Sample records for rapid prototyping method

  1. [A new method of fabricating photoelastic model by rapid prototyping].

    PubMed

    Fan, Li; Huang, Qing-feng; Zhang, Fu-qiang; Xia, Yin-pei

    2011-10-01

    To explore a novel method of fabricating the photoelastic model using rapid prototyping technique. A mandible model was made by rapid prototyping with computerized three-dimensional reconstruction, then the photoelastic model with teeth was fabricated by traditional impression duplicating and mould casting. The photoelastic model of mandible with teeth, which was fabricated indirectly by rapid prototyping, was very similar to the prototype in geometry and physical parameters. The model was of high optical sensibility and met the experimental requirements. Photoelastic model of mandible with teeth indirectly fabricated by rapid prototyping meets the photoelastic experimental requirements well.

  2. [Rapid prototyping: a very promising method].

    PubMed

    Haverman, T M; Karagozoglu, K H; Prins, H-J; Schulten, E A J M; Forouzanfar, T

    2013-03-01

    Rapid prototyping is a method which makes it possible to produce a three-dimensional model based on two-dimensional imaging. Various rapid prototyping methods are available for modelling, such as stereolithography, selective laser sintering, direct laser metal sintering, two-photon polymerization, laminated object manufacturing, three-dimensional printing, three-dimensional plotting, polyjet inkjet technology,fused deposition modelling, vacuum casting and milling. The various methods currently being used in the biomedical sector differ in production, materials and properties of the three-dimensional model which is produced. Rapid prototyping is mainly usedforpreoperative planning, simulation, education, and research into and development of bioengineering possibilities.

  3. [Rapid prototyping in planning reconstructive surgery of the head and neck. Review and evaluation of indications in clinical use].

    PubMed

    Bill, J S; Reuther, J F

    2004-05-01

    The aim was to define the indications for use of rapid prototyping models based on data of patients treated with this technique. Since 1987 our department has been developing methods of rapid prototyping in surgery planning. During the study, first the statistical and reproducible anatomical precision of rapid prototyping models was determined on pig skull measurements depending on CT parameters and method of rapid prototyping. Measurements on stereolithography models and on selective laser sintered models confirmed an accuracy of +/-0.88 mm or 2.7% (maximum deviation: -3.0 mm to +3.2 mm) independently from CT parameters or method of rapid prototyping, respectively. With the same precision of models multilayer helical CT with a higher rate is the preferable method of data acquisition compared to conventional helical CT. From 1990 to 2002 in atotal of 122 patients, 127 rapid prototyping models were manufactured: in 112 patients stereolithography models, in 2 patients an additional stereolithography model, in 2 patients an additional selective laser sinter model, in 1 patient an additional milled model, and in 10 patients just a selective laser sinter model. Reconstructive surgery, distraction osteogenesis including midface distraction, and dental implantology are proven to be the major indications for rapid prototyping as confirmed in a review of the literature. Surgery planning on rapid prototyping models should only be used in individual cases due to radiation dose and high costs. Routine use of this technique only seems to be indicated in skull reconstruction and distraction osteogenesis.

  4. Rapid Prototyping as Method for Developing Instructional Strategies for Supporting Computer-Mediated Communication among University Students

    ERIC Educational Resources Information Center

    Knowlton, Dave S.

    2006-01-01

    Because rapid prototyping results in the quick development of curriculum, materials, and processes, it is a form of design that could be particularly useful to professors in higher education. Yet, literature documenting the use of rapid prototyping in higher education is scarce. This paper offers a case example of rapid prototyping being used as a…

  5. Applications of rapid prototyping technology in maxillofacial prosthetics.

    PubMed

    Sykes, Leanne M; Parrott, Andrew M; Owen, C Peter; Snaddon, Donald R

    2004-01-01

    The purpose of this study was to compare the accuracy, required time, and potential advantages of rapid prototyping technology with traditional methods in the manufacture of wax patterns for two facial prostheses. Two clinical situations were investigated: the production of an auricular prosthesis and the duplication of an existing maxillary prosthesis, using a conventional and a rapid prototyping method for each. Conventional wax patterns were created from impressions taken of a patient's remaining ear and an oral prosthesis. For the rapid prototyping method, a cast of the ear and the original maxillary prosthesis were scanned, and rapid prototyping was used to construct the wax patterns. For the auricular prosthesis, both patterns were refined clinically and then flasked and processed in silicone using routine procedures. Twenty-six independent observers evaluated these patterns by comparing them to the cast of the patient's remaining ear. For the duplication procedure, both wax patterns were scanned and compared to scans of the original prosthesis by generating color error maps to highlight volumetric changes. There was a significant difference in opinions for the two auricular prostheses with regard to shape and esthetic appeal, where the hand-carved prosthesis was found to be of poorer quality. The color error maps showed higher errors with the conventional duplication process compared with the rapid prototyping method. The main advantage of rapid prototyping is the ability to produce physical models using digital methods instead of traditional impression techniques. The disadvantage of equipment costs could be overcome by establishing a centralized service.

  6. Methods and systems for rapid prototyping of high density circuits

    DOEpatents

    Palmer, Jeremy A [Albuquerque, NM; Davis, Donald W [Albuquerque, NM; Chavez, Bart D [Albuquerque, NM; Gallegos, Phillip L [Albuquerque, NM; Wicker, Ryan B [El Paso, TX; Medina, Francisco R [El Paso, TX

    2008-09-02

    A preferred embodiment provides, for example, a system and method of integrating fluid media dispensing technology such as direct-write (DW) technologies with rapid prototyping (RP) technologies such as stereolithography (SL) to provide increased micro-fabrication and micro-stereolithography. A preferred embodiment of the present invention also provides, for example, a system and method for Rapid Prototyping High Density Circuit (RPHDC) manufacturing of solderless connectors and pilot devices with terminal geometries that are compatible with DW mechanisms and reduce contact resistance where the electrical system is encapsulated within structural members and manual electrical connections are eliminated in favor of automated DW traces. A preferred embodiment further provides, for example, a method of rapid prototyping comprising: fabricating a part layer using stereolithography and depositing thermally curable media onto the part layer using a fluid dispensing apparatus.

  7. Rapid Prototyping of Mobile Learning Games

    ERIC Educational Resources Information Center

    Federley, Maija; Sorsa, Timo; Paavilainen, Janne; Boissonnier, Kimo; Seisto, Anu

    2014-01-01

    This position paper presents the first results of an on-going project, in which we explore rapid prototyping method to efficiently produce digital learning solutions that are commercially viable. In this first phase, rapid game prototyping and an iterative approach was tested as a quick and efficient way to create learning games and to evaluate…

  8. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method

    NASA Astrophysics Data System (ADS)

    Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru

    2015-08-01

    In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.

  9. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method.

    PubMed

    Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru

    2015-08-24

    In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.

  10. An application generator for rapid prototyping of Ada real-time control software

    NASA Technical Reports Server (NTRS)

    Johnson, Jim; Biglari, Haik; Lehman, Larry

    1990-01-01

    The need to increase engineering productivity and decrease software life cycle costs in real-time system development establishes a motivation for a method of rapid prototyping. The design by iterative rapid prototyping technique is described. A tool which facilitates such a design methodology for the generation of embedded control software is described.

  11. Review on CNC-Rapid Prototyping

    NASA Astrophysics Data System (ADS)

    Z, M. Nafis O.; Y, Nafrizuan M.; A, Munira M.; J, Kartina

    2012-09-01

    This article reviewed developments of Computerized Numerical Control (CNC) technology in rapid prototyping process. Rapid prototyping (RP) can be classified into three major groups; subtractive, additive and virtual. CNC rapid prototyping is grouped under the subtractive category which involves material removal from the workpiece that is larger than the final part. Richard Wysk established the use of CNC machines for rapid prototyping using sets of 2½-D tool paths from various orientations about a rotary axis to machine parts without refixturing. Since then, there are few developments on this process mainly aimed to optimized the operation and increase the process capabilities to stand equal with common additive type of RP. These developments include the integration between machining and deposition process (hybrid RP), adoption of RP to the conventional machine and optimization of the CNC rapid prototyping process based on controlled parameters. The article ended by concluding that the CNC rapid prototyping research area has a vast space for improvement as in the conventional machining processes. Further developments and findings will enhance the usage of this method and minimize the limitation of current approach in building a prototype.

  12. Comparison of orbital volume obtained by tomography and rapid prototyping.

    PubMed

    Roça, Guilherme Berto; Foggiatto, José Aguiomar; Ono, Maria Cecilia Closs; Ono, Sergio Eiji; da Silva Freitas, Renato

    2013-11-01

    This study aims to compare orbital volume obtained by helical tomography and rapid prototyping. The study sample was composed of 6 helical tomography scans. Eleven healthy orbits were identified to have their volumes measured. The volumetric analysis with the helical tomography utilized the same protocol developed by the Plastic Surgery Unit of the Federal University of Paraná. From the CT images, 11 prototypes were created, and their respective volumes were analyzed in 2 ways: using software by SolidWorks and by direct analysis, when the prototype was filled with saline solution. For statistical analysis, the results of the volumes of the 11 orbits were considered independent. The average orbital volume measurements obtained by the method of Ono et al was 20.51 cm, the average obtained by the SolidWorks program was 20.64 cm, and the average measured using the prototype method was 21.81 cm. The 3 methods demonstrated a strong correlation between the measurements. The right and left orbits of each patient had similar volumes. The tomographic method for the analysis of orbital volume using the Ono protocol yielded consistent values, and by combining this method with rapid prototyping, both reliability validations of results were enhanced.

  13. Dimensional Precision Research of Wax Molding Rapid Prototyping based on Droplet Injection

    NASA Astrophysics Data System (ADS)

    Mingji, Huang; Geng, Wu; yan, Shan

    2017-11-01

    The traditional casting process is complex, the mold is essential products, mold quality directly affect the quality of the product. With the method of rapid prototyping 3D printing to produce mold prototype. The utility wax model has the advantages of high speed, low cost and complex structure. Using the orthogonal experiment as the main method, analysis each factors of size precision. The purpose is to obtain the optimal process parameters, to improve the dimensional accuracy of production based on droplet injection molding.

  14. Rapid prototyping in orthopaedic surgery: a user's guide.

    PubMed

    Frame, Mark; Huntley, James S

    2012-01-01

    Rapid prototyping (RP) is applicable to orthopaedic problems involving three dimensions, particularly fractures, deformities, and reconstruction. In the past, RP has been hampered by cost and difficulties accessing the appropriate expertise. Here we outline the history of rapid prototyping and furthermore a process using open-source software to produce a high fidelity physical model from CT data. This greatly mitigates the expense associated with the technique, allowing surgeons to produce precise models for preoperative planning and procedure rehearsal. We describe the method with an illustrative case.

  15. The Perils of Prototyping.

    ERIC Educational Resources Information Center

    Lowry, Christina; Little, Robert

    1985-01-01

    The benefits of prototyping as a basis for system design include better specifications, earlier discovery of omissions and extensions, and the likelihood of salvaging much of the effort expended on the prototype. Risks and methods of prototyping during rapid systems development are also noted. (Author/MLW)

  16. Manufacturing implant supported auricular prostheses by rapid prototyping techniques.

    PubMed

    Karatas, Meltem Ozdemir; Cifter, Ebru Demet; Ozenen, Didem Ozdemir; Balik, Ali; Tuncer, Erman Bulent

    2011-08-01

    Maxillofacial prostheses are usually fabricated on the models obtained following the impression procedures. Disadvantages of conventional impression techniques used in production of facial prosthesis are deformation of soft tissues caused by impression material and disturbance of the patient due to. Additionally production of prosthesis by conventional methods takes longer time. Recently, rapid prototyping techniques have been developed for extraoral prosthesis in order to reduce these disadvantages of conventional methods. Rapid prototyping technique has the potential to simplify the procedure and decrease the laboratory work required. It eliminates the need for measurement impression procedures and preparation of wax model to be performed by prosthodontists themselves In the near future this technology will become a standard for fabricating maxillofacial prostheses.

  17. Application of Rapid Prototyping Methods to High-Speed Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Springer, A. M.

    1998-01-01

    This study was undertaken in MSFC's 14-Inch Trisonic Wind Tunnel to determine if rapid prototyping methods could be used in the design and manufacturing of high speed wind tunnel models in direct testing applications, and if these methods would reduce model design/fabrication time and cost while providing models of high enough fidelity to provide adequate aerodynamic data, and of sufficient strength to survive the test environment. Rapid prototyping methods utilized to construct wind tunnel models in a wing-body-tail configuration were: fused deposition method using both ABS plastic and PEEK as building materials, stereolithography using the photopolymer SL-5170, selective laser sintering using glass reinforced nylon, and laminated object manufacturing using plastic reinforced with glass and 'paper'. This study revealed good agreement between the SLA model, the metal model with an FDM-ABS nose, an SLA nose, and the metal model for most operating conditions, while the FDM-ABS data diverged at higher loading conditions. Data from the initial SLS model showed poor agreement due to problems in post-processing, resulting in a different configuration. A second SLS model was tested and showed relatively good agreement. It can be concluded that rapid prototyping models show promise in preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.

  18. Rapid Prototyping in Orthopaedic Surgery: A User's Guide

    PubMed Central

    Frame, Mark; Huntley, James S.

    2012-01-01

    Rapid prototyping (RP) is applicable to orthopaedic problems involving three dimensions, particularly fractures, deformities, and reconstruction. In the past, RP has been hampered by cost and difficulties accessing the appropriate expertise. Here we outline the history of rapid prototyping and furthermore a process using open-source software to produce a high fidelity physical model from CT data. This greatly mitigates the expense associated with the technique, allowing surgeons to produce precise models for preoperative planning and procedure rehearsal. We describe the method with an illustrative case. PMID:22666160

  19. Justification of rapid prototyping in the development cycle of thermoplastic-based lab-on-a-chip.

    PubMed

    Preywisch, Regina; Ritzi-Lehnert, Marion; Drese, Klaus S; Röser, Tina

    2011-11-01

    During the developmental cycle of lab-on-a-chip devices, various microstructuring techniques are required. While in the designing and assay implementation phase direct structuring or so-called rapid-prototyping methods such as milling or laser ablation are applied, replication methods like hot embossing or injection moulding are favourable for large quantity manufacturing. This work investigated the applicability of rapid-prototyping techniques for thermoplastic chip development in general, and the reproducibility of performances in dependency of the structuring technique. A previously published chip for prenatal diagnosis that preconcentrates DNA via electrokinetic trapping and field-amplified-sample-stacking and afterwards separates it in CGE was chosen as a model. The impact of structuring, sealing, and the integration of membranes on the mobility of the EOF, DNA preconcentration, and DNA separation was studied. Structuring methods were found to significantly change the location where preconcentration of DNA occurs. However, effects on the mobility of the EOF and the separation quality of DNA were not observed. Exchange of the membrane has no effect on the chip performance, whereas the sealing method impairs the separation of DNA within the chip. The overall assay performance is not significantly influenced by different structuring methods; thus, the application of rapid-prototyping methods during a chip development cycle is well justified. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Manufacturing Implant Supported Auricular Prostheses by Rapid Prototyping Techniques

    PubMed Central

    Karatas, Meltem Ozdemir; Cifter, Ebru Demet; Ozenen, Didem Ozdemir; Balik, Ali; Tuncer, Erman Bulent

    2011-01-01

    Maxillofacial prostheses are usually fabricated on the models obtained following the impression procedures. Disadvantages of conventional impression techniques used in production of facial prosthesis are deformation of soft tissues caused by impression material and disturbance of the patient due to. Additionally production of prosthesis by conventional methods takes longer time. Recently, rapid prototyping techniques have been developed for extraoral prosthesis in order to reduce these disadvantages of conventional methods. Rapid prototyping technique has the potential to simplify the procedure and decrease the laboratory work required. It eliminates the need for measurement impression procedures and preparation of wax model to be performed by prosthodontists themselves In the near future this technology will become a standard for fabricating maxillofacial prostheses. PMID:21912504

  1. Knowledge acquisition and rapid protyping of an expert system: Dealing with real world problems

    NASA Technical Reports Server (NTRS)

    Bailey, Patrick A.; Doehr, Brett B.

    1988-01-01

    The knowledge engineering and rapid prototyping phases of an expert system that does fault handling for a Solid Amine, Water Desorbed CO2 removal assembly for the Environmental Control and Life Support System for space based platforms are addressed. The knowledge acquisition phase for this project was interesting because it could not follow the textbook examples. As a result of this, a variety of methods were used during the knowledge acquisition task. The use of rapid prototyping and the need for a flexible prototype suggested certain types of knowledge representation. By combining various techniques, a representative subset of faults and a method for handling those faults was achieved. The experiences should prove useful for developing future fault handling expert systems under similar constraints.

  2. Freeform object design and simultaneous manufacturing

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhang, Weihan; Lin, Heng; Leu, Ming C.

    2003-04-01

    Today's product design, especially the consuming product design, focuses more and more on individuation, originality, and the time to market. One way to meet these challenges is using the interactive and creationary product design methods and rapid prototyping/rapid tooling. This paper presents a novel Freeform Object Design and Simultaneous Manufacturing (FODSM) method that combines the natural interaction feature in the design phase and simultaneous manufacturing feature in the prototyping phase. The natural interactive three-dimensional design environment is achieved by adopting virtual reality technology. The geometry of the designed object is defined through the process of "virtual sculpting" during which the designer can touch and visualize the designed object and can hear the virtual manufacturing environment noise. During the designing process, the computer records the sculpting trajectories and automatically translates them into NC codes so as to simultaneously machine the designed part. The paper introduced the principle, implementation process, and key techniques of the new method, and compared it with other popular rapid prototyping methods.

  3. Digital Microdroplet Ejection Technology-Based Heterogeneous Objects Prototyping

    PubMed Central

    Yang, Jiquan; Feng, Chunmei; Yang, Jianfei; Zhu, Liya; Guo, Aiqing

    2016-01-01

    An integrate fabrication framework is presented to build heterogeneous objects (HEO) using digital microdroplets injecting technology and rapid prototyping. The heterogeneous materials part design and manufacturing method in structure and material was used to change the traditional process. The net node method was used for digital modeling that can configure multimaterials in time. The relationship of material, color, and jetting nozzle was built. The main important contributions are to combine the structure, material, and visualization in one process and give the digital model for manufacture. From the given model, it is concluded that the method is effective for HEO. Using microdroplet rapid prototyping and the model given in the paper HEO could be gotten basically. The model could be used in 3D biomanufacturing. PMID:26981110

  4. Digital Microdroplet Ejection Technology-Based Heterogeneous Objects Prototyping.

    PubMed

    Li, Na; Yang, Jiquan; Feng, Chunmei; Yang, Jianfei; Zhu, Liya; Guo, Aiqing

    2016-01-01

    An integrate fabrication framework is presented to build heterogeneous objects (HEO) using digital microdroplets injecting technology and rapid prototyping. The heterogeneous materials part design and manufacturing method in structure and material was used to change the traditional process. The net node method was used for digital modeling that can configure multimaterials in time. The relationship of material, color, and jetting nozzle was built. The main important contributions are to combine the structure, material, and visualization in one process and give the digital model for manufacture. From the given model, it is concluded that the method is effective for HEO. Using microdroplet rapid prototyping and the model given in the paper HEO could be gotten basically. The model could be used in 3D biomanufacturing.

  5. Review, Selection and Installation of a Rapid Prototype Machine

    NASA Technical Reports Server (NTRS)

    McEndree, Caryl

    2008-01-01

    The objective of this paper is to impress upon the reader the benefits and advantages of investing in rapid prototyping (additive manufacturing) technology thru the procurement of one or two new rapid prototyping machines and the creation of a new Prototype and Model Lab at the Kennedy Space Center (KSC). This new resource will be available to all of United Space Alliance, LLC (USA), enabling engineers from around the company to pursue a more effective means of communication and design with our co-workers, and our customer, the National Aeronautics and Space Administration (NASA). The Rapid Protoyping/3D printing industry mirrors the transition the CAD industry made several years ago, when companies were trying to justify the expenditure of converting to a 3D based system from a 2D based system. The advantages of using a 3D system seemed to be outweighed by the cost it would take to convert not only legacy 2D drawings into 3D models but the training of personnel to use the 3D CAD software. But the reality was that when a 3D CAD system is employed, it gives engineers a much greater ability to conceive new designs and the ability to engineer new tools and products much more effectively. Rapid Prototyping (RP) is the name given to a host of related technologies that are used to fabricate physical objects directly from Computer Aided Design (CAD) data sources. These methods are generally similar to each other in that they add and bond materials in a layer wise-fashion to form objects, instead of machining away material. The machines used in Rapid Prototyping are also sometimes referred to as Rapid Manufacturing machines due to the fact that some of the parts fabricated in a RP machine can be used as the finished product. The name "Rapid Prototyping" is really a misnomer. It is much more than prototypes and it is not always rapid.

  6. Rapid Prototyping: A Survey and Evaluation of Methodologies and Models

    DTIC Science & Technology

    1990-03-01

    possibility of program coding errors or design differences from the actual prototype the user validated. The method - ology should result in a production...behavior within the problem domain to be defned. "Each method has a different approach towards developing the set of symbols with which to define the...investigate prototyping as a viable alternative to the conventional method of software development. By the mid 1980’s, it was evi- dent that the traditional

  7. A Language Translator for a Computer Aided Rapid Prototyping System.

    DTIC Science & Technology

    1988-03-01

    PROBLEM ................... S B. THE TRADITIONAL "WATERFALL LIFE CYCLE" .. ............... 14 C. RAPID PROTOTYPING...feature of everyday life for almost the entire industrialized world. Few governments or businesses function without the aid of computer systems. Com...engineering. B. TIE TRADITIONAL "WATERFALL LIFE CYCLE" I. Characteristics The traditional method of software engineering is the "waterfall life cycle

  8. [Computer-aided method and rapid prototyping for the personalized fabrication of a silicone bandage digital prosthesis].

    PubMed

    Ventura Ferreira, Nuno; Leal, Nuno; Correia Sá, Inês; Reis, Ana; Marques, Marisa

    2014-01-01

    The fabrication of digital prostheses has acquired growing importance not only for the possibility for the patient to overcome psychosocial trauma but also to promote grip functionality. An application method of three dimensional-computer-aided design technologies for the production of passive prostheses is presented by means of a fifth finger amputee clinical case following bilateral hand replantation.Three-dimensional-computerized tomography was used for the collection of anthropometric images of the hands. Computer-aided design techniques were used to develop the digital file-based prosthesis from the reconstruction images by inversion and superimposing the contra-lateral finger images. The rapid prototyping manufacturing method was used for the production of a silicone bandage prosthesis prototype. This approach replaces the traditional manual method by a virtual method that is basis for the optimization of a high speed, accurate and innovative process.

  9. Combined use of rapid-prototyping model and surgical guide in correction of mandibular asymmetry malformation patients with normal occlusal relationship.

    PubMed

    Xu, Haisong; Zhang, Ce; Shim, Yoong Hoon; Li, Hongliang; Cao, Dejun

    2015-03-01

    The aim of this study is to discuss the application of rapid-prototyping model and surgical guide in the treatment of mandibular asymmetry malformation with normal occlusal relationship. Twenty-four mandibular asymmetry malformation patients with relatively normal occlusal relationship were included in this study. Surgical 3-dimensional rapid-prototyping mandibular models were made for all patients from the computed tomography (CT) DICOM data. The presurgical plan was designed on the model, and the surgical guiders for the osteotomy lines were manufactured. Genioplasty and/or mandibular osteotomy based on the presurgical plan were performed on these patients with the combined use of the rapid-prototyping model and surgical guides. All patients underwent postoperative CT scan and had at least 3-month follow-up. All patients were satisfied with the final results. According to the postoperative CT images and 3-month follow-up, all patients' mandibular asymmetry malformation was significantly improved, and the operation time was distinctly shortened relative to the conventional method. Rapid-prototyping model and surgical guide are viable auxiliary devices for the treatment of mandibular asymmetry malformation with relatively normal occlusal relationship. Combined use of them can make precise preoperative design, improve effects of operation, and shorten operating time.

  10. Rapid Prototyping Technologies and their Applications in Prosthodontics, a Review of Literature.

    PubMed

    Torabi, Kianoosh; Farjood, Ehsan; Hamedani, Shahram

    2015-03-01

    The early computer-aided design/computer-aided manufacturing (CAD/CAM) systems were relied exclusively on subtractive methods. In recent years, additive methods by employing rapid prototyping (RP) have progressed rapidly in various fields of dentistry as they have the potential to overcome known drawbacks of subtractive techniques such as fit problems. RP techniques have been exploited to build complex 3D models in medicine since the 1990s. RP has recently proposed successful applications in various dental fields, such as fabrication of implant surgical guides, frameworks for fixed and removable partial dentures, wax patterns for the dental prosthesis, zirconia prosthesis and molds for metal castings, and maxillofacial prosthesis and finally, complete dentures. This paper aimed to offer a comprehensive literature review of various RP methods, particularly in dentistry, that are expected to bring many improvements to the field. A search was made through MEDLINE database and Google scholar search engine. The keywords; 'rapid prototyping' and 'dentistry' were searched in title/abstract of publications; limited to 2003 to 2013, concerning past decade. The inclusion criterion was the technical researches that predominately included laboratory procedures. The exclusion criterion was meticulous clinical and excessive technical procedures. A total of 106 articles were retrieved, recited by authors and only 50 met the specified inclusion criteria for this review. Selected articles had used rapid prototyping techniques in various fields in dentistry through different techniques. This review depicted the different laboratory procedures employed in this method and confirmed that RP technique have been substantially feasible in dentistry. With advancement in various RP systems, it is possible to benefit from this technique in different dental practices, particularly in implementing dental prostheses for different applications.

  11. “In vitro” Implantation Technique Based on 3D Printed Prosthetic Prototypes

    NASA Astrophysics Data System (ADS)

    Tarnita, D.; Boborelu, C.; Geonea, I.; Malciu, R.; Grigorie, L.; Tarnita, D. N.

    2018-06-01

    In this paper, Rapid Prototyping ZCorp 310 system, based on high-performance composite powder and on resin-high strength infiltration system and three-dimensional printing as a manufacturing method are used to obtain physical prototypes of orthopaedic implants and prototypes of complex functional prosthetic systems directly from the 3D CAD data. These prototypes are useful for in vitro experimental tests and measurements to optimize and obtain final physical prototypes. Using a new elbow prosthesis model prototype obtained by 3D printing, the surgical technique of implantation is established. Surgical implantation was performed on male corpse elbow joint.

  12. Patient specific ankle-foot orthoses using rapid prototyping

    PubMed Central

    2011-01-01

    Background Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. Methods In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD) software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Results Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. Conclusions The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait). The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required. PMID:21226898

  13. Enabling Microfluidics: From Clean Rooms to Makerspaces

    DTIC Science & Technology

    2016-09-30

    anyone can make 133 and rapidly scale to bulk manufacturing . To enable others to take part in this type of product 134 design and development, we...cost molds for a fee; however, the 77 design process is slowed down waiting for molds to be manufactured and shipped. While 78 PDMS devices may be...finished prototype into a commercial product . An example of a rapid 101 prototyping method amenable to scaled-up manufacturing is laser cutting. Figure

  14. Software Prototyping

    PubMed Central

    Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R.

    2016-01-01

    Summary Background Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. Objective To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Methods Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Results Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system. PMID:27081404

  15. Rapid prototyping model for percutaneous nephrolithotomy training.

    PubMed

    Bruyère, Franck; Leroux, Cecile; Brunereau, Laurent; Lermusiaux, Patrick

    2008-01-01

    Rapid prototyping is a technique used for creating computer images in three dimensions more efficiently than classic techniques. Percutaneous nephrolithotomy (PCNL) is a popular method to remove kidney stones; however, broader use by the urologic community has been hampered by the morbidity associated with needle puncture to gain access to the renal calix (bleeding, pneumothorax, hydrothorax, inadvertent colon injury). A training model to improve technique and understanding of renal anatomy could improve complications related to renal puncture; however, no model currently exists for resident training. We created a training model using the rapid prototyping technique based on abdominal CT images of a patient scheduled to undergo PCNL. This allowed our staff and residents to train on the model before performing the operation. This model allowed anticipation of particular difficulties inherent to the patient's anatomy. After training, the procedure proceeded without complication, and the patient was discharged at postoperative day 1 without problems. We hypothesize that rapid prototyping could be useful for resident education, allowing the creation of numerous models for research and surgical training. In addition, we anticipate that experienced urologists could find this technique helpful in preparation for difficult PCNL operations.

  16. Accuracy of templates for navigated implantation made by rapid prototyping with DICOM datasets of cone beam computer tomography (CBCT).

    PubMed

    Weitz, Jochen; Deppe, Herbert; Stopp, Sebastian; Lueth, Tim; Mueller, Steffen; Hohlweg-Majert, Bettina

    2011-12-01

    The aim of this study is to evaluate the accuracy of a surgical template-aided implant placement produced by rapid prototyping using a DICOM dataset from cone beam computer tomography (CBCT). On the basis of CBCT scans (Sirona® Galileos), a total of ten models were produced using a rapid-prototyping three-dimensional printer. On the same patients, impressions were performed to compare fitting accuracy of both methods. From the models made by impression, templates were produced and accuracy was compared and analyzed with the rapid-prototyping model. Whereas templates made by conventional procedure had an excellent accuracy, the fitting accuracy of those produced by DICOM datasets was not sufficient. Deviations ranged between 2.0 and 3.5 mm, after modification of models between 1.4 and 3.1 mm. The findings of this study suggest that the accuracy of the low-dose Sirona Galileos® DICOM dataset seems to show a high deviation, which is not useable for accurate surgical transfer for example in implant surgery.

  17. A novel technique for presurgical nasoalveolar molding using computer-aided reverse engineering and rapid prototyping.

    PubMed

    Yu, Quan; Gong, Xin; Wang, Guo-Min; Yu, Zhe-Yuan; Qian, Yu-Fen; Shen, Gang

    2011-01-01

    To establish a new method of presurgical nasoalveolar molding (NAM) using computer-aided reverse engineering and rapid prototyping technique in infants with unilateral cleft lip and palate (UCLP). Five infants (2 males and 3 females with mean age of 1.2 w) with complete UCLP were recruited. All patients were subjected to NAM before the cleft lip repair. The upper denture casts were recorded using a three-dimensional laser scanner within 2 weeks after birth in UCLP infants. A digital model was constructed and analyzed to simulate the NAM procedure with reverse engineering software. The digital geometrical data were exported to print the solid model with rapid prototyping system. The whole set of appliances was fabricated based on these solid models. Laser scanning and digital model construction simplified the NAM procedure and estimated the treatment objective. The appliances were fabricated based on the rapid prototyping technique, and for each patient, the complete set of appliances could be obtained at one time. By the end of presurgical NAM treatment, the cleft was narrowed, and the malformation of nasoalveolar segments was aligned normally. We have developed a novel technique of presurgical NAM based on a computer-aided design. The accurate digital denture model of UCLP infants could be obtained with laser scanning. The treatment design and appliance fabrication could be simplified with a computer-aided reverse engineering and rapid prototyping technique.

  18. Rapid prototyping polymers for microfluidic devices and high pressure injections.

    PubMed

    Sollier, Elodie; Murray, Coleman; Maoddi, Pietro; Di Carlo, Dino

    2011-11-21

    Multiple methods of fabrication exist for microfluidic devices, with different advantages depending on the end goal of industrial mass production or rapid prototyping for the research laboratory. Polydimethylsiloxane (PDMS) has been the mainstay for rapid prototyping in the academic microfluidics community, because of its low cost, robustness and straightforward fabrication, which are particularly advantageous in the exploratory stages of research. However, despite its many advantages and its broad use in academic laboratories, its low elastic modulus becomes a significant issue for high pressure operation as it leads to a large alteration of channel geometry. Among other consequences, such deformation makes it difficult to accurately predict the flow rates in complex microfluidic networks, change flow speed quickly for applications in stop-flow lithography, or to have predictable inertial focusing positions for cytometry applications where an accurate alignment of the optical system is critical. Recently, other polymers have been identified as complementary to PDMS, with similar fabrication procedures being characteristic of rapid prototyping but with higher rigidity and better resistance to solvents; Thermoset Polyester (TPE), Polyurethane Methacrylate (PUMA) and Norland Adhesive 81 (NOA81). In this review, we assess these different polymer alternatives to PDMS for rapid prototyping, especially in view of high pressure injections with the specific example of inertial flow conditions. These materials are compared to PDMS, for which magnitudes of deformation and dynamic characteristics are also characterized. We provide a complete and systematic analysis of these materials with side-by-side experiments conducted in our lab that also evaluate other properties, such as biocompatibility, solvent compatibility, and ease of fabrication. We emphasize that these polymer alternatives, TPE, PUMA and NOA, have some considerable strengths for rapid prototyping when bond strength, predictable operation at high pressure, or transitioning to commercialization are considered important for the application.

  19. Novel Applications of Rapid Prototyping in Gamma-ray and X-ray Imaging

    PubMed Central

    Miller, Brian W.; Moore, Jared W.; Gehm, Michael E.; Furenlid, Lars R.; Barrett, Harrison H.

    2010-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for the fabrication of cost-effective, custom components in gamma-ray and x-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components are presented, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum. PMID:22984341

  20. Software for rapid prototyping in the pharmaceutical and biotechnology industries.

    PubMed

    Kappler, Michael A

    2008-05-01

    The automation of drug discovery methods continues to develop, especially techniques that process information, represent workflow and facilitate decision-making. The magnitude of data and the plethora of questions in pharmaceutical and biotechnology research give rise to the need for rapid prototyping software. This review describes the advantages and disadvantages of three solutions: Competitive Workflow, Taverna and Pipeline Pilot. Each of these systems processes large amounts of data, integrates diverse systems and assists novice programmers and human experts in critical decision-making steps.

  1. Biological implications of lab-on-a-chip devices fabricated using multi-jet modelling and stereolithography processes

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Macdonald, Niall; Skommer, Joanna; Wlodkowic, Donald

    2015-06-01

    Current microfabrication methods are often restricted to two-dimensional (2D) or two and a half dimensional (2.5D) structures. Those fabrication issues can be potentially addressed by emerging additive manufacturing technologies. Despite rapid growth of additive manufacturing technologies in tissue engineering, microfluidics has seen relatively little developments with regards to adopting 3D printing for rapid fabrication of complex chip-based devices. This has been due to two major factors: lack of sufficient resolution of current rapid-prototyping methods (usually >100 μm ) and optical transparency of polymers to allow in vitro imaging of specimens. We postulate that adopting innovative fabrication processes can provide effective solutions for prototyping and manufacturing of chip-based devices with high-aspect ratios (i.e. above ration of 20:1). This work provides a comprehensive investigation of commercially available additive manufacturing technologies as an alternative for rapid prototyping of complex monolithic Lab-on-a-Chip devices for biological applications. We explored both multi-jet modelling (MJM) and several stereolithography (SLA) processes with five different 3D printing resins. Compared with other rapid prototyping technologies such as PDMS soft lithography and infrared laser micromachining, we demonstrated that selected SLA technologies had superior resolution and feature quality. We also for the first time optimised the post-processing protocols and demonstrated polymer features under scanning electronic microscope (SEM). Finally we demonstrate that selected SLA polymers have optical properties enabling high-resolution biological imaging. A caution should be, however, exercised as more work is needed to develop fully bio-compatible and non-toxic polymer chemistries.

  2. Rapid Prototyping: An Alternative Instructional Design Strategy.

    ERIC Educational Resources Information Center

    Tripp, Steven D.; Bichelmeyer, Barbara

    1990-01-01

    Discusses the nature of instructional design and describes rapid prototyping as a feasible model for instructional system design (ISD). The use of prototyping in software engineering is described, similarities between software design and instructional design are discussed, and an example is given which uses rapid prototyping in designing a…

  3. Designing Instructor-Led Schools with Rapid Prototyping.

    ERIC Educational Resources Information Center

    Lange, Steven R.; And Others

    1996-01-01

    Rapid prototyping involves abandoning many of the linear steps of traditional prototyping; it is instead a series of design iterations representing each major stage. This article describes the development of an instructor-led course for midlevel auditors using the principles and procedures of rapid prototyping, focusing on the savings in time and…

  4. Computer-aided design and rapid prototyping-assisted contouring of costal cartilage graft for facial reconstructive surgery.

    PubMed

    Lee, Shu Jin; Lee, Heow Pueh; Tse, Kwong Ming; Cheong, Ee Cherk; Lim, Siak Piang

    2012-06-01

    Complex 3-D defects of the facial skeleton are difficult to reconstruct with freehand carving of autogenous bone grafts. Onlay bone grafts are hard to carve and are associated with imprecise graft-bone interface contact and bony resorption. Autologous cartilage is well established in ear reconstruction as it is easy to carve and is associated with minimal resorption. In the present study, we aimed to reconstruct the hypoplastic orbitozygomatic region in a patient with left hemifacial microsomia using computer-aided design and rapid prototyping to facilitate costal cartilage carving and grafting. A three-step process of (1) 3-D reconstruction of the computed tomographic image, (2) mirroring the facial skeleton, and (3) modeling and rapid prototyping of the left orbitozygomaticomalar region and reconstruction template was performed. The template aided in donor site selection and extracorporeal contouring of the rib cartilage graft to allow for an accurate fit of the graft to the bony model prior to final fixation in the patient. We are able to refine the existing computer-aided design and rapid prototyping methods to allow for extracorporeal contouring of grafts and present rib cartilage as a good alternative to bone for autologous reconstruction.

  5. Product Development and its Comparative Analysis by SLA, SLS and FDM Rapid Prototyping Processes

    NASA Astrophysics Data System (ADS)

    Choudhari, C. M.; Patil, V. D.

    2016-09-01

    To grab market and meeting deadlines has increased the scope of new methods in product design and development. Industries continuously strive to optimize the development cycles with high quality and cost efficient products to maintain market competitiveness. Thus the need of Rapid Prototyping Techniques (RPT) has started to play pivotal role in rapid product development cycle for complex product. Dimensional accuracy and surface finish are the corner stone of Rapid Prototyping (RP) especially if they are used for mould development. The paper deals with the development of part made with the help of Selective Laser Sintering (SLS), Stereo-lithography (SLA) and Fused Deposition Modelling (FDM) processes to benchmark and investigate on various parameters like material shrinkage rate, dimensional accuracy, time, cost and surface finish. This helps to conclude which processes can be proved to be effective and efficient in mould development. In this research work the emphasis was also given to the design stage of a product development to obtain an optimum design solution for an existing product.

  6. A comparative approach to computer aided design model of a dog femur.

    PubMed

    Turamanlar, O; Verim, O; Karabulut, A

    2016-01-01

    Computer assisted technologies offer new opportunities in medical imaging and rapid prototyping in biomechanical engineering. Three dimensional (3D) modelling of soft tissues and bones are becoming more important. The accuracy of the analysis in modelling processes depends on the outline of the tissues derived from medical images. The aim of this study is the evaluation of the accuracy of 3D models of a dog femur derived from computed tomography data by using point cloud method and boundary line method on several modelling software. Solidworks, Rapidform and 3DSMax software were used to create 3D models and outcomes were evaluated statistically. The most accurate 3D prototype of the dog femur was created with stereolithography method using rapid prototype device. Furthermore, the linearity of the volumes of models was investigated between software and the constructed models. The difference between the software and real models manifests the sensitivity of the software and the devices used in this manner.

