. An additional 30 cows were first genotyped by multi-primer target PCR, then by PCR-RFLP. All animals were correctly identified and there were no false positives. This technique can readily be modified to identify other BoLA alleles of interest.

  15. Evaluation of a multitest system for rapid identification of Salmonella and Shigella.

    PubMed

    Gooch, W M

    1980-04-01

    The ability of Micro-ID, a multitest system for rapid (four hour) identification of Enterobacteriaceae, to identify Salmonella and Shigella was evaluated. Micro-ID, API 20E and a battery of tubed media consisting of triple sugar-iron agar, Christensen's urea agar, and Moeller's lysine decarboxylase medium were used to study 516 lactose nonfermenting strains of Enterobacteriaceae isolated from 500 consecutive pediatric stool specimens. Fifty-six of the isolates were Salmonella, and 21 were Shigella. Micro-ID correctly identified all isolates of Shigella and all but one isolate of Salmonella, whereas the conventional screening media failed to detect seven isolates of Salmonella and two isolates of Shigella. The false-positive rates were 1% and 20% for Micro-ID and the conventional battery, respectively. Use of Micro-ID as a substitute for conventional screening media for lactose nonfermenting stool isolates provides reliable presumptive idenfication of Salmonella and Shigella within four hours.

  16. Catheter-related Mycobacterium fortuitum bloodstream infection: rapid identification using MALDI-TOF mass spectrometry.

    PubMed

    Artacho-Reinoso, M J; Olbrich, P; Solano-Paéz, P; Ybot-Gonzalez, P; Lepe, J A; Neth, O; Aznar, J

    2014-04-01

    We present the case of a 6-year-old boy diagnosed with stage III mediastinal Non Hodgkin Lymphoblastic T cell Lymphoma who suffered from catheter-related bloodstream infection (CRBI) due to Mycobacterium fortuitum whilst receiving chemotherapy. Isolation of this rare pathogen was done directly from blood culture and identification was made rapidly within 48 h using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectro-metry as well as specific polymerase chain reaction (PCR)-reverse hybridization method. This allowed prompt directed antibiotic therapy apart from central venous catheter removal and resulted in an excellent clinical response. This case highlights the potential benefit of using MALDI-TOF mass spectrometry, a fast, cost-effective and precise methodology, in the diagnosis and subsequent management of invasive bacterial infection.

  17. Rapid Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) by the Vitek MS Saramis system.

    PubMed

    Shan, Weiguang; Li, Jiaping; Fang, Ying; Wang, Xuan; Gu, Danxia; Zhang, Rong

    2016-01-01

    A rapid, sensitive, and accurate Vitek MS assay was developed to distinguish clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) from clinical isolates of methicillin-sensitive Staphylococcus aureus (MSSA) by developing an in-house knowledgebase of SuperSpectra. Three unique peaks, including peaks at 2305.6 and 3007.3 Da specific to MRSA, and 6816.7 Da specific to MSSA, were selected for differentiating MRSA and MSSA. This assay accurately identified 84 and 91% of clinical MRSA and MSSA strains out of the total 142 clinically acquired S. aureus strains that were tested. This method will greatly improve the efficiency of single clinical sample identification of MRSA, thereby facilitating a reduction in the transmission of MRSA in clinical settings.

  18. Rapid Detection and Identification of a Pathogen's DNA Using Phi29 DNA Polymerase

    SciTech Connect

    Xu, Y.; Dunn, J.; Gao, S.; Bruno, J. F.; Luft, B. J.

    2008-10-31

    Zoonotic pathogens including those transmitted by insect vectors are some of the most deadly of all infectious diseases known to mankind. A number of these agents have been further weaponized and are widely recognized as being potentially significant biothreat agents. We describe a novel method based on multiply-primed rolling circle in vitro amplification for profiling genomic DNAs to permit rapid, cultivation-free differential detection and identification of circular plasmids in infectious agents. Using Phi29 DNA polymerase and a two-step priming reaction we could reproducibly detect and characterize by DNA sequencing circular DNA from Borrelia burgdorferi B31 in DNA samples containing as little as 25 pg of Borrelia DNA amongst a vast excess of human DNA. This simple technology can ultimately be adapted as a sensitive method to detect specific DNA from both known and unknown pathogens in a wide variety of complex environments.

  19. In Silico identification of M. TB proteins with diagnostic potential

    PubMed Central

    2013-01-01

    TB, caused by Mycobacterium tuberculosis (MTB), is one of the major global infectious diseases. For the pandemic control, early diagnosis with sensitive and specific methods is fundamental. With the advent of bioinformatics’ tools, the identification of several proteins involved in the pathogenesis of TB (TB) has been possible. In the present work, the MTB genome was explored to look for molecules with possible antigenic properties for their evaluation as part of new generation diagnostic kits based on the release of cytokines. Seven proteins from the MTB proteome and some of their combinations suited the computational test and the results suggested their potential use for the diagnosis of infection in the following population groups: Cuba, Mexico, Malaysia and sub-Saharan Africa. Our predictions were performed using public bioinformatics tools plus three computer programs, developed by our group, to facilitate information retrieval and processing. PMID:23458073

  20. Identification of three novel mutations in hereditary protein S deficiency.

    PubMed

    Bustorff, T C; Freire, I; Gago, T; Crespo, F; David, D

    1997-01-01

    We report the application of single-stranded conformation polymorphism (SSCP) analysis to the screening of 15 functionally important Protein S (PS) gene (PS alpha) regions (4.243 Kb) in 6 unrelated families with PS deficiencies. Direct sequencing of the fragments with altered migration patterns led to the identification of the corresponding molecular alterations. A missense mutation, G to T transversion at codon Cys598, and two different alterations, leading either to allelic exclusion, or premature termination of the protein translation: a G to A transition at codon Trp465 and a 1 nt (T) insertion at codon 265, were identified. The 1 nt insertion was observed in three apparently unrelated families but with a common geographical origin and the mutated allele was undetectable in platelet mRNAs of affected individuals. Family analysis confirmed, in each case, a perfect cosegregation of the mutation with the PS deficiency. We conclude that these alterations represent the causative mutations.

  1. Evaluation of three rapid diagnostic methods for direct identification of microorganisms in positive blood cultures.

    PubMed

    Martinez, Raquel M; Bauerle, Elizabeth R; Fang, Ferric C; Butler-Wu, Susan M

    2014-07-01

    The identification of organisms from positive blood cultures generally takes several days. However, recently developed rapid diagnostic methods offer the potential for organism identification within only a few hours of blood culture positivity. In this study, we evaluated the performance of three commercial methods to rapidly identify organisms directly from positive blood cultures: QuickFISH (AdvanDx, Wolburn, MA), Verigene Gram-Positive Blood Culture (BC-GP; Nanosphere, Northbrook, IL), and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) with Sepsityper processing (Bruker Daltonics, Billerica, MA). A total of 159 blood cultures (VersaTREK Trek Diagnostic Systems, Cleveland, OH) positive for Gram-positive and Gram-negative bacteria as well as yeast were analyzed with QuickFISH and MALDI-TOF MS. In all, 102 blood cultures were analyzed using the BC-GP assay. For monomicrobial cultures, we observed 98.0% concordance with routine methods for both QuickFISH (143/146) and the BC-GP assay (93/95). MALDI-TOF MS demonstrated 80.1% (117/146) and 87.7% (128/146) concordance with routine methods to the genus and species levels, respectively. None of the methods tested were capable of consistently identifying polymicrobial cultures in their entirety or reliably differentiating Streptococcus pneumoniae from viridans streptococci. Nevertheless, the methods evaluated in this study are convenient and accurate for the most commonly encountered pathogens and have the potential to dramatically reduce turnaround time for the provision of results to the treating physician.

  2. Rapid direct identification of Cryptococcus neoformans from pigeon droppings by nested PCR using CNLAC1 gene.

    PubMed

    Chae, H S; Park, G N; Kim, S H; Jo, H J; Kim, J T; Jeoung, H Y; An, D J; Kim, N H; Shin, B W; Kang, Y I; Chang, K S

    2012-08-01

    Isolation and identification of Cryptococcus neoformans and pathogenic yeast-like fungi from pigeon droppings has been taken for a long time and requires various nutrients for its growth. In this study, we attempted to establish a rapid direct identification method of Cr. neoformans from pigeon dropping samples by nested-PCR using internal transcribed spacer (ITS) CAP64 and CNLAC1 genes, polysaccharide capsule gene and laccase-associated gene to produce melanin pigment, respectively, which are common genes of yeasts. The ITS and CAP64 genes were amplified in all pathogenic yeasts, but CNLAC1 was amplified only in Cr. neoformans. The ITS gene was useful for yeast genotyping depending on nucleotide sequence. Homology of CAP64 genes among the yeasts were very high. The specificity of PCR using CNLAC1 was demonstrated in Cr. neoformans environmental strains but not in other yeast-like fungi. The CNLAC1 gene was detected in 5 serotypes of Cr. neoformans. The nested-PCR amplified up to 10(-11) μg of the genomic DNA and showed high sensitivity. All pigeon droppings among 31 Cr. neoformans-positive samples were positive and all pigeon droppings among 348 Cr. neoformans-negative samples were negative by the direct nested-PCR. In addition, after primary enrichment of pigeon droppings in Sabouraud dextrose broth, all Cr. neoformans-negative samples were negative by the nested-PCR, which showed high specificity. The nested-PCR showed high sensitivity without culture of pigeon droppings. Nested-PCR using CNLAC1 provides a rapid and reliable molecular diagnostic method to overcome weak points such as long culture time of many conventional methods.

  3. Evaluation of Fluorescent Capillary Electrophoresis for Rapid Identification of Candida Fungal Infections.

    PubMed

    Obručová, Hana; Tihelková, Radka; Kotásková, Iva; Růžička, Filip; Holá, Veronika; Němcová, Eva; Freiberger, Tomáš

    2016-05-01

    Early diagnosis of fungal infection is critical for initiating antifungal therapy and reducing the high mortality rate in immunocompromised patients. In this study, we focused on rapid and sensitive identification of clinically important Candida species, utilizing the variability in the length of the ITS2 rRNA gene and fluorescent capillary electrophoresis (f-ITS2-PCR-CE). The method was developed and optimized on 29 various Candida reference strains from which 26 Candida species were clearly identified, while Candida guilliermondii, C. fermentati, and C. carpophila, which are closely related, could not be distinguished. The method was subsequently validated on 143 blinded monofungal clinical isolates (comprising 26 species) and was able to identify 88% of species unambiguously. This indicated a higher resolution power than the classical phenotypic approach which correctly identified 73%. Finally, the culture-independent potential of this technique was addressed by the analysis of 55 retrospective DNA samples extracted directly from clinical material. The method showed 100% sensitivity and specificity compared to those of the combined results of cultivation and panfungal PCR followed by sequencing used as a gold standard. In conclusion, this newly developed f-ITS2-PCR-CE analytical approach was shown to be a fast, sensitive, and highly reproducible tool for both culture-dependent and culture-independent identification of clinically important Candida strains, including species of the "psilosis" complex.

  4. Evaluation of Fluorescent Capillary Electrophoresis for Rapid Identification of Candida Fungal Infections

    PubMed Central

    Obručová, Hana; Tihelková, Radka; Kotásková, Iva; Růžička, Filip; Holá, Veronika; Němcová, Eva

    2016-01-01

    Early diagnosis of fungal infection is critical for initiating antifungal therapy and reducing the high mortality rate in immunocompromised patients. In this study, we focused on rapid and sensitive identification of clinically important Candida species, utilizing the variability in the length of the ITS2 rRNA gene and fluorescent capillary electrophoresis (f-ITS2-PCR-CE). The method was developed and optimized on 29 various Candida reference strains from which 26 Candida species were clearly identified, while Candida guilliermondii, C. fermentati, and C. carpophila, which are closely related, could not be distinguished. The method was subsequently validated on 143 blinded monofungal clinical isolates (comprising 26 species) and was able to identify 88% of species unambiguously. This indicated a higher resolution power than the classical phenotypic approach which correctly identified 73%. Finally, the culture-independent potential of this technique was addressed by the analysis of 55 retrospective DNA samples extracted directly from clinical material. The method showed 100% sensitivity and specificity compared to those of the combined results of cultivation and panfungal PCR followed by sequencing used as a gold standard. In conclusion, this newly developed f-ITS2-PCR-CE analytical approach was shown to be a fast, sensitive, and highly reproducible tool for both culture-dependent and culture-independent identification of clinically important Candida strains, including species of the “psilosis” complex. PMID:26935732

  5. A SCAR-based method for rapid identification of four major lepidopterous stored-product pests.

    PubMed

    Yao, Me-Chi; Chang, Shu-Chen; Lee, Chi-Yang; Lu, Kuang-Hui

    2012-06-01

    Since Taiwan became a World Trade Organization member in 2002, large quantities of grain have been imported from different countries, and insect pests are frequently intercepted from these imported commodities in quarantine inspection. Because most insects are intercepted as immature forms, morphological identification is problematic; therefore, we developed a DNA identification method based on a sequence-characterized amplified region- polymerase chain reaction (SCAR-PCR). Three sets of multiplex SCAR-PCR mixtures, namely SCAR-I, -II, and -III, were developed with each set composed of four species-specific primer pairs derived from the genomic DNA of four major lepidopterous stored-product pests: Corcyra cephalonica (Stainton), Cadra cautella (Walker), Sitotroga cerealella Oliver, and Plodia interpunctella (Hübner). The SCAR-I amplicons of C. cephalonica, C. cautella, S. cerealella, and P. interpunctella were 205, 550, 324, 382 bp, respectively, while those of SCAR-II were 341, 565, 261, and 170 bp, and those of SCAR-III were 514, 555, 445, and 299 bp. These multiplex PCR mixtures could sensitively and unambiguously detect and identify in approximately 5 h individuals among the four lepidopterous pests intercepted in imported stored-products. In summary, the SCAR-PCR method we developed represents a rapid, sensitive and accurate technique for identifying insect species of stored products in plant quarantine operation.

  6. Rapid Intrinsic Fluorescence Method for Direct Identification of Pathogens in Blood Cultures

    PubMed Central

    Walsh, John D.; Hyman, Jay M.; Borzhemskaya, Larisa; Bowen, Ann; McKellar, Caroline; Ullery, Michael; Mathias, Erin; Ronsick, Christopher; Link, John; Wilson, Mark; Clay, Bradford; Robinson, Ron; Thorpe, Thurman; van Belkum, Alex; Dunne, W. Michael

    2013-01-01

    ABSTRACT A positive blood culture is a critical result that requires prompt identification of the causative agent. This article describes a simple method to identify microorganisms from positive blood culture broth within the time taken to perform a Gram stain (<20 min). The method is based on intrinsic fluorescence spectroscopy (IFS) of whole cells and required development of a selective lysis buffer, aqueous density cushion, optical microcentrifuge tube, and reference database. A total of 1,121 monomicrobial-positive broth samples from 751 strains were analyzed to build a database representing 37 of the most commonly encountered species in bloodstream infections or present as contaminants. A multistage algorithm correctly classified 99.6% of unknown samples to the Gram level, 99.3% to the family level, and 96.5% to the species level. There were no incorrect results given at the Gram or family classification levels, while 0.8% of results were discordant at the species level. In 8/9 incorrect species results, the misidentified isolate was assigned to a species of the same genus. This unique combination of selective lysis, density centrifugation, and IFS can rapidly identify the most common microbial species present in positive blood cultures. Faster identification of the etiologic agent may benefit the clinical management of sepsis. Further evaluation is now warranted to determine the performance of the method using clinical blood culture specimens. PMID:24255123

  7. Performance of chromogenic media for Candida in rapid presumptive identification of Candida species from clinical materials

    PubMed Central

    Pravin Charles, M. V.; Kali, Arunava; Joseph, Noyal Mariya

    2015-01-01

    Background: In perspective of the worldwide increase in a number of immunocompromised patients, the need for identification of Candida species has become a major concern. The development of chromogenic differential media, introduced recently, facilitate rapid speciation. However, it can be employed for routine mycology workup only after an exhaustive evaluation of its benefit and cost effectiveness. This study was undertaken to evaluate the benefit and cost effectiveness of chromogenic media for speciation of Candida clinical isolates. Materials and Methods: Sputum samples of 382 patients were screened for the presence of Candida spp. by Gram stain and culture on sabouraud dextrose agar. Candida species were identified using Gram stain morphology, germ tube formation, cornmeal agar with Tween-80, sugar fermentation tests and morphology on HiCrome Candida differential agar. All the Candida isolates were inoculated on HiCrome Candida agar (HiMedia, Mumbai, India). Results: The sensitivity and specificity of HiCrome agar for identification of Candida albicans were 90% and 96.42%, respectively whereas sensitivity and specificity of carbohydrate fermentation test were 86.67% and 74.07%, respectively. Sensitivity and specificity values of HiCrome agar for detection of C. albicans, Candida parapsilosis and Candida glabrata were above 90%. Conclusions: We found HiCrome agar has high sensitivity and specificity comparable to that of the conventional method. In addition, use of this differential media could significantly cut down the turnaround time as well as cost of sample processing. PMID:26109791

  8. Rapid and high throughput molecular identification of diverse mosquito species by high resolution melting analysis.

    PubMed

    Ajamma, Yvonne Ukamaka; Mararo, Enock; Omondi, David; Onchuru, Thomas; Muigai, Anne W T; Masiga, Daniel; Villinger, Jandouwe

    2016-01-01

    -species. This approach can be employed for rapid identification of mosquitoes.

  9. Rapid and high throughput molecular identification of diverse mosquito species by high resolution melting analysis

    PubMed Central

    Ajamma, Yvonne Ukamaka; Mararo, Enock; Omondi, David; Onchuru, Thomas; Muigai, Anne W. T.; Masiga, Daniel; Villinger, Jandouwe

    2016-01-01

    -species. This approach can be employed for rapid identification of mosquitoes. PMID:27703667

  10. Rapid cultivar identification of barley seeds through disjoint principal component modeling.

    PubMed

    Whitehead, Iain; Munoz, Alicia; Becker, Thomas

    2017-01-01

    Classification of barley varieties is a crucial part of the control and assessment of barley seeds especially for the malting and brewing industry. The correct classification of barley is essential in that a majority of decisions made regarding process specifications, economic considerations, and the type of product produced with the cereal are made based on the barley variety itself. This fact combined with the need to promptly assess the cereal as it is delivered to a malt house or production facility creates the need for a technique to quickly identify a barley variety based on a sample. This work explores the feasibility of differentiating between barley varieties based on the protein spectrum of barley seeds. In order to produce a rapid analysis of the protein composition of the barley seeds, lab-on-a-chip micro fluid technology is used to analyze the protein composition. Classification of the barley variety is then made using disjoint principle component models. This work included 19 different barley varieties. The varieties consisted of both winter and summer barley types. In this work, it is demonstrated that this system can identify the most likely barley variety with an accuracy of 95.9% based on cross validation and can screen summer barley with an accuracy of 95.2% and a false positive rate of 0.0% based on cross validation. This demonstrates the feasibility of the method to provide a rapid and relatively inexpensive method to verify the heritage of barley seeds.

  11. Identification of alternative transcripts using rapid amplification of cDNA ends (RACE).

    PubMed

    Yeku, Oladapo; Scotto-Lavino, Elizabeth; Frohman, Michael A

    2009-01-01

    Many organisms, including humans, have many more proteins than are actually coded for by their genes. This discrepancy is partially explained by the existence of alternative transcripts produced by the same gene. Multiple isoforms of the same gene sometimes perform completely different functions, and as such, knowing the sequence of one of the transcripts is not enough. Rapid Amplification of cDNA Ends (RACE) provides an inexpensive and powerful tool to quickly identify alternative transcripts of a gene when the partial or complete sequence of only one transcript is known. In the following sections, we outline details for rapid amplification of 5' and 3' cDNA ends using the "New Race" technique.

  12. Rapid Classification and Identification of Microcystis aeruginosa Strains Using MALDI–TOF MS and Polygenetic Analysis

    PubMed Central

    Sun, Li-Wei; Jiang, Wen-Jing; Sato, Hiroaki; Kawachi, Masanobu; Lu, Xi-Wu

    2016-01-01

    Matrix-assisted laser desorption–ionization-time-of-flight mass spectrometry (MALDI–TOF MS) was used to establish a rapid, simple, and accurate method to differentiate among strains of Microcystis aeruginosa, one of the most prevalent types of bloom-forming cyanobacteria. M. aeruginosa NIES-843, for which a complete genome has been sequenced, was used to characterize ribosomal proteins as biomarkers and to optimize conditions for observing ribosomal proteins as major peaks in a given mass spectrum. Thirty-one of 52 ribosomal subunit proteins were detected and identified along the mass spectrum. Fifty-five strains of M. aeruginosa from different habitats were analyzed using MALDI–TOF MS; among these samples, different ribosomal protein types were observed. A polygenetic analysis was performed using an unweighted pair-group method with arithmetic means and different ribosomal protein types to classify the strains into five major clades. Two clades primarily contained toxic strains, and the other three clades contained exclusively non-toxic strains. This is the first study to differentiate cyanobacterial strains using MALDI–TOF MS. PMID:27227555

  13. PRIGSA: protein repeat identification by graph spectral analysis.

    PubMed

    Chakrabarty, Broto; Parekh, Nita

    2014-12-01

    Repetition of a structural motif within protein is associated with a wide range of structural and functional roles. In most cases the repeating units are well conserved at the structural level while at the sequence level, they are mostly undetectable suggesting the need for structure-based methods. Since most known methods require a training dataset, de novo approach is desirable. Here, we propose an efficient graph-based approach for detecting structural repeats in proteins. In a protein structure represented as a graph, interactions between inter- and intra-repeat units are well captured by the eigen spectra of adjacency matrix of the graph. These conserved interactions give rise to similar connections and a unique profile of the principal eigen spectra for each repeating unit. The efficacy of the approach is shown on eight repeat families annotated in UniProt, comprising of both solenoid and nonsolenoid repeats with varied secondary structure architecture and repeat lengths. The performance of the approach is also tested on other known benchmark datasets and the performance compared with two repeat identification methods. For a known repeat type, the algorithm also identifies the type of repeat present in the protein. A web tool implementing the algorithm is available at the URL http://bioinf.iiit.ac.in/PRIGSA/.

  14. Rapid detection and identification of Bacillus anthracis in food using pyrosequencing technology.

    PubMed

    Amoako, Kingsley K; Janzen, Timothy W; Shields, Michael J; Hahn, Kristen R; Thomas, Matthew C; Goji, Noriko

    2013-08-01

    The development of advanced methodologies for the detection of Bacillus anthracis has been evolving rapidly since the release of the anthrax spores in the mail in 2001. Recent advances in detection and identification techniques could prove to be an essential component in the defense against biological attacks. Sequence based such as pyrosequencing, which has the capability to determine short DNA stretches in real-time using biotinylated PCR amplicons, has potential biodefense applications. Using markers from the virulence plasmids (pXO1 and pXO2) and chromosomal regions, we have demonstrated the power of this technology in the rapid, specific and sensitive detection of B. anthracis spores in food matrices including milk, juice, bottled water, and processed meat. The combined use of immunomagnetic separation and pyrosequencing showed positive detection when liquid foods (bottled water, milk, juice), and processed meat were experimentally inoculated with 6CFU/mL and 6CFU/g, respectively, without an enrichment step. Pyrosequencing is completed in about 60min (following PCR amplification) and yields accurate and reliable results with an added layer of confidence. The entire assay (from sample preparation to sequencing information) can be completed in about 7.5h. A typical run on food samples yielded 67-80bp reads with 94-100% identity to the expected sequence. This sequence based approach is a novel application for the detection of anthrax spores in food with potential application in foodborne bioterrorism response and biodefense involving the use of anthrax spores.

  15. Rapid identification of Candida dubliniensis using a species-specific molecular beacon.

    PubMed

    Park, S; Wong, M; Marras, S A; Cross, E W; Kiehn, T E; Chaturvedi, V; Tyagi, S; Perlin, D S

    2000-08-01

    Candida dubliniensis is an opportunistic fungal pathogen that has been linked to oral candidiasis in AIDS patients, although it has recently been isolated from other body sites. DNA sequence analysis of the internal transcribed spacer 2 (ITS2) region of rRNA genes from reference Candida strains was used to develop molecular beacon probes for rapid, high-fidelity identification of C. dubliniensis as well as C. albicans. Molecular beacons are small nucleic acid hairpin probes that brightly fluoresce when they are bound to their targets and have a significant advantage over conventional nucleic acid probes because they exhibit a higher degree of specificity with better signal-to-noise ratios. When applied to an unknown collection of 23 strains that largely contained C. albicans and a smaller amount of C. dubliniensis, the species-specific probes were 100% accurate in identifying both species following PCR amplification of the ITS2 region. The results obtained with the molecular beacons were independently verified by random amplified polymorphic DNA analysis-based genotyping and by restriction enzyme analysis with enzymes BsmAI and NspBII, which cleave recognition sequences within the ITS2 regions of C. dubliniensis and C. albicans, respectively. Molecular beacons are promising new probes for the rapid detection of Candida species.

  16. [Evaluation of Prolex for the rapid identification of streptococci isolated in medical microbiology].

    PubMed

    Loubinoux, J; Mihaila-Amrouche, L; Bouvet, A

    2004-10-01

    The need to rapidly identify streptococci responsible for acute infectious diseases has led to the development of agglutination techniques that are able to identify streptococcal group antigens (A, B, C, D, F, and G) directly from primoculture colonies on blood agar. The Prolex agglutination tests (Pro-Lab Diagnostics, Richmond Hill, Ontario, Canada), distributed in France by i2a, have been used for the determination of group antigens of 166 isolates of streptococci and enterococci previously identified in the National Reference Center for Streptococci. The results obtained with the Prolex reagents have permitted to correctly identify all pyogenic beta-hemolytic streptococci (23 Streptococcus pyogenes, 21 Streptococcus agalactiae, 33 Streptococcus dysgalactiae subsp. equisimilis including 6 group C and 27 group G, and 5 Streptococcus porcinus including 4 group B). Four differences between unexpected agglutinations (A or F) and species identifications have been obtained. These differences were observed for four non-hemolytic isolates of Streptococcus mutans, Streptococcus gordonii, Streptococcus infantarius, and Streptococcus suis. The anti-D reagent has been of value as a marker for isolates of enterococci. Thus, these results confirm the abilities of these agglutination tests for the grouping of beta-hemolytic streptococci. Moreover, the use of Prolex has the advantage to be rapid because of the non-enzymatic but chemical extraction of streptococcal antigens.

  17. Rapid and field-deployable biological and chemical Raman-based identification

    NASA Astrophysics Data System (ADS)

    Botonjic-Sehic, Edita; Paxon, Tracy L.; Boudries, Hacene

    2011-06-01

    Pathogen detection using Raman spectroscopy is achieved through the use of a sandwich immunoassay. Antibody-modified magnetic beads are used to capture and concentrate target analytes in solution and surface-enhanced Raman spectroscopy (SERS) tags are conjugated with antibodies and act as labels to enable specific detection of biological pathogens. The rapid detection of biological pathogens is critical to first responders, thus assays to detect E.Coli and Anthrax have been developed and will be reported. The problems associated with pathogen detection resulting from the spectral complexity and variability of microorganisms are overcome through the use of SERS tags, which provide an intense, easily recognizable, and spectrally consistent Raman signal. The developed E. coli assay has been tested with 5 strains of E. coli and shows a low limit of detection, on the order of 10 and 100 c.f.u. per assay. Additionally, the SERS assay utilizes magnetic beads to collect the labeled pathogens into the focal point of the detection laser beam, making the assay robust to commonly encountered white powder interferants such as flour, baking powder, and corn starch. The reagents were also found to be stable at room temperature over extended periods of time with testing conducted over a one year period. Finally, through a specialized software algorithm, the assays are interfaced to the Raman instrument, StreetLab Mobile, for rapid-field-deployable biological identification.

  18. Rapid identification of marine bioluminescent bacteria by amplified 16S ribosomal RNA gene restriction analysis.

    PubMed

    Kita-Tsukamoto, Kumiko; Wada, Minoru; Yao, Katomi; Kamiya, Akiko; Yoshizawa, Susumu; Uchiyama, Nami; Kogure, Kazuhiro

    2006-03-01

    To rapidly identify natural isolates of marine bioluminescent bacteria, we developed amplified ribosomal DNA restriction analysis (ARDRA) methods. ARDRA, which is based on the restriction patterns of 16S rRNA gene digested with five enzymes (EcoRI, DdeI, HhaI, HinfI, RsaI), clearly distinguished the 14 species of marine bioluminescent bacteria currently known, which belong to the genera Vibrio, Photobacterium, and Shewanella. When we applied ARDRA to 129 natural isolates from two cruises in Sagami Bay, Japan, 127 were grouped into six ARDRA types with distinctive restriction patterns; these isolates represented the bioluminescent species, P. angustum, P. leiognathi, P. phosphoreum, S. woodyi, V. fischeri, and V. harveyi. The other two isolates showing unexpected ARDRA patterns turned out to have 16S rRNA gene sequences similar to P. leiognathi and P. phosphoreum. Nevertheless, ARDRA provides a simple and fairly robust means for rapid identification of the natural isolates of marine bioluminescent bacteria, and is therefore useful in studying their diversity.

  19. Rapid Identification of Antifungal Compounds against Exserohilum rostratum Using High Throughput Drug Repurposing Screens

    PubMed Central

    Sugui, Janyce A.; Fothergill, Annette; Southall, Noel; Shinn, Paul; McKew, John C.; Kwon-Chung, Kyung J.; Zheng, Wei; Williamson, Peter R.

    2013-01-01

    A recent large outbreak of fungal infections by Exserohilum rostratum from contaminated compounding solutions has highlighted the need to rapidly screen available pharmaceuticals that could be useful in therapy. The present study utilized two newly-developed high throughput assays to screen approved drugs and pharmaceutically active compounds for identification of potential antifungal agents. Several known drugs were found that have potent effects against E. rostratum including the triazole antifungal posaconazole. Posaconazole is likely to be effective against infections involving septic joints and may provide an alternative for refractory central nervous system infections. The anti-E. rostratum activities of several other drugs including bithionol (an anti-parasitic drug), tacrolimus (an immunosuppressive agent) and floxuridine (an antimetabolite) were also identified from the drug repurposing screens. In addition, activities of other potential antifungal agents against E. rostratum were excluded, which may avoid unnecessary therapeutic trials and reveals the limited therapeutic alternatives for this outbreak. In summary, this study has demonstrated that drug repurposing screens can be quickly conducted within a useful time-frame. This would allow clinical implementation of identified alternative therapeutics and should be considered as part of the initial public health response to new outbreaks or rapidly-emerging microbial pathogens. PMID:23990907

  20. Rapid detection and identification of four major Schistosoma species by high-resolution melt (HRM) analysis.

    PubMed

    Li, Juan; Zhao, Guang-Hui; Lin, RuiQing; Blair, David; Sugiyama, Hiromu; Zhu, Xing-Quan

    2015-11-01

    Schistosomiasis, caused by blood flukes belonging to several species of the genus Schistosoma, is a serious and widespread parasitic disease. Accurate and rapid differentiation of these etiological agents of animal and human schistosomiasis to species level can be difficult. We report a real-time PCR assay coupled with a high-resolution melt (HRM) assay targeting a portion of the nuclear 18S rDNA to detect, identify, and distinguish between four major blood fluke species (Schistosoma japonicum, Schistosoma mansoni, Schistosoma haematobium, and Schistosoma mekongi). Using this system, the Schistosoma spp. was accurately identified and could also be distinguished from all other trematode species with which they were compared. As little as 10(-5) ng genomic DNA from a Schistosoma sp. could be detected. This process is inexpensive, easy, and can be completed within 3 h. Examination of 21 representative Schistosoma samples from 15 geographical localities in seven endemic countries validated the value of the HRM detection assay and proved its reliability. The melting curves were characterized by peaks of 83.65 °C for S. japonicum and S. mekongi, 85.65 °C for S. mansoni, and 85.85 °C for S. haematobium. The present study developed a real-time PCR coupled with HRM analysis assay for detection and differential identification of S. mansoni, S. haematobium, S. japonicum, and S. mekongi. This method is rapid, sensitive, and inexpensive. It has important implications for epidemiological studies of Schistosoma.

  1. Species-specific PCR primers for the rapid identification of yeasts of the genus Zygosaccharomyces.

    PubMed

    Harrison, Elizabeth; Muir, Alastair; Stratford, Malcolm; Wheals, Alan

    2011-06-01

    Species-specific primer pairs that produce a single band of known product size have been developed for members of the Zygosaccharomyces clade including Zygosaccharomyces bailii, Zygosaccharomyces bisporus, Zygosaccharomyces kombuchaensis, Zygosaccharomyces lentus, Zygosaccharomyces machadoi, Zygosaccharomyces mellis and Zygosaccharomyces rouxii. An existing primer pair for the provisional new species Zygosaccharomyces pseudorouxii has been confirmed as specific. The HIS3 gene, encoding imidazole-glycerolphosphate dehydratase, was used as the target gene. This housekeeping gene evolves slowly and is thus well conserved among different isolates, but shows a significant number of base pair changes between even closely related species, sufficient for species-specific primer design. The primers were tested on type and wild strains of the genus Zygosaccharomyces and on members of the Saccharomycetaceae. Sequencing of the D1/D2 region of rDNA was used to confirm the identification of all nonculture collection isolates. This approach used extracted genomic DNA, but in practice, it can be used efficiently with a rapid colony PCR protocol. The method also successfully detected known and new hybrid strains of Z. rouxii and Z. pseudorouxii. The method is rapid, robust and inexpensive. It requires little expertise by the user and is thus useful for preliminary, large-scale screens.

  2. A cell-free expression and purification process for rapid production of protein biologics.

    PubMed

    Sullivan, Challise J; Pendleton, Erik D; Sasmor, Henri H; Hicks, William L; Farnum, John B; Muto, Machiko; Amendt, Eric M; Schoborg, Jennifer A; Martin, Rey W; Clark, Lauren G; Anderson, Mark J; Choudhury, Alaksh; Fior, Raffaella; Lo, Yu-Hwa; Griffey, Richard H; Chappell, Stephen A; Jewett, Michael C; Mauro, Vincent P; Dresios, John

    2016-02-01

    Cell-free protein synthesis has emerged as a powerful technology for rapid and efficient protein production. Cell-free methods are also amenable to automation and such systems have been extensively used for high-throughput protein production and screening; however, current fluidic systems are not adequate for manufacturing protein biopharmaceuticals. In this work, we report on the initial development of a fluidic process for rapid end-to-end production of recombinant protein biologics. This process incorporates a bioreactor module that can be used with eukaryotic or prokaryotic lysates that are programmed for combined transcription/translation of an engineered DNA template encoding for specific protein targets. Purification of the cell-free expressed product occurs through a series of protein separation modules that are configurable for process-specific isolation of different proteins. Using this approach, we demonstrate production of two bioactive human protein therapeutics, erythropoietin and granulocyte-macrophage colony-stimulating factor, in yeast and bacterial extracts, respectively, each within 24 hours. This process is flexible, scalable and amenable to automation for rapid production at the point-of-need of proteins with significant pharmaceutical, medical, or biotechnological value.

  3. Rapid and reliable species identification of wild mushrooms by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS).

    PubMed

    Sugawara, Ryota; Yamada, Sayumi; Tu, Zhihao; Sugawara, Akiko; Suzuki, Kousuke; Hoshiba, Toshihiro; Eisaka, Sadao; Yamaguchi, Akihiro

    2016-08-31

    Mushrooms are a favourite natural food in many countries. However, some wild species cause food poisoning, sometimes lethal, due to misidentification caused by confusing fruiting bodies similar to those of edible species. The morphological inspection of mycelia, spores and fruiting bodies have been traditionally used for the identification of mushrooms. More recently, DNA sequencing analysis has been successfully applied to mushrooms and to many other species. This study focuses on a simpler and more rapid methodology for the identification of wild mushrooms via protein profiling based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). A preliminary study using 6 commercially available cultivated mushrooms suggested that a more reproducible spectrum was obtained from a portion of the cap than from the stem of a fruiting body by the extraction of proteins with a formic acid-acetonitrile mixture (1 + 1). We used 157 wild mushroom-fruiting bodies collected in the centre of Hokkaido from June to November 2014. Sequencing analysis of a portion of the ribosomal RNA gene provided 134 identifications of mushrooms by genus or species, however 23 samples containing 10 unknown species that had lower concordance rate of the nucleotide sequences in a BLAST search (less than 97%) and 13 samples that had unidentifiable poor or mixed sequencing signals remained unknown. MALDI-TOF MS analysis yielded a reproducible spectrum (frequency of matching score ≥ 2.0 was ≥6 spectra from 12 spectra measurements) for 114 of 157 samples. Profiling scores that matched each other within the database gave correct species identification (with scores of ≥2.0) for 110 samples (96%). An in-house prepared database was constructed from 106 independent species, except for overlapping identifications. We used 48 wild mushrooms that were collected in autumn 2015 to validate the in-house database. As a result, 21 mushrooms were identified at the species level with

  4. [Automated RNA amplification for the rapid identification of Mycobacterium tuberculosis complex in respiratory specimens].

    PubMed

    Drouillon, V; Houriez, F; Buze, M; Lagrange, P; Herrmann, J-L

    2006-01-01

    Rapid and sensitive detection of Mycobacterium tuberculosis complex (MTB) directly on clinical respiratory specimens is essential for a correct management of patients suspected of tuberculosis. For this purpose PCR-based kits are available to detect MTB in respiratory specimen but most of them need at least 4 hours to be completed. New methods, based on TRC method (TRC: Transcription Reverse transcription Concerted--TRCRapid M. Tuberculosis--Tosoh Bioscience, Tokyo, Japon) and dedicated monitor have been developed. A new kit (TRC Rapid M. tuberculosis and Real-time monitor TRCRapid-160, Tosoh Corporation, Japan) enabling one step amplification and real-time detection of MTB 16S rRNA by a combination of intercalative dye oxazole yellow-linked DNA probe and isothermal RNA amplification directly on respiratory specimens has been tested in our laboratory. 319 respiratory specimens were tested in this preliminary study and results were compared to smear and culture. Fourteen had a positive culture for MTB. Among theses samples, smear was positive in 11 cases (78.6%) and TRC process was positive in 8 cases (57.1%). Overall sensitivity of TRC compared to smear positive samples is 73%. Theses first results demonstrated that a rapid identification of MTB was possible (less than 2 processing hours for 14 specimens and about 1 hour for 1 specimen) in most cases of smear positive samples using ready to use reagents for real time detection of MTB rRNA in clinical samples. New pretreatment and extraction reagents kits to increase the stability of the sputum RNA and the extraction efficiency are now tested in our laboratory.