  7. Low-cost Method for Obtaining Medical Rapid Prototyping Using Desktop 3D printing: A Novel Technique for Mandibular Reconstruction Planning

    PubMed Central

    Vahdani, Soheil; Ramos, Hector

    2017-01-01

    Background Three-dimensional (3D) printing is relatively a new technology with clinical applications, which enable us to create rapid accurate prototype of the selected anatomic region, making it possible to plan complex surgery and pre-bend hardware for individual surgical cases. This study aimed to express our experience with the use of medical rapid prototype (MRP) of the maxillofacial region created by desktop 3D printer and its application in maxillofacial reconstructive surgeries. Material and Methods Three patients with benign mandible tumors were included in this study after obtaining informed consent. All patient’s maxillofacial CT scan data was processed by segmentation and isolation software and mandible MRP was printed using our desktop 3D printer. These models were used for preoperative surgical planning and prebending of the reconstruction plate. Conclusions MRP created by desktop 3D printer is a cost-efficient, quick and easily produced appliance for the planning of reconstructive surgery. It can contribute in patient orientation and helping them in a better understanding of their condition and proposed surgical treatment. It helps surgeons for pre-operative planning in the resection or reconstruction cases and represent an excellent tool in academic setting for residents training. The pre-bended reconstruction plate based on MRP, resulted in decreased surgery time, cost and anesthesia risks on the patients. Key words:3D printing, medical modeling, rapid prototype, mandibular reconstruction, ameloblastoma. PMID:29075412

  8. Run-Time Support for Rapid Prototyping

    DTIC Science & Technology

    1988-12-01

    prototyping. One such system is the Computer-Aided Proto- typing System (CAPS). It combines rapid prototypng with automatic program generation. Some of the...a design database, and a design management system [Ref. 3:p. 66. By using both rapid prototyping and automatic program genera- tion. CAPS will be...Most proto- typing systems perform these functions. CAPS is different in that it combines rapid prototyping with a variant of automatic program

  9. Using Rapid Prototyping to Design a Smoking Cessation Website with End-Users.

    PubMed

    Ronquillo, Charlene; Currie, Leanne; Rowsell, Derek; Phillips, J Craig

    2016-01-01

    Rapid prototyping is an iterative approach to design involving cycles of prototype building, review by end-users and refinement, and can be a valuable tool in user-centered website design. Informed by various user-centered approaches, we used rapid prototyping as a tool to collaborate with users in building a peer-support focused smoking-cessation website for gay men living with HIV. Rapid prototyping was effective in eliciting feedback on the needs of this group of potential end-users from a smoking cessation website.

  10. Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.

    PubMed

    Kesner, Samuel B; Howe, Robert D

    2011-07-21

    Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range.

  11. Rapid mask prototyping for microfluidics.

    PubMed

    Maisonneuve, B G C; Honegger, T; Cordeiro, J; Lecarme, O; Thiry, T; Fuard, D; Berton, K; Picard, E; Zelsmann, M; Peyrade, D

    2016-03-01

    With the rise of microfluidics for the past decade, there has come an ever more pressing need for a low-cost and rapid prototyping technology, especially for research and education purposes. In this article, we report a rapid prototyping process of chromed masks for various microfluidic applications. The process takes place out of a clean room, uses a commercially available video-projector, and can be completed in less than half an hour. We quantify the ranges of fields of view and of resolutions accessible through this video-projection system and report the fabrication of critical microfluidic components (junctions, straight channels, and curved channels). To exemplify the process, three common devices are produced using this method: a droplet generation device, a gradient generation device, and a neuro-engineering oriented device. The neuro-engineering oriented device is a compartmentalized microfluidic chip, and therefore, required the production and the precise alignment of two different masks.

  12. Rapid mask prototyping for microfluidics

    PubMed Central

    Maisonneuve, B. G. C.; Honegger, T.; Cordeiro, J.; Lecarme, O.; Thiry, T.; Fuard, D.; Berton, K.; Picard, E.; Zelsmann, M.; Peyrade, D.

    2016-01-01

    With the rise of microfluidics for the past decade, there has come an ever more pressing need for a low-cost and rapid prototyping technology, especially for research and education purposes. In this article, we report a rapid prototyping process of chromed masks for various microfluidic applications. The process takes place out of a clean room, uses a commercially available video-projector, and can be completed in less than half an hour. We quantify the ranges of fields of view and of resolutions accessible through this video-projection system and report the fabrication of critical microfluidic components (junctions, straight channels, and curved channels). To exemplify the process, three common devices are produced using this method: a droplet generation device, a gradient generation device, and a neuro-engineering oriented device. The neuro-engineering oriented device is a compartmentalized microfluidic chip, and therefore, required the production and the precise alignment of two different masks. PMID:27014396

  13. Design of rapid prototype of UAV line-of-sight stabilized control system

    NASA Astrophysics Data System (ADS)

    Huang, Gang; Zhao, Liting; Li, Yinlong; Yu, Fei; Lin, Zhe

    2018-01-01

    The line-of-sight (LOS) stable platform is the most important technology of UAV (unmanned aerial vehicle), which can reduce the effect to imaging quality from vibration and maneuvering of the aircraft. According to the requirement of LOS stability system (inertial and optical-mechanical combined method) and UAV's structure, a rapid prototype is designed using based on industrial computer using Peripheral Component Interconnect (PCI) and Windows RTX to exchange information. The paper shows the control structure, and circuit system including the inertial stability control circuit with gyro and voice coil motor driven circuit, the optical-mechanical stability control circuit with fast-steering-mirror (FSM) driven circuit and image-deviation-obtained system, outer frame rotary follower, and information-exchange system on PC. Test results show the stability accuracy reaches 5μrad, and prove the effectiveness of the combined line-of-sight stabilization control system, and the real-time rapid prototype runs stable.

  14. [Reliability of three dimensional resin model by rapid prototyping manufacturing and digital modeling].

    PubMed

    Zeng, Fei-huang; Xu, Yuan-zhi; Fang, Li; Tang, Xiao-shan

    2012-02-01

    To describe a new technique for fabricating an 3D resin model by 3D reconstruction and rapid prototyping, and to analyze the precision of this method. An optical grating scanner was used to acquire the data of silastic cavity block , digital dental cast was reconstructed with the data through Geomagic Studio image processing software. The final 3D reconstruction was saved in the pattern of Stl. The 3D resin model was fabricated by fuse deposition modeling, and was compared with the digital model and gypsum model. The data of three groups were statistically analyzed using SPSS 16.0 software package. No significant difference was found in gypsum model,digital dental cast and 3D resin model (P>0.05). Rapid prototyping manufacturing and digital modeling would be helpful for dental information acquisition, treatment design, appliance manufacturing, and can improve the communications between patients and doctors.

  15. Rapid Prototyping in Instructional Design: Creating Competencies

    ERIC Educational Resources Information Center

    Fulton, Carolyn D.

    2010-01-01

    Instructional designers working in rapid prototyping environments currently do not have a list of competencies that help to identify the knowledge, skills, and attitudes (KSAs) required in these workplaces. This qualitative case study used multiple cases in an attempt to identify rapid prototyping competencies required in a rapid prototyping…

  16. Rapid Prototyping Technologies and their Applications in Prosthodontics, a Review of Literature

    PubMed Central

    Torabi, Kianoosh; Farjood, Ehsan; Hamedani, Shahram

    2015-01-01

    The early computer-aided design/computer-aided manufacturing (CAD/CAM) systems were relied exclusively on subtractive methods. In recent years, additive methods by employing rapid prototyping (RP) have progressed rapidly in various fields of dentistry as they have the potential to overcome known drawbacks of subtractive techniques such as fit problems. RP techniques have been exploited to build complex 3D models in medicine since the 1990s. RP has recently proposed successful applications in various dental fields, such as fabrication of implant surgical guides, frameworks for fixed and removable partial dentures, wax patterns for the dental prosthesis, zirconia prosthesis and molds for metal castings, and maxillofacial prosthesis and finally, complete dentures. This paper aimed to offer a comprehensive literature review of various RP methods, particularly in dentistry, that are expected to bring many improvements to the field. A search was made through MEDLINE database and Google scholar search engine. The keywords; ‘rapid prototyping’ and ‘dentistry’ were searched in title/abstract of publications; limited to 2003 to 2013, concerning past decade. The inclusion criterion was the technical researches that predominately included laboratory procedures. The exclusion criterion was meticulous clinical and excessive technical procedures. A total of 106 articles were retrieved, recited by authors and only 50 met the specified inclusion criteria for this review. Selected articles had used rapid prototyping techniques in various fields in dentistry through different techniques. This review depicted the different laboratory procedures employed in this method and confirmed that RP technique have been substantially feasible in dentistry. With advancement in various RP systems, it is possible to benefit from this technique in different dental practices, particularly in implementing dental prostheses for different applications. PMID:25759851

  17. A novel method for intraoral access to the superior head of the human lateral pterygoid muscle.

    PubMed

    Oliveira, Aleli Tôrres; Camilo, Anderson Aparecido; Bahia, Paulo Roberto Valle; Carvalho, Antonio Carlos Pires; DosSantos, Marcos Fabio; da Silva, Jorge Vicente Lopes; Monteiro, André Antonio

    2014-01-01

    The uncoordinated activity of the superior and inferior parts of the lateral pterygoid muscle (LPM) has been suggested to be one of the causes of temporomandibular joint (TMJ) disc displacement. A therapy for this muscle disorder is the injection of botulinum toxin (BTX), of the LPM. However, there is a potential risk of side effects with the injection guide methods currently available. In addition, they do not permit appropriate differentiation between the two bellies of the muscle. Herein, a novel method is presented to provide intraoral access to the superior head of the human LPM with maximal control and minimal hazards. Computational tomography along with digital imaging software programs and rapid prototyping techniques were used to create a rapid prototyped guide to orient BTX injections in the superior LPM. The method proved to be feasible and reliable. Furthermore, when tested in one volunteer it allowed precise access to the upper head of LPM, without producing side effects. The prototyped guide presented in this paper is a novel tool that provides intraoral access to the superior head of the LPM. Further studies will be necessary to test the efficacy and validate this method in a larger cohort of subjects.

  18. Characteristics of products generated by selective sintering and stereolithography rapid prototyping processes

    NASA Technical Reports Server (NTRS)

    Cariapa, Vikram

    1993-01-01

    The trend in the modern global economy towards free market policies has motivated companies to use rapid prototyping technologies to not only reduce product development cycle time but also to maintain their competitive edge. A rapid prototyping technology is one which combines computer aided design with computer controlled tracking of focussed high energy source (eg. lasers, heat) on modern ceramic powders, metallic powders, plastics or photosensitive liquid resins in order to produce prototypes or models. At present, except for the process of shape melting, most rapid prototyping processes generate products that are only dimensionally similar to those of the desired end product. There is an urgent need, therefore, to enhance the understanding of the characteristics of these processes in order to realize their potential for production. Currently, the commercial market is dominated by four rapid prototyping processes, namely selective laser sintering, stereolithography, fused deposition modelling and laminated object manufacturing. This phase of the research has focussed on the selective laser sintering and stereolithography rapid prototyping processes. A theoretical model for these processes is under development. Different rapid prototyping sites supplied test specimens (based on ASTM 638-84, Type I) that have been measured and tested to provide a data base on surface finish, dimensional variation and ultimate tensile strength. Further plans call for developing and verifying the theoretical models by carefully designed experiments. This will be a joint effort between NASA and other prototyping centers to generate a larger database, thus encouraging more widespread usage by product designers.

  19. The Development of a Programming Support System for Rapid Prototyping. Tasks 2 and 3.

    DTIC Science & Technology

    1985-01-01

    of the problems that played a role in the larger system. The principal work in Task 2 was the design of a new method for code-generation...develop- Ing a prototype of the interpreter. Due to the limitation of funds, only a design , not a prototype of the bi-directional l 2 scanner was...Introduction LiTmitUn uupii The Problem of designing a code generator for an interpreter-based languae Jas provided a chance to reoexamine fth

  20. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding.

    PubMed

    Chung, Philip; Heller, J Alex; Etemadi, Mozziyar; Ottoson, Paige E; Liu, Jonathan A; Rand, Larry; Roy, Shuvo

    2014-06-27

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications.

  1. Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology

    PubMed Central

    Chappell, James; Jensen, Kirsten; Freemont, Paul S.

    2013-01-01

    A bottleneck in our capacity to rationally and predictably engineer biological systems is the limited number of well-characterized genetic elements from which to build. Current characterization methods are tied to measurements in living systems, the transformation and culturing of which are inherently time-consuming. To address this, we have validated a completely in vitro approach for the characterization of DNA regulatory elements using Escherichia coli extract cell-free systems. Importantly, we demonstrate that characterization in cell-free systems correlates and is reflective of performance in vivo for the most frequently used DNA regulatory elements. Moreover, we devise a rapid and completely in vitro method to generate DNA templates for cell-free systems, bypassing the need for DNA template generation and amplification from living cells. This in vitro approach is significantly quicker than current characterization methods and is amenable to high-throughput techniques, providing a valuable tool for rapidly prototyping libraries of DNA regulatory elements for synthetic biology. PMID:23371936

  2. Rapid prototyping of three-dimensional microstructures from multiwalled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, W.H.; Kumar, Rajay; Bushmaker, Adam

    The authors report a method for creating three-dimensional carbon nanotube structures, whereby a focused laser beam is used to selectively burn local regions of a dense forest of multiwalled carbon nanotubes. Raman spectroscopy and scanning electron microscopy are used to quantify the threshold for laser burnout and depth of burnout. The minimum power density for burning carbon nanotubes in air is found to be 244 {mu}W/{mu}m{sup 2}. We create various three-dimensional patterns using this method, illustrating its potential use for the rapid prototyping of carbon nanotube microstructures. Undercut profiles, changes in nanotube density, and nanoparticle formation are observed after lasermore » surface treatment and provide insight into the dynamic process of the burnout mechanism.« less

  3. Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates.

    PubMed

    Ke, Kevin; Hasselbrink, Ernest F; Hunt, Alan J

    2005-08-15

    Microfluidic and nanofluidic technologies have long sought a fast, reliable method to overcome the creative limitations of planar fabrication methods, the resolution limits of lithography, and the materials limitations for fast prototyping. In the present work, we demonstrate direct 3D machining of submicrometer diameter, subsurface fluidic channels in glass, via optical breakdown near critical intensity, using a femtosecond pulsed laser. No postexposure etching or bonding is required; the channel network (or almost any arbitrary-shaped cavity below the surface) is produced directly from "art-to-part". The key to this approach is to use very low energy, highly focused, pulses in the presence of liquid. Microbubbles that result from laser energy deposition gently expand and extrude machining debris from the channels. These bubbles are in a highly damped, low Reynolds number regime, implying that surface spalling due to bubble collapse is unimportant. We demonstrate rapid prototyping of three-dimensional "jumpers", mixers, and other key components of complex 3D microscale analysis systems in glass substrates.

  4. Soft tissue rapid prototyping in neurosurgery.

    PubMed

    Vloeberghs, M; Hatfield, F; Daemi, F; Dickens, P

    1998-01-01

    As part of our research into the fluid hydrodynamics of the human ventricular system, a fused deposition model of the human ventricular system was made using magnetic resonance imaging (MRI) data. This article describes the manufacturing of a positive cast of the ventricles as a first step in the construction of a hollow model. After decryption of the original MRI file (ACR-Nema format), the MRI slices were reassembled semiautomatically and a rapid prototyping station produced a resin model. Because of its ease and speed, this method harbors great potential for teaching purposes, research, and preoperative planning in complex three-dimensional soft tissue targets.

  5. Three-Dimensional Printed Modeling of Diffuse Low-Grade Gliomas and Associated White Matter Tract Anatomy.

    PubMed

    Thawani, Jayesh P; Singh, Nickpreet; Pisapia, Jared M; Abdullah, Kalil G; Parker, Drew; Pukenas, Bryan A; Zager, Eric L; Verma, Ragini; Brem, Steven

    2017-04-01

    Diffuse low-grade gliomas (DLGGs) represent several pathological entities that infiltrate and invade cortical and subcortical structures in the brain. To describe methods for rapid prototyping of DLGGs and surgically relevant anatomy. Using high-definition imaging data and rapid prototyping technologies, we were able to generate 3 patient DLGGs to scale and represent the associated white matter tracts in 3 dimensions using advanced diffusion tensor imaging techniques. This report represents a novel application of 3-dimensional (3-D) printing in neurosurgery and a means to model individualized tumors in 3-D space with respect to subcortical white matter tract anatomy. Faculty and resident evaluations of this technology were favorable at our institution. Developing an understanding of the anatomic relationships existing within individuals is fundamental to successful neurosurgical therapy. Imaging-based rapid prototyping may improve on our ability to plan for and treat complex neuro-oncologic pathology. Copyright © 2017 by the Congress of Neurological Surgeons

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoke, Anderson; Shirazi, Mariko; Chakraborty, Sudipta

    As deployment of power electronic coupled generation such as photovoltaic (PV) systems increases, grid operators have shown increasing interest in calling on inverter-coupled generation to help mitigate frequency contingency events by rapidly surging active power into the grid. When responding to contingency events, the faster the active power is provided, the more effective it may be for arresting the frequency event. This paper proposes a predictive PV inverter control method for very fast and accurate control of active power. This rapid active power control method will increase the effectiveness of various higher-level controls designed to mitigate grid frequency contingency events,more » including fast power-frequency droop, inertia emulation, and fast frequency response, without the need for energy storage. The rapid active power control method, coupled with a maximum power point estimation method, is implemented in a prototype PV inverter connected to a PV array. The prototype inverter's response to various frequency events is experimentally confirmed to be fast (beginning within 2 line cycles and completing within 4.5 line cycles of a severe test event) and accurate (below 2% steady-state error).« less

  7. A Novel Method for Intraoral Access to the Superior Head of the Human Lateral Pterygoid Muscle

    PubMed Central

    Oliveira, Aleli Tôrres; Camilo, Anderson Aparecido; Bahia, Paulo Roberto Valle; Carvalho, Antonio Carlos Pires; DosSantos, Marcos Fabio; da Silva, Jorge Vicente Lopes; Monteiro, André Antonio

    2014-01-01

    Background. The uncoordinated activity of the superior and inferior parts of the lateral pterygoid muscle (LPM) has been suggested to be one of the causes of temporomandibular joint (TMJ) disc displacement. A therapy for this muscle disorder is the injection of botulinum toxin (BTX), of the LPM. However, there is a potential risk of side effects with the injection guide methods currently available. In addition, they do not permit appropriate differentiation between the two bellies of the muscle. Herein, a novel method is presented to provide intraoral access to the superior head of the human LPM with maximal control and minimal hazards. Methods. Computational tomography along with digital imaging software programs and rapid prototyping techniques were used to create a rapid prototyped guide to orient BTX injections in the superior LPM. Results. The method proved to be feasible and reliable. Furthermore, when tested in one volunteer it allowed precise access to the upper head of LPM, without producing side effects. Conclusions. The prototyped guide presented in this paper is a novel tool that provides intraoral access to the superior head of the LPM. Further studies will be necessary to test the efficacy and validate this method in a larger cohort of subjects. PMID:24963484

  8. [Fabrication of 3-dimensional skull model with rapid prototyping technique and its primary application in repairing one case of cranio-maxillo-facial trauma].

    PubMed

    Xia, Delin; Gui, Lai; Zhang, Zhiyong; Lu, Changsheng; Niu, Feng; Jin, Ji; Liu, Xiaoqing

    2005-10-01

    To investigate the methods of establishing 3-dimensional skull model using electron beam CT (EBCT) data rapid prototyping technique, and to discuss its application in repairing cranio-maxillo-facial trauma. The data were obtained by EBCT continuous volumetric scanning with 1.0 mm slice at thickness. The data were transferred to work-station for 3-dimensional surface reconstruction by computer-aided design software and the images were saved as STL file. The data can be used to control a laser rapid-prototyping device (AFS-320QZ) to construct geometric model. The material for the model construction is a kind of laser-sensitive resin power, which will become a mass when scanned by laser beam. The design and simulation of operation can be done on the model. The image data were transferred to the device slice by slice. Thus a geometric model is constructed according to the image data by repeating this process. Preoperative analysis, surgery simulation and implant of bone defect could be done on this computer-aided manufactured 3D model. One case of cranio-maxillo-facial bone defect resulting from trauma was reconstructed with this method. The EBCT scanning showed that the defect area was 4 cm x 6 cm. The nose was flat and deviated to left. The 3-dimensional skull was reconstructed with EBCT data and rapid prototyping technique. The model can display the structure of 3-dimensional anatomy and their relationship. The prefabricated implant by 3-dimensional model was well-matched with defect. The deformities of flat and deviated nose were corrected. The clinical result was satisfactory after a follow-up of 17 months. The 3-dimensional model of skull can replicate the prototype of disease and play an important role in the diagnosis and simulation of operation for repairing cranio-maxillo-facial trauma.

  9. Intelligent Visual Input: A Graphical Method for Rapid Entry of Patient-Specific Data

    PubMed Central

    Bergeron, Bryan P.; Greenes, Robert A.

    1987-01-01

    Intelligent Visual Input (IVI) provides a rapid, graphical method of data entry for both expert system interaction and medical record keeping purposes. Key components of IVI include: a high-resolution graphic display; an interface supportive of rapid selection, i.e., one utilizing a mouse or light pen; algorithm simplification modules; and intelligent graphic algorithm expansion modules. A prototype IVI system, designed to facilitate entry of physical exam findings, is used to illustrates the potential advantages of this approach.

  10. Rapid prototyping for biomedical engineering: current capabilities and challenges.

    PubMed

    Lantada, Andrés Díaz; Morgado, Pilar Lafont

    2012-01-01

    A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.

  11. Low-cost Method for Obtaining Medical Rapid Prototyping Using Desktop 3D printing: A Novel Technique for Mandibular Reconstruction Planning.

    PubMed

    Velasco, Ignacio; Vahdani, Soheil; Ramos, Hector

    2017-09-01

    Three-dimensional (3D) printing is relatively a new technology with clinical applications, which enable us to create rapid accurate prototype of the selected anatomic region, making it possible to plan complex surgery and pre-bend hardware for individual surgical cases. This study aimed to express our experience with the use of medical rapid prototype (MRP) of the maxillofacial region created by desktop 3D printer and its application in maxillofacial reconstructive surgeries. Three patients with benign mandible tumors were included in this study after obtaining informed consent. All patient's maxillofacial CT scan data was processed by segmentation and isolation software and mandible MRP was printed using our desktop 3D printer. These models were used for preoperative surgical planning and prebending of the reconstruction plate. MRP created by desktop 3D printer is a cost-efficient, quick and easily produced appliance for the planning of reconstructive surgery. It can contribute in patient orientation and helping them in a better understanding of their condition and proposed surgical treatment. It helps surgeons for pre-operative planning in the resection or reconstruction cases and represent an excellent tool in academic setting for residents training. The pre-bended reconstruction plate based on MRP, resulted in decreased surgery time, cost and anesthesia risks on the patients. Key words: 3D printing, medical modeling, rapid prototype, mandibular reconstruction, ameloblastoma.

  12. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.

    PubMed

    Kim, Jungkyu; Surapaneni, Rajesh; Gale, Bruce K

    2009-05-07

    Rapid prototyping of microfluidic systems using a combination of double-sided tape and PDMS (polydimethylsiloxane) is introduced. PDMS is typically difficult to bond using adhesive tapes due to its hydrophobic nature and low surface energy. For this reason, PDMS is not compatible with the xurography method, which uses a knife plotter and various adhesive coated polymer tapes. To solve these problems, a PDMS/tape composite was developed and demonstrated in microfluidic applications. The PDMS/tape composite was created by spinning it to make a thin layer of PDMS over double-sided tape. Then the PDMS/tape composite was patterned to create channels using xurography, and bonded to a PDMS slab. After removing the backing paper from the tape, a complete microfluidic system could be created by placing the construct onto nearly any substrate; including glass, plastic or metal-coated glass/silicon substrates. The bond strength was shown to be sufficient for the pressures that occur in typical microfluidic channels used for chemical or biological analysis. This method was demonstrated in three applications: standard microfluidic channels and reactors, a microfluidic system with an integrated membrane, and an electrochemical biosensor. The PDMS/tape composite rapid prototyping technique provides a fast and cost effective fabrication method and can provide easy integration of microfluidic channels with sensors and other components without the need for a cleanroom facility.

  13. Organic Binder Developments for Solid Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Mobasher, Amir A.

    2003-01-01

    A number of rapid prototyping techniques are under development at Marshall Space Flight Center's (MSFC) National Center for Advanced Manufacturing Rapid Prototyping Laboratory. Commercial binder developments in creating solid models for rapid prototyping include: 1) Fused Deposition Modeling; 2) Three Dimensional Printing; 3) Selective Laser Sintering (SLS). This document describes these techniques developed by the private sector, as well as SLS undertaken by MSFC.

  14. Rapid and Low-cost Prototyping of Medical Devices Using 3D Printed Molds for Liquid Injection Molding

    PubMed Central

    Chung, Philip; Heller, J. Alex; Etemadi, Mozziyar; Ottoson, Paige E.; Liu, Jonathan A.; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  15. Ultrafast holographic technique for 3D in situ documentation of cultural heritage

    NASA Astrophysics Data System (ADS)

    Frey, Susanne; Bongartz, Jens; Giel, Dominik M.; Thelen, Andrea; Hering, Peter

    2003-10-01

    A novel 3d reconstruction method for medical application has been applied for the examination and documentation of a 2000-year-old bog body. An ultra-fast pulsed holographic camera has been modified to allow imaging of the bog body from different views. Full-scale daylight copies of the master holograms give a detailed impressive three-dimensional view of the mummy and can be exhibited instead of the object. In combination with a rapid prototyping model (built by the Rapid Prototyping group of the Stiftung caesar, Bonn, Germany) derived from computer tomography (CT) data our results are an ideal basis for a future facial reconstruction.

  16. CAD - CAM Procedures Used for Rapid Prototyping of Prosthetic Hip Joint Bone

    NASA Astrophysics Data System (ADS)

    Popa, Luminita I.; Popa, Vasile N.

    2016-11-01

    The article addresses the issue of rapid prototyping CAD/ CAM procedures, based on CT imaging, for custom implants dedicated to hip arthroplasty and the correlation study to be achieved between femoral canal shape, valued by modern imaging methods, and the prosthesis form. A set of CT images is transformed into a digital model using one of several software packages available for conversion. The purpose of research is to obtain prosthesis with compatible characteristics as close to the physiological, with an optimal adjustment of the prosthesis to the bone in which it is implanted, allowing the recovery of the patient physically, mentally and socially.

  17. Single Day Construction of Multigene Circuits with 3G Assembly.

    PubMed

    Halleran, Andrew D; Swaminathan, Anandh; Murray, Richard M

    2018-05-18

    The ability to rapidly design, build, and test prototypes is of key importance to every engineering discipline. DNA assembly often serves as a rate limiting step of the prototyping cycle for synthetic biology. Recently developed DNA assembly methods such as isothermal assembly and type IIS restriction enzyme systems take different approaches to accelerate DNA construction. We introduce a hybrid method, Golden Gate-Gibson (3G), that takes advantage of modular part libraries introduced by type IIS restriction enzyme systems and isothermal assembly's ability to build large DNA constructs in single pot reactions. Our method is highly efficient and rapid, facilitating construction of entire multigene circuits in a single day. Additionally, 3G allows generation of variant libraries enabling efficient screening of different possible circuit constructions. We characterize the efficiency and accuracy of 3G assembly for various construct sizes, and demonstrate 3G by characterizing variants of an inducible cell-lysis circuit.

  18. Producing Production Level Tooling in Prototype Timing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mc Hugh, Kevin Matthew; Knirsch, J.

    A new rapid solidification process machine will be able to produce eight-inch diameter by six-inch thick finished cavities at the rate of one per hour - a rate that will change the tooling industry dramatically. Global Metal Technologies, Inc. (GMTI) (Solon, OH) has signed an exclusive license with Idaho National Engineered and Environmental Laboratories (INEEL) (Idaho Falls, ID) for the development and commercialization of the rapid solidification process (RSP tooling). The first production machine is scheduled for delivery in July 2001. The RSP tooling process is a method of producing production level tooling in prototype timing. The process' inventor, Kevinmore » McHugh, describes it as a rapid solidification method, which differentiates it from the standard spray forming methods. RSP itself is relatively straightforward. Molten metal is sprayed against the ceramic pattern, replicating the pattern's contours, surface texture and details. After spraying, the molten tool steel is cooled at room temperature and separated from the pattern. The irregular periphery of the freshly sprayed insert is squared off, either by machining or, in the case of harder tool steels, by wire EDM. XX« less

  19. Rapid Prototyping for In Vitro Knee Rig Investigations of Prosthetized Knee Biomechanics: Comparison with Cobalt-Chromium Alloy Implant Material

    PubMed Central

    Schröder, Christian; Steinbrück, Arnd; Müller, Tatjana; Woiczinski, Matthias; Chevalier, Yan; Müller, Peter E.; Jansson, Volkmar

    2015-01-01

    Retropatellar complications after total knee arthroplasty (TKA) such as anterior knee pain and subluxations might be related to altered patellofemoral biomechanics, in particular to trochlear design and femorotibial joint positioning. A method was developed to test femorotibial and patellofemoral joint modifications separately with 3D-rapid prototyped components for in vitro tests, but material differences may further influence results. This pilot study aims at validating the use of prostheses made of photopolymerized rapid prototype material (RPM) by measuring the sliding friction with a ring-on-disc setup as well as knee kinematics and retropatellar pressure on a knee rig. Cobalt-chromium alloy (standard prosthesis material, SPM) prostheses served as validation standard. Friction coefficients between these materials and polytetrafluoroethylene (PTFE) were additionally tested as this latter material is commonly used to protect pressure sensors in experiments. No statistical differences were found between friction coefficients of both materials to PTFE. UHMWPE shows higher friction coefficient at low axial loads for RPM, a difference that disappears at higher load. No measurable statistical differences were found in knee kinematics and retropatellar pressure distribution. This suggests that using polymer prototypes may be a valid alternative to original components for in vitro TKA studies and future investigations on knee biomechanics. PMID:25879019

  20. Cost-effective rapid prototyping and assembly of poly(methyl methacrylate) microfluidic devices.

    PubMed

    Matellan, Carlos; Del Río Hernández, Armando E

    2018-05-03

    The difficulty in translating conventional microfluidics from laboratory prototypes to commercial products has shifted research efforts towards thermoplastic materials for their higher translational potential and amenability to industrial manufacturing. Here, we present an accessible method to fabricate and assemble polymethyl methacrylate (PMMA) microfluidic devices in a "mask-less" and cost-effective manner that can be applied to manufacture a wide range of designs due to its versatility. Laser micromachining offers high flexibility in channel dimensions and morphology by controlling the laser properties, while our two-step surface treatment based on exposure to acetone vapour and low-temperature annealing enables improvement of the surface quality without deformation of the device. Finally, we demonstrate a capillarity-driven adhesive delivery bonding method that can produce an effective seal between PMMA devices and a variety of substrates, including glass, silicon and LiNbO 3 . We illustrate the potential of this technique with two microfluidic devices, an H-filter and a droplet generator. The technique proposed here offers a low entry barrier for the rapid prototyping of thermoplastic microfluidics, enabling iterative design for laboratories without access to conventional microfabrication equipment.

  1. Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel.

    PubMed

    Iwami, K; Noda, T; Ishida, K; Morishima, K; Nakamura, M; Umeda, N

    2010-03-01

    This paper reports a method for rapid prototyping of cell tissues, which is based on a system that extrudes, aspirates and refills a mixture of cells and thermoreversible hydrogel as a scaffold. In the extruding mode, a cell-mixed scaffold solution in the sol state is extruded from a cooled micronozzle into a temperature-controlled substrate, which keeps the scaffold in the gel state. In the aspiration mode, the opposite process is performed by Bernoulli suction. In the refilling mode, the solution is extruded into a groove created in the aspiration mode. The minimum width of extruded hydrogel pattern is 114 +/- 15 microm by employing a nozzle of diameter 100 microm, and that of aspirated groove was 355 +/- 10 microm using a 500 microm-diameter nozzle. Gum arabic is mixed with the scaffold solution to avoid peeling-off of the gel pattern from the substrate. Patterning of Sf-9 cell tissue is demonstrated, and the stability of the patterned cell is investigated. This system offers a procedure for rapid prototyping and local modification of cell scaffolds for tissue engineering.

  2. The application of rapid prototyping technique in chin augmentation.

    PubMed

    Li, Min; Lin, Xin; Xu, Yongchen

    2010-04-01

    This article discusses the application of computer-aided design and rapid prototyping techniques in prosthetic chin augmentation for mild microgenia. Nine cases of mild microgenia underwent an electrobeam computer tomography scan. Then we performed three-dimensional reconstruction and operative design using computer software. According to the design, we determined the shape and size of the prostheses and made an individualized prosthesis for each chin augmentation with the rapid prototyping technique. With the application of computer-aided design and a rapid prototyping technique, we could determine the shape, size, and embedding location accurately. Prefabricating the individual prosthesis model is useful in improving the accuracy of treatment. In the nine cases of mild microgenia, three received a silicone implant, four received an ePTFE implant, and two received a Medpor implant. All patients were satisfied with the results. During follow-up at 6-12 months, all patients remained satisfied. The application of computer-aided design and rapid prototyping techniques can offer surgeons the ability to design an individualized ideal prosthesis for each patient.

  3. Rapid Prototyping and the Human Factors Engineering Process

    DTIC Science & Technology

    2016-08-29

    8217 without the effort and cost associated with conventional man -in-the-loop simulation. Advocates suggest that rapid prototyping is compatible with...use should be made of man -in-the loop simulation to supplement those analyses, but that such simulation is expensive and time consuming, precluding...conventional man -in-the- loop simulation. Rapid prototyping involves the construction and use of an executable model of a human-machine interface

  4. Preliminary Component Integration Using Rapid Prototyping Techniques

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Salvail, Pat; Gordon, Gail (Technical Monitor)

    2001-01-01

    Rapid prototyping is a very important tool that should be used by both design and manufacturing disciplines during the development of elements for the aerospace industry. It helps prevent lack of adequate communication between design and manufacturing engineers (which could lead to costly errors) through mutual consideration of functional models generated from drawings. Rapid prototyping techniques are used to test hardware for design and material compatibility at Marshall Space Flight Center.

  5. Leveraging object-oriented development at Ames

    NASA Technical Reports Server (NTRS)

    Wenneson, Greg; Connell, John

    1994-01-01

    This paper presents lessons learned by the Software Engineering Process Group (SEPG) from results of supporting two projects at NASA Ames using an Object Oriented Rapid Prototyping (OORP) approach supported by a full featured visual development environment. Supplemental lessons learned from a large project in progress and a requirements definition are also incorporated. The paper demonstrates how productivity gains can be made by leveraging the developer with a rich development environment, correct and early requirements definition using rapid prototyping, and earlier and better effort estimation and software sizing through object-oriented methods and metrics. Although the individual elements of OO methods, RP approach and OO metrics had been used on other separate projects, the reported projects were the first integrated usage supported by a rich development environment. Overall the approach used was twice as productive (measured by hours per OO Unit) as a C++ development.

  6. Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications

    PubMed Central

    O'Neill, P. F.; Ben Azouz, A.; Vázquez, M.; Liu, J.; Marczak, S.; Slouka, Z.; Chang, H. C.; Diamond, D.; Brabazon, D.

    2014-01-01

    The capability of 3D printing technologies for direct production of complex 3D structures in a single step has recently attracted an ever increasing interest within the field of microfluidics. Recently, ultrafast lasers have also allowed developing new methods for production of internal microfluidic channels within the bulk of glass and polymer materials by direct internal 3D laser writing. This review critically summarizes the latest advances in the production of microfluidic 3D structures by using 3D printing technologies and direct internal 3D laser writing fabrication methods. Current applications of these rapid prototyped microfluidic platforms in biology will be also discussed. These include imaging of cells and living organisms, electrochemical detection of viruses and neurotransmitters, and studies in drug transport and induced-release of adenosine triphosphate from erythrocytes. PMID:25538804

  7. Reconceiving ISD: Three Perspectives on Rapid Prototyping as a Paradigm Shift.

    ERIC Educational Resources Information Center

    Rathbun, Gail A.; And Others

    Confronting recent design challenges, instructional designers have latched onto adaptive procedural techniques from outside the Instructional Systems Design (ISD) field. This discussion of rapid prototyping (RP) examines the perspectives of: (1) the prototype as the designer"s cognitive tool; (2) the designer as co-inquirer; and (3) the…

  8. Three-Dimensional Printing of Vitrification Loop Prototypes for Aquatic Species.

    PubMed

    Tiersch, Nolan J; Childress, William M; Tiersch, Terrence R

    2018-05-16

    Vitrification is a method of cryopreservation that freezes samples rapidly, while forming an amorphous solid ("glass"), typically in small (μL) volumes. The goal of this project was to create, by three-dimensional (3D) printing, open vitrification devices based on an elliptical loop that could be efficiently used and stored. Vitrification efforts can benefit from the application of 3D printing, and to begin integration of this technology, we addressed four main variables: thermoplastic filament type, loop length, loop height, and method of loading. Our objectives were to: (1) design vitrification loops with varied dimensions; (2) print prototype loops for testing; (3) evaluate loading methods for the devices; and (4) classify vitrification responses to multiple device configurations. The various configurations were designed digitally using 3D CAD (Computer Aided Design) software, and prototype devices were produced with MakerBot ® 3D printers. The thermoplastic filaments used to produce devices were acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). Vitrification devices were characterized by the film volumes formed with different methods of loading (pipetting or submersion). Frozen films were classified to determine vitrification quality: zero (opaque, or abundant crystalline ice formation); one (translucent, or partial vitrification), or two (transparent, or substantial vitrification, glass). A published vitrification solution was used to conduct experiments. Loading by pipetting formed frozen films more reliably than by submersion, but submersion yielded fewer filling problems and was more rapid. The loop designs that yielded the highest levels of vitrification enabled rapid transfer of heat, and most often were characterized as being longer and consisting of fewer layers (height). 3D printing can assist standardization of vitrification methods and research, yet can also provide the ability to quickly design and fabricate custom devices when needed.

  9. The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.

    PubMed

    Lucas, Blake C; Bogovic, John A; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L; Pham, Dzung L; Landman, Bennett A

    2010-03-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC).

  10. The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software

    PubMed Central

    Lucas, Blake C.; Bogovic, John A.; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L.; Pham, Dzung

    2010-01-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC). PMID:20077162

  11. Rapid prototyping modelling in oral and maxillofacial surgery: A two year retrospective study

    PubMed Central

    Stoor, Patricia; Mesimäki, Karri; Kontio, Risto K.

    2015-01-01

    Background The use of rapid prototyping (RP) models in medicine to construct bony models is increasing. Material and Methods The aim of the study was to evaluate retrospectively the indication for the use of RP models in oral and maxillofacial surgery at Helsinki University Central Hospital during 2009-2010. Also, the used computed tomography (CT) examination – multislice CT (MSCT) or cone beam CT (CBCT) - method was evaluated. Results In total 114 RP models were fabricated for 102 patients. The mean age of the patients at the time of the production of the model was 50.4 years. The indications for the modelling included malignant lesions (29%), secondary reconstruction (25%), prosthodontic treatment (22%), orthognathic surgery or asymmetry (13%), benign lesions (8%), and TMJ disorders (4%). MSCT examination was used in 92 and CBCT examination in 22 cases. Most of the models (75%) were conventional hard tissue models. Models with colored tumour or other structure(s) of interest were ordered in 24%. Two out of the 114 models were soft tissue models. Conclusions The main benefit of the models was in treatment planning and in connection with the production of pre-bent plates or custom made implants. The RP models both facilitate and improve treatment planning and intraoperative efficiency. Key words:Rapid prototyping, radiology, computed tomography, cone beam computed tomography. PMID:26644837

  12. A Graphics Environment Supporting the Rapid Prototyping of Pictorial Cockpit Displays

    DTIC Science & Technology

    1986-12-01

    0 - niDi cO 3 FIL .OF I A GRAPHICS ENVIRONMENT SUPPORTING THE RAPID PROTOTYPING OF PICTORIAL COCKPIT DISPLAYS THESIS Alan J. Braaten Captain, USAF...COCKPIT DISPLAYS THESIS Alan J. Braaten Captain, USAF AFIT/GCS/IA/86D- 1 Appram:ed for public release; distribution unlimited AFIT/GCS/MA/80- 1 A...GRAPHICS ENVIROWNT SUPPORTING THE RAPID PROTOTYPING OF PICTORIAL COCKPIT DISPLAYS THESIS Preented to the Faculty Of the School of Engineering of the Air

  13. Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography [A post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oakdale, James S.; Ye, Jianchao; Smith, William L.

    Here, two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.e. modulus and ultimate strength, are lower than if the material were cross-linked to the maximum extent. Herein, post-print curing via UV-driven radical generation, is demonstrated to increase the overall degree of cross-linking of low density, TPP-derived structures.

  14. Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography [A post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon polymerization

    DOE PAGES

    Oakdale, James S.; Ye, Jianchao; Smith, William L.; ...

    2016-11-28

    Here, two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.e. modulus and ultimate strength, are lower than if the material were cross-linked to the maximum extent. Herein, post-print curing via UV-driven radical generation, is demonstrated to increase the overall degree of cross-linking of low density, TPP-derived structures.

  15. Applications of stereolithography for rapid prototyping of biologically compatible chip-based physiometers

    NASA Astrophysics Data System (ADS)

    Fuad, Nurul Mohd; Zhu, Feng; Kaslin, Jan; Wlodkowic, Donald

    2016-12-01

    Despite the growing demand and numerous applications for the biomedical community, the developments in millifluidic devices for small model organisms are limited compared to other fields of biomicrofluidics. The main reasons for this stagnanation are difficulties in prototyping of millimeter scale and high aspect ratio devices needed for large metazoan organisms. Standard photolithography is in this context a time consuming procedure not easily adapted for fabrication of molds with vertical dimensions above 1 mm. Moreover, photolithography is still largely unattainable to a gross majority of biomedical laboratories willing to pursue custom development of their own chip-based platforms due to costs and need for dedicated clean room facilities. In this work, we present application of high-definition additive manufacturing systems for fabrication of 3D printed moulds used in soft lithography. Combination of 3D printing with PDMS replica molding appears to be an alternative for millifluidic systems that yields rapid and cost effective prototyping pipeline. We investigated the important aspects on both 3D printed moulds and PDMS replicas such as geometric accuracies and surface topology. Our results demonstrated that SLA technologies could be applied for rapid and accurate fabrication of millifluidic devices for trapping of millimetre-sized specimens such as living zebrafish larvae. We applied the new manufacturing method in a proof-of-concept prototype device capable of trapping and immobilizing living zebrafish larvae for recording heart rate variation in cardio-toxicity experiments.

  16. Cranioplasty prosthesis manufacturing based on reverse engineering technology

    PubMed Central

    Chrzan, Robert; Urbanik, Andrzej; Karbowski, Krzysztof; Moskała, Marek; Polak, Jarosław; Pyrich, Marek

    2012-01-01

    Summary Background Most patients with large focal skull bone loss after craniectomy are referred for cranioplasty. Reverse engineering is a technology which creates a computer-aided design (CAD) model of a real structure. Rapid prototyping is a technology which produces physical objects from virtual CAD models. The aim of this study was to assess the clinical usefulness of these technologies in cranioplasty prosthesis manufacturing. Material/Methods CT was performed on 19 patients with focal skull bone loss after craniectomy, using a dedicated protocol. A material model of skull deficit was produced using computer numerical control (CNC) milling, and individually pre-operatively adjusted polypropylene-polyester prosthesis was prepared. In a control group of 20 patients a prosthesis was manually adjusted to each patient by a neurosurgeon during surgery, without using CT-based reverse engineering/rapid prototyping. In each case, the prosthesis was implanted into the patient. The mean operating times in both groups were compared. Results In the group of patients with reverse engineering/rapid prototyping-based cranioplasty, the mean operating time was shorter (120.3 min) compared to that in the control group (136.5 min). The neurosurgeons found the new technology particularly useful in more complicated bone deficits with different curvatures in various planes. Conclusions Reverse engineering and rapid prototyping may reduce the time needed for cranioplasty neurosurgery and improve the prosthesis fitting. Such technologies may utilize data obtained by commonly used spiral CT scanners. The manufacturing of individually adjusted prostheses should be commonly used in patients planned for cranioplasty with synthetic material. PMID:22207125

  17. Customized, Miniature Rapid-Prototype Stereotactic Frames for Use in Deep Brain Stimulator Surgery: Initial Clinical Methodology and Experience from 263 Patients from 2002 to 2008

    PubMed Central

    Konrad, Peter E.; Neimat, Joseph S.; Yu, Hong; Kao, Chris C.; Remple, Michael S.; D'Haese, Pierre-François; Dawant, Benoit M.

    2011-01-01

    Background The microTargeting™ platform (MTP) stereotaxy system (FHC Inc., Bowdoin, Me., USA) was FDA approved in 2001 utilizing rapid-prototyping technology to create custom platforms for human stereotaxy procedures. It has also been called the STarFix (surgical targeting fixture) system since it is based on the concept of a patient- and procedure-specific surgical fixture. This is an alternative stereotactic method by which planned trajectories are incorporated into custom-built, miniature stereotactic platforms mounted onto bone fiducial markers. Our goal is to report the clinical experience with this system over a 6-year period. Methods We present the largest reported series of patients who underwent deep brain stimulation (DBS) implantations using customized rapidly prototyped stereotactic frames (MTP). Clinical experience and technical features for the use of this stereotactic system are described. Final lead location analysis using postoperative CT was performed to measure the clinical accuracy of the stereotactic system. Results Our series included 263 patients who underwent 284 DBS implantation surgeries at one institution over a 6-year period. The clinical targeting error without accounting for brain shift in this series was found to be 1.99 mm (SD 0.9). Operating room time was reduced through earlier incision time by 2 h per case. Conclusion Customized, miniature stereotactic frames, namely STarFix platforms, are an acceptable and efficient alternative method for DBS implantation. Its clinical accuracy and outcome are comparable to those associated with traditional stereotactic frame systems. PMID:21160241

  18. Accuracy of using computer-aided rapid prototyping templates for mandible reconstruction with an iliac crest graft

    PubMed Central

    2014-01-01

    Background This study aimed to evaluate the accuracy of surgical outcomes in free iliac crest mandibular reconstructions that were carried out with virtual surgical plans and rapid prototyping templates. Methods This study evaluated eight patients who underwent mandibular osteotomy and reconstruction with free iliac crest grafts using virtual surgical planning and designed guiding templates. Operations were performed using the prefabricated guiding templates. Postoperative three-dimensional computer models were overlaid and compared with the preoperatively designed models in the same coordinate system. Results Compared to the virtual osteotomy, the mean error of distance of the actual mandibular osteotomy was 2.06 ± 0.86 mm. When compared to the virtual harvested grafts, the mean error volume of the actual harvested grafts was 1412.22 ± 439.24 mm3 (9.12% ± 2.84%). The mean error between the volume of the actual harvested grafts and the shaped grafts was 2094.35 ± 929.12 mm3 (12.40% ± 5.50%). Conclusions The use of computer-aided rapid prototyping templates for virtual surgical planning appears to positively influence the accuracy of mandibular reconstruction. PMID:24957053

  19. A review of rapid prototyping (RP) techniques in the medical and biomedical sector.

    PubMed

    Webb, P A

    2000-01-01

    The evolution of rapid prototyping (RP) technology is briefly discussed, and the application of RP technologies to the medical sector is reviewed. Although the use of RP technology has been slow arriving in the medical arena, the potential of the technique is seen to be widespread. Various uses of the technology within surgical planning, prosthesis development and bioengineering are discussed. Some possible drawbacks are noted in some applications, owing to the poor resolution of CT slice data in comparison with that available on RP machines, but overall, the methods are seen to be beneficial in all areas, with one early report suggesting large improvements in measurement and diagnostic accuracy as a result of using RP models.

  20. Automated Sample Preparation (ASP): Development of a Rapid Method to Sequentially Isolate Nucleic Acids and Protein from Any Sample Type by a Cartridge-Based System

    DTIC Science & Technology

    2013-11-27

    SECURITY CLASSIFICATION OF: CUBRC has developed an in-line, multi-analyte isolation technology that utilizes solid phase extraction chemistries to purify...goals. Specifically, CUBRC will design and manufacture a prototype cartridge(s) and test the prototype cartridge for its ability to isolate each...display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. CUBRC , Inc. P. O. Box 400 Buffalo, NY 14225 -1955

  1. Rapid Prototyping 3D Model in Treatment of Pediatric Hip Dysplasia: A Case Report

    PubMed Central

    Holt, Andrew M.; Starosolski, Zbigniew; Kan, J. Herman

    2017-01-01

    Abstract Background: Rapid prototyping is an emerging technology that integrates common medical imaging with specialized production mechanisms to create detailed anatomic replicas. 3D-printed models of musculoskeletal anatomy have already proven useful in orthopedics and their applications continue to expand. Case Description: We present the case of a 10 year-old female with Down syndrome and left acetabular dysplasia and chronic hip instability who underwent periacetabular osteotomy. A rapid prototyping 3D model was created to better understand the anatomy, counsel the family about the problem and the surgical procedure, as well as guide surgical technique. The intricate detail and size match of the model with the patient’s anatomy offered unparalleled, hands-on experience with the patient’s anatomy pre-operatively and improved surgical precision. Conclusions: Our experience with rapid prototyping confirmed its ability to enhance orthopedic care by improving the surgeon’s ability to understand complex anatomy. Additionally, we report a new application utilizing intraoperative fluoroscopic comparison of the model and patient to ensure surgical precision and minimize the risk of complications. This technique could be used in other challenging cases. The increasing availability of rapid prototyping welcomes further use in all areas of orthopedics. PMID:28852351

  2. Rapid Prototyping 3D Model in Treatment of Pediatric Hip Dysplasia: A Case Report.

    PubMed

    Holt, Andrew M; Starosolski, Zbigniew; Kan, J Herman; Rosenfeld, Scott B

    2017-01-01

    Rapid prototyping is an emerging technology that integrates common medical imaging with specialized production mechanisms to create detailed anatomic replicas. 3D-printed models of musculoskeletal anatomy have already proven useful in orthopedics and their applications continue to expand. We present the case of a 10 year-old female with Down syndrome and left acetabular dysplasia and chronic hip instability who underwent periacetabular osteotomy. A rapid prototyping 3D model was created to better understand the anatomy, counsel the family about the problem and the surgical procedure, as well as guide surgical technique. The intricate detail and size match of the model with the patient's anatomy offered unparalleled, hands-on experience with the patient's anatomy pre-operatively and improved surgical precision. Our experience with rapid prototyping confirmed its ability to enhance orthopedic care by improving the surgeon's ability to understand complex anatomy. Additionally, we report a new application utilizing intraoperative fluoroscopic comparison of the model and patient to ensure surgical precision and minimize the risk of complications. This technique could be used in other challenging cases. The increasing availability of rapid prototyping welcomes further use in all areas of orthopedics.

  3. Prompt and Precise Prototyping

    NASA Technical Reports Server (NTRS)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  4. Teaching Tip: Using Rapid Game Prototyping for Exploring Requirements Discovery and Modeling

    ERIC Educational Resources Information Center

    Dalal, Nikunj

    2012-01-01

    We describe the use of rapid game prototyping as a pedagogic technique to experientially explore and learn requirements discovery, modeling, and specification in systems analysis and design courses. Students have a natural interest in gaming that transcends age, gender, and background. Rapid digital game creation is used to build computer games…

  5. Design and optimization of the micro-engine turbine rotor manufacturing using the rapid prototyping technology

    NASA Astrophysics Data System (ADS)

    Vdovin, R. A.; Smelov, V. G.

    2017-02-01

    This work describes the experience in manufacturing the turbine rotor for the micro-engine. It demonstrates the design principles for the complex investment casting process combining the use of the ProCast software and the rapid prototyping techniques. At the virtual modelling stage, in addition to optimized process parameters, the casting structure was improved to obtain the defect-free section. The real production stage allowed demonstrating the performance and fitness of rapid prototyping techniques for the manufacture of geometrically-complex engine-building parts.

  6. RP That's Right For You

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Gordon, Gail (Technical Monitor)

    2001-01-01

    This article offers an unfiltered look at a large cross section of the different rapid prototyping technologies available today; from a guy with one of the biggest RP toy boxes in the world as the manager of the Rapid Prototyping Laboratory at NASA's Marshall Space Flight Center (MSFC) in Huntsville, AL, USA. NASA's current operation capacity is nine RP machines, representing eight actual technologies. The article presents a realistic, unbiased look at the technologies and offers advice on what to do and where to go for the best solution to your rapid prototyping needs.

  7. C3I Rapid Prototype Investigation.

    DTIC Science & Technology

    1986-01-01

    feasibility of applying rapid K prototyping techniques to Air Force C3 1 system developments . This report presents the technical progress during the...computer tunctions. The cost to use each in terms of hardware, software, analysis, and needed further developments was assessed. Prototyping approaches were...acquirer, and developer are the ". basis for problems in C3I system developments . These problems destabilize r-. the requirements determination process

  8. Microgravity Manufacturing: Extending Rapid Prototyping Past the Horizon

    NASA Technical Reports Server (NTRS)

    Cooper, Ken

    2003-01-01

    Over the last decade, rapid prototyping (RP) technologies have continued to advance in all aspects of operation and application. From continuously advanced materials and processes development to more hard-core manufacturing uses, the RP realm has stretched considerably past its original expectations as a prototyping capability. This paper discusses the unique applications for which NASA has chosen these manufacturing techniques to be utilized in outer space.

  9. Rapid Prototyping Technologies for Manufacturing and Maintenance Activities

    NASA Astrophysics Data System (ADS)

    Pfeifer, Marcel Rolf

    2017-12-01

    The paper deals with the direct application of Rapid Prototyping technologies for parts and spare parts production in production companies and the economic effect by making use of this technology. Traditional production technologies are technologies such as forging, cutting, machining, etc. These technologies are widely accepted and the teething troubles are solved. Rapid Prototyping technologies such as 3D printing on the other hand came into the focus in the recent years when the technologies and the produced quality gradually advanced. Providing flexibility and time efficiency the technology should also have a practical application in production. This paper has the aim to provide a case-study based on existing cost figures to show that these technologies are not limited to prototype developments.

  10. Mechatronics Education: From Paper Design to Product Prototype Using LEGO NXT Parts

    NASA Astrophysics Data System (ADS)

    Lofaro, Daniel M.; Le, Tony Truong Giang; Oh, Paul

    The industrial design cycle starts with design then simulation, prototyping, and testing. When the tests do not match the design requirements the design process is started over again. It is important for students to experience this process before they leave their academic institution. The high cost of the prototype phase, due to CNC/Rapid Prototype machine costs, makes hands on study of this process expensive for students and the academic institutions. This document shows that the commercially available LEGO NXT Robot kit is a viable low cost surrogate to the expensive industrial CNC/Rapid Prototype portion of the industrial design cycle.

  11. Using three-dimensional rapid prototyping in the design and development of orthopaedic screws in standardised pull-out tests.

    PubMed

    Leslie, Laura Jane; Connolly, Ashley; Swadener, John G; Junaid, Sarah; Theivendran, Kanthan; Deshmukh, Subodh C

    2018-06-01

    The majority of orthopaedic screws are designed, tested and manufactured by existing orthopaedics companies and are predominantly developed with healthy bone in mind. The timescales and costs involved in the development of a new screw design, for example, for osteoporotic bone, are high. In this study, standard wood screws were used to analyse the concept of using three-dimensional printing, or rapid prototyping, as a viable stage of development in the design of a new bone screw. Six wood screws were reverse engineered and printed in polymeric material using stereolithography. Three of the designs were also printed in Ti6Al4V using direct metal laser sintering; however, these were not of sufficient quality to test further. Both the original metal screws (metal) and polymeric rapid prototyping screws were then tested using standard pull-out tests from low-density polyurethane blocks (Sawbones). Results showed the highest pull-out strengths for screws with the longest thread length and the smallest inner diameter. Of the six screw designs tested, five showed no more than a 17% variance between the metal and rapid prototyping results. A similar pattern of results was shown between the screw designs for both the metal and rapid prototyping screws in five of the six cases. While not producing fully comparable pull-out results to orthopaedic screws, the results from this study do provide evidence of the potential usefulness and cost-effectiveness of rapid prototyping in the early stages of design and testing of orthopaedic screws.

  12. ORGANOPHOSPHATE PESTICIDE DEGRADATION UNDER DRINKING WATER TREATMENT CONDITIONS

    EPA Science Inventory

    Chlorpyrifos (CP) was used as a model compound to develop experimental methods and prototype modeling tools to forecast the fate of organophosphate (OP) pesticides under drinking water treatment conditions. CP was found to rapidly oxidize to chlorpyrifos oxon (CPO) in the presen...

  13. Digitally switchable multi-focal lens using freeform optics.

    PubMed

    Wang, Xuan; Qin, Yi; Hua, Hong; Lee, Yun-Han; Wu, Shin-Tson

    2018-04-16

    Optical technologies offering electrically tunable optical power have found a broad range of applications, from head-mounted displays for virtual and augmented reality applications to microscopy. In this paper, we present a novel design and prototype of a digitally switchable multi-focal lens (MFL) that offers the capability of rapidly switching the optical power of the system among multiple foci. It consists of a freeform singlet and a customized programmable optical shutter array (POSA). Time-multiplexed multiple foci can be obtained by electrically controlling the POSA to switch the light path through different segments of the freeform singlet rapidly. While this method can be applied to a broad range of imaging and display systems, we experimentally demonstrate a proof-of-concept prototype for a multi-foci imaging system.

  14. The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography.

    PubMed

    Liu, M J J; Chou, S M; Chua, C K; Tay, B C M; Ng, B K

    2013-02-01

    To date, naturally derived biomaterials are rarely used in advanced tissue engineering (TE) methods despite their superior biocompatibility. This is because these native materials, which consist mainly of proteins and polysaccharides, do not possess the ability to withstand harsh processing conditions. Unlike synthetic polymers, natural materials degrade and decompose rapidly in the presence of chemical solvents and high temperature, respectively. Thus, the fabrication of tissue scaffolds using natural biomaterials is often carried out using conventional techniques, where the efficiency in mass transport of nutrients and removal of waste products within the construct is compromised. The present study identified silk fibroin (SF) protein as a suitable material for the application of rapid prototyping (RP) or additive manufacturing (AM) technology. Using the indirect RP method, via the use of a mould, SF tissue scaffolds with both macro- and micro-morphological features can be produced and qualitatively examined by spectral-domain optical coherence tomography (SD-OCT). The advanced imaging technique showed the ability to differentiate the cells and SF material by producing high contrasting images, therefore suggesting the method as a feasible alternative to the histological analysis of cell growth within tissue scaffolds. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Direct Prototyping of Patterned Nanoporous Carbon: A Route from Materials to On-chip Devices

    PubMed Central

    Shen, Caiwei; Wang, Xiaohong; Zhang, Wenfeng; Kang, Feiyu

    2013-01-01

    Prototyping of nanoporous carbon membranes with three-dimensional microscale patterns is significant for integration of such multifunctional materials into various miniaturized systems. Incorporating nano material synthesis into microelectronics technology, we present a novel approach to direct prototyping of carbon membranes with highly nanoporous structures inside. Membranes with significant thicknesses (1 ~ 40 μm) are rapidly prototyped at wafer level by combining nano templating method with readily available microfabrication techniques, which include photolithography, high-temperature annealing and etching. In particular, the high-surface-area membranes are specified as three-dimensional electrodes for micro supercapacitors and show high performance compared to reported ones. Improvements in scalability, compatibility and cost make the general strategy promising for batch fabrication of operational on-chip devices or full integration of three-dimensional nanoporous membranes with existing micro systems. PMID:23887486

  16. Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head

    PubMed Central

    Wang, Wei; Hu, Wei; Yang, Pei; Dang, Xiao Qian; Li, Xiao Hui; Wang, Kun Zheng

    2017-01-01

    Introduction Core decompression is an efficient treatment for early stage ischemic necrosis of the femoral head. In conventional procedures, the pre-operative X-ray only shows one plane of the ischemic area, which often results in inaccurate drilling. This paper introduces a new method that uses computer-assisted technology and rapid prototyping to enhance drilling accuracy during core decompression surgeries and presents a validation study of cadaveric tests. Methods Twelve cadaveric human femurs were used to simulate early-stage ischemic necrosis. The core decompression target at the anterolateral femoral head was simulated using an embedded glass ball (target). Three positioning Kirschner wires were drilled into the top and bottom of the large rotor. The specimen was then subjected to computed tomography (CT). A CT image of the specimen was imported into the Mimics software to construct a three-dimensional model including the target. The best core decompression channel was then designed using the 3D model. A navigational template for the specimen was designed using the Pro/E software and manufactured by rapid prototyping technology to guide the drilling channel. The specimen-specific navigation template was installed on the specimen using positioning Kirschner wires. Drilling was performed using a guide needle through the guiding hole on the templates. The distance between the end point of the guide needle and the target was measured to validate the patient-specific surgical accuracy. Results The average distance between the tip of the guide needle drilled through the guiding template and the target was 1.92±0.071 mm. Conclusions Core decompression using a computer-rapid prototyping template is a reliable and accurate technique that could provide a new method of precision decompression for early-stage ischemic necrosis. PMID:28464029

  17. Real-time application of knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Brumbaugh, Randal W.; Duke, Eugene L.

    1989-01-01

    The Rapid Prototyping Facility (RPF) was developed to meet a need for a facility which allows flight systems concepts to be prototyped in a manner which allows for real-time flight test experience with a prototype system. This need was focused during the development and demonstration of the expert system flight status monitor (ESFSM). The ESFSM was a prototype system developed on a LISP machine, but lack of a method for progressive testing and problem identification led to an impractical system. The RPF concept was developed, and the ATMS designed to exercise its capabilities. The ATMS Phase 1 demonstration provided a practical vehicle for testing the RPF, as well as a useful tool. ATMS Phase 2 development continues. A dedicated F-18 is expected to be assigned for facility use in late 1988, with RAV modifications. A knowledge-based autopilot is being developed using the RPF. This is a system which provides elementary autopilot functions and is intended as a vehicle for testing expert system verification and validation methods. An expert system propulsion monitor is being prototyped. This system provides real-time assistance to an engineer monitoring a propulsion system during a flight.

  18. Rapid Prototyping Enters Mainstream Manufacturing.

    ERIC Educational Resources Information Center

    Winek, Gary

    1996-01-01

    Explains rapid prototyping, a process that uses computer-assisted design files to create a three-dimensional object automatically, speeding the industrial design process. Five commercially available systems and two emerging types--the 3-D printing process and repetitive masking and depositing--are described. (SK)

  19. Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping.

    PubMed

    Mashiko, Toshihiro; Otani, Keisuke; Kawano, Ryutaro; Konno, Takehiko; Kaneko, Naoki; Ito, Yumiko; Watanabe, Eiju

    2015-03-01

    We developed a method for fabricating a three-dimensional hollow and elastic aneurysm model useful for surgical simulation and surgical training. In this article, we explain the hollow elastic model prototyping method and report on the effects of applying it to presurgical simulation and surgical training. A three-dimensional printer using acrylonitrile-butadiene-styrene as a modeling material was used to produce a vessel model. The prototype was then coated with liquid silicone. After the silicone had hardened, the acrylonitrile-butadiene-styrene was melted with xylene and removed, leaving an outer layer as a hollow elastic model. Simulations using the hollow elastic model were performed in 12 patients. In all patients, the clipping proceeded as scheduled. The surgeon's postoperative assessment was favorable in all cases. This method enables easy fabrication at low cost. Simulation using the hollow elastic model is thought to be useful for understanding of three-dimensional aneurysm structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Rapid prototyping modelling in oral and maxillofacial surgery: A two year retrospective study.

    PubMed

    Suomalainen, Anni; Stoor, Patricia; Mesimäki, Karri; Kontio, Risto K

    2015-12-01

    The use of rapid prototyping (RP) models in medicine to construct bony models is increasing. The aim of the study was to evaluate retrospectively the indication for the use of RP models in oral and maxillofacial surgery at Helsinki University Central Hospital during 2009-2010. Also, the used computed tomography (CT) examination - multislice CT (MSCT) or cone beam CT (CBCT) - method was evaluated. In total 114 RP models were fabricated for 102 patients. The mean age of the patients at the time of the production of the model was 50.4 years. The indications for the modelling included malignant lesions (29%), secondary reconstruction (25%), prosthodontic treatment (22%), orthognathic surgery or asymmetry (13%), benign lesions (8%), and TMJ disorders (4%). MSCT examination was used in 92 and CBCT examination in 22 cases. Most of the models (75%) were conventional hard tissue models. Models with colored tumour or other structure(s) of interest were ordered in 24%. Two out of the 114 models were soft tissue models. The main benefit of the models was in treatment planning and in connection with the production of pre-bent plates or custom made implants. The RP models both facilitate and improve treatment planning and intraoperative efficiency. Rapid prototyping, radiology, computed tomography, cone beam computed tomography.

  1. Selective laser sintering: application of a rapid prototyping method in craniomaxillofacial reconstructive surgery.

    PubMed

    Aung, S C; Tan, B K; Foo, C L; Lee, S T

    1999-09-01

    Advances in technology have benefited the medical world in many ways and a new generation of computed tomography (CT) scanners and three-dimensional (3-D) model making rapid prototyping systems (RPS) have taken craniofacial surgical planning and management to new heights. With the development of new rapid prototyping systems and the improvements in CT scan technology, such as the helical scanner, biomedical modelling has improved considerably and accurate 3-D models can now be fabricated to allow surgeons to visualise and physically handle a 3-D model on which simulation surgery can be performed. The principle behind this technology is to first acquire digital data (CT scan data) which is then imported to the RPS to fabricate fine layers or cuts of the model which are gradually built up to form the 3-D models. Either liquid resin or nylon powder or special paper may be used to make these models using the various RPS available today. Selective laser sintering (SLS), which employs a CO2 laser beam to solidify special nylon powder and build up the model in layers is described in this case report, where a 23-year old Chinese female with panfacial fracture and a skull defect benefited from SLS biomodelling in the preoperative workup.

  2. Construction of a menu-based system

    NASA Technical Reports Server (NTRS)

    Noonan, R. E.; Collins, W. R.

    1985-01-01

    The development of the user interface to a software code management system is discussed. The user interface was specified using a grammar and implemented using a LR parser generator. This was found to be an effective method for the rapid prototyping of a menu based system.

  3. Rapid Prototyping Technology for Manufacturing GTE Turbine Blades

    NASA Astrophysics Data System (ADS)

    Balyakin, A. V.; Dobryshkina, E. M.; Vdovin, R. A.; Alekseev, V. P.

    2018-03-01

    The conventional approach to manufacturing turbine blades by investment casting is expensive and time-consuming, as it takes a lot of time to make geometrically precise and complex wax patterns. Turbine blade manufacturing in pilot production can be sped up by accelerating the casting process while keeping the geometric precision of the final product. This paper compares the rapid prototyping method (casting the wax pattern composition into elastic silicone molds) to the conventional technology. Analysis of the size precision of blade casts shows that silicon-mold casting features sufficient geometric precision. Thus, this method for making wax patterns can be a cost-efficient solution for small-batch or pilot production of turbine blades for gas-turbine units (GTU) and gas-turbine engines (GTE). The paper demonstrates how additive technology and thermographic analysis can speed up the cooling of wax patterns in silicone molds. This is possible at an optimal temperature and solidification time, which make the process more cost-efficient while keeping the geometric quality of the final product.

  4. The effect of cutting conditions on power inputs when machining

    NASA Astrophysics Data System (ADS)

    Petrushin, S. I.; Gruby, S. V.; Nosirsoda, Sh C.

    2016-08-01

    Any technological process involving modification of material properties or product form necessitates consumption of a certain power amount. When developing new technologies one should take into account the benefits of their implementation vs. arising power inputs. It is revealed that procedures of edge cutting machining are the most energy-efficient amongst the present day forming procedures such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc, such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc. An expanded formula for calculation of power inputs is deduced, which takes into consideration the mode of cutting together with the tip radius, the form of the replaceable multifaceted insert and its wear. Having taken as an example cutting of graphite iron by the assembled cutting tools with replaceable multifaceted inserts the authors point at better power efficiency of high feeding cutting in comparison with high-speed cutting.

  5. Parametric Modeling as a Technology of Rapid Prototyping in Light Industry

    NASA Astrophysics Data System (ADS)

    Tomilov, I. N.; Grudinin, S. N.; Frolovsky, V. D.; Alexandrov, A. A.

    2016-04-01

    The paper deals with the parametric modeling method of virtual mannequins for the purposes of design automation in clothing industry. The described approach includes the steps of generation of the basic model on the ground of the initial one (obtained in 3D-scanning process), its parameterization and deformation. The complex surfaces are presented by the wireframe model. The modeling results are evaluated with the set of similarity factors. Deformed models are compared with their virtual prototypes. The results of modeling are estimated by the standard deviation factor.

  6. Rapid Prototyping in PVS

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Butler, Ricky (Technical Monitor)

    2003-01-01

    PVSio is a conservative extension to the PVS prelude library that provides basic input/output capabilities to the PVS ground evaluator. It supports rapid prototyping in PVS by enhancing the specification language with built-in constructs for string manipulation, floating point arithmetic, and input/output operations.

  7. A Multi-Center Space Data System Prototype Based on CCSDS Standards

    NASA Technical Reports Server (NTRS)

    Rich, Thomas M.

    2016-01-01

    Deep space missions beyond earth orbit will require new methods of data communications in order to compensate for increasing Radio Frequency (RF) propagation delay. The Consultative Committee for Space Data Systems (CCSDS) standard protocols Spacecraft Monitor & Control (SM&C), Asynchronous Message Service (AMS), and Delay/Disruption Tolerant Networking (DTN) provide such a method. However, the maturity level of this protocol stack is insufficient for mission inclusion at this time. This Space Data System prototype is intended to provide experience which will raise the Technical Readiness Level (TRL) of this protocol set. In order to reduce costs, future missions can take advantage of these standard protocols, which will result in increased interoperability between control centers. This prototype demonstrates these capabilities by implementing a realistic space data system in which telemetry is published to control center applications at the Jet Propulsion Lab (JPL), the Marshall Space Flight Center (MSFC), and the Johnson Space Center (JSC). Reverse publishing paths for commanding from each control center are also implemented. The target vehicle consists of realistic flight computer hardware running Core Flight Software (CFS) in the integrated Power, Avionics, and Power (iPAS) Pathfinder Lab at JSC. This prototype demonstrates a potential upgrade path for future Deep Space Network (DSN) modification, in which the automatic error recovery and communication gap compensation capabilities of DTN would be exploited. In addition, SM&C provides architectural flexibility by allowing new service providers and consumers to be added efficiently anywhere in the network using the common interface provided by SM&C's Message Abstraction Layer (MAL). In FY 2015, this space data system was enhanced by adding telerobotic operations capability provided by the Robot API Delegate (RAPID) family of protocols developed at NASA. RAPID is one of several candidates for consideration and inclusion in a new international standard being developed by the CCSDS Telerobotic Operations Working Group. Software gateways for the purpose of interfacing RAPID messages with the existing SM&C based infrastructure were developed. Telerobotic monitor, control, and bridge applications were written in the RAPID framework, which were then tailored to the NAO telerobotic test article hardware, a product of Aldebaran Robotics.

  8. Development of Experimental Setup of Metal Rapid Prototyping Machine using Selective Laser Sintering Technique

    NASA Astrophysics Data System (ADS)

    Patil, S. N.; Mulay, A. V.; Ahuja, B. B.

    2018-04-01

    Unlike in the traditional manufacturing processes, additive manufacturing as rapid prototyping, allows designers to produce parts that were previously considered too complex to make economically. The shift is taking place from plastic prototype to fully functional metallic parts by direct deposition of metallic powders as produced parts can be directly used for desired purpose. This work is directed towards the development of experimental setup of metal rapid prototyping machine using selective laser sintering and studies the various parameters, which plays important role in the metal rapid prototyping using SLS technique. The machine structure in mainly divided into three main categories namely, (1) Z-movement of bed and table, (2) X-Y movement arrangement for LASER movements and (3) feeder mechanism. Z-movement of bed is controlled by using lead screw, bevel gear pair and stepper motor, which will maintain the accuracy of layer thickness. X-Y movements are controlled using timing belt and stepper motors for precise movements of LASER source. Feeder mechanism is then developed to control uniformity of layer thickness metal powder. Simultaneously, the study is carried out for selection of material. Various types of metal powders can be used for metal RP as Single metal powder, mixture of two metals powder, and combination of metal and polymer powder. Conclusion leads to use of mixture of two metals powder to minimize the problems such as, balling effect and porosity. Developed System can be validated by conducting various experiments on manufactured part to check mechanical and metallurgical properties. After studying the results of these experiments, various process parameters as LASER properties (as power, speed etc.), and material properties (as grain size and structure etc.) will be optimized. This work is mainly focused on the design and development of cost effective experimental setup of metal rapid prototyping using SLS technique which will gives the feel of metal rapid prototyping process and its important parameters.

  9. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering.

    PubMed

    Crook, Nathan C; Schmitz, Alexander C; Alper, Hal S

    2014-05-16

    Reduction of endogenous gene expression is a fundamental operation of metabolic engineering, yet current methods for gene knockdown (i.e., genome editing) remain laborious and slow, especially in yeast. In contrast, RNA interference allows facile and tunable gene knockdown via a simple plasmid transformation step, enabling metabolic engineers to rapidly prototype knockdown strategies in multiple strains before expending significant cost to undertake genome editing. Although RNAi is naturally present in a myriad of eukaryotes, it has only been recently implemented in Saccharomyces cerevisiae as a heterologous pathway and so has not yet been optimized as a metabolic engineering tool. In this study, we elucidate a set of design principles for the construction of hairpin RNA expression cassettes in yeast and implement RNA interference to quickly identify routes for improvement of itaconic acid production in this organism. The approach developed here enables rapid prototyping of knockdown strategies and thus accelerates and reduces the cost of the design-build-test cycle in yeast.

  10. Mechanical design of a shape memory alloy actuated prosthetic hand.

    PubMed

    De Laurentis, Kathryn J; Mavroidis, Constantinos

    2002-01-01

    This paper presents the mechanical design for a new five fingered, twenty degree-of-freedom dexterous hand patterned after human anatomy and actuated by Shape Memory Alloy artificial muscles. Two experimental prototypes of a finger, one fabricated by traditional means and another fabricated by rapid prototyping techniques, are described and used to evaluate the design. An important aspect of the Rapid Prototype technique used here is that this multi-articulated hand will be fabricated in one step, without requiring assembly, while maintaining its desired mobility. The use of Shape Memory Alloy actuators combined with the rapid fabrication of the non-assembly type hand, reduce considerably its weight and fabrication time. Therefore, the focus of this paper is the mechanical design of a dexterous hand that combines Rapid Prototype techniques and smart actuators. The type of robotic hand described in this paper can be utilized for applications requiring low weight, compactness, and dexterity such as prosthetic devices, space and planetary exploration.

  11. [Mandibular-driven simultaneous maxillo-mandibular distraction for hemifacial microsomia with rapid prototyping technology].

    PubMed

    Gao, Quan-Wen; Song, Hui-Feng; Xu, Ming-Huo; Liu, Chun-Ming; Chai, Jia-Ke

    2013-11-01

    To explore the clinical application of mandibular-driven simultaneous maxillo-mandihular distraction to correct hemifacial microsomia with rapid prototyping technology. The patient' s skull resin model was manufactured with rapid prototyping technology. The osteotomy was designed on skull resin model. According to the preoperative design, the patients underwent Le Fort I osteotomy and mandibular ramus osteotomy. The internal mandible distractor was embedded onto the osteotomy position. The occlusal titanium pin was implanted. Distraction were carried out by mandibular-driven simultaneous maxillo-mandihular distraction 5 days after operation. The distraction in five patients was complete as designed. No infection and dysosteogenesis happened. The longest distance of distraction was 28 mm, and the shortest distance was 16 mm. The facial asymmetry deformity was significantly improved at the end of distraction. The ocelusal plane of patients obviously improved. Rapid prototyping technology is helpful to design precisely osteotomy before operation. Mandibular-driven simultaneous maxillo-mandibular distraction can correct hemifacial microsomia. It is worth to clinical application.

  12. On the Application of Rapid Prototyping Technology for the Fabrication of Flapping Wings for Micro Air Vehicles

    NASA Astrophysics Data System (ADS)

    Kraemer, Kurtis Leigh

    Micro air vehicles (MAV) are a class of small uninhabited aircraft with dimensions less than 15 cm (6 in) and mass less than 500g (1.1 lbs). The aim of this research was to develop a fast, accurate, low-cost, and repeatable fabrication process for flapping MAV wings. Through the use of the RepRap Mendel open-source fused-deposition modeling (FDM) rapid prototyping machine ("3-D printer"), various wing prototypes were designed and fabricated using a bio-inspired approach. Testing of the aerodynamic performance of both real locust wings and the 3-D printed wing prototypes was performed through axial spin testing. Bending stiffness measurements were also performed on the 3-D printed wings. Through the use of open-source rapid prototyping technology, a fast and low-cost fabrication process for flapping MAV wings has been developed, out of which further understanding of flapping wing design and fabrication has been gained.

  13. Rapid Characterization of Magnetic Moment of Cells for Magnetic Separation

    PubMed Central

    Ooi, Chinchun; Earhart, Christopher M.; Wilson, Robert J.; Wang, Shan X.