  5. An Innovative Method for Rapid Identification and Detection of Vibrio alginolyticus in Different Infection Models

    PubMed Central

    Fu, Kaifei; Li, Jun; Wang, Yuxiao; Liu, Jianfei; Yan, He; Shi, Lei; Zhou, Lijun

    2016-01-01

    Vibrio alginolyticus is one of the most common pathogenic marine Vibrio species, and has been found to cause serious seafood-poisoning or fatal extra-intestinal infections in humans, such as necrotizing soft-tissue infections, bacteremia, septic shock, and multiple organ failures. Delayed accurate diagnosis and treatment of most Vibrio infections usually result to high mortality rates. The objective of this study was to establish a rapid diagnostic method to detect and identify the presence of V. alginolyticus in different samples, so as to facilitate timely treatment. The widely employed conventional methods for detection of V. alginolyticus include biochemical identification and a variety of PCR methods. The former is of low specificity and time-consuming (2–3 days), while the latter has improved accuracy and processing time. Despite such advancements, these methods are still complicated, time-consuming, expensive, require expertise and advanced laboratory systems, and are not optimal for field use. With the goal of providing a simple and efficient way to detect V. alginolyticus, we established a rapid diagnostic method based on loop-mediated Isothermal amplification (LAMP) technology that is feasible to use in both experimental and field environments. Three primer pairs targeting the toxR gene of V. alginolyticus were designed, and amplification was carried out in an ESE tube scanner and Real-Time PCR device. We successfully identified 93 V. alginolyticus strains from a total of 105 different bacterial isolates and confirmed their identity by 16s rDNA sequencing. We also applied this method on infected mouse blood and contaminated scallop samples, and accurate results were both easily and rapidly (20–60 min) obtained. Therefore, the RT-LAMP assay we developed can be conveniently used to detect the presence of V. alginolyticus in different samples. Furthermore, this method will also fulfill the gap for real-time screening of V. alginolyticus infections

  6. Rapid regulation of nuclear proteins by rapamycin-induced translocation in fission yeast.

    PubMed

    Ding, Lin; Laor, Dana; Weisman, Ronit; Forsburg, Susan L

    2014-07-01

    Genetic analysis of protein function requires a rapid means of inactivating the gene under study. Typically, this exploits temperature-sensitive mutations or promoter shut-off techniques. We report the adaptation to Schizosaccharomyces pombe of the anchor-away technique, originally designed in budding yeast by Laemmli lab. This method relies on a rapamycin-mediated interaction between the FRB- and FKBP12-binding domains to relocalize nuclear proteins of interest to the cytoplasm. We demonstrate a rapid nuclear depletion of abundant proteins as proof of principle.

  7. Rapid changes in protein phosphorylation associated with light-induced gravity perception in corn roots

    NASA Technical Reports Server (NTRS)

    McFadden, J. J.; Poovaiah, B. W.

    1988-01-01

    The effect of light and calcium depletion on in vivo protein phosphorylation was tested using dark-grown roots of Merit corn. Light caused rapid and specific promotion of phosphorylation of three polypeptides. Pretreatment of roots with ethylene glycol bis N,N,N',N' tetraacetic acid and A23187 prevented light-induced changes in protein phosphorylation. We postulate that these changes in protein phosphorylation are involved in the light-induced gravity response.

  8. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis.

    PubMed

    Wang, Wei; Vignani, Rita; Scali, Monica; Cresti, Mauro

    2006-07-01

    A simple and universally applicable protocol for extracting high-quality proteins from recalcitrant plant tissues is described. We have used the protocol with no modification, for a wide range of leaves and fruits. In all cases, this protocol allows to obtain good electrophoretic separation of proteins. As the protocol is rapid, universal, and compatible with silver staining, it could be used for routine protein extraction from recalcitrant plant tissues for proteomic analysis.

  9. Identification and localization of the FMR-1 protein product

    SciTech Connect

    Verheij, C.; Hoogeveen, A.T.; Verkerk, A.J.M.H.; DeGraaf, E.; Bakker, C.; Reuser, A.J.J.

    1994-07-15

    The fragile X syndrome results from amplification of the CGG repeat found in the FMR-1 gene. As a first step in the identification and localization of the FMR-1 gene product, antibodies were raised against different regions of the FMR-1 protein (FMRP). These antibodies were used to analyze FMRP in lymphoblastoid cell lines from patients (n=5) and controls (n=3). FMRP was immunoprecipated and subsequently analyzed by immunoblotting. Four molecular species (67-74 kDa) were found which were absent in 4 of the 5 patients. The lack is in agreement with the absence of FMR-1 mRNA. The patient expressing FMRP`s shows a mosaic DNA pattern with part of the cells carrying a premutation and others carrying a full mutation. The premutation allele is preceded by an unmethylated CpG island and is expressed into FMR-1 mRNA which is subsequently translated into protein. The four different FMRPs most likely result from alternative splicing of the FMR-1 mRNA. Two splice products were mimicked in cDNA constructs transiently expressed in COS-1 cells. Both splice products appeared to encode for stable protein products and were recognized by the antibodies. The molecular weight of the protein products was in agreement with two of the protein products found in the lymphoblastoid cell lines, indicating that the FMRPs detected in lymphoblasts are the result of alternative splicing. The intracellular localization of FMRP in COS-1 cells was cytoplasmatic. The finding of four FMRPs of the same molecular weight in controls and the mosaic patient indicate that the CGG repeat is not translated.

  10. Identification of trichoplein, a novel keratin filament-binding protein.

    PubMed

    Nishizawa, Miwako; Izawa, Ichiro; Inoko, Akihito; Hayashi, Yuko; Nagata, Koh-ichi; Yokoyama, Tomoya; Usukura, Jiro; Inagaki, Masaki

    2005-03-01

    Keratins 8 and 18 (K8/18) are major components of the intermediate filaments (IFs) of simple epithelia. We report here the identification of a novel protein termed trichoplein. This protein shows a low degree of sequence similarity to trichohyalin, plectin and myosin heavy chain, and is a K8/18-binding protein. Among interactions between trichoplein and various IF proteins that we tested using two-hybrid methods, trichoplein interacted significantly with K16 and K18, and to some extent with K5, K6a, K8 and K14. In in vitro co-sedimentation assays, trichoplein directly binds to K8/18, but not with vimentin, desmin, actin filaments or microtubules. An antibody raised against trichoplein specifically recognized a polypeptide with a relative molecular mass of 61 kDa in cell lysates. Trichoplein was immunoprecipitated using this antibody in a complex with K8/18 and immunostaining revealed that trichoplein colocalized with K8/18 filaments in HeLa cells. In polarized Caco-2 cells, trichoplein colocalized not only with K8/18 filaments in the apical region but also with desmoplakin, a constituent of desmosomes. In the absorptive cells of the small intestine, trichoplein colocalized with K8/18 filaments at the apical cortical region, and was also concentrated at desmosomes. Taken together, these results suggest that trichoplein is a keratin-binding protein that may be involved in the organization of the apical network of keratin filaments and desmosomes in simple epithelial cells.

  11. Identification of protein secretion systems in bacterial genomes.

    PubMed

    Abby, Sophie S; Cury, Jean; Guglielmini, Julien; Néron, Bertrand; Touchon, Marie; Rocha, Eduardo P C

    2016-03-16

    Bacteria with two cell membranes (diderms) have evolved complex systems for protein secretion. These systems were extensively studied in some model bacteria, but the characterisation of their diversity has lagged behind due to lack of standard annotation tools. We built online and standalone computational tools to accurately predict protein secretion systems and related appendages in bacteria with LPS-containing outer membranes. They consist of models describing the systems' components and genetic organization to be used with MacSyFinder to search for T1SS-T6SS, T9SS, flagella, Type IV pili and Tad pili. We identified ~10,000 candidate systems in bacterial genomes, where T1SS and T5SS were by far the most abundant and widespread. All these data are made available in a public database. The recently described T6SS(iii) and T9SS were restricted to Bacteroidetes, and T6SS(ii) to Francisella. The T2SS, T3SS, and T4SS were frequently encoded in single-copy in one locus, whereas most T1SS were encoded in two loci. The secretion systems of diderm Firmicutes were similar to those found in other diderms. Novel systems may remain to be discovered, since some clades of environmental bacteria lacked all known protein secretion systems. Our models can be fully customized, which should facilitate the identification of novel systems.

  12. Rapid identification of Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) using ribosomal RNA internal transcribed spacer 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid identification of invasive species is crucial for deploying management strategies to prevent establishment. Recent Helicoverpa armigera (Hübner) invasions and subsequent establishment in some countries of South America has increased the risk of this species invading North America. Differentiat...

  13. DEVELOPMENT OF SERS SPECTROSCOPY FOR ROUTINE AND RAPID IDENTIFICATION OF ESCHERICHIA COLI AND LISTERIA MONOCYTOGENES ON SILVER COLLOIDAL NANOPARTICLES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SERS spectra were collected to explore its potential for rapid and routine identification of E. coli and L. monocytogenes cultures. Ratios of SERS peaks from K3PO4 were used to evaluate the reproducibility, stability, and binding effectiveness of citrate-reduced silver colloids over batch and storag...

  14. An integrated high resolution mass spectrometric and informatics approach for the rapid identification of phenolics in plant extract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An integrated approach based on high resolution MS analysis (orbitrap), database (db) searching and MS/MS fragmentation prediction for the rapid identification of plant phenols is reported. The approach was firstly validated by using a mixture of phenolic standards (phenolic acids, flavones, flavono...

  15. Triplex PCR assay for the rapid identification of 3 major Vibrio species, Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio fluvialis.

    PubMed

    Vinothkumar, Kittappa; Bhardwaj, Ashima Kushwaha; Ramamurthy, Thandavarayan; Niyogi, Swapan Kumar

    2013-08-01

    A triplex PCR assay was developed for the identification of 3 major Vibrio spp., Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio fluvialis by targeting their haemolysin, haem-utilizing, and central regulatory genes, respectively. This simple, rapid, sensitive, and specific assay using cell lysates from 227 samples established its usefulness in research and epidemiology.

  16. An integrated sample-in-answer-out microfluidic chip for rapid human identification by STR analysis.

    PubMed

    Le Roux, Delphine; Root, Brian E; Hickey, Jeffrey A; Scott, Orion N; Tsuei, Anchi; Li, Jingyi; Saul, David J; Chassagne, Luc; Landers, James P; de Mazancourt, Philippe

    2014-11-21

    A fully integrated microfluidic chip for human identification by short tandem repeat (STR) analysis that includes a unique enzymatic liquid preparation of the DNA, microliter non-contact PCR, and a polymer that allows a high-resolution separation within a compact microchip footprint has been developed. A heat-activated enzyme that digests biological materials is employed to generate the target yield of DNA from a buccal swab or FTA paper. The microfluidic architecture meters an aliquot of the liberated DNA and mixes it with the PCR reagents prior to non-contact IR-mediated PCR amplification. The products of PCR amplification are mixed with a sizing standard (ladder) and the 18-plex STR amplicons are separated in an effective length (Leff) of just 7 cm. The development, optimization and integration of each of these processes within the microfluidic chip are described. The device is able to generate genetic profiles in approximately 2 hours that match the profiles from the conventional processes performed using separate conventional instruments. Analysis is performed on a single plastic microchip with a size similar to that of a 96-well plate and only a few mm thick with no pretreatment of any of the functional domains. This is significant advancement in terms of ease of fabrication over glass microdevices or polymeric systems assembled from multiple components. Consequently, this fully integrated sample-in-answer-out microchip is an important step toward generation of a rapid micro-total analysis system for point-of-collection human identification based on genetic analysis.

  17. VIP Barcoding: composition vector-based software for rapid species identification based on DNA barcoding.

    PubMed

    Fan, Long; Hui, Jerome H L; Yu, Zu Guo; Chu, Ka Hou

    2014-07-01

    Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/.

  18. Rapid Protein Digestion and Purification with Membranes Attached to Pipet Tips.

    PubMed

    Ning, Wenjing; Bruening, Merlin L

    2015-12-15

    This paper presents rapid protein purification and proteolysis methods that integrate membrane technology and pipet tips. Pushing a protein-containing solution through a protease-modified membrane at the end of a pipet tip digests proteins in 30 s or less, and the short proteolysis time avoids reformation of disulfide bonds to enable tryptic digestion without alkylation of cysteine residues. Moreover, proteolysis is more complete than digestion for 30 min in solution. Antibody digestion at the end of a pipet tip leads to 100% peptide coverage in MS analyses. Similarly, when membranes contain Ni(2+) complexes, pipetting aqueous polyhistidine-tagged protein through the membrane and subsequent rinsing and elution yield purified polyhistidine-tagged protein in 2 min. These applications demonstrate the potential for combining functional membranes and pipet tips for rapid sample purification and pretreatment.

  19. Acoustic-resonance spectrometry as a process analytical technology for rapid and accurate tablet identification.

    PubMed

    Medendorp, Joseph; Lodder, Robert A

    2006-03-01

    This research was performed to test the hypothesis that acoustic-resonance spectrometry (ARS) is able to rapidly and accurately differentiate tablets of similar size and shape. The US Food and Drug Administration frequently orders recalls of tablets because of labeling problems (eg, the wrong tablet appears in a bottle). A high-throughput, nondestructive method of online analysis and label comparison before shipping could obviate the need for recall or disposal of a batch of mislabeled drugs, thus saving a company considerable expense and preventing a major safety risk. ARS is accurate and precise as well as inexpensive and nondestructive, and the sensor, is constructed from readily available parts, suggesting utility as a process analytical technology (PAT). To test the classification ability of ARS, 5 common household tablets of similar size and shape were chosen for analysis (aspirin, ibuprofen, acetaminophen, vitamin C, and vitamin B12). The measures of successful tablet identification were intertablet distances in nonparametric multidimensional standard deviations (MSDs) greater than, 3 and intratablet MSDs less than 3, as calculated from an extended bootstrap erroradjusted single sample technique. The average intertablet MSD was 65.64, while the average intratablet MSD from cross-validation was 1.91. Tablet mass (r(2)=0.977), thickness (r(2)=0.977), and density (r(2)=0.900) were measured very accurately from the AR spectra, each with less than 10% error. Tablets were identified correctly with only 250 ms data collection time. These results demonstrate that ARS effectively identified and characterized the 5 types of tablets and could potentially serve as a rapid high-throughput online pharmaceutical sensor.

  20. Rapid detection and identification of beer-spoilage lactic acid bacteria by microcolony method.

    PubMed

    Asano, Shizuka; Iijima, Kazumaru; Suzuki, Koji; Motoyama, Yasuo; Ogata, Tomoo; Kitagawa, Yasushi

    2009-08-01

    We evaluated a microcolony method for the detection and identification of beer-spoilage lactic acid bacteria (LAB). In this approach, bacterial cells were trapped on a polycarbonate membrane filter and cultured on ABD medium, a medium that allows highly specific detection of beer-spoilage LAB strains. After short-time incubation, viable cells forming microcolonies were stained with carboxyfluorescein diacetate (CFDA) and counted with muFinder Inspection System. In our study, we first investigated the growth behavior of various beer-spoilage LAB by traditional culture method, and Lactobacillus lindneri and several L. paracollinoides strains were selected as slow growers on ABD medium. Then the detection speeds were evaluated by microcolony method, using these slowly growing strains. As a result, all of the slowly growing beer-spoilage LAB strains were detected within 3 days of incubation. The specificity of this method was found to be exceptionally high and even discriminated intra-species differences in beer-spoilage ability of LAB strains upon detection. These results indicate that our microcolony approach allows rapid and specific detection of beer-spoilage LAB strains with inexpensive CFDA staining. For further confirmation of species status of detected strains, subsequent treatment with species-specific fluorescence in situ hybridization (FISH) probes was shown as effective for identifying the CFDA-detected microcolonies to the species level. In addition, no false-positive results arising from noise signals were recognized for CFDA staining and FISH methods. Taken together, the developed microcolony method was demonstrated as a rapid and highly specific countermeasure against beer-spoilage LAB, and compared favorably with the conventional culture methods.

  1. A simple and rapid assay for specific identification of bovine derived products in biocomplex materials.

    PubMed

    Khairalla, Khairalla M S; Aradaib, Imadeldin E; Bakhiet, Amel O; Hassan, Tigani; Hago, Badr E; Saeed, Abdel-Rahman

    2007-04-15

    A simple and rapid method for specific identification of beef or bovine-derived products in processed food and in animal feed concentrates was developed and evaluated using Polymerase Chain Reaction (PCR). The mitochondrial cytochrome-b (mtcyt-b) gene was used as a target DNA for PCR amplification. Three primers derived from a highly conserved region of bovine mtcyt-b gene were used. The outer pair of primers (RSL1 and CSR2) produced a 365 base pair (bp) PCR ampilicon from bovine DNA, while the internal semi-nested pair of primers (CSL1 and CSR2) were used to amplify a 284 bp PCR ampilicon, internal to the annealing sites of primers (RSL1 and CSR2). Both ampilicons were identified easily after visualization on agarose gel stained with ethidium bromide. The specificity studies indicated that the primary or the semi-nested PCR products were not amplified from DNA extracted from different ruminant species including, sheep, goat and ghazals; or from non-ruminant animals including camels, horses and pigs. Also was found very sensitive because could detect 0.001% (W/V) of bovine mtcyt-b gene. The semi-nested amplification was necessary to increase the sensitivity of the PCR assay and to confirm the identity of the primary PCR ampilicons. The described PCR assay detected the primary and the semi-nested PCR ampilicons from different animal feed concentrates containing bovine-derived product including, canned food, poultry and dairy feed concentrates. The described PCR assay should facilitate rapid detection of beef and bovine-derived products in processed food and in animal feed concentrates.

  2. Leptospiral Outer Membrane Protein Microarray, a Novel Approach to Identification of Host Ligand-Binding Proteins

    PubMed Central

    Matsunaga, James; Haake, David A.

    2012-01-01

    Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via freshwater and colonization of the renal tubules of their reservoir hosts. Infection requires adherence to cell surfaces and extracellular matrix components of host tissues. These host-pathogen interactions involve outer membrane proteins (OMPs) expressed on the bacterial surface. In this study, we developed an Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 OMP microarray containing all predicted lipoproteins and transmembrane OMPs. A total of 401 leptospiral genes or their fragments were transcribed and translated in vitro and printed on nitrocellulose-coated glass slides. We investigated the potential of this protein microarray to screen for interactions between leptospiral OMPs and fibronectin (Fn). This approach resulted in the identification of the recently described fibronectin-binding protein, LIC10258 (MFn8, Lsa66), and 14 novel Fn-binding proteins, denoted Microarray Fn-binding proteins (MFns). We confirmed Fn binding of purified recombinant LIC11612 (MFn1), LIC10714 (MFn2), LIC11051 (MFn6), LIC11436 (MFn7), LIC10258 (MFn8, Lsa66), and LIC10537 (MFn9) by far-Western blot assays. Moreover, we obtained specific antibodies to MFn1, MFn7, MFn8 (Lsa66), and MFn9 and demonstrated that MFn1, MFn7, and MFn9 are expressed and surface exposed under in vitro growth conditions. Further, we demonstrated that MFn1, MFn4 (LIC12631, Sph2), and MFn7 enable leptospires to bind fibronectin when expressed in the saprophyte, Leptospira biflexa. Protein microarrays are valuable tools for high-throughput identification of novel host ligand-binding proteins that have the potential to play key roles in the virulence mechanisms of pathogens. PMID:22961849

  3. Microfluidic mixers for the investigation of rapid protein folding kinetics using synchrotron radiation circular dichroism spectroscopy.

    PubMed

    Kane, Avinash S; Hoffmann, Armin; Baumgärtel, Peter; Seckler, Robert; Reichardt, Gerd; Horsley, David A; Schuler, Benjamin; Bakajin, Olgica

    2008-12-15

    We have developed a microfluidic mixer optimized for rapid measurements of protein folding kinetics using synchrotron radiation circular dichroism (SRCD) spectroscopy. The combination of fabrication in fused silica and synchrotron radiation allows measurements at wavelengths below 220 nm, the typical limit of commercial instrumentation. At these wavelengths, the discrimination between the different types of protein secondary structure increases sharply. The device was optimized for rapid mixing at moderate sample consumption by employing a serpentine channel design, resulting in a dead time of less than 200 micros. Here, we discuss the design and fabrication of the mixer and quantify the mixing efficiency using wide-field and confocal epi-fluorescence microscopy. We demonstrate the performance of the device in SRCD measurements of the folding kinetics of cytochrome c, a small, fast-folding protein. Our results show that the combination of SRCD with microfluidic mixing opens new possibilities for investigating rapid conformational changes in biological macromolecules that have previously been inaccessible.

  4. Template-based identification of protein-protein interfaces using eFindSitePPI.

    PubMed

    Maheshwari, Surabhi; Brylinski, Michal

    2016-01-15

    Protein-protein interactions orchestrate virtually all cellular processes, therefore, their exhaustive exploration is essential for the comprehensive understanding of cellular networks. A reliable identification of interfacial residues is vital not only to infer the function of individual proteins and their assembly into biological complexes, but also to elucidate the molecular and physicochemical basis of interactions between proteins. With the exponential growth of protein sequence data, computational approaches for detecting protein interface sites have drawn an increased interest. In this communication, we discuss the major features of eFindSite(PPI), a recently developed template-based method for interface residue prediction available at http://brylinski.cct.lsu.edu/efindsiteppi. We describe the requirements and installation procedures for the stand-alone version, and explain the content and format of output data. Furthermore, the functionality of the eFindSite(PPI) web application that is designed to provide a simple and convenient access for the scientific community is presented with illustrative examples. Finally, we discuss common problems encountered in predicting protein interfaces and set forth directions for the future development of eFindSite(PPI).

  5. High-throughput identification of proteins with AMPylation using self-assembled human protein (NAPPA) microarrays.

    PubMed

    Yu, Xiaobo; LaBaer, Joshua

    2015-05-01

    AMPylation (adenylylation) has been recognized as an important post-translational modification that is used by pathogens to regulate host cellular proteins and their associated signaling pathways. AMPylation has potential functions in various cellular processes, and it is widely conserved across both prokaryotes and eukaryotes. However, despite the identification of many AMPylators, relatively few candidate substrates of AMPylation are known. This is changing with the recent development of a robust and reliable method for identifying new substrates using protein microarrays, which can markedly expand the list of potential substrates. Here we describe procedures for detecting AMPylated and auto-AMPylated proteins in a sensitive, high-throughput and nonradioactive manner. The approach uses high-density protein microarrays fabricated using nucleic acid programmable protein array (NAPPA) technology, which enables the highly successful display of fresh recombinant human proteins in situ. The modification of target proteins is determined via copper-catalyzed azide-alkyne cycloaddition (CuAAC). The assay can be accomplished within 11 h.

  6. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong

    2015-10-01

    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/.

  7. Extensible multiplex real-time PCR for rapid bacterial identification with carbon nanotube composite microparticles.

    PubMed

    Jung, Seungwon; Kim, Jungmin; Kim, Junsun; Yang, Sang Hwa; Kim, Sang Kyung

    2017-03-01

    The early diagnosis of pathogenic bacteria is significant for bacterial identification and antibiotic resistance. Implementing rapid, sensitive, and specific detection, molecular diagnosis has been considered complementary to the conventional bacterial culture. Composite microparticles of a primer-immobilized network (cPIN) are developed for multiplex detection of pathogenic bacteria with real-time polymerase chain reaction (qPCR). A pair of specific primers are incorporated and stably conserved in a cPIN particle. One primer is crosslinked to the polymer network, and the other is bound to carbon nanotubes (CNTs) in the particle. At the initiation of qPCR, the latter primer is released from the CNTs and participates in the amplification. The amplification efficiency of this cPIN qPCR is estimated at more than 90% with suppressed non-specific signals from complex samples. In multiplexing, four infective pathogens are successfully discriminated using this cPIN qPCR. Multiplex qPCR conforms with the corresponding singleplex assays, proving independent amplification in each particle. Four bacterial targets from clinical samples are differentially analyzed in 30min of a single qPCR trial with multiple cPIN particles.

  8. RAPHIDOPHYCEAE [CHADEFAUD EX SILVA] SYSTEMATICS AND RAPID IDENTIFICATION: SEQUENCE ANALYSES AND REAL-TIME PCR ASSAYS

    PubMed Central

    Bowers, Holly A.; Tomas, Carmelo; Tengs, Torstein; Kempton, Jason W.; Lewitus, Alan J.; Oldach, David W.

    2010-01-01

    Species within the class Raphidophyceae were associated with fish kill events in Japanese, European, Canadian, and U.S. coastal waters. Fish mortality was attributable to gill damage with exposure to reactive oxygen species (peroxide, superoxide, and hydroxide radicals), neurotoxins, physical clogging, and hemolytic substances. Morphological identification of these organisms in environmental water samples is difficult, particularly when fixatives are used. Because of this difficulty and the continued global emergence of these species in coastal estuarine waters, we initiated the development and validation of a suite of real-time polymerase chain reaction (PCR) assays. Sequencing was used to generate complete data sets for nuclear encoded small-subunit ribosomal RNA (SSU rRNA; 18S); internal transcribed spacers 1 and 2, 5.8S; and plastid encoded SSU rRNA (16S) for confirmed raphidophyte cultures from various geographic locations. Sequences for several Chattonella species (C. antiqua, C. marina, C. ovata, C. subsalsa, and C. verruculosa), Heterosigma akashiwo, and Fibrocapsa japonica were generated and used to design rapid and specific PCR assays for several species including C. verruculosa Hara et Chihara, C. subsalsa Biecheler, the complex comprised of C. marina Hara et Chihara, C. antiqua Ono and C. ovata, H. akashiwo Ono, and F. japonica Toriumi et Takano using appropriate loci. With this comprehensive data set, we were also able to perform phylogenetic analyses to determine the relationship between these species. PMID:20411032

  9. Rapid identification of Candida glabrata by using a dipstick to detect trehalase-generated glucose.

    PubMed

    Peltroche-Llacsahuanga, H; Schnitzler, N; Lütticken, R; Haase, G

    1999-01-01

    Candida glabrata is a yeast frequently isolated from human specimens. Based upon its well-known ability to rapidly hydrolyze trehalose, we have developed a novel and cost-effective test incubating one yeast colony emulsified in 50 microl of citrate buffer (0.1 M [pH 5. 0]) containing 4% (wt/vol) trehalose for 3 h at 37 degrees C. Trehalase-generated glucose is detected with a commercially available dipstick (range, 1.0 to 50 g/liter). For evaluation, consecutive clinical isolates and several reference strains of C. glabrata (n = 160), C. albicans (n = 120), and other yeast species with potential ability for utilization of trehalose (C. dubliniensis, n = 11; C. famata, n = 15; C. guilliermondii, n = 5; C. lusitaniae, n = 16; C. parapsilosis, n = 20; C. tropicalis, n = 34; C. viswanathii, n = 5; Pichia angusta, n = 2; C. zeylanoides, n = 2; Saccharomyces cerevisiae, n = 16; C. neoformans, n = 7) were tested. Identification of C. glabrata is achieved within 3 h, with a specificity of 99.1% and a sensitivity of 98.8% when grown on Sabouraud dextrose agar supplemented with 4% glucose.

  10. An integrated lab-on-chip for rapid identification and simultaneous differentiation of tropical pathogens.

    PubMed

    Tan, Jeslin J L; Capozzoli, Monica; Sato, Mitsuharu; Watthanaworawit, Wanitda; Ling, Clare L; Mauduit, Marjorie; Malleret, Benoît; Grüner, Anne-Charlotte; Tan, Rosemary; Nosten, François H; Snounou, Georges; Rénia, Laurent; Ng, Lisa F P

    2014-01-01

    Tropical pathogens often cause febrile illnesses in humans and are responsible for considerable morbidity and mortality. The similarities in clinical symptoms provoked by these pathogens make diagnosis difficult. Thus, early, rapid and accurate diagnosis will be crucial in patient management and in the control of these diseases. In this study, a microfluidic lab-on-chip integrating multiplex molecular amplification and DNA microarray hybridization was developed for simultaneous detection and species differentiation of 26 globally important tropical pathogens. The analytical performance of the lab-on-chip for each pathogen ranged from 102 to 103 DNA or RNA copies. Assay performance was further verified with human whole blood spiked with Plasmodium falciparum and Chikungunya virus that yielded a range of detection from 200 to 4×105 parasites, and from 250 to 4×107 PFU respectively. This lab-on-chip was subsequently assessed and evaluated using 170 retrospective patient specimens in Singapore and Thailand. The lab-on-chip had a detection sensitivity of 83.1% and a specificity of 100% for P. falciparum; a sensitivity of 91.3% and a specificity of 99.3% for P. vivax; a positive 90.0% agreement and a specificity of 100% for Chikungunya virus; and a positive 85.0% agreement and a specificity of 100% for Dengue virus serotype 3 with reference methods conducted on the samples. Results suggested the practicality of an amplification microarray-based approach in a field setting for high-throughput detection and identification of tropical pathogens.

  11. Rapid and accurate identification of Xanthomonas citri subspecies citri by fluorescence in situ hybridization.

    PubMed

    Waite, D W; Griffin, R; Taylor, R; George, S

    2016-11-01

    Citrus canker is an economically important disease caused by the bacterial pathogen Xanthomonas citri subsp. citri (Xcc). This organism targets a wide range of citrus plants, including sweet orange, grapefruit, lemon and lime. As Xcc is spread by environmental factors such as wind and rain, it is difficult to control its movement once the disease has established. In order to facilitate monitoring of citrus canker we sought to design a novel diagnostic protocol based on fluorescence in situ hybridization (FISH) for identification of bacterial cells directly from canker pustules without cultivation or DNA extraction. This method was validated for specificity against a range of Xanthomonas species and strains. We show that our assay is extremely rapid (typically requiring between 2 and 3 h), and possesses a similar specificity to existing PCR diagnostic tools. The sensitivity of the assay is comparable to that of an existing PCR-based technique and sufficient for identifying Xcc in symptomatic plant material. The method is easily transferable to diagnosticians without prior experience using FISH.

  12. Rapid and non-destructive identification of water-injected beef samples using multispectral imaging analysis.

    PubMed

    Liu, Jinxia; Cao, Yue; Wang, Qiu; Pan, Wenjuan; Ma, Fei; Liu, Changhong; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2016-01-01

    Water-injected beef has aroused public concern as a major food-safety issue in meat products. In the study, the potential of multispectral imaging analysis in the visible and near-infrared (405-970 nm) regions was evaluated for identifying water-injected beef. A multispectral vision system was used to acquire images of beef injected with up to 21% content of water, and partial least squares regression (PLSR) algorithm was employed to establish prediction model, leading to quantitative estimations of actual water increase with a correlation coefficient (r) of 0.923. Subsequently, an optimized model was achieved by integrating spectral data with feature information extracted from ordinary RGB data, yielding better predictions (r = 0.946). Moreover, the prediction equation was transferred to each pixel within the images for visualizing the distribution of actual water increase. These results demonstrate the capability of multispectral imaging technology as a rapid and non-destructive tool for the identification of water-injected beef.

  13. Rapid identification of Borrelia by high resolution melting analysis of the groEL gene.

    PubMed

    Koś, Władysław; Wodecka, Beata; Anklewicz, Marek; Skotarczak, Bogumiła

    2013-01-01

    This study examined the possibility of applying a new diagnostic method, high resolution analysis of DNA denaturation curve (high resolution melting - HRM), for identification of Borrelia species. DNA samples were obtained from Ixodes ricinus ticks collected from vegetation and removed from hunted roe deer. For differentiation of Borrelia species, the HRM protocol based on the analysis of the groEL gene was applied. A product characteristic for Borrelia was obtained in 19/123 samples (15.4%). The studied isolates were classified as four species: B. garinii, B. valaisiana, B. afzelii and B. miyamotoi. Two separate groups of isolates within the B. afzelii species were also found. The results show that the groEL gene is useful for rapid differentiation of B. burgdorferi sensu lato with the HRM method from different extracts of DNA and it also allows precise differentiation of Borrelia species and strains. The HRM method shortened and simplified detection and differentiation of Borrelia species from different biological sources.

  14. Ultrasensitive detection and rapid identification of multiple foodborne pathogens with the naked eyes.

    PubMed

    Zhang, Heng; Zhang, Yali; Lin, Yankui; Liang, Tongwen; Chen, Zhihua; Li, Jinfeng; Yue, Zhenfeng; Lv, Jingzhang; Jiang, Qing; Yi, Changqing

    2015-09-15

    In this study, a novel approach for ultrasensitive detection and rapid high-throughput identification of a panel of common foodborne pathogens with the naked eyes is presented. As a proof-of-concept application, a multiple pathogen analysis array is fabricated through immobilizing three specific polyT-capture probes which can respectively recognize rfbE gene (Escherichia coli O157:H7), invA gene (Salmonella enterica), inlA gene (Listeria monocytogenes) on the plastic substrates. PCR has been developed for amplification and labeling target genes of rfbE, invA, inlA with biotin. The biotinated target DNA is then captured onto the surface of plastic strips through specific DNA hybridization. The succeeding staining of biotinated DNA duplexes with avidin-horseradish peroxidise (AV-HRP) and biotinated anti-HRP antibody greatly amplifies the detectable signal through the multiple cycle signal amplification strategy, and thus realizing ultrasensitive and specific detection of the above three pathogens in food samples with the naked eyes. Results showed approximately 5 copies target pathogenic DNA could be detected with the naked eyes. This simple but very efficient colorimetric assay also show excellent anti-interference capability and good stability, and can be readily applied to point-of-care diagnosis.

  15. Rapid identification of heterozygous mutations in Drosophila melanogaster using genomic capture sequencing.

    PubMed

    Wang, Hui; Chattopadhyay, Abanti; Li, Zhe; Daines, Bryce; Li, Yumei; Gao, Chunxu; Gibbs, Richard; Zhang, Kun; Chen, Rui

    2010-07-01

    One of the key advantages of using Drosophila melanogaster as a genetic model organism is the ability to conduct saturation mutagenesis screens to identify genes and pathways underlying a given phenotype. Despite the large number of genetic tools developed to facilitate downstream cloning of mutations obtained from such screens, the current procedure remains labor intensive, time consuming, and costly. To address this issue, we designed an efficient strategy for rapid identification of heterozygous mutations in the fly genome by combining rough genetic mapping, targeted DNA capture, and second generation sequencing technology. We first tested this method on heterozygous flies carrying either a previously characterized dac(5) or sens(E2) mutation. Targeted amplification of genomic regions near these two loci was used to enrich DNA for sequencing, and both point mutations were successfully identified. When this method was applied to uncharacterized twr mutant flies, the underlying mutation was identified as a single-base mutation in the gene Spase18-21. This targeted-genome-sequencing method reduces time and effort required for mutation cloning by up to 80% compared with the current approach and lowers the cost to <$1000 for each mutant. Introduction of this and other sequencing-based methods for mutation cloning will enable broader usage of forward genetics screens and have significant impacts in the field of model organisms such as Drosophila.

  16. Method for rapid detection and identification of chaetomium and evaluation of resistance to peracetic acid.

    PubMed

    Nakayama, Motokazu; Hosoya, Kouichi; Tomiyama, Daisuke; Tsugukuni, Takashi; Matsuzawa, Tetsuhiro; Imanishi, Yumi; Yaguchi, Takashi

    2013-06-01

    In the beverage industry, peracetic acid has been increasingly used as a disinfectant for the filling machinery and environment due to merits of leaving no residue, it is safe for humans, and its antiseptic effect against fungi and endospores of bacteria. Recently, Chaetomium globosum and Chaetomium funicola were reported resistant to peracetic acid; however, little is known concerning the detail of peracetic acid resistance. Therefore, we assessed the peracetic acid resistance of the species of Chaetomium and related genera under identical conditions and made a thorough observation of the microstructure of their ascospores by transmission electron microscopy. The results of analyses revealed that C. globosum and C. funicola showed the high resistance to peracetic acid (a 1-D antiseptic effect after 900 s and 3-D antiseptic effect after 900 s) and had thick cell walls of ascospores that can impede the action mechanism of peracetic acid. We also developed specific primers to detect the C. globosum clade and identify C. funicola by using PCR to amplify the β-tubulin gene. PCR with the primer sets designed for C. globosum (Chae 4F/4R) and C. funicola (Cfu 2F/2R) amplified PCR products specific for the C. globosum clade and C. funicola, respectively. PCR with these two primer sets did not detect other fungi involved in food spoilage and environmental contamination. This detection and identification method is rapid and simple, with extremely high specificity.

  17. Identification of major rye secalins as coeliac immunoreactive proteins.

    PubMed

    Rocher, A; Calero, M; Soriano, F; Méndez, E

    1996-06-07

    Six distinct gamma- and omega-type secalins, together with two new low molecular mass glycoproteins, have been identified as the major coeliac immunoreactive proteins from a chloroform/methanol soluble extract from rye endosperm. These components were characterized by a combination of reverse-phase high-performance liquid chromatography, immunoblotting using a coeliac serum and microsequencing analysis. This allowed the identification of a group of secalins with different molecular masses according to their N-terminal amino-acid sequence: one omega-type secalin of 40 kDa (omega 1-40); three gamma-type secalins, one of 70 kDa (gamma-70) and two of 35 kDa (gamma-35); as well as two low molecular mass glycoproteins of 15 and 18 kDa, all exhibiting coeliac serum antigenicity. Moreover, four additional rye components, including two low molecular mass proteins, which did not react with coeliac sera, have also been identified. Analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of the three main purified coeliac immunogenic secalins, gamma-70, gamma-35 and omega 1-40, indicated molecular masses of 71457, 32240 and 39117 Da, respectively. The omega 1-40 secalin displays a significant absorption in the visible region which could be related to its peculiar low capacity to bind both coeliac sera antibodies and Coomassie brilliant blue dye.

  18. The c-terminus of GRK3 indicates rapid dissociation of G protein heterotrimers

    PubMed Central

    Hollins, Bettye; Kuravi, Sudhakiranmayi; Digby, Gregory J.; Lambert, Nevin A.

    2009-01-01

    Signals mediated by heterotrimeric G proteins often develop over the course of tens of milliseconds, and could require either conformational rearrangement or complete physical dissociation of Gα βγ heterotrimers. Although it is known that some active heterotrimers are dissociated (into Gα and Gβγ) at steady-state, it is not clear that dissociation occurs quickly enough to participate in rapid signaling. Here we show that fusion proteins containing the c-terminus of GPCR kinase 3 (GRK3ct) and either the fluorescent protein cerulean or Renilla luciferase bind to venus-labeled Gβγ dimers (Gβγ-V), resulting in Förster or bioluminescence resonance energy transfer (FRET or BRET). GRK3ct fusion proteins are freely-diffusible, and do not form preassembled complexes with G proteins. GRK3ct fusion proteins bind to free Gβγ-V dimers but not to rearranged heterotrimers, and thus can report G protein dissociation with high temporal resolution. We find that heterotrimer dissociation can occur in living cells in less than 100 milliseconds. Under the conditions of these experiments diffusion and collision of masGRK3ct fusion proteins and Gβγ-V were not rate-limiting. These results indicate that G protein heterotrimers can dissociate quickly enough to participate in rapid signaling. PMID:19258039

  19. Rapid identification and quantitation for oral bacteria based on short-end capillary electrophoresis.

    PubMed

    Chen, Jin; Ni, Yi; Liu, Chenchen; Yamaguchi, Yoshinori; Chen, Qinmiao; Sekine, Shinichi; Zhu, Xifang; Dou, Xiaoming

    2016-11-01

    High-speed capillary electrophoresis (HSCE) is a promising technology applied in ultra-rapid and high-performance analysis of biomolecules (such as nucleic acids, protein). In present study, the short-end capillary electrophoresis coupled with one novel space domain internal standard method (SDIS) was employed for the rapid and simultaneous analysis of specific genes from three oral bacteria (Porphyromonas gingivalis (P.g), Treponema denticola (T.d) and Tannerela forsythia (T.f)). The reliability, reproducibility and accuracy properties of above mentioned SDIS method were investigated in detail. The results showed the target gene fragments of P.g, T.d and T.f could be precisely, fast identified and quantitated within 95s via present short-end CE system. The analyte concentration and the ratio of space domain signals (between target sample and internal standard sample) featured a well linear relationship calculated via SDIS method. And the correlation coefficients R(2) and detection limits for P.g, T.d, T.f genes were 0.9855, 0.9896, 0.9969 and 0.077, 0.114 and 0.098ng/μl, respectively.

  20. Development and validation of a real-time quantitative PCR assay for rapid identification of Bacillus anthracis in environmental samples.

    PubMed

    Irenge, Léonid M; Durant, Jean-François; Tomaso, Herbert; Pilo, Paola; Olsen, Jaran S; Ramisse, Vincent; Mahillon, Jacques; Gala, Jean-Luc

    2010-11-01

    A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.