    2014-01-01

    NCI-H1650 lung cancer cell lines labeled with magnetic nanoparticles via the Epithelial Cell Adhesion Molecule (EpCAM) antigen were previously shown to be captured at high efficiencies by a microfabricated magnetic sifter. If fine control and optimization of the magnetic separation process is to be achieved, it is vital to be able to characterize the labeled cells’ magnetic moment rapidly. We have thus adapted a rapid prototyping method to obtain the saturation magnetic moment of these cells. This method utilizes a cross-correlation algorithm to analyze the cells’ motion in a simple fluidic channel to obtain their magnetophoretic velocity, and is effective even when the magnetic moments of cells are small. This rapid characterization is proven useful in optimizing our microfabricated magnetic sifter procedures for magnetic cell capture. PMID:24771946

  14. Quantitative assessment of biophotonic imaging system performance with phantoms fabricated by rapid prototyping

    NASA Astrophysics Data System (ADS)

    Wang, Jianting; Coburn, James; Woolsey, Nicholas; Liang, Chia-Pin; Ramella-Roman, Jessica; Chen, Yu; Pfefer, Joshua

    2014-03-01

    In biophotonic imaging, turbid phantoms that are low-cost, biologically-relevant, and durable are desired for standardized performance assessment. Such phantoms often contain inclusions of varying depths and sizes in order to quantify key image quality characteristics such as penetration depth, sensitivity and contrast detectability. The emerging technique of rapid prototyping with three-dimensional (3D) printers provides a potentially revolutionary way to fabricate these structures. Towards this goal, we have characterized the optical properties and morphology of phantoms fabricated by two 3D printing approaches: thermosoftening and photopolymerization. Material optical properties were measured by spectrophotometry while the morphology of phantoms incorporating 0.2-1.0 mm diameter channels was studied by μCT, optical coherence tomography (OCT) and optical microscopy. A near-infrared absorbing dye and nanorods at several concentrations were injected into channels to evaluate detectability with a near-infrared hyperspectral reflectance imaging (HRI) system (650-1100 nm). Phantoms exhibited biologically-relevant scattering and low absorption across visible and near-infrared wavelengths. Although limitations in resolution were noted, channels with diameters of 0.4 mm or more could be reliably fabricated. The most significant problem noted was the porosity of phantoms generated with the thermosoftening-based printer. The aforementioned three imaging methods provided a valuable mix of insights into phantom morphology and may also be useful for detailed structural inspection of medical devices fabricated by rapid prototyping, such as customized implants. Overall, our findings indicate that 3D printing has significant potential as a method for fabricating well-characterized, standard phantoms for medical imaging modalities such as HRI.

  15. Rapid prototyping and AI programming environments applied to payload modeling

    NASA Technical Reports Server (NTRS)

    Carnahan, Richard S., Jr.; Mendler, Andrew P.

    1987-01-01

    This effort focused on using artificial intelligence (AI) programming environments and rapid prototyping to aid in both space flight manned and unmanned payload simulation and training. Significant problems addressed are the large amount of development time required to design and implement just one of these payload simulations and the relative inflexibility of the resulting model to accepting future modification. Results of this effort have suggested that both rapid prototyping and AI programming environments can significantly reduce development time and cost when applied to the domain of payload modeling for crew training. The techniques employed are applicable to a variety of domains where models or simulations are required.

  16. Materials Selection and Their Characteristics as Used in Rapid Prototyping

    NASA Technical Reports Server (NTRS)

    Cooper, K.; Salvail, P.; Vesely, E.; Wells, D.

    1999-01-01

    NASA's Marshall Space Flight Center (MSFC) conducted a program to evaluate six technologies used in Rapid Prototyping (RP) to produce investment casting patterns. In this paper, RP refers to the collective additive fabrication technologies known as Solid Free-Form Fabrication. Such technologies are being used with increasing frequency in manufacturing applications, due in part to their rapidly expanding capabilities to fabricate models from many types of materials. This study used ABS plastic, polycarbonate, TrueForm PM6, epoxy resin, paper, starch, and wax. The baseline model was a semi-complex prototype fuel pump housing, intended for use in the X-33 reusable launch vehicle. All models were shelled in a production- grade colloidal silica ceramic. Primary coats were zircon-base flour with zircon backup, while secondary coats were silica grains with a tabular alumina backup. Each model was shelled in an identical manner, using the same atmospheric conditions and drying times, as well as the same number of layers. Bake-outs and firing cycles were consistent with the leach ability of each material. Preheat and bath temperatures were also kept consistent. All molds were cast in vacuum using a hydrogen-resistant superalloy (NASA- 23) that was developed in-house. The final technical evaluation included detailed measurements of the model and the final casting, in order to determine any dimensional changes caused by different pattern materials, as well as documentation of all defects and any obvious refractory/model reactions. Prototype production costs were estimated for each method and taken into consideration during trade-off analysis.

  17. Effects of Hydrocarbon-Based Grease on Rapid Prototype Material Used for Grease Retention Shrouds

    NASA Technical Reports Server (NTRS)

    Zakrajsek, Andrew J.; Valco, Daniel J.; Street, Kenneth W., Jr.

    2010-01-01

    Effects of hydrocarbon-based greases on specific rapid prototype (RP) materials used to fabricate grease retention shrouds (GRS) were explored in this study. Grease retention shrouds are being considered as a way to maintain adequate grease lubrication at the gear mesh in a prototype research transmission system. Due to their design and manufacturing flexibility, rapid prototype materials were chosen for the grease retention shrouds. In order to gain a better understanding of the short and long term effects grease pose on RP materials, research was conducted on the interaction of hydrocarbon-based grease with RP materials. The materials used in this study were durable polyamide (nylon), acrylonitrile butadiene styrene (ABS), and WaterClear 10120. Testing was conducted using Mobilgrease 28 and Syn-Tech 3913G grease (gear coupling grease). These greases were selected due to their regular use with mechanical components. To investigate the effect that grease has on RP materials, the following methods were used to obtain qualitative and quantitative data: Fourier transform infrared spectroscopy (FT-IR), interference profilometer measurements, digital camera imaging, physical shape measurement, and visual observations. To record the changes in the RP materials due to contact with the grease, data was taken before and after the grease application. Results showed that the WaterClear 10120 RP material provided the best resistance to grease penetration as compared to nylon and ABS RP materials. The manufacturing process, and thus resulting surface conditions of the RP material, played a key role in the grease penetration properties and resilience of these materials.

  18. Cell-free synthetic biology for in vitro prototype engineering.

    PubMed

    Moore, Simon J; MacDonald, James T; Freemont, Paul S

    2017-06-15

    Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. © 2017 The Author(s).

  19. Cell-free synthetic biology for in vitro prototype engineering

    PubMed Central

    Moore, Simon J.; MacDonald, James T.

    2017-01-01

    Cell-free transcription–translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. PMID:28620040

  20. Software Prototyping: A Case Report of Refining User Requirements for a Health Information Exchange Dashboard.

    PubMed

    Nelson, Scott D; Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R

    2016-01-01

    Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system.

  1. Integrating Rapid Prototyping into Graphic Communications

    ERIC Educational Resources Information Center

    Xu, Renmei; Flowers, Jim

    2015-01-01

    Integrating different science, technology, engineering, and mathematics (STEM) areas can help students learn and leverage both the equipment and expertise at a single school. In comparing graphic communications classes with classes that involve rapid prototyping (RP) technologies like 3D printing, there are sufficient similarities between goals,…

  2. Anatomical Reproducibility of a Head Model Molded by a Three-dimensional Printer

    PubMed Central

    KONDO, Kosuke; NEMOTO, Masaaki; MASUDA, Hiroyuki; OKONOGI, Shinichi; NOMOTO, Jun; HARADA, Naoyuki; SUGO, Nobuo; MIYAZAKI, Chikao

    We prepared rapid prototyping models of heads with unruptured cerebral aneurysm based on image data of computed tomography angiography (CTA) using a three-dimensional (3D) printer. The objective of this study was to evaluate the anatomical reproducibility and accuracy of these models by comparison with the CTA images on a monitor. The subjects were 22 patients with unruptured cerebral aneurysm who underwent preoperative CTA. Reproducibility of the microsurgical anatomy of skull bone and arteries, the length and thickness of the main arteries, and the size of cerebral aneurysm were compared between the CTA image and rapid prototyping model. The microsurgical anatomy and arteries were favorably reproduced, apart from a few minute regions, in the rapid prototyping models. No significant difference was noted in the measured lengths of the main arteries between the CTA image and rapid prototyping model, but errors were noted in their thickness (p < 0.001). A significant difference was also noted in the longitudinal diameter of the cerebral aneurysm (p < 0.01). Regarding the CTA image as the gold standard, reproducibility of the microsurgical anatomy of skull bone and main arteries was favorable in the rapid prototyping models prepared using a 3D printer. It was concluded that these models are useful tools for neurosurgical simulation. The thickness of the main arteries and size of cerebral aneurysm should be comprehensively judged including other neuroimaging in consideration of errors. PMID:26119896

  3. Method for freeforming objects with low-binder slurry

    DOEpatents

    Cesarano, III, Joseph; Calvert, Paul D.

    2002-01-01

    In a rapid prototyping system, a part is formed by depositing a bead of slurry that has a sufficient high concentration of particles to be pseudoplastic and almost no organic binders. After deposition the bead is heated to drive off sufficient liquid to cause the bead to become dilatant.

  4. Rapid Prototyping Methodology in Action: A Developmental Study.

    ERIC Educational Resources Information Center

    Jones, Toni Stokes; Richey, Rita C.

    2000-01-01

    Investigated the use of rapid prototyping methodologies in two projects conducted in a natural work setting to determine the nature of its use by designers and customers and the extent to which its use enhances traditional instructional design. Discusses design and development cycle-time reduction, product quality, and customer and designer…

  5. Classroom Evaluation of a Rapid Prototyping System.

    ERIC Educational Resources Information Center

    Tennyson, Stephen A.; Krueger, Thomas J.

    2001-01-01

    Introduces rapid prototyping which creates virtual models through a variety of automated material additive processes. Relates experiences using JP System 5 in freshman and sophomore engineering design graphics courses. Analyzes strengths and limitations of the JP System 5 and discusses how to use it effectively. (Contains 15 references.)…

  6. A Rapidly Prototyped Vegetation Dryness Index Developed for Wildfire Risk Assessment at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Ross, Kenton; Graham, William D.; Prados, Donald; Spruce, Joseph

    2006-01-01

    A remote sensing index was developed to allow improved monitoring of vegetation dryness conditions on a regional basis. This remote sensing index was rapidly prototyped at Stennis Space Center in response to drought conditions in the local area in spring 2006.

  7. Utilizing Rapid Prototyping for Architectural Modeling

    ERIC Educational Resources Information Center

    Kirton, E. F.; Lavoie, S. D.

    2006-01-01

    This paper will discuss our approach to, success with and future direction in rapid prototyping for architectural modeling. The premise that this emerging technology has broad and exciting applications in the building design and construction industry will be supported by visual and physical evidence. This evidence will be presented in the form of…

  8. Prototyping for surgical and prosthetic treatment.

    PubMed

    Goiato, Marcelo Coelho; Santos, Murillo Rezende; Pesqueira, Aldiéris Alves; Moreno, Amália; dos Santos, Daniela Micheline; Haddad, Marcela Filié

    2011-05-01

    Techniques of rapid prototyping were introduced in the 1980s in the field of engineering for the fabrication of a solid model based on a computed file. After its introduction in the biomedical field, several applications were raised for the fabrication of models to ease surgical planning and simulation in implantology, neurosurgery, and orthopedics, as well as for the fabrication of maxillofacial prostheses. Hence, the literature has described the evolution of rapid prototyping technique in health care, which allowed easier technique, improved surgical results, and fabrication of maxillofacial prostheses. Accordingly, a literature review on MEDLINE (PubMed) database was conducted using the keywords rapid prototyping, surgical planning, and maxillofacial prostheses and based on articles published from 1981 to 2010. After reading the titles and abstracts of the articles, 50 studies were selected owing to their correlations with the aim of the current study. Several studies show that the prototypes have been used in different dental-medical areas such as maxillofacial and craniofacial surgery; implantology; neurosurgery; orthopedics; scaffolds of ceramic, polymeric, and metallic materials; and fabrication of personalized maxillofacial prostheses. Therefore, prototyping has been an indispensable tool in several studies and helpful for surgical planning and fabrication of prostheses and implants.

  9. Fundamentals of rapid injection molding for microfluidic cell-based assays.

    PubMed

    Lee, Ulri N; Su, Xiaojing; Guckenberger, David J; Dostie, Ashley M; Zhang, Tianzi; Berthier, Erwin; Theberge, Ashleigh B

    2018-01-30

    Microscale cell-based assays have demonstrated unique capabilities in reproducing important cellular behaviors for diagnostics and basic biological research. As these assays move beyond the prototyping stage and into biological and clinical research environments, there is a need to produce microscale culture platforms more rapidly, cost-effectively, and reproducibly. 'Rapid' injection molding is poised to meet this need as it enables some of the benefits of traditional high volume injection molding at a fraction of the cost. However, rapid injection molding has limitations due to the material and methods used for mold fabrication. Here, we characterize advantages and limitations of rapid injection molding for microfluidic device fabrication through measurement of key features for cell culture applications including channel geometry, feature consistency, floor thickness, and surface polishing. We demonstrate phase contrast and fluorescence imaging of cells grown in rapid injection molded devices and provide design recommendations to successfully utilize rapid injection molding methods for microscale cell-based assay development in academic laboratory settings.

  10. Development of Rapid, Continuous Calibration Techniques and Implementation as a Prototype System for Civil Engineering Materials Evaluation

    NASA Astrophysics Data System (ADS)

    Scott, M. L.; Gagarin, N.; Mekemson, J. R.; Chintakunta, S. R.

    2011-06-01

    Until recently, civil engineering material calibration data could only be obtained from material sample cores or via time consuming, stationary calibration measurements in a limited number of locations. Calibration data are used to determine material propagation velocities of electromagnetic waves in test materials for use in layer thickness measurements and subsurface imaging. Limitations these calibration methods impose have been a significant impediment to broader use of nondestructive evaluation methods such as ground-penetrating radar (GPR). In 2006, a new rapid, continuous calibration approach was designed using simulation software to address these measurement limitations during a Federal Highway Administration (FHWA) research and development effort. This continuous calibration method combines a digitally-synthesized step-frequency (SF)-GPR array and a data collection protocol sequence for the common midpoint (CMP) method. Modeling and laboratory test results for various data collection protocols and materials are presented in this paper. The continuous-CMP concept was finally implemented for FHWA in a prototype demonstration system called the Advanced Pavement Evaluation (APE) system in 2009. Data from the continuous-CMP protocol is processed using a semblance/coherency analysis to determine material propagation velocities. Continuously calibrated pavement thicknesses measured with the APE system in 2009 are presented. This method is efficient, accurate, and cost-effective.

  11. Development of rapid, continuous calibration techniques and implementation as a prototype system for civil engineering materials evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, M. L.; Gagarin, N.; Mekemson, J. R.

    Until recently, civil engineering material calibration data could only be obtained from material sample cores or via time consuming, stationary calibration measurements in a limited number of locations. Calibration data are used to determine material propagation velocities of electromagnetic waves in test materials for use in layer thickness measurements and subsurface imaging. Limitations these calibration methods impose have been a significant impediment to broader use of nondestructive evaluation methods such as ground-penetrating radar (GPR). In 2006, a new rapid, continuous calibration approach was designed using simulation software to address these measurement limitations during a Federal Highway Administration (FHWA) research andmore » development effort. This continuous calibration method combines a digitally-synthesized step-frequency (SF)-GPR array and a data collection protocol sequence for the common midpoint (CMP) method. Modeling and laboratory test results for various data collection protocols and materials are presented in this paper. The continuous-CMP concept was finally implemented for FHWA in a prototype demonstration system called the Advanced Pavement Evaluation (APE) system in 2009. Data from the continuous-CMP protocol is processed using a semblance/coherency analysis to determine material propagation velocities. Continuously calibrated pavement thicknesses measured with the APE system in 2009 are presented. This method is efficient, accurate, and cost-effective.« less

  12. Extending NASA Research Results to Benefit Society: Rapid Prototyping for Coastal Applications

    NASA Technical Reports Server (NTRS)

    Glorioso, Mark V.; Miller, Richard L.; Hall, Callie M.; McPherson, Terry R.

    2006-01-01

    The mission of the NASA Applied Sciences Program is to expand and accelerate the use of NASA research results to benefit society in 12 application areas of national priority. ONe of the program's major challenges is to perform a quick, efficient, and detailed review (i.e., prototyping) of the large number of combinations of NASA observations and results from Earth system models that may be used by a wide range of decision support tools. A Rapid Prototyping Capacity (RPC) is being developed to accelerate the use of NASA research results. Here, we present the conceptual framework of the Rapid Prototyping Capacity within the context of quickly assessing the efficacy of NASA research results and technologies to support the Coastal Management application. An initial RPC project designed to quickly evaluate the utility of moderate-resolution MODIS products for calibrating/validating coastal sediment transport models is also presented.

  13. A Method to Represent Heterogeneous Materials for Rapid Prototyping: The Matryoshka Approach.

    PubMed

    Lei, Shuangyan; Frank, Matthew C; Anderson, Donald D; Brown, Thomas D

    The purpose of this paper is to present a new method for representing heterogeneous materials using nested STL shells, based, in particular, on the density distributions of human bones. Nested STL shells, called Matryoshka models, are described, based on their namesake Russian nesting dolls. In this approach, polygonal models, such as STL shells, are "stacked" inside one another to represent different material regions. The Matryoshka model addresses the challenge of representing different densities and different types of bone when reverse engineering from medical images. The Matryoshka model is generated via an iterative process of thresholding the Hounsfield Unit (HU) data using computed tomography (CT), thereby delineating regions of progressively increasing bone density. These nested shells can represent regions starting with the medullary (bone marrow) canal, up through and including the outer surface of the bone. The Matryoshka approach introduced can be used to generate accurate models of heterogeneous materials in an automated fashion, avoiding the challenge of hand-creating an assembly model for input to multi-material additive or subtractive manufacturing. This paper presents a new method for describing heterogeneous materials: in this case, the density distribution in a human bone. The authors show how the Matryoshka model can be used to plan harvesting locations for creating custom rapid allograft bone implants from donor bone. An implementation of a proposed harvesting method is demonstrated, followed by a case study using subtractive rapid prototyping to harvest a bone implant from a human tibia surrogate.

  14. Rapid prototyping facility for flight research in artificial-intelligence-based flight systems concepts

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Regenie, V. A.; Deets, D. A.

    1986-01-01

    The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

  15. Rapid prototype fabrication processes for high-performance thrust cells

    NASA Technical Reports Server (NTRS)

    Hunt, K.; Chwiedor, T.; Diab, J.; Williams, R.

    1994-01-01

    The Thrust Cell Technologies Program (Air Force Phillips Laboratory Contract No. F04611-92-C-0050) is currently being performed by Rocketdyne to demonstrate advanced materials and fabrication technologies which can be utilized to produce low-cost, high-performance thrust cells for launch and space transportation rocket engines. Under Phase 2 of the Thrust Cell Technologies Program (TCTP), rapid prototyping and investment casting techniques are being employed to fabricate a 12,000-lbf thrust class combustion chamber for delivery and hot-fire testing at Phillips Lab. The integrated process of investment casting directly from rapid prototype patterns dramatically reduces design-to-delivery cycle time, and greatly enhances design flexibility over conventionally processed cast or machined parts.

  16. A rapid prototyping facility for flight research in advanced systems concepts

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Brumbaugh, Randal W.; Disbrow, James D.

    1989-01-01

    The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

  17. A two-fold reduction in measurement time for neutron assay: Initial tests of a prototype dual-gated shift register

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, J.E.; Bourret, S.C.; Krick, M.S.

    1996-09-01

    Neutron coincidence counting (NCC) is used routinely around the world for nondestructive mass assay of uranium and plutonium in many forms, including waste. Compared with other methods, NCC is generally the most flexible, economic, and rapid. Many applications of NCC would benefit from a reduction in counting time required for a fixed random error. We have developed and tested the first prototype of a dual- gated, shift-register-based electronics unit that offers the potential of decreased measurement time for all passive and active NCC applications.

  18. A two-fold reduction in measurement time for neutron assay: Initial tests of a prototype dual-gated shift register

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, J.E.; Bourret, S.C.; Krick, M.S.

    1996-12-31

    Neutron coincidence counting (NCC) is used routinely around the world for nondestructive mass assay of uranium and plutonium in many forms, including waste. Compared with other methods, NCC is generally the most flexible, economic, and rapid. Many applications of NCC would benefit from a reduction in counting time required for a fixed random error. The authors have developed and tested the first prototype of a dual-gated, shift-register-based electronics unit that offers the potential of decreased measurement time for all passive and active NCC applications.

  19. Advanced automation in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.

    1991-01-01

    The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.

  20. Rapid prototyping strategy for a surgical data warehouse.

    PubMed

    Tang, S-T; Huang, Y-F; Hsiao, M-L; Yang, S-H; Young, S-T

    2003-01-01

    Healthcare processes typically generate an enormous volume of patient information. This information largely represents unexploited knowledge, since current hospital operational systems (e.g., HIS, RIS) are not suitable for knowledge exploitation. Data warehousing provides an attractive method for solving these problems, but the process is very complicated. This study presents a novel strategy for effectively implementing a healthcare data warehouse. This study adopted the rapid prototyping (RP) method, which involves intensive interactions. System developers and users were closely linked throughout the life cycle of the system development. The presence of iterative RP loops meant that the system requirements were increasingly integrated and problems were gradually solved, such that the prototype system evolved into the final operational system. The results were analyzed by monitoring the series of iterative RP loops. First a definite workflow for ensuring data completeness was established, taking a patient-oriented viewpoint when collecting the data. Subsequently the system architecture was determined for data retrieval, storage, and manipulation. This architecture also clarifies the relationships among the novel system and legacy systems. Finally, a graphic user interface for data presentation was implemented. Our results clearly demonstrate the potential for adopting an RP strategy in the successful establishment of a healthcare data warehouse. The strategy can be modified and expanded to provide new services or support new application domains. The design patterns and modular architecture used in the framework will be useful in solving problems in different healthcare domains.

  1. Graphical programming interface: A development environment for MRI methods.

    PubMed

    Zwart, Nicholas R; Pipe, James G

    2015-11-01

    To introduce a multiplatform, Python language-based, development environment called graphical programming interface for prototyping MRI techniques. The interface allows developers to interact with their scientific algorithm prototypes visually in an event-driven environment making tasks such as parameterization, algorithm testing, data manipulation, and visualization an integrated part of the work-flow. Algorithm developers extend the built-in functionality through simple code interfaces designed to facilitate rapid implementation. This article shows several examples of algorithms developed in graphical programming interface including the non-Cartesian MR reconstruction algorithms for PROPELLER and spiral as well as spin simulation and trajectory visualization of a FLORET example. The graphical programming interface framework is shown to be a versatile prototyping environment for developing numeric algorithms used in the latest MR techniques. © 2014 Wiley Periodicals, Inc.

  2. Rapid prototyping raw models on the basis of high resolution computed tomography lung data for respiratory flow dynamics.

    PubMed

    Giesel, Frederik L; Mehndiratta, Amit; von Tengg-Kobligk, Hendrik; Schaeffer, A; Teh, Kevin; Hoffman, E A; Kauczor, Hans-Ulrich; van Beek, E J R; Wild, Jim M

    2009-04-01

    Three-dimensional image reconstruction by volume rendering and rapid prototyping has made it possible to visualize anatomic structures in three dimensions for interventional planning and academic research. Volumetric chest computed tomography was performed on a healthy volunteer. Computed tomographic images of the larger bronchial branches were segmented by an extended three-dimensional region-growing algorithm, converted into a stereolithography file, and used for computer-aided design on a laser sintering machine. The injection of gases for respiratory flow modeling and measurements using magnetic resonance imaging were done on a hollow cast. Manufacturing the rapid prototype took about 40 minutes and included the airway tree from trackea to segmental bronchi (fifth generation). The branching of the airways are clearly visible in the (3)He images, and the radial imaging has the potential to elucidate the airway dimensions. The results for flow patterns in the human bronchial tree using the rapid-prototype model with hyperpolarized helium-3 magnetic resonance imaging show the value of this model for flow phantom studies.

  3. Rapid prototyping technology and its application in bone tissue engineering*

    PubMed Central

    YUAN, Bo; ZHOU, Sheng-yuan; CHEN, Xiong-sheng

    2017-01-01

    Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects. PMID:28378568

  4. Rapid prototyping technology and its application in bone tissue engineering.

    PubMed

    Yuan, Bo; Zhou, Sheng-Yuan; Chen, Xiong-Sheng

    Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects.

  5. Use of rapid prototyping in prosthetic auricular restoration.

    PubMed

    Turgut, Gursel; Sacak, Bulent; Kiran, Kazim; Bas, Lutfu

    2009-03-01

    Reconstructing auricular defects is a challenging task for facial reconstructive surgeons. Although autologous reconstruction is the first choice for reconstruction, there may be circumstances of inconvenience such as previously attempted surgery, radiotherapy, systemic conditions, or patient's wish. Auricular restorations with facial prosthesis have produced promising results, but there are still problems to be tackled for improved results. Rapid prototyping in the production of an auricular prosthesis uses the mirror image of contralateral ear and produces excellent forms, eliminating the subjective perception of the prosthodontist. Rapid prototyping also lowers the production costs by reducing the need for several sessions in the process of producing the prostheses. Between 2004 and 2007, 10 patients applied to our department with the absence of an ear on a single side. All patients were male, with an average age of 23.1 years. The etiology for the loss of the ear was mostly tumors, followed by congenital deformities and trauma, respectively. In this study, we present our application of rapid prototyping technique and report our case series of 10 patients, two of which are presented in detail.

  6. Photogrammetry for rapid prototyping: development of noncontact 3D reconstruction technologies

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.

    2002-04-01

    An important stage of rapid prototyping technology is generating computer 3D model of an object to be reproduced. Wide variety of techniques for 3D model generation exists beginning with manual 3D models generation and finishing with full-automated reverse engineering system. The progress in CCD sensors and computers provides the background for integration of photogrammetry as an accurate 3D data source with CAD/CAM. The paper presents the results of developing photogrammetric methods for non-contact spatial coordinates measurements and generation of computer 3D model of real objects. The technology is based on object convergent images processing for calculating its 3D coordinates and surface reconstruction. The hardware used for spatial coordinates measurements is based on PC as central processing unit and video camera as image acquisition device. The original software for Windows 9X realizes the complete technology of 3D reconstruction for rapid input of geometry data in CAD/CAM systems. Technical characteristics of developed systems are given along with the results of applying for various tasks of 3D reconstruction. The paper describes the techniques used for non-contact measurements and the methods providing metric characteristics of reconstructed 3D model. Also the results of system application for 3D reconstruction of complex industrial objects are presented.

  7. Sensitivity and Specificity of a Prototype Rapid Diagnostic Test for the Detection of Trypanosoma brucei gambiense Infection: A Multi-centric Prospective Study.

    PubMed

    Bisser, Sylvie; Lumbala, Crispin; Nguertoum, Etienne; Kande, Victor; Flevaud, Laurence; Vatunga, Gedeao; Boelaert, Marleen; Büscher, Philippe; Josenando, Theophile; Bessell, Paul R; Biéler, Sylvain; Ndung'u, Joseph M

    2016-04-01

    A major challenge in the control of human African trypanosomiasis (HAT) is lack of reliable diagnostic tests that are rapid and easy to use in remote areas where the disease occurs. In Trypanosoma brucei gambiense HAT, the Card Agglutination Test for Trypanosomiasis (CATT) has been the reference screening test since 1978, usually on whole blood, but also in a 1/8 dilution (CATT 1/8) to enhance specificity. However, the CATT is not available in a single format, requires a cold chain for storage, and uses equipment that requires electricity. A solution to these challenges has been provided by rapid diagnostic tests (RDT), which have recently become available. A prototype immunochromatographic test, the SD BIOLINE HAT, based on two native trypanosomal antigens (VSG LiTat 1.3 and VSG LiTat 1.5) has been developed. We carried out a non-inferiority study comparing this prototype to the CATT 1/8 in field settings. The prototype SD BIOLINE HAT, the CATT Whole Blood and CATT 1/8 were systematically applied on fresh blood samples obtained from 14,818 subjects, who were prospectively enrolled through active and passive screening in clinical studies in three endemic countries of central Africa: Angola, the Democratic Republic of the Congo and the Central African Republic. One hundred and forty nine HAT cases were confirmed by parasitology. The sensitivity and specificity of the prototype SD BIOLINE HAT was 89.26% (95% confidence interval (CI) = 83.27-93.28) and 94.58% (95% CI = 94.20-94.94) respectively. The sensitivity and specificity of the CATT on whole blood were 93.96% (95% CI = 88.92-96.79) and 95.91% (95% CI = 95.58-96.22), and of the CATT 1/8 were 89.26% (95% CI = 83.27-93.28) and 98.88% (95% CI = 98.70-99.04) respectively. After further optimization, the prototype SD BIOLINE HAT could become an alternative to current screening methods in primary healthcare settings in remote, resource-limited regions where HAT typically occurs.

  8. Desktop Nanofabrication with Massively Multiplexed Beam Pen Lithography

    PubMed Central

    Liao, Xing; Brown, Keith A.; Schmucker, Abrin L.; Liu, Guoliang; He, Shu; Shim, Wooyoung; Mirkin, Chad A.

    2013-01-01

    The development of a lithographic method that can rapidly define nanoscale features across centimeter-scale surfaces has been a long standing goal of the nanotechnology community. If such a ‘desktop nanofab’ could be implemented in a low-cost format, it would bring the possibility of point-of-use nanofabrication for rapidly prototyping diverse functional structures. Here we report the development of a new tool that is capable of writing arbitrary patterns composed of diffraction-unlimited features over square centimeter areas that are in registry with existing patterns and nanostructures. Importantly, this instrument is based on components that are inexpensive compared to the combination of state-of-the-art nanofabrication tools that approach its capabilities. This tool can be used to prototype functional electronic devices in a mask-free fashion in addition to providing a unique platform for performing high throughput nano- to macroscale photochemistry with relevance to biology and medicine. PMID:23868336

  9. A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular reconstruction with free fibula osseous flaps.

    PubMed

    Leiggener, C; Messo, E; Thor, A; Zeilhofer, H-F; Hirsch, J-M

    2009-02-01

    The free fibular flap is the standard procedure for reconstructing mandibular defects. The graft has to be contoured to fit the defect so preoperative planning is required. The systems used previously do not allow transfer of the surgical plan to the operation room in an optimal way. The authors present a method to bring the virtual plan to real time surgery using a rapid prototyping guide. Planning was conducted using the Surgicase CMF software simulating surgery on a workstation. The osteotomies were translated into a rapid prototyping guide, sterilised and applied during surgery on the fibula allowing for the osteotomies and osteosynthesis to be performed with intact circulation. During reconstruction the authors were able to choose the best site for the osteotomies regarding circulation and as a result increased the precision and speed of treatment.

  10. Rapid, Reliable Shape Setting of Superelastic Nitinol for Prototyping Robots

    PubMed Central

    Gilbert, Hunter B.; Webster, Robert J.

    2016-01-01

    Shape setting Nitinol tubes and wires in a typical laboratory setting for use in superelastic robots is challenging. Obtaining samples that remain superelastic and exhibit desired precurvatures currently requires many iterations, which is time consuming and consumes a substantial amount of Nitinol. To provide a more accurate and reliable method of shape setting, in this paper we propose an electrical technique that uses Joule heating to attain the necessary shape setting temperatures. The resulting high power heating prevents unintended aging of the material and yields consistent and accurate results for the rapid creation of prototypes. We present a complete algorithm and system together with an experimental analysis of temperature regulation. We experimentally validate the approach on Nitinol tubes that are shape set into planar curves. We also demonstrate the feasibility of creating general space curves by shape setting a helical tube. The system demonstrates a mean absolute temperature error of 10°C. PMID:27648473

  11. Rapid, Reliable Shape Setting of Superelastic Nitinol for Prototyping Robots.

    PubMed

    Gilbert, Hunter B; Webster, Robert J

    Shape setting Nitinol tubes and wires in a typical laboratory setting for use in superelastic robots is challenging. Obtaining samples that remain superelastic and exhibit desired precurvatures currently requires many iterations, which is time consuming and consumes a substantial amount of Nitinol. To provide a more accurate and reliable method of shape setting, in this paper we propose an electrical technique that uses Joule heating to attain the necessary shape setting temperatures. The resulting high power heating prevents unintended aging of the material and yields consistent and accurate results for the rapid creation of prototypes. We present a complete algorithm and system together with an experimental analysis of temperature regulation. We experimentally validate the approach on Nitinol tubes that are shape set into planar curves. We also demonstrate the feasibility of creating general space curves by shape setting a helical tube. The system demonstrates a mean absolute temperature error of 10°C.

  12. 3D-printing technologies for electrochemical applications.

    PubMed

    Ambrosi, Adriano; Pumera, Martin

    2016-05-21

    Since its conception during the 80s, 3D-printing, also known as additive manufacturing, has been receiving unprecedented levels of attention and interest from industry and research laboratories. This is in addition to end users, who have benefited from the pervasiveness of desktop-size and relatively cheap printing machines available. 3D-printing enables almost infinite possibilities for rapid prototyping. Therefore, it has been considered for applications in numerous research fields, ranging from mechanical engineering, medicine, and materials science to chemistry. Electrochemistry is another branch of science that can certainly benefit from 3D-printing technologies, paving the way for the design and fabrication of cheaper, higher performing, and ubiquitously available electrochemical devices. Here, we aim to provide a general overview of the most commonly available 3D-printing methods along with a review of recent electrochemistry related studies adopting 3D-printing as a possible rapid prototyping fabrication tool.

  13. Rapid prototyping and parametric optimization of plastic acoustofluidic devices for blood-bacteria separation.

    PubMed

    Silva, R; Dow, P; Dubay, R; Lissandrello, C; Holder, J; Densmore, D; Fiering, J

    2017-09-01

    Acoustic manipulation has emerged as a versatile method for microfluidic separation and concentration of particles and cells. Most recent demonstrations of the technology use piezoelectric actuators to excite resonant modes in silicon or glass microchannels. Here, we focus on acoustic manipulation in disposable, plastic microchannels in order to enable a low-cost processing tool for point-of-care diagnostics. Unfortunately, the performance of resonant acoustofluidic devices in plastic is hampered by a lack of a predictive model. In this paper, we build and test a plastic blood-bacteria separation device informed by a design of experiments approach, parametric rapid prototyping, and screening by image-processing. We demonstrate that the new device geometry can separate bacteria from blood while operating at 275% greater flow rate as well as reduce the power requirement by 82%, while maintaining equivalent separation performance and resolution when compared to the previously published plastic acoustofluidic separation device.

  14. Desktop nanofabrication with massively multiplexed beam pen lithography.

    PubMed

    Liao, Xing; Brown, Keith A; Schmucker, Abrin L; Liu, Guoliang; He, Shu; Shim, Wooyoung; Mirkin, Chad A

    2013-01-01

    The development of a lithographic method that can rapidly define nanoscale features across centimetre-scale surfaces has been a long-standing goal for the nanotechnology community. If such a 'desktop nanofab' could be implemented in a low-cost format, it would bring the possibility of point-of-use nanofabrication for rapidly prototyping diverse functional structures. Here we report the development of a new tool that is capable of writing arbitrary patterns composed of diffraction-unlimited features over square centimetre areas that are in registry with existing patterns and nanostructures. Importantly, this instrument is based on components that are inexpensive compared with the combination of state-of-the-art nanofabrication tools that approach its capabilities. This tool can be used to prototype functional electronic devices in a mask-free fashion in addition to providing a unique platform for performing high-throughput nano- to macroscale photochemistry with relevance to biology and medicine.

  15. Preoperative planning of thoracic surgery with use of three-dimensional reconstruction, rapid prototyping, simulation and virtual navigation.

    PubMed

    Heuts, Samuel; Sardari Nia, Peyman; Maessen, Jos G

    2016-01-01

    For the past decades, surgeries have become more complex, due to the increasing age of the patient population referred for thoracic surgery, more complex pathology and the emergence of minimally invasive thoracic surgery. Together with the early detection of thoracic disease as a result of innovations in diagnostic possibilities and the paradigm shift to personalized medicine, preoperative planning is becoming an indispensable and crucial aspect of surgery. Several new techniques facilitating this paradigm shift have emerged. Pre-operative marking and staining of lesions are already a widely accepted method of preoperative planning in thoracic surgery. However, three-dimensional (3D) image reconstructions, virtual simulation and rapid prototyping (RP) are still in development phase. These new techniques are expected to become an important part of the standard work-up of patients undergoing thoracic surgery in the future. This review aims at graphically presenting and summarizing these new diagnostic and therapeutic tools.

  16. Product management of making large pieces through Rapid Prototyping PolyJet® technology

    NASA Astrophysics Data System (ADS)

    Belgiu, G.; Cărăuşu, C.; Şerban, D.; Turc, C. G.

    2017-08-01

    The rapid prototyping process has already become a classic manufacturing process for parts and assemblies, either polymeric or metal parts. Besides the well-known advantages and disadvantages of the process, the use of 3D printers has a great inconvenience: the overall dimensions of the parts are limited. Obviously, there is a possibility to purchase a larger (and more expensive) 3D printer, but there are always larger pieces to be manufactured. One solution to this problem is the splitting of parts into several components that can be manufactured. The component parts can then be assembled in a single piece by known methods such as welding, gluing, screwing, etc. This paper shows our experience in making large pieces on the Strarasys® Objet24 printer, pieces larger than the tray sizes. The results obtained are valid for any 3D printer using the PolyJet® process.

  17. Development of Prototype Filovirus Recombinant Antigen Immunoassays

    PubMed Central

    Boisen, Matt L.; Oottamasathien, Darin; Jones, Abigail B.; Millett, Molly M.; Nelson, Diana S.; Bornholdt, Zachary A.; Fusco, Marnie L.; Abelson, Dafna M.; Oda, Shun-ichiro; Hartnett, Jessica N.; Rowland, Megan M.; Heinrich, Megan L.; Akdag, Marjan; Goba, Augustine; Momoh, Mambu; Fullah, Mohammed; Baimba, Francis; Gbakie, Michael; Safa, Sadiki; Fonnie, Richard; Kanneh, Lansana; Cross, Robert W.; Geisbert, Joan B.; Geisbert, Thomas W.; Kulakosky, Peter C.; Grant, Donald S.; Shaffer, Jeffery G.; Schieffelin, John S.; Wilson, Russell B.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.; Khan, S. Humarr; Pitts, Kelly R.

    2015-01-01

    Background. Throughout the 2014–2015 Ebola outbreak in West Africa, major gaps were exposed in the availability of validated rapid diagnostic platforms, protective vaccines, and effective therapeutic agents. These gaps potentiated the development of prototype rapid lateral flow immunodiagnostic (LFI) assays that are true point-of-contact platforms, for the detection of active Ebola infections in small blood samples. Methods. Recombinant Ebola and Marburg virus matrix VP40 and glycoprotein (GP) antigens were used to derive a panel of monoclonal and polyclonal antibodies. Antibodies were tested using a multivariate approach to identify antibody-antigen combinations suitable for enzyme-linked immunosorbent assay (ELISA) and LFI assay development. Results. Polyclonal antibodies generated in goats were superior reagents for capture and detection of recombinant VP40 in test sample matrices. These antibodies were optimized for use in antigen-capture ELISA and LFI assay platforms. Prototype immunoglobulin M (IgM)/immunoglobulin G (IgG) ELISAs were similarly developed that specifically detect Ebola virus–specific antibodies in the serum of experimentally infected nonhuman primates and in blood samples obtained from patients with Ebola from Sierra Leone. Conclusions. The prototype recombinant Ebola LFI assays developed in these studies have sensitivities that are useful for clinical diagnosis of acute ebolavirus infections. The antigen-capture and IgM/IgG ELISAs provide additional confirmatory assay platforms for detecting VP40 and other ebolavirus-specific immunoglobulins. PMID:26232440

  18. Photolithography-free laser-patterned HF acid-resistant chromium-polyimide mask for rapid fabrication of microfluidic systems in glass

    NASA Astrophysics Data System (ADS)

    Zamuruyev, Konstantin O.; Zrodnikov, Yuriy; Davis, Cristina E.

    2017-01-01

    Excellent chemical and physical properties of glass, over a range of operating conditions, make it a preferred material for chemical detection systems in analytical chemistry, biology, and the environmental sciences. However, it is often compromised with SU8, PDMS, or Parylene materials due to the sophisticated mask preparation requirements for wet etching of glass. Here, we report our efforts toward developing a photolithography-free laser-patterned hydrofluoric acid-resistant chromium-polyimide tape mask for rapid prototyping of microfluidic systems in glass. The patterns are defined in masking layer with a diode-pumped solid-state laser. Minimum feature size is limited to the diameter of the laser beam, 30 µm minimum spacing between features is limited by the thermal shrinkage and adhesive contact of the polyimide tape to 40 µm. The patterned glass substrates are etched in 49% hydrofluoric acid at ambient temperature with soft agitation (in time increments, up to 60 min duration). In spite of the simplicity, our method demonstrates comparable results to the other current more sophisticated masking methods in terms of the etched depth (up to 300 µm in borosilicate glass), feature under etch ratio in isotropic etch (~1.36), and low mask hole density. The method demonstrates high yield and reliability. To our knowledge, this method is the first proposed technique for rapid prototyping of microfluidic systems in glass with such high performance parameters. The proposed method of fabrication can potentially be implemented in research institutions without access to a standard clean-room facility.

  19. Rapid prototyping of compliant human aortic roots for assessment of valved stents.

    PubMed

    Kalejs, Martins; von Segesser, Ludwig Karl

    2009-02-01

    Adequate in-vitro training in valved stents deployment as well as testing of the latter devices requires compliant real-size models of the human aortic root. The casting methods utilized up to now are multi-step, time consuming and complicated. We pursued a goal of building a flexible 3D model in a single-step procedure. We created a precise 3D CAD model of a human aortic root using previously published anatomical and geometrical data and printed it using a novel rapid prototyping system developed by the Fab@Home project. As a material for 3D fabrication we used common house-hold silicone and afterwards dip-coated several models with dispersion silicone one or two times. To assess the production precision we compared the size of the final product with the CAD model. Compliance of the models was measured and compared with native porcine aortic root. Total fabrication time was 3 h and 20 min. Dip-coating one or two times with dispersion silicone if applied took one or two extra days, respectively. The error in dimensions of non-coated aortic root model compared to the CAD design was <3.0% along X, Y-axes and 4.1% along Z-axis. Compliance of a non-coated model as judged by the changes of radius values in the radial direction by 16.39% is significantly different (P<0.001) from native aortic tissue--23.54% at the pressure of 80-100 mmHg. Rapid prototyping of compliant, life-size anatomical models with the Fab@Home 3D printer is feasible--it is very quick compared to previous casting methods.

  20. Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head.

    PubMed

    Wang, Wei; Hu, Wei; Yang, Pei; Dang, Xiao Qian; Li, Xiao Hui; Wang, Kun Zheng

    2017-01-01

    Core decompression is an efficient treatment for early stage ischemic necrosis of the femoral head. In conventional procedures, the pre-operative X-ray only shows one plane of the ischemic area, which often results in inaccurate drilling. This paper introduces a new method that uses computer-assisted technology and rapid prototyping to enhance drilling accuracy during core decompression surgeries and presents a validation study of cadaveric tests. Twelve cadaveric human femurs were used to simulate early-stage ischemic necrosis. The core decompression target at the anterolateral femoral head was simulated using an embedded glass ball (target). Three positioning Kirschner wires were drilled into the top and bottom of the large rotor. The specimen was then subjected to computed tomography (CT). A CT image of the specimen was imported into the Mimics software to construct a three-dimensional model including the target. The best core decompression channel was then designed using the 3D model. A navigational template for the specimen was designed using the Pro/E software and manufactured by rapid prototyping technology to guide the drilling channel. The specimen-specific navigation template was installed on the specimen using positioning Kirschner wires. Drilling was performed using a guide needle through the guiding hole on the templates. The distance between the end point of the guide needle and the target was measured to validate the patient-specific surgical accuracy. The average distance between the tip of the guide needle drilled through the guiding template and the target was 1.92±0.071 mm. Core decompression using a computer-rapid prototyping template is a reliable and accurate technique that could provide a new method of precision decompression for early-stage ischemic necrosis.

  1. Rapid Prototyping Integrated With Nondestructive Evaluation and Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.

    2001-01-01

    Most reverse engineering approaches involve imaging or digitizing an object then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. Rapid prototyping (RP) refers to the practical ability to build high-quality physical prototypes directly from computer aided design (CAD) files. Using rapid prototyping, full-scale models or patterns can be built using a variety of materials in a fraction of the time required by more traditional prototyping techniques (refs. 1 and 2). Many software packages have been developed and are being designed to tackle the reverse engineering and rapid prototyping issues just mentioned. For example, image processing and three-dimensional reconstruction visualization software such as Velocity2 (ref. 3) are being used to carry out the construction process of three-dimensional volume models and the subsequent generation of a stereolithography file that is suitable for CAD applications. Producing three-dimensional models of objects from computed tomography (CT) scans is becoming a valuable nondestructive evaluation methodology (ref. 4). Real components can be rendered and subjected to temperature and stress tests using structural engineering software codes. For this to be achieved, accurate high-resolution images have to be obtained via CT scans and then processed, converted into a traditional file format, and translated into finite element models. Prototyping a three-dimensional volume of a composite structure by reading in a series of two-dimensional images generated via CT and by using and integrating commercial software (e.g. Velocity2, MSC/PATRAN (ref. 5), and Hypermesh (ref. 6)) is being applied successfully at the NASA Glenn Research Center. The building process from structural modeling to the analysis level is outlined in reference 7. Subsequently, a stress analysis of a composite cooling panel under combined thermomechanical loading conditions was performed to validate this process.

  2. A prototype yarn evaluation tester to rapidly assess comparative weavability of warp yarns without weaving

    USDA-ARS?s Scientific Manuscript database

    The art of weaving continues to be the most predominantly used method of converting textile fibers into fabrics for various end-use applications, including apparel. In fact, the weaving is by far the largest textile manufacturing sector, worldwide. However, the weaving process is complex and costly....

  3. Persistence of F-Specific RNA Coliphages in Surface Waters from a Produce Production Region along the Central Coast of California.

    PubMed

    Ravva, Subbarao V; Sarreal, Chester Z

    2016-01-01

    F+ RNA coliphages (FRNA) are used to source-track fecal contamination and as surrogates for enteric pathogen persistence in the environment. However, the environmental persistence of FRNA is not clearly understood and necessitates the evaluation of the survival of prototype and environmental isolates of FRNA representing all four genogroups in surface waters from the central coast of California. Water temperature played a significant role in persistence-all prototype and environmental strains survived significantly longer at 10 °C compared to 25 °C. Similarly, the availability of host bacterium was found to be critical in FRNA survival. In the absence of E. coli F(amp), all prototypes of FRNA disappeared rapidly with a D-value (days for one log reduction) of <1.2 d from water samples incubated at 25 °C; the longest surviving prototype was SP. However, in the presence of the host, the order of persistence at 25 °C was QB>MS2>SP>GA and at 10 °C it was QB = MS2>GA>SP. Significant differences in survival were observed between prototypes and environmental isolates of FRNA. While most environmental isolates disappeared rapidly at 25 °C and in the absence of the host, members of genogroups GIII and GI persisted longer with the host compared to members of GII and GIV. Consequentially, FRNA based source tracking methods can be used to detect phages from recent fecal contamination along with those that persist longer in the environment as a result of cooler temperatures and increased host presence.

  4. Persistence of F-Specific RNA Coliphages in Surface Waters from a Produce Production Region along the Central Coast of California

    PubMed Central

    Ravva, Subbarao V.; Sarreal, Chester Z.

    2016-01-01

    F+ RNA coliphages (FRNA) are used to source-track fecal contamination and as surrogates for enteric pathogen persistence in the environment. However, the environmental persistence of FRNA is not clearly understood and necessitates the evaluation of the survival of prototype and environmental isolates of FRNA representing all four genogroups in surface waters from the central coast of California. Water temperature played a significant role in persistence–all prototype and environmental strains survived significantly longer at 10°C compared to 25°C. Similarly, the availability of host bacterium was found to be critical in FRNA survival. In the absence of E. coli Famp, all prototypes of FRNA disappeared rapidly with a D-value (days for one log reduction) of <1.2 d from water samples incubated at 25°C; the longest surviving prototype was SP. However, in the presence of the host, the order of persistence at 25°C was QB>MS2>SP>GA and at 10°C it was QB = MS2>GA>SP. Significant differences in survival were observed between prototypes and environmental isolates of FRNA. While most environmental isolates disappeared rapidly at 25°C and in the absence of the host, members of genogroups GIII and GI persisted longer with the host compared to members of GII and GIV. Consequentially, FRNA based source tracking methods can be used to detect phages from recent fecal contamination along with those that persist longer in the environment as a result of cooler temperatures and increased host presence. PMID:26784030

  5. CT-assisted agile manufacturing

    NASA Astrophysics Data System (ADS)

    Stanley, James H.; Yancey, Robert N.

    1996-11-01

    The next century will witness at least two great revolutions in the way goods are produced. First, workers will use the medium of virtual reality in all aspects of marketing, research, development, prototyping, manufacturing, sales and service. Second, market forces will drive manufacturing towards small-lot production and just-in-time delivery. Already, we can discern the merging of these megatrends into what some are calling agile manufacturing. Under this new paradigm, parts and processes will be designed and engineered within the mind of a computer, tooled and manufactured by the offspring of today's rapid prototyping equipment, and evaluated for performance and reliability by advanced nondestructive evaluation (NDE) techniques and sophisticated computational models. Computed tomography (CT) is the premier example of an NDE method suitable for future agile manufacturing activities. It is the only modality that provides convenient access to the full suite of engineering data that users will need to avail themselves of computer- aided design, computer-aided manufacturing, and computer- aided engineering capabilities, as well as newly emerging reverse engineering, rapid prototyping and solid freeform fabrication technologies. As such, CT is assured a central, utilitarian role in future industrial operations. An overview of this exciting future for industrial CT is presented.

  6. Rapid Prototyping of Computer-Based Presentations Using NEAT, Version 1.1.

    ERIC Educational Resources Information Center

    Muldner, Tomasz

    NEAT (iNtegrated Environment for Authoring in ToolBook) provides templates and various facilities for the rapid prototyping of computer-based presentations, a capability that is lacking in current authoring systems. NEAT is a specialized authoring system that can be used by authors who have a limited knowledge of computer systems and no…

  7. A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications.

    ERIC Educational Resources Information Center

    Dey, Anind K.; Abowd, Gregory D.; Salber, Daniel

    2001-01-01

    Discusses the trend toward ubiquitous computing and the challenge to enhance the behavior of any application by informing it of the context of its use. Defines context related to the interaction between humans, applications, and the surrounding environment; and presents a conceptual framework and a toolkit for supporting the rapid prototyping of…

  8. Low-Cost Rapid Prototyping of Whole-Glass Microfluidic Devices

    ERIC Educational Resources Information Center

    Yuen, Po Ki; Goral, Vasiliy N.

    2012-01-01

    A low-cost, straightforward, rapid prototyping of whole-glass microfluidic devices is presented using glass-etching cream that can be easily purchased in local stores. A self-adhered vinyl stencil cut out by a desktop digital craft cutter was used as an etching mask for patterning microstructures in glass using the glass-etching cream. A specific…

  9. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2015-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice-accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional (3-D) features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-in. chord, two-dimensional (2-D) straight wing with NACA 23012 airfoil section. For six ice-accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 × 10(exp 6) and a Mach number of 0.18 with an 18-in. chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For five of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3 percent with corresponding differences in stall angle of approximately 1 deg or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion cases tested, the aerodynamics is known to depend upon the small, three-dimensional features of the ice. These data show that the laser-scan and rapid-prototype manufacturing approach is capable of replicating these ice features within the reported accuracies of the laser-scan measurement and rapid-prototyping method; thus providing a new capability for high-fidelity ice-accretion documentation and artificial ice-shape fabrication for icing research.

  10. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2014-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-inch chord, 2-D straight wing with NACA 23012 airfoil section. For six ice accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 x 10(exp 6) and a Mach number of 0.18 with an 18-inch chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For four of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3% with corresponding differences in stall angle of approximately one degree or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion cases tested, the aerodynamics is known to depend upon the small, three dimensional features of the ice. These data show that the laser-scan and rapid-prototype manufacturing approach is capable of replicating these ice features within the reported accuracies of the laser-scan measurement and rapid-prototyping method; thus providing a new capability for high-fidelity ice-accretion documentation and artificial ice-shape fabrication for icing research.

  11. Redesign and Test of an SSME Turbopump for the Large Throat Main Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Lunde, K. J.; Lee, G. A.; Eastland, A. H.; Rojas, L.

    1994-01-01

    The preburner oxidizer turbopump for the Space Shuttle Main Engine (SSME) was successfully redesigned for use with the Large Throat Main Combustion Chamber (LTMCC) and tested in air utilizing rapid prototyping. The redesign increases the SSME's operating range with the current Main Combustion Chamber (MCC) while achieving full operational range with the LTMCC. The use of rapid prototyping and air testing to validate the redesign demonstrated the ability to design, fabricate and test designs rapidly and at a very low cost.

  12. Virtual environment architecture for rapid application development

    NASA Technical Reports Server (NTRS)

    Grinstein, Georges G.; Southard, David A.; Lee, J. P.

    1993-01-01

    We describe the MITRE Virtual Environment Architecture (VEA), a product of nearly two years of investigations and prototypes of virtual environment technology. This paper discusses the requirements for rapid prototyping, and an architecture we are developing to support virtual environment construction. VEA supports rapid application development by providing a variety of pre-built modules that can be reconfigured for each application session. The modules supply interfaces for several types of interactive I/O devices, in addition to large-screen or head-mounted displays.

  13. Deployment Ready Airway Management System (DRAMS)

    DTIC Science & Technology

    2013-10-24

    have been developed along with rapid prototypes. The results have been excellent and DMLS Alpha one and two prototypes have been developed resulting...Contact Model Quarterly  Report               10/25/2013 DMLS FlexBlade Reusable Module B-1 Prototype

  14. Utilizing a Rapid Prototyping Approach in the Building of a Hypermedia-Based Reference Station.

    ERIC Educational Resources Information Center

    Sell, Dan

    This paper discusses the building of a hypermedia-based reference station at the Wright Laboratory Technical Library, Wright-Patterson Air Force Base, Ohio. Following this, the paper focuses on an electronic user survey from which data is collected and analysis is made. The survey data is used in a rapid prototyping approach, which is defined as…

  15. Manufacturing Laboratory for Next Generation Engineers

    DTIC Science & Technology

    2013-12-16

    automated CNC machines, rapid prototype systems, robotic assembly systems, metrology , and non-traditional systems such as a waterjet cutter, EDM machine...CNC machines, rapid prototype systems, robotic assembly systems, metrology , and non-traditional systems such as a waterjet cutter, EDM machine, plasma...System Metrology and Quality Control Equipment - This area already had a CMM and other well known quality control instrumentation. It has been enhanced

  16. Preliminary work toward the development of a dimensional tolerance standard for rapid prototyping

    NASA Technical Reports Server (NTRS)

    Kennedy, W. J.

    1996-01-01

    Rapid prototyping is a new technology for building parts quickly from CAD models. It works by slicing a CAD model into layers, then by building a model of the part one layer at a time. Since most parts can be sliced, most parts can be modeled using rapid prototyping. The layers themselves are created in a number of different ways - by using a laser to cure a layer of an epoxy or a resin, by depositing a layer of plastic or wax upon a surface, by using a laser to sinter a layer of powder, or by using a laser to cut a layer of paper. Rapid prototyping (RP) is new, and a standard part for use in comparing dimensional tolerances has not yet been chosen and accepted by ASTM (the American Society for Testing Materials). Such a part is needed when RP is used to build parts for investment casting or for direct use. The objective of this project was to start the development of a standard part by using statistical techniques to choose the features of the part which show curl - the vertical deviation of a part from its intended horizontal plane.

  17. Verification and Validation in a Rapid Software Development Process

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Easterbrook, Steve M.

    1997-01-01

    The high cost of software production is driving development organizations to adopt more automated design and analysis methods such as rapid prototyping, computer-aided software engineering (CASE) tools, and high-level code generators. Even developers of safety-critical software system have adopted many of these new methods while striving to achieve high levels Of quality and reliability. While these new methods may enhance productivity and quality in many cases, we examine some of the risks involved in the use of new methods in safety-critical contexts. We examine a case study involving the use of a CASE tool that automatically generates code from high-level system designs. We show that while high-level testing on the system structure is highly desirable, significant risks exist in the automatically generated code and in re-validating releases of the generated code after subsequent design changes. We identify these risks and suggest process improvements that retain the advantages of rapid, automated development methods within the quality and reliability contexts of safety-critical projects.

  18. Dietary Assessment on a Mobile Phone Using Image Processing and Pattern Recognition Techniques: Algorithm Design and System Prototyping.

    PubMed

    Probst, Yasmine; Nguyen, Duc Thanh; Tran, Minh Khoi; Li, Wanqing

    2015-07-27

    Dietary assessment, while traditionally based on pen-and-paper, is rapidly moving towards automatic approaches. This study describes an Australian automatic food record method and its prototype for dietary assessment via the use of a mobile phone and techniques of image processing and pattern recognition. Common visual features including scale invariant feature transformation (SIFT), local binary patterns (LBP), and colour are used for describing food images. The popular bag-of-words (BoW) model is employed for recognizing the images taken by a mobile phone for dietary assessment. Technical details are provided together with discussions on the issues and future work.

  19. A fast and flexible method for manufacturing 3D molded interconnect devices by the use of a rapid prototyping technology

    NASA Astrophysics Data System (ADS)

    Amend, P.; Pscherer, C.; Rechtenwald, T.; Frick, T.; Schmidt, M.

    This paper presents experimental results of manufacturing MID-prototypes by means of SLS, laser structuring and metallization. Therefore common SLS powder (PA12) doped with laser structuring additives is used. First of all the influence of the additives on the characteristic temperatures of melting and crystallization is analyzed by means of DSC. Afterwards the sintering process is carried out and optimized by experiments. Finally the generated components are qualified regarding their density, mechanical properties and surface roughness. Especially the surface quality is important for the metallization process. Therefore surface finishing techniques are investigated.

  20. A Method to Represent Heterogeneous Materials for Rapid Prototyping: The Matryoshka Approach

    PubMed Central

    Lei, Shuangyan; Frank, Matthew C.; Anderson, Donald D.; Brown, Thomas D.

    2015-01-01

    Purpose The purpose of this paper is to present a new method for representing heterogeneous materials using nested STL shells, based, in particular, on the density distributions of human bones. Design/methodology/approach Nested STL shells, called Matryoshka models, are described, based on their namesake Russian nesting dolls. In this approach, polygonal models, such as STL shells, are “stacked” inside one another to represent different material regions. The Matryoshka model addresses the challenge of representing different densities and different types of bone when reverse engineering from medical images. The Matryoshka model is generated via an iterative process of thresholding the Hounsfield Unit (HU) data using computed tomography (CT), thereby delineating regions of progressively increasing bone density. These nested shells can represent regions starting with the medullary (bone marrow) canal, up through and including the outer surface of the bone. Findings The Matryoshka approach introduced can be used to generate accurate models of heterogeneous materials in an automated fashion, avoiding the challenge of hand-creating an assembly model for input to multi-material additive or subtractive manufacturing. Originality/Value This paper presents a new method for describing heterogeneous materials: in this case, the density distribution in a human bone. The authors show how the Matryoshka model can be used to plan harvesting locations for creating custom rapid allograft bone implants from donor bone. An implementation of a proposed harvesting method is demonstrated, followed by a case study using subtractive rapid prototyping to harvest a bone implant from a human tibia surrogate. PMID:26120277

  1. Validation of a fibula graft cutting guide for mandibular reconstruction: experiment with rapid prototyping mandible model.

    PubMed

    Lim, Se-Ho; Kim, Yeon-Ho; Kim, Moon-Key; Nam, Woong; Kang, Sang-Hoon

    2016-12-01

    We examined whether cutting a fibula graft with a surgical guide template, prepared with computer-aided design/computer-aided manufacturing (CAD/CAM), would improve the precision and accuracy of mandibular reconstruction. Thirty mandibular rapid prototype (RP) models were allocated to experimental (N = 15) and control (N = 15) groups. Thirty identical fibular RP models were assigned randomly, 15 to each group. For reference, we prepared a reconstructed mandibular RP model with a three-dimensional printer, based on surgical simulation. In the experimental group, a stereolithography (STL) surgical guide template, based on simulation, was used for cutting the fibula graft. In the control group, the fibula graft was cut manually, with reference to the reconstructed RP mandible model. The mandibular reconstructions were compared to the surgical simulation, and errors were calculated for both the STL surgical guide and the manual methods. The average differences in three-dimensional, minimum distances between the reconstruction and simulation were 9.87 ± 6.32 mm (mean ± SD) for the STL surgical guide method and 14.76 ± 10.34 mm (mean ± SD) for the manual method. The STL surgical guide method incurred less error than the manual method in mandibular reconstruction. A fibula cutting guide improved the precision of reconstructing the mandible with a fibula graft.

  2. "Bridging" Engineering & Art: An Outreach Approach for Middle and High School Students

    ERIC Educational Resources Information Center

    Asiabanpour, Bahram; DesChamps-Benke, Nicole; Wilson, Thomas; Loerwald, Matthew; Gourgey, Hannah

    2010-01-01

    This paper describes a novel outreach approach to high school and middle school students to familiarize them with engineering functions and methods. In this approach students participated in a seven-day summer research camp and learned many engineering skills and tools such as CAD solid modeling, finite element analysis, rapid prototyping,…

  3. Rapid Model Fabrication and Testing for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    2000-01-01

    Advanced methods for rapid fabrication and instrumentation of hypersonic wind tunnel models are being developed and evaluated at NASA Langley Research Center. Rapid aeroheating model fabrication and measurement techniques using investment casting of ceramic test models and thermographic phosphors are reviewed. More accurate model casting techniques for fabrication of benchmark metal and ceramic test models are being developed using a combination of rapid prototype patterns and investment casting. White light optical scanning is used for coordinate measurements to evaluate the fabrication process and verify model accuracy to +/- 0.002 inches. Higher-temperature (<210C) luminescent coatings are also being developed for simultaneous pressure and temperature mapping, providing global pressure as well as global aeroheating measurements. Together these techniques will provide a more rapid and complete experimental aerodynamic and aerothermodynamic database for future aerospace vehicles.

  4. [Osteogenic activity of porous calcium phosphate ceramics fabricated by rapid prototyping].

    PubMed

    He, Chenguang; Zhao, Li; Lin, Liulan; Gu, Huijie; Zhou, Heng; Cui, Lei

    2010-07-01

    Calcium phosphate bioceramics has a broad application prospect because of good biocompatibility, but porous scaffolds with complex shape can not be prepared by the traditional methods. To fabricate porous calcium phosphate ceramics by rapid prototyping and to investigate the in vitro osteogenic activities. The porous calcium phosphate ceramics was fabricated by rapid prototyping. The bone marrow mesenchymal stem cells (BMSCs) were isolated from bone marrow of Beagle canine, and the 3rd passage BMSCs were seeded onto the porous ceramics. The cell/ceramics composite cultured in osteogenic medium were taken as the experimental group (group A) and the cell/ceramics composite cultured in growth medium were taken as the control group (group B). Meanwhile, the cells seeded on the culture plate were cultured in osteogenic medium or growth medium respectively as positive control (group C) or negative control (group D). After 1, 3, and 7 days of culture, the cell proliferation and osteogenic differentiation on the porous ceramics were evaluated by DNA quantitative analysis, histochemical staining and alkaline phosphatase (ALP) activity. After DiO fluorescent dye, the cell adhesion, growth, and proliferation on the porous ceramics were also observed by confocal laser scanning microscope (CLSM). DNA quantitative analysis results showed that the number of BMSCs in all groups increased continuously with time. Plateau phase was not obvious in groups A and B, but it was clearly observed in groups C and D. The CLSM observation indicated that the activity of BMSCs was good and the cells spread extensively, showing good adhesion and proliferation on the porous calcium phosphate ceramics prepared by rapid prototyping. ALP quantitative analysis results showed that the stain of cells on the ceramics became deeper and deeper with time in groups A and B, the staining degree in group A were stronger than that in group B. There was no significant difference in the change of the ALP activity among 4 groups at the first 3 days (P > 0.05); the ALP activity increased obviously in 4 groups at 7 days, group A was significantly higher than other groups (P < 0.05) and groups C, D were significantly higher than group D (P < 0.05). The porous calcium phosphate ceramics has good cytocompatibility and the designed pores are favorable for cell ingrowth. The porous ceramics fabricated by rapid prototyping has prominent osteogenic differentiation activity and can be used as a choice of scaffolds for bone tissue engineering.

  5. A new UV-curing elastomeric substrate for rapid prototyping of microfluidic devices

    NASA Astrophysics Data System (ADS)

    Alvankarian, Jafar; Yeop Majlis, Burhanuddin

    2012-03-01

    Rapid prototyping in the design cycle of new microfluidic devices is very important for shortening time-to-market. Researchers are facing the challenge to explore new and suitable substrates with simple and efficient microfabrication techniques. In this paper, we introduce and characterize a UV-curing elastomeric polyurethane methacrylate (PUMA) for rapid prototyping of microfluidic devices. The swelling and solubility of PUMA in different chemicals is determined. Time-dependent measurements of water contact angle show that the native PUMA is hydrophilic without surface treatment. The current monitoring method is used for measurement of the electroosmotic flow mobility in the microchannels made from PUMA. The optical, physical, thermal and mechanical properties of PUMA are evaluated. The UV-lithography and molding process is used for making micropillars and deep channel microfluidic structures integrated to the supporting base layer. Spin coating is characterized for producing different layer thicknesses of PUMA resin. A device is fabricated and tested for examining the strength of different bonding techniques such as conformal, corona treating and semi-curing of two PUMA layers in microfluidic application and the results show that the bonding strengths are comparable to that of PDMS. We also report fabrication and testing of a three-layer multi inlet/outlet microfluidic device including a very effective fluidic interconnect for application demonstration of PUMA as a promising new substrate. A simple micro-device is developed and employed for observing the pressure deflection of membrane made from PUMA as a very effective elastomeric valve in microfluidic devices.

  6. Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via "Sketch and Peel" Strategy.

    PubMed

    Chen, Yiqin; Bi, Kaixi; Wang, Qianjin; Zheng, Mengjie; Liu, Qing; Han, Yunxin; Yang, Junbo; Chang, Shengli; Zhang, Guanhua; Duan, Huigao

    2016-12-27

    Focused ion beam (FIB) milling is a versatile maskless and resistless patterning technique and has been widely used for the fabrication of inverse plasmonic structures such as nanoholes and nanoslits for various applications. However, due to its subtractive milling nature, it is an impractical method to fabricate isolated plasmonic nanoparticles and assemblies which are more commonly adopted in applications. In this work, we propose and demonstrate an approach to reliably and rapidly define plasmonic nanoparticles and their assemblies using FIB milling via a simple "sketch and peel" strategy. Systematic experimental investigations and mechanism studies reveal that the high reliability of this fabrication approach is enabled by a conformally formed sidewall coating due to the ion-milling-induced redeposition. Particularly, we demonstrated that this strategy is also applicable to the state-of-the-art helium ion beam milling technology, with which high-fidelity plasmonic dimers with tiny gaps could be directly and rapidly prototyped. Because the proposed approach enables rapid and reliable patterning of arbitrary plasmonic nanostructures that are not feasible to fabricate via conventional FIB milling process, our work provides the FIB milling technology an additional nanopatterning capability and thus could greatly increase its popularity for utilization in fundamental research and device prototyping.

  7. The utilization of cranial models created using rapid prototyping techniques in the development of models for navigation training.

    PubMed

    Waran, V; Pancharatnam, Devaraj; Thambinayagam, Hari Chandran; Raman, Rajagopal; Rathinam, Alwin Kumar; Balakrishnan, Yuwaraj Kumar; Tung, Tan Su; Rahman, Z A

    2014-01-01

    Navigation in neurosurgery has expanded rapidly; however, suitable models to train end users to use the myriad software and hardware that come with these systems are lacking. Utilizing three-dimensional (3D) industrial rapid prototyping processes, we have been able to create models using actual computed tomography (CT) data from patients with pathology and use these models to simulate a variety of commonly performed neurosurgical procedures with navigation systems. To assess the possibility of utilizing models created from CT scan dataset obtained from patients with cranial pathology to simulate common neurosurgical procedures using navigation systems. Three patients with pathology were selected (hydrocephalus, right frontal cortical lesion, and midline clival meningioma). CT scan data following an image-guidance surgery protocol in DIACOM format and a Rapid Prototyping Machine were taken to create the necessary printed model with the corresponding pathology embedded. The ability in registration, planning, and navigation of two navigation systems using a variety of software and hardware provided by these platforms was assessed. We were able to register all models accurately using both navigation systems and perform the necessary simulations as planned. Models with pathology utilizing 3D rapid prototyping techniques accurately reflect data of actual patients and can be used in the simulation of neurosurgical operations using navigation systems. Georg Thieme Verlag KG Stuttgart · New York.

  8. Reusable Rapid Prototyped Blunt Impact Simulator

    DTIC Science & Technology

    2016-08-01

    for a nonclassical gun experimental application. 15. SUBJECT TERMS rapid prototype, additive manufacturing, reusable projectile, 3-axis accelerometer... gun -launched applications.1,2 SLS technology uses a bed of powdered material that is introduced to a laser. The laser is controlled by a computer to...in creating internal gun -hardened electronics for a variety of high-g applications, GTB developed an internal electronics package containing a COTS

  9. Research on seamless development of surgical instruments based on biological mechanisms using CAD and 3D printer.

    PubMed

    Yamamoto, Ikuo; Ota, Ren; Zhu, Rui; Lawn, Murray; Ishimatsu, Takakazu; Nagayasu, Takeshi; Yamasaki, Naoya; Takagi, Katsunori; Koji, Takehiko

    2015-01-01

    In the area of manufacturing surgical instruments, the ability to rapidly design, prototype and test surgical instruments is critical. This paper provides a simple case study of the rapid development of two bio-mechanism based surgical instruments which are ergonomic, aesthetic and were successfully designed, prototyped and conceptually tested in a very short period of time.

  10. Translating expert system rules into Ada code with validation and verification

    NASA Technical Reports Server (NTRS)

    Becker, Lee; Duckworth, R. James; Green, Peter; Michalson, Bill; Gosselin, Dave; Nainani, Krishan; Pease, Adam

    1991-01-01

    The purpose of this ongoing research and development program is to develop software tools which enable the rapid development, upgrading, and maintenance of embedded real-time artificial intelligence systems. The goals of this phase of the research were to investigate the feasibility of developing software tools which automatically translate expert system rules into Ada code and develop methods for performing validation and verification testing of the resultant expert system. A prototype system was demonstrated which automatically translated rules from an Air Force expert system was demonstrated which detected errors in the execution of the resultant system. The method and prototype tools for converting AI representations into Ada code by converting the rules into Ada code modules and then linking them with an Activation Framework based run-time environment to form an executable load module are discussed. This method is based upon the use of Evidence Flow Graphs which are a data flow representation for intelligent systems. The development of prototype test generation and evaluation software which was used to test the resultant code is discussed. This testing was performed automatically using Monte-Carlo techniques based upon a constraint based description of the required performance for the system.

  11. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

    1988-01-01

    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  12. Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique.

    PubMed

    Kim, Jae-Hong; Kim, Ki-Baek; Kim, Woong-Chul; Kim, Ji-Hwan; Kim, Hae-Young

    2014-03-01

    This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of inter-examiner and inter-method variability. The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models.

  13. Flexible Wing Base Micro Aerial Vehicles: Composite Materials for Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.; Ettinger, Scott; Jenkins, David; Martinez, Luis

    2002-01-01

    This paper will discuss the development of the University of Florida's Micro Air Vehicle concept. A series of flexible wing based aircraft that possess highly desirable flight characteristics were developed. Since computational methods to accurately model flight at the low Reynolds numbers associated with this scale are still under development, our effort has relied heavily on trial and error. Hence a time efficient method was developed to rapidly produce prototype designs. The airframe and wings are fabricated using a unique process that incorporates carbon fiber composite construction. Prototypes can be fabricated in around five man-hours, allowing many design revisions to be tested in a short period of time. The resulting aircraft are far more durable, yet lighter, than their conventional counterparts. This process allows for thorough testing of each design in order to determine what changes were required on the next prototype. The use of carbon fiber allows for wing flexibility without sacrificing durability. The construction methods developed for this project were the enabling technology that allowed us to implement our designs. The resulting aircraft were the winning entries in the International Micro Air Vehicle Competition for the past two years. Details of the construction method are provided in this paper along with a background on our flexible wing concept.

  14. Experimental modeling of swirl flows in power plants

    NASA Astrophysics Data System (ADS)

    Shtork, S. I.; Litvinov, I. V.; Gesheva, E. S.; Tsoy, M. A.; Skripkin, S. G.

    2018-03-01

    The article presents an overview of the methods and approaches to experimental modeling of various thermal and hydropower units - furnaces of pulverized coal boilers and flow-through elements of hydro turbines. The presented modeling approaches based on a combination of experimentation and rapid prototyping of working parts may be useful in optimizing energy equipment to improve safety and efficiency of industrial energy systems.

  15. A Novel Outreach to High School Students by Teaching Them the Engineering Skills in a Project-Based Approach

    ERIC Educational Resources Information Center

    Asiabanpour, Bahram

    2010-01-01

    In this paper a novel outreach approach to high school students to familiarize them with engineering functions and methods is explained. In this approach students participated in a seven days research camp and learned many engineering skills and tools such as CAD solid modeling, finite element analysis, rapid prototyping, mechanical tests, team…

  16. Analysis of 3D printing parameters of gears for hybrid manufacturing

    NASA Astrophysics Data System (ADS)

    Budzik, Grzegorz; Przeszlowski, Łukasz; Wieczorowski, Michal; Rzucidlo, Arkadiusz; Gapinski, Bartosz; Krolczyk, Grzegorz

    2018-05-01

    The paper deals with analysis and selection of parameters of rapid prototyping of gears by selective sintering of metal powders. Presented results show wide spectrum of application of RP systems in manufacturing processes of machine elements, basing on analysis of market in term of application of additive manufacturing technology in different sectors of industry. Considerable growth of these methods over the past years can be observed. The characteristic errors of printed model with respect to ideal one for each technique were pointed out. Special attention was paid to the method of preparation of numerical data CAD/STL/RP. Moreover the analysis of manufacturing processes of gear type elements was presented. The tested gears were modeled with different allowances for final machining and made by DMLS. Metallographic analysis and strength tests on prepared specimens were performed. The above mentioned analysis and tests were used to compare the real properties of material with the nominal ones. To improve the quality of surface after sintering the gears were subjected to final machining. The analysis of geometry of gears after hybrid manufacturing method was performed (fig.1). The manufacturing process was defined in a traditional way as well as with the aid of modern manufacturing techniques. Methodology and obtained results can be used for other machine elements than gears and constitutes the general theory of production processes in rapid prototyping methods as well as in designing and implementation of production.

  17. Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique

    PubMed Central

    Wilson, C. E.; van Blitterswijk, C. A.; Verbout, A. J.; de Bruijn, J. D.

    2010-01-01

    Calcium phosphate ceramics, commonly applied as bone graft substitutes, are a natural choice of scaffolding material for bone tissue engineering. Evidence shows that the chemical composition, macroporosity and microporosity of these ceramics influences their behavior as bone graft substitutes and bone tissue engineering scaffolds but little has been done to optimize these parameters. One method of optimization is to place focus on a particular parameter by normalizing the influence, as much as possible, of confounding parameters. This is difficult to accomplish with traditional fabrication techniques. In this study we describe a design based rapid prototyping method of manufacturing scaffolds with virtually identical macroporous architectures from different calcium phosphate ceramic compositions. Beta-tricalcium phosphate, hydroxyapatite (at two sintering temperatures) and biphasic calcium phosphate scaffolds were manufactured. The macro- and micro-architectures of the scaffolds were characterized as well as the influence of the manufacturing method on the chemistries of the calcium phosphate compositions. The structural characteristics of the resulting scaffolds were remarkably similar. The manufacturing process had little influence on the composition of the materials except for the consistent but small addition of, or increase in, a beta-tricalcium phosphate phase. Among other applications, scaffolds produced by the method described provide a means of examining the influence of different calcium phosphate compositions while confidently excluding the influence of the macroporous structure of the scaffolds. PMID:21069558

  18. Precision of a CAD/CAM-engineered surgical template based on a facebow for orthognathic surgery: an experiment with a rapid prototyping maxillary model.

    PubMed

    Lee, Jae-Won; Lim, Se-Ho; Kim, Moon-Key; Kang, Sang-Hoon

    2015-12-01

    We examined the precision of a computer-aided design/computer-aided manufacturing-engineered, manufactured, facebow-based surgical guide template (facebow wafer) by comparing it with a bite splint-type orthognathic computer-aided design/computer-aided manufacturing-engineered surgical guide template (bite wafer). We used 24 rapid prototyping (RP) models of the craniofacial skeleton with maxillary deformities. Twelve RP models each were used for the facebow wafer group and the bite wafer group (experimental group). Experimental maxillary orthognathic surgery was performed on the RP models of both groups. Errors were evaluated through comparisons with surgical simulations. We measured the minimum distances from 3 planes of reference to determine the vertical, lateral, and anteroposterior errors at specific measurement points. The measured errors were compared between experimental groups using a t test. There were significant intergroup differences in the lateral error when we compared the absolute values of the 3-D linear distance, as well as vertical, lateral, and anteroposterior errors between experimental groups. The bite wafer method exhibited little lateral error overall and little error in the anterior tooth region. The facebow wafer method exhibited very little vertical error in the posterior molar region. The clinical precision of the facebow wafer method did not significantly exceed that of the bite wafer method. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Adaptive Tunable Laser Spectrometer for Space Applications

    NASA Technical Reports Server (NTRS)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  20. Preoperative planning of thoracic surgery with use of three-dimensional reconstruction, rapid prototyping, simulation and virtual navigation

    PubMed Central

    Heuts, Samuel; Maessen, Jos G.

    2016-01-01

    For the past decades, surgeries have become more complex, due to the increasing age of the patient population referred for thoracic surgery, more complex pathology and the emergence of minimally invasive thoracic surgery. Together with the early detection of thoracic disease as a result of innovations in diagnostic possibilities and the paradigm shift to personalized medicine, preoperative planning is becoming an indispensable and crucial aspect of surgery. Several new techniques facilitating this paradigm shift have emerged. Pre-operative marking and staining of lesions are already a widely accepted method of preoperative planning in thoracic surgery. However, three-dimensional (3D) image reconstructions, virtual simulation and rapid prototyping (RP) are still in development phase. These new techniques are expected to become an important part of the standard work-up of patients undergoing thoracic surgery in the future. This review aims at graphically presenting and summarizing these new diagnostic and therapeutic tools PMID:29078505

  1. 3D Computer aided treatment planning in endodontics.

    PubMed

    van der Meer, Wicher J; Vissink, Arjan; Ng, Yuan Ling; Gulabivala, Kishor

    2016-02-01

    Obliteration of the root canal system due to accelerated dentinogenesis and dystrophic calcification can challenge the achievement of root canal treatment goals. This paper describes the application of 3D digital mapping technology for predictable navigation of obliterated canal systems during root canal treatment to avoid iatrogenic damage of the root. Digital endodontic treatment planning for anterior teeth with severely obliterated root canal systems was accomplished with the aid of computer software, based on cone beam computer tomography (CBCT) scans and intra-oral scans of the dentition. On the basis of these scans, endodontic guides were created for the planned treatment through digital designing and rapid prototyping fabrication. The custom-made guides allowed for an uncomplicated and predictable canal location and management. The method of digital designing and rapid prototyping of endodontic guides allows for reliable and predictable location of root canals of teeth with calcifically metamorphosed root canal systems. The endodontic directional guide facilitates difficult endodontic treatments at little additional cost. Copyright © 2016. Published by Elsevier Ltd.