  1. Fluorescent In Situ Folding Control for Rapid Optimization of Cell-Free Membrane Protein Synthesis

    PubMed Central

    Müller-Lucks, Annika; Bock, Sinja; Wu, Binghua; Beitz, Eric

    2012-01-01

    Cell-free synthesis is an open and powerful tool for high-yield protein production in small reaction volumes predestined for high-throughput structural and functional analysis. Membrane proteins require addition of detergents for solubilization, liposomes, or nanodiscs. Hence, the number of parameters to be tested is significantly higher than with soluble proteins. Optimization is commonly done with respect to protein yield, yet without knowledge of the protein folding status. This approach contains a large inherent risk of ending up with non-functional protein. We show that fluorophore formation in C-terminal fusions with green fluorescent protein (GFP) indicates the folding state of a membrane protein in situ, i.e. within the cell-free reaction mixture, as confirmed by circular dichroism (CD), proteoliposome reconstitution and functional assays. Quantification of protein yield and in-gel fluorescence intensity imply suitability of the method for membrane proteins of bacterial, protozoan, plant, and mammalian origin, representing vacuolar and plasma membrane localization, as well as intra- and extracellular positioning of the C-terminus. We conclude that GFP-fusions provide an extension to cell-free protein synthesis systems eliminating the need for experimental folding control and, thus, enabling rapid optimization towards membrane protein quality. PMID:22848743

  2. Rapid identification of Burkholderia mallei and Burkholderia pseudomallei by intact cell Matrix-assisted Laser Desorption/Ionisation mass spectrometric typing

    PubMed Central

    2012-01-01

    Background Burkholderia (B.) pseudomallei and B. mallei are genetically closely related species. B. pseudomallei causes melioidosis in humans and animals, whereas B. mallei is the causative agent of glanders in equines and rarely also in humans. Both agents have been classified by the CDC as priority category B biological agents. Rapid identification is crucial, because both agents are intrinsically resistant to many antibiotics. Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS) has the potential of rapid and reliable identification of pathogens, but is limited by the availability of a database containing validated reference spectra. The aim of this study was to evaluate the use of MALDI-TOF MS for the rapid and reliable identification and differentiation of B. pseudomallei and B. mallei and to build up a reliable reference database for both organisms. Results A collection of ten B. pseudomallei and seventeen B. mallei strains was used to generate a library of reference spectra. Samples of both species could be identified by MALDI-TOF MS, if a dedicated subset of the reference spectra library was used. In comparison with samples representing B. mallei, higher genetic diversity among B. pseudomallei was reflected in the higher average Eucledian distances between the mass spectra and a broader range of identification score values obtained with commercial software for the identification of microorganisms. The type strain of B. pseudomallei (ATCC 23343) was isolated decades ago and is outstanding in the spectrum-based dendrograms probably due to massive methylations as indicated by two intensive series of mass increments of 14 Da specifically and reproducibly found in the spectra of this strain. Conclusions Handling of pathogens under BSL 3 conditions is dangerous and cumbersome but can be minimized by inactivation of bacteria with ethanol, subsequent protein extraction under BSL 1 conditions and MALDI-TOF MS analysis being faster than

  3. Rapid and selective separation for mixed proteins with thiol functionalized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Soo Youn; Ahn, Chi Young; Lee, Jiho; Lee, Jin Hyung; Chang, Jeong Ho

    2012-05-01

    Thiol group functionalized silica-coated magnetic nanoparticles (Si-MNPs@SH) were synthesized for rapid and selective magnetic field-based separation of mixed proteins. The highest adsorption efficiencies of binary proteins, bovine serum albumin (BSA; 66 kDa; p I = 4.65) and lysozyme (LYZ; 14.3 kDa; p I = 11) were shown at the pH values corresponding to their own p I in the single-component protein. In the mixed protein, however, the adsorption performance of BSA and LYZ by Si-MNPs@SH was governed not only by pH but also by the molecular weight of each protein in the mixed protein.

  4. Identification of "Streptococcus milleri" group isolates to the species level with a commercially available rapid test system.

    PubMed

    Flynn, C E; Ruoff, K L

    1995-10-01

    Clinical isolates of the "Streptococcus milleri" species group were examined by conventional methods and a rapid, commercially available method for the identification of these strains to the species level. The levels of agreement between the identifications obtained with the commercially available system (Fluo-Card Milleri; KEY Scientific, Round Rock, Tex.) and conventional methods were 98% for 50 Streptococcus anginosus strains, 97% for 31 Streptococcus constellatus strains, and 88% for 17 isolates identified as Streptococcus intermedius. Patient records were also studied in order to gain information on the frequency and sites of isolation of each of the three "S. milleri" group species.

  5. Rapid directed evolution of stabilized proteins with cellular high-throughput encapsulation solubilization and screening (CHESS).

    PubMed

    Yong, K J; Scott, D J

    2015-03-01

    Directed evolution is a powerful method for engineering proteins towards user-defined goals and has been used to generate novel proteins for industrial processes, biological research and drug discovery. Typical directed evolution techniques include cellular display, phage display, ribosome display and water-in-oil compartmentalization, all of which physically link individual members of diverse gene libraries to their translated proteins. This allows the screening or selection for a desired protein function and subsequent isolation of the encoding gene from diverse populations. For biotechnological and industrial applications there is a need to engineer proteins that are functional under conditions that are not compatible with these techniques, such as high temperatures and harsh detergents. Cellular High-throughput Encapsulation Solubilization and Screening (CHESS), is a directed evolution method originally developed to engineer detergent-stable G proteins-coupled receptors (GPCRs) for structural biology. With CHESS, library-transformed bacterial cells are encapsulated in detergent-resistant polymers to form capsules, which serve to contain mutant genes and their encoded proteins upon detergent mediated solubilization of cell membranes. Populations of capsules can be screened like single cells to enable rapid isolation of genes encoding detergent-stable protein mutants. To demonstrate the general applicability of CHESS to other proteins, we have characterized the stability and permeability of CHESS microcapsules and employed CHESS to generate thermostable, sodium dodecyl sulfate (SDS) resistant green fluorescent protein (GFP) mutants, the first soluble proteins to be engineered using CHESS.

  6. Rapid identification of Cryptococcus neoformans var. grubii, C. neoformans var. neoformans, and C. gattii by use of rapid biochemical tests, differential media, and DNA sequencing.

    PubMed

    McTaggart, Lisa; Richardson, Susan E; Seah, Christine; Hoang, Linda; Fothergill, Annette; Zhang, Sean X

    2011-07-01

    Rapid identification of Cryptococcus neoformans var. grubii, Cryptococcus neoformans var. neoformans, and Cryptococcus gattii is imperative for facilitation of prompt treatment of cryptococcosis and for understanding the epidemiology of the disease. Our purpose was to evaluate a test algorithm incorporating commercial rapid biochemical tests, differential media, and DNA sequence analysis that will allow us to differentiate these taxa rapidly and accurately. We assessed 147 type, reference, and clinical isolates, including 6 other Cryptococcus spp. (10 isolates) and 14 other yeast species (24 isolates), using a 4-hour urea broth test (Remel), a 24-hour urea broth test (Becton Dickinson), a 4-hour caffeic acid disk test (Hardy Diagnostics and Remel), 40- to 44-hour growth assessment on l-canavanine glycine bromothymol blue (CGB) agar, and intergenic spacer (IGS) sequence analysis. All 123 Cryptococcus isolates hydrolyzed urea, along with 7 isolates of Rhodotorula and Trichosporon. Eighty-five of 86 C. neoformans (99%) and 26 of 27 C. gattii (96%) isolates had positive caffeic acid results, unlike the other cryptococci (0/10) and yeast species (0/24). Together, these two tests positively identified virtually all C. neoformans/C. gattii isolates (98%) within 4 h. CGB agar or IGS sequencing further differentiated these isolates within 48 h. On CGB, 25 of 27 (93%) C. gattii strains induced a blue color change, in contrast to 0 of 86 C. neoformans isolates. Neighbor-joining cluster analysis of IGS sequences differentiated C. neoformans var. grubii, C. neoformans var. neoformans, and C. gattii. Based on these results, we describe a rapid identification algorithm for use in a microbiology laboratory to distinguish clinically relevant Cryptococcus spp.

  7. Soluble methane monooxygenase component B gene probe for identification of methanotrophs that rapidly degrade trichloroethylene.

    PubMed Central

    Tsien, H C; Hanson, R S

    1992-01-01

    Restriction fragment length polymorphisms, Western blot (immunoblot) analysis, and fluorescence-labelled signature probes were used for the characterization of methanotrophic bacteria as well as for the identification of methanotrophs which contained the soluble methane monooxygenase (MMO) gene and were able to degrade trichloroethylene (TCE). The gene encoding a soluble MMO component B protein from Methylosinus trichosporium OB3b was cloned. It contained a 2.2-kb EcoRI fragment. With this cloned component B gene as probe, methanotroph types I, II, and X and environmental and bioreactor samples were screened for the presence of the gene encoding soluble MMO. Fragments produced by digestion of DNA with rare cutting restriction endonucleases were separated by pulsed-field gel electrophoresis and transferred to Zeta-Probe membrane (Bio-Rad) for Southern blot analysis. Samples were also analyzed for the presence of soluble MMO by Western blot analysis and the ability to degrade TCE. The physiological groups of methanotrophs in each sample were determined by hybridizing cells with fluorescence-labelled signature probes. Among twelve pure or mixed cultures, DNA fragments of seven methanotrophs hybridized with the soluble MMO B gene probe. When grown in media with limited copper, all of these bacteria degraded TCE. All of them are type II methanotrophs. The soluble MMO component B gene of the type X methanotroph, Methylococcus capsulatus Bath, did not hybridize to the M. trichosporium OB3b soluble MMO component B gene probe, although M. capsulatus Bath also produces a soluble MMO. Images PMID:1349468

  8. Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes.

    PubMed

    Yang, G P; Ross, D T; Kuang, W W; Brown, P O; Weigel, R J

    1999-03-15

    Comparing patterns of gene expression in cell lines and tissues has important applications in a variety of biological systems. In this study we have examined whether the emerging technology of cDNA microarrays will allow a high throughput analysis of expression of cDNA clones generated by suppression subtractive hybridization (SSH). A set of cDNA clones including 332 SSH inserts amplified by PCR was arrayed using robotic printing. The cDNA arrays were hybridized with fluorescent labeled probes prepared from RNA from ER-positive (MCF7 and T47D) and ER-negative (MDA-MB-231 and HBL-100) breast cancer cell lines. Ten clones were identified that were over-expressed by at least a factor of five in the ER-positive cell lines. Northern blot analysis confirmed over-expression of these 10 cDNAs. Sequence analysis identified four of these clones as cytokeratin 19, GATA-3, CD24 and glutathione-S-transferase mu-3. Of the remaining six cDNA clones, four clones matched EST sequences from two different genes and two clones were novel sequences. Flow cytometry and immunofluorescence confirmed that CD24 protein was over-expressed in the ER-positive cell lines. We conclude that SSH and microarray technology can be successfully applied to identify differentially expressed genes. This approach allowed the identification of differentially expressed genes without the need to obtain previously cloned cDNAs.

  9. Rapid identification of Burkholderia cepacia complex species including strains of the novel Taxon K, recovered from cystic fibrosis patients by intact cell MALDI-ToF mass spectrometry.

    PubMed

    Miñán, Alejandro; Bosch, Alejandra; Lasch, Peter; Stämmler, Maren; Serra, Diego Omar; Degrossi, José; Gatti, Blanca; Vay, Carlos; D'aquino, Miguel; Yantorno, Osvaldo; Naumann, Dieter

    2009-06-01

    Two approaches based on intact cell matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (IC-MALDI-ToF MS) have been evaluated in order to discriminate and identify nine former Burkholderia cepacia complex (Bcc) species, Burkholderia contaminans belonging to the novel Taxon K, Burkholderia gladioli, and the most relevant non-fermentative (NF) Gram-negative rods recovered from cystic fibrosis (CF) sputum cultures. In total, 146 clinical isolates and 26 reference strains were analysed. IC mass spectra were obtained with high reproducibility applying a recently developed inactivation protocol which is based on the extraction of microbial proteins by trifluoroacetic acid (TFA). In a first approach, spectral analysis was carried out by means of a gel-view representation of mass spectra, which turned out to be useful to recognize specific identifying biomarker proteins (SIBPs). A series of prominent mass peaks, mainly assigned to constitutively expressed proteins, were selected as SIBPs for identifications at the genus and species level. Two distinctive mass peaks present in B. contaminans spectra (7501 and 7900 Da) were proposed as SIBPs for the identification of this novel species. A second approach of spectral analysis based on data reduction, feature selection and subsequent hierarchical cluster analysis was used to obtain an objective discrimination of all species analysed. Both complementary modalities of analyzing complex IC-MALDI-ToF MS data open the path towards a rapid, accurate and objective means of routine clinical microbiology diagnosis of pathogens from sputum samples of CF patients.

  10. Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Fang-Da; Xu, Chang-Hua; Li, Ming-Yu; Huang, An-Min; Sun, Su-Qin

    2014-07-01

    Since Pterocarpus santalinus and Dalbergia louvelii, which are of precious Rosewood, are very similar in their appearance and anatomy characteristics, cheaper Hongmu D. louvelii is often illegally used to impersonate valuable P. santalinus, especially in Chinese furniture manufacture. In order to develop a rapid and effective method for easy confused wood furniture differentiation, we applied tri-step identification method, i.e., conventional infrared spectroscopy (FT-IR), second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2DCOS-IR) spectroscopy to investigate P. santalinus and D. louvelii furniture. According to FT-IR and SD-IR spectra, it has been found two unconditional stable difference at 848 cm-1 and 700 cm-1 and relative stable differences at 1735 cm-1, 1623 cm-1, 1614 cm-1, 1602 cm-1, 1509 cm-1, 1456 cm-1, 1200 cm-1, 1158 cm-1, 1055 cm-1, 1034 cm-1 and 895 cm-1 between D. louvelii and P. santalinus IR spectra. The stable discrepancy indicates that the category of extractives is different between the two species. Besides, the relative stable differences imply that the content of holocellulose in P. santalinus is more than that of D. louvelii, whereas the quantity of extractives in D. louvelii is higher. Furthermore, evident differences have been observed in their 2DCOS-IR spectra of 1550-1415 cm-1 and 1325-1030 cm-1. P. santalinus has two strong auto-peaks at 1459 cm-1 and 1467 cm-1, three mid-strong auto-peaks at 1518 cm-1, 1089 cm-1 and 1100 cm-1 and five weak auto-peaks at 1432 cm-1, 1437 cm-1, 1046 cm-1, 1056 cm-1 and 1307 cm-1 while D. louvelii has four strong auto-peaks at 1465 cm-1, 1523 cm-1, 1084 cm-1 and 1100 cm-1, four mid-strong auto-peaks at 1430 cm-1, 1499 cm-1, 1505 cm-1 and 1056 cm-1 and two auto-peaks at 1540 cm-1 and 1284 cm-1. This study has proved that FT-IR integrated with 2DCOS-IR could be applicable for precious wood furniture authentication in a direct, rapid and holistic manner.

  11. Randomized Trial of Rapid Multiplex Polymerase Chain Reaction–Based Blood Culture Identification and Susceptibility Testing

    PubMed Central

    Banerjee, Ritu; Teng, Christine B.; Cunningham, Scott A.; Ihde, Sherry M.; Steckelberg, James M.; Moriarty, James P.; Shah, Nilay D.; Mandrekar, Jayawant N.; Patel, Robin

    2015-01-01

    Background. The value of rapid, panel-based molecular diagnostics for positive blood culture bottles (BCBs) has not been rigorously assessed. We performed a prospective randomized controlled trial evaluating outcomes associated with rapid multiplex PCR (rmPCR) detection of bacteria, fungi, and resistance genes directly from positive BCBs. Methods. A total of 617 patients with positive BCBs underwent stratified randomization into 3 arms: standard BCB processing (control, n = 207), rmPCR reported with templated comments (rmPCR, n = 198), or rmPCR reported with templated comments and real-time audit and feedback of antimicrobial orders by an antimicrobial stewardship team (rmPCR/AS, n = 212). The primary outcome was antimicrobial therapy duration. Secondary outcomes were time to antimicrobial de-escalation or escalation, length of stay (LOS), mortality, and cost. Results. Time from BCB Gram stain to microorganism identification was shorter in the intervention group (1.3 hours) vs control (22.3 hours) (P < .001). Compared to the control group, both intervention groups had decreased broad-spectrum piperacillin-tazobactam (control 56 hours, rmPCR 44 hours, rmPCR/AS 45 hours; P = .01) and increased narrow-spectrum β-lactam (control 42 hours, rmPCR 71 hours, rmPCR/AS 85 hours; P = .04) use, and less treatment of contaminants (control 25%, rmPCR 11%, rmPCR/AS 8%; P = .015). Time from Gram stain to appropriate antimicrobial de-escalation or escalation was shortest in the rmPCR/AS group (de-escalation: rmPCR/AS 21 hours, control 34 hours, rmPCR 38 hours, P < .001; escalation: rmPCR/AS 5 hours, control 24 hours, rmPCR 6 hours, P = .04). Groups did not differ in mortality, LOS, or cost. Conclusions. rmPCR reported with templated comments reduced treatment of contaminants and use of broad-spectrum antimicrobials. Addition of antimicrobial stewardship enhanced antimicrobial de-escalation. Clinical Trials Registration. NCT01898208. PMID:26197846

  12. MALDI-TOF MS Enables the Rapid Identification of the Major Molecular Types within the Cryptococcus neoformans/C. gattii Species Complex

    PubMed Central

    Firacative, Carolina; Trilles, Luciana; Meyer, Wieland

    2012-01-01

    Background The Cryptococcus neoformans/C. gattii species complex comprises two sibling species that are divided into eight major molecular types, C. neoformans VNI to VNIV and C. gattii VGI to VGIV. These genotypes differ in host range, epidemiology, virulence, antifungal susceptibility and geographic distribution. The currently used phenotypic and molecular identification methods for the species/molecular types are time consuming and expensive. As Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) offers an effective alternative for the rapid identification of microorganisms, the objective of this study was to examine its potential for the identification of C. neoformans and C. gattii strains at the intra- and inter-species level. Methodology Protein extracts obtained via the formic acid extraction method of 164 C. neoformans/C. gattii isolates, including four inter-species hybrids, were studied. Results The obtained mass spectra correctly identified 100% of all studied isolates, grouped each isolate according to the currently recognized species, C. neoformans and C. gattii, and detected potential hybrids. In addition, all isolates were clearly separated according to their major molecular type, generating greater spectral differences among the C. neoformans molecular types than the C. gattii molecular types, most likely reflecting a closer phylogenetic relationship between the latter. The number of colonies used and the incubation length did not affect the results. No spectra were obtained from intact yeast cells. An extended validated spectral library containing spectra of all eight major molecular types was established. Conclusions MALDI-TOF MS is a rapid identification tool for the correct recognition of the two currently recognized human pathogenic Cryptococcus species and offers a simple method for the separation of the eight major molecular types and the detection of hybrid strains within this species complex in the

  13. RPI-Bind: a structure-based method for accurate identification of RNA-protein binding sites.

    PubMed

    Luo, Jiesi; Liu, Liang; Venkateswaran, Suresh; Song, Qianqian; Zhou, Xiaobo

    2017-04-04

    RNA and protein interactions play crucial roles in multiple biological processes, while these interactions are significantly influenced by the structures and sequences of protein and RNA molecules. In this study, we first performed an analysis of RNA-protein interacting complexes, and identified interface properties of sequences and structures, which reveal the diverse nature of the binding sites. With the observations, we built a three-step prediction model, namely RPI-Bind, for the identification of RNA-protein binding regions using the sequences and structures of both proteins and RNAs. The three steps include 1) the prediction of RNA binding regions on protein, 2) the prediction of protein binding regions on RNA, and 3) the prediction of interacting regions on both RNA and protein simultaneously, with the results from steps 1) and 2). Compared with existing methods, most of which employ only sequences, our model significantly improves the prediction accuracy at each of the three steps. Especially, our model outperforms the catRAPID by >20% at the 3(rd) step. All of these results indicate the importance of structures in RNA-protein interactions, and suggest that the RPI-Bind model is a powerful theoretical framework for studying RNA-protein interactions.

  14. Potential of mid IR spectroscopy in the rapid label free identification of skin malignancies

    NASA Astrophysics Data System (ADS)

    Kastl, Lena; Kemper, Björn; Lloyd, Gavin R.; Nallala, Jayakrupakar; Stone, Nick; Naranjo, Valery; Penaranda, Francisco; Schnekenburger, Jürgen

    2016-03-01

    The rapid inspection of suspicious skin lesions for pathological cell types is the objective of optical point of care diagnostics technologies. A marker free fast diagnosis of skin malignancies would overcome the limitations of the current gold standard surgical biopsy. The time consuming and costly biopsy procedure requires the inspection of each sample by a trained pathologist, which limits the analysis of potentially malignant lesions. Optical technologies like RAMAN or infrared spectroscopy, which provide both, localization and chemical information, can be used to differentiate malignant from healthy tissue by the analysis of multi cell structures and cell type specific spectra. We here report the application of midIR spectroscopy towards fast and reliable skin diagnostics. Within the European research project MINERVA we developed standardized in vitro skin systems with increasing complexity, from single skin cell types as fibroblasts, keratinocytes and melanoma cells, to mixtures of these and finally three dimensional human skin equivalents. The standards were characterized in the established midIR range and also with newly developed systems for fast imaging up to 12 μm. The analysis of the spectra by novel data processing algorithms demonstrated the clear separation of all cell types, especially the tumor cells. The signals from single cell layers were sufficient for cell type differentiation. We have compared different midIR systems and found all of them suitable for specific cell type identification. Our data demonstrate the potential of midIR spectroscopy for fast image acquisition and an improved data processing as sensitive and specific optical biopsy technology.

  15. Rapid detection and identification of bacterial pathogens by using an ATP bioluminescence immunoassay.

    PubMed

    Hunter, Dawn M; Lim, Daniel V

    2010-04-01

    Rapid identification of viable bacterial contaminants in food products is important because of their potential to cause disease. This study examined a method for microbial detection by using a combined ATP bioluminescence immunoassay. Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium were selected as target organisms because of their implication in foodborne illness. Various matrices containing the target cells were examined, including ground beef homogenate, apple juice, milk, and phosphate-buffered saline. Specific antibodies were immobilized on the surface of 96-well plates, and then the sample matrices containing target cells in the wells were incubated. Sample matrix (no cells) was used to establish background. The plates were washed, and the wells were incubated with BacTiter-Glo reagent in Mueller-Hinton II broth. Bioluminescent output was measured with the GloMax 96 luminometer. Signal-to-noise ratios were calculated, resulting in a limit of detection of 10(4) CFU/ml for both E. coli O157:H7 and Salmonella Typhimurium. The limit of detection for both species was not affected by the presence of nontarget cells. The various sample matrices did not affect signal-to-noise ratios when E. coli O157:H7 was the target. A weak matrix effect was observed when Salmonella Typhimurium was the target. A strong linear correlation was observed between the number of cells and luminescent output over 4 orders of magnitude for both species. This method provides a means of simultaneously detecting and identifying viable pathogens in complex matrices, and could have wider application in food microbiology.

  16. Rapid characterization of protein chips using microwave-assisted protein tryptic digestion and MALDI mass spectrometry.

    PubMed

    Ha, Na Young; Kim, Shin Hye; Lee, Tae Geol; Han, Sang Yun

    2011-08-16

    We demonstrate that the microwave-assisted protein enzymatic digestion (MAPED) method can be successfully applied to the mass spectrometric characterization of proteins captured on the affinity surfaces of protein chips. The microwave-assisted on-chip tryptic digestion method was developed using a domestic microwave, completing the on-chip proteolysis reaction in minutes, whereas the previous on-chip digestion methods by incubation took hours of incubation time. For the model protein chips, antibody-presenting surfaces were prepared, where anti-α-tubulin1 and antibovine serum albumin (BSA) were immobilized on self-assembled monolayers. The resulting digestion efficiency, displaying sequence coverages of 30 and 14% for α-tubulin1 and BSA, respectively, was comparable to the previous time-consuming incubation studies. It allowed the characterization of immunosensed proteins by MASCOT search using peptide mass fingerprinting. In an example of this method for protein chip applications, BSA naturally involved in fetal bovine serum was unambiguously identified on a model protein chip by imaging mass spectrometry. This work shows that biomass spectrometry techniques can be implemented for surface mass spectrometry and biochip applications. Along with recent advances in imaging mass spectrometry, this technique will provide a new opportunity for high-speed, and thus high-throughput in the future, label-free mass spectrometric assays using protein arrays.

  17. Cord Formation in BACTEC Medium Is a Reliable, Rapid Method for Presumptive Identification of Mycobacterium tuberculosis Complex

    PubMed Central

    McCarter, Yvette S.; Ratkiewicz, Irene N.; Robinson, Ann

    1998-01-01

    Serpentine cord formation in BACTEC 12B medium was evaluated as a rapid method for the presumptive identification of M. tuberculosis complex. Kinyoun acid-fast stained smears were prepared from 666 positive BACTEC 12B bottles and examined for the presence or absence of serpentine cording. Cord formation had a sensitivity, specificity, positive predictive value, and negative predictive value of 89.2, 99.2, 98.5, and 94.2%, respectively. The evaluation of the presence of cord formation in BACTEC 12B medium is reliable and permits the rapid presumptive reporting of M. tuberculosis. PMID:9705435

  18. Cord formation in BACTEC medium is a reliable, rapid method for presumptive identification of Mycobacterium tuberculosis complex.

    PubMed

    McCarter, Y S; Ratkiewicz, I N; Robinson, A

    1998-09-01

    Serpentine cord formation in BACTEC 12B medium was evaluated as a rapid method for the presumptive identification of M. tuberculosis complex. Kinyoun acid-fast stained smears were prepared from 666 positive BACTEC 12B bottles and examined for the presence or absence of serpentine cording. Cord formation had a sensitivity, specificity, positive predictive value, and negative predictive value of 89.2, 99.2, 98.5, and 94.2%, respectively. The evaluation of the presence of cord formation in BACTEC 12B medium is reliable and permits the rapid presumptive reporting of M. tuberculosis.

  19. Rapid system for evaluating bioproduction capacity of complex pharmaceutical proteins in plants.

    PubMed

    Medrano, Giuliana; Reidy, Michael J; Liu, Jianyun; Ayala, Jorge; Dolan, Maureen C; Cramer, Carole L

    2009-01-01

    Transgene product yield remains a key limitation in commercializing plant-derived pharmaceutical proteins. Although significant progress has been made in understanding the roles of promoters, enhancers, integration sites, codon usage, cryptic RNA sites, silencing, and product compartmentalization on product yield and quality, researchers still cannot reliably predict which proteins will be produced at high levels or what manipulations will guarantee enhanced productivity. We have optimized a simple transient expression system in Nicotiana benthamiana enabling rapid assessment of transgene potential for plant-based bioproduction. Briefly, intact Nicotiana benthamiana plants are vacuum-infiltrated with Agrobacterium tumefaciens cultures carrying the transgene of interest. After 48-96 h of further incubation, leaves are harvested for protein characterization. Using the immunomodulator interleukin-12 as a model pharmaceutical protein, we obtained bioactive recombinant protein at levels exceeding 5% of total soluble leaf protein. Appropriately assembled multimeric proteins have also been obtained following coinfiltration with Agrobacterium tumefaciens strains individually encoding each subunit. This system provides a rapid source of transgene product for assessing posttranslational modifications, purification strategies, and bioactivity as well as an effective system for optimizing construct elements. For vaccines, product purified from two to eight plants may support mouse vaccination trials providing efficacy and immune assessment data early in the development process.

  20. Rapid Identification of Pathogens from Positive Blood Cultures by Multiplex PCR using the FilmArray System

    PubMed Central

    Blaschke, Anne J.; Heyrend, Caroline; Byington, Carrie L.; Fisher, Mark A.; Barker, Elizabeth; Garrone, Nicholas F.; Thatcher, Stephanie A.; Pavia, Andrew T.; Barney, Trenda; Alger, Garrison D.; Daly, Judy A.; Ririe, Kirk M.; Ota, Irene; Poritz, Mark A.

    2012-01-01

    Sepsis is a leading cause of death. Rapid and accurate identification of pathogens and antimicrobial resistance directly from blood culture could improve patient outcomes. The FilmArray® (FA; Idaho Technology, Inc., Salt Lake City, UT) Blood Culture (BC) panel can identify > 25 pathogens and 4 antibiotic resistance genes from positive blood cultures in 1 hour. We compared a development version of the panel to conventional culture and susceptibility testing on 102 archived blood cultures from adults and children with bacteremia. Of 109 pathogens identified by culture, 95% were identified by FA. Among 111 prospectively collected blood cultures, the FA identified 84 of 92 pathogens (91%) covered by the panel. Among 25 Staphylococcus aureus and 21 Enterococcus species detected, FA identified all culture-proven MRSA and VRE. The FA BC panel is an accurate method for the rapid identification of pathogens and resistance genes from blood culture. PMID:22999332

  1. Duplex DNA-Invading γ-Modified Peptide Nucleic Acids Enable Rapid Identification of Bloodstream Infections in Whole Blood

    PubMed Central

    Nölling, Jörk; Rapireddy, Srinivas; Amburg, Joel I.; Crawford, Elizabeth M.; Prakash, Ranjit A.; Rabson, Arthur R.

    2016-01-01

    ABSTRACT Bloodstream infections are a leading cause of morbidity and mortality. Early and targeted antimicrobial intervention is lifesaving, yet current diagnostic approaches fail to provide actionable information within a clinically viable time frame due to their reliance on blood culturing. Here, we present a novel pathogen identification (PID) platform that features the use of duplex DNA-invading γ-modified peptide nucleic acids (γPNAs) for the rapid identification of bacterial and fungal pathogens directly from blood, without culturing. The PID platform provides species-level information in under 2.5 hours while reaching single-CFU-per-milliliter sensitivity across the entire 21-pathogen panel. The clinical utility of the PID platform was demonstrated through assessment of 61 clinical specimens, which showed >95% sensitivity and >90% overall correlation to blood culture findings. This rapid γPNA-based platform promises to improve patient care by enabling the administration of a targeted first-line antimicrobial intervention. PMID:27094328

  2. WDR76 Co-Localizes with Heterochromatin Related Proteins and Rapidly Responds to DNA Damage

    PubMed Central

    Gilmore, Joshua M.; Sardiu, Mihaela E.; Groppe, Brad D.; Thornton, Janet L.; Liu, Xingyu; Dayebgadoh, Gerald; Banks, Charles A.; Slaughter, Brian D.; Unruh, Jay R.; Workman, Jerry L.; Florens, Laurence; Washburn, Michael P.

    2016-01-01

    Proteins that respond to DNA damage play critical roles in normal and diseased states in human biology. Studies have suggested that the S. cerevisiae protein CMR1/YDL156w is associated with histones and is possibly associated with DNA repair and replication processes. Through a quantitative proteomic analysis of affinity purifications here we show that the human homologue of this protein, WDR76, shares multiple protein associations with the histones H2A, H2B, and H4. Furthermore, our quantitative proteomic analysis of WDR76 associated proteins demonstrated links to proteins in the DNA damage response like PARP1 and XRCC5 and heterochromatin related proteins like CBX1, CBX3, and CBX5. Co-immunoprecipitation studies validated these interactions. Next, quantitative imaging studies demonstrated that WDR76 was recruited to laser induced DNA damage immediately after induction, and we compared the recruitment of WDR76 to laser induced DNA damage to known DNA damage proteins like PARP1, XRCC5, and RPA1. In addition, WDR76 co-localizes to puncta with the heterochromatin proteins CBX1 and CBX5, which are also recruited to DNA damage but much less intensely than WDR76. This work demonstrates the chromatin and DNA damage protein associations of WDR76 and demonstrates the rapid response of WDR76 to laser induced DNA damage. PMID:27248496

  3. A Rapid Method for Determining the Concentration of Recombinant Protein Secreted from Pichia pastoris

    NASA Astrophysics Data System (ADS)

    Sun, L. W.; Zhao, Y.; Niu, L. P.; Jiang, R.; Song, Y.; Feng, H.; feng, K.; Qi, C.

    2011-02-01

    Pichia secretive expression system is one of powerful eukaryotic expression systems in genetic engineering, which is especially suitable for industrial utilization. Because of the low concentration of the target protein in initial experiment, the methods and conditions for expression of the target protein should be optimized according to the protein yield repetitively. It is necessary to set up a rapid, simple and convenient analysis method for protein expression levels instead of the generally used method such as ultrafiltration, purification, dialysis, lyophilization and so on. In this paper, acetone precipitation method was chosen to concentrate the recombinant protein firstly after comparing with four different protein precipitation methods systematically, and then the protein was analyzed by SDS-Polyacrylamide Gel Electrophoresis. The recombinant protein was determined with the feature of protein band by the Automated Image Capture and 1-D Analysis Software directly. With this method, the optimized expression conditions of basic fibroblast growth factor secreted from pichia were obtained, which is as the same as using traditional methods. Hence, a convenient tool to determine the optimized conditions for the expression of recombinant proteins in Pichia was established.

  4. Rapid and cost-effective high-throughput sequencing for identification of germline mutations of BRCA1 and BRCA2.

    PubMed

    Ahmadloo, Somayeh; Nakaoka, Hirofumi; Hayano, Takahide; Hosomichi, Kazuyoshi; You, Hua; Utsuno, Emi; Sangai, Takafumi; Nishimura, Motoi; Matsushita, Kazuyuki; Hata, Akira; Nomura, Fumio; Inoue, Ituro

    2017-02-09

    Genetic testing for breast cancer predisposing genes, BRCA1 and BRCA2, can take advantage for early identification of carriers with pathogenic germline mutations. However, conventional approaches based on Sanger sequencing are laborious and expensive. Next-generation sequencing technology has a great impact on investigation of medical genomics and now applied clinical genetics. We provide a protocol based on a pool and capture method followed by high-throughput sequencing, which realizes a rapid, high-quality, high-accuracy and low-cost testing for mutations in BRCA1 and BRCA2 by using small amounts of input DNA. Custom capture probes were designed for 195 kb regions encompassing the entire BRCA1 and BRCA2. DNA libraries of 96 samples with distinct indices were pooled before hybridizing to the capture probes, which largely reduced labor and cost. The captured library was run on the Illumina MiSeq sequencer. We applied the method to 384 Japanese individuals including 11 patients with breast cancer whose mutation statuses had been determined by standard clinical testing and 373 individuals from a general population. 99.99% of coding exons and their 20 bp flanking regions were covered with a minimum of 20 reads and the average depth was 179.5, supporting confident variant detection. The sequencing method rendered concordant results for 11 patients with breast cancer compared with the standard clinical testing including nine mutations in eight patients. Among 373 individuals from the general population, novel stop gain and frameshift deletion in BRCA2 were identified, which led to truncated protein and were most likely to be pathogenic. The result suggests the importance of a large-scale population-wide screening for carriers of mutations in these genes.Journal of Human Genetics advance online publication, 9 February 2017; doi:10.1038/jhg.2017.5.

  5. Rapid Identification of the Foodborne Pathogen Trichinella spp. by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.

    PubMed

    Mayer-Scholl, Anne; Murugaiyan, Jayaseelan; Neumann, Jennifer; Bahn, Peter; Reckinger, Sabine; Nöckler, Karsten

    2016-01-01

    Human trichinellosis occurs through consumption of raw or inadequately processed meat or meat products containing larvae of the parasitic nematodes of the genus Trichinella. Currently, nine species and three genotypes are recognized, of which T. spiralis, T. britovi and T. pseudospiralis have the highest public health relevance. To date, the differentiation of the larvae to the species and genotype level is based primarily on molecular methods, which can be relatively time consuming and labor intensive. Due to its rapidness and ease of use a matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS) reference spectra database using Trichinella strains of all known species and genotypes was created. A formicacid/acetonitrile protein extraction was carried out after pooling 10 larvae of each Trichinella species and genotype. Each sample was spotted 9 times using α-cyano 4-hydoxy cinnamic acid matrix and a MicroFlex LT mass spectrometer was used to acquire 3 spectra (m/z 2000 to 20000 Da) from each spot resulting in 27 spectra/species or genotype. Following the spectra quality assessment, Biotyper software was used to create a main spectra library (MSP) representing nine species and three genotypes of Trichinella. The evaluation of the spectra generated by MALDI-TOF MS revealed a classification which was comparable to the results obtained by molecular methods. Also, each Trichinella species utilized in this study was distinct and distinguishable with a high confidence level. Further, different conservation methods such as freezing and conservation in alcohol and the host species origin of the isolated larvae did not have a significant influence on the generated spectra. Therefore, the described MALDI-TOF MS can successfully be implemented for both genus and species level identification and represents a major step forward in the use of this technique in foodborne parasitology.

  6. Rapid Identification of the Foodborne Pathogen Trichinella spp. by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    PubMed Central

    Mayer-Scholl, Anne; Murugaiyan, Jayaseelan; Neumann, Jennifer; Bahn, Peter; Reckinger, Sabine; Nöckler, Karsten

    2016-01-01

    Human trichinellosis occurs through consumption of raw or inadequately processed meat or meat products containing larvae of the parasitic nematodes of the genus Trichinella. Currently, nine species and three genotypes are recognized, of which T. spiralis, T. britovi and T. pseudospiralis have the highest public health relevance. To date, the differentiation of the larvae to the species and genotype level is based primarily on molecular methods, which can be relatively time consuming and labor intensive. Due to its rapidness and ease of use a matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS) reference spectra database using Trichinella strains of all known species and genotypes was created. A formicacid/acetonitrile protein extraction was carried out after pooling 10 larvae of each Trichinella species and genotype. Each sample was spotted 9 times using α-cyano 4-hydoxy cinnamic acid matrix and a MicroFlex LT mass spectrometer was used to acquire 3 spectra (m/z 2000 to 20000 Da) from each spot resulting in 27 spectra/species or genotype. Following the spectra quality assessment, Biotyper software was used to create a main spectra library (MSP) representing nine species and three genotypes of Trichinella. The evaluation of the spectra generated by MALDI-TOF MS revealed a classification which was comparable to the results obtained by molecular methods. Also, each Trichinella species utilized in this study was distinct and distinguishable with a high confidence level. Further, different conservation methods such as freezing and conservation in alcohol and the host species origin of the isolated larvae did not have a significant influence on the generated spectra. Therefore, the described MALDI-TOF MS can successfully be implemented for both genus and species level identification and represents a major step forward in the use of this technique in foodborne parasitology. PMID:26999436

  7. Identification and characterization of an Eimeria-conserved protein in Eimeria tenella.

    PubMed

    Dong, Hui; Wang, Yange; Han, Hongyu; Li, Ting; Zhao, Qiping; Zhu, Shunhai; Li, Liujia; Wu, Youling; Huang, Bing

    2014-02-01

    The precocious lines of Eimeria spp. have unique phenotypes. However, the genetic basis of the precocious phenotype is still poorly understood. The identification of Eimeria genes controlling the precocious phenotype is of immense importance in the fight against coccidiosis. In the present study, a novel gene of Eimeria maxima was cloned using rapid amplification of cDNA ends (RACE) based on the expressed sequence tag (EST). Homologous genes were also found in Eimeria tenella and Eimeria acervulina. Alignment of the amino acid sequences from E. tenella, E. maxima, and E. acervulina showed 80-86 % identity, demonstrating a conserved protein in different Eimeria spp. This gene, designated Eimeria-conserved protein (ECP), contained 235 amino acids with a predicted molecular mass of 25.4 kDa and had 100 % identity with one annotated protein from E. maxima (Emax_0517). Real-time PCR and Western blot analysis revealed that the expression of ECP at mRNA and protein level in E. tenella is developmentally regulated. Messenger RNA levels from the ECP gene were higher in sporozoites than in other developmental stages (unsporulated oocysts, sporulated oocysts, and second-generation merozoites). Expression of ECP protein was detected in unsporulated oocysts, increased in abundance in sporulated oocysts, and was most prominent in sporozoites. Thereafter, the level of the ECP protein decreased, and no ECP-specific protein was detected in second-generation merozoites. Immunostaining with anti-rECP indicated that ECP is highly concentrated in both refractile bodies (RB) of free sporozoites, but is located at the apical end of the sporozoites after invasion of DF-1 cells. The specific staining of the ECP protein becomes more intense in trophozoites and immature first-generation schizonts, but decreases in mature first-generation schizonts. Inhibition of the function of ECP using specific antibodies reduced the ability of E. tenella sporozoites to invade host cells. Compared with the

  8. Identification of Central Nervous System Proteins in Human Blood Serum and Plasma.

    PubMed

    Miroshnichenko, Yu V; Petushkova, N A; Teryaeva, N B; Lisitsa, A V; Zgoda, V G; Belyaev, A Yu; Potapov, A A

    2015-11-01

    Mass-spectrometric identification of proteins in human blood plasma and serum was performed by comparing mass-spectra of fragmented peptides using Swiss-Prot and UniProtKB databases of amino acid sequences. After choosing the appropriate identification conditions we found that combination of spectrum search parameters are optimal for identification of CNS proteins. In the studied plasma and serum samples, 9 proteins involved into pathological processes in the nervous tissue were identified; 7 of them were identified in both plasma and serum.

  9. Rapid identification of ascomycetous yeasts from clinical specimens by a molecular method based on flow cytometry and comparison with identifications from phenotypic assays.

    PubMed

    Page, Brent T; Shields, Christine E; Merz, William G; Kurtzman, Cletus P

    2006-09-01

    This study was designed to compare the identification of ascomycetous yeasts recovered from clinical specimens by using phenotypic assays (PA) and a molecular flow cytometric (FC) method. Large-subunit rRNA domains 1 and 2 (D1/D2) gene sequence analysis was also performed and served as the reference for correct strain identification. A panel of 88 clinical isolates was tested that included representatives of nine commonly encountered species and six infrequently encountered species. The PA included germ tube production, fermentation of seven carbohydrates, morphology on corn meal agar, urease and phenoloxidase activities, and carbohydrate assimilation tests when needed. The FC method (Luminex) employed species-specific oligonucleotides attached to polystyrene beads, which were hybridized with D1/D2 amplicons from the unidentified isolates. The PA identified 81 of 88 strains correctly but misidentified 4 of Candida dubliniensis, 1 of C. bovina, 1 of C. palmioleophila, and 1 of C. bracarensis. The FC method correctly identified 79 of 88 strains and did not misidentify any isolate but did not identify nine isolates because oligonucleotide probes were not available in the current library. The FC assay takes approximately 5 h, whereas the PA takes from 2 h to 5 days for identification. In conclusion, PA did well with the commonly encountered species, was not accurate for uncommon species, and takes significantly longer than the FC method. These data strongly support the potential of FC technology for rapid and accurate identification of medically important yeasts. With the introduction of new antifungals, rapid, accurate identification of pathogenic yeasts is more important than ever for guiding antifungal chemotherapy.

  10. Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization

    SciTech Connect

    Scaife, R.M. ); Wilson, L. ); Purich, D.L. )

    1992-01-14

    Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of ({sup 14}C)NAD{sup +} and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the {alpha} and {beta} chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight microtubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated ({sup 14}C)ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD{sup +} resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.

  11. Rapid simulated gastric fluid digestion of in-seed/grain proteins expressed in genetically engineered crops.

    PubMed

    Schafer, Barry W; Embrey, Shawna K; Herman, Rod A

    2016-11-01

    The speed of simulated gastric digestion of proteins expressed in genetically engineered (GE) crops is commonly used to inform the allergenicity risk assessment. However, persistence of purified proteins in simulated gastric fluid (SGF) is poorly correlated with the allergenic status of proteins. It has been proposed that the plant or food matrix may affect the digestion of proteins and should be considered in interpreting digestion results. Here the SGF digestion of several GE proteins both as purified preparations and in soybean, corn, and cotton seed/grain extracts (in-matrix) are compared. Cry1F, Cry1Ac, phosphinothricin acetyltransferase (PAT), aryloxyalkanoate dioxygenase-1 (AAD-1), aryloxyalkanoate dioxygenase-12 (AAD-12), and double mutant 5-enol pyruvylshikimate-3-phosphate synthase (2mEPSPS) were all found to rapidly digest both as purified protein preparations and in seed/grain extracts from GE crops expressing these proteins. Based on these results, purified protein from microbial sources is a suitable surrogate for proteins in-matrix when conducting SGF digestion studies.

  12. A proteomic approach for the rapid, multi-informative and reliable identification of blood.

    PubMed

    Patel, E; Cicatiello, P; Deininger, L; Clench, M R; Marino, G; Giardina, P; Langenburg, G; West, A; Marshall, P; Sears, V; Francese, S

    2016-01-07

    Blood evidence is frequently encountered at the scene of violent crimes and can provide valuable intelligence in the forensic investigation of serious offences. Because many of the current enhancement methods used by crime scene investigators are presumptive, the visualisation of blood is not always reliable nor does it bear additional information. In the work presented here, two methods employing a shotgun bottom up proteomic approach for the detection of blood are reported; the developed protocols employ both an in solution digestion method and a recently proposed procedure involving immobilization of trypsin on hydrophobin Vmh2 coated MALDI sample plate. The methods are complementary as whilst one yields more identifiable proteins (as biomolecular signatures), the other is extremely rapid (5 minutes). Additionally, data demonstrate the opportunity to discriminate blood provenance even when two different blood sources are present in a mixture. This approach is also suitable for old bloodstains which had been previously chemically enhanced, as experiments conducted on a 9-year-old bloodstain deposited on a ceramic tile demonstrate.

  13. Rapid synthesis of DNA-cysteine conjugates for expressed protein ligation

    SciTech Connect

    Lovrinovic, Marina; Niemeyer, Christof M. . E-mail: christof.niemeyer@uni-dortmund.de

    2005-09-30

    We report a rapid method for the covalent modification of commercially available amino-modified DNA oligonucleotides with a cysteine moiety. The resulting DNA-cysteine conjugates are versatile reagents for the efficient preparation of covalent DNA-protein conjugates by means of expressed protein ligation (EPL). The EPL method allows for the site-specific coupling of cysteine-modified DNA oligomers with recombinant intein-fusion proteins, the latter of which contain a C-terminal thioester enabling the mild and highly specific reaction with N-terminal cysteine compounds. We prepared a cysteine-modifier reagent in a single-step reaction which allows for the rapid and near quantitative synthesis of cysteine-DNA conjugates. The latter were ligated with the green fluorescent protein mutant EYFP, recombinantly expressed as an intein-fusion protein, allowing for the mild and selective formation of EYFP-DNA conjugates in high yields of about 60%. We anticipate many applications of our approach, ranging from protein microarrays to the arising field of nanobiotechnology.

  14. Rapid species identification of cooked poisonous mushrooms by using real-time PCR.

    PubMed

    Maeta, Kazuhiko; Ochi, Tomoya; Tokimoto, Keisuke; Shimomura, Norihiro; Maekawa, Nitaro; Kawaguchi, Nobuhisa; Nakaya, Makoto; Kitamoto, Yutaka; Aimi, Tadanori

    2008-05-01

    Species-specific identification of the major cooked and fresh poisonous mushrooms in Japan was performed using a real-time PCR system. Specific fluorescence signals were detected, and no nonspecific signals were detected. Therefore, we succeeded in developing a species-specific test for the identification of poisonous mushrooms within 1.5 h.

  15. Supplementation of CHROMagar Candida medium with Pal's medium for rapid identification of Candida dubliniensis.

    PubMed

    Sahand, Ismail H; Moragues, María D; Eraso, Elena; Villar-Vidal, María; Quindós, Guillermo; Pontón, José

    2005-11-01

    CHROMagar Candida medium is used for the isolation and identification of Candida species, but it does not differentiate Candida albicans from Candida dubliniensis. This differentiation can be achieved by using Pal's agar, which cannot be used in primary isolation. We have combined both media to obtain a new medium that can be used for the isolation and identification of C. dubliniensis in primary cultures.

  16. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection.

    PubMed

    Wagemakers, A; Mason, L M K; Oei, A; de Wever, B; van der Poll, T; Bins, A D; Hovius, J W R

    2014-12-01

    Borrelia afzelii is the predominant Borrelia species causing Lyme borreliosis in Europe. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines against Borrelia burgdorferi sensu stricto. DNA tattooing is a novel vaccination method that can be applied in a rapid vaccination schedule. We vaccinated C3H/HeN mice with B. afzelii strain PKo OspC (outer-surface protein C) using a codon-optimized DNA vaccine tattoo and compared this with recombinant protein vaccination in a 0-2-4 week vaccination schedule. We also assessed protection by DNA tattoo in a 0-3-6 day schedule. DNA tattoo and recombinant OspC vaccination induced comparable total IgG responses, with a lower IgG1/IgG2a ratio after DNA tattoo. Two weeks after syringe-challenge with 5 × 10(5) B. afzelii spirochetes most vaccinated mice had negative B. afzelii tissue DNA loads and all were culture negative. Furthermore, DNA tattoo vaccination in a 0-3-6 day regimen also resulted in negative Borrelia loads and cultures after challenge. To conclude, DNA vaccination by tattoo was fully protective against B. afzelii challenge in mice in a rapid vaccination protocol, and induces a favorable humoral immunity compared to recombinant protein vaccination. Rapid DNA tattoo is a promising vaccination strategy against spirochetes.

  17. High-resolution metabolic profiling towards G protein-coupled receptors: rapid and comprehensive screening of histamine H₄ receptor ligands.

    PubMed

    Kool, J; Rudebeck, A F; Fleurbaaij, F; Nijmeijer, S; Falck, D; Smits, R A; Vischer, H F; Leurs, R; Niessen, W M A

    2012-10-12

    In the past years we developed high-resolution screening platforms involving separation of bioactive mixtures and on-line or at-line bioassays for a wide variety of biological targets with parallel mass spectrometric detection and identification. In the current research, we make a major step forward in the development of at-line bioassays by implementation of radioligand receptor binding and functional cellular assays to evaluate bioactvity and selectivity. We demonstrate a new platform for high-resolution metabolic profiling of lead compounds for functional activity and selectivity toward the human histamine H(4) receptor (hH(4)R), a member of the large family of membrane-bound G protein-coupled receptors. In this platform analytical chemistry, cell biology and pharmacology are merged. The methodology is based on chromatographic separation of metabolic mixtures by HPLC coupled to high-resolution fractionation onto (multiple) microtiter well plates for complementary assaying. The methodology was used for efficient and rapid metabolic profiling of the drug clozapine and three selective hH(4)R lead compounds. With this new platform metabolites with undesired alterations in target selectivity profiles can be readily identified. Moreover, the parallel identification of metabolite structures, with accurate-mass measurements and MS/MS, allowed identification of liable metabolic 'hotspots' for further lead optimization and plays a central role in the workflow and in this study. The methodology can be easily adapted for use with other receptor screening formats. The efficient combination of pharmacological assays with analytical techniques by leveraging high-resolution at-line fractionation as a linking technology will allow implementation of comprehensive metabolic profiling in an early phase of the drug discovery process.

  18. Evaluation of the synergistic effects of milk proteins in a rapid viscosity analyzer.

    PubMed

    Stephani, Rodrigo; Borges de Souza, Alisson; Leal de Oliveira, Marcone Augusto; Perrone, Ítalo Tuler; Fernandes de Carvalho, Antônio; Cappa de Oliveira, Luiz Fernando

    2015-12-01

    Protein systems (PS) are routinely used by companies from Brazil and around the globe to improve the texture, yield, and palatability of processed foods. Understanding the synergistic behavior among the different protein structures of these systems during thermal treatment under the influence of pH can help to better define optimum conditions for products and processes. The interpretation of the reactions and interactions that occur simultaneously among the protein constituents of these systems as dispersions during thermal processing is still a major challenge. Here, using a rapid viscosity analyzer, we observed the rheological changes in the startup viscosities of 5 PS obtained by combining varying proportions of milk protein concentrate and whey protein concentrate under different conditions of pH (5.0, 6.5, and 7.0) and heat processing (85°C/15min and 95°C/5min). The solutions were standardized to 25% of total solids and 17% of protein. Ten analytical parameters were used to characterize each of the startup-viscosity ramps for 35 experiments conducted in a 2×3 × 5 mixed planning matrix, using principal component analysis to interpret behavioral similarities. The study showed the clear influence of pH 5.5 in the elevation of the initial temperature of the PS startup viscosity by at least 5°C, as well as the effect of different milk protein concentrate:whey protein concentrate ratios above 15:85 at pH 7.0 on the viscographic profile curves. These results suggested that the primary agent driving the changes was the synergism among the reactions and interactions of casein with whey proteins during processing. This study reinforces the importance of the rapid viscosity analyzer as an analytical tool for the simulation of industrial processes involving PS, and the use of the startup viscosity ramp as a means of interpreting the interactions of system components with respect to changes related to the treatment temperature.

  19. Identification of Protein Succination as a Novel Modification of Tubulin

    PubMed Central

    Piroli, Gerardo G.; Manuel, Allison M.; Walla, Michael D.; Jepson, Matthew J.; Brock, Jonathan W.C.; Rajesh, Mathur P.; Tanis, Ross M.; Cotham, William E.; Frizzell, Norma

    2015-01-01

    Protein succination is a stable post-translational modification that occurs when fumarate reacts with cysteine residues to generate S-(2-succino)cysteine (2SC). We demonstrate that both alpha (α) and beta (β) tubulin are increasingly modified by succination in 3T3-L1 adipocytes and in the adipose tissue of db/db mice. Incubation of purified tubulin from porcine brain with fumarate (50 mM) or the pharmacological compound dimethylfumarate (DMF, 500 μM) inhibited polymerization up to 35% and 59%, respectively. Using mass spectrometry we identified Cys347α, Cys376α, Cys12β and Cys303β as sites of succination in porcine brain tubulin and the relative abundance of succination at these cysteines increased in association with fumarate concentration. The increase in succination after incubation with fumarate altered tubulin recognition by an anti-α-tubulin antibody. Succinated tubulin in adipocytes cultured in high glucose vs. normal glucose also had reduced reactivity with the anti-αtubulin antibody; suggesting that succination may interfere with tubulin:protein interactions. DMF reacted rapidly with 11 of the 20 cysteines in the αβ tubulin dimer, decreased the number of free sulfhydryls and inhibited the proliferation of 3T3-L1 fibroblasts. Our data suggests that inhibition of tubulin polymerization is an important, undocumented mechanism of action of DMF. Taken together, our results demonstrate that succination is a novel post-translational modification of tubulin and suggest that extensive modification by fumarate, either physiologically or pharmacologically, may alter microtubule dynamics. PMID:24909641

  20. Rapid Evaporative Ionisation Mass Spectrometry (REIMS) Provides Accurate Direct from Culture Species Identification within the Genus Candida.

    PubMed

    Cameron, Simon J S; Bolt, Frances; Perdones-Montero, Alvaro; Rickards, Tony; Hardiman, Kate; Abdolrasouli, Alireza; Burke, Adam; Bodai, Zsolt; Karancsi, Tamas; Simon, Daniel; Schaffer, Richard; Rebec, Monica; Balog, Julia; Takáts, Zoltan

    2016-11-14

    Members of the genus Candida, such as C. albicans and C. parapsilosis, are important human pathogens. Other members of this genus, previously believed to carry minimal disease risk, are increasingly recognised as important human pathogens, particularly because of variations in susceptibilities to widely used anti-fungal agents. Thus, rapid and accurate identification of clinical Candida isolates is fundamental in ensuring timely and effective treatments are delivered. Rapid Evaporative Ionisation Mass Spectrometry (REIMS) has previously been shown to provide a high-throughput platform for the rapid and accurate identification of bacterial and fungal isolates. In comparison to commercially available matrix assisted laser desorption ionisation time of flight mass spectrometry (MALDI-ToF), REIMS based methods require no preparative steps nor time-consuming cell extractions. Here, we report on the ability of REIMS-based analysis to rapidly and accurately identify 153 clinical Candida isolates to species level. Both handheld bipolar REIMS and high-throughput REIMS platforms showed high levels of species classification accuracy, with 96% and 100% of isolates classified correctly to species level respectively. In addition, significantly different (FDR corrected P value < 0.05) lipids within the 600 to 1000 m/z mass range were identified, which could act as species-specific biomarkers in complex microbial communities.

  1. Rapid Evaporative Ionisation Mass Spectrometry (REIMS) Provides Accurate Direct from Culture Species Identification within the Genus Candida

    PubMed Central

    Cameron, Simon J. S.; Bolt, Frances; Perdones-Montero, Alvaro; Rickards, Tony; Hardiman, Kate; Abdolrasouli, Alireza; Burke, Adam; Bodai, Zsolt; Karancsi, Tamas; Simon, Daniel; Schaffer, Richard; Rebec, Monica; Balog, Julia; Takáts, Zoltan

    2016-01-01

    Members of the genus Candida, such as C. albicans and C. parapsilosis, are important human pathogens. Other members of this genus, previously believed to carry minimal disease risk, are increasingly recognised as important human pathogens, particularly because of variations in susceptibilities to widely used anti-fungal agents. Thus, rapid and accurate identification of clinical Candida isolates is fundamental in ensuring timely and effective treatments are delivered. Rapid Evaporative Ionisation Mass Spectrometry (REIMS) has previously been shown to provide a high-throughput platform for the rapid and accurate identification of bacterial and fungal isolates. In comparison to commercially available matrix assisted laser desorption ionisation time of flight mass spectrometry (MALDI-ToF), REIMS based methods require no preparative steps nor time-consuming cell extractions. Here, we report on the ability of REIMS-based analysis to rapidly and accurately identify 153 clinical Candida isolates to species level. Both handheld bipolar REIMS and high-throughput REIMS platforms showed high levels of species classification accuracy, with 96% and 100% of isolates classified correctly to species level respectively. In addition, significantly different (FDR corrected P value < 0.05) lipids within the 600 to 1000 m/z mass range were identified, which could act as species-specific biomarkers in complex microbial communities. PMID:27841356

  2. Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins

    PubMed Central

    Vedelek, Balázs; Blastyák, András; Boros, Imre M.

    2015-01-01

    Telomere integrity in Drosophila melanogaster is maintained by a putative multisubunit complex called terminin that is believed to act in analogy to the mammalian shelterin complex in protecting chromosome ends from being recognized as sites of DNA damage. The five proteins supposed to form the terminin complex are HP1-ORC associated protein, HP1-HOAP interacting protein, Verrocchio, Drosophila Telomere Loss/Modigliani and Heterochromatic Protein 1. Four of these proteins evolve rapidly within the Drosophila genus. The accelerated evolution of terminin components may indicate the involvement of these proteins in the process by which new species arise, as the resulting divergence of terminin proteins might prevent hybrid formation, thus driving speciation. However, terminin is not an experimentally proven entity, and no biochemical studies have been performed to investigate its assembly and action in detail. Motivated by these facts in order to initiate biochemical studies on terminin function, we attempted to reconstitute terminin by co-expressing its subunits in bacteria and investigated the possible role of the fast-evolving parts of terminin components in complex assembly. Our results suggest formation of stable subcomplexes of terminin, but not of the whole complex in vitro. We found that the accelerated evolution is restricted to definable regions of terminin components, and that the divergence of D. melanogaster Drosophila Telomere Loss and D. yakuba Verrocchio proteins does not preclude their stable interaction. PMID:26566042

  3. Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins.

    PubMed

    Vedelek, Balázs; Blastyák, András; Boros, Imre M

    2015-01-01

    Telomere integrity in Drosophila melanogaster is maintained by a putative multisubunit complex called terminin that is believed to act in analogy to the mammalian shelterin complex in protecting chromosome ends from being recognized as sites of DNA damage. The five proteins supposed to form the terminin complex are HP1-ORC associated protein, HP1-HOAP interacting protein, Verrocchio, Drosophila Telomere Loss/Modigliani and Heterochromatic Protein 1. Four of these proteins evolve rapidly within the Drosophila genus. The accelerated evolution of terminin components may indicate the involvement of these proteins in the process by which new species arise, as the resulting divergence of terminin proteins might prevent hybrid formation, thus driving speciation. However, terminin is not an experimentally proven entity, and no biochemical studies have been performed to investigate its assembly and action in detail. Motivated by these facts in order to initiate biochemical studies on terminin function, we attempted to reconstitute terminin by co-expressing its subunits in bacteria and investigated the possible role of the fast-evolving parts of terminin components in complex assembly. Our results suggest formation of stable subcomplexes of terminin, but not of the whole complex in vitro. We found that the accelerated evolution is restricted to definable regions of terminin components, and that the divergence of D. melanogaster Drosophila Telomere Loss and D. yakuba Verrocchio proteins does not preclude their stable interaction.

  4. Rapid clearance of bacteria and their toxins: development of therapeutic proteins.

    PubMed

    Kunkel, Meghan; Vuyisich, Momchilo; Gnanakaran, Gnana; Bruening, George E; Dandekar, Abhaya M; Civerolo, Edwin; Marchalonis, John J; Gupta, Goutam

    2007-01-01

    The emergence of pathogens and toxins with resistance against conventional drugs, vaccines, and host defense peptides and proteins warrants novel countermeasures that can efficiently capture and rapidly clear them. This article examines the utility of chimeric proteins with capture and clearance domains as a novel countermeasure against pathogens and their toxins. The capture and clearance domains are chosen from the large repertoire of host defense peptides and proteins. Although individual capture and clearance domains are rendered ineffective by pathogenic resistance mechanisms, chimeric scaffolds can be designed to retain their antimicrobial activity, even in the face of pathogenic resistance. Here, initial studies on the design of chimeric proteins targeted against (1) intact bacteria such as Xylella fastidiosa (plant pathogens), Salmonella spp. (food-borne pathogens), and Staphylococcus aureus (blood-borne pathogens); and (2) lethal toxins from Bacillus anthracis are described.

  5. Rapid screening for structural integrity of expressed proteins by heteronuclear NMR spectroscopy.

    PubMed Central

    Gronenborn, A. M.; Clore, G. M.

    1996-01-01

    A simple and rapid method based on 15N labeling and 1H-15N heteronuclear single quantum coherence spectroscopy is presented to directly assess the structural integrity of overexpressed proteins in crude Escherichia coli extracts without the need for any purification. The method is demonstrated using two different expression systems and two different proteins, the B1 immunoglobulin-binding domain of streptococcal protein G (56 residues) and human interleukin-1 beta (153 residues). It is shown that high quality 1H-15N correlation spectra, recorded in as little as 15 min and displaying only cross-peaks arising from the overexpressed protein of interest, can be obtained from crude E. coli extracts. PMID:8771212

  6. Automation of plasma protein binding assay using rapid equilibrium dialysis device and Tecan workstation.

    PubMed

    Ye, Zhengqi; Zetterberg, Craig; Gao, Hong

    2017-03-14

    Binding of drug molecules to plasma proteins is an important parameter in assessing drug ADME properties. Plasma protein binding (PPB) assays are routinely performed during drug discovery and development. A fully automated PPB assay was developed using rapid equilibrium dialysis (RED) device and Tecan workstation coupled to an automated incubator. The PPB assay was carried out in unsealed RED plates which allowed the assay to be fully automated. The plasma pH was maintained at 7.4 during the 6-h dialysis under 2% CO2 condition. The samples were extracted with acetonitrile and analyzed by liquid chromatography tandem mass spectrometry. The percent bound results of 10 commercial drugs in plasma protein binding were very similar between the automated and manual assays, and were comparable to literature values. The automated assay increases laboratory productivity and is applicable to high-throughput screening of drug protein binding in drug discovery.

  7. Choosing an Optimal Database for Protein Identification from Tandem Mass Spectrometry Data.

    PubMed

    Kumar, Dhirendra; Yadav, Amit Kumar; Dash, Debasis

    2017-01-01

    Database searching is the preferred method for protein identification from digital spectra of mass to charge ratios (m/z) detected for protein samples through mass spectrometers. The search database is one of the major influencing factors in discovering proteins present in the sample and thus in deriving biological conclusions. In most cases the choice of search database is arbitrary. Here we describe common search databases used in proteomic studies and their impact on final list of identified proteins. We also elaborate upon factors like composition and size of the search database that can influence the protein identification process. In conclusion, we suggest that choice of the database depends on the type of inferences to be derived from proteomics data. However, making additional efforts to build a compact and concise database for a targeted question should generally be rewarding in achieving confident protein identifications.

  8. Rapid effects of dorsal hippocampal G-protein coupled estrogen receptor on learning in female mice.

    PubMed

    Lymer, Jennifer; Robinson, Alana; Winters, Boyer D; Choleris, Elena

    2017-03-01

    Through rapid mechanisms of action, estrogens affect learning and memory processes. It has been shown that 17β-estradiol and an Estrogen Receptor (ER) α agonist enhances performance in social recognition, object recognition, and object placement tasks when administered systemically or infused in the dorsal hippocampus. In contrast, systemic and dorsal hippocampal ERβ activation only promote spatial learning. In addition, 17β-estradiol, the ERα and the G-protein coupled estrogen receptor (GPER) agonists increase dendritic spine density in the CA1 hippocampus. Recently, we have shown that selective systemic activation of the GPER also rapidly facilitated social recognition, object recognition, and object placement learning in female mice. Whether activation the GPER specifically in the dorsal hippocampus can also rapidly improve learning and memory prior to acquisition is unknown. Here, we investigated the rapid effects of infusion of the GPER agonist, G-1 (dose: 50nM, 100nM, 200nM), in the dorsal hippocampus on social recognition, object recognition, and object placement learning tasks in home cage. These paradigms were completed within 40min, which is within the range of rapid estrogenic effects. Dorsal hippocampal administration of G-1 improved social (doses: 50nM, 200nM G-1) and object (dose: 200nM G-1) recognition with no effect on object placement. Additionally, when spatial cues were minimized by testing in a Y-apparatus, G-1 administration promoted social (doses: 100nM, 200nM G-1) and object (doses: 50nM, 100nM, 200nM G-1) recognition. Therefore, like ERα, the GPER in the hippocampus appears to be sufficient for the rapid facilitation of social and object recognition in female mice, but not for the rapid facilitation of object placement learning. Thus, the GPER in the dorsal hippocampus is involved in estrogenic mediation of learning and memory and these effects likely occur through rapid signalling mechanisms.

  9. Ultra-Rapid Laser Protein Micropatterning: Screening For Directed Polarization of Single Neurons

    PubMed Central

    Scott, Mark A.; Wissner-Gross, Zachary D.; Yanik, Mehmet Fatih

    2012-01-01

    Protein micropatterning is a powerful tool for studying the effects of extracellular signals on cell development and regeneration. Laser micropatterning of proteins is the most flexible method for patterning many different geometries, protein densities, and concentration gradients. Despite these advantages, laser micropatterning remains prohibitively slow for most applications. Here, we take advantage of the rapid multi-photon induced photobleaching of fluorophores to generate sub-micron resolution patterns of full-length proteins on polymer monolayers, with sub-microsecond exposure times, i.e. one to five orders of magnitude faster than all previous laser micropatterning methods. We screened a range of different PEG monolayer coupling chemistries, chain-lengths and functional caps, and found that long-chain acrylated PEG monolayers are effective at resisting non-specific protein adhesion, while permitting efficient cross-linking of biotin-4-fluorescein to the PEG monolayers upon exposure to femtosecond laser pulses. We find evidence that the dominant photopatterning chemistry switches from a two-photon process to three- and four-photon absorption processes as the laser intensity increases, generating increasingly volatile excited triplet-state fluorophores, leading to faster patterning. Using this technology, we were able to generate over a hundred thousand protein patterns with varying geometries and protein densities to direct the polarization of hippocampal neurons with single-cell precision. We found that certain arrays of patterned triangles as small as neurite growth cones can direct polarization by impeding the elongation of reverse-projecting neurites, while permitting elongation of forward-projecting neurites. The ability to rapidly generate and screen such protein micropatterns can enable discovery of conditions necessary to create in vitro neural networks with single-neuron precision for basic discovery, drug screening, as well as for tissue scaffolding

  10. Engineering toward a bacterial "endoplasmic reticulum" for the rapid expression of immunoglobulin proteins.

    PubMed

    Groff, Dan; Armstrong, Stephanie; Rivers, Patrick J; Zhang, Juan; Yang, Junhao; Green, Evan; Rozzelle, James; Liang, Shengwen; Kittle, Joseph D; Steiner, Alexander R; Baliga, Ramesh; Thanos, Christopher D; Hallam, Trevor J; Sato, Aaron K; Yam, Alice Y

    2014-01-01

    Antibodies are well-established as therapeutics, and the preclinical and clinical pipeline of these important biologics is growing rapidly. Consequently, there is considerable interest in technologies to engineer and manufacture them. Mammalian cell culture is commonly used for production because eukaryotic expression systems have evolved complex and efficient chaperone systems for the folding of antibodies. However, given the ease and manipulability of bacteria, antibody discovery efforts often employ bacterial expression systems despite their limitations in generating high titers of functional antibody. Open-Cell Free Synthesis (OCFS) is a coupled transcription-translation system that has the advantages of prokaryotic systems while achieving high titers of antibody expression. Due to the open nature of OCFS, it is easily modified by chemical or protein additives to improve the folding of select proteins. As such, we undertook a protein additive screen to identify chaperone proteins that improve the folding and assembly of trastuzumab in OCFS. From the screen, we identified the disulfide isomerase DsbC and the prolyl isomerase FkpA as important positive effectors of IgG folding. These periplasmic chaperones function synergistically for the folding and assembly of IgG, and, when present in sufficient quantities, gram per liter IgG titers can be produced. This technological advancement allows the rapid development and manufacturing of immunoglobulin proteins and pushes OCFS to the forefront of production technologies for biologics.

  11. Benefits of Adding a Rapid PCR-Based Blood Culture Identification Panel to an Established Antimicrobial Stewardship Program

    PubMed Central

    2016-01-01

    Studies have demonstrated that the combination of antimicrobial stewardship programs (ASP) and rapid organism identification improves outcomes in bloodstream infections (BSI) but have not controlled for the incremental contribution of the individual components. Hospitalized adult patients with blood culture pathogens on a rapid, multiplex PCR-based blood culture identification panel (BCID) that included 19 bacterial species, 5 Candida spp., and 4 antimicrobial resistance genes were studied over sequential time periods in a pre-post quasiexperimental study in 3 groups in the following categories: conventional organism identification (controls), conventional organism identification with ASP (AS), and BCID with ASP (BCID). Clinical and economic outcomes were compared between groups. There were 783 patients with positive blood cultures; of those patients, 364 (115 control, 104 AS, and 145 BCID) met inclusion criteria. The time from blood culture collection to organism identification was shorter in the BCID group (17 h; P < 0.001) than in the control group (57 h) or the AS group (54 h). The BCID group had a shorter time to effective therapy (5 h; P < 0.001) than the control group (15 h) or AS group (13 h). The AS (57%) and BCID (52%) groups had higher rates of antimicrobial de-escalation than the control group (34%), with de-escalation occurring sooner in the BCID group (48 h; P = 0.034) than in the AS group (61 h) or the control group (63 h). No difference between the control group, AS group, and BCID group was seen with respect to mortality, 30-day readmission, intensive care unit length of stay (LOS), postculture LOS, or costs. In patients with BSI, ASP alone improved antimicrobial utilization. Addition of BCID to an established ASP shortened the time to effective therapy and further improved antimicrobial use compared to ASP alone, even in a setting of low antimicrobial resistance rates. PMID:27487951

  12. Identification of kinases phosphorylating 13 sites in the nuclear, DNA-binding protein NUCKS.

    PubMed

    Grundt, Kirsten; Thiede, Bernd; Østvold, Anne Carine

    2017-03-01

    NUCKS is a vertebrate specific, nuclear and DNA-binding phospho protein. The protein is highly expressed in rapidly dividing cells, and is overexpressed in a number of cancer tissues. The phosphorylation of NUCKS is cell cycle and DNA-damage regulated, but little is known about the responsible kinases. By utilizing in vitro and in vivo phosphorylation assays using isolated NUCKS as well as synthetic NUCKS-derived peptides in combination with mass spectrometry, phosphopeptide mapping, phosphphoamino acid analyses, phosphospecific antibodies and the use of specific kinase inhibitors, we found that NUCKS is phosphorylated on 11 sites by CK2. At least 7 of the CK2 sites are phosphorylated in vivo. We also found that NUCKS is phosphorylated on two sites by ATM kinase and DNA-PK in vitro, and is phosphorylated in vivo by ATM kinase in γ-irradiated cells. All together, we identified three kinases phosphorylating 13 out of 39 in vivo phosphorylated sites in mammalian NUCKS. The identification of CK2 and PIKK kinases as kinases phosphorylating NUCKS in vivo provide further evidence for the involvement of NUCKS in cell cycle control and DNA repair.

  13. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity

    PubMed Central

    Barkla, Bronwyn J.

    2016-01-01

    Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised. PMID:28248236

  14. Rapid Design of Knowledge-Based Scoring Potentials for Enrichment of Near-Native Geometries in Protein-Protein Docking

    PubMed Central

    Sasse, Alexander; de Vries, Sjoerd J.; Schindler, Christina E. M.; de Beauchêne, Isaure Chauvot

    2017-01-01

    Protein-protein docking protocols aim to predict the structures of protein-protein complexes based on the structure of individual partners. Docking protocols usually include several steps of sampling, clustering, refinement and re-scoring. The scoring step is one of the bottlenecks in the performance of many state-of-the-art protocols. The performance of scoring functions depends on the quality of the generated structures and its coupling to the sampling algorithm. A tool kit, GRADSCOPT (GRid Accelerated Directly SCoring OPTimizing), was designed to allow rapid development and optimization of different knowledge-based scoring potentials for specific objectives in protein-protein docking. Different atomistic and coarse-grained potentials can be created by a grid-accelerated directly scoring dependent Monte-Carlo annealing or by a linear regression optimization. We demonstrate that the scoring functions generated by our approach are similar to or even outperform state-of-the-art scoring functions for predicting near-native solutions. Of additional importance, we find that potentials specifically trained to identify the native bound complex perform rather poorly on identifying acceptable or medium quality (near-native) solutions. In contrast, atomistic long-range contact potentials can increase the average fraction of near-native poses by up to a factor 2.5 in the best scored 1% decoys (compared to existing scoring), emphasizing the need of specific docking potentials for different steps in the docking protocol. PMID:28118389

  15. Identification of small molecule binding sites within proteins using phage display technology.

    SciTech Connect

    Rodi, D. J.; Agoston, G. E.; Manon, R.; Lapcevich, R.; Green, S. J.; Makowski, L.; Biosciences Division; EntreMed Inc.; Florida State Univ.

    2001-11-01

    Affinity selection of peptides displayed on phage particles was used as the basis for mapping molecular contacts between small molecule ligands and their protein targets. Analysis of the crystal structures of complexes between proteins and small molecule ligands revealed that virtually all ligands of molecular weight 300 Da or greater have a continuous binding epitope of 5 residues or more. This observation led to the development of a technique for binding site identification which involves statistical analysis of an affinity-selected set of peptides obtained by screening of libraries of random, phage-displayed peptides against small molecules attached to solid surfaces. A random sample of the selected peptides is sequenced and used as input for a similarity scanning program which calculates cumulative similarity scores along the length of the putative receptor. Regions of the protein sequence exhibiting the highest similarity with the selected peptides proved to have a high probability of being involved in ligand binding. This technique has been employed successfully to map the contact residues in multiple known targets of the anticancer drugs paclitaxel (Taxol), docetaxel (Taxotere) and 2-methoxyestradiol and the glycosaminoglycan hyaluronan, and to identify a novel paclitaxel receptor [1]. These data corroborate the observation that the binding properties of peptides displayed on the surface of phage particles can mimic the binding properties of peptides in naturally occurring proteins. It follows directly that structural context is relatively unimportant for determining the binding properties of these disordered peptides. This technique represents a novel, rapid, high resolution method for identifying potential ligand binding sites in the absence of three-dimensional information and has the potential to greatly enhance the speed of development of novel small molecule pharmaceuticals.

  16. A NOVEL TECHNIQUE FOR THE RAPID IDENTIFICATION OF ALPHA EMITTERS RELEASED DURING A RADIOLOGICAL INCIDENT.

    EPA Science Inventory

    Currently there are no standard radioanalytical methods applicable to the initial phase of a radiological emergency, for the early identification and quantification of alpha emitting radionuclides. Of particular interest are determinations of the presence and concentration of is...

  17. Development of a new protocol for rapid bacterial identification and susceptibility testing directly from urine samples.

    PubMed

    Zboromyrska, Y; Rubio, E; Alejo, I; Vergara, A; Mons, A; Campo, I; Bosch, J; Marco, F; Vila, J

    2016-06-01

    The current gold standard method for the diagnosis of urinary tract infections (UTI) is urine culture that requires 18-48 h for the identification of the causative microorganisms and an additional 24 h until the results of antimicrobial susceptibility testing (AST) are available. The aim of this study was to shorten the time of urine sample processing by a combination of flow cytometry for screening and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for bacterial identification followed by AST directly from urine. The study was divided into two parts. During the first part, 675 urine samples were processed by a flow cytometry device and a cut-off value of bacterial count was determined to select samples for direct identification by MALDI-TOF-MS at ≥5 × 10(6) bacteria/mL. During the second part, 163 of 1029 processed samples reached the cut-off value. The sample preparation protocol for direct identification included two centrifugation and two washing steps. Direct AST was performed by the disc diffusion method if a reliable direct identification was obtained. Direct MALDI-TOF-MS identification was performed in 140 urine samples; 125 of the samples were positive by urine culture, 12 were contaminated and 3 were negative. Reliable direct identification was obtained in 108 (86.4%) of the 125 positive samples. AST was performed in 102 identified samples, and the results were fully concordant with the routine method among 83 monomicrobial infections. In conclusion, the turnaround time of the protocol described to diagnose UTI was about 1 h for microbial identification and 18-24 h for AST.

  18. Rapid Detection & Identification of Bacillus Species using MALDI-TOF/TOF and Biomarker Database

    DTIC Science & Technology

    2006-06-01

    Identification of Selected Bacillus Species (excerpt from [42]) S0 0 00 two IL - ZZO al 0 > W Z 0 . 0j~ COLN SPECIESIL B. megaterium v + + + v + + - v...identification for genus (eg. Bacillus vs. Escherichia) and species ( Bacillus anthracis vs. Bacillus megaterium ), but not strains (B. anthracis Ames... Bacillus Species using MALDI-TOF/TOF and Biomarker Database A Strategic Plan Nora W.C. Chan and William E. Lee Defence R&D Canada - Suffield Zoltan Mester

  19. Supplementation of CHROMagar Candida Medium with Pal's Medium for Rapid Identification of Candida dubliniensis

    PubMed Central

    Sahand, Ismail H.; Moragues, María D.; Eraso, Elena; Villar-Vidal, María; Quindós, Guillermo; Pontón, José

    2005-01-01

    CHROMagar Candida medium is used for the isolation and identification of Candida species, but it does not differentiate Candida albicans from Candida dubliniensis. This differentiation can be achieved by using Pal's agar, which cannot be used in primary isolation. We have combined both media to obtain a new medium that can be used for the isolation and identification of C. dubliniensis in primary cultures. PMID:16272515

  20. Rapid hydrophobic grid membrane filter-enzyme-labeled antibody procedure for identification and enumeration of Escherichia coli O157 in foods.