  2. A review of rapid prototyping techniques for tissue engineering purposes.

    PubMed

    Peltola, Sanna M; Melchels, Ferry P W; Grijpma, Dirk W; Kellomäki, Minna

    2008-01-01

    Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically three-dimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of three-dimensional scaffolds with complex geometries and very fine structures. Adding micro- and nanometer details into the scaffolds improves the mechanical properties of the scaffold and ensures better cell adhesion to the scaffold surface. Thus, tissue engineering constructs can be customized according to the data acquired from the medical scans to match the each patient's individual needs. In addition RP enables the control of the scaffold porosity making it possible to fabricate applications with desired structural integrity. Unfortunately, every RP process has its own unique disadvantages in building tissue engineering scaffolds. Hence, the future research should be focused on the development of RP machines designed specifically for fabrication of tissue engineering scaffolds, although RP methods already can serve as a link between tissue and engineering.

  3. Lab on a Biomembrane: Rapid prototyping and manipulation of 2D fluidic lipid bilayers circuits

    PubMed Central

    Ainla, Alar; Gözen, Irep; Hakonen, Bodil; Jesorka, Aldo

    2013-01-01

    Lipid bilayer membranes are among the most ubiquitous structures in the living world, with intricate structural features and a multitude of biological functions. It is attractive to recreate these structures in the laboratory, as this allows mimicking and studying the properties of biomembranes and their constituents, and to specifically exploit the intrinsic two-dimensional fluidity. Even though diverse strategies for membrane fabrication have been reported, the development of related applications and technologies has been hindered by the unavailability of both versatile and simple methods. Here we report a rapid prototyping technology for two-dimensional fluidic devices, based on in-situ generated circuits of phospholipid films. In this “lab on a molecularly thin membrane”, various chemical and physical operations, such as writing, erasing, functionalization, and molecular transport, can be applied to user-defined regions of a membrane circuit. This concept is an enabling technology for research on molecular membranes and their technological use. PMID:24067786

  4. Reverse engineering--rapid prototyping of the skull in forensic trauma analysis.

    PubMed

    Kettner, Mattias; Schmidt, Peter; Potente, Stefan; Ramsthaler, Frank; Schrodt, Michael

    2011-07-01

    Rapid prototyping (RP) comprises a variety of automated manufacturing techniques such as selective laser sintering (SLS), stereolithography, and three-dimensional printing (3DP), which use virtual 3D data sets to fabricate solid forms in a layer-by-layer technique. Despite a growing demand for (virtual) reconstruction models in daily forensic casework, maceration of the skull is frequently assigned to ensure haptic evidence presentation in the courtroom. Owing to the progress in the field of forensic radiology, 3D data sets of relevant cases are usually available to the forensic expert. Here, we present a first application of RP in forensic medicine using computed tomography scans for the fabrication of an SLS skull model in a case of fatal hammer impacts to the head. The report is intended to show that this method fully respects the dignity of the deceased and is consistent with medical ethics but nevertheless provides an excellent 3D impression of anatomical structures and injuries. © 2011 American Academy of Forensic Sciences.

  5. Rapid Prototyping Technique for the Fabrication of Millifluidic Devices for Polymer Formulations

    NASA Astrophysics Data System (ADS)

    Cabral, Joao; Harrison, Christopher; Eric, Amis; Karim, Alamgir

    2003-03-01

    We describe a rapid prototyping technique for the fabrication of 600 micron deep fluidic channels in a solvent-resistant polymeric matrix. Using a conventional illumination source, a laser-jet printed mask, and a commercially available thioelene-based adhesive, we demonstrate the fabrication of fluidic channels which are impervious to a wide range of solvents. The fabrication of channels with this depth by conventional lithography would be both challenging and time-consuming. We demonstrate two lithography methods: one which fabricates channels sealed between glass plates (closed face) and one which fabricates structures on a single plate (open-faced). Furthermore, we demonstrate that this technology can be used to fabricate channels with a depth which varies linearly with distance. The latter is completely compatible with silicone replication technniques. Additionally, we demonstrate that siloxane-based elastomer molds of these channels can be readily made for aqueous applications. Applications to on-line phase mapping of polymer solutions (PEO-Water-Salt) and off line phase separation studies will be discussed.

  6. An architecture for rapid prototyping of control schemes for artificial ventricles.

    PubMed

    Ficola, Antonio; Pagnottelli, Stefano; Valigi, Paolo; Zoppitelli, Maurizio

    2004-01-01

    This paper presents an experimental system aimed at rapid prototyping of feedback control schemes for ventricular assist devices, and artificial ventricles in general. The system comprises a classical mock circulatory system, an actuated bellow-based ventricle chamber, and a software architecture for control schemes implementation and experimental data acquisition, visualization and storing. Several experiments have been carried out, showing good performance of ventricular pressure tracking control schemes.

  7. Learning Over Time: Using Rapid Prototyping Generative Analysis Experts and Reduction of Scope to Operationalize Design

    DTIC Science & Technology

    2010-05-04

    during the Vietnam Conflict. 67 David A. Kolb , Experiential Learning : Experience as the Source of Learning and Development. (Upper Saddle River, NJ...Essentials for Military Applications. Newport Paper #10. Newport: Newport War College Press. 1996. Kolb , David A. Experiential Learning : Experience... learning over analysis. A broad review of design theory suggests that four techniques - rapid prototyping, generative analysis, use of experts, and

  8. Rapid Prototyping: State of the Art

    DTIC Science & Technology

    2003-10-23

    Rapid Prototyping SCS Solid Creation System SLM Selective Laser Melting SLP Solid Laser diode Plotter SLS Selective Laser Sintering SOAR State of the...121,000, respectively. SLP stands for Sold Laser Diode Plotter. The machines are relatively slow and parts are small, so, to date, the products have been...Gigerenzer, H., “Directed Laser Welding of Metal Matrix Composite Structures for Space Based Applications,“ Triton Systems Inc., Chelmsford, MA., 1

  9. Factors Influencing Rapid Prototyping Innovation Implementation: A Descriptive Model

    DTIC Science & Technology

    1990-03-01

    strategy. NDI can be considered as a balance of risk and technological advancement allowing the services to have a system in the field into the...The U.S. military no longer must go through the long, tedious series of events required by the peacetime research and development and service approval...developed, fielded, and evaluated by the fleet in conjunction with fleet introduction (Interim Service Approval). Rapid prototyping conceptually represents

  10. Dietary Assessment on a Mobile Phone Using Image Processing and Pattern Recognition Techniques: Algorithm Design and System Prototyping

    PubMed Central

    Probst, Yasmine; Nguyen, Duc Thanh; Tran, Minh Khoi; Li, Wanqing

    2015-01-01

    Dietary assessment, while traditionally based on pen-and-paper, is rapidly moving towards automatic approaches. This study describes an Australian automatic food record method and its prototype for dietary assessment via the use of a mobile phone and techniques of image processing and pattern recognition. Common visual features including scale invariant feature transformation (SIFT), local binary patterns (LBP), and colour are used for describing food images. The popular bag-of-words (BoW) model is employed for recognizing the images taken by a mobile phone for dietary assessment. Technical details are provided together with discussions on the issues and future work. PMID:26225994

  11. Rapid prototyping of solar-powered, battery-operated, atmospheric-pressure, sugar-cube size microplasma on hybrid, 3D chips for elemental analysis of liquid microsamples using a portable optical emission spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Karanassios, V.

    2012-06-01

    A solar-powered, battery-operated, atmospheric-pressure, self-igniting microplasma the size of a sugar-cube developed on a hybrid, 3d-chip is described. Rapid prototyping of the 3d-chip; some fundamental aspects and a brief characterization of its background spectral emission using a portable, fiber-optic spectrometer are discussed.

  12. Rapid Prototyping of High Performance Signal Processing Applications

    DTIC Science & Technology

    2011-01-01

    understand- ing broadband wireless networking . Prentice Hall, 2007. [4] J.W.M. Baars, L.R. D’Addario, and A.R. Thompson. Radio astronomy in the... wireless sensor net- works. In Proceedings of the IEEE Real-Time Systems Symposium, pages 214–223, Tucson, Arizona, December 2007. 147 [74] C. Shen, H. Wu...computing platforms. In this region of high performance DSP, rapid prototyping is critical for faster time-to-market (e.g., in the wireless

  13. Comparative study of manufacturing condyle implant using rapid prototyping and CNC machining

    NASA Astrophysics Data System (ADS)

    Bojanampati, S.; Karthikeyan, R.; Islam, MD; Venugopal, S.

    2018-04-01

    Injuries to the cranio-maxillofacial area caused by road traffic accidents (RTAs), fall from heights, birth defects, metabolic disorders and tumors affect a rising number of patients in the United Arab Emirates (UAE), and require maxillofacial surgery. Mandibular reconstruction poses a specific challenge in both functionality and aesthetics, and involves replacement of the damaged bone by a custom made implant. Due to material, design cycle time and manufacturing process time, such implants are in many instances not affordable to patients. In this paper, the feasibility of designing and manufacturing low-cost, custom made condyle implant is assessed using two different approaches, consisting of rapid prototyping and three-axis computer numerically controlled (CNC) machining. Two candidate rapid prototyping techniques are considered, namely fused deposition modeling (FDM) and three-dimensional printing followed by sand casting The feasibility of the proposed manufacturing processes is evaluated based on manufacturing time, cost, quality, and reliability.

  14. The Effect of Jetting Parameters on the Performance of Droplet Formation for Ink-Jet Rapid Prototyping

    NASA Technical Reports Server (NTRS)

    Helmer, Wayne

    1998-01-01

    Heinzl et al. (1985) reports that experiments in ink-jets to produce drawings or signals occurred as early as 1930. Various companies such as IBM and Pitney-Bowes have conducted extensive studies on these devices for many years. Many such reports are available in such journals as the IBM Journal of Research and Development. While numerous articles have been published on the jetting characteristics of ink and water, the literature is rather limited on fluids such as waxes (Gao & Sonin 1994) or non-water based fluids (Passow, et al. 1993). This present study extends the knowledge base to determine the performance of molten waxes in "ink-jet" type printers for rapid prototyping. The purpose of this research was to qualitatively and quantitatively study the droplet formation of a drop-on-demand ink-jet type nozzle system for rapid prototyping.

  15. Relatively Inexpensive Rapid Prototyping of Small Parts

    NASA Technical Reports Server (NTRS)

    Swan, Scott A.

    2003-01-01

    Parts with complex three-dimensional shapes and with dimensions up to 8 by 8 by 10 in. (20.3 by 20.3 by 25.4 cm) can be made as unitary pieces of a room-temperature-curing polymer, with relatively little investment in time and money, by a process now in use at Johnson Space Center. The process is one of a growing number of processes and techniques that are known collectively as the art of rapid prototyping. The main advantages of this process over other rapid-prototyping processes are greater speed and lower cost: There is no need to make paper drawings and take them to a shop for fabrication, and thus no need for the attendant paperwork and organizational delays. Instead, molds for desired parts are made automatically on a machine that is guided by data from a computer-aided design (CAD) system and can reside in an engineering office.

  16. A Three-Dimensional Mediastinal Model Created with Rapid Prototyping in a Patient with Ectopic Thymoma

    PubMed Central

    Nakada, Takeo; Inagaki, Takuya

    2014-01-01

    Preoperative three-dimensional (3D) imaging of a mediastinal tumor using two-dimensional (2D) axial computed tomography is sometimes difficult, and an unexpected appearance of the tumor may be encountered during surgery. In order to evaluate the preoperative feasibility of a 3D mediastinal model that used the rapid prototyping technique, we created a model and report its results. The 2D image showed some of the relationship between the tumor and the pericardium, but the 3D mediastinal model that was created using the rapid prototyping technique showed the 3D lesion in the outer side of the extrapericardium. The patient underwent a thoracoscopic resection of the tumor, and the pathological examination showed a rare middle mediastinal ectopic thymoma. We believe that the construction of mediastinal models is useful for thoracoscopic surgery and other complicated surgeries of the chest diseases. PMID:24633133

  17. A three-dimensional mediastinal model created with rapid prototyping in a patient with ectopic thymoma.

    PubMed

    Akiba, Tadashi; Nakada, Takeo; Inagaki, Takuya

    2015-01-01

    Preoperative three-dimensional (3D) imaging of a mediastinal tumor using two-dimensional (2D) axial computed tomography is sometimes difficult, and an unexpected appearance of the tumor may be encountered during surgery. In order to evaluate the preoperative feasibility of a 3D mediastinal model that used the rapid prototyping technique, we created a model and report its results. The 2D image showed some of the relationship between the tumor and the pericardium, but the 3D mediastinal model that was created using the rapid prototyping technique showed the 3D lesion in the outer side of the extrapericardium. The patient underwent a thoracoscopic resection of the tumor, and the pathological examination showed a rare middle mediastinal ectopic thymoma. We believe that the construction of mediastinal models is useful for thoracoscopic surgery and other complicated surgeries of the chest diseases.

  18. Using 3D Printing for Rapid Prototyping of Characterization Tools for Investigating Powder Blend Behavior.

    PubMed

    Hirschberg, Cosima; Boetker, Johan P; Rantanen, Jukka; Pein-Hackelbusch, Miriam

    2018-02-01

    There is an increasing need to provide more detailed insight into the behavior of particulate systems. The current powder characterization tools are developed empirically and in many cases, modification of existing equipment is difficult. More flexible tools are needed to provide understanding of complex powder behavior, such as mixing process and segregation phenomenon. An approach based on the fast prototyping of new powder handling geometries and interfacing solutions for process analytical tools is reported. This study utilized 3D printing for rapid prototyping of customized geometries; overall goal was to assess mixing process of powder blends at small-scale with a combination of spectroscopic and mechanical monitoring. As part of the segregation evaluation studies, the flowability of three different paracetamol/filler-blends at different ratios was investigated, inter alia to define the percolation thresholds. Blends with a paracetamol wt% above the percolation threshold were subsequently investigated in relation to their segregation behavior. Rapid prototyping using 3D printing allowed designing two funnels with tailored flow behavior (funnel flow) of model formulations, which could be monitored with an in-line near-infrared (NIR) spectrometer. Calculating the root mean square (RMS) of the scores of the two first principal components of the NIR spectra visualized spectral variation as a function of process time. In a same setup, mechanical properties (basic flow energy) of the powder blend were monitored during blending. Rapid prototyping allowed for fast modification of powder testing geometries and easy interfacing with process analytical tools, opening new possibilities for more detailed powder characterization.

  19. Rapid Production of Composite Prototype Hardware

    NASA Technical Reports Server (NTRS)

    DeLay, T. K.

    2000-01-01

    The objective of this research was to provide a mechanism to cost-effectively produce composite hardware prototypes. The task was to take a hands-on approach to developing new technologies that could benefit multiple future programs.

  20. Efficient hybrid-symbolic methods for quantum mechanical calculations

    NASA Astrophysics Data System (ADS)

    Scott, T. C.; Zhang, Wenxing

    2015-06-01

    We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.

  1. Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique

    PubMed Central

    Kim, Jae-Hong; Kim, Ki-Baek; Kim, Woong-Chul; Kim, Ji-Hwan

    2014-01-01

    Objective This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Methods Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of inter-examiner and inter-method variability. Results The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. Conclusions The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models. PMID:24696823

  2. Virtual prototyping and testing of in-vehicle interfaces.

    PubMed

    Bullinger, Hans-Jörg; Dangelmaier, Manfred

    2003-01-15

    Electronic innovations that are slowly but surely changing the very nature of driving need to be tested before being introduced to the market. To meet this need a system for integrated virtual prototyping and testing has been developed. Functional virtual prototypes of various traffic systems, such as driver assistance, driver information, and multimedia systems can now be easily tested in a driving simulator by a rapid prototyping approach. The system has been applied in recent R&D projects.

  3. Rapid prototyping and stereolithography in dentistry

    PubMed Central

    Nayar, Sanjna; Bhuminathan, S.; Bhat, Wasim Manzoor

    2015-01-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena. PMID:26015715

  4. Rapid prototyping and stereolithography in dentistry.

    PubMed

    Nayar, Sanjna; Bhuminathan, S; Bhat, Wasim Manzoor

    2015-04-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena.

  5. A Survey of Quantum Programming Languages: History, Methods, and Tools

    DTIC Science & Technology

    2008-01-01

    and entanglement , to achieve computational solutions to certain problems in less time (fewer computational cycles) than is possible using classical...superposition of quantum bits, entanglement , destructive measurement, and the no-cloning theorem. These differences must be thoroughly understood and even...computers using well-known languages such as C, C++, Java, and rapid prototyping languages such as Maple, Mathematica, and Matlab . A good on-line

  6. A pilot biomedical engineering course in rapid prototyping for mobile health.

    PubMed

    Stokes, Todd H; Venugopalan, Janani; Hubbard, Elena N; Wang, May D

    2013-01-01

    Rapid prototyping of medically assistive mobile devices promises to fuel innovation and provides opportunity for hands-on engineering training in biomedical engineering curricula. This paper presents the design and outcomes of a course offered during a 16-week semester in Fall 2011 with 11 students enrolled. The syllabus covered a mobile health design process from end-to-end, including storyboarding, non-functional prototypes, integrated circuit programming, 3D modeling, 3D printing, cloud computing database programming, and developing patient engagement through animated videos describing the benefits of a new device. Most technologies presented in this class are open source and thus provide unlimited "hackability". They are also cost-effective and easily transferrable to other departments.

  7. Customer-experienced rapid prototyping

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Zhang, Fu; Li, Anbo

    2008-12-01

    In order to describe accurately and comprehend quickly the perfect GIS requirements, this article will integrate the ideas of QFD (Quality Function Deployment) and UML (Unified Modeling Language), and analyze the deficiency of prototype development model, and will propose the idea of the Customer-Experienced Rapid Prototyping (CE-RP) and describe in detail the process and framework of the CE-RP, from the angle of the characteristics of Modern-GIS. The CE-RP is mainly composed of Customer Tool-Sets (CTS), Developer Tool-Sets (DTS) and Barrier-Free Semantic Interpreter (BF-SI) and performed by two roles of customer and developer. The main purpose of the CE-RP is to produce the unified and authorized requirements data models between customer and software developer.

  8. Methods for freeform fabrication of structures

    DOEpatents

    Kaufman, Stephen G.; Spletzer, Barry L.

    2000-01-01

    Rapid prototyping methods and apparatuses that produce structures made of continuous-fiber polymer-matrix composites without the use of molds. Instead of using molds, the composite structure is fabricated patch by patch in layers or wraps, using a two- or three-axis stage connected to a rapidly-reconfigurable forming surface, and a robot arm to position the evolving composite structure, which are both programmable devices. Because programmable devices are included, i.e., a robot and a two- or three-axis stage connected to the reconfigurable forming surface, the control program needed to produce a desired shape can be easily modified to automatically generate the desired shape from an electronic model (e.g., using a CAD/CAM system) of the desired (predetermined) shape.

  9. Rapid Prototyping Amphiphilic Polymer/Hydroxyapatite Composite Scaffolds with Hydration-Induced Self-Fixation Behavior

    PubMed Central

    Kutikov, Artem B.; Gurijala, Anvesh

    2015-01-01

    Two major factors hampering the broad use of rapid prototyped biomaterials for tissue engineering applications are the requirement for custom-designed or expensive research-grade three-dimensional (3D) printers and the limited selection of suitable thermoplastic biomaterials exhibiting physical characteristics desired for facile surgical handling and biological properties encouraging tissue integration. Properly designed thermoplastic biodegradable amphiphilic polymers can exhibit hydration-dependent hydrophilicity changes and stiffening behavior, which may be exploited to facilitate the surgical delivery/self-fixation of the scaffold within a physiological tissue environment. Compared to conventional hydrophobic polyesters, they also present significant advantages in blending with hydrophilic osteoconductive minerals with improved interfacial adhesion for bone tissue engineering applications. Here, we demonstrated the excellent blending of biodegradable, amphiphilic poly(D,L-lactic acid)-poly(ethylene glycol)-poly(D,L-lactic acid) (PLA-PEG-PLA) (PELA) triblock co-polymer with hydroxyapatite (HA) and the fabrication of high-quality rapid prototyped 3D macroporous composite scaffolds using an unmodified consumer-grade 3D printer. The rapid prototyped HA-PELA composite scaffolds and the PELA control (without HA) swelled (66% and 44% volume increases, respectively) and stiffened (1.38-fold and 4-fold increases in compressive modulus, respectively) in water. To test the hypothesis that the hydration-induced physical changes can translate into self-fixation properties of the scaffolds within a confined defect, a straightforward in vitro pull-out test was designed to quantify the peak force required to dislodge these scaffolds from a simulated cylindrical defect at dry versus wet states. Consistent with our hypothesis, the peak fixation force measured for the PELA and HA-PELA scaffolds increased 6-fold and 15-fold upon hydration, respectively. Furthermore, we showed that the low-fouling 3D PELA inhibited the attachment of NIH3T3 fibroblasts or bone marrow stromal cells while the HA-PELA readily supported cellular attachment and osteogenic differentiation. Finally, we demonstrated the feasibility of rapid prototyping biphasic PELA/HA-PELA scaffolds for potential guided bone regeneration where an osteoconductive scaffold interior encouraging osteointegration and a nonadhesive surface discouraging fibrous tissue encapsulation is desired. This work demonstrated that by combining facile and readily translatable rapid prototyping approaches with unique biomaterial designs, biodegradable composite scaffolds with well-controlled macroporosities, spatially defined biological microenvironment, and useful handling characteristics can be developed. PMID:25025950

  10. From prototype to production system: lessons learned from the evolution of the SignOut System at Mount Sinai Medical Center.

    PubMed

    Kushniruk, Andre; Karson, Tom; Moore, Carlton; Kannry, Joseph

    2003-01-01

    Approaches to the development of information systems in large health care institutions range from prototyping to conventional development of large scale production systems. This paper discusses the development of the SignOut System at Mount Sinai Medical Center, which was designed in 1997 to capture vital resident information. Local need quickly outstripped proposed delays for building a production system and a prototype system quickly became a production system. By the end of 2002 the New SignOut System was built to create an integrated application that was a true production system. In this paper we discuss the design and implementation issues in moving from a prototype to a production system. The production system had a number of advantages, including increased organizational visibility, integration into enterprise resource planning and full time staff for support. However, the prototype allowed for more rapid design and subsequent changes, less training, and equal to or superior help desk support. It is argued that healthcare IT systems may need characteristics of both prototype and production system development to rapidly meet the changing and different needs of healthcare user populations.

  11. Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers

    PubMed Central

    Andò, Bruno; Baglio, Salvatore; Bulsara, Adi R.; Emery, Teresa; Marletta, Vincenzo; Pistorio, Antonio

    2017-01-01

    Recently, there has been an upsurge in efforts dedicated to developing low-cost flexible electronics by exploiting innovative materials and direct printing technologies. This interest is motivated by the need for low-cost mass-production, shapeable, and disposable devices, and the rapid prototyping of electronics and sensors. This review, following a short overview of main printing processes, reports examples of the development of flexible transducers through low-cost inkjet printing technology. PMID:28368318

  12. Joint Program on Rapid Prototyping. RaPIER (Rapid Prototyping to Investigate End-User Requirements).

    DTIC Science & Technology

    1985-03-28

    can be found in [PATCH83]. In this section, we will discuss three systems which represent the state-of-the-technology. A . The DRACO - System . The DRACO ... System [NEIGHBORS8O] provides a programming environment in which the design and analysis of programs are reused. DRACO provides mechanisms for...automatic in the sense that the user can make individual implementation choices (called refinements in DRACO ) or even insert new tactics into the system

  13. Rapid Prototyping

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  14. Epitrochoid Power-Law Nozzle Rapid Prototype Build/Test Project (Briefing Charts)

    DTIC Science & Technology

    2015-02-01

    Production Approved for public release; distribution is unlimited. PA clearance # 15122. 4 Epitrochoid Power-Law Nozzle Build/Test Build on SpaceX ...Multiengine Approach SpaceX ) Approved for public release; distribution is unlimited. PA clearance # 15122. Engines: Merlin 1D on Falcon 9 v1.1 (Photo 5...to utilize features of high performance engines advances and the economies of scale of the multi-engine approach of SpaceX Falcon 9 – Rapid Prototype

  15. Limiting factors in the production of deep microstructures

    NASA Astrophysics Data System (ADS)

    Tolfree, David W. L.; O'Neill, William; Tunna, Leslie; Sutcliffe, Christopher

    1999-10-01

    Microsystems increasingly require precision deep microstructures that can be cost-effectively designed and manufactured. New products must be able to meet the demands of the rapidly growing markets for microfluidic, micro- optical and micromechanical devices in industrial sectors which include chemicals, pharmaceuticals, biosciences, medicine and food. The realization of such products, first requires an effective process to design and manufacture prototypes. Two process methods used for the fabrication of high aspect-ratio microstructures are based on X-ray beam lithography with electroforming processes and direct micromachining with a frequency multiplied Nd:YAG laser using nanosecond pulse widths. Factors which limit the efficiency and precision obtainable using such processes are important parameters when deciding on the best fabrication method to use. A basic microstructure with narrow channels suitable for a microfluidic mixer have been fabricated using both these techniques and comparisons made of the limitations and suitability of the processes in respect of fast prototyping and manufacture or working devices.

  16. Fast-Track Building.

    ERIC Educational Resources Information Center

    Dolan, Thomas G.

    2002-01-01

    Describes Clark County, Nevada's use of prototype school designs to respond to its rapidly growing school population. The purpose of the prototypes is to simplify designs so that schools can be built quickly and minimize the time and expense that comes with variations. (EV)

  17. Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect Rapid Prototyping technique.

    PubMed

    Tan, J Y; Chua, C K; Leong, K F

    2013-02-01

    Advanced scaffold fabrication techniques such as Rapid Prototyping (RP) are generally recognized to be advantageous over conventional fabrication methods in terms architectural control and reproducibility. Yet, most RP techniques tend to suffer from resolution limitations which result in scaffolds with uncontrollable, random-size pores and low porosity, albeit having interconnected channels which is characteristically present in most RP scaffolds. With the increasing number of studies demonstrating the profound influences of scaffold pore architecture on cell behavior and overall tissue growth, a scaffold fabrication method with sufficient architectural control becomes imperative. The present study demonstrates the use of RP fabrication techniques to create scaffolds having interconnected channels as well as controllable micro-size pores. Adopted from the concepts of porogen leaching and indirect RP techniques, the proposed fabrication method uses monodisperse microspheres to create an ordered, hexagonal closed packed (HCP) array of micro-pores that surrounds the existing channels of the RP scaffold. The pore structure of the scaffold is shaped using a single sacrificial construct which comprises the microspheres and a dissolvable RP mold that were sintered together. As such, the size of pores as well as the channel configuration of the scaffold can be tailored based on the design of the RP mold and the size of microspheres used. The fabrication method developed in this work can be a promising alternative way of preparing scaffolds with customized pore structures that may be required for specific studies concerning cell-scaffold interactions.

  18. Portable Electronic Nose Based on Electrochemical Sensors for Food Quality Assessment

    PubMed Central

    Dymerski, Tomasz; Gębicki, Jacek; Namieśnik, Jacek

    2017-01-01

    The steady increase in global consumption puts a strain on agriculture and might lead to a decrease in food quality. Currently used techniques of food analysis are often labour-intensive and time-consuming and require extensive sample preparation. For that reason, there is a demand for novel methods that could be used for rapid food quality assessment. A technique based on the use of an array of chemical sensors for holistic analysis of the sample’s headspace is called electronic olfaction. In this article, a prototype of a portable, modular electronic nose intended for food analysis is described. Using the SVM method, it was possible to classify samples of poultry meat based on shelf-life with 100% accuracy, and also samples of rapeseed oil based on the degree of thermal degradation with 100% accuracy. The prototype was also used to detect adulterations of extra virgin olive oil with rapeseed oil with 82% overall accuracy. Due to the modular design, the prototype offers the advantages of solutions targeted for analysis of specific food products, at the same time retaining the flexibility of application. Furthermore, its portability allows the device to be used at different stages of the production and distribution process. PMID:29186754

  19. The development of an automated flight test management system for flight test planning and monitoring

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.; Tartt, David M.; Duke, Eugene L.; Antoniewicz, Robert F.; Brumbaugh, Randal W.

    1988-01-01

    The development of an automated flight test management system (ATMS) as a component of a rapid-prototyping flight research facility for AI-based flight systems concepts is described. The rapid-prototyping facility includes real-time high-fidelity simulators, numeric and symbolic processors, and high-performance research aircraft modified to accept commands for a ground-based remotely augmented vehicle facility. The flight system configuration of the ATMS includes three computers: the TI explorer LX and two GOULD SEL 32/27s.

  20. Application of Rapid Prototyping to the Investment Casting of Test Hardware (MSFC Center Director's Discretionary Fund Final Report, Project No. 98-08)

    NASA Technical Reports Server (NTRS)

    Cooper, K. G.; Wells, D.

    2000-01-01

    Investment casting masters of a selected propulsion hardware component, a fuel pump housing, were rapid prototyped on the several processes in-house, along with the new Z-Corp process acquired through this project. Also, tensile samples were prototyped and cast using the same significant parameters. The models were then shelled in-house using a commercial grade zircon-based slurry and stucco technique. Next, the shelled models were fired and cast by our in-house foundry contractor (IITRI), with NASA-23, a commonly used test hardware metal. The cast models are compared by their surface finish and overall appearance (i.e., the occurrence of pitting, warping, etc.), as well as dimensional accuracy.

  1. Comparing Learning Outcomes of Video-Based E-Learning with Face-to-Face Lectures of Agricultural Engineering Courses in Korean Agricultural High Schools

    ERIC Educational Resources Information Center

    Park, Sung Youl; Kim, Soo-Wook; Cha, Seung-Bong; Nam, Min-Woo

    2014-01-01

    This study investigated the effectiveness of e-learning by comparing the learning outcomes in conventional face-to-face lectures and e-learning methods. Two video-based e-learning contents were developed based on the rapid prototyping model and loaded onto the learning management system (LMS), which was available at http://www.greenehrd.com.…

  2. Rapid Prototyping as a Faculty-Wide Activity: An Innovative Approach to the Redesign of Courses and Instructional Methods at the University of Twente.

    ERIC Educational Resources Information Center

    Collis, B. A.; de Boer, W. F.

    1998-01-01

    In the Science and Technology department of the University of Twente (Toegepaste Onderwijskunde, T.O., Netherlands), a revolutionary process of institutional change is occurring under the banner of C@MPUS+ initiative. The TeleTOP (Tele-Learning at T.O.) team is committed to blending the best of traditional education with new didactics and advanced…

  3. VR Simulation Testbed: Improving Surface Telerobotics for the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Walker, M. E.; Burns, J. O.; Szafir, D. J.

    2018-02-01

    Design of a virtual reality simulation testbed for prototyping surface telerobotics. The goal is to create a framework with robust physics and kinematics to allow simulated teleoperation and supervised control of lunar rovers and rapid UI prototyping.

  4. Rapid Prototyping of Polymeric Nanopillars by 3D Direct Laser Writing for Controlling Cell Behavior.

    PubMed

    Buch-Månson, Nina; Spangenberg, Arnaud; Gomez, Laura Piedad Chia; Malval, Jean-Pierre; Soppera, Olivier; Martinez, Karen L

    2017-08-23

    Mammalian cells have been widely shown to respond to nano- and microtopography that mimics the extracellular matrix. Synthetic nano- and micron-sized structures are therefore of great interest in the field of tissue engineering, where polymers are particularly attractive due to excellent biocompatibility and versatile fabrication methods. Ordered arrays of polymeric pillars provide a controlled topographical environment to study and manipulate cells, but processing methods are typically either optimized for the nano- or microscale. Here, we demonstrate polymeric nanopillar (NP) fabrication using 3D direct laser writing (3D DLW), which offers a rapid prototyping across both size regimes. The NPs are interfaced with NIH3T3 cells and the effect of tuning geometrical parameters of the NP array is investigated. Cells are found to adhere on a wide range of geometries, but the interface depends on NP density and length. The Cell Interface with Nanostructure Arrays (CINA) model is successfully extended to predict the type of interface formed on different NP geometries, which is found to correlate with the efficiency of cell alignment along the NPs. The combination of the CINA model with the highly versatile 3D DLW fabrication thus holds the promise of improved design of polymeric NP arrays for controlling cell growth.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    New, Joshua Ryan

    Abstract 1: Geographic information systems emerged as a computer application in the late 1960s, led in part by projects at ORNL. The concept of a GIS has shifted through time in response to new applications and new technologies, and is now part of a much larger world of geospatial technology. This presentation discusses the relationship of GIS and estimating hourly and seasonal energy consumption profiles in the building sector at spatial scales down to the individual parcel. The method combines annual building energy simulations for city-specific prototypical buildings and commonly available geospatial data in a GIS framework. Abstract 2: Thismore » presentation focuses on 3D printing technologies and how they have rapidly evolved over the past couple of years. At a basic level, 3D printing produces physical models quickly and easily from 3D CAD, BIM (Building Information Models), and other digital data. Many AEC firms have adopted 3D printing as part of commercial building design development and project delivery. This presentation includes an overview of 3D printing, discusses its current use in building design, and talks about its future in relation to the HVAC industry. Abstract 3: This presentation discusses additive manufacturing and how it is revolutionizing the design of commercial and residential facilities. Additive manufacturing utilizes a broad range of direct manufacturing technologies, including electron beam melting, ultrasonic, extrusion, and laser metal deposition for rapid prototyping. While there is some overlap with the 3D printing talk, this presentation focuses on the materials aspect of additive manufacturing and also some of the more advanced technologies involved with rapid prototyping. These technologies include design of carbon fiber composites, lightweight metals processing, transient field processing, and more.« less

  6. A novel 3D template for mandible and maxilla reconstruction: Rapid prototyping using stereolithography

    PubMed Central

    Kumta, Samir; Kumta, Monica; Jain, Leena; Purohit, Shrirang; Ummul, Rani

    2015-01-01

    Introduction: Replication of the exact three-dimensional (3D) structure of the maxilla and mandible is now a priority whilst attempting reconstruction of these bones to attain a complete functional and aesthetic rehabilitation. We hereby present the process of rapid prototyping using stereolithography to produce templates for modelling bone grafts and implants for maxilla/mandible reconstructions, its applications in tumour/trauma, and outcomes for primary and secondary reconstruction. Materials and Methods: Stereolithographic template-assisted reconstruction was used on 11 patients for the reconstruction of the mandible/maxilla primarily following tumour excision and secondarily for the realignment of post-traumatic malunited fractures or deformity corrections. Data obtained from the computed tomography (CT) scans with 1-mm resolution were converted into a computer-aided design (CAD) using the CT Digital Imaging and Communications in Medicine (DICOM) data. Once a CAD model was constructed, it was converted into a stereolithographic format and then processed by the rapid prototyping technology to produce the physical anatomical model using a resin. This resin model replicates the native mandible, which can be thus used off table as a guide for modelling the bone grafts. Discussion: This conversion of two-dimensional (2D) data from CT scan into 3D models is a very precise guide to shaping the bone grafts. Further, this CAD can reconstruct the defective half of the mandible using the mirror image principle, and the normal anatomical model can be created to aid secondary reconstructions. Conclusion: This novel approach allows a precise translation of the treatment plan directly to the surgical field. It is also an important teaching tool for implant moulding and fixation, and helps in patient counselling. PMID:26933279

  7. A platform for rapid prototyping of synthetic gene networks in mammalian cells

    PubMed Central

    Duportet, Xavier; Wroblewska, Liliana; Guye, Patrick; Li, Yinqing; Eyquem, Justin; Rieders, Julianne; Rimchala, Tharathorn; Batt, Gregory; Weiss, Ron

    2014-01-01

    Mammalian synthetic biology may provide novel therapeutic strategies, help decipher new paths for drug discovery and facilitate synthesis of valuable molecules. Yet, our capacity to genetically program cells is currently hampered by the lack of efficient approaches to streamline the design, construction and screening of synthetic gene networks. To address this problem, here we present a framework for modular and combinatorial assembly of functional (multi)gene expression vectors and their efficient and specific targeted integration into a well-defined chromosomal context in mammalian cells. We demonstrate the potential of this framework by assembling and integrating different functional mammalian regulatory networks including the largest gene circuit built and chromosomally integrated to date (6 transcription units, 27kb) encoding an inducible memory device. Using a library of 18 different circuits as a proof of concept, we also demonstrate that our method enables one-pot/single-flask chromosomal integration and screening of circuit libraries. This rapid and powerful prototyping platform is well suited for comparative studies of genetic regulatory elements, genes and multi-gene circuits as well as facile development of libraries of isogenic engineered cell lines. PMID:25378321

  8. Rapid prototyping prosthetic hand acting by a low-cost shape-memory-alloy actuator.

    PubMed

    Soriano-Heras, Enrique; Blaya-Haro, Fernando; Molino, Carlos; de Agustín Del Burgo, José María

    2018-06-01

    The purpose of this article is to develop a new concept of modular and operative prosthetic hand based on rapid prototyping and a novel shape-memory-alloy (SMA) actuator, thus minimizing the manufacturing costs. An underactuated mechanism was needed for the design of the prosthesis to use only one input source. Taking into account the state of the art, an underactuated mechanism prosthetic hand was chosen so as to implement the modifications required for including the external SMA actuator. A modular design of a new prosthesis was developed which incorporated a novel SMA actuator for the index finger movement. The primary objective of the prosthesis is achieved, obtaining a modular and functional low-cost prosthesis based on additive manufacturing executed by a novel SMA actuator. The external SMA actuator provides a modular system which allows implementing it in different systems. This paper combines rapid prototyping and a novel SMA actuator to develop a new concept of modular and operative low-cost prosthetic hand.

  9. A BODIPY-Based Fluorescent Probe to Visually Detect Phosgene: Toward the Development of a Handheld Phosgene Detector.

    PubMed

    Sayar, Melike; Karakuş, Erman; Güner, Tuğrul; Yildiz, Busra; Yildiz, Umit Hakan; Emrullahoğlu, Mustafa

    2018-03-02

    A boron-dipyrromethene (BODIPY)-based fluorescent probe with a phosgene-specific reactive motif shows remarkable selectivity toward phosgene, in the presence of which the nonfluorescent dye rapidly transforms into a new structure and induces a fluorescent response clearly observable to the naked eye under ultraviolet light. Given that dynamic, a prototypical handheld phosgene detector with a promising sensing capability that expedites the detection of gaseous phosgene without sophisticated instrumentation was developed. The proposed method using the handheld detector involves a rapid response period suitable for issuing early warnings during emergency situations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Rapid manufacturing of metallic Molds for parts in Automobile

    NASA Astrophysics Data System (ADS)

    Zhang, Renji; Xu, Da; Liu, Yuan; Yan, Xudong; Yan, Yongnian

    1998-03-01

    The recent research of RPM (Rapid Prototyping Manufacturing) in our lab has been focused on the rapid creation of alloyed cast iron (ACI) molds. There are a lot of machinery parts in an automobile, so a lot of mettallic molds are needed in automobile industry. A new mold manufacturing technology has been proposed. A new large scale RP machine has been set up in our lab now. Then rapid prototypes could be manufactured by means of laminated object manufacturing (LOM) technology. The molds for parts in automobile have been produced by ceramic shell precision casting. An example is a drawing mold for cover parts in automobile. Sufficient precision and surface roughness have been obtained. Itis proved that this is a vew kind of technology. Work supported by the Mational Science Foundation of China.

  11. PARTICIPATORY DESIGN OF PEDIATRIC UPPER LIMB PROSTHESES: QUALITATIVE METHODS AND PROTOTYPING.

    PubMed

    Sims, Tara; Cranny, Andy; Metcalf, Cheryl; Chappell, Paul; Donovan-Hall, Maggie

    2017-01-01

    The study aims to develop an understanding of the views of children and adolescents, parents, and professionals on upper limb prosthetic devices to develop and improve device design. Previous research has found that children are dissatisfied with prostheses but has relied heavily on parent proxy reports and quantitative measures (such as questionnaires) to explore their views. Thirty-four participants (eight children aged 8-15 years with upper limb difference, nine parents, eight prosthetists, and nine occupational therapists) contributed to the development of new devices through the BRIDGE methodology of participatory design, using focus groups and interviews. The study identified areas for improving prostheses from the perspective of children and adolescents, developed prototypes based on these and gained feedback on the prototypes from the children and other stakeholders (parents and professionals) of paediatric upper limb prostheses. Future device development needs to focus on ease of use, versatility, appearance, and safety. This study has demonstrated that children and adolescents can and should be involved as equal partners in the development of daily living equipment and that rapid prototyping (three-dimensional printing or additive manufacturing), used within a participatory design framework, can be a useful tool for facilitating this.

  12. Rapid prototyping compliant arterial phantoms for in-vitro studies and device testing

    PubMed Central

    2013-01-01

    Background Compliant vascular phantoms are desirable for in-vitro patient-specific experiments and device testing. TangoPlus FullCure 930® is a commercially available rubber-like material that can be used for PolyJet rapid prototyping. This work aims to gather preliminary data on the distensibility of this material, in order to assess the feasibility of its use in the context of experimental cardiovascular modelling. Methods The descending aorta anatomy of a volunteer was modelled in 3D from cardiovascular magnetic resonance (CMR) images and rapid prototyped using TangoPlus. The model was printed with a range of increasing wall thicknesses (0.6, 0.7, 0.8, 1.0 and 1.5 mm), keeping the lumen of the vessel constant. Models were also printed in both vertical and horizontal orientations, thus resulting in a total of ten specimens. Compliance tests were performed by monitoring pressure variations while gradually increasing and decreasing internal volume. Knowledge of distensibility was thus derived and then implemented with CMR data to test two applications. Firstly, a patient-specific compliant model of hypoplastic aorta suitable for connection in a mock circulatory loop for in-vitro tests was manufactured. Secondly, the right ventricular outflow tract (RVOT) of a patient necessitating pulmonary valve replacement was printed in order to physically test device insertion and assess patient’s suitability for percutaneous pulmonary valve intervention. Results The distensibility of the material was identified in a range from 6.5 × 10-3 mmHg-1 for the 0.6 mm case, to 3.0 × 10-3 mmHg-1 for the 1.5 mm case. The models printed in the vertical orientation were always more compliant than their horizontal counterpart. Rapid prototyping of a compliant hypoplastic aorta and of a RVOT anatomical model were both feasible. Device insertion in the RVOT model was successful. Conclusion Values of distensibility, compared with literature data, show that TangoPlus is suitable for manufacturing arterial phantoms, with the added benefit of being compatible with PolyJet printing, thus guaranteeing representative anatomical finishing, and quick and inexpensive fabrication. The appealing possibility of printing models of non-uniform wall thickness, resembling more closely certain physiological scenarios, can also be explored. However, this material appears to be too stiff for modelling the more compliant systemic venous system. PMID:23324211

  13. 3D printing in X-ray and Gamma-Ray Imaging: A novel method for fabricating high-density imaging apertures☆

    PubMed Central

    Miller, Brian W.; Moore, Jared W.; Barrett, Harrison H.; Fryé, Teresa; Adler, Steven; Sery, Joe; Furenlid, Lars R.

    2011-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented. PMID:22199414

  14. Defining and Building an Enriched Learning and Information Environment.

    ERIC Educational Resources Information Center

    Goodrum, David A.; And Others

    1993-01-01

    Discusses the development of an Enriched Learning and Information Environment (ELIE). Highlights include technology-based and theory-based frameworks for defining ELIEs; a socio-technical definition; a conceptual prototype; a participatory design process, including iterative design through rapid prototyping; and design issues for technology…

  15. User engineering: A new look at system engineering

    NASA Technical Reports Server (NTRS)

    Mclaughlin, Larry L.

    1987-01-01

    User Engineering is a new System Engineering perspective responsible for defining and maintaining the user view of the system. Its elements are a process to guide the project and customer, a multidisciplinary team including hard and soft sciences, rapid prototyping tools to build user interfaces quickly and modify them frequently at low cost, and a prototyping center for involving users and designers in an iterative way. The main consideration is reducing the risk that the end user will not or cannot effectively use the system. The process begins with user analysis to produce cognitive and work style models, and task analysis to produce user work functions and scenarios. These become major drivers of the human computer interface design which is presented and reviewed as an interactive prototype by users. Feedback is rapid and productive, and user effectiveness can be measured and observed before the system is built and fielded. Requirements are derived via the prototype and baselined early to serve as an input to the architecture and software design.

  16. Uranus: a rapid prototyping tool for FPGA embedded computer vision

    NASA Astrophysics Data System (ADS)

    Rosales-Hernández, Victor; Castillo-Jimenez, Liz; Viveros-Velez, Gilberto; Zuñiga-Grajeda, Virgilio; Treviño Torres, Abel; Arias-Estrada, M.

    2007-01-01

    The starting point for all successful system development is the simulation. Performing high level simulation of a system can help to identify, insolate and fix design problems. This work presents Uranus, a software tool for simulation and evaluation of image processing algorithms with support to migrate them to an FPGA environment for algorithm acceleration and embedded processes purposes. The tool includes an integrated library of previous coded operators in software and provides the necessary support to read and display image sequences as well as video files. The user can use the previous compiled soft-operators in a high level process chain, and code his own operators. Additional to the prototyping tool, Uranus offers FPGA-based hardware architecture with the same organization as the software prototyping part. The hardware architecture contains a library of FPGA IP cores for image processing that are connected with a PowerPC based system. The Uranus environment is intended for rapid prototyping of machine vision and the migration to FPGA accelerator platform, and it is distributed for academic purposes.

  17. The Development of a Rapid Prototyping Environment

    DTIC Science & Technology

    1989-12-01

    constraints is a very complex, time- consuming and costly took. This situation can be iaproved by the use of adequate development methods and powerful support...was an essential factor in our decision . The previous development of CAPS tools utilized and assuumed the availa- bility of a Sun Workstation. There...the development of a production * 23 sys(tCm. An early decision was mIade to accept dependence upon the best locally avail- able resources. Portability

  18. Optimizing third molar autotransplantation: applications of reverse-engineered surgical templates and rapid prototyping of three-dimensional teeth.

    PubMed

    Park, Ji-Man; Tatad, Jacquiline Czar I; Landayan, Maria Erika A; Heo, Seong-Joo; Kim, Sun-Jong

    2014-09-01

    The success of autogenous tooth transplantation depends on the vitality of the periodontal ligament attached to the donor tooth, and its viability decreases when it is exposed extraorally. This report describes the case of a 16-year-old patient in whom a rapid prototyped tooth model was performed using cone-beam technology and a surgical template guide for autotransplantation as an effective technique for a critical time-based procedure. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Preliminary Component Integration Utilizing Rapid Prototyping Techniques

    NASA Technical Reports Server (NTRS)

    Cooper, K.; Salvail, P.

    2001-01-01

    One of the most costly errors committed during the development of an element to be used in the space industry is the lack of communication between design and manufacturing engineers. A very important tool that should be utilized in the development stages by both design and manufacturing disciplines is rapid prototyping. Communication levels are intensified with the injection of functional models that are generated from a drawing. At the Marshall Space Flight Center, this discipline is utilized on a more frequent basis as a manner by which hardware may be tested for design and material compatibility.

  20. Fatigue analyses of the prototype Francis runners based on site measurements and simulations

    NASA Astrophysics Data System (ADS)

    Huang, X.; Chamberland-Lauzon, J.; Oram, C.; Klopfer, A.; Ruchonnet, N.

    2014-03-01

    With the increasing development of solar power and wind power which give an unstable output to the electrical grid, hydropower is required to give a rapid and flexible compensation, and the hydraulic turbines have to operate at off-design conditions frequently. Prototype Francis runners suffer from strong vibrations induced by high pressure pulsations at part load, low part load, speed-no-load and during start-stops and load rejections. Fatigue and damage may be caused by the alternating stress on the runner blades. Therefore, it becomes increasingly important to carry out fatigue analysis and life time assessment of the prototype Francis runners, especially at off-design conditions. This paper presents the fatigue analyses of the prototype Francis runners based on the strain gauge site measurements and numerical simulations. In the case of low part load, speed-no-load and transient events, since the Francis runners are subjected to complex hydraulic loading, which shows a stochastic characteristic, the rainflow counting method is used to obtain the number of cycles for various dynamic amplitude ranges. From middle load to full load, pressure pulsations caused by Rotor-stator- Interaction become the dominant hydraulic excitation of the runners. Forced response analysis is performed to calculate the maximum dynamic stress. The agreement between numerical and experimental stresses is evaluated using linear regression method. Taking into account the effect of the static stress on the S-N curve, the Miner's rule, a linear cumulative fatigue damage theory, is employed to calculate the damage factors of the prototype Francis runners at various operating conditions. The relative damage factors of the runners at different operating points are compared and discussed in detail.

  1. Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Cox, Christopher R.; Voorhees, Kent J.

    Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.

  2. Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera

    PubMed Central

    Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei

    2016-01-01

    High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera. PMID:26959023

  3. Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera.

    PubMed

    Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei

    2016-03-04

    High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera.

  4. Automated Rapid Prototyping of 3D Ceramic Parts

    NASA Technical Reports Server (NTRS)

    McMillin, Scott G.; Griffin, Eugene A.; Griffin, Curtis W.; Coles, Peter W. H.; Engle, James D.

    2005-01-01

    An automated system of manufacturing equipment produces three-dimensional (3D) ceramic parts specified by computational models of the parts. The system implements an advanced, automated version of a generic rapid-prototyping process in which the fabrication of an object having a possibly complex 3D shape includes stacking of thin sheets, the outlines of which closely approximate the horizontal cross sections of the object at their respective heights. In this process, the thin sheets are made of a ceramic precursor material, and the stack is subsequently heated to transform it into a unitary ceramic object. In addition to the computer used to generate the computational model of the part to be fabricated, the equipment used in this process includes: 1) A commercially available laminated-object-manufacturing machine that was originally designed for building woodlike 3D objects from paper and was modified to accept sheets of ceramic precursor material, and 2) A machine designed specifically to feed single sheets of ceramic precursor material to the laminated-object-manufacturing machine. Like other rapid-prototyping processes that utilize stacking of thin sheets, this process begins with generation of the computational model of the part to be fabricated, followed by computational sectioning of the part into layers of predetermined thickness that collectively define the shape of the part. Information about each layer is transmitted to rapid-prototyping equipment, where the part is built layer by layer. What distinguishes this process from other rapid-prototyping processes that utilize stacking of thin sheets are the details of the machines and the actions that they perform. In this process, flexible sheets of ceramic precursor material (called "green" ceramic sheets) suitable for lamination are produced by tape casting. The binder used in the tape casting is specially formulated to enable lamination of layers with little or no applied heat or pressure. The tape is cut into individual sheets, which are stacked in the sheet-feeding machine until used. The sheet-feeding machine can hold enough sheets for about 8 hours of continuous operation.

  5. Mirror-Imaged Rapid Prototype Skull Model and Pre-Molded Synthetic Scaffold to Achieve Optimal Orbital Cavity Reconstruction.

    PubMed

    Park, Sung Woo; Choi, Jong Woo; Koh, Kyung S; Oh, Tae Suk

    2015-08-01

    Reconstruction of traumatic orbital wall defects has evolved to restore the original complex anatomy with the rapidly growing use of computer-aided design and prototyping. This study evaluated a mirror-imaged rapid prototype skull model and a pre-molded synthetic scaffold for traumatic orbital wall reconstruction. A single-center retrospective review was performed of patients who underwent orbital wall reconstruction after trauma from 2012 to 2014. Patients were included by admission through the emergency department after facial trauma or by a tertiary referral for post-traumatic orbital deformity. Three-dimensional (3D) computed tomogram-based mirror-imaged reconstruction images of the orbit and an individually manufactured rapid prototype skull model by a 3D printing technique were obtained for each case. Synthetic scaffolds were anatomically pre-molded using the skull model as guide and inserted at the individual orbital defect. Postoperative complications were assessed and 3D volumetric measurements of the orbital cavity were performed. Paired samples t test was used for statistical analysis. One hundred four patients with immediate orbital defect reconstructions and 23 post-traumatic orbital deformity reconstructions were included in this study. All reconstructions were successful without immediate postoperative complications, although there were 10 cases with mild enophthalmos and 2 cases with persistent diplopia. Reoperations were performed for 2 cases of persistent diplopia and secondary touchup procedures were performed to contour soft tissue in 4 cases. Postoperative volumetric measurement of the orbital cavity showed nonsignificant volume differences between the damaged orbit and the reconstructed orbit (21.35 ± 1.93 vs 20.93 ± 2.07 cm(2); P = .98). This protocol was extended to severe cases in which more than 40% of the orbital frame was lost and combined with extensive soft tissue defects. Traumatic orbital reconstruction can be optimized and successful using an individually manufactured rapid prototype skull model and a pre-molded synthetic scaffold by computer-aid design and manufacturing. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Fabrication of custom-shaped grafts for cartilage regeneration.

    PubMed

    Koo, Seungbum; Hargreaves, Brian A; Gold, Garry E; Dragoo, Jason L

    2010-10-01

    to create a custom-shaped graft through 3D tissue shape reconstruction and rapid-prototype molding methods using MRI data, and to test the accuracy of the custom-shaped graft against the original anatomical defect. An iatrogenic defect on the distal femur was identified with a 1.5 Tesla MRI and its shape was reconstructed into a three-dimensional (3D) computer model by processing the 3D MRI data. First, the accuracy of the MRI-derived 3D model was tested against a laser-scan based 3D model of the defect. A custom-shaped polyurethane graft was fabricated from the laser-scan based 3D model by creating custom molds through computer aided design and rapid-prototyping methods. The polyurethane tissue was laser-scanned again to calculate the accuracy of this process compared to the original defect. The volumes of the defect models from MRI and laser-scan were 537 mm3 and 405 mm3, respectively, implying that the MRI model was 33% larger than the laser-scan model. The average (±SD) distance deviation of the exterior surface of the MRI model from the laser-scan model was 0.4 ± 0.4 mm. The custom-shaped tissue created from the molds was qualitatively very similar to the original shape of the defect. The volume of the custom-shaped cartilage tissue was 463 mm3 which was 15% larger than the laser-scan model. The average (±SD) distance deviation between the two models was 0.04 ± 0.19 mm. This investigation proves the concept that custom-shaped engineered grafts can be fabricated from standard sequence 3-D MRI data with the use of CAD and rapid-prototyping technology. The accuracy of this technology may help solve the interfacial problem between native cartilage and graft, if the grafts are custom made for the specific defect. The major source of error in fabricating a 3D custom-shaped cartilage graft appears to be the accuracy of a MRI data itself; however, the precision of the model is expected to increase by the utilization of advanced MR sequences with higher magnet strengths.

  7. Anatomic Mesenchymal Stem Cell-Based Engineered Cartilage Constructs for Biologic Total Joint Replacement

    PubMed Central

    Saxena, Vishal; Kim, Minwook; Keah, Niobra M.; Neuwirth, Alexander L.; Stoeckl, Brendan D.; Bickard, Kevin; Restle, David J.; Salowe, Rebecca; Wang, Margaret Ye; Steinberg, David R.

    2016-01-01

    Cartilage has a poor healing response, and few viable options exist for repair of extensive damage. Hyaluronic acid (HA) hydrogels seeded with mesenchymal stem cells (MSCs) polymerized through UV crosslinking can generate functional tissue, but this crosslinking is not compatible with indirect rapid prototyping utilizing opaque anatomic molds. Methacrylate-modified polymers can also be chemically crosslinked in a cytocompatible manner using ammonium persulfate (APS) and N,N,N′,N′-tetramethylethylenediamine (TEMED). The objectives of this study were to (1) compare APS/TEMED crosslinking with UV crosslinking in terms of functional maturation of MSC-seeded HA hydrogels; (2) generate an anatomic mold of a complex joint surface through rapid prototyping; and (3) grow anatomic MSC-seeded HA hydrogel constructs using this alternative crosslinking method. Juvenile bovine MSCs were suspended in methacrylated HA (MeHA) and crosslinked either through UV polymerization or chemically with APS/TEMED to generate cylindrical constructs. Minipig porcine femoral heads were imaged using microCT, and anatomic negative molds were generated by three-dimensional printing using fused deposition modeling. Molded HA constructs were produced using the APS/TEMED method. All constructs were cultured for up to 12 weeks in a chemically defined medium supplemented with TGF-β3 and characterized by mechanical testing, biochemical assays, and histologic analysis. Both UV- and APS/TEMED-polymerized constructs showed increasing mechanical properties and robust proteoglycan and collagen deposition over time. At 12 weeks, APS/TEMED-polymerized constructs had higher equilibrium and dynamic moduli than UV-polymerized constructs, with no differences in proteoglycan or collagen content. Molded HA constructs retained their hemispherical shape in culture and demonstrated increasing mechanical properties and proteoglycan and collagen deposition, especially at the edges compared to the center of these larger constructs. Immunohistochemistry showed abundant collagen type II staining and little collagen type I staining. APS/TEMED crosslinking can be used to produce MSC-seeded HA-based neocartilage and can be used in combination with rapid prototyping techniques to generate anatomic MSC-seeded HA constructs for use in filling large and anatomically complex chondral defects or for biologic joint replacement. PMID:26871863

  8. Fabrication of Custom-Shaped Grafts for Cartilage Regeneration

    PubMed Central

    Koo, Seungbum; Hargreaves, Brian A.; Gold, Garry E.; Dragoo, Jason L.

    2011-01-01

    Transplantation of engineered cartilage grafts is a promising method to treat diseased articular cartilage. The interfacial areas between the graft and the native tissues play an important role in the successful integration of the graft to adjacent native tissues. The purposes of the study were to create a custom shaped graft through 3D tissue shape reconstruction and rapid-prototype molding methods using MRI data, and to test the accuracy of the custom shaped graft against the original anatomical defect. An iatrogenic defect on the distal femur was identified with a 1.5 Tesla MRI and its shape was reconstructed into a three-dimensional (3D) computer model by processing the 3D MRI data. First, the accuracy of the MRI-derived 3D model was tested against a laser-scan based 3D model of the defect. A custom-shaped polyurethane graft was fabricated from the laser-scan based 3D model by creating custom molds through computer aided design and rapid-prototyping methods. The polyurethane tissue was laser-scanned again to calculate the accuracy of this process compared to the original defect. The volumes of the defect models from MRI and laser-scan were 537 mm3 and 405 mm3, respectively, implying that the MRI model was 33% larger than the laser-scan model. The average (±SD) distance deviation of the exterior surface of the MRI model from the laser-scan model was 0.4±0.4 mm. The custom-shaped tissue created from the molds was qualitatively very similar to the original shape of the defect. The volume of the custom-shaped cartilage tissue was 463 mm3 which was 15% larger than the laser-scan model. The average (±SD) distance deviation between the two models was 0.04±0.19 mm. Custom-shaped engineered grafts can be fabricated from standard sequence 3-D MRI data with the use of CAD and rapid-prototyping technology, which may help solve the interfacial problem between native cartilage and graft, if the grafts are custom made for the specific defect. The major source of error in fabricating a 3D custom shaped cartilage graft appears to be the accuracy of a MRI data itself; however, the precision of the model is expected to increase by the utilization of advanced MR sequences with higher magnet strengths. PMID:21058268

  9. Enhancing acoustic signal quality by rapidly switching between pulse-echo and through-transmission using diplexers

    NASA Astrophysics Data System (ADS)

    Valencia, Juan D.; Diaz, Aaron A.; Tucker, Brian J.

    2008-03-01

    The increase of terrorism and its global impact has made the screening of the contents of liquid-filled containers a necessity. The ability to evaluate the contents of a container rapidly and accurately is a critical tool in maintaining global safety and security. Due to the immense quantities and large variety of containers shipped worldwide, there is a need for a technology that enables rapid and effective ways of conducting non-intrusive container inspections. Such inspections can be performed utilizing "through-transmission" or "pulse-echo" acoustic techniques, in combination with multiple frequency excitation pulses or waveforms. The challenge is combining and switching between the different acoustic techniques without distorting the excitation pulse or waveform, degrading or adding noise to the receive signal; while maintaining a portable, low-power, low-cost, and easy to use system. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype relies on an advanced diplexer circuit capable of rapidly switching between both "through-transmission" and "pulse-echo" detection modes. This type of detection requires the prototype to isolate the pulsing circuitry from the receiving circuitry to prevent damage and reduce noise. The results of this work demonstrate that an advanced diplexer circuit can be effective; however, some bandwidth issues exist. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device as applied to several types of liquid-filled containers. Results of work conducted in the laboratory will be presented and future measurement platform enhancements will be discussed.

  10. Rapid prototyping to create vascular replicas from CT scan data: making tools to teach, rehearse, and choose treatment strategies.

    PubMed

    Knox, K; Kerber, Charles W; Singel, S A; Bailey, M J; Imbesi, S G

    2005-05-01

    Our goal was to develop and prove the accuracy of a system that would allow us to re-create live patient arterial pathology. Anatomically accurate replicas of blood vessels could allow physicians to teach and practice dangerous interventional techniques and might also be used to gather basic physiologic information. The preparation of replicas has, until now, depended on acquisition of fresh cadaver material. Using rapid prototyping, it should be able to replicate vascular pathology in a live patient. We obtained CT angiographic scan data from two patients with known arterial abnormalities. We took such data and, using proprietary software, created a 3D replica using a commercially available rapid prototyping machine. From the prototypes, using a lost wax technique, we created vessel replicas, placed those replicas in the CT scanner, then compared those images with the original scans. Comparison of the images made directly from the patient and from the replica showed that with each step, the relationships were maintained, remaining within 3% of the original, but some smoothing occurred in the final computer manipulation. From routinely obtainable CT angiographic data, it is possible to create accurate replicas of human vascular pathology with the aid of commercially available stereolithography equipment. Visual analysis of the images appeared to be as important as the measurements. With 64 and 128 slice detector scanners becoming available, acquisition times fall enough that we should be able to model rapidly moving structures such as the aortic root. (c) 2005 Wiley-Liss, Inc.

  11. Aeroelastic characteristics of a rapid prototype multi-material wind tunnel model of a mechanically deployable aerodynamic decelerator

    NASA Astrophysics Data System (ADS)

    Raskin, Boris

    Scaled wind tunnel models are necessary for the development of aircraft and spacecraft to simulate aerodynamic behavior. This allows for testing multiple iterations of a design before more expensive full-scale aircraft and spacecraft are built. However, the cost of building wind tunnel models can still be high because they normally require costly subtractive manufacturing processes, such as machining, which can be time consuming and laborious due to the complex surfaces of aerodynamic models. Rapid prototyping, commonly known as 3D printing, can be utilized to save on wind tunnel model manufacturing costs. A rapid prototype multi-material wind tunnel model was manufactured for this thesis to investigate the possibility of using PolyJet 3D printing to create a model that exhibits aeroelastic behavior. The model is of NASA's Adaptable Deployable entry and Placement (ADEPT) aerodynamic decelerator, used to decelerate a spacecraft during reentry into a planet's atmosphere. It is a 60° cone with a spherically blunted nose that consists of a 12 flexible panels supported by a rigid structure of nose, ribs, and rim. The novel rapid prototype multi-material model was instrumented and tested in two flow conditions. Quantitative comparisons were made of the average forces and dynamic forces on the model, demonstrating that the model matched expected behavior for average drag, but not Strouhal number, indicating that there was no aeroelastic behavior in this particular case. It was also noted that the dynamic properties (e.g., resonant frequency) associated with the mounting scheme are very important and may dominate the measured dynamic response.

  12. Comparison of reconstructed rapid prototyping models produced by 3-dimensional printing and conventional stone models with different degrees of crowding.

    PubMed

    Wan Hassan, Wan Nurazreena; Yusoff, Yusnilawati; Mardi, Noor Azizi

    2017-01-01

    Rapid prototyping models can be reconstructed from stereolithographic digital study model data to produce hard-copy casts. In this study, we aimed to compare agreement and accuracy of measurements made with rapid prototyping and stone models for different degrees of crowding. The Z Printer 450 (3D Systems, Rock Hill, SC) reprinted 10 sets of models for each category of crowding (mild, moderate, and severe) scanned using a structured-light scanner (Maestro 3D, AGE Solutions, Pisa, Italy). Stone and RP models were measured using digital calipers for tooth sizes in the mesiodistal, buccolingual, and crown height planes and for arch dimension measurements. Bland-Altman and paired t test analyses were used to assess agreement and accuracy. Clinical significance was set at ±0.50 mm. Bland-Altman analysis showed the mean bias of measurements between the models to be within ±0.15 mm (SD, ±0.40 mm), but the 95% limits of agreement exceeded the cutoff point of ±0.50 mm (lower range, -0.81 to -0.41 mm; upper range, 0.34 to 0.76 mm). Paired t tests showed statistically significant differences for all planes in all categories of crowding except for crown height in the moderate crowding group and arch dimensions in the mild and moderate crowding groups. The rapid prototyping models were not clinically comparable with conventional stone models regardless of the degree of crowding. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  13. Use of rapid prototyping drill template for the expansive open door laminoplasty: A cadaveric study.

    PubMed

    Rong, Xin; Wang, Beiyu; Chen, Hua; Ding, Chen; Deng, Yuxiao; Ma, Lipeng; Ma, Yanzhao; Liu, Hao

    2016-11-01

    Trough preparation is a technically demanding yet critical procedure for successful expansive open door laminoplasty (EOLP), requiring both proper position and appropriate bone removal. We aimed to use the specific rapid prototyping drill template to achieve such requirement. The 3D model of the cadaveric cervical spine was reconstructed using the Mimics 17.0 and Geomagic Studio 12.0 software. The drilling template was designed in the 3-Matic software. The trough position was simulated at the medial margin of the facet joint. Two holders were designed on both sides. On the open side, the holder would just allow the drill penetrate the ventral cortex of the lamina. On the hinge side, the holder was designed to keep the ventral cortex of the lamina intact. One orthopedic resident performed the surgery using the rapid prototyping drill template on four cadavers (template group). A control group of four cadavers were operated upon without the use of the template. The deviation of the final trough position from the simulated trough position was 0.18mm±0.51mm in the template group. All the troughs in the template group and 40% of the troughs in the control group were at the medial side of the facet joint. The complete hinge fracture rate was 5% in the template group, significantly lower than that (55%) in the control group (P=0.01). The rapid prototyping drill template could help the surgeon accomplish proper trough position and appropriate bone removal in EOLP on the cadaveric cervical spine. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Rapid prototyping of soil moisture estimates using the NASA Land Information System

    NASA Astrophysics Data System (ADS)

    Anantharaj, V.; Mostovoy, G.; Li, B.; Peters-Lidard, C.; Houser, P.; Moorhead, R.; Kumar, S.

    2007-12-01

    The Land Information System (LIS), developed at the NASA Goddard Space Flight Center, is a functional Land Data Assimilation System (LDAS) that incorporates a suite of land models in an interoperable computational framework. LIS has been integrated into a computational Rapid Prototyping Capabilities (RPC) infrastructure. LIS consists of a core, a number of community land models, data servers, and visualization systems - integrated in a high-performance computing environment. The land surface models (LSM) in LIS incorporate surface and atmospheric parameters of temperature, snow/water, vegetation, albedo, soil conditions, topography, and radiation. Many of these parameters are available from in-situ observations, numerical model analysis, and from NASA, NOAA, and other remote sensing satellite platforms at various spatial and temporal resolutions. The computational resources, available to LIS via the RPC infrastructure, support e- Science experiments involving the global modeling of land-atmosphere studies at 1km spatial resolutions as well as regional studies at finer resolutions. The Noah Land Surface Model, available with-in the LIS is being used to rapidly prototype soil moisture estimates in order to evaluate the viability of other science applications for decision making purposes. For example, LIS has been used to further extend the utility of the USDA Soil Climate Analysis Network of in-situ soil moisture observations. In addition, LIS also supports data assimilation capabilities that are used to assimilate remotely sensed soil moisture retrievals from the AMSR-E instrument onboard the Aqua satellite. The rapid prototyping of soil moisture estimates using LIS and their applications will be illustrated during the presentation.

  15. New technologies for space avionics

    NASA Technical Reports Server (NTRS)

    Aibel, David W.; Dingus, Peter; Lanciault, Mark; Hurdlebrink, Debra; Gurevich, Inna; Wenglar, Lydia

    1994-01-01

    This report reviews a 1994 effort that continued 1993 investigations into issues associated with the definition of requirements, with the practice concurrent engineering and rapid prototyping in the context of the development of a prototyping of a next-generation reaction jet driver controller. This report discusses lessons learned, the testing of the current prototype, the details of the current design, and the nature and performance of a mathematical model of the life cycle of a pilot operated valve solenoid.

  16. Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) Systems Integration Strategy

    NASA Technical Reports Server (NTRS)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott

    2011-01-01

    The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a rapid prototyping approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process was based on a rapid prototyping approach. Tailored design review and test and integration processes facilitated that approach. The use of collaboration tools including electronic tools as well as documentation enabled a geographically distributed team take a paper concept to an operational prototype in approximately one year. One of the major tools used in the integration strategy was a coordinated effort to accurately model all the subsystems using computer aided design (CAD), so conflicts were identified before physical components came together. A deliberate effort was made following the deployment of the HDU PEM for field operations to collect lessons learned to facilitate process improvement and inform the design of future flight or analog versions of habitat systems. Significant items within those lessons learned were limitations with the CAD integration approach and the impact of shell design on flexibility of placing systems within the HDU shell.

  17. A Design Study Investigating Augmented Reality and Photograph Annotation in a Digitalized Grossing Workstation

    PubMed Central

    Chow, Joyce A.; Törnros, Martin E.; Waltersson, Marie; Richard, Helen; Kusoffsky, Madeleine; Lundström, Claes F.; Kurti, Arianit

    2017-01-01

    Context: Within digital pathology, digitalization of the grossing procedure has been relatively underexplored in comparison to digitalization of pathology slides. Aims: Our investigation focuses on the interaction design of an augmented reality gross pathology workstation and refining the interface so that information and visualizations are easily recorded and displayed in a thoughtful view. Settings and Design: The work in this project occurred in two phases: the first phase focused on implementation of an augmented reality grossing workstation prototype while the second phase focused on the implementation of an incremental prototype in parallel with a deeper design study. Subjects and Methods: Our research institute focused on an experimental and “designerly” approach to create a digital gross pathology prototype as opposed to focusing on developing a system for immediate clinical deployment. Statistical Analysis Used: Evaluation has not been limited to user tests and interviews, but rather key insights were uncovered through design methods such as “rapid ethnography” and “conversation with materials”. Results: We developed an augmented reality enhanced digital grossing station prototype to assist pathology technicians in capturing data during examination. The prototype uses a magnetically tracked scalpel to annotate planned cuts and dimensions onto photographs taken of the work surface. This article focuses on the use of qualitative design methods to evaluate and refine the prototype. Our aims were to build on the strengths of the prototype's technology, improve the ergonomics of the digital/physical workstation by considering numerous alternative design directions, and to consider the effects of digitalization on personnel and the pathology diagnostics information flow from a wider perspective. A proposed interface design allows the pathology technician to place images in relation to its orientation, annotate directly on the image, and create linked information. Conclusions: The augmented reality magnetically tracked scalpel reduces tool switching though limitations in today's augmented reality technology fall short of creating an ideal immersive workflow by requiring the use of a monitor. While this technology catches up, we recommend focusing efforts on enabling the easy creation of layered, complex reports, linking, and viewing information across systems. Reflecting upon our results, we argue for digitalization to focus not only on how to record increasing amounts of data but also how these data can be accessed in a more thoughtful way that draws upon the expertise and creativity of pathology professionals using the systems. PMID:28966831

  18. Dimensional Error in Rapid Prototyping with Open Source Software and Low-cost 3D-printer

    PubMed Central

    Andrade-Delgado, Laura; Telich-Tarriba, Jose E.; Fuente-del-Campo, Antonio; Altamirano-Arcos, Carlos A.

    2018-01-01

    Summary: Rapid prototyping models (RPMs) had been extensively used in craniofacial and maxillofacial surgery, especially in areas such as orthognathic surgery, posttraumatic or oncological reconstructions, and implantology. Economic limitations are higher in developing countries such as Mexico, where resources dedicated to health care are limited, therefore limiting the use of RPM to few selected centers. This article aims to determine the dimensional error of a low-cost fused deposition modeling 3D printer (Tronxy P802MA, Shenzhen, Tronxy Technology Co), with Open source software. An ordinary dry human mandible was scanned with a computed tomography device. The data were processed with open software to build a rapid prototype with a fused deposition machine. Linear measurements were performed to find the mean absolute and relative difference. The mean absolute and relative difference was 0.65 mm and 1.96%, respectively (P = 0.96). Low-cost FDM machines and Open Source Software are excellent options to manufacture RPM, with the benefit of low cost and a similar relative error than other more expensive technologies. PMID:29464171

  19. Rapid prototyping of 2D glass microfluidic devices based on femtosecond laser assisted selective etching process

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Il; Kim, Jeongtae; Koo, Chiwan; Joung, Yeun-Ho; Choi, Jiyeon

    2018-02-01

    Microfluidics technology which deals with small liquid samples and reagents within micro-scale channels has been widely applied in various aspects of biological, chemical, and life-scientific research. For fabricating microfluidic devices, a silicon-based polymer, PDMS (Polydimethylsiloxane), is widely used in soft lithography, but it has several drawbacks for microfluidic applications. Glass has many advantages over PDMS due to its excellent optical, chemical, and mechanical properties. However, difficulties in fabrication of glass microfluidic devices that requires multiple skilled steps such as MEMS technology taking several hours to days, impedes broad application of glass based devices. Here, we demonstrate a rapid and optical prototyping of a glass microfluidic device by using femtosecond laser assisted selective etching (LASE) and femtosecond laser welding. A microfluidic droplet generator was fabricated as a demonstration of a microfluidic device using our proposed prototyping. The fabrication time of a single glass chip containing few centimeter long and complex-shaped microfluidic channels was drastically reduced in an hour with the proposed laser based rapid and simple glass micromachining and hermetic packaging technique.

  20. Dimensional Error in Rapid Prototyping with Open Source Software and Low-cost 3D-printer.

    PubMed

    Rendón-Medina, Marco A; Andrade-Delgado, Laura; Telich-Tarriba, Jose E; Fuente-Del-Campo, Antonio; Altamirano-Arcos, Carlos A

    2018-01-01

    Rapid prototyping models (RPMs) had been extensively used in craniofacial and maxillofacial surgery, especially in areas such as orthognathic surgery, posttraumatic or oncological reconstructions, and implantology. Economic limitations are higher in developing countries such as Mexico, where resources dedicated to health care are limited, therefore limiting the use of RPM to few selected centers. This article aims to determine the dimensional error of a low-cost fused deposition modeling 3D printer (Tronxy P802MA, Shenzhen, Tronxy Technology Co), with Open source software. An ordinary dry human mandible was scanned with a computed tomography device. The data were processed with open software to build a rapid prototype with a fused deposition machine. Linear measurements were performed to find the mean absolute and relative difference. The mean absolute and relative difference was 0.65 mm and 1.96%, respectively ( P = 0.96). Low-cost FDM machines and Open Source Software are excellent options to manufacture RPM, with the benefit of low cost and a similar relative error than other more expensive technologies.

  1. Prosthetically directed implant placement using computer software to ensure precise placement and predictable prosthetic outcomes. Part 2: rapid-prototype medical modeling and stereolithographic drilling guides requiring bone exposure.

    PubMed

    Rosenfeld, Alan L; Mandelaris, George A; Tardieu, Philippe B

    2006-08-01

    The purpose of this paper is to expand on part 1 of this series (published in the previous issue) regarding the emerging future of computer-guided implant dentistry. This article will introduce the concept of rapid-prototype medical modeling as well as describe the utilization and fabrication of computer-generated surgical drilling guides used during implant surgery. The placement of dental implants has traditionally been an intuitive process, whereby the surgeon relies on mental navigation to achieve optimal implant positioning. Through rapid-prototype medical modeling and the ste-reolithographic process, surgical drilling guides (eg, SurgiGuide) can be created. These guides are generated from a surgical implant plan created with a computer software system that incorporates all relevant prosthetic information from which the surgical plan is developed. The utilization of computer-generated planning and stereolithographically generated surgical drilling guides embraces the concept of collaborative accountability and supersedes traditional mental navigation on all levels of implant therapy.

  2. Dual initiation strip charge apparatus and methods for making and implementing the same

    DOEpatents

    Jakaboski, Juan-Carlos [Albuquerque, NM; Todd,; Steven, N [Rio Rancho, NM; Polisar, Stephen [Albuquerque, NM; Hughs, Chance [Tijeras, NM

    2011-03-22

    A Dual Initiation Strip Charge (DISC) apparatus is initiated by a single initiation source and detonates a strip of explosive charge at two separate contacts. The reflection of explosively induced stresses meet and create a fracture and breach a target along a generally single fracture contour and produce generally fragment-free scattering and no spallation. Methods for making and implementing a DISC apparatus provide numerous advantages over previous methods of creating explosive charges by utilizing steps for rapid prototyping; by implementing efficient steps and designs for metering consistent, repeatable, and controlled amount of high explosive; and by utilizing readily available materials.

  3. M3: Microscope-based maskless micropatterning with dry film photoresist

    PubMed Central

    Leigh, Steven Y.; Tattu, Aashay; Mitchell, Joseph S. B.

    2011-01-01

    We present a maskless micropatterning system that utilizes a fluorescence microscope with programmable X-Y stage and dry film photoresist to realize feature sizes in the sub-millimeter range (40–700 μm). The method allows for flexible in-house maskless photolithography without a dedicated microfabrication facility and is well-suited for rapid prototyping of microfluidic channels, scaffold templates for protein/cell patterning or optically-guided cell encapsulation for biomedical applications. PMID:21190086

  4. [Manufacture method and clinical application of minimally invasive dental implant guide template based on registration technology].