    PubMed Central

    Todd, E C; Szabo, R A; Peterkin, P; Sharpe, A N; Parrington, L; Bundle, D; Gidney, M A; Perry, M B

    1988-01-01

    An O-antigen-specific monoclonal antibody, labeled by horseradish peroxidase-protein A, was used in a hydrophobic grid membrane filter-enzyme-labeled antibody method for rapid detection of Escherichia coli O157 in foods. The method yielded presumptive identification within 24 h and recovered, on average, 95% of E. coli O157:H7 artificially inoculated into comminuted beef, veal, pork, chicken giblets, and chicken carcass washings. In food samples from two outbreaks involving E. coli O157:H7, the organism was isolated at levels of up to 10(3)/g. The lower limit of sensitivity was 10 E. coli O157 per g of meat. Specific typing for E. coli O157:H7 can be achieved through staining with labeled H7 antiserum or tube agglutination. Images PMID:3060018

  1. A rapid and simple assay for growth hormone-binding protein activity in human plasma.

    PubMed

    Baumann, G; Shaw, M A; Amburn, K

    1988-12-01

    The newly discovered circulating growth hormone binding proteins dictate a re-evaluation of the state of GH in plasma in health and disease as the binding proteins are known to affect GH metabolism and action. We describe a rapid and simple GH-binding assay that allows determination of free and complexed plasma GH, as well as GH-binding protein activity as an index of GH-binding protein levels, with relative ease. The method is based on incubation of plasma with 125I-GH and separation of bound from free GH on small DEAE-cellulose columns; it can be used on a large scale for routine determinations. The results obtained by this method are comparable to those obtained with the previously used slow and more cumbersome gel filtration technique. Initial data obtained in normal subjects and certain disease states show that the bound fraction of plasma GH is similar in men, women and children, is unaffected by pregnancy or acute infection, but is marginally decreased in liver cirrhosis. In acromegaly, binding protein activity also appears normal when allowance is made for partial saturation of the binding proteins by the high prevailing GH levels. The technique we describe should facilitate investigations of normal and abnormal regulation of the GH binding proteins.

  2. Melting Temperature Mapping Method: A Novel Method for Rapid Identification of Unknown Pathogenic Microorganisms within Three Hours of Sample Collection

    PubMed Central

    Niimi, Hideki; Ueno, Tomohiro; Hayashi, Shirou; Abe, Akihito; Tsurue, Takahiro; Mori, Masashi; Tabata, Homare; Minami, Hiroshi; Goto, Michihiko; Akiyama, Makoto; Yamamoto, Yoshihiro; Saito, Shigeru; Kitajima, Isao

    2015-01-01

    Acquiring the earliest possible identification of pathogenic microorganisms is critical for selecting the appropriate antimicrobial therapy in infected patients. We herein report the novel “melting temperature (Tm) mapping method” for rapidly identifying the dominant bacteria in a clinical sample from sterile sites. Employing only seven primer sets, more than 100 bacterial species can be identified. In particular, using the Difference Value, it is possible to identify samples suitable for Tm mapping identification. Moreover, this method can be used to rapidly diagnose the absence of bacteria in clinical samples. We tested the Tm mapping method using 200 whole blood samples obtained from patients with suspected sepsis, 85% (171/200) of which matched the culture results based on the detection level. A total of 130 samples were negative according to the Tm mapping method, 98% (128/130) of which were also negative based on the culture method. Meanwhile, 70 samples were positive according to the Tm mapping method, and of the 59 suitable for identification, 100% (59/59) exhibited a “match” or “broad match” with the culture or sequencing results. These findings were obtained within three hours of whole blood collection. The Tm mapping method is therefore useful for identifying infectious diseases requiring prompt treatment. PMID:26218169

  3. Lncident: A Tool for Rapid Identification of Long Noncoding RNAs Utilizing Sequence Intrinsic Composition and Open Reading Frame Information

    PubMed Central

    Liang, Yanchun

    2016-01-01

    More and more studies have demonstrated that long noncoding RNAs (lncRNAs) play critical roles in diversity of biological process and are also associated with various types of disease. How to rapidly identify lncRNAs and messenger RNA is the fundamental step to uncover the function of lncRNAs identification. Here, we present a novel method for rapid identification of lncRNAs utilizing sequence intrinsic composition features and open reading frame information based on support vector machine model, named as Lncident (LncRNAs identification). The 10-fold cross-validation and ROC curve are used to evaluate the performance of Lncident. The main advantage of Lncident is high speed without the loss of accuracy. Compared with the exiting popular tools, Lncident outperforms Coding-Potential Calculator, Coding-Potential Assessment Tool, Coding-Noncoding Index, and PLEK. Lncident is also much faster than Coding-Potential Calculator and Coding-Noncoding Index. Lncident presents an outstanding performance on microorganism, which offers a great application prospect to the analysis of microorganism. In addition, Lncident can be trained by users' own collected data. Furthermore, R package and web server are simultaneously developed in order to maximize the convenience for the users. The R package “Lncident” can be easily installed on multiple operating system platforms, as long as R is supported. PMID:28116287

  4. Melting Temperature Mapping Method: A Novel Method for Rapid Identification of Unknown Pathogenic Microorganisms within Three Hours of Sample Collection.

    PubMed

    Niimi, Hideki; Ueno, Tomohiro; Hayashi, Shirou; Abe, Akihito; Tsurue, Takahiro; Mori, Masashi; Tabata, Homare; Minami, Hiroshi; Goto, Michihiko; Akiyama, Makoto; Yamamoto, Yoshihiro; Saito, Shigeru; Kitajima, Isao

    2015-07-28

    Acquiring the earliest possible identification of pathogenic microorganisms is critical for selecting the appropriate antimicrobial therapy in infected patients. We herein report the novel "melting temperature (Tm) mapping method" for rapidly identifying the dominant bacteria in a clinical sample from sterile sites. Employing only seven primer sets, more than 100 bacterial species can be identified. In particular, using the Difference Value, it is possible to identify samples suitable for Tm mapping identification. Moreover, this method can be used to rapidly diagnose the absence of bacteria in clinical samples. We tested the Tm mapping method using 200 whole blood samples obtained from patients with suspected sepsis, 85% (171/200) of which matched the culture results based on the detection level. A total of 130 samples were negative according to the Tm mapping method, 98% (128/130) of which were also negative based on the culture method. Meanwhile, 70 samples were positive according to the Tm mapping method, and of the 59 suitable for identification, 100% (59/59) exhibited a "match" or "broad match" with the culture or sequencing results. These findings were obtained within three hours of whole blood collection. The Tm mapping method is therefore useful for identifying infectious diseases requiring prompt treatment.

  5. Rapid identification and antimicrobial susceptibility profiling of Gram-positive cocci in blood cultures with the Vitek 2 system.

    PubMed

    Lupetti, A; Barnini, S; Castagna, B; Capria, A-L; Nibbering, P H

    2010-01-01

    Rapid identification and antimicrobial susceptibility profiling of the bacteria in blood cultures can result in clinical and financial benefits. Addition of saponin to the fluid from blood culture bottles promotes the recovery of the bacteria and thus may shorten the turnaround time of the microbiological analyses. In this study we compared the identification and susceptibility profiles of saponin-treated and untreated (standard method) blood cultures monomicrobial for Gram-positive cocci using Vitek 2. We concordantly identified 49 (89%) of 55 monobacterial cultures using the results with the standard method as reference. Complete categorical agreement between the susceptibility profiles with the new and the standard method was found for 26 (53%) of 49 isolates, while discrepancies were seen for 23 (47%) cultures. E-tests indicated that the new method resulted in a correct susceptibility profile for 8 (35%) of these 23 blood cultures. Therefore, 34 (69%) of 49 cultures showed a concordant/correct susceptibility profile for all antimicrobials with an overall error rate of 2.3%. Thus, addition of saponin to the fluid from blood culture bottles of the Bactec 9240 leads to the rapid (results available >or=12 hours earlier) and reliable identification and susceptibility profiling of Gram-positive cocci in blood cultures with Vitek 2.

  6. Rapid identification, by use of the LTQ Orbitrap hybrid FT mass spectrometer, of antifungal compounds produced by lactic acid bacteria.

    PubMed

    Brosnan, Brid; Coffey, Aidan; Arendt, Elke K; Furey, Ambrose

    2012-07-01

    Fungal contamination of food causes health and economic concerns. Several species of lactic acid bacteria (LAB) have antifungal activity which may inhibit food spoilage fungi. LAB have GRAS (generally recognised as safe) status, allowing them to be safely integrated into food systems as natural food preservatives. A method is described herein that enables rapid screening of LAB cultures for 25 known antifungal compounds associated with LAB. This is the first chromatographic method developed which enables the rapid identification of a wide range of antifungal compounds by a single method with a short analysis time (23 min). Chromatographic separation was achieved on a Phenomenex Gemini C18 100A column (150 mm × 2.0 mm; 5 μm) by use of a mobile-phase gradient prepared from (A) water containing acetic acid (0.1%) and (B) acetonitrile containing acetic acid (0.1%), at a flow rate of 0.3 µL min(-1). The gradient involved a progressive ramp from 10-95% acetonitrile over 13 min. The LC was coupled to a hybrid LTQ Orbitrap XL fourier-transform mass spectrometer (FTMS) operated in negative ionisation mode. High mass accuracy data (<3 ppm) obtained by use of high resolution (30,000 K) enabled unequivocal identification of the target compounds. This method allows comprehensive profiling and comparison of different LAB strains and is also capable of the identification of additional compounds produced by these bacteria.

  7. Induction of a rapidly responsive hepatic gene product by thyroid hormone requires ongoing protein synthesis.

    PubMed Central

    Jacoby, D B; Engle, J A; Towle, H C

    1987-01-01

    The regulation of a gene, designated spot 14, which is rapidly induced in rat liver in response to 3,5,3'-triiodo-L-thyronine (T3) was studied as a model for exploring the molecular basis of thyroid hormone action. The time course of induction of the nuclear precursor to spot 14 mRNA after intramuscular injection of T3 displayed a very short lag period of between 10 and 20 min. The rapidity of this effect suggests that the induction in gene expression occurs as a primary response to the hormone-receptor interaction. The protein synthesis inhibitor cycloheximide injected 15 min before T3 completely blocked the accumulation of nuclear precursor RNA 30 min after T3 treatment. Emetine, an inhibitor of protein synthesis which acts by a different mechanism than cycloheximide, also blocked the induction of the spot 14 nuclear precursor RNA. The increased rate of spot 14 gene transcription observed after T3 treatment, as measured by nuclear run-on assay, was similarly completely abolished in the presence of cycloheximide. In addition, ongoing protein synthesis was required for maintaining spot 14 nuclear precursor RNA at induced levels in animals previously treated with T3. On the other hand, cycloheximide had no effect on T3 uptake or binding to the nuclear receptor during the 45-min time frame studied. The paradox of the rapid kinetics of induction and the requirement of ongoing protein synthesis may be explained by a protein with an extremely short half-life which is necessary for T3 induction of the spot 14 gene. PMID:3648478

  8. Proteins involved in motility and sperm-egg interaction evolve more rapidly in mouse spermatozoa.

    PubMed

    Vicens, Alberto; Lüke, Lena; Roldan, Eduardo R S

    2014-01-01

    Proteomic studies of spermatozoa have identified a large catalog of integral sperm proteins. Rapid evolution of these proteins may underlie adaptive changes of sperm traits involved in different events leading to fertilization, although the selective forces underlying such rapid evolution are not well understood. A variety of selective forces may differentially affect several steps ending in fertilization, thus resulting in a compartmentalized adaptation of sperm proteins. Here we analyzed the evolution of genes associated to various events in the sperm's life, from sperm formation to sperm-egg interaction. Evolutionary analyses were performed on gene sequences from 17 mouse strains whose genomes have been sequenced. Four of these are derived from wild Mus musculus, M. domesticus, M. castaneus and M. spretus. We found a higher proportion of genes exhibiting a signature of positive selection among those related to sperm motility and sperm-egg interaction. Furthermore, sperm proteins involved in sperm-egg interaction exhibited accelerated evolution in comparison to those involved in other events. Thus, we identified a large set of candidate proteins for future comparative analyses of genotype-phenotype associations in spermatozoa of species subjected to different sexual selection pressures. Adaptive evolution of proteins involved in motility could be driven by sperm competition, since this selective force is known to increase the proportion of motile sperm and their swimming velocity. On the other hand, sperm proteins involved in gamete interaction could be coevolving with their egg partners through episodes of sexual selection or sexual conflict resulting in species-specific sperm-egg interactions and barriers preventing interspecies fertilization.

  9. Protein identification with N and C-terminal sequence tags in proteome projects.

    PubMed

    Wilkins, M R; Gasteiger, E; Tonella, L; Ou, K; Tyler, M; Sanchez, J C; Gooley, A A; Walsh, B J; Bairoch, A; Appel, R D; Williams, K L; Hochstrasser, D F

    1998-05-08

    Genome sequences are available for increasing numbers of organisms. The proteomes (protein complement expressed by the genome) of many such organisms are being studied with two-dimensional (2D) gel electrophoresis. Here we have investigated the application of short N-terminal and C-terminal sequence tags to the identification of proteins separated on 2D gels. The theoretical N and C termini of 15, 519 proteins, representing all SWISS-PROT entries for the organisms Mycoplasma genitalium, Bacillus subtilis, Escherichia coli, Saccharomyces cerevisiae and human, were analysed. Sequence tags were found to be surprisingly specific, with N-terminal tags of four amino acid residues found to be unique for between 43% and 83% of proteins, and C-terminal tags of four amino acid residues unique for between 74% and 97% of proteins, depending on the species studied. Sequence tags of five amino acid residues were found to be even more specific. To utilise this specificity of sequence tags for protein identification, we created a world-wide web-accessible protein identification program, TagIdent (http://www.expasy.ch/www/tools.html), which matches sequence tags of up to six amino acid residues as well as estimated protein pI and mass against proteins in the SWISS-PROT database. We demonstrate the utility of this identification approach with sequence tags generated from 91 different E. coli proteins purified by 2D gel electrophoresis. Fifty-one proteins were unambiguously identified by virtue of their sequence tags and estimated pI and mass, and a further 11 proteins identified when sequence tags were combined with protein amino acid composition data. We conlcude that the TagIdent identification approach is best suited to the identification of proteins from prokaryotes whose complete genome sequences are available. The approach is less well suited to proteins from eukaryotes, as many eukaryotic proteins are not amenable to sequencing via Edman degradation, and tag protein

  10. Rapid Qualitative Urinary Tract Infection Pathogen Identification by SeptiFast® Real-Time PCR

    PubMed Central

    Malinka, Thomas; Klaschik, Sven; Weber, Stefan U.; Schewe, Jens-Christian; Stüber, Frank; Book, Malte

    2011-01-01

    Background Urinary tract infections (UTI) are frequent in outpatients. Fast pathogen identification is mandatory for shortening the time of discomfort and preventing serious complications. Urine culture needs up to 48 hours until pathogen identification. Consequently, the initial antibiotic regimen is empirical. Aim To evaluate the feasibility of qualitative urine pathogen identification by a commercially available real-time PCR blood pathogen test (SeptiFast®) and to compare the results with dipslide and microbiological culture. Design of study Pilot study with prospectively collected urine samples. Setting University hospital. Methods 82 prospectively collected urine samples from 81 patients with suspected UTI were included. Dipslide urine culture was followed by microbiological pathogen identification in dipslide positive samples. In parallel, qualitative DNA based pathogen identification (SeptiFast®) was performed in all samples. Results 61 samples were SeptiFast® positive, whereas 67 samples were dipslide culture positive. The inter-methodological concordance of positive and negative findings in the gram+, gram- and fungi sector was 371/410 (90%), 477/492 (97%) and 238/246 (97%), respectively. Sensitivity and specificity of the SeptiFast® test for the detection of an infection was 0.82 and 0.60, respectively. SeptiFast® pathogen identifications were available at least 43 hours prior to culture results. Conclusion The SeptiFast® platform identified bacterial DNA in urine specimens considerably faster compared to conventional culture. For UTI diagnosis sensitivity and specificity is limited by its present qualitative setup which does not allow pathogen quantification. Future quantitative assays may hold promise for PCR based UTI pathogen identification as a supplementation of conventional culture methods. PMID:21359187

  11. Sequential peptide affinity purification system for the systematic isolation and identification of protein complexes from Escherichia coli.

    PubMed

    Babu, Mohan; Butland, Gareth; Pogoutse, Oxana; Li, Joyce; Greenblatt, Jack F; Emili, Andrew

    2009-01-01

    Biochemical purification of affinity-tagged proteins in combination with mass spectrometry methods is increasingly seen as a cornerstone of systems biology, as it allows for the systematic genome-scale characterization of macromolecular protein complexes, representing demarcated sets of stably interacting protein partners. Accurate and sensitive identification of both the specific and shared polypeptide components of distinct complexes requires purification to near homogeneity. To this end, a sequential peptide affinity (SPA) purification system was developed to enable the rapid and efficient isolation of native Escherichia coli protein complexes (J Proteome Res 3:463-468, 2004). SPA purification makes use of a dual-affinity tag, consisting of three modified FLAG sequences (3X FLAG) and a calmodulin binding peptide (CBP), spaced by a cleavage site for tobacco etch virus (TEV) protease (J Proteome Res 3:463-468, 2004). Using the lambda-phage Red homologous recombination system (PNAS 97:5978-5983, 2000), a DNA cassette, encoding the SPA-tag and a selectable marker flanked by gene-specific targeting sequences, is introduced into a selected locus in the E. coli chromosome so as to create a C-terminal fusion with the protein of interest. This procedure aims for near-endogenous levels of tagged protein production in the recombinant bacteria to avoid spurious, non-specific protein associations (J Proteome Res 3:463-468, 2004). In this chapter, we describe a detailed, optimized protocol for the tagging, purification, and subsequent mass spectrometry-based identification of the subunits of even low-abundance bacterial protein complexes isolated as part of an ongoing large-scale proteomic study in E. coli (Nature 433:531-537, 2005).

  12. Identification of Cardiac Myosin-binding Protein C as a Candidate Biomarker of Myocardial Infarction by Proteomics Analysis*

    PubMed Central

    Jacquet, Sebastien; Yin, Xiaoke; Sicard, Pierre; Clark, James; Kanaganayagam, Gajen S.; Mayr, Manuel; Marber, Michael S.

    2009-01-01

    Acute myocardial infarction (AMI) is a common cause of death for which effective treatments are available provided that diagnosis is rapid. The current diagnostic gold standards are circulating cardiac troponins I and T. However, their slow release delays diagnosis, and their persistence limits their utility in the identification of reinfarction. The aim was to identify candidate biomarkers of AMI. Isolated mouse hearts were perfused with oxygenated protein-free buffer, and coronary effluent was collected after ischemia or during matched normoxic perfusion. Effluents were analyzed using proteomics approaches based on one- or two-dimensional initial separation. Of the 459 proteins identified after ischemia with one-dimensional separation, 320 were not detected in the control coronary effluent. Among these were all classic existing biomarkers of AMI. We also identified the cardiac isoform of myosin-binding protein C in its full-length form and as a 40-kDa degradation product. This protein was not detected in the other murine organs examined, increased markedly with even trivial myocardial infarction, and could be detected in the plasma after myocardial infarction in vivo, a profile compatible with a biomarker of AMI. Two-dimensional fluorescence DIGE of ischemic and control coronary effluents identified more than 200 asymmetric spots verified by swapping dyes. Once again existing biomarkers of injury were confirmed as well as posttranslational modifications of antioxidant proteins such as peroxiredoxins. Perfusing hearts with protein-free buffers provides a platform of graded ischemic injury that allows detailed analysis of protein release and identification of candidate cardiac biomarkers like myosin-binding protein C. PMID:19721077

  13. Rapid and label-free identification of normal spermatozoa based on image analysis and micro-Raman spectroscopy.

    PubMed

    Huang, Zufang; Chen, Guannan; Chen, Xiwen; Wang, Jing; Chen, Jinhua; Lu, Peng; Chen, Rong

    2014-09-01

    Semen analysis is performed for evaluation of fertility disorders, however it is susceptible to subjectivity of investigators, and lacking of objective criterion for sperm cell quality remains a problem. There is an ongoing debate on which criteria should be employed to define normal spermatozoa. Here, the aim of our study is to evaluate the possibility of label-free and rapid identification of normal sperm cell through the use of image analysis combined with micro-Raman spectroscopy. By using a smooth-surfaced and hydrophobic substrate, spermatozoa smear was rapidly prepared for microscopic imaging and acrosome area can be clearly visualized without any extra stains; then a self-written image analysis program was utilized to segment sperm head and acrosome area and automatically calculates morphological indices. Most important, intensity ratio of 1055 cm(-1) to 1095 cm(-1) from the obtained Raman spectra is found to indicate a potential biomarker for assessing the sperm DNA integrity. Our preliminary study demonstrates that micro-Raman spectroscopy combined with image analysis can be a potentially useful tool for rapid and label-free identification of normal sperm cell by providing both morphological and biochemical information.

  14. Rapid (ten-minute) pore-gradient electrophoresis of proteins and peptides in Micrograd gels.

    PubMed

    Wrigley, C W; Margolis, J

    1992-01-01

    Precast gradient gels of short migration length (25 mm) have been developed to provide rapid electrophoretic separation without loss of resolution. These Micrograd gels have been prepared in gel ranges (conventional and unique) to match pore-gradient electrophoresis conditions to proteins/peptides ranging in size from several hundreds to millions. The Hylinx Micrograd gel combines an extreme gel range (6 to 48% polyacrylamide) with a novel crosslinker to provide sieving of polypeptides, and pore-limit electrophoresis of the smallest proteins (e.g. insulin monomer). All gel ranges (such as 3 to 30%) provide zone sharpening in routine analysis of conventional protein mixtures (e.g. serum) within 10 min electrophoresis at 200 to 300 volts. The gels are thin (1 mm) and thus stain quickly, but the gel cassette is of conventional overall width (83 mm), thus fitting many apparatus designs and accommodating 12 samples. The gels are finding valuable use in screening applications, requiring the electrophoretic analysis of many samples, and in cases where a rapid answer is needed, such as monitoring protein purification. The gels have proved particularly useful, in-house, for the latter application in developing Gradipore's new large-scale preparative electrophoresis system, the Gradiflow.

  15. Changes in Sensory Evoked Responses Coincide with Rapid Improvement in Speech Identification Performance

    ERIC Educational Resources Information Center

    Alain, Claude; Campeanu, Sandra; Tremblay, Kelly

    2010-01-01

    Perceptual learning is sometimes characterized by rapid improvements in performance within the first hour of training (fast perceptual learning), which may be accompanied by changes in sensory and/or response pathways. Here, we report rapid physiological changes in the human auditory system that coincide with learning during a 1-hour test session…

  16. Identification and characterization of secreted proteins in Eimeria tenella

    NASA Astrophysics Data System (ADS)

    Ramlee, Intan Azlinda; Firdaus-Raih, Mohd; Wan, Kiew-Lian

    2015-09-01

    Eimeria tenella is a protozoan parasite that causes coccidiosis, an economically important disease in the poultry industry. The characterization of proteins that are secreted by parasites have been shown to play important roles in parasite invasion and are considered to be potential control agents. In this study, 775 proteins potentially secreted by E. tenella were identified. These proteins were further filtered to remove mitochondrial proteins. Out of 763 putative secreted proteins, 259 proteins possess transmembrane domains while another 150 proteins have GPI (Glycosylphosphatidylinositol) anchors. Homology search revealed that 315 and 448 proteins have matches with known and hypothetical proteins in the database, respectively. Within this data set, previously characterized secretory proteins such as micronemes, rhoptry kinases and dense granules were detected.

  17. Application of Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Rapid Identification of Neisseria Species

    PubMed Central

    Gudlavalleti, Seshu K.; Sundaram, Appavu K; Razumovski, Jane; Doroshenko, Vladimir

    2008-01-01

    Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI MS) was applied to develop a proteomics-based method to detect and identify Neisseria species. Heat-inactivated clinical isolate cell suspensions of Neisseria gonorrhoeae and strains belonging to five serogroups (A, B, C, W135, and Y) of Neisseria meningitidis were subjected to on-probe protein/peptide extraction and tryptic digestion followed by AP-MALDI tandem MS (MS/MS)-based proteomic analysis. Amino acid sequences derived from three protonated peptides with m/z values of 1743.8, 1894.8, and 1946.8 were identified by AP-MALDI MS/MS and MASCOT proteome database search analysis as belonging to neisserial acyl carrier protein, neisserial-conserved hypothetical protein, and neisserial putative DNA binding protein, respectively. These three peptide masses can thus be potential biomarkers for neisserial species identification by AP-MALDI MS. PMID:19137107

  18. Coating cells with cationic silica-magnetite nanocomposites for rapid purification of integral plasma membrane proteins.

    PubMed

    Zhang, Wei; Zhao, Chao; Wang, Sheng; Fang, Caiyun; Xu, Yawei; Lu, Haojie; Yang, Pengyuan

    2011-09-01

    This study developed a simple and rapid purification method for plasma membrane with high yields from adherent cells. The plasma membrane (PM) sheets could be absorbed specifically by the cationic silica-magnetite nanocomposites (CSMN) under acidic conditions, and recovered directly in cell-lysis-buffer with no need for precipitation. The binding between CSMN and PM sheets was confirmed by electron microscopy. Western blot analysis demonstrated a >10-fold relative enrichment factor. Up to 422 integral membrane proteins were identified from 10(7) Huh7 cells. Notably, we found 29 Ras family proteins by classification according to their biological functions. The whole enrichment procedure took <30 min. The CSMN-based procedure demonstrates a simple, economical and efficient enrichment of integral PM proteins in proteomic study.

  19. Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides

    PubMed Central

    Safavi-Hemami, Helena; Li, Qing; Jackson, Ronneshia L.; Song, Albert S.; Boomsma, Wouter; Bandyopadhyay, Pradip K.; Gruber, Christian W.; Purcell, Anthony W.; Yandell, Mark; Olivera, Baldomero M.

    2016-01-01

    Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed conotoxin-specific PDIs, significantly and differentially accelerate the kinetics of disulfide-bond formation of several conotoxins. Our results are consistent with a unique biological scenario associated with protein folding: The diversification of a family of foldases can be correlated with the rapid evolution of an unprecedented diversity of disulfide-rich structural domains expressed by venomous marine snails in the superfamily Conoidea. PMID:26957604

  20. Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks.

    PubMed

    Manzoor, S; Moncayo, S; Navarro-Villoslada, F; Ayala, J A; Izquierdo-Hornillos, R; de Villena, F J Manuel; Caceres, J O

    2014-04-01

    Identification and discrimination of bacterial strains of same species exhibiting resistance to antibiotics using laser induced breakdown spectroscopy (LIBS) and neural networks (NN) algorithm is reported. The method has been applied to identify 40 bacterial strains causing hospital acquired infections (HAI), i.e. Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Salmonella pullurum and Salmonella salamae. The strains analyzed included both isolated from clinical samples and constructed in laboratory that differ in mutations as a result of their resistance to one or more antibiotics. Small changes in the atomic composition of the bacterial strains, as a result of their mutations and genetic variations, were detected by the LIBS-NN methodology and led to their identification and classification. This is of utmost importance because solely identification of bacterial species is not sufficient for disease diagnosis and identification of the actual strain is also required. The proposed method was successfully able to discriminate strains of the same bacterial species. The optimized NN models provided reliable bacterial strain identification with an index of spectral correlation higher than 95% for the samples analyzed, showing the potential and effectiveness of the method to address the safety and social-cost HAI-related issue.

  1. Rapid identification of biothreat and other clinically relevant bacterial species by use of universal PCR coupled with high-resolution melting analysis.

    PubMed

    Yang, Samuel; Ramachandran, Padmini; Rothman, Richard; Hsieh, Yu-Hsiang; Hardick, Andrew; Won, Helen; Kecojevic, Aleksandar; Jackman, Joany; Gaydos, Charlotte

    2009-07-01

    A rapid assay for eubacterial species identification is described using high-resolution melt analysis to characterize PCR products. Unique melt profiles generated from multiple hypervariable regions of the 16S rRNA gene for 100 clinically relevant bacterial pathogens, including category A and B biothreat agents and their surrogates, allowed highly specific species identification.

  2. Fast Photochemical Oxidation of Proteins Coupled to Multidimensional Protein Identification Technology (MudPIT): Expanding Footprinting Strategies to Complex Systems

    NASA Astrophysics Data System (ADS)

    Rinas, Aimee; Jones, Lisa M.

    2015-04-01

    Peptides containing the oxidation products of hydroxyl radical-mediated protein footprinting experiments are typically much less abundant than their unoxidized counterparts. This is inherent to the design of the experiment as excessive oxidation may lead to undesired conformational changes or unfolding of the protein, skewing the results. Thus, as the complexity of the systems studied using this method expands, the detection and identification of these oxidized species can be increasingly difficult with the limitations of data-dependent acquisition (DDA) and one-dimensional chromatography. Here we report the application of multidimensional protein identification technology (MudPIT) in combination with hydroxyl radical footprinting as a method to increase the identification of quantifiable peptides in these experiments. Using this method led to a 37% increase in unique peptide identifications as well as a 70% increase in protein group identifications over one-dimensional data-dependent acquisition on the same samples. Furthermore, we demonstrate the combination of these methods as a means to investigate megadalton complexes.

  3. Discovery of Chromatin-Associated Proteins via Sequence-Specific Capture and Mass Spectrometric Protein Identification in Saccharomyces cerevisiae.

    PubMed

    Kennedy-Darling, Julia; Guillen-Ahlers, Hector; Shortreed, Michael R; Scalf, Mark; Frey, Brian L; Kendziorski, Christina; Olivier, Michael; Gasch, Audrey P; Smith, Lloyd M

    2014-08-01

    DNA-protein interactions play critical roles in the control of genome expression and other fundamental processes. An essential element in understanding how these systems function is to identify their molecular components. We present here a novel strategy, Hybridization Capture of Chromatin Associated Proteins for Proteomics (HyCCAPP), to identify proteins that are interacting with any given region of the genome. This technology identifies and quantifies the proteins that are specifically interacting with a genomic region of interest by sequence-specific hybridization capture of the target region from in vivo cross-linked chromatin, followed by mass spectrometric identification and quantification of associated proteins. We demonstrate the utility of HyCCAPP by identifying proteins associated with three multicopy and one single-copy loci in yeast. In each case, a locus-specific pattern of target-associated proteins was revealed. The binding of previously unknown proteins was confirmed by ChIP in 11 of 17 cases. The identification of many previously known proteins at each locus provides strong support for the ability of HyCCAPP to correctly identify DNA-associated proteins in a sequence-specific manner, while the discovery of previously unknown proteins provides new biological insights into transcriptional and regulatory processes at the target locus.

  4. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis.

    PubMed

    Krinsky, Nitzan; Kaduri, Maya; Shainsky-Roitman, Janna; Goldfeder, Mor; Ivanir, Eran; Benhar, Itai; Shoham, Yuval; Schroeder, Avi

    2016-01-01

    Cell-free protein synthesis (CFPS) systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3) and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa). This system was able to produce 40-150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins.

  5. Features of whey protein concentrate supplementation in children with rapidly progressive HIV infection.

    PubMed

    Moreno, Y F; Sgarbieri, V C; da Silva, M N; Toro, A A D C; Vilela, M M S

    2006-02-01

    HIV infection is associated with subnormal GSH levels. An increase in glutathione levels has been observed in HIV-infected adults under oral whey protein supplementation. We studied the features associated with a whey protein concentrate supplementation in children with rapidly progressive AIDS. A prospective double-blind clinical trial was carried out for 4 months with 18 vertically HIV-infected children (1.98-6.37 years), under antiretroviral therapy, who had received whey protein, maltodextrin (placebo) or none. Erythrocyte glutathione concentration, T lymphocyte counts (CD4+ and CD8+) and occurrence of associated co-infections were evaluated. Wilcoxon's and Fischer's Exact tests were used to assess differences between whey protein-supplemented and control (placebo and non-supplemented) groups. A significant median increase of 16.14 mg/dl (p = 0.018) in erythrocyte glutathione levels was observed in the whey protein-supplemented group; the TCD4/CD8 lymphocyte ratio showed a non significant increase and lower occurrence of associated co-infections was also observed. In conclusion, whey protein concentrate supplementation can stimulate glutathione synthesis and, possibly, decrease the occurrence of associated co-infections.

  6. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis

    PubMed Central

    Kaduri, Maya; Shainsky-Roitman, Janna; Goldfeder, Mor; Ivanir, Eran; Benhar, Itai; Shoham, Yuval; Schroeder, Avi

    2016-01-01

    Cell-free protein synthesis (CFPS) systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3) and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa). This system was able to produce 40–150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins. PMID:27768741

  7. Comparison of Enzymatic Method Rapid Yeast Plus System with RFLP-PCR for Identification of Isolated Yeast from Vulvovaginal Candidiasis

    PubMed Central

    Hossein, Moallaei; Mirhendi, Seied Hossein; Brandão, João; Mirdashti, Reza; Rosado, Laura

    2011-01-01

    Objective(s) To compare two identification methods, i.e., restriction fragment length polymorphism (RFLP)-PCR analysis and enzymatic method Rapid TM Yeast Plus System to identify different species causing vulvovaginal candidiasis (VVC). Materials and Methods Vaginal discharges of women who had attended the gynecology outpatient clinic of Mobini Hospital in Sabzevar, Iran were collected using cotton swabs and were cultured on Sabouraud dextrose agar. Isolated yeasts were identified by germ-tube testing and Rapid TM Yeast Plus System (Remel USA). For molecular identification, the isolated DNA was amplified with ITS1 and ITS4 universal primers and PCR products digested with the enzyme HpaІІ followed by agarose gel electrophoresis. Epidemiological and clinical features of women with respect to identified species were also evaluated. Results Out of 231 subjects enrolled, 62 VVC cases were detected. The isolated species were identified as follows: Candida albicans, 24 (38.7%), C. glabrata, 15 (24.2%), C. kefyr, 13 (21.0%) C. krusei, 9 (14.5%), and Saccharomyces cerevisiae, 1 (1.6%) by RFLP-PCR method; whereas findings by Rapid TM Yeast Plus System were C. albicans, 24 (38.7%), C. glabrata, 5 (8%), C. kefyr, 11 (17.7%) C. krusei, 2 (3.2%), S. cerevisiae, 9 (14.5%), and C. tropicalis, 6 (9.6%) as well as other nonpathogenic yeasts, 4 (6.9%). Conclusion Statistical comparison showed that there is no significant difference in identification of C. albicans by the two methods; although, in this study, it was not true about other species of yeasts. A correlation between clinical and laboratory findings is important as it enables us to administer an appropriate treatment on time. PMID:23493663

  8. Rapid identification of bacterial biofilms and biofilm wound models using a multichannel nanosensor.

    PubMed

    Li, Xiaoning; Kong, Hao; Mout, Rubul; Saha, Krishnendu; Moyano, Daniel F; Robinson, Sandra M; Rana, Subinoy; Zhang, Xinrong; Riley, Margaret A; Rotello, Vincent M

    2014-12-23

    Identification of infectious bacteria responsible for biofilm-associated infections is challenging due to the complex and heterogeneous biofilm matrix. To address this issue and minimize the impact of heterogeneity on biofilm identification, we developed a gold nanoparticle (AuNP)-based multichannel sensor to detect and identify biofilms based on their physicochemical properties. Our results showed that the sensor can discriminate six bacterial biofilms including two composed of uropathogenic bacteria. The capability of the sensor was further demonstrated through discrimination of biofilms in a mixed bacteria/mammalian cell in vitro wound model.

  9. Use of Peptide Nucleic Acid-Fluorescence In Situ Hybridization for Definitive, Rapid Identification of Five Common Candida Species▿

    PubMed Central

    Reller, Megan E.; Mallonee, Amanda B.; Kwiatkowski, Nicole P.; Merz, William G.

    2007-01-01

    We investigated a 2.5-h peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) assay with five Candida species-specific probes to identify Candida colonies and compared it to standard 2-h to 5-day phenotypic identification methods. Suspensions were made and slides were prepared and read for fluorescence per the manufacturer's instructions. Sensitivity was 99% (109/110), and specificity was 99% (129/130). PNA-FISH can rapidly identify those Candida species isolated most frequently. PMID:17804657

  10. MALDI imaging mass spectrometry of Pacific White Shrimp L. vannamei and identification of abdominal muscle proteins.

    PubMed

    Schey, Kevin L; Hachey, Amanda J; Rose, Kristie L; Grey, Angus C

    2016-06-01

    MALDI imaging mass spectrometry (IMS) has been applied to whole animal tissue sections of Pacific White Shrimp, Litopenaeus vannamei, in an effort to identify and spatially localize proteins in specific organ systems. Frozen shrimp were sectioned along the ventral-dorsal axis and methods were optimized for matrix application. In addition, tissue microextraction and homogenization was conducted followed by top-down LC-MS/MS analysis of intact proteins and searches of shrimp EST databases to identify imaged proteins. IMS images revealed organ system specific protein signals that highlighted the hepatopancreas, heart, nervous system, musculature, and cuticle. Top-down proteomics identification of abdominal muscle proteins revealed the sequence of the most abundant muscle protein that has no sequence homology to known proteins. Additional identifications of abdominal muscle proteins included titin, troponin-I, ubiquitin, as well as intact and multiple truncated forms of flightin; a protein known to function in high frequency contraction of insect wing muscles. The combined use of imaging mass spectrometry and top-down proteomics allowed for identification of novel proteins from the sparsely populated shrimp protein databases.

  11. Identification and characterization of a Dictyostelium discoideum ribosomal protein gene.

    PubMed Central

    Szymkowski, D E; Deering, R A

    1990-01-01

    We have identified a developmentally repressed large-subunit ribosomal protein gene of Dictyostelium discoideum based on sequence similarity to other ribosomal proteins. Protein rpl7 is homologous to large subunit ribosomal proteins from the rat and possibly to Mycoplasma capricolum and Escherichia coli, but is not similar to three sequenced ribosomal proteins in Dictyostelium. The rpl7 gene is present at one copy per genome, as are six other cloned Dictyostelium ribosomal proteins. Restriction fragment length polymorphisms exist for ribosomal protein genes rpl7, rp1024, and rp110 in strain HU182; most Dictyostelium ribosomal protein genes examined are linked no closer than 30-100 kb to each other in the genome. Dictyostelium ribosomal proteins are known to be developmentally regulated, and levels of rpl7 transcript gradually decrease during the 24-hour development cycle. This drop correlates with that of rp1024, indicating these and other ribosomal protein genes may be coordinately regulated. To determine the cellular location of the protein, we raised antibodies to an rpl7-derived branched synthetic peptide. These antibodies cross-reacted with one protein of the expected size in a ribosomal protein fraction of Dictyostelium, indicating that the product of gene rpl7 is localized in the ribosome. Images PMID:1975664

  12. Rapid and Adaptable Measurement of Protein Thermal Stability by Differential Scanning Fluorimetry: Updating a Common Biochemical Laboratory Experiment

    ERIC Educational Resources Information Center

    Johnson, R. Jeremy; Savas, Christopher J.; Kartje, Zachary; Hoops, Geoffrey C.

    2014-01-01

    Measurement of protein denaturation and protein folding is a common laboratory technique used in undergraduate biochemistry laboratories. Differential scanning fluorimetry (DSF) provides a rapid, sensitive, and general method for measuring protein thermal stability in an undergraduate biochemistry laboratory. In this method, the thermal…

  13. Innovative applications of bacteriophages in rapid detection and identification of foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relative to traditional microbiological approaches, biosensors are a rapid method for foodborne bacterial pathogen detection. Biosensors function by detecting the interaction of the target pathogen, or pathogen derived molecule, with a biological recognition component which must have sufficient aff...

  14. Hypothesis: Paralog Formation from Progenitor Proteins and Paralog Mutagenesis Spur the Rapid Evolution of Telomere Binding Proteins

    PubMed Central

    Lustig, Arthur J.

    2016-01-01

    Through elegant studies in fungal cells and complex organisms, we propose a unifying paradigm for the rapid evolution of telomere binding proteins (TBPs) that associate with either (or both) telomeric DNA and telomeric proteins. TBPs protect and regulate telomere structure and function. Four critical factors are involved. First, TBPs that commonly bind to telomeric DNA include the c-Myb binding proteins, OB-fold single-stranded binding proteins, and G-G base paired Hoogsteen structure (G4) binding proteins. Each contributes independently or, in some cases, cooperatively, to provide a minimum level of telomere function. As a result of these minimal requirements and the great abundance of homologs of these motifs in the proteome, DNA telomere-binding activity may be generated more easily than expected. Second, telomere dysfunction gives rise to genome instability, through the elevation of recombination rates, genome ploidy, and the frequency of gene mutations. The formation of paralogs that diverge from their progenitor proteins ultimately can form a high frequency of altered TBPs with altered functions. Third, TBPs that assemble into complexes (e.g., mammalian shelterin) derive benefits from the novel emergent functions. Fourth, a limiting factor in the evolution of TBP complexes is the formation of mutually compatible interaction surfaces amongst the TBPs. These factors may have different degrees of importance in the evolution of different phyla, illustrated by the apparently simpler telomeres in complex plants. Selective pressures that can utilize the mechanisms of paralog formation and mutagenesis to drive TBP evolution along routes dependent on the requisite physiologic changes. PMID:26904098

  15. iSARST: an integrated SARST web server for rapid protein structural similarity searches

    PubMed Central

    Lo, Wei-Cheng; Lee, Che-Yu; Lee, Chi-Ching; Lyu, Ping-Chiang

    2009-01-01

    iSARST is a web server for efficient protein structural similarity searches. It is a multi-processor, batch-processing and integrated implementation of several structural comparison tools and two database searching methods: SARST for common structural homologs and CPSARST for homologs with circular permutations. iSARST allows users submitting multiple PDB/SCOP entry IDs or an archive file containing many structures. After scanning the target database using SARST/CPSARST, the ordering of hits are refined with conventional structure alignment tools such as FAST, TM-align and SAMO, which are run in a PC cluster. In this way, iSARST achieves a high running speed while preserving the high precision of refinement engines. The final outputs include tables listing co-linear or circularly permuted homologs of the query proteins and a functional summary of the best hits. Superimposed structures can be examined through an interactive and informative visualization tool. iSARST provides the first batch mode structural comparison web service for both co-linear homologs and circular permutants. It can serve as a rapid annotation system for functionally unknown or hypothetical proteins, which are increasing rapidly in this post-genomics era. The server can be accessed at http://sarst.life.nthu.edu.tw/iSARST/. PMID:19420060

  16. iSARST: an integrated SARST web server for rapid protein structural similarity searches.

    PubMed

    Lo, Wei-Cheng; Lee, Che-Yu; Lee, Chi-Ching; Lyu, Ping-Chiang

    2009-07-01

    iSARST is a web server for efficient protein structural similarity searches. It is a multi-processor, batch-processing and integrated implementation of several structural comparison tools and two database searching methods: SARST for common structural homologs and CPSARST for homologs with circular permutations. iSARST allows users submitting multiple PDB/SCOP entry IDs or an archive file containing many structures. After scanning the target database using SARST/CPSARST, the ordering of hits are refined with conventional structure alignment tools such as FAST, TM-align and SAMO, which are run in a PC cluster. In this way, iSARST achieves a high running speed while preserving the high precision of refinement engines. The final outputs include tables listing co-linear or circularly permuted homologs of the query proteins and a functional summary of the best hits. Superimposed structures can be examined through an interactive and informative visualization tool. iSARST provides the first batch mode structural comparison web service for both co-linear homologs and circular permutants. It can serve as a rapid annotation system for functionally unknown or hypothetical proteins, which are increasing rapidly in this post-genomics era. The server can be accessed at http://sarst.life.nthu.edu.tw/iSARST/.

  17. Protein polymer hydrogels by in situ, rapid and reversible self-gelation.

    PubMed

    Asai, Daisuke; Xu, Donghua; Liu, Wenge; Garcia Quiroz, Felipe; Callahan, Daniel J; Zalutsky, Michael R; Craig, Stephen L; Chilkoti, Ashutosh

    2012-07-01

    Protein-based biomaterials are an important class of materials for applications in biotechnology and medicine. The exquisite control of their composition, stereochemistry, and chain length offers unique opportunities to engineer biofunctionality, biocompatibility, and biodegradability into these materials. Here, we report the synthesis of a thermally responsive peptide polymer-based hydrogel composed of a recombinant elastin-like polypeptide (ELP) that rapidly forms a reversibly cross-linked hydrogel by the formation of intermolecular disulfide cross-links. To do so, we designed and synthesized ELPs that incorporate periodic cysteine residues (cELPs), and show that cELPs are thermally responsive protein polymers that display rapid gelation under physiologically relevant, mild oxidative conditions. Gelation of cELPs, at concentrations as low as 2.5 wt%, occurs in ≈ 2.5 min upon addition a low concentration of hydrogen peroxide (0.3 wt%). We show the utility of these hydrogels for the sustained release of a model protein in vitro, and demonstrate the ability of this injectable biomaterial to pervade tumors to maximize tumor coverage and retention time upon intratumoral injection. cELPs represent a new class of injectable reversibly cross-linked hydrogels with properties intermediate between ELP coacervates and chemically cross-linked ELP hydrogels that will find useful applications in drug delivery and tissue engineering.

  18. Near Infrared Spectroscopy Facilitates Rapid Identification of Both Young and Mature Amazonian Tree Species

    PubMed Central

    Lang, Carla; Costa, Flávia Regina Capellotto; Camargo, José Luís Campana; Durgante, Flávia Machado; Vicentini, Alberto

    2015-01-01

    Precise identification of plant species requires a high level of knowledge by taxonomists and presence of reproductive material. This represents a major limitation for those working with seedlings and juveniles, which differ morphologically from adults and do not bear reproductive structures. Near-infrared spectroscopy (FT-NIR) has previously been shown to be effective in species discrimination of adult plants, so if young and adults have a similar spectral signature, discriminant functions based on FT-NIR spectra of adults can be used to identify leaves from young plants. We tested this with a sample of 419 plants in 13 Amazonian species from the genera Protium and Crepidospermum (Burseraceae). We obtained 12 spectral readings per plant, from adaxial and abaxial surfaces of dried leaves, and compared the rate of correct predictions of species with discriminant functions for different combinations of readings. We showed that the best models for predicting species in early developmental stages are those containing spectral data from both young and adult plants (98% correct predictions of external samples), but even using only adult spectra it is still possible to attain good levels of identification of young. We obtained an average of 75% correct identifications of young plants by discriminant equations based only on adults, when the most informative wavelengths were selected. Most species were accurately predicted (75–100% correct identifications), and only three had poor predictions (27–60%). These results were obtained despite the fact that spectra of young individuals were distinct from those of adults when species were analyzed individually. We concluded that FT-NIR has a high potential in the identification of species even at different ontogenetic stages, and that young plants can be identified based on spectra of adults with reasonable confidence. PMID:26312996

  19. Effects of an every other day rapid kindling procedure in prenatally protein malnourished rats.

    PubMed

    Shultz, P L; Tonkiss, J; Morgane, P J; Bronzino, J D; Galler, J R

    1995-06-05

    Prenatally protein (6/25) rats have been reported to require significantly more stimulations to attain a stage 5 seizure than well-nourished controls (25/25) when using either a traditional or rapid every day, kindling procedure. In the present study, a rapid kindling procedure was utilized where both prenatally malnourished and control rats received every other day perforant path kindling (50 Hz, 10 s train) 12 times a day at 5-min intervals. Using this procedure, stage 5 seizures and a fully state were attained in both nutritional groups at approximately the same rate. It is postulated that it is the every other day component of the present procedure which overcomes seizure-induced inhibition in the 6/25 subjects, thereby allowing them to attain stage 5 seizures at the same rate as controls.

  20. RNAPro•SAL: a device for rapid and standardized collection of saliva RNA and proteins.

    PubMed

    Chiang, Samantha H; Thomas, Gerald A; Liao, Wei; Grogan, Tristan; Buck, Robert L; Fuentes, Laurel; Yakob, Maha; Laughlin, Mary J; Schafer, Chris; Nazmul-Hossain, Abu; Wei, Fang; Elashoff, David; Slowey, Paul D; Wong, David T W

    2015-02-01

    The stabilization and processing of salivary transcriptome and proteome biomarkers is a critical challenge due to the ubiquitous nature of nucleases and proteases as well as the inherent instability of these biomarkers. Furthermore, extension of salivary transcriptome and proteome analysis to point-of-care and remote sites requires the availability of self-administered ambient temperature collection and storage tools. To address these challenges, a self-contained whole saliva collection and extraction system, RNAPro•SAL, has been developed that provides rapid ambient temperature collection along with concurrent processing and stabilization of extracellular RNA (exRNA) and proteins. The system was compared to the University of California, Los Angeles (UCLA) standard clinical collection process (standard operating procedure, SOP). Both systems measured total RNA and protein, and exRNA IL-8, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β-actin and ribosomal protein S9 (RPS9) by qPCR. Proteome analysis was measured by EIA analysis of interleukin-8 (IL-8), and β-actin, as well as total protein. Over 97% of viable cells were removed by both methods. The system compared favorably to the labor-intensive clinical SOP, which requires low-temperature collection and isolation, yielding samples with similar protein and exRNA recovery and stability.

  1. Rapid online nonenzymatic protein digestion combining microwave heating acid hydrolysis and electrochemical oxidation.

    PubMed

    Basile, Franco; Hauser, Nicolas

    2011-01-01

    We report an online nonenzymatic method for site-specific digestion of proteins to yield peptides that are well suited for collision-induced dissociation tandem mass spectrometry. The method combines online microwave heating acid hydrolysis at aspartic acid and online electrochemical oxidation at tryptophan and tyrosine. The combined microwave/electrochemical digestion is reproducible and produces peptides with an average sequence length of 10 amino acids. This peptide length is similar to the average peptide length of 9 amino acids obtained by digestion of proteins with the enzyme trypsin. As a result, the peptides produced by this novel nonenzymatic digestion method, when analyzed by electrospray ionization mass spectrometry, produce protonated molecules with mostly +1 and +2 charge states. The combination of these two nonenzymatic methods overcomes shortcomings with each individual method in that (i) peptides generated by the microwave-hydrolysis method have an average amino acid length of 16 amino acids and (ii) the electrochemical-cleavage method is unable to reproducibly digest proteins with molecular masses above 4 kDa. Preliminary results are presented on the application and utility of this rapid online digestion (total of 6 min of digestion time) on a series of standard peptides and proteins as well as an Escherichia coli protein extract.

  2. RNAPro•SAL: A device for rapid and standardized collection of saliva RNA and proteins

    PubMed Central

    Chiang, Samantha H.; Thomas, Gerald A.; Liao, Wei; Grogan, Tristan; Buck, Robert L.; Fuentes, Laurel; Yakob, Maha; Laughlin, Mary J.; Schafer, Chris; Nazmul-Hossain, Abu; Wei, Fang; Elashoff, David; Slowey, Paul D.; Wong, David T.W.

    2015-01-01

    The stabilization and processing of salivary transcriptome and proteome biomarkers is a critical challenge due to the ubiquitous nature of nucleases and proteases as well as the inherent instability of these biomarkers. Furthermore, extension of salivary transcriptome and proteome analysis to point-of-care and remote sites requires the availability of self-administered ambient temperature collection and storage tools. To address these challenges, a self-contained whole saliva collection and extraction system, RNAPro•SAL, has been developed that provides rapid ambient temperature collection along with concurrent processing and stabilization of extracellular RNA (exRNA) and proteins. The system was compared to the University of California, Los Angeles (UCLA) standard clinical collection process (standard operating procedure, SOP). Both systems measured total RNA and protein, and exRNA IL-8, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β-actin and ribosomal protein S9 (RPS9) by qPCR. Proteome analysis was measured by EIA analysis of interleukin-8 (IL-8), and β-actin, as well as total protein. Over 97% of viable cells were removed by both methods. The system compared favorably to the labor-intensive clinical SOP, which requires low-temperature collection and isolation, yielding samples with similar protein and exRNA recovery and stability. PMID:25652029

  3. Identification of proteins associated with amyloidosis by polarity index method.

    PubMed

    Polanco, Carlos; Samaniego, José Lino; Uversky, Vladimir N; Castañón-González, Jorge Alberto; Buhse, Thomas; Leopold-Sordo, Marili; Madero-Arteaga, Alejandro; Morales-Reyes, Alicia; Tavera-Sierra, Lourdes; González-Bernal, Jesus A; Arias-Estrada, Miguel

    2015-01-01

    There is a natural protein form, insoluble and resistant to proteolysis, adopted by many proteins independently of their amino acid sequences via specific misfolding-aggregation process. This dynamic process occurs in parallel with or as an alternative to physiologic folding, generating toxic protein aggregates that are deposited and accumulated in various organs and tissues. These proteinaceous deposits typically represent bundles of β-sheet-enriched fibrillar species known as the amyloid fibrils that are responsible for serious pathological conditions, including but not limited to neurodegenerative diseases, grouped under the term amyloidoses. The proteins that might adopt this fibrillar conformation are some globular proteins and natively unfolded (or intrinsically disordered) proteins. Our work shows that intrinsically disordered and intrinsically ordered proteins can be reliably identified, discriminated, and differentiated by analyzing their polarity profiles generated using a computational tool known as the polarity index method (Polanco & Samaniego, 2009; Polanco et al., 2012; 2013; 2013a; 2014; 2014a; 2014b; 2014c; 2014d). We also show that proteins expressed in neurons can be differentiated from proteins in these two groups based on their polarity profiles, and also that this computational tool can be used to identify proteins associated with amyloidoses. The efficiency of the proposed method is high (i.e. 70%) as evidenced by the analysis of peptides and proteins in the APD2 database (2012), AVPpred database (2013), and CPPsite database (2013), the set of selective antibacterial peptides from del Rio et al. (2001), the sets of natively unfolded and natively folded proteins from Oldfield et al. (2005), the set of human revised proteins expressed in neurons, and non-human revised proteins expressed in neurons, from the Uniprot database (2014), and also the set of amyloidogenic proteins from the AmyPDB database (2014).

  4. Identification of immunodominant proteins from Mannheimia haemolytica and Histophilus somni by an immunoproteomic approach

    PubMed Central

    Alvarez, Angel H.; Gutiérrez-Ortega, Abel; Hernández-Gutiérrez, Rodolfo

    2015-01-01

    Mannheimia haemolytica and Histophilus somni are frequently isolated from diseased cattle with bovine respiratory disease (BRD). They compromise animal lung function and the immune responses generated are not sufficient to limit infection. Identification of specific immunogenic antigens for vaccine development represents a great challenge. Immunogenic proteins were identified by immunoproteomic approach with sera from cattle immunized with a commercial cellular vaccine of M. haemolytica and H. somni. Proteins of M. haemolytica were identified as solute ABC transporter, iron-binding protein, and hypothetical protein of capsular biosynthesis. Histophilus somni proteins correspond to porin, amino acid ABC transporter, hypothetical outer membrane protein, cysteine synthase, and outer membrane protein P6. Although these antigens share strong similarities with other proteins from animal pathogens, the ABC system proteins have been associated with virulence and these proteins could be considered as potential vaccine candidates for BRD. PMID:26424916

  5. Identification of Topological Network Modules in Perturbed Protein Interaction Networks

    PubMed Central

    Sardiu, Mihaela E.; Gilmore, Joshua M.; Groppe, Brad; Florens, Laurence; Washburn, Michael P.

    2017-01-01

    Biological networks consist of functional modules, however detecting and characterizing such modules in networks remains challenging. Perturbing networks is one strategy for identifying modules. Here we used an advanced mathematical approach named topological data analysis (TDA) to interrogate two perturbed networks. In one, we disrupted the S. cerevisiae INO80 protein interaction network by isolating complexes after protein complex components were deleted from the genome. In the second, we reanalyzed previously published data demonstrating the disruption of the human Sin3 network with a histone deacetylase inhibitor. Here we show that disrupted networks contained topological network modules (TNMs) with shared properties that mapped onto distinct locations in networks. We define TMNs as proteins that occupy close network positions depending on their coordinates in a topological space. TNMs provide new insight into networks by capturing proteins from different categories including proteins within a complex, proteins with shared biological functions, and proteins disrupted across networks. PMID:28272416

  6. Identification of Topological Network Modules in Perturbed Protein Interaction Networks.

    PubMed

    Sardiu, Mihaela E; Gilmore, Joshua M; Groppe, Brad; Florens, Laurence; Washburn, Michael P

    2017-03-08

    Biological networks consist of functional modules, however detecting and characterizing such modules in networks remains challenging. Perturbing networks is one strategy for identifying modules. Here we used an advanced mathematical approach named topological data analysis (TDA) to interrogate two perturbed networks. In one, we disrupted the S. cerevisiae INO80 protein interaction network by isolating complexes after protein complex components were deleted from the genome. In the second, we reanalyzed previously published data demonstrating the disruption of the human Sin3 network with a histone deacetylase inhibitor. Here we show that disrupted networks contained topological network modules (TNMs) with shared properties that mapped onto distinct locations in networks. We define TMNs as proteins that occupy close network positions depending on their coordinates in a topological space. TNMs provide new insight into networks by capturing proteins from different categories including proteins within a complex, proteins with shared biological functions, and proteins disrupted across networks.

  7. Proteins of human milk. I. Identification of major components

    SciTech Connect

    Anderson, N.G.; Powers, M.T.; Tollaksen, S.L.

    1982-04-01

    Traditionally, human milk proteins are identified largely by reference to bovine milk. Hence, to identify the major proteins in human milk, we subjected human and bovine milk, in parallel, to high-resolution two-dimensional electrophoresis. Isoelectric precipitation at pH 4.6 was our criterion for distinguishing whey proteins from those of the casein complex. The ..cap alpha..- and..beta..-caseins were identified on the basis of relative abundance, relative molecular mass, and relative isoelectric points. No protein disappeared from ISO-DALT patterns of human milk after rennin treatment, and no new protein comparable to bovine para K-casein appeared in the BASO-DALT patterns; this suggests that K-casein is absent from human milk. The proteins identified in human milk patterns include the ..cap alpha.. and ..beta.. casein families, lactalbumin, albumin, transferrin, IgA, and lactoferrin. Numerous additional proteins seen in patterns for human milk remain to be identified.

  8. Identification of a protein biomarker unique to the pandemic O3:K6 clone of Vibrio parahaemolyticus.

    PubMed

    Williams, Tracie L; Musser, Steven M; Nordstrom, Jessica L; DePaola, Angelo; Monday, Steven R

    2004-04-01

    The present method of characterizing Vibrio parahaemolyticus strains involves serotyping or detection methods based on assessment of the presence or absence of genes thought to be markers of an organism's pathogenicity. It is unclear whether these assays detect all pathogenic V. parahaemolyticus strains since a clear correlation between the presence of a particular gene and the organism's pathogenicity has not yet been observed. We have described a proteomics-based method to distinguish individual V. parahaemolyticus strains on the basis of their protein profiles and identified a specific protein that is characteristic of the pandemic O3:K6 strain and its clonal derivatives. In the pandemic clone of V. parahaemolyticus, a histone-like DNA-binding protein, HU-alpha, has a C-terminal amino acid sequence different from those of other strains of V. parahaemolyticus. Upon further study, it was discovered that the gene encoding this protein has a 16-kbp insert at the 3' terminus of the open reading frame for this protein. By using the protein sequence of the unique biomarker for the pandemic clone of V. parahaemolyticus, it was possible to rationally design specific PCR-based probes and assays that permit the rapid and precise identification of pandemic strains of V. parahaemolyticus.

  9. Identification of Extracellular Segments by Mass Spectrometry Improves Topology Prediction of Transmembrane Proteins

    PubMed Central

    Langó, Tamás; Róna, Gergely; Hunyadi-Gulyás, Éva; Turiák, Lilla; Varga, Julia; Dobson, László; Várady, György; Drahos, László; Vértessy, Beáta G.; Medzihradszky, Katalin F.; Szakács, Gergely; Tusnády, Gábor E.

    2017-01-01

    Transmembrane proteins play crucial role in signaling, ion transport, nutrient uptake, as well as in maintaining the dynamic equilibrium between the internal and external environment of cells. Despite their important biological functions and abundance, less than 2% of all determined structures are transmembrane proteins. Given the persisting technical difficulties associated with high resolution structure determination of transmembrane proteins, additional methods, including computational and experimental techniques remain vital in promoting our understanding of their topologies, 3D structures, functions and interactions. Here we report a method for the high-throughput determination of extracellular segments of transmembrane proteins based on the identification of surface labeled and biotin captured peptide fragments by LC/MS/MS. We show that reliable identification of extracellular protein segments increases the accuracy and reliability of existing topology prediction algorithms. Using the experimental topology data as constraints, our improved prediction tool provides accurate and reliable topology models for hundreds of human transmembrane proteins. PMID:28211907

  10. Identification of Extracellular Segments by Mass Spectrometry Improves Topology Prediction of Transmembrane Proteins.

    PubMed

    Langó, Tamás; Róna, Gergely; Hunyadi-Gulyás, Éva; Turiák, Lilla; Varga, Julia; Dobson, László; Várady, György; Drahos, László; Vértessy, Beáta G; Medzihradszky, Katalin F; Szakács, Gergely; Tusnády, Gábor E

    2017-02-13

    Transmembrane proteins play crucial role in signaling, ion transport, nutrient uptake, as well as in maintaining the dynamic equilibrium between the internal and external environment of cells. Despite their important biological functions and abundance, less than 2% of all determined structures are transmembrane proteins. Given the persisting technical difficulties associated with high resolution structure determination of transmembrane proteins, additional methods, including computational and experimental techniques remain vital in promoting our understanding of their topologies, 3D structures, functions and interactions. Here we report a method for the high-throughput determination of extracellular segments of transmembrane proteins based on the identification of surface labeled and biotin captured peptide fragments by LC/MS/MS. We show that reliable identification of extracellular protein segments increases the accuracy and reliability of existing topology prediction algorithms. Using the experimental topology data as constraints, our improved prediction tool provides accurate and reliable topology models for hundreds of human transmembrane proteins.

  11. C reactive protein rapid assay techniques for monitoring resolution of infection in immunosuppressed patients.

    PubMed Central

    Harris, R I; Stone, P C; Hudson, A G; Stuart, J

    1984-01-01

    Three rapid assay techniques (latex agglutination, laser nephelometry, and EMIT enzyme immunoassay) have been evaluated for serial monitoring of the serum C reactive protein (CRP) concentration in immunosuppressed patients with fever. Radial immunodiffusion assay was used as a reference method. Latex agglutination reliably distinguished between normal and raised serum CRP concentrations. Enzyme immunoassay also provided a result within minutes, showed particularly close correlation (r = 0.967) with the reference method, and was free from interference by lipaemic or icteric sera. In 27% of 55 episodes of fever studied serially in immunosuppressed patients, the enzyme immunoassay provided clinically useful information by indicating incomplete resolution of infection despite resolution of fever. PMID:6430971

  12. A rapid radioimmunoassay using /sup 125/I-labeled staphylococcal protein A for antibody to varicella-zoster virus

    SciTech Connect

    Richman, D.D.; Cleveland, P.H.; Oxman, M.N.; Zaia, J.A.

    1981-05-01

    A sensitive radioimmunoassay for serum antibody to varicella-zoster virus is described; it uses 125I-labeled staphylococcal protein A and a specially designed immunofiltration apparatus. The assay accurately distinguishes between individuals who are susceptible and those who are immune to infection with varicella-zoster virus. In addition, it can detect passive antibody in recipients of varicella-zoster immune globulin. This radioimmunoassay also detects the heterologous antibody responses that occasionally occur in patients infected with herpes simplex virus, which also have been detected by other antibody assays. The particular advantages of this assay are the use of noninfectious reagents, the speed of execution (less than 3 hr), the requirement for only small quantities of serum (30 microliters), the objectivity of end-point determination, and the capability of screening large numbers of sera. Consequently, this radioimmunoassay is especially useful for the rapid identification of susceptible individuals, which is essential for the appropriate management of patients and hospital personnel after exposure to varicella.

  13. [Rapid identification 15 effective components of anti common cold medicine with MRM by LC-MS/MS].

    PubMed

    Jiang, Jian-Guo; Zhang, Xi-Ru; Zhang, Yi-Hua; Song, Geng-Shen

    2013-01-01

    This paper reports the establishment of a method for rapid identification 15 effective components of anti common cold medicine (paracetamol, aminophenazone, pseudoephedrine hydrochloride, methylephedrine hydrochloride, caffeine, amantadine hydrochloride, phenazone, guaifenesin, chlorphenamine maleate, dextromethorphen hydrobromide, diphenhydramine hydrochloride, promethazine hydrochloride, propyphenazone, benorilate and diclofenac sodium) with MRM by LC-MS/MS. The samples were extracted by methanol and were separated from a Altantis T3 column within 15 min with a gradient of acetonitrile-ammonium acetate (containing 0.25% glacial acetic acid), a tandem quadrupole mass spectrometer equipped with electrospray ionization source (ESI) was used in positive ion mode, and multiple reaction monitoring (MRM) was performed for qualitative analysis of these compounds. The minimum detectable quantity were 0.33-2.5 microg x kg(-1) of the 15 compounds. The method is simple, accurate and with good reproducibility for rapid identification many components in the same chromatographic condition, and provides a reference for qualitative analysis illegally added chemicals in anti common cold medicine.

  14. Rapid in situ identification of bioactive compounds in plants by in vivo nanospray high-resolution mass spectrometry.

    PubMed

    Chang, Qing; Peng, Yue'e; Dan, Conghui; Shuai, Qin; Hu, Shenghong

    2015-03-25

    A method for the rapid in situ identification of bioactive compounds in fresh plants has been developed using in vivo nanospray coupled to high-resolution mass spectrometry (HR-MS). Using a homemade in vivo nanospray ion source, the plant liquid was drawn out from a target region and ionized in situ. The ionized bioactive compounds were then identified using Q-Orbitrap HR-MS. The accurate mass measurements of these bioactive compounds were performed by full-scan or selected ion monitoring (SIM), and tandem mass spectrometry (MS/MS) was used in the structural elucidation. Without sample pretreatment, 12 bioactive compounds in 7 different plant species were identified, namely, isoalliin in onion; butylphthalide in celery; N-methylpelletierine, pelletierine, and pseudopelletierine in pomegranate; chlorogenic acid in crabapple; solamargine, solasonine, and solasodine in nightshade; aloin and aloe-emodin in aloe; and menthone in mint. This work demonstrates that in vivo nanospray HR-MS is a good method for rapid in situ identification of bioactive compounds in plants.

  15. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid and Sensitive Identification of Ostrich Meat

    PubMed Central

    Abdulmawjood, Amir; Grabowski, Nils; Fohler, Svenja; Kittler, Sophie; Nagengast, Helga; Klein, Guenter

    2014-01-01

    Animal species identification is one of the primary duties of official food control. Since ostrich meat is difficult to be differentiated macroscopically from beef, therefore new analytical methods are needed. To enforce labeling regulations for the authentication of ostrich meat, it might be of importance to develop and evaluate a rapid and reliable assay. In the present study, a loop-mediated isothermal amplification (LAMP) assay based on the cytochrome b gene of the mitochondrial DNA of the species Struthio camelus was developed. The LAMP assay was used in combination with a real-time fluorometer. The developed system allowed the detection of 0.01% ostrich meat products. In parallel, a direct swab method without nucleic acid extraction using the HYPLEX LPTV buffer was also evaluated. This rapid processing method allowed detection of ostrich meat without major incubation steps. In summary, the LAMP assay had excellent sensitivity and specificity for detecting ostrich meat and could provide a sampling-to-result identification-time of 15 to 20 minutes. PMID:24963709

  16. Rapid molecular identification of Listeria species by use of real-time PCR and high-resolution melting analysis.

    PubMed

    Jin, Dazhi; Luo, Yun; Zhang, Zheng; Fang, Weijia; Ye, Julian; Wu, Fang; Ding, Gangqiang

    2012-05-01

    Identification of Listeria species via a molecular method is critical for food safety and clinical diagnosis. In this study, an assay integrating real-time quantitative PCR (Q-PCR) with high-resolution melting (HRM) curve analysis was developed and assessed for rapid identification of six Listeria species. The ssrA gene, which encodes a transfer-messenger RNA (tmRNA) is conserved and common to all bacterial phyla, contains a variable domain in Listeria spp. Therefore, Q-PCR and a HRM profile were applied to characterize this gene. Fifty-three Listeria species and 45 non-Listeria species were detected using one primer set, with an accuracy of 100% in reference to conventional methods. There was a 93.3% correction rate to 30 artificially contaminated samples. Thus, Q-PCR with melting profiling analysis proved able to identify Listeria species accurately. Consequently, this study demonstrates that the assay we developed is a functional tool for rapidly identifying six Listeria species, and has the potential for discriminating novel species food safety and epidemiological research.

  17. Comparison of BBL Crystal ANR ID Kit and API rapid ID 32 A for identification of anaerobic bacteria.

    PubMed

    Moll, W M; Ungerechts, J; Marklein, G; Schaal, K P

    1996-07-01

    BBL Crystal ANR ID Kit and the API System rapid ID 32 A are miniaturized identification systems for anaerobes using enzymatic tests. The incubation period of both systems is 4 hours. A comparative evaluation of the BBL Crystal Identification System Anaerobe ID Kit (Becton Dickinson Microbiology Systems, Cockeysville, USA) with anaerobes grown on Columbia and Schaedler agar plates (Becton Dickinson Microbiology Systems, Cockeysville, USA) and the API System rapid ID 32 A (BioMérieux SA, Lyon, France) with bacteria grown on Columbia agar (Becton Dickinson Microbiology Systems, Cockeysville, USA) which is recommended by the manufacturer as cultivation medium, was performed with 207 mostly fresh clinical anaerobe isolates, including 104 gram-negative bacilli, 12 gram-negative cocci, 15 gram-positive cocci, 14 gram-positive sporeforming bacilli and 62 representatives of gram-positive non-sporeforming bacilli. With supplemental testing the Crystal system with inocula from Columbia and Schaedler agar and API inoculates from Columbia agar identified to genus level 144 (69.6%), 152 (73.4%) and 109 (52.7%) isolates, respectively. Misidentification to genus level was found by Crystal from Columbia and Schaedler agar and by API from Columbia agar in 17 (8.2%), 15 (7.3%) and 12 (5.8%) isolates, respectively. 36 isolates were not determined to species level by classical anaerobic methods or the systems only identified to genus level. 26 anaerobes were not included in the database of the Crystal or API system. From the remaining 145 clinical isolates with supplemental testing, Crystal from Columbia and Schaedler agar plates correctly identified 91 (62.8%) and 102 (70.3%), respectively, and API, 69 (47.6%) isolates. For the correct identification to genus and species level of the 207 clinical isolates tested, the Crystal system from Columbia and Schaedler agar and API system from Columbia agar required supplemental testing, as specified by the manufacturer, for 39 (27.1%), 34 (22

  18. Rapid and Accurate Identification of Human-Associated Staphylococci by Use of Multiplex PCR▿

    PubMed Central

    Hirotaki, Shintaro; Sasaki, Takashi; Kuwahara-Arai, Kyoko; Hiramatsu, Keiichi

    2011-01-01

    Although staphylococci are identified by phenotypic analysis in many clinical laboratories, these results are often incorrect because of phenotypic variation. Genetic analysis is necessary for definitive species identification. In the present study, we developed a simple multiplex-PCR (M-PCR) for species identification of human-associated staphylococci, which were as follows: Staphylococcus aureus, S. capitis, S. caprae, S. epidermidis, S. haemolyticus, S. hominis, S. lugdunensis, S. saprophyticus, and S. warneri. This method was designed on the basis of nucleotide sequences of the thermonuclease (nuc) genes that were universally conserved in staphylococci except the S. sciuri group and showed moderate sequence diversity. In order to validate this assay, 361 staphylococcal strains were studied, which had been identified at the species levels by sequence analysis of the hsp60 genes. In consequence, M-PCR demonstrated a sensitivity of 100% and a specificity of 100%. By virtue of simplicity and accuracy, this method will be useful in clinical research. PMID:21832022

  19. A novel protein extraction method for identification of mycobacteria using MALDI-ToF MS.

    PubMed

    Adams, La'Tonzia L; Salee, Parichat; Dionne, Kim; Carroll, Karen; Parrish, Nicole

    2015-12-01

    Commercial extraction methods for identification of mycobacteria using MALDI-ToF MS are laborious and time consuming. We have developed a novel extraction method which utilizes a bead beater and zirconia/silica beads to significantly shorten the existing protocol. This novel method provides a more rapid extraction of mycobacteria versus the commercial standard.

  20. Rapid simultaneous identification and quantitation of Staphylococcus aureus and Pseudomonas aeruginosa directly from bronchoalveolar lavage specimens using automated microscopy.

    PubMed

    Metzger, Steven; Frobel, Rachel A; Dunne, W Michael

    2014-06-01

    Diagnosis of ventilator-assisted pneumonia (VAP) requires pathogen quantitation of respiratory samples. Current quantitative culture methods require overnight growth, and pathogen identification requires an additional step. Automated microscopy can perform rapid simultaneous identification and quantitation of live, surface-immobilized bacteria extracted directly from patient specimens using image data collected over 3 h. Automated microscopy was compared to 1 μL loop culture and standard identification methods for Staphylococcus aureus and Pseudomonas spp. in 53 remnant bronchoalveolar lavage specimens. Microscopy identified 9/9 S. aureus and 7/7 P. aeruginosa in all specimens with content above the VAP diagnostic threshold. Concordance for specimens containing targets above the diagnostic threshold was 13/16, with concordance for sub-diagnostic content of 86/90. Results demonstrated that automated microscopy had higher precision than 1 μL loop culture (range ~0.55 log versus ≥1 log), with a dynamic range of ~4 logs (~10(3) to 10(6) CFU/mL).

  1. Rapid and Accurate Identification by Real-Time PCR of Biotoxin-Producing Dinoflagellates from the Family Gymnodiniaceae

    PubMed Central

    Smith, Kirsty F.; de Salas, Miguel; Adamson, Janet; Rhodes, Lesley L.

    2014-01-01

    The identification of toxin-producing dinoflagellates for monitoring programmes and bio-compound discovery requires considerable taxonomic expertise. It can also be difficult to morphologically differentiate toxic and non-toxic species or strains. Various molecular methods have been used for dinoflagellate identification and detection, and this study describes the development of eight real-time polymerase chain reaction (PCR) assays targeting the large subunit ribosomal RNA (LSU rRNA) gene of species from the genera Gymnodinium, Karenia, Karlodinium, and Takayama. Assays proved to be highly specific and sensitive, and the assay for G. catenatum was further developed for quantification in response to a bloom in Manukau Harbour, New Zealand. The assay estimated cell densities from environmental samples as low as 0.07 cells per PCR reaction, which equated to three cells per litre. This assay not only enabled conclusive species identification but also detected the presence of cells below the limit of detection for light microscopy. This study demonstrates the usefulness of real-time PCR as a sensitive and rapid molecular technique for the detection and quantification of micro-algae from environmental samples. PMID:24608972

  2. Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels.

    PubMed

    Liu, Bianhua; Han, Guangmei; Zhang, Zhongping; Liu, Renyong; Jiang, Changlong; Wang, Suhua; Han, Ming-Yong

    2012-01-03

    Here, we report the shell thickness-dependent Raman enhancement of silver-coated gold nanoparticles (Au@Ag NPs) for the identification and detection of pesticide residues at various fruit peels. The Raman enhancement of Au@Ag NPs to a large family of sulfur-containing pesticides is ~2 orders of magnitude stronger than those of bare Au and Ag NPs, and there is a strong dependence of the Raman enhancement on the Ag shell thickness. It has been shown for the first time that the huge Raman enhancement is contributed by individual Au@Ag NPs rather than aggregated Au@Ag NPs with "hot spots" among the neighboring NPs. Therefore, the Au@Ag NPs with excellent individual-particle enhancement can be exploited as stand-alone-particle Raman amplifiers for the surface identification and detection of pesticide residues at various peels of fruits, such as apple, grape, mango, pear, and peach. By casting the particle sensors onto fruit peels, several types of pesticide residues (e.g., thiocarbamate and organophosphorous compounds) have been reliably/rapidly detected, for example, 1.5 nanograms of thiram per square centimeter at apple peel under the current unoptimized condition. The surface-lifting spectroscopic technique offers great practical potentials for the on-site assessment and identification of pesticide residues in agricultural products.

  3. Single-step PCR using (GACA)4 primer: utility for rapid identification of dermatophyte species and strains.

    PubMed

    Shehata, Atef S; Mukherjee, Pranab K; Aboulatta, Hassan N; el-Akhras, Atef I; Abbadi, Said H; Ghannoum, Mahmoud A

    2008-08-01

    Dermatophytes are fungi that belong to three genera: Epidermophyton, Microsporum, and Trichophyton. Identification of dermatophyte species is essential for appropriate diagnosis and treatment of dermatophytosis. Routine identification depends on macroscopic and microscopic morphology, which is time-consuming and does not identify dermatophyte strains. In this study, two PCR-based methods were compared for their abilities to identify 21 dermatophyte isolates obtained from Egyptian patients to the species and strain levels. The first method employed a two-step method: PCR amplification, using ITS1 and ITS4 as primers, followed by restriction enzyme digestion using the endonuclease MvaI. The second method employed a one-step approach employing the repetitive oligonucleotide (GACA)(4) as a primer. Dermatophyte strains were also identified using a conventional culture method. Our results showed that the conventional culture method identified four species: Microsporum canis, Trichophyton mentagrophytes, Trichophyton rubrum, and Trichophyton violaceum. Moreover, both PCR methods agreed with the diagnosis made using the conventional approach. Furthermore, ITS1/ITS4-based PCR provided no strain differentiation, while (GACA)(4)-based PCR identified different varieties among the T. mentagrophytes isolates. Taken together, our results suggest that (GACA)(4)-based PCR has utility as a simple and rapid method for identification of dermatophyte species as well as utility for differentiation of T. mentagrophytes variants.

  4. Rapid identification of Escherichia coli by Fluorocult media and positive indole reaction.

    PubMed Central

    Heizmann, W; Döller, P C; Gutbrod, B; Werner, H

    1988-01-01

    To assess the specificity and sensitivity of Fluorocult media for the identification of Escherichia coli, the beta-glucuronidase activities of 1,258 bacterial strains, as well as 20 strains of Candida spp., were investigated. Fluorescence of colonies combined with positive indole reaction resulted in specificities of 99.6 to 99.8%. Sensitivities were 59.1% (MacConkey agar), 69.9% (brolacin agar), 85.5% (Columbia agar), and 85.8% (ECD agar). PMID:3068257

  5. Rapid identification of Escherichia coli by Fluorocult media and positive indole reaction.

    PubMed

    Heizmann, W; Döller, P C; Gutbrod, B; Werner, H

    1988-12-01

    To assess the specificity and sensitivity of Fluorocult media for the identification of Escherichia coli, the beta-glucuronidase activities of 1,258 bacterial strains, as well as 20 strains of Candida spp., were investigated. Fluorescence of colonies combined with positive indole reaction resulted in specificities of 99.6 to 99.8%. Sensitivities were 59.1% (MacConkey agar), 69.9% (brolacin agar), 85.5% (Columbia agar), and 85.8% (ECD agar).

  6. Nanoparticle-based energy transfer for rapid and simple detection of protein glycosylation

    SciTech Connect

    Oh, Eunkeu; Lee, Dohoon; Kim, Young-Pil; Cha, Seung YOUP; Oh, Doo BEYONG; Kim, Jungbae; Kang, Hyun AH; Kim, Hak SUNG

    2006-12-04

    Glycan moiety of glycoproteins plays an essential role in its biological activity in vivo, and the analysis of glycosylation is of great importance in the development of protein therapeutics. In this study, we report a rapid and simple detection of protein glycosylation based on the fluorescence resonance energy transfer (FRET) between concanavalin A-conjugated gold nanoparticles (ConA-AuNPs) and dextran-conjugated quantum dots (Dex-QDs). The increased photoluminescence (PL) signals of Dex-QDs due to the competitive inhibition of glycoproteins were well correlated with the glycosylation chain length of glucose oxidases as well as the mannosylation degree of bovine serum albumin (BSA). The parallel analysis of the diversely mannosylated BSAs using an image analyzer further demonstrated the potential of this new technique in high-throughput screening of glycoprotein and carbohydrate therapeutics.

  7. Rapid Plant Identification Using Species- and Group-Specific Primers Targeting Chloroplast DNA

    PubMed Central

    Staudacher, Karin; Schallhart, Nikolaus; Mitterrutzner, Evi; Steiner, Eva-Maria; Thalinger, Bettina; Traugott, Michael

    2012-01-01

    Plant identification is challenging when no morphologically assignable parts are available. There is a lack of broadly applicable methods for identifying plants in this situation, for example when roots grow in mixture and for decayed or semi-digested plant material. These difficulties have also impeded the progress made in ecological disciplines such as soil- and trophic ecology. Here, a PCR-based approach is presented which allows identifying a variety of plant taxa commonly occurring in Central European agricultural land. Based on the trnT-F cpDNA region, PCR assays were developed to identify two plant families (Poaceae and Apiaceae), the genera Trifolium and Plantago, and nine plant species: Achillea millefolium, Fagopyrum esculentum, Lolium perenne, Lupinus angustifolius, Phaseolus coccineus, Sinapis alba, Taraxacum officinale, Triticum aestivum, and Zea mays. These assays allowed identification of plants based on size-specific amplicons ranging from 116 bp to 381 bp. Their specificity and sensitivity was consistently high, enabling the detection of small amounts of plant DNA, for example, in decaying plant material and in the intestine or faeces of herbivores. To increase the efficacy of identifying plant species from large number of samples, specific primers were combined in multiplex PCRs, allowing screening for multiple species within a single reaction. The molecular assays outlined here will be applicable manifold, such as for root- and leaf litter identification, botanical trace evidence, and the analysis of herbivory. PMID:22253728

  8. Rapid plant identification using species- and group-specific primers targeting chloroplast DNA.

    PubMed

    Wallinger, Corinna; Juen, Anita; Staudacher, Karin; Schallhart, Nikolaus; Mitterrutzner, Evi; Steiner, Eva-Maria; Thalinger, Bettina; Traugott, Michael

    2012-01-01

    Plant identification is challenging when no morphologically assignable parts are available. There is a lack of broadly applicable methods for identifying plants in this situation, for example when roots grow in mixture and for decayed or semi-digested plant material. These difficulties have also impeded the progress made in ecological disciplines such as soil- and trophic ecology. Here, a PCR-based approach is presented which allows identifying a variety of plant taxa commonly occurring in Central European agricultural land. Based on the trnT-F cpDNA region, PCR assays were developed to identify two plant families (Poaceae and Apiaceae), the genera Trifolium and Plantago, and nine plant species: Achillea millefolium, Fagopyrum esculentum, Lolium perenne, Lupinus angustifolius, Phaseolus coccineus, Sinapis alba, Taraxacum officinale, Triticum aestivum, and Zea mays. These assays allowed identification of plants based on size-specific amplicons ranging from 116 bp to 381 bp. Their specificity and sensitivity was consistently high, enabling the detection of small amounts of plant DNA, for example, in decaying plant material and in the intestine or faeces of herbivores. To increase the efficacy of identifying plant species from large number of samples, specific primers were combined in multiplex PCRs, allowing screening for multiple species within a single reaction. The molecular assays outlined here will be applicable manifold, such as for root- and leaf litter identification, botanical trace evidence, and the analysis of herbivory.

  9. Identification and characterization of Euphorbia nivulia latex proteins.

    PubMed

    Badgujar, Shamkant B; Mahajan, Raghunath T

    2014-03-01

    The protein profile of latex of Euphorbia nivulia Buch.-Ham. is established. Three new proteins viz., Nivulian-I, II and III have been purified to homogeneity from the latex. The relative molecular masses of Nivulian-I, II and III are 31,486.985, 43,670.846 and 52,803.470 Da respectively. Nivulian-I is a simple type of protein while Nivulian-II and III are glycoproteins. Peptide mass fingerprint analysis revealed peptides of these proteins match with Tubulin alpha-1 chain of Eleusine indica, Maturase K of Banksia quercifolia and hypothetical protein of Zea mays respectively. Tryptic digestion profile of Nivulian-I, II and III, infer the exclusive nature of latex origin proteins and may be new and are additive molecules in the dictionaries of phytoproteins or botany. This is the first of its kind, regarding characterization and validation of Nivulian-I, II and III with respect to peptide sequencing.

  10. Direct, Specific and Rapid Detection of Staphylococcal Proteins and Exotoxins Using a Multiplex Antibody Microarray

    PubMed Central

    Stieber, Bettina; Monecke, Stefan; Müller, Elke; Büchler, Joseph; Ehricht, Ralf

    2015-01-01

    Background S. aureus is a pathogen in humans and animals that harbors a wide variety of virulence factors and resistance genes. This bacterium can cause a wide range of mild to life-threatening diseases. In the latter case, fast diagnostic procedures are important. In routine diagnostic laboratories, several genotypic and phenotypic methods are available to identify S. aureus strains and determine their resistances. However, there is a demand for multiplex routine diagnostic tests to directly detect staphylococcal toxins and proteins. Methods In this study, an antibody microarray based assay was established and validated for the rapid detection of staphylococcal markers and exotoxins. The following targets were included: staphylococcal protein A, penicillin binding protein 2a, alpha- and beta-hemolysins, Panton Valentine leukocidin, toxic shock syndrome toxin, enterotoxins A and B as well as staphylokinase. All were detected simultaneously within a single experiment, starting from a clonal culture on standard media. The detection of bound proteins was performed using a new fluorescence reading device for microarrays. Results 110 reference strains and clinical isolates were analyzed using this assay, with a DNA microarray for genotypic characterization performed in parallel. The results showed a general high concordance of genotypic and phenotypic data. However, genotypic analysis found the hla gene present in all S. aureus isolates but its expression under given conditions depended on the clonal complex affiliation of the actual isolate. Conclusions The multiplex antibody assay described herein allowed a rapid and reliable detection of clinically relevant staphylococcal toxins as well as resistance- and species-specific markers. PMID:26624622

  11. Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity

    PubMed Central

    2012-01-01

    In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT) inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC) inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space. PMID:22273506

  12. Novel antigen identification method for discovery of protective malaria antigens by rapid testing of DNA vaccines encoding exons from the parasite genome.

    PubMed

    Haddad, Diana; Bilcikova, Erika; Witney, Adam A; Carlton, Jane M; White, Charles E; Blair, Peter L; Chattopadhyay, Rana; Russell, Joshua; Abot, Esteban; Charoenvit, Yupin; Aguiar, Joao C; Carucci, Daniel J; Weiss, Walter R

    2004-03-01

    We describe a novel approach for identifying target antigens for preerythrocytic malaria vaccines. Our strategy is to rapidly test hundreds of DNA vaccines encoding exons from the Plasmodium yoelii yoelii genomic sequence. In this antigen identification method, we measure reduction in parasite burden in the liver after sporozoite challenge in mice. Orthologs of protective P. y. yoelii genes can then be identified in the genomic databases of Plasmodium falciparum and Plasmodium vivax and investigated as candidate antigens for a human vaccine. A pilot study to develop the antigen identification method approach used 192 P. y. yoelii exons from genes expressed during the sporozoite stage of the life cycle. A total of 182 (94%) exons were successfully cloned into a DNA immunization vector with the Gateway cloning technology. To assess immunization strategies, mice were vaccinated with 19 of the new DNA plasmids in addition to the well-characterized protective plasmid encoding P. y. yoelii circumsporozoite protein. Single plasmid immunization by gene gun identified a novel vaccine target antigen which decreased liver parasite burden by 95% and which has orthologs in P. vivax and P. knowlesi but not P. falciparum. Intramuscular injection of DNA plasmids produced a different pattern of protective responses from those seen with gene gun immunization. Intramuscular immunization with plasmid pools could reduce liver parasite burden in mice despite the fact that none of the plasmids was protective when given individually. We conclude that high-throughput cloning of exons into DNA vaccines and their screening is feasible and can rapidly identify new malaria vaccine candidate antigens.

  13. Identification of a Protein for Prostate-Specific Infection

    DTIC Science & Technology

    2006-12-01

    P2) modified gp41 envelope protein was used to infect LNCaP cells in 24-well plates. The control vector that does not have gp41 -P2 envelope protein...on viral surface was also used to infect LNCaP cells as the control. Our results demonstrated that with the gp41 -P2 envelope protein on the surface...Insert sequences into lentiviral envelope protein gp41 As described in the annual report of last year, we have identified two peptides that can

  14. Large-scale identification of putative exported proteins in Candida albicans by genetic selection.

    PubMed

    Monteoliva, L; Matas, M López; Gil, C; Nombela, C; Pla, J

    2002-08-01

    In all living organisms, secreted proteins play essential roles in different processes. Of special interest is the construction of the fungal cell wall, since this structure is absent from mammalian cells. The identification of the proteins involved in its biogenesis is therefore a primary goal in antifungal research. To perform a systematic identification of such proteins in Candida albicans, we carried out a genetic screening in which in-frame fusions with an intracellular allele of invertase gene SUC2 of Saccharomyces cerevisiae can be used to select and identify putatively exported proteins in the heterologous host S. cerevisiae. Eighty-three clones were selected, including 11 previously identified genes from C. albicans as well as 41 C. albicans genes that encode proteins homologous to already described proteins from related organisms. They include enzymes involved in cell wall synthesis and protein secretion. We also found membrane receptors and transporters presumably related to the interaction of C. albicans with the environment as well as extracellular enzymes and proteins involved in different morphological transitions. In addition, 11 C. albicans open reading frames (ORFs) identified in this screening encode proteins homologous to unknown or putative proteins, while 5 ORFs encode novel secreted proteins without known homologues in other organisms. This screening procedure therefore not only identifies a set of targets of interest in antifungal research but also provides new clues for understanding the topological locations of many proteins involved in processes relevant to the pathogenicity of this microorganism.

  15. Large-Scale Identification of Putative Exported Proteins in Candida albicans by Genetic Selection

    PubMed Central

    Monteoliva, L.; López Matas, M.; Gil, C.; Nombela, C.; Pla, J.

    2002-01-01

    In all living organisms, secreted proteins play essential roles in different processes. Of special interest is the construction of the fungal cell wall, since this structure is absent from mammalian cells. The identification of the proteins involved in its biogenesis is therefore a primary goal in antifungal research. To perform a systematic identification of such proteins in Candida albicans, we carried out a genetic screening in which in-frame fusions with an intracellular allele of invertase gene SUC2 of Saccharomyces cerevisiae can be used to select and identify putatively exported proteins in the heterologous host S. cerevisiae. Eighty-three clones were selected, including 11 previously identified genes from C. albicans as well as 41 C. albicans genes that encode proteins homologous to already described proteins from related organisms. They include enzymes involved in cell wall synthesis and protein secretion. We also found membrane receptors and transporters presumably related to the interaction of C. albicans with the environment as well as extracellular enzymes and proteins involved in different morphological transitions. In addition, 11 C. albicans open reading frames (ORFs) identified in this screening encode proteins homologous to unknown or putative proteins, while 5 ORFs encode novel secreted proteins without known homologues in other organisms. This screening procedure therefore not only identifies a set of targets of interest in antifungal research but also provides new clues for understanding the topological locations of many proteins involved in processes relevant to the pathogenicity of this microorganism. PMID:12456000

  16. A proteomic approach for rapid identification of Weissella species isolated from Korean fermented foods on MALDI-TOF MS supplemented with an in-house database.

    PubMed

    Kim, Eiseul; Cho, Youngjae; Lee, Yoonju; Han, Sun-Kyung; Kim, Chang-Gyeom; Choo, Dong-Won; Kim, Young-Rok; Kim, Hae-Yeong

    2017-02-21

    Weissella are obligate heterofermentative lactic acid bacteria belonging to the Leuconostocaceae family. Some Weissella can be found in salted and fermented foods, such as kimchi and jeotgal, and plays an important role in the fermentation process. In the present study, for the first time, a rapid and accurate identification method for Weissella species from kimchi and jeotgal was developed based on MALDI-TOF MS, supplemented with an in-house database. Of the 135 Weissella spectra aligned with the MALDI bioTyper database, 56 isolates (41.5%) yielded no reliable identification results with low log scores (<1.7). After registering the spectra of six Weissella reference strains, all of the isolates were correctly identified, of which 113 (83.7%) and 22 (16.3%) were identified at the species and genus level, respectively. Moreover, a dendrogram generated by protein profiles of the different Weissella species clearly presented distinctive clusters, and PCA analysis separated the spectra of Weissella species into four clusters. In comparing food origins, different Weissella species were identified from two fermented foods. W. soli and W. cibaria were isolated from kimchi, while W. thailandensis and W. halotolerans were isolated from jeotgal. The results of our proteomic approach confirm that the MALDI bioTyper database, with our in-house Weissella database, is sufficient for Weissella identification. The MALDI-TOF MS method provides fast and reliable discrimination between different species in the genus Weissella and, therefore, will be useful for safety control in fish farms or in the production of fermented foods. This method can also be applied to the control of opportunistic pathogenic Weissella in human clinical infections.

  17. Cross-Species Genome-Wide Identification of Evolutionary Conserved MicroProteins

    PubMed Central

    Straub, Daniel

    2017-01-01

    MicroProteins are small single-domain proteins that act by engaging their targets into different, sometimes nonproductive protein complexes. In order to identify novel microProteins in any sequenced genome of interest, we have developed miPFinder, a program that identifies and classifies potential microProteins. In the past years, several microProteins have been discovered in plants where they are mainly involved in the regulation of development by fine-tuning transcription factor activities. The miPFinder algorithm identifies all up to date known plant microProteins and extends the microProtein concept beyond transcription factors to other protein families. Here, we reveal potential microProtein candidates in several plant and animal reference genomes. A large number of these microProteins are species-specific while others evolved early and are evolutionary highly conserved. Most known microProtein genes originated from large ancestral genes by gene duplication, mutation and subsequent degradation. Gene ontology analysis shows that putative microProtein ancestors are often located in the nucleus, and involved in DNA binding and formation of protein complexes. Additionally, microProtein candidates act in plant transcriptional regulation, signal transduction and anatomical structure development. MiPFinder is freely available to find microProteins in any genome and will aid in the identification of novel microProteins in plants and animals. PMID:28338802

  18. From molecules to mating: Rapid evolution and biochemical studies of reproductive proteins

    PubMed Central

    Wilburn, Damien B.; Swanson, Willie J.

    2015-01-01

    Sexual reproduction and the exchange of genetic information are essential biological processes for species across all branches of the tree of life. Over the last four decades, biochemists have continued to identify many of the factors that facilitate reproduction, but the molecular mechanisms that mediate this process continue to elude us. However, a recurring observation in this research has been the rapid evolution of reproductive proteins. In animals, the competing interests of males and females often result in arms race dynamics between pairs of interacting proteins. This phenomenon has been observed in all stages of reproduction, including pheromones, seminal fluid components, and gamete recognition proteins. In this article, we review how the integration of evolutionary theory with biochemical experiments can be used to study interacting reproductive proteins. Examples are included from both model and non-model organisms, and recent studies are highlighted for their use of state-of-the-art genomic and proteomic techniques. Significance Despite decades of research, our understanding of the molecular mechanisms that mediate fertilization remain poorly characterized. To date, molecular evolutionary studies on both model and non-model organisms have provided some of the best inferences to elucidating the molecular underpinnings of animal reproduction. This review article details how biochemical and evolutionary experiments have jointly enhanced the field for 40 years, and how recent work using high-throughput genomic and proteomic techniques have shed additional insights into this crucial biological process. PMID:26074353

  19. Rapid Screening and Species Identification of E. Coli, Listeria, and Salmonella by SERS Technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Techniques for routine and rapid screening of the presence of foodborne bacteria are needed, and this study reports the feasibility of citrate-reduced silver colloidal SERS for identifying E. coli, Listeria, and Salmonella. Relative standard deviation (RSD) of SERS spectra from silver colloidal susp...

  20. Rapid identification of salmonella serotypes with stereo and hyperspectral microscope imaging Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hyperspectral microscope imaging (HMI) method can reduce detection time within 8 hours including incubation process. The early and rapid detection with this method in conjunction with the high throughput capabilities makes HMI method a prime candidate for implementation for the food industry. Th...

  1. Rapid Identification of Salmonella Serotypes with Stereo and Hyperspectral Microscope Imaging Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hyperspectral microscope imaging (HMI) method can reduce detection time within 8 hours including incubation process. The early and rapid detection with this method in conjunction with the high throughput capabilities makes HMI method a prime candidate for implementation for the food industry. Th...

  2. Rapid identification and classification of Staphylococcus aureus by attenuated total reflectance fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Staphylococcus aureus is an important bacterium that can cause serious infections in humans such as pneumonia and bacteremia. Rapid detection of this pathogen is crucial in food industries and clinical laboratories to control S. aureus food poisoning and human infections. In this study, fourier tran...

  3. Identification of urinary proteins potentially associated with diabetic kidney disease.

    PubMed

    Marikanty, R K; Gupta, M K; Cherukuvada, S V B; Kompella, S S S; Prayaga, A K; Konda, S; Polisetty, R V; Idris, M M; Rao, P V; Chandak, G R; Dakshinamurty, K V

    2016-01-01

    Diabetic nephropathy (DN) is the most common cause of chronic kidney disease. Although several parameters are used to evaluate renal damage, in many instances, there is no pathological change until damage is already advanced. Mass spectrometry-based proteomics is a novel tool to identify newer diagnostic markers. To identify urinary proteins associated with renal complications in diabetes, we collected urine samples from 10 type 2 diabetes patients each with normoalbuminuria, micro- and macro-albuminuria and compared their urinary proteome with that of 10 healthy individuals. Urinary proteins were concentrated, depleted of albumin and five other abundant plasma proteins and in-gel trypsin digested after prefractionation on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The peptides were analyzed using a nanoflow reverse phase liquid chromatography system coupled to linear trap quadrupole-Orbitrap mass spectrometer. We identified large number of proteins in each group, of which many were exclusively present in individual patient groups. A total of 53 proteins were common in all patients but were absent in the controls. The majority of the proteins were functionally binding, biologically involved in metabolic processes, and showed enrichment of alternative complement and blood coagulation pathways. In addition to identifying reported proteins such as α2-HS-glycoprotein and Vitamin D binding protein, we detected novel proteins such as CD59, extracellular matrix protein 1 (ECM1), factor H, and myoglobin in the urine of macroalbuminuria patients. ECM1 and factor H are known to influence mesangial cell proliferation, and CD59 causes microvascular damage by influencing membrane attack complex deposition, suggestive their biological relevance to DN. Thus, we have developed a proteome database where various proteins exclusively present in the patients may be further investigated for their role as stage-specific markers and possible therapeutic targets.

  4. Identification of urinary proteins potentially associated with diabetic kidney disease

    PubMed Central

    Marikanty, R. K.; Gupta, M. K.; Cherukuvada, S. V. B.; Kompella, S. S. S; Prayaga, A. K.; Konda, S.; Polisetty, R. V.; Idris, M. M.; Rao, P. V.; Chandak, G. R.; Dakshinamurty, K. V.

    2016-01-01

    Diabetic nephropathy (DN) is the most common cause of chronic kidney disease. Although several parameters are used to evaluate renal damage, in many instances, there is no pathological change until damage is already advanced. Mass spectrometry-based proteomics is a novel tool to identify newer diagnostic markers. To identify urinary proteins associated with renal complications in diabetes, we collected urine samples from 10 type 2 diabetes patients each with normoalbuminuria, micro- and macro-albuminuria and compared their urinary proteome with that of 10 healthy individuals. Urinary proteins were concentrated, depleted of albumin and five other abundant plasma proteins and in-gel trypsin digested after prefractionation on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The peptides were analyzed using a nanoflow reverse phase liquid chromatography system coupled to linear trap quadrupole-Orbitrap mass spectrometer. We identified large number of proteins in each group, of which many were exclusively present in individual patient groups. A total of 53 proteins were common in all patients but were absent in the controls. The majority of the proteins were functionally binding, biologically involved in metabolic processes, and showed enrichment of alternative complement and blood coagulation pathways. In addition to identifying reported proteins such as α2-HS-glycoprotein and Vitamin D binding protein, we detected novel proteins such as CD59, extracellular matrix protein 1 (ECM1), factor H, and myoglobin in the urine of macroalbuminuria patients. ECM1 and factor H are known to influence mesangial cell proliferation, and CD59 causes microvascular damage by influencing membrane attack complex deposition, suggestive their biological relevance to DN. Thus, we have developed a proteome database where various proteins exclusively present in the patients may be further investigated for their role as stage-specific markers and possible therapeutic targets. PMID

  5. Protein Particulate Retention and Microorganism Recovery for Rapid Detection of Salmonella.

    PubMed

    Ku, Seockmo; Kreke, Thomas; Ximenes, Eduardo; Foster, Kirk; Liu, Xingya; Gilpin, Christopher J; Ladisch, Michael R

    2017-04-03

    The rapid detection of Salmonella in ground meat requires that living microorganisms be brought to levels detectable by PCR, immunoassays, or similar techniques within 8 h. Previously, we employed microfiltration using hollow fiber membranes to rapidly process and concentrate viable bacteria in food extracts through a combination of enzyme treatment and prefiltration in order to prevent blockage or fouling of the hollow fiber membranes. However, scanning electron microscopy and particle size analysis of enzyme hydrolysates showed that enzyme treatment followed by filtration caused submicron particles to form and be trapped within the prefiltration media, which in turn, retained about 80% of the bacteria. Filtering prior to enzyme treatment resulted in formation of a filter cake consisting of protein particles retained on the surface of the filter, while facilitating passage of the much smaller microorganisms through the filter, separating them from particulates. Subsequent enzyme treatment of the filtrate resulted in an extract that was microfiltered in less than an hour, while concentrating viable microorganisms in the extract by 500 ×. An inoculum of Salmonella enterica cells into turkey burger containing of 1-20 CFU/mL, consisting of spiked cells plus cells already present in the turkey burger sample, was rapidly brought to levels detectable by conventional PCR and BAX® PCR assays. The entire procedure from sample processing to detection of Salmonella enterica was achieved in less than 8 h. This article is protected by copyright. All rights reserved.

  6. Trans-splicing as a novel method to rapidly produce antibody fusion proteins

    SciTech Connect

    Iwasaki, Ryohei; Kiuchi, Hiroki; Ihara, Masaki; Mori, Toshihiro; Kawakami, Masayuki; Ueda, Hiroshi

    2009-07-03

    To cultivate the use of trans-splicing as a novel means to rapidly express various antibody fusion proteins, we tried to express antibody-reporter enzyme fusions in a COS-1 co-transfection model. When a vector designed to induce trans-splicing with IgH pre-mRNA was co-transfected with a vector encoding the mouse IgM locus, the expression of V{sub H}-secreted human placental alkaline phosphatase (SEAP) as well as Fab-SEAP were successfully expressed both in mRNA and protein levels. Especially, the vectors encoding complementary sequence to S{mu} as a binding domain was accurate and efficient, producing trans-spliced mRNA of up to 2% of cis-spliced one. Since S{mu} sequence should exist in every IgH pre-mRNA, our finding will lead to the rapid production and analysis of various antibody-enzyme fusions suitable for enzyme-linked immunosorbent assay (ELISA) or antibody-dependent enzyme prodrug therapy (ADEPT).

  7. Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent PRecipitation (PROSPR).

    PubMed

    Gallart-Palau, Xavier; Serra, Aida; Wong, Andrew See Weng; Sandin, Sara; Lai, Mitchell K P; Chen, Christopher P; Kon, Oi Lian; Sze, Siu Kwan

    2015-09-30

    Extracellular vesicles (EVs) such as exosomes and microvesicles mediate intercellular communication and regulate a diverse range of crucial biological processes. Host cells that are damaged, infected or transformed release biomarker-containing EVs into the peripheral circulation, where they can be readily accessed for use in diagnostic or prognostic testing. However, current methods of EV isolation from blood plasma are complex and often require relatively large sample volumes, hence are inefficient for widespread use in clinical settings. Here, we report a novel and inexpensive method of rapidly isolating EVs from small volumes of human blood plasma by PRotein Organic Solvent PRecipitation (PROSPR). PROSPR encompasses a rapid three-step protocol to remove soluble proteins from plasma via precipitation in cold acetone, leaving the lipid-encapsulated EVs behind in suspension. This generates higher purity EVs that can then be obtained from filtration or classical ultracentrifugation methods. We foresee that PROSPR-based purification of EVs will significantly accelerate the discovery of new disease biomarkers and the characterization of EVs with potential for clinical applications.

  8. Identification of highly active flocculant proteins in bovine blood.

    PubMed

    Piazza, George J; Nuñez, Alberto; Garcia, Rafael A

    2012-03-01

    Synthetic polymeric flocculants are used extensively for wastewater remediation, soil stabilization, and reduction in water leakage from unlined canals. Sources of highly active, inexpensive, renewable flocculants are needed to replace synthetic flocculants. High kaolin flocculant activity was documented for bovine blood (BB) and blood plasma with several anticoagulant treatments. BB serum also had high flocculant activity. To address the hypothesis that some blood proteins have strong flocculating activity, the BB proteins were separated by SEC. Then, the major proteins of the flocculant-active fractions were separated by SDS-PAGE. Identity of the major protein components was determined by tryptic digestion and peptide analysis by MALDI TOF MS. The sequence of selected peptides was confirmed using TOF/TOF-MS/MS fragmentation. Hemoglobin dimer (subunits α and β) was identified as the major protein component of the active fraction in BB; its high flocculation activity was confirmed by testing a commercial sample of hemoglobin. In the same manner, three proteins from blood plasma (fibrinogen, γ-globulin, α-2-macroglobulin) were found to be highly active flocculants, but bovine serum albumin, α-globulin, and β-globulin were not flocculants. On a mass basis, hemoglobin, γ-globulin, α-2-macroglobulin were as effective as anionic polyacrylamide (PAM), a widely used synthetic flocculant. The blood proteins acted faster than PAM, and unlike PAM, the blood proteins flocculants did not require calcium salts for their activity.

  9. Identification of new Palmitoylated Proteins in Toxoplasma gondii

    PubMed Central

    Caballero, Marina C.; Alonso, Andrés M.; Deng, Bin; Attias, Marcia; de Souza, Wanderley; Corvi, María M.

    2016-01-01

    Protein palmitoylation has been shown to be an important post-translational modification in eukaryotic cells. This modification alters the localization and/or the function of the targeted protein. In the recent years protein palmitoylation has risen in importance in apicomplexan parasites as well. In Toxoplasma gondii, some proteins have been reported to be modified by palmitate. With the development of new techniques that allow the isolation of palmitoylated proteins, this significant post-translational modification has begun to be studied in more detail in T. gondii. Here we describe the palmitoylome of the tachyzoite stage of T. gondii using a combination of the acyl-biotin exchange chemistry method and mass spectrometry analysis. We identified 401 proteins found in multiple cellular compartments, with a wide range of functions that vary from metabolic processes, gliding and host-cell invasion to even regulation of transcription and translation. Besides, we found that more rhoptry proteins than the ones already described for Toxoplasma are palmitoylated, suggesting an important role for this modification in the invasion mechanism of the host-cell. This study documents that protein palmitoylation is a common modification in T. gondii that could have an impact on different cellular processes. PMID:26825284

  10. Identification of the Coated Vesicle Proteins That Bind Calmodulin

    DTIC Science & Technology

    1982-11-16

    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS November 16, 1982 Pages 186-193 IDENTIFICATION OF THE COATED VESICLE...00/0 v80 C opyigh CI92byAaeicPe,.n.8 A#I rihts of reproduction in any form ,ese,’d. 186 Vol. 109, No. 1, 1982 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS allows...coated vesicles under 187 Vol. 109, No. 1, 1982 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS ABC b e fgh i F

  11. Identification of a novel protein complex containing annexin A4, rabphilin and synaptotagmin.

    PubMed

    Willshaw, Angela; Grant, Karen; Yan, Jun; Rockliffe, Nichola; Ambavarapu, Sailaja; Burdyga, Galina; Varro, Andrea; Fukuoka, Shin-Ichi; Gawler, Debra

    2004-02-13

    Rabphilin is a synaptic vesicle-associated protein proposed to play a role in regulating neurotransmitter release. Here we report the isolation and identification of a novel protein complex containing rabphilin, annexin A4 and synaptotagmin 1. We show that the rabphilin C2B domain interacts directly with the N-terminus of annexin A4 and mediates the co-complexing of these two proteins in PC12 cells. Analyzing the cellular localisation of these co-complexing proteins we find that annexin A4 is located on synaptic membranes and co-localises with rabphilin at the plasma membrane in PC12 cells. Given that rabphilin and synaptotagmin are synaptic vesicle proteins involved in neurotransmitter release, the identification of this complex suggests that annexin A4 may play a role in synaptic exocytosis.

  12. Method for identification of rigid domains and hinge residues in proteins based on exhaustive enumeration.

    PubMed

    Sim, Jaehyun; Sim, Jun; Park, Eunsung; Lee, Julian

    2015-06-01

    Many proteins undergo large-scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non-overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter-domain bending motion. The performance of the algorithm is demonstrated on several proteins.

  13. Analytical approaches for the characterization and identification of olive (Olea europaea) oil proteins.

    PubMed

    Esteve, Clara; D'Amato, Alfonsina; Marina, María Luisa; García, María Concepción; Righetti, Pier Giorgio

    2013-10-30

    Proteins in olive oil have been scarcely investigated probably due to the difficulty of working with such a lipidic matrix and the dramatically low abundance of proteins in this biological material. Additionally, this scarce information has generated contradictory results, thus requiring further investigations. This work treats this subject from a comprehensive point of view and proposes the use of different analytical approaches to delve into the characterization and identification of proteins in olive oil. Different extraction methodologies, including capture via combinational hexapeptide ligand libraries (CPLLs), were tried. A sequence of methodologies, starting with off-gel isoelectric focusing (IEF) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) or high-performance liquid chromatography (HPLC) using an ultraperformance liquid chromatography (UPLC) column, was applied to profile proteins from olive seed, pulp, and oil. Besides this, and for the first time, a tentative identification of oil proteins by mass spectrometry has been attempted.

  14. Heterogeneity of high-mobility-group protein 2. Enrichment of a rapidly migrating form in testis.

    PubMed Central

    Bucci, L R; Brock, W A; Meistrich, M L

    1985-01-01

    A determination of the absolute amounts of high-mobility-group proteins 1 and 2 (HMG1 and HMG2) in rat tissues demonstrated that amounts of HMG2 were low in non-proliferating tissues, somewhat higher in proliferating and lymphoid tissues, but were extremely elevated in the testis. This increase was due to a germ-cell-specific form of HMG2 with increased mobility relative to somatic HMG2 on acid/urea/polyacrylamide-gel electrophoresis. To determine if the findings in the rat were a general feature of spermatogenesis, testis (germinal), spleen (lymphoid), and liver (non-proliferating) tissues from various vertebrate species were examined for their relative amounts of HMG1 and HMG2, and for HMG2 heterogeneity. Bull, chimpanzee, cynomologus monkey, dog, gopher, guinea pig, hamster, mouse, opossum, rabbit, rat, rhesus monkey, squirrel and toad (Xenopus) tissues were analysed. Nearly all species showed relatively high contents of HMG2 in testis tissue, whereas HMG1 contents were similar in all species and tissues. Ten of thirteen species showed a rapidly migrating HMG2 subtype in testis tissue, separable by acid/urea/polyacrylamide-gel electrophoresis. Xenopus, which lacks HMG2 in somatic tissues, showed an HMG2-like protein in testis tissue. Although the rapidly migrating HMG2 subtype in species other than rat was not testis-specific, it was always enriched in the testis. This study indicates that increased amounts of HMG2 and the enrichment of a rapidly migrating HMG2 subtype are general features of spermatogenic cells. Images Fig. 1. Fig. 2. Fig. 3. PMID:4038257

  15. Development of a simple method for the rapid identification of organisms causing anthrax by coagglutination test.

    PubMed

    Sumithra, T G; Chaturvedi, V K; Gupta, P K; Siju, S J; Susan, C; Bincy, J; Laxmi, U; Sunita, S C; Rai, A K

    2014-11-01

    A protective antigen (PA) based coagglutination test was optimized in the present study for the specific and sensitive identification of bacteria causing anthrax in a cost effective and less risky manner. The test showed 100% specificity and sensitivity up to 9 × 10(3) formalinized vegetative cells or 11 ng of PA. The optimized test also detected anthrax toxin directly from the serum as well as blood of anthrax infected animals indicating the potential application for direct diagnosis of anthrax under field conditions.

  16. Rapid identification of Candida albicans by using Albicans ID and fluoroplate agar plates.

    PubMed Central

    Rousselle, P; Freydiere, A M; Couillerot, P J; de Montclos, H; Gille, Y

    1994-01-01

    Two commercially available agar media, Albicans ID and Fluoroplate, that use a chromogenic or a fluorogenic substrate for the detection and identification of Candida albicans were evaluated. From 1,006 clinical samples containing 723 yeast strains, 352 C. albicans strains were detected with either of the two media. The sensitivity of each of the two media was 93.8% and the specificity was 98.6%, with five false-positive reactions for Candida tropicalis and no false-negative reactions. PMID:7883894

  17. Identification of shed proteins from Chinese hamster ovary cells: Application of statistical confidence using human and mouse protein databases

    SciTech Connect

    Ahram, Mamoun; Strittmatter, Eric F.; Monroe, Matthew E.; Adkins, Joshua N.; Hunter, Joel C.; Miller, John H.; Springer, David L.

    2005-05-01

    The shedding process releases ligands, receptors, and other proteins from the surface of the cell and is a mechanism whereby cells communicate. Even though altered regulation of this process has been implicated in several diseases, global approaches to evaluate shed proteins have not been developed. A goal of this study was to identify global changes in shed proteins in media taken from cells exposed to low-doses of radiation in an effort to develop a fundamental understanding of the bystander response. CHO cells were chosen for this study because they have been widely used for radiation studies and since they have been reported to respond to radiation by releasing factors into the media that cause genomic instability and cytotoxicity in unexposed cells, i.e., a bystander effect. Media samples taken for irradiated cells were evaluated using a combination of tandem- and FTICR-mass spectrometry analysis. Since the hamster genome has not been sequenced, mass spectrometry data was searched against the mouse and human proteins databases. Nearly 150 proteins that were identified by tandem mass spectrometry were confirmed by FTICR. When both types of mass spectrometry data were evaluated with a new confidence scoring tool, which is based on discriminant analyses, about 500 protein were identified. Approximately 20% of these identifications were either integral membrane proteins or membrane associated proteins, suggesting that they were derived from the cell surface, hence were likely shed. However, estimates of quantitative changes, based on two independent mass spectrometry approaches, did not identify any protein abundance changes attributable to the bystander effect. Results from this study demonstrate the feasibility of global evaluation of shed proteins using mass spectrometry in conjunction with cross-species protein databases and that significant improvement in peptide/protein identifications is provided by the confidence scoring tool.

  18. Identification of Trypanosome proteins in plasma from African sleeping sickness patients infected with T. b. rhodesiense.

    PubMed

    Eyford, Brett A; Ahmad, Rushdy; Enyaru, John C; Carr, Steven A; Pearson, Terry W

    2013-01-01

    Control of human African sleeping sickness, caused by subspecies of the protozoan parasite Trypanosoma brucei, is based on preventing transmission by elimination of the tsetse vector and by active diagnostic screening and treatment of infected patients. To identify trypanosome proteins that have potential as biomarkers for detection and monitoring of African sleeping sickness, we have used a 'deep-mining" proteomics approach to identify trypanosome proteins in human plasma. Abundant human plasma proteins were removed by immunodepletion. Depleted plasma samples were then digested to peptides with trypsin, fractionated by basic reversed phase and each fraction analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This sample processing and analysis method enabled identification of low levels of trypanosome proteins in pooled plasma from late stage sleeping sickness patients infected with Trypanosoma brucei rhodesiense. A total of 254 trypanosome proteins were confidently identified. Many of the parasite proteins identified were of unknown function, although metabolic enzymes, chaperones, proteases and ubiquitin-related/acting proteins were found. This approach to the identification of conserved, soluble trypanosome proteins in human plasma offers a possible route to improved disease diagnosis and monitoring, since these molecules are potential biomarkers for the development of a new generation of antigen-detection assays. The combined immuno-depletion/mass spectrometric approach can be applied to a variety of infectious diseases for unbiased biomarker identification.

  19. Can bioinformatics help in the identification of moonlighting proteins?

    PubMed

    Hernández, Sergio; Calvo, Alejandra; Ferragut, Gabriela; Franco, Luís; Hermoso, Antoni; Amela, Isaac; Gómez, Antonio; Querol, Enrique; Cedano, Juan

    2014-12-01

    Protein multitasking or moonlighting is the capability of certain proteins to execute two or more unique biological functions. This ability to perform moonlighting functions helps us to understand one of the ways used by cells to perform many complex functions with a limited number of genes. Usually, moonlighting proteins are revealed experimentally by serendipity, and the proteins described probably represent just the tip of the iceberg. It would be helpful if bioinformatics could predict protein multifunctionality, especially because of the large amounts of sequences coming from genome projects. In the present article, we describe several approaches that use sequences, structures, interactomics and current bioinformatics algorithms and programs to try to overcome this problem. The sequence analysis has been performed: (i) by remote homology searches using PSI-BLAST, (ii) by the detection of functional motifs, and (iii) by the co-evolutionary relationship between amino acids. Programs designed to identify functional motifs/domains are basically oriented to detect the main function, but usually fail in the detection of secondary ones. Remote homology searches such as PSI-BLAST seem to be more versatile in this task, and it is a good complement for the information obtained from protein-protein interaction (PPI) databases. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can be used only in very restricted situations, but can suggest how the evolutionary process of the acquisition of the second function took place.

  20. A Graph-Centric Approach for Metagenome-Guided Peptide and Protein Identification in Metaproteomics.

    PubMed

    Tang, Haixu; Li, Sujun; Ye, Yuzhen

    2016-12-01

    Metaproteomic studies adopt the common bottom-up proteomics approach to investigate the protein composition and the dynamics of protein expression in microbial communities. When matched metagenomic and/or metatranscriptomic data of the microbial communities are available, metaproteomic data analyses often employ a metagenome-guided approach, in which complete or fragmental protein-coding genes are first directly predicted from metagenomic (and/or metatranscriptomic) sequences or from their assemblies, and the resulting protein sequences are then used as the reference database for peptide/protein identification from MS/MS spectra. This approach is often limited because protein coding genes predicted from metagenomes are incomplete and fragmental. In this paper, we present a graph-centric approach to improving metagenome-guided peptide and protein identification in metaproteomics. Our method exploits the de Bruijn graph structure reported by metagenome assembly algorithms to generate a comprehensive database of protein sequences encoded in the community. We tested our method using several public metaproteomic datasets with matched metagenomic and metatranscriptomic sequencing data acquired from complex microbial communities in a biological wastewater treatment plant. The results showed that many more peptides and proteins can be identified when assembly graphs were utilized, improving the characterization of the proteins expressed in the microbial communities. The additional proteins we identified contribute to the characterization of important pathways such as those involved in degradation of chemical hazards. Our tools are released as open-source software on github at https://github.com/COL-IU/Graph2Pro.

  1. A Graph-Centric Approach for Metagenome-Guided Peptide and Protein Identification in Metaproteomics

    PubMed Central

    Tang, Haixu; Li, Sujun; Ye, Yuzhen

    2016-01-01

    Metaproteomic studies adopt the common bottom-up proteomics approach to investigate the protein composition and the dynamics of protein expression in microbial communities. When matched metagenomic and/or metatranscriptomic data of the microbial communities are available, metaproteomic data analyses often employ a metagenome-guided approach, in which complete or fragmental protein-coding genes are first directly predicted from metagenomic (and/or metatranscriptomic) sequences or from their assemblies, and the resulting protein sequences are then used as the reference database for peptide/protein identification from MS/MS spectra. This approach is often limited because protein coding genes predicted from metagenomes are incomplete and fragmental. In this paper, we present a graph-centric approach to improving metagenome-guided peptide and protein identification in metaproteomics. Our method exploits the de Bruijn graph structure reported by metagenome assembly algorithms to generate a comprehensive database of protein sequences encoded in the community. We tested our method using several public metaproteomic datasets with matched metagenomic and metatranscriptomic sequencing data acquired from complex microbial communities in a biological wastewater treatment plant. The results showed that many more peptides and proteins can be identified when assembly graphs were utilized, improving the characterization of the proteins expressed in the microbial communities. The additional proteins we identified contribute to the characterization of important pathways such as those involved in degradation of chemical hazards. Our tools are released as open-source software on github at https://github.com/COL-IU/Graph2Pro. PMID:27918579

  2. Chromosome-Specific DNA Repeats: Rapid Identification in Silico and Validation Using Fluorescence in Situ Hybridization

    PubMed Central

    Hsu, Joanne H.; Zeng, Hui; Lemke, Kalistyn H.; Polyzos, Aris A.; Weier, Jingly F.; Wang, Mei; Lawin-O’Brien, Anna R.; Weier, Heinz-Ulrich G.; O’Brien, Benjamin

    2013-01-01

    Chromosome enumeration in interphase and metaphase cells using fluorescence in situ hybridization (FISH) is an established procedure for the rapid and accurate cytogenetic analysis of cell nuclei and polar bodies, the unambiguous gender determination, as well as the definition of tumor-specific signatures. Present bottlenecks in the procedure are a limited number of commercial, non-isotopically labeled probes that can be combined in multiplex FISH assays and the relatively high price and effort to develop additional probes. We describe a streamlined approach for rapid probe definition, synthesis and validation, which is based on the analysis of publicly available DNA sequence information, also known as “database mining”. Examples of probe preparation for the human gonosomes and chromosome 16 as a selected autosome outline the probe selection strategy, define a timeline for expedited probe production and compare this novel selection strategy to more conventional probe cloning protocols. PMID:23344021

  3. Rapid dereplication and identification of the bioactive constituents from the fungus, Leucocoprinus birnbaumii.

    PubMed

    Brkljača, Robert; Urban, Sylvia

    2015-01-01

    A series of fatty acids were rapidly dereplicated and partially identified from the flowerpot fungus, Leucocoprinus birnbaumii using HPLC-NMR and HPLC-MS. Subsequent off-line isolation unequivocally established the structures, and anti-microbial testing concluded that the fatty acids displayed moderate but selective anti-microbial activity. This represents the first report of these compounds occurring in this particular terrestrial fungus.

  4. Rapid Identification of Yeast Isolates from Clinical Specimens in Critically Ill Trauma ICU Patients

    PubMed Central

    Jain, Neetu; Mathur, Purva; Misra, Mahesh Chandra; Behera, Bijayini; Xess, Immaculata; Sharma, Satya Priya

    2012-01-01

    Purpose: The purpose was to evaluate the performance of a commercially available chromogenic Candida speciation media and the Vitek 2 ID system for the identification of medically important yeasts and yeast-like organisms in a routine clinical microbiology laboratory. Materials and Methods: A total of 429 non duplicate, consecutive yeast strains were included during the 3.5-year study period. The performance of the Vitek 2 ID system and a chromogenic agar medium was evaluated against the gold standard conventional phenotypic and biochemical identification method for speciation of yeast isolates from trauma patients. Results: Candida tropicalis (64%) was the most common Candida species, followed by Candida albicans (14%), Candida rugosa (7%), and Candida parapsilosis (6.5%). Of the 429 isolates, 183 could be identified to species level by all the three methods. Agreement between the chromogenic agar method and conventional methods was 80% for Candida tropicalis, 100% for Candida rugosa, 89% for Candida albicans, and 77% for Candida parapsilosis. Vitek 2 had lower sensitivity, with agreement of 49% for Candida tropicalis, 100% for Candida rugosa, 39% for Candida albicans, and 31% for Candida parapsilosis. Conclusion: Thus, in long-term ICU patients, an increasing trend of isolating nonalbicans Candida spp. continues. The chromogenic agar medium is a convenient and economic method to identify commonly isolated species in busy clinical microbiology laboratories. PMID:22923919

  5. Rapid identification of a narcotic plant Papaver bracteatum using flow cytometry.

    PubMed

    Aragane, Masako; Watanabe, Daisuke; Nakajima, Jun'ichi; Yoshida, Masao; Yoshizawa, Masao; Abe, Tomohiro; Nishiyama, Rei; Suzuki, Jin; Moriyasu, Takako; Nakae, Dai; Sudo, Hiroshi; Sato, Hiroyuki; Hishida, Atuyuki; Kawahara, Nobuo; Makabe, So; Nakamura, Ikuo; Mii, Masahiro

    2014-10-01

    In May 2011, numerous poppy plants closely resembling Papaver bracteatum Lindl., a type of narcotic plant that is illegal in Japan, were distributed directly from several large flower shops or through online shopping throughout Japan, including the Tokyo Metropolitan area. In order to better identify the narcotic plants, the relative nuclear DNA content at the vegetative stage was measured by flow cytometric (FCM) analysis in 3 closely-related species of the genus Papaver section Oxytona, namely P. orientale, P. pseudo-orientale, and P. bracteatum, based on the difference between the chromosome numbers of these species. The results showed that the nuclear DNA content differed between these 3 species, and that most of the commercially distributed plants examined in this study could be identified as P. bracteatum. The remaining plants were P. pseudo-orientale, a non-narcotic plant. In addition, the FCM results for the identification of P. bracteatum completely agreed with the results obtained by the morphological analysis, the inter-genic spacer sequence of rpl16-rpl14 (PS-ID sequence) of chloroplast DNA, and the presence of thebaine. These results clearly indicate the usefulness of FCM analysis for the identification of P. bracteatum plants, including when they are in their vegetative stage.

  6. Challenges to the rapid identification of children who have been trafficked for commercial sexual exploitation.

    PubMed

    Rafferty, Yvonne

    2016-02-01

    Child trafficking for commercial sexual exploitation (CSE) is a complex phenomenon, requiring multifaceted programs and policies by various stakeholders. A number of publications have focused on preventing this heinous crime. Less attention, however, has been paid to the recovery and rehabilitation of children who have been traumatized as a result of being trafficked for CSE. This article focuses on the first step in the protection and recovery process, which is to ensure that procedures are in place for their identification, so that they might access timely and appropriate assistance. It highlights three situational and two child-related challenges to identification. In addition, it describes the additional victimization experienced by children who are wrongly arrested for crimes associated with prostitution or illegal border crossings, rather than being identified as victims. An extensive literature review was conducted, and included academic publications, as well as governmental and non-governmental reports. In addition, field-based qualitative research was undertaken in South and Southeast Asia, and involved interviews with representatives from United Nations and governmental agencies, non-governmental organizations (NGOs), and aftercare recovery programs.

  7. A new strategy for protein interface identification using manifold learning method.

    PubMed

    Wang, Bing; Huang, De-Shuang; Jiang, Changjun

    2014-06-01

    Protein interactions play vital roles in biological processes. The study for protein interface will allow people to elucidate the mechanism of protein interaction. However, a large portion of protein interface data is incorrectly collected in current studies. In this paper, a novel strategy of dataset reconstruction using manifold learning method has been proposed for dealing with the noises in the interaction interface data whose definition is based on the residue distances among the different chains within protein complexes. Three support vector machine-based predictors are constructed using different protein features to identify the functional sites involved in the formation of protein interface. The experimental results achieved in this work demonstrate that our strategy can remove noises, and therefore improve the ability for identification of protein interfaces with 77.8% accuracy.

  8. IDSieve: Protein Identification Using Peptide pI Filtering of MS/MS Data for Improved Confidence in Identifications

    PubMed Central

    West, K.D.; Zhang, X.; Bundy, J.L.; Stephenson, J.L.; Cargile, B.J.; Bunger, M.K.; Garge, N.R.

    2011-01-01

    The main challenge of tandem mass spectrometry based proteomic analysis is to correctly match the tandem mass spectra produced to the correct peptides. However, the large number of protein sequences in a database increases the chances of a false positive identification for any given peptide match. Here we present an automated algorithm called IDSieve that utilizes target-decoy database search strategy in combination with pI filtering to allow greater confidence for peptide identifications. IDSieve considers the SEQUEST parameters Xcorr and äCn to assign statistical confidence (false discovery rates) to the peptide matches. The distribution of predicted pI values for peptide spectrum matches (PSMs) is considered separately for each immobilized pH gradient isoelectric focusing fraction, and matches with pI values within 1.5 times inter-quartile range (within pI range) are analyzed independently of matches outside the pI ranges. We tested the performance of IDSieve and Peptide/Protein Prophet on the SEQUEST outputs from 60 immobilized pH gradient isoelectric focusing fractions derived from mouse intestinal epithelial cell protein extracts. Our results demonstrated that IDSieve produced 1355 more peptide spectrum matches (or 330 more peptides) than Peptide Prophet using comparable false positive rate cutoffs. Therefore, combining pI filtering with the appropriate statistical significance measurements allows for a higher number of protein identifications without adversely affecting the false positive rate. We further tested the performance of pI filtering using ID Sieve when samples were prefractionated using either pH range 3.5–4.5 or 3–10, and either 24cm or 7cm IPG strips.

  9. High-throughput identification of protein localization dependency networks.

    PubMed

    Christen, Beat; Fero, Michael J; Hillson, Nathan J; Bowman, Grant; Hong, Sun-Hae; Shapiro, Lucy; McAdams, Harley H

    2010-03-09

    Bacterial cells are highly organized with many protein complexes and DNA loci dynamically positioned to distinct subcellular sites over the course of a cell cycle. Such dynamic protein localization is essential for polar organelle development, establishment of asymmetry, and chromosome replication during the Caulobacter crescentus cell cycle. We used a fluorescence microscopy screen optimized for high-throughput to find strains with anomalous temporal or spatial protein localization patterns in transposon-generated mutant libraries. Automated image acquisition and analysis allowed us to identify genes that affect the localization of two polar cell cycle histidine kinases, PleC and DivJ, and the pole-specific pili protein CpaE, each tagged with a different fluorescent marker in a single strain. Four metrics characterizing the observed localization patterns of each of the three labeled proteins were extracted for hundreds of cell images from each of 854 mapped mutant strains. Using cluster analysis of the resulting set of 12-element vectors for each of these strains, we identified 52 strains with mutations that affected the localization pattern of the three tagged proteins. This information, combined with quantitative localization data from epitasis experiments, also identified all previously known proteins affecting such localization. These studies provide insights into factors affecting the PleC/DivJ localization network and into regulatory links between the localization of the pili assembly protein CpaE and the kinase localization pathway. Our high-throughput screening methodology can be adapted readily to any sequenced bacterial species, opening the potential for databases of localization regulatory networks across species, and investigation of localization network phylogenies.

  10. Identification and Validation of PTEN Complex, Associated Proteins

    DTIC Science & Technology

    2005-11-01

    Rosalia construct was transcribed and translated using a wheat germ lysate transcription/translation system to generate an unphosphorylated protein...efficient using the wheat germ lysate transcription/translation, system the new antisera immunoprecipitated the protein as well as the C54 Ab, especially...pSGL-PTEN was in vitro translated in a Rabbit reticolocyte lysate system (A) or in a wheat germ system (B) in the presence of radioactively labeled

  11. Identification of immunoreactive proteins of Brucella melitensis by immunoproteomics.

    PubMed

    Zhao, Zhongpeng; Yan, Fang; Ji, Wenhui; Luo, Deyan; Liu, Xin; Xing, Li; Duan, Yueqiang; Yang, Penghui; Shi, Xiumin; Lu, Zhong; Wang, Xiliang

    2011-09-01

    Infection with Brucella causes brucellosis, a chronic disease in humans, which induces abortion and sterility in livestock. Among the different Brucella species, Brucella melitensis is considered the most virulent and is the predominant species associated with outbreaks in China. To date, no safe human vaccine is available against Brucella infection. The currently used live vaccines against Brucella in livestock induce antibodies that interfere with the diagnosis of field infection in vaccinated animals, which is harmful to eradication programs. However, there is as yet no complete profile of immunogenic proteins of B. melitensis. Towards the development of a safer, equally efficacious, and field infection-distinguishable vaccine, we used immunoproteomics to identify novel candidate immunogenic proteins from B. melitensis M5. Eighty-eight immunoreactive protein spots from B. melitensis M5 were identified by Western blotting and were assigned to sixty-one proteins by mass spectrometry, including many new immunoreactive proteins such as elongation factor G, F0F1 ATP synthase subunit beta, and OMP1. These provide many candidate immunoreactive proteins for vaccine development.

  12. Identification and characterization of the pseudorabies virus UL43 protein

    SciTech Connect

    Klupp, Barbara G.; Altenschmidt, Jan; Granzow, Harald; Fuchs, Walter; Mettenleiter, Thomas C. . E-mail: thomas.mettenleiter@fli.bund.de

    2005-04-10

    Among the least characterized herpesvirus membrane proteins are the homologs of UL43 of herpes simplex virus 1 (HSV-1). To identify and characterize the UL43 protein of pseudorabies virus (PrV), part of the open reading frame was expressed in Escherichia coli and used for immunization of a rabbit. The antiserum recognized in Western blots a 34-kDa protein in lysates of PrV infected cells and purified virions, demonstrating that the UL43 protein is a virion component. In indirect immunofluorescence analysis, the antiserum labeled vesicular structures in PrV infected cells which also contained glycoprotein B. To functionally analyze UL43, a deletion mutant was constructed lacking amino acids 23-332 of the 373aa protein. This mutant was only slightly impaired in replication as assayed by one-step growth kinetics, measurement of plaque sizes, and electron microscopy. Interestingly, the PrV UL43 protein was able to inhibit fusion induced by PrV glycoproteins in a transient expression-fusion assay to a similar extent as gM. Double mutant viruses lacking, in addition to UL43, the multiply membrane spanning glycoproteins K or M did not show a phenotype beyond that observed in the gK and gM single deletion mutants.

  13. Immobilized fusion protein affinity chromatography combined with HPLC-ESI-Q-TOF-MS/MS for rapid screening of PPARγ ligands from natural products.

    PubMed

    Zhu, Junfeng; Yi, Xiaojiao; Liu, Wenhui; Xu, Yingchun; Chen, Shuqing; Wu, Yongjiang

    2017-04-01

    Screening agonists of peroxisome proliferator-activated receptor-γ (PPARγ) from natural products is particularly motivated by the need for effective anti-diabetic agents. However, method for direct identification of PPARγ ligands from a complex sample is rarely reported. Here we propose a novel immobilized fusion protein affinity chromatography (IFPAC) to achieve rapid multicomponent screening. First, functional human PPARγ ligand binding domain (hPPARγLBD) was bacterially produced by fusion to glutathione S-transferase (GST). The unpurified GST-hPPARγLBD was directly applied to a 96-well filter plate prepacked with glutathione sepharose. Due to the strong affinity between GST and glutathione, the fusion protein could selectively attach to the glutathione matrix with an oriented immobilization, which was rapidly purified under non-denaturing conditions. Experimental results indicated that the prepared 96-affinity column array exhibited excellent selectivity and sensitivity for fishing novel interacting compounds. The proposed approach was applied in the high-throughput screening of PPARγ ligands from natural products, followed by rapid characterization of active compounds using HPLC-ESI-Q-TOF-MS/MS. Isochlorogenic acid A in Dendranthema indicum flowers was found to be a PPARγ ligand. Our findings suggested the IFPAC could be a powerful tool for drug discovery from natural products.

  14. Identification of cancer protein biomarkers using proteomic techniques

    DOEpatents

    Mor, Gil G.; Ward, David C.; Bray-Ward, Patricia

    2010-02-23

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  15. Identification of cancer protein biomarkers using proteomic techniques

    DOEpatents

    Mor, Gil G.; Ward, David C.; Bray-Ward, Patricia

    2016-10-18

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  16. Identification of cancer protein biomarkers using proteomic techniques

    DOEpatents

    Mor, Gil G; Ward, David C; Bray-Ward, Patricia

    2015-03-10

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  17. Ubiquitin Ligase Substrate Identification through Quantitative Proteomics at Both the Protein and Peptide Levels

    PubMed Central

    Lee, Kimberly A.; Hammerle, Lisa P.; Andrews, Paul S.; Stokes, Matthew P.; Mustelin, Tomas; Silva, Jeffrey C.; Black, Roy A.; Doedens, John R.

    2011-01-01

    Protein ubiquitination is a key regulatory process essential to life at a cellular level; significant efforts have been made to identify ubiquitinated proteins through proteomics studies, but the level of success has not reached that of heavily studied post-translational modifications, such as phosphorylation. HRD1, an E3 ubiquitin ligase, has been implicated in rheumatoid arthritis, but no disease-relevant substrates have been identified. To identify these substrates, we have taken both peptide and protein level approaches to enrich for ubiquitinated proteins in the presence and absence of HRD1. At the protein level, a two-step strategy was taken using cells expressing His6-tagged ubiquitin, enriching proteins first based on their ubiquitination and second based on the His tag with protein identification by LC-MS/MS. Application of this method resulted in identification and quantification of more than 400 ubiquitinated proteins, a fraction of which were found to be sensitive to HRD1 and were therefore deemed candidate substrates. In a second approach, ubiquitinated peptides were enriched after tryptic digestion by peptide immunoprecipitation using an antibody specific for the diglycine-labeled internal lysine residue indicative of protein ubiquitination, with peptides and ubiquitination sites identified by LC-MS/MS. Peptide immunoprecipitation resulted in identification of over 1800 ubiquitinated peptides on over 900 proteins in each study, with several proteins emerging as sensitive to HRD1 levels. Notably, significant overlap exists between the HRD1 substrates identified by the protein-based and the peptide-based strategies, with clear cross-validation apparent both qualitatively and quantitatively, demonstrating the effectiveness of both strategies and furthering our understanding of HRD1 biology. PMID:21987572

  18. An oxazetidine amino acid for chemical protein synthesis by rapid, serine-forming ligations

    NASA Astrophysics Data System (ADS)

    Pusterla, Ivano; Bode, Jeffrey W.

    2015-08-01

    Amide-forming ligation reactions allow the chemical synthesis of proteins by the union of unprotected peptide segments, and enable the preparation of protein derivatives not accessible by expression or bioengineering approaches. The native chemical ligation (NCL) of thioesters and N-terminal cysteines is unquestionably the most successful approach, but is not ideal for all synthetic targets. Here we describe the synthesis of an Fmoc-protected oxazetidine amino acid for use in the α-ketoacid-hydroxylamine (KAHA) amide ligation. When incorporated at the N-terminus of a peptide segment, this four-membered cyclic hydroxylamine can be used for rapid serine-forming ligations with peptide α-ketoacids. This ligation operates at low concentration (100 μM-5 mM) and mild temperatures (20-25 °C). The utility of the reaction was demonstrated by the synthesis of S100A4, a 12 kDa calcium-binding protein not easily accessible by NCL or other amide-forming reactions due to its primary sequence and properties.

  19. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins

    PubMed Central

    Olijve, Luuk L. C.; Meister, Konrad; DeVries, Arthur L.; Duman, John G.; Guo, Shuaiqi; Bakker, Huib J.; Voets, Ilja K.

    2016-01-01

    Antifreeze proteins (AFPs) are a unique class of proteins that bind to growing ice crystal surfaces and arrest further ice growth. AFPs have gained a large interest for their use in antifreeze formulations for water-based materials, such as foods, waterborne paints, and organ transplants. Instead of commonly used colligative antifreezes such as salts and alcohols, the advantage of using AFPs as an additive is that they do not alter the physicochemical properties of the water-based material. Here, we report the first comprehensive evaluation of thermal hysteresis (TH) and ice recrystallization inhibition (IRI) activity of all major classes of AFPs using cryoscopy, sonocrystallization, and recrystallization assays. The results show that TH activities determined by cryoscopy and sonocrystallization differ markedly, and that TH and IRI activities are not correlated. The absence of a distinct correlation in antifreeze activity points to a mechanistic difference in ice growth inhibition by the different classes of AFPs: blocking fast ice growth requires rapid nonbasal plane adsorption, whereas basal plane adsorption is only relevant at long annealing times and at small undercooling. These findings clearly demonstrate that biomimetic analogs of antifreeze (glyco)proteins should be tailored to the specific requirements of the targeted application. PMID:26936953

  20. Impaired nuclear import of mammalian Dlx4 proteins as a consequence of rapid sequence divergence

    SciTech Connect

    Coubrough, Melissa L.; Bendall, Andrew J. . E-mail: abendall@uoguelph.ca

    2006-11-15

    Dlx genes encode a developmentally important family of transcription factors with a variety of functions and sites of action during vertebrate embryogenesis. The murine Dlx4 gene is an enigmatic member of the family; little is known about the normal developmental function(s) of Dlx4. Here, we show that Dlx4 is expressed in the murine placenta and in a trophoblast cell line where the protein localizes to both the nucleus and cytoplasm. Despite the presence of several leucine/valine-rich motifs that match known nuclear export sequences, cytoplasmic Dlx4 is not due to CRM-1-mediated nuclear export. Rather, nuclear import of Dlx4 is compromised by specific residues that flank the nuclear localization signal. One of these residues represents a novel conserved feature of the Dlx4 protein in placental mammals, and the second represents novel variation within mouse Dlx4 isoforms. Comparison of orthologous protein sequences reveals a particularly high rate of non-synonymous change in the coding regions of mammalian Dlx4 genes. Since impaired nuclear localization is unlikely to enhance the function of a nuclear transcription factor, these data point to reduced selection pressure as the basis for the rapid divergence of the Dlx4 gene within the mammalian clade.

  1. Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization

    NASA Astrophysics Data System (ADS)

    Alvarez, Mar; Friend, James; Yeo, Leslie Y.

    2008-11-01

    We describe the fabrication of a surface acoustic wave (SAW) atomizer and show its ability to generate monodisperse aerosols and particles for drug delivery applications. In particular, we demonstrate the generation of insulin liquid aerosols for pulmonary delivery and solid protein nanoparticles for transdermal and gastrointestinal delivery routes using 20 MHz SAW devices. Insulin droplets around 3 µm were obtained, matching the optimum range for maximizing absorption in the alveolar region. A new approach is provided to explain these atomized droplet diameters by returning to fundamental physical analysis and considering viscous-capillary and inertial-capillary force balance rather than employing modifications to the Kelvin equation under the assumption of parametric forcing that has been extended to these frequencies in past investigations. In addition, we consider possible mechanisms by which the droplet ejections take place with the aid of high-speed flow visualization. Finally, we show that nanoscale protein particles (50-100 nm in diameter) were obtained through an evaporative process of the initial aerosol, the final size of which could be controlled merely by modifying the initial protein concentration. These results illustrate the feasibility of using SAW as a novel method for rapidly producing particles and droplets with a controlled and narrow size distribution.

  2. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins.

    PubMed

    Olijve, Luuk L C; Meister, Konrad; DeVries, Arthur L; Duman, John G; Guo, Shuaiqi; Bakker, Huib J; Voets, Ilja K

    2016-04-05

    Antifreeze proteins (AFPs) are a unique class of proteins that bind to growing ice crystal surfaces and arrest further ice growth. AFPs have gained a large interest for their use in antifreeze formulations for water-based materials, such as foods, waterborne paints, and organ transplants. Instead of commonly used colligative antifreezes such as salts and alcohols, the advantage of using AFPs as an additive is that they do not alter the physicochemical properties of the water-based material. Here, we report the first comprehensive evaluation of thermal hysteresis (TH) and ice recrystallization inhibition (IRI) activity of all major classes of AFPs using cryoscopy, sonocrystallization, and recrystallization assays. The results show that TH activities determined by cryoscopy and sonocrystallization differ markedly, and that TH and IRI activities are not correlated. The absence of a distinct correlation in antifreeze activity points to a mechanistic difference in ice growth inhibition by the different classes of AFPs: blocking fast ice growth requires rapid nonbasal plane adsorption, whereas basal plane adsorption is only relevant at long annealing times and at small undercooling. These findings clearly demonstrate that biomimetic analogs of antifreeze (glyco)proteins should be tailored to the specific requirements of the targeted application.

  3. Gas-phase concentration, purification, and identification of whole proteins from complex mixtures.

    PubMed

    Reid, Gavin E; Shang, Hao; Hogan, Jason M; Lee, Gil U; McLuckey, Scott A

    2002-06-26

    Five proteins present in a relatively complex mixture derived from a whole cell lysate fraction of E. coli have been concentrated, purified, and dissociated in the gas phase, using a quadrupole ion trap mass spectrometer. Concentration of intact protein ions was effected using gas-phase ion/ion proton-transfer reactions in conjunction with mass-to-charge dependent ion "parking" to accumulate protein ions initially dispersed over a range of charge states into a single lower charge state. Sequential ion isolation events interspersed with additional ion parking ion/ion reaction periods were used to "charge-state purify" the protein ion of interest. Five of the most abundant protein components present in the mixture were subjected to this concentration/purification procedure and then dissociated by collisional activation of their intact multiply charged precursor ions. Four of the five proteins were subsequently identified by matching the uninterpreted product ion spectra against a partially annotated protein sequence database, coupled with a novel scoring scheme weighted for the relative abundances of the experimentally observed product ions and the frequency of fragmentations occurring at preferential cleavage sites. The identification of these proteins illustrates the potential of this "top-down" protein identification approach to reduce the reliance on condensed-phase chemistries and extensive separations for complex protein mixture analysis.

  4. Protein social behavior makes a stronger signal for partner identification than surface geometry

    PubMed Central

    Laine, Elodie

    2016-01-01

    ABSTRACT Cells are interactive living systems where proteins movements, interactions and regulation are substantially free from centralized management. How protein physico‐chemical and geometrical properties determine who interact with whom remains far from fully understood. We show that characterizing how a protein behaves with many potential interactors in a complete cross‐docking study leads to a sharp identification of its cellular/true/native partner(s). We define a sociability index, or S‐index, reflecting whether a protein likes or not to pair with other proteins. Formally, we propose a suitable normalization function that accounts for protein sociability and we combine it with a simple interface‐based (ranking) score to discriminate partners from non‐interactors. We show that sociability is an important factor and that the normalization permits to reach a much higher discriminative power than shape complementarity docking scores. The social effect is also observed with more sophisticated docking algorithms. Docking conformations are evaluated using experimental binding sites. These latter approximate in the best possible way binding sites predictions, which have reached high accuracy in recent years. This makes our analysis helpful for a global understanding of partner identification and for suggesting discriminating strategies. These results contradict previous findings claiming the partner identification problem being solvable solely with geometrical docking. Proteins 2016; 85:137–154. © 2016 Wiley Periodicals, Inc. PMID:27802579

  5. Rapid identification of Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) using ribosomal RNA internal transcribed spacer 1.

    PubMed

    Perera, Omaththage P; Allen, Kerry C; Jain, Devendra; Purcell, Matthew; Little, Nathan S; Luttrell, Randall G

    2015-01-01

    Rapid identification of invasive species is crucial for deploying management strategies to prevent establishment. Recent Helicoverpa armigera (Hübner) invasions and subsequent establishment in South America has increased the risk of this species invading North America. Morphological similarities make differentiation of H. armigera from the native Helicoverpa zea (Boddie) difficult. Characteristics of adult male genitalia and nucleotide sequence differences in mitochondrial DNA are two of the currently available methods to differentiate these two species. However, current methods are likely too slow to be employed as rapid detection methods. In this study, conserved differences in the internal transcribed spacer 1 (ITS1) of the ribosomal RNA genes were used to develop species-specific oligonucleotide primers that amplified ITS1 fragments of 147 and 334 bp from H. armigera and H. zea, respectively. An amplicon (83 bp) from a conserved region of 18S ribosomal RNA subunit served as a positive control. Melting temperature differences in ITS1 amplicons yielded species-specific dissociation curves that could be used in high resolution melt analysis to differentiate the two Helicoverpa species. In addition, a rapid and inexpensive procedure for obtaining amplifiable genomic DNA from a small amount of tissue was identified. Under optimal conditions, the process was able to detect DNA from one H. armigera leg in a pool of 25 legs. The high resolution melt analysis combined with rapid DNA extraction could be used as an inexpensive method to genetically differentiate large numbers of H. armigera and H. zea using readily available reagents.

  6. Identification of Actin-Binding Proteins from Maize Pollen

    SciTech Connect

    Staiger, C.J.

    2004-01-13

    Specific Aims--The goal of this project was to gain an understanding of how actin filament organization and dynamics are controlled in flowering plants. Specifically, we proposed to identify unique proteins with novel functions by investigating biochemical strategies for the isolation and characterization of actin-binding proteins (ABPs). In particular, our hunt was designed to identify capping proteins and nucleation factors. The specific aims included: (1) to use F-actin affinity chromatography (FAAC) as a general strategy to isolate pollen ABPs (2) to produce polyclonal antisera and perform subcellular localization in pollen tubes (3) to isolate cDNA clones for the most promising ABPs (4) to further purify and characterize ABP interactions with actin in vitro. Summary of Progress By employing affinity chromatography on F-actin or DNase I columns, we have identified at least two novel ABPs from pollen, PrABP80 (gelsolin-like) and ZmABP30, We have also cloned and expressed recombinant protein, as well as generated polyclonal antisera, for 6 interesting ABPs from Arabidopsis (fimbrin AtFIM1, capping protein a/b (AtCP), adenylyl cyclase-associated protein (AtCAP), AtCapG & AtVLN1). We performed quantitative analyses of the biochemical properties for two of these previously uncharacterized ABPs (fimbrin and capping protein). Our studies provide the first evidence for fimbrin activity in plants, demonstrate the existence of barbed-end capping factors and a gelsolin-like severing activity, and provide the quantitative data necessary to establish and test models of F-actin organization and dynamics in plant cells.

  7. Rapid detection and identification of Clostridium chauvoei by PCR based on flagellin gene sequence.

    PubMed

    Kojima, A; Uchida, I; Sekizaki, T; Sasaki, Y; Ogikubo, Y; Tamura, Y

    2001-02-26

    We developed a one-step polymerase chain reaction (PCR) system that specifically detects Clostridium chauvoei. Oligonucleotide primers were designed to amplify a 516-bp fragment of the structural flagellin gene. The specificity of the PCR was investigated by analyzing 59 strains of clostridia, and seven strain of other genera. A 516-bp fragment could be amplified from all the C. chauvoei strains tested, and no amplification was observed by using DNAs from the other strains tested, including Clostridium septicum. Similarly, this PCR-based method specifically detected C. chauvoei DNA sequences in samples of muscle and exudate of obtained from mice within 12h of inoculation. In tests using samples of muscle or liver, the limit of detection was about 200 organisms per reaction. These results suggest that the one-step PCR system may be useful for direct detection and identification of C. chauvoei in clinical specimens.

  8. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    NASA Astrophysics Data System (ADS)

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-05-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.

  9. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    PubMed Central

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-01-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi. PMID:27143514

  10. Loop-mediated isothermal amplification (LAMP)-based method for rapid mushroom species identification.

    PubMed

    Vaagt, Franziska; Haase, Ilka; Fischer, Markus

    2013-02-27

    Toxic mushroom species, such as the death cap ( Amanita phalloides ), are responsible for most mushroom poisonings. In the present work, novel loop-mediated isothermal amplification (LAMP) assays were used for the differentiation of even closely related edible and toxic mushroom species. The applicability of these methods was tested by cross-reaction studies and analysis of spiked mushroom samples (raw and fried material). Contaminations at the level of 2% (w/w) could be detected in different mushroom blends. Three detection methods were used: agarose gel analysis, fluorimetric real-time detection, and visual detection by lateral flow dipsticks (LFD). The LAMP assay combined with LFD detection allows the identification of A. phalloides in about 2 h (including DNA extraction) at a very low level of technical equipment (micropestle, water bath, and mobile centrifuge), which makes this technique perfectly suited for on-site applications.

  11. Rapid method for identification of macrophages in suspension by acid alpha-naphthyl acetate esterase activity.

    PubMed

    Ennist, D L; Jones, K H

    1983-07-01

    A supravital staining procedure for the identification of macrophages in cell suspension using a modification of a standard cytochemical assay for alpha-naphthyl acetate esterase (ANAE) activity is described. Macrophages are stained an intense red-brown after 5 min incubation in a buffer using ANAE as the substrate and hexazonium pararosaniline as the coupler for the azo dye. There is close agreement in the number of ANAE-positive cells found and the number of macrophages identified in smears by morphological criteria, by phagocytosis, and by the presence of Fc receptors. Therefore, this stain provides a quick, inexpensive method to estimate the number of macrophages present in suspensions of lymphocytic tissues from rats and mice.

  12. Whole chromosomal DNA probes for rapid identification of Mycobacterium tuberculosis and Mycobacterium avium complex.

    PubMed Central

    Roberts, M C; McMillan, C; Coyle, M B

    1987-01-01

    Whole chromosomal DNA probes were used to identify clinical isolates of Mycobacterium tuberculosis, Mycobacterium avium complex, and Mycobacterium gordonae. The probe for M. tuberculosis was prepared from Mycobacterium bovis BCG, which has been shown to be closely related to M. tuberculosis. A probe for the M. avium complex was prepared from three strains representing each of the three DNA homology groups in the M. avium complex. The probes were used in dot blot assays to identify clinical isolates of mycobacteria. The dot blot test correctly identified 57 of the 61 (93%) cultures grown on solid media, and 100% of antibiotic-treated broth-grown cells were correctly identified. Identification by dot blot required a maximum of 48 h. When the probes were tested against 63 positive BACTEC (Johnston Laboratories, Inc., Towson, Md.) cultures of clinical specimens, 59% were correctly identified. However, of the 14 BACTEC cultures that had been treated with antibiotics before being lysed, 13 (93%) were correctly identified. PMID:3112180

  13. Surface Enhanced Raman Spectroscopy for the Rapid Detection and Identification of Microbial Pathogens in Human Serum

    DTIC Science & Technology

    2014-12-11

    demonstrated. Pure culture bacteria were readily identifiable and distinguishable by their SERS-based “molecular fingerprints ” at the species level... fingerprinting ’ of tissues, cells, proteins, nucleic acids, and other small organic and inorganic compounds. The technique boasts applications in... fingerprints ” followed by Principal Component Analysis and Partial Least Squares Differential Analysis to determine uniqueness and commonalities of

  14. Identification of pollutant sources in a rapidly developing urban river catchment in China

    NASA Astrophysics Data System (ADS)

    Huang, Jingshui; Yin, Hailong; Jomma, Seifeddine; Rode, Michael; Zhou, Qi

    2016-04-01

    Rapid economic development and urbanization worldwide cause serious ecological and environmental problems. A typical region that is in transition and requires systemic research for effective intervention is the rapidly developing city of Hefei in central P. R. China. In order to investigate the sources of pollutants over a one-year period in Nanfei River catchment that drains the city of Hefei, discharges were measured and water samples were taken and measured along the 14km river section at 10 sites for 4 times from 2013 to 2014. Overflow concentrations of combined sewer and separate storm drains were also measured by selecting 15 rain events in 4 typical drainage systems. Loads and budgets of water and different pollutant sources i.e., wastewater treatment plant (WWTP) effluent, urban drainage overflow, unknown wastewater were calculated. The water balance demonstrated that >70% of the discharge originated from WWTP effluent. Lack of clean upstream inflow thereby is threatening ecological safety and water quality. Furthermore, mass fluxes calculations revealed that >40% of the COD (Chemical Oxygen Demand) loads were from urban drainage overflow because of a large amount of discharge of untreated wastewater in pumping stations during rain events. WWTP effluent was the predominant source of the total nitrogen loads (>60%) and ammonia loads (>45%). However, the total phosphorous loads from three different sources are similar (˜1/3). Thus, our research provided a basis for appropriate and prior mitigation strategies (state-of-art of WWTP upgrade, sewer systems modification, storm water regulation and storage capacity improvement, etc.) for different precedence-controlled pollutants with the limited infrastructure investments in these rapidly developing urban regions.

  15. Sodium chloride-esculin hydrolysis test for rapid identification of enterococci.

    PubMed

    Qadri, S M; Flournoy, D J; Qadri, S G

    1987-06-01

    The ability of enterococci to cause severe disease in humans and their relative resistance to chemotherapeutic agents make it desirable to rapidly differentiate these organisms from other streptococci. We developed and evaluated a test that within 2 h distinguishes enterococci from other alpha-, beta-, or nonhemolytic streptococci in a buffered solution containing 0.2% esculin and 5% sodium chloride. All 239 strains of enterococci tested gave a positive reaction within 2 h, whereas 95 of 96 isolates of other streptococci remained negative at 4 h.

  16. Rapid identification of Helicobacter pylori and assessment of clarithromycin susceptibility from clinical specimens using FISH

    PubMed Central

    Demiray‐Gürbüz, Ebru; Yılmaz, Özlem; Olivares, Asalia Z; Gönen, Can; Sarıoğlu, Sülen; Soytürk, Müjde; Tümer, Sait; Altungöz, Oğuz; Şimşek, İlkay

    2016-01-01

    Abstract Helicobacter pylori remains one of the most common bacterial infections worldwide. Clarithromycin resistance is the most important cause of H. pylori eradication failures. Effective antibiotic therapies in H. pylori infection must be rapidly adapted to local resistance patterns. We investigated the prevalence of clarithromycin resistance due to mutations in positions 2142 and 2143 of 23SrRNA gene of H. pylori by fluorescence in situ hybridisation (FISH), and compared with culture and antimicrobial susceptibility testing in 234 adult patients with dyspepsia who were enrolled. Antrum and corpus biopsy specimens were obtained for rapid urease test, histopathology and culture. Epsilometer test was used to assess clarithromycin susceptibility. H. pylori presence and clarithromycin susceptibility were determined by FISH in paraffin‐embedded biopsy specimens. We found that 164 (70.1%) patients were positive for H. pylori based on clinical criteria, 114 (69.5% CI 62.5–76.6%) were culture positive, and 137 (83.5% CI 77.8–89.2%) were FISH positive. Thus the sensitivity of FISH was significantly superior to that of culture. However specificity was not significantly different (91.4 versus 100.0%, respectively). The resistance rate to clarithromycin for both antrum and corpus was detected in H. pylori‐positive patients; 20.2% by FISH and 28.0% by E‐test.The concordance between E‐test and FISH was only 89.5% due to the presence of point mutations different from A2143G, A2142G or A2142C. We conclude that FISH is significantly more sensitive than culture and the E‐test for the detection of H. pylori and for rapid determinination of claritromycin susceptibility. The superior hybridisation efficiency of FISH is becoming an emerging molecular tool as a reliable, rapid and sensitive method for