    PubMed

    Lin, Zeming; He, Bingwei; Chen, Jiang; D u, Zhibin; Zheng, Jingyi; Li, Yanqin

    2012-08-01

    To guide doctors in precisely positioning surgical operation, a new production method of minimally invasive implant guide template was presented. The mandible of patient was scanned by CT scanner, and three-dimensional jaw bone model was constructed based on CT images data The professional dental implant software Simplant was used to simulate the plant based on the three-dimensional CT model to determine the location and depth of implants. In the same time, the dental plaster models were scanned by stereo vision system to build the oral mucosa model. Next, curvature registration technology was used to fuse the oral mucosa model and the CT model, then the designed position of implant in the oral mucosa could be determined. The minimally invasive implant guide template was designed in 3-Matic software according to the design position of implant and the oral mucosa model. Finally, the template was produced by rapid prototyping. The three-dimensional registration technology was useful to fuse the CT data and the dental plaster data, and the template was accurate that could provide the doctors a guidance in the actual planting without cut-off mucosa. The guide template which fabricated by comprehensive utilization of three-dimensional registration, Simplant simulation and rapid prototyping positioning are accurate and can achieve the minimally invasive and accuracy implant surgery, this technique is worthy of clinical use.

  5. A Rapidly Prototyped Vegetation Dryness Index Evaluated for Wildfire Risk Assessment at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Ross, Kenton; Graham, William; Prados, Don; Spruce, Joseph

    2007-01-01

    MVDI, which effectively involves the differencing of NDMI and NDVI, appears to display increased noise that is consistent with a differencing technique. This effect masks finer variations in vegetation moisture, preventing MVDI from fulfilling the requirement of giving decision makers insight into spatial variation of fire risk. MVDI shows dependencies on land cover and phenology which also argue against its use as a fire risk proxy in an area of diverse and fragmented land covers. The conclusion of the rapid prototyping effort is that MVDI should not be implemented for SSC decision support.

  6. Application of Rapid Prototyping and Wire Arc Spray to the Fabrication of Injection Mold Tools (MSFC Center Director's Discretionary Fund)

    NASA Technical Reports Server (NTRS)

    Cooper, K. G.

    2000-01-01

    Rapid prototyping (RP) is a layer-by-layer-based additive manufacturing process for constructing three-dimensional representations of a computer design from a wax, plastic, or similar material. Wire arc spray (WAS) is a metal spray forming technique, which deposits thin layers of metal onto a substrate or pattern. Marshall Space Flight Center currently has both capabilities in-house, and this project proposed merging the two processes into an innovative manufacturing technique, in which intermediate injection molding tool halves were to be fabricated with RP and WAS metal forming.

  7. 3D imaging acquisition, modeling, and prototyping for facial defects reconstruction

    NASA Astrophysics Data System (ADS)

    Sansoni, Giovanna; Trebeschi, Marco; Cavagnini, Gianluca; Gastaldi, Giorgio

    2009-01-01

    A novel approach that combines optical three-dimensional imaging, reverse engineering (RE) and rapid prototyping (RP) for mold production in the prosthetic reconstruction of facial prostheses is presented. A commercial laser-stripe digitizer is used to perform the multiview acquisition of the patient's face; the point clouds are aligned and merged in order to obtain a polygonal model, which is then edited to sculpture the virtual prothesis. Two physical models of both the deformed face and the 'repaired' face are obtained: they differ only in the defect zone. Depending on the material used for the actual prosthesis, the two prototypes can be used either to directly cast the final prosthesis or to fabricate the positive wax pattern. Two case studies are presented, referring to prostetic reconstructions of an eye and of a nose. The results demonstrate the advantages over conventional techniques as well as the improvements with respect to known automated manufacturing techniques in the mold construction. The proposed method results into decreased patient's disconfort, reduced dependence on the anaplasthologist skill, increased repeatability and efficiency of the whole process.

  8. Improvement of Dimensional Accuracy of 3-D Printed Parts using an Additive/Subtractive Based Hybrid Prototyping Approach

    NASA Astrophysics Data System (ADS)

    Amanullah Tomal, A. N. M.; Saleh, Tanveer; Raisuddin Khan, Md.

    2017-11-01

    At present, two important processes, namely CNC machining and rapid prototyping (RP) are being used to create prototypes and functional products. Combining both additive and subtractive processes into a single platform would be advantageous. However, there are two important aspects need to be taken into consideration for this process hybridization. First is the integration of two different control systems for two processes and secondly maximizing workpiece alignment accuracy during the changeover step. Recently we have developed a new hybrid system which incorporates Fused Deposition Modelling (FDM) as RP Process and CNC grinding operation as subtractive manufacturing process into a single setup. Several objects were produced with different layer thickness for example 0.1 mm, 0.15 mm and 0.2 mm. It was observed that pure FDM method is unable to attain desired dimensional accuracy and can be improved by a considerable margin about 66% to 80%, if finishing operation by grinding is carried out. It was also observed layer thickness plays a role on the dimensional accuracy and best accuracy is achieved with the minimum layer thickness (0.1 mm).

  9. [Direct electric conduction glove for laparoscopic surgical instruments. Preliminary results of a prototype].

    PubMed

    Gentilli, Sergio; Morgandoa, Andrea; Velardocchia, Mauro; Pessione, Silvia; Pizzorno, Chiara

    2007-01-01

    The authors present their prototype of a system for electrical conduction in direct contact with laparoscopic tools, devised, designed and produced by them at the Politecnico di Torino Department of Mechanical Engineering. The system consists of a two-sided plate, one side being a non-conducting adhesive surface to stick to the surgical glove and the other a thin, flexible conductor shell. The authors used the instrument with surgical tools with metal handles during 4 laparoscopic procedures. Nowadays the method commonly used to electrify laparoscopic tools is by using a wire plugged to a fixed conducting point on the instrument. The prototype described here was devised and produced to avoid some of the awkwardness encountered during the numerous manoeuvres required to connect and disconnect the wire at the time of surgical intervention. This device permits the direct transfer (by contact) of electrical energy from the wire to surgical tools. The advantage is greater rapidity in changing surgical tools, with the possibility of immediately obtaining an electrified instrument in the surgeon's hand.

  10. Mechanical Design and Optimization of Swarm-Capable UAV Launch Systems

    DTIC Science & Technology

    2015-06-01

    stakeholders. The end result was the successful development and demonstration of a launching system prototype specifically developed to rapidly launch a...requirements for the stakeholders. The end result was the successful development and demonstration of a launching system prototype specifically developed to... Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7 Conclusion 125 7.1 Summary of Findings

  11. 3D/Additive Printing Manufacturing: A Brief History and Purchasing Guide

    ERIC Educational Resources Information Center

    Hughes, Bill; Wilson, Greg

    2016-01-01

    3D printing is recognized as a collection of technologies known as rapid prototyping, solid freeform fabrication, and most commonly, additive manufacturing (AM). With these emerging technologies it is possible to print (but not limited to): architectural models, discontinued car-part foundry patterns, industry-wide prototypes, human tissues, the…

  12. Inexpensive, rapid fabrication of polymer-film microfluidic autoregulatory valve for disposable microfluidics.

    PubMed

    Zhang, Xinjie; Zhu, Zhixian; Ni, Zhonghua; Xiang, Nan; Yi, Hong

    2017-06-01

    This work presents the fabrication of a microfluidic autoregulatory valve which is composed of several layers of thin polymer films (i.e., polyvinyl chloride (PVC), polyethylene terephthalate (PET) double-sided tape, and polydimethylsiloxane (PDMS)). Briefly, pulsed UV laser is employed to cut the microstructures of through grooves or holes in the thermoplastic polymer films, and then the polymer-film valves are precisely assembled through laminating the PDMS membranes to the thermoplastic polymer films through the roll-lamination method. The effective bonding between the PVC film and the PDMS membrane is realized using the planar seal method, and the valve is sandwiched and compressed by a home-made housing to achieve the good seal effect. Then, the flow performances of the prototype valve are examined, and constant flow autoregulation is realized under the static or dynamic test pressures. The long-term response of the valve is also studied and minimum flow-rate decrements are found over a long actuation time. The fabrication method proposed in this work is successful for the low-cost and fast prototyping of the polymer-film valve. We believe our method will also be broadly applicable for fabrication of other low-cost and disposable polymer-film microfluidic devices.

  13. Anaerobic microplate assay for direct microbial conversion of switchgrass and Avicel using Clostridium thermocellum.

    PubMed

    Oguntimein, Gbekeloluwa B; Rodriguez, Miguel; Dumitrache, Alexandru; Shollenberger, Todd; Decker, Stephen R; Davison, Brian H; Brown, Steven D

    2018-02-01

    To develop and prototype a high-throughput microplate assay to assess anaerobic microorganisms and lignocellulosic biomasses in a rapid, cost-effective screen for consolidated bioprocessing potential. Clostridium thermocellum parent Δhpt strain deconstructed Avicel to cellobiose, glucose, and generated lactic acid, formic acid, acetic acid and ethanol as fermentation products in titers and ratios similar to larger scale fermentations confirming the suitability of a plate-based method for C. thermocellum growth studies. C. thermocellum strain LL1210, with gene deletions in the key central metabolic pathways, produced higher ethanol titers in the Consolidated Bioprocessing (CBP) plate assay for both Avicel and switchgrass fermentations when compared to the Δhpt strain. A prototype microplate assay system is developed that will facilitate high-throughput bioprospecting for new lignocellulosic biomass types, genetic variants and new microbial strains for bioethanol production.

  14. Shaping ability of Reciproc and TF Adaptive systems in severely curved canals of rapid microCT-based prototyping molar replicas

    PubMed Central

    ORDINOLA-ZAPATA, Ronald; BRAMANTE, Clovis Monteiro; DUARTE, Marco Antonio Húngaro; CAVENAGO, Bruno Cavalini; JARAMILLO, David; VERSIANI, Marco Aurélio

    2014-01-01

    Objective: To evaluate the shaping ability of Reciproc and Twisted-File Adaptive systems in rapid prototyping replicas. Material and Methods: Two mandibular molars showing S-shaped and 62-degree curvatures in the mesial root were scanned by using a microcomputed tomography (μCT) system. The data were exported in the stereolitograhic format and 20 samples of each molar were printed at 16 µm resolution. The mesial canals of 10 replicas of each specimen were prepared with each system. Transportation was measured by overlapping radiographs taken before and after preparation and resin thickness after instrumentation was measured by μCT. Results: Both systems maintained the original shape of the apical third in both anatomies (P>0.05). Overall, considering the resin thickness in the 62-degree replicas, no statistical difference was found between the systems (P>0.05). In the S-shaped curvature replica, Reciproc significantly decreased the thickness of the resin walls in comparison with TF Adaptive. Conclusions: The evaluated systems were able to maintain the original shape at the apical third of severely curved mesial canals of molar replicas. PMID:24918662

  15. Chest-wall reconstruction with a customized titanium-alloy prosthesis fabricated by 3D printing and rapid prototyping.

    PubMed

    Wen, Xiaopeng; Gao, Shan; Feng, Jinteng; Li, Shuo; Gao, Rui; Zhang, Guangjian

    2018-01-08

    As 3D printing technology emerge, there is increasing demand for a more customizable implant in the repair of chest-wall bony defects. This article aims to present a custom design and fabrication method for repairing bony defects of the chest wall following tumour resection, which utilizes three-dimensional (3D) printing and rapid-prototyping technology. A 3D model of the bony defect was generated after acquiring helical CT data. A customized prosthesis was then designed using computer-aided design (CAD) and mirroring technology, and fabricated using titanium-alloy powder. The mechanical properties of the printed prosthesis were investigated using ANSYS software. The yield strength of the titanium-alloy prosthesis was 950 ± 14 MPa (mean ± SD), and its ultimate strength was 1005 ± 26 MPa. The 3D finite element analyses revealed that the equivalent stress distribution of each prosthesis was unifrom. The symmetry and reconstruction quality contour of the repaired chest wall was satisfactory. No rejection or infection occurred during the 6-month follow-up period. Chest-wall reconstruction with a customized titanium-alloy prosthesis is a reliable technique for repairing bony defects.

  16. If You Build It, They Will Come: How to Establish an Academic Innovation Enterprise.

    PubMed

    Srimathveeravalli, Govindarajan; Balesh, Elie; Cheng, Christopher P; Chen, David

    2017-06-01

    The rapid growth of minimally invasive, image-guided intervention has redefined the procedural management of multiple disease entities. The process of innovation which has characterized the growth of interventional radiology can be best described as "needs-based," whereby practicing interventionalists identify unmet clinical needs and subsequently invent solutions to achieve desired technical and clinical outcomes. Historically, catheters and other percutaneous devices were developed with rudimentary manufacturing techniques and subsequently translated to patients with relatively little regulatory oversight. Since then, the resources required and financial costs of interventional technology development have grown exponentially. Fortunately, advances in software development, new methods of rapid prototyping, and commoditization of hardware components have made in-house engineering feasible once again. This has created an opportunity for academic medical centers to translate their research into testable prototypes in humans sooner and at reduced costs, and academic interventional radiology divisions are now leveraging these developments to create collaborative centers of innovation. This article describes five such organizational formats for collaboration and innovation in the academic setting, describing the structure, opportunities, requirements, and caveats of each model. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Rapid Prototyping of Patterned Multifunctional Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FAN,HONGYOU; LU,YUNFENG; LOPEZ,GABRIEL P.

    2000-07-18

    The ability to engineer ordered arrays of objects on multiple length scales has potential for applications such as microelectronics, sensors, wave guides, and photonic lattices with tunable band gaps. Since the invention of surfactant templated mesoporous sieves in 1992, great progress has been made in controlling different mesophases in the form of powders, particles, fibers, and films. To date, although there have been several reports of patterned mesostructures, materials prepared have been limited to metal oxides with no specific functionality. For many of the envisioned applications of hierarchical materials in micro-systems, sensors, waveguides, photonics, and electronics, it is necessary tomore » define both form and function on several length scales. In addition, the patterning strategies utilized so far require hours or even days for completion. Such slow processes are inherently difficult to implement in commercial environments. The authors present a series of new methods of producing patterns within seconds. Combining sol-gel chemistry, Evaporation-Induced Self-Assembly (EISA), and rapid prototyping techniques like pen lithography, ink-jet printing, and dip-coating on micro-contact printed substrates, they form hierarchically organized silica structures that exhibit order and function on multiple scales: on the molecular scale, functional organic moieties are positioned on pore surfaces, on the mesoscale, mono-sized pores are organized into 1-, 2-, or 3-dimensional networks, providing size-selective accessibility from the gas or liquid phase, and on the macroscale, 2-dimensional arrays and fluidic or photonic systems may be defined. These rapid patterning techniques establish for the first time a link between computer-aided design and rapid processing of self-assembled nanostructures.« less

  18. Additive manufacturing of lab-on-a-chip devices: promises and challenges

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Macdonald, Niall P.; Cooper, Jonathan M.; Wlodkowic, Donald

    2013-12-01

    This work describes a preliminary investigation of commercially available 3D printing technologies for rapid prototyping and low volume fabrication of Lab-on-a-Chip devices. The main motivation of the work was to use off-the-shelf 3D printing methods in order to rapidly and inexpensively build microfluidic devices with complex geometric features and reduce the need to use clear room environment and conventional microfabrication techniques. Both multi-jet modelling (MJM) and stereolithography (SLA) processes were explored. MJM printed devices were fabricated using a HD3500+ (3D Systems) high-definition printer using a thermo-polymer VisiJet Crystal (3D Systems) substratum that allows for a z-axis resolution of 16 μm and 25 μm x-y accuracy. SLA printed devices were produced using a Viper Pro (3D Systems) stereolithography system using Watershed 11122XC (DSM Somos) and Dreve Fototec 7150 Clear (Dreve Otoplastik GmbH) resins which allow for a z-axis resolution of 50 μm and 25 μm x-y accuracy. Fabrication results compared favourably with other forms of rapid prototyping such as laser cut PMMA devices and PDMS moulded microfluidic devices of the same design. Both processes allowed for fabrication of monolithic, optically transparent devices with features in the 100 μm range requiring minimal post-processing. Optical polymer qualities following different post-processing methods were also tested in both brightfield and fluorescence imaging of transgenic zebrafish embryos. Finally, we show that only ethanol-treated Dreve Fototec 7150 Clear resign proved to be non-toxic to human cell lines and fish embryos in fish toxicity assays (FET) requiring further investigation of 3D printing materials.

  19. Production Strategies for Production-Quality Parts for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Cawley, J. D.; Best, J. E.; Liu, Z.; Eckel, A. J.; Reed, B. D.; Fox, D. S.; Bhatt, R.; Levine, Stanley R. (Technical Monitor)

    2000-01-01

    A combination of rapid prototyping processes (3D Systems' stereolithography and Sanders Prototyping's ModelMaker) are combined with gelcasting to produce high quality silicon nitride components that were performance tested under simulated use conditions. Two types of aerospace components were produced, a low-force rocket thruster and a simulated airfoil section. The rocket was tested in a test stand using varying mixtures of H2 and O2, whereas the simulated airfoil was tested by subjecting it to a 0.3 Mach jet-fuel burner flame. Both parts performed successfully, demonstrating the usefulness of the rapid prototyping in efforts to effect materials substitution. In addition, the simulated airfoil was used to explore the possibility of applying thermal/environmental barrier coatings and providing for internal cooling of ceramic parts. It is concluded that this strategy for processing offers the ceramic engineer all the flexibility normally associated with investment casting of superalloys.

  20. Development of personalized annuloplasty rings: combination of CT images and CAD-CAM tools.

    PubMed

    Díaz Lantada, Andrés; Valle-Fernández, Raquel Del; Morgado, Pilar Lafont; Muñoz-García, Julio; Muñoz Sanz, José Luis; Munoz-Guijosa, Juan Manuel; Otero, Javier Echávarri

    2010-02-01

    Although the use of personalized annuloplasty rings manufactured for each patient according to the size and morphology of their valve complex could be beneficial for the treatment of mitral insufficiency, this possibility has been limited for reasons of time-lines and costs as well as for design and manufacturing difficulties, as has been the case with other personalized implant and prosthetic developments. However, the present quality of medical image capture equipment together with the benefits to be had from computer-aided design and manufacturing technologies (CAD-CAM) and the capabilities furnished by rapid prototyping technologies, present new opportunities for a personalized response to the development of implants and prostheses, the social impact of which could turn out to be highly positive. This paper sets out a personalized development of an annuloplasty ring based on the combined use of information from medical imaging, from CAD-CAM design programs and prototype manufacture using rapid prototyping technologies.

  1. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.

    PubMed

    Arafat, M Tarik; Lam, Christopher X F; Ekaputra, Andrew K; Wong, Siew Yee; Li, Xu; Gibson, Ian

    2011-02-01

    The objective of this present study was to improve the functional performance of rapid prototyped scaffolds for bone tissue engineering through biomimetic composite coating. Rapid prototyped poly(ε-caprolactone)/tri-calcium phosphate (PCL/TCP) scaffolds were fabricated using the screw extrusion system (SES). The fabricated PCL/TCP scaffolds were coated with a carbonated hydroxyapatite (CHA)-gelatin composite via biomimetic co-precipitation. The structure of the prepared CHA-gelatin composite coating was studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Compressive mechanical testing revealed that the coating process did not have any detrimental effect on the mechanical properties of the scaffolds. The cell-scaffold interaction was studied by culturing porcine bone marrow stromal cells (BMSCs) on the scaffolds and assessing the proliferation and bone-related gene and protein expression capabilities of the cells. Confocal laser microscopy and SEM images of the cell-scaffold constructs showed a uniformly distributed cell sheet and accumulation of extracellular matrix in the interior of CHA-gelatin composite-coated PCL/TCP scaffolds. The proliferation rate of BMSCs on CHA-gelatin composite-coated PCL/TCP scaffolds was about 2.3 and 1.7 times higher than that on PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds, respectively, by day 10. Furthermore, reverse transcription polymerase chain reaction and Western blot analysis revealed that CHA-gelatin composite-coated PCL/TCP scaffolds stimulate osteogenic differentiation of BMSCs the most, compared with PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds. These results demonstrate that CHA-gelatin composite-coated rapid prototyped PCL/TCP scaffolds are promising for bone tissue engineering. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Habitat Demonstration Unit Project: Leadership and Management Strategies for a Rapid Prototyping Project

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Toup, Larry; Gill, Tracy; Tri, Terry; Howe, Scott; Smitherman, David

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies being used by the NASA HDU team for a rapid prototyping project. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team rapid prototyping approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and disciplines to enable a successful tiger team approach. Advocacy was established with key stakeholders and NASA Headquarters (HQ) by defining a strategic vision, mission, goals and objectives for the project and team. As a technology-pull testbed capability the HDU project was able to collaborate and leverage the Exploration Technology Development Program (ETDP) and individual NASA center investments which capitalized on their respective center core competencies and skills. This approach enable the leveraging of over $7.5m of value to create an operational habitat demonstration unit 2010 PEM configuration.

  3. Spectroscopic Feedback for High Density Data Storage and Micromachining

    DOEpatents

    Carr, Christopher W.; Demos, Stavros; Feit, Michael D.; Rubenchik, Alexander M.

    2008-09-16

    Optical breakdown by predetermined laser pulses in transparent dielectrics produces an ionized region of dense plasma confined within the bulk of the material. Such an ionized region is responsible for broadband radiation that accompanies a desired breakdown process. Spectroscopic monitoring of the accompanying light in real-time is utilized to ascertain the morphology of the radiated interaction volume. Such a method and apparatus as presented herein, provides commercial realization of rapid prototyping of optoelectronic devices, optical three-dimensional data storage devices, and waveguide writing.

  4. Development of a Decision Aid for Cardiopulmonary Resuscitation Involving Intensive Care Unit Patients' and Health Professionals' Participation Using User-Centered Design and a Wiki Platform for Rapid Prototyping: A Research Protocol

    PubMed Central

    Heyland, Daren Keith; Ebell, Mark H; Dupuis, Audrey; Lavoie-Bérard, Carole-Anne; Légaré, France; Archambault, Patrick Michel

    2016-01-01

    Background Cardiopulmonary resuscitation (CPR) is an intervention used in cases of cardiac arrest to revive patients whose heart has stopped. Because cardiac arrest can have potentially devastating outcomes such as severe neurological deficits even if CPR is performed, patients must be involved in determining in advance if they want CPR in the case of an unexpected arrest. Shared decision making (SDM) facilitates discussions about goals of care regarding CPR in intensive care units (ICUs). Patient decision aids (DAs) are proven to support the implementation of SDM. Many patient DAs about CPR exist, but they are not universally implemented in ICUs in part due to lack of context and cultural adaptation. Adaptation to local context is an important phase of implementing any type of knowledge tool such as patient DAs. User-centered design supported by a wiki platform to perform rapid prototyping has previously been successful in creating knowledge tools adapted to the needs of patients and health professionals (eg, asthma action plans). This project aims to explore how user-centered design and a wiki platform can support the adaptation of an existing DA for CPR to the local context. Objective The primary objective is to use an existing DA about CPR to create a wiki-based DA that is adapted to the context of a single ICU and tailorable to individual patient’s risk factors while employing user-centered design. The secondary objective is to document the use of a wiki platform for the adaptation of patient DAs. Methods This study will be conducted in a mixed surgical and medical ICU at Hôtel-Dieu de Lévis, Quebec, Canada. We plan to involve all 5 intensivists and recruit at least 20 alert and oriented patients admitted to the ICU and their family members if available. In the first phase of this study, we will observe 3 weeks of daily interactions between patients, families, intensivists, and other allied health professionals. We will specifically observe 5 dyads of attending intensivists and alert and oriented patients discussing goals of care concerning CPR to understand how a patient DA could support this decision. We will also conduct individual interviews with the 5 intensivists to identify their needs concerning the implementation of a DA. In the second phase of the study, we will build a first prototype based on the needs identified in Phase I. We will start by translating an existing DA entitled “Cardiopulmonary resuscitation: a decision aid for patients and their families.” We will then adapt this tool to the needs we identified in Phase I and archive this first prototype in a wiki. Building on the wiki’s programming architecture, we intend to integrate the Good Outcome Following Attempted Resuscitation risk calculator into our DA to determine personal risks and benefits of CPR for each patient. We will then present the first prototype to 5 new patient-intensivist dyads. Feedback about content and visual presentation will be collected from the intensivists through short interviews while longer interviews will be conducted with patients and their family members to inform the visual design and content of the next prototype. After each rapid prototyping cycle, 2 researchers will perform qualitative content analysis of data collected through interviews and direct observations. We will attempt to solve all content and visual design issues identified before moving to the next round of prototyping. In all, we will conduct 3 prototyping cycles with a total of 15 patient-intensivist dyads. Results We expect to develop a multimedia wiki-based DA to support goals of care discussions about CPR adapted to the local needs of patients, their family members, and intensivists and tailorable to individual patient risk factors. The final version of the DA as well as the development process will be housed in an open-access wiki and free to be adapted and used in other contexts. Conclusions This study will shed new light on the development of DAs adapted to local context and tailorable to individual patient risk factors employing user-centered design and a wiki to support rapid prototyping of content and visual design issues. PMID:26869137

  5. New layer-based imaging and rapid prototyping techniques for computer-aided design and manufacture of custom dental restoration.

    PubMed

    Lee, M-Y; Chang, C-C; Ku, Y C

    2008-01-01

    Fixed dental restoration by conventional methods greatly relies on the skill and experience of the dental technician. The quality and accuracy of the final product depends mostly on the technician's subjective judgment. In addition, the traditional manual operation involves many complex procedures, and is a time-consuming and labour-intensive job. Most importantly, no quantitative design and manufacturing information is preserved for future retrieval. In this paper, a new device for scanning the dental profile and reconstructing 3D digital information of a dental model based on a layer-based imaging technique, called abrasive computer tomography (ACT) was designed in-house and proposed for the design of custom dental restoration. The fixed partial dental restoration was then produced by rapid prototyping (RP) and computer numerical control (CNC) machining methods based on the ACT scanned digital information. A force feedback sculptor (FreeForm system, Sensible Technologies, Inc., Cambridge MA, USA), which comprises 3D Touch technology, was applied to modify the morphology and design of the fixed dental restoration. In addition, a comparison of conventional manual operation and digital manufacture using both RP and CNC machining technologies for fixed dental restoration production is presented. Finally, a digital custom fixed restoration manufacturing protocol integrating proposed layer-based dental profile scanning, computer-aided design, 3D force feedback feature modification and advanced fixed restoration manufacturing techniques is illustrated. The proposed method provides solid evidence that computer-aided design and manufacturing technologies may become a new avenue for custom-made fixed restoration design, analysis, and production in the 21st century.

  6. MACBETH: Development of a Training Game for the Mitigation of Cognitive Bias

    ERIC Educational Resources Information Center

    Dunbar, Norah E.; Wilson, Scott N.; Adame, Bradley J.; Elizondo, Javier; Jensen, Matthew L.; Miller, Claude H.; Kauffman, Abigail Allums; Seltsam, Toby; Bessarabova, Elena; Vincent, Cindy; Straub, Sara K.; Ralston, Ryan; Dulawan, Christopher L.; Ramirez, Dennis; Squire, Kurt; Valacich, Joseph S.; Burgoon, Judee K.

    2013-01-01

    This paper describes the process of rapid iterative prototyping used by a research team developing a training video game for the Sirius program funded by the Intelligence Advanced Research Projects Activity (IARPA). Described are three stages of development, including a paper prototype, and builds for alpha and beta testing. Game development is…

  7. Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling.

    PubMed

    Cao, Shuai; Bennett, Thomas D; Keen, David A; Goodwin, Andrew L; Cheetham, Anthony K

    2012-08-14

    We report the rapid amorphization of the prototypical substituted zeolitic imidazolate framework, ZIF-8, by ball-milling. The resultant amorphous ZIF-8 (a(m)ZIF-8) possesses a continuous random network (CRN) topology with a higher density and a lower porosity than its crystalline counterpart. A decrease in thermal stability upon amorphization is also evident.

  8. An Embedded Systems Laboratory to Support Rapid Prototyping of Robotics and the Internet of Things

    ERIC Educational Resources Information Center

    Hamblen, J. O.; van Bekkum, G. M. E.

    2013-01-01

    This paper describes a new approach for a course and laboratory designed to allow students to develop low-cost prototypes of robotic and other embedded devices that feature Internet connectivity, I/O, networking, a real-time operating system (RTOS), and object-oriented C/C++. The application programming interface (API) libraries provided permit…

  9. Rapid jetting status inspection and accurate droplet volume measurement for a piezo drop-on-demand inkjet print head using a scanning mirror for display applications

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Youn; Kim, Minsung

    2017-02-01

    Despite the inherent fabrication simplicity of piezo drop-on-demand inkjet printing, the non-uniform deposition of colourants or electroluminescent organic materials leads to faulty display products, and hence, the importance of rapid jetting status inspection and accurate droplet volume measurement increases from a process perspective. In this work, various jetting status inspections and droplet volume measurement methods are reviewed by discussing their advantages and disadvantages, and then, the opportunities for the developed prototype with a scanning mirror are explored. This work demonstrates that jetting status inspection of 384 fictitious droplets can be performed within 17 s with maximum and minimum measurement accuracies of 0.2 ± 0.5 μ m for the fictitious droplets of 50 μ m in diameter and -1.2 ± 0.3 μ m for the fictitious droplets of 30 μ m in diameter, respectively. In addition to the new design of an inkjet monitoring instrument with a scanning mirror, two novel methods to accurately measure the droplet volume by amplifying a minute droplet volume difference and then converting to other physical properties are suggested and the droplet volume difference of ±0.3% is demonstrated to be discernible using numerical simulations, even with the low measurement accuracy of 1 μ m . When the fact is considered that the conventional vision-based method with a CCD camera requires the optical measurement accuracy less than 25 nm to measure the volume of an in-flight droplet in the nominal diameter of 50 μ m at the same volume measurement accuracy, the suggested method with the developed prototype offers a whole new opportunity to inkjet printing for display applications.

  10. Rapid jetting status inspection and accurate droplet volume measurement for a piezo drop-on-demand inkjet print head using a scanning mirror for display applications.

    PubMed

    Shin, Dong-Youn; Kim, Minsung

    2017-02-01

    Despite the inherent fabrication simplicity of piezo drop-on-demand inkjet printing, the non-uniform deposition of colourants or electroluminescent organic materials leads to faulty display products, and hence, the importance of rapid jetting status inspection and accurate droplet volume measurement increases from a process perspective. In this work, various jetting status inspections and droplet volume measurement methods are reviewed by discussing their advantages and disadvantages, and then, the opportunities for the developed prototype with a scanning mirror are explored. This work demonstrates that jetting status inspection of 384 fictitious droplets can be performed within 17 s with maximum and minimum measurement accuracies of 0.2 ± 0.5 μm for the fictitious droplets of 50 μm in diameter and -1.2 ± 0.3 μm for the fictitious droplets of 30 μm in diameter, respectively. In addition to the new design of an inkjet monitoring instrument with a scanning mirror, two novel methods to accurately measure the droplet volume by amplifying a minute droplet volume difference and then converting to other physical properties are suggested and the droplet volume difference of ±0.3% is demonstrated to be discernible using numerical simulations, even with the low measurement accuracy of 1 μm. When the fact is considered that the conventional vision-based method with a CCD camera requires the optical measurement accuracy less than 25 nm to measure the volume of an in-flight droplet in the nominal diameter of 50 μm at the same volume measurement accuracy, the suggested method with the developed prototype offers a whole new opportunity to inkjet printing for display applications.

  11. Development of a prototype for dissolved CO2 rapid measurement and preliminary tests

    NASA Astrophysics Data System (ADS)

    Li, Meng; Guo, Jinjia; Zhang, Zhihao; Luo, Zhao; Qin, Chuan; Zheng, Ronger

    2017-10-01

    The measurements of dissolved CO2 in seawater is of great significance for the study of global carbon cycle. At present, the commercial sensors used for dissolved CO2 measurements are mostly equipped with permeable membranes for the purpose of gas-liquid separation, with the advantages of easy operation, low cost, etc.. However, most of these devices measure CO2 after reaching gas equilibrium, so it takes a few minutes to respond, which limited its applications in rapid measurements. In this paper, a set of prototype was developed for the rapid measurements of dissolved CO2. The system was built basing the direct absorption TDLAS. To detect the CO2 absorption line located at 4991.26 cm-1 , a fiber-coupled DFB laser operating at 2004 nm was selected as the light source. A Herriott type multi-pass cavity with an effective optical path length of 10 m and an inner volume of 90 mL was used for absorption measurements. A detection limit of 26 μatm can be obtained with this compact cavity. To realize the rapid measurements of dissolved CO2, a degasser with high degassing rate was necessary. A hollow fiber membrane with a large permeable area used in this paper can achieve degassing rate up to 2.88 kPa/min. Benefitted from the high degassing rate of the degasser and high sensitivity of the compact TDLAS system, a rapid measurement of dissolved CO2 in water can be achieved within 1s time, and the response time of the prototype when the dissolved CO2 concentration changed abruptly in actual measurement was 15 s. To evaluate the performance of the prototype, comparison measurements were carried out with a commercial mass spectrometer. The dissolved CO2 in both seawater and tap-water was measured, and the experimental results showed good consistent trends with R2 of 0.973 and 0.931. The experimental results proved the feasibility of dissolved CO2 rapid measurement. In the near future, more system evaluation experiments will be carried out and the system will be further optimized focusing on the underwater in-situ detection system.

  12. Integrated prototyping environment for programmable automation

    NASA Astrophysics Data System (ADS)

    da Costa, Francis; Hwang, Vincent S. S.; Khosla, Pradeep K.; Lumia, Ronald

    1992-11-01

    We propose a rapid prototyping environment for robotic systems, based on tenets of modularity, reconfigurability and extendibility that may help build robot systems `faster, better, and cheaper.' Given a task specification, (e.g., repair brake assembly), the user browses through a library of building blocks that include both hardware and software components. Software advisors or critics recommend how blocks may be `snapped' together to speedily construct alternative ways to satisfy task requirements. Mechanisms to allow `swapping' competing modules for comparative test and evaluation studies are also included in the prototyping environment. After some iterations, a stable configuration or `wiring diagram' emerges. This customized version of the general prototyping environment still contains all the hooks needed to incorporate future improvements in component technologies and to obviate unplanned obsolescence. The prototyping environment so described is relevant for both interactive robot programming (telerobotics) and iterative robot system development (prototyping).

  13. Development, Evaluation, and Integration of a Quantitative Reverse-Transcription Polymerase Chain Reaction Diagnostic Test for Ebola Virus on a Molecular Diagnostics Platform

    PubMed Central

    Cnops, Lieselotte; Van den Eede, Peter; Pettitt, James; Heyndrickx, Leo; De Smet, Birgit; Coppens, Sandra; Andries, Ilse; Pattery, Theresa; Van Hove, Luc; Meersseman, Geert; Van Den Herrewegen, Sari; Vergauwe, Nicolas; Thijs, Rein; Jahrling, Peter B.; Nauwelaers, David; Ariën, Kevin K.

    2016-01-01

    Background. The 2013–2016 Ebola epidemic in West Africa resulted in accelerated development of rapid diagnostic tests for emergency outbreak preparedness. We describe the development and evaluation of the Idylla™ prototype Ebola virus test, a fully automated sample-to-result molecular diagnostic test for rapid detection of Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV). Methods. The Idylla™ prototype Ebola virus test can simultaneously detect EBOV and SUDV in 200 µL of whole blood. The sample is directly added to a disposable cartridge containing all reagents for sample preparation, RNA extraction, and amplification by reverse-transcription polymerase chain reaction analysis. The performance was evaluated with a variety of sample types, including synthetic constructs and whole blood samples from healthy volunteers spiked with viral RNA, inactivated virus, and infectious virus. Results. The 95% limits of detection for EBOV and SUDV were 465 plaque-forming units (PFU)/mL (1010 copies/mL) and 324 PFU/mL (8204 copies/mL), respectively. In silico and in vitro analyses demonstrated 100% correct reactivity for EBOV and SUDV and no cross-reactivity with relevant pathogens. The diagnostic sensitivity was 97.4% (for EBOV) and 91.7% (for SUDV), the specificity was 100%, and the diagnostic accuracy was 95.9%. Conclusions. The Idylla™ prototype Ebola virus test is a fast, safe, easy-to-use, and near-patient test that meets the performance criteria to detect EBOV in patients with suspected Ebola. PMID:27247341

  14. Transforming a Traditional Inquiry-Based Science Unit into a STEM Unit for Elementary Pre-service Teachers: A View from the Trenches

    NASA Astrophysics Data System (ADS)

    Schmidt, Matthew; Fulton, Lori

    2016-04-01

    The need to prepare students with twenty-first-century skills through STEM-related teaching is strong, especially at the elementary level. However, most teacher education preparation programs do not focus on STEM education. In an attempt to provide an exemplary model of a STEM unit, we used a rapid prototyping approach to transform an inquiry-based unit on moon phases into one that integrated technology in a meaningful manner to develop technological literacy and scientific concepts for pre-service teachers (PSTs). Using qualitative case study methodology, we describe lessons learned related to the development and implementation of a STEM unit in an undergraduate elementary methods course, focusing on the impact the inquiry model had on PSTs' perceptions of inquiry-based science instruction and how the integration of technology impacted their learning experience. Using field notes and survey data, we uncovered three overarching themes. First, we found that PSTs held absolutist beliefs and had a need for instruction on inquiry-based learning and teaching. Second, we determined that explicit examples of effective and ineffective technology use are needed to help PSTs develop an understanding of meaningful technology integration. Finally, the rapid prototyping approach resulted in a successful modification of the unit, but caused the usability of our digital instructional materials to suffer. Our findings suggest that while inquiry-based STEM units can be implemented in existing programs, creating and testing these prototypes requires significant effort to meet PSTs' learning needs, and that iterating designs is essential to successful implementation.

  15. Rapid Prototyping of Hyperspectral Image Analysis Algorithms for Improved Invasive Species Decision Support Tools

    NASA Astrophysics Data System (ADS)

    Bruce, L. M.; Ball, J. E.; Evangilista, P.; Stohlgren, T. J.

    2006-12-01

    Nonnative invasive species adversely impact ecosystems, causing loss of native plant diversity, species extinction, and impairment of wildlife habitats. As a result, over the past decade federal and state agencies and nongovernmental organizations have begun to work more closely together to address the management of invasive species. In 2005, approximately 500M dollars was budgeted by U.S. Federal Agencies for the management of invasive species. Despite extensive expenditures, most of the methods used to detect and quantify the distribution of these invaders are ad hoc, at best. Likewise, decisions on the type of management techniques to be used or evaluation of the success of these methods are typically non-systematic. More efficient methods to detect or predict the occurrence of these species, as well as the incorporation of this knowledge into decision support systems, are greatly needed. In this project, rapid prototyping capabilities (RPC) are utilized for an invasive species application. More precisely, our recently developed analysis techniques for hyperspectral imagery are being prototyped for inclusion in the national Invasive Species Forecasting System (ISFS). The current ecological forecasting tools in ISFS will be compared to our hyperspectral-based invasives prediction algorithms to determine if/how the newer algorithms enhance the performance of ISFS. The PIs have researched the use of remotely sensed multispectral and hyperspectral reflectance data for the detection of invasive vegetative species. As a result, the PI has designed, implemented, and benchmarked various target detection systems that utilize remotely sensed data. These systems have been designed to make decisions based on a variety of remotely sensed data, including high spectral/spatial resolution hyperspectral signatures (1000's of spectral bands, such as those measured using ASD handheld devices), moderate spectral/spatial resolution hyperspectral images (100's of spectral bands, such as Hyperion imagery), and low spectral/spatial resolution images (such as MODIS imagery). These algorithms include hyperspectral exploitation methods such as stepwise-LDA band selection, optimized spectral band grouping, and stepwise PCA component selection. The PIs have extensive experience with combining these recently- developed methods with conventional classifiers to form an end-to-end automated target recognition (ATR) system for detecting invasive species. The outputs of these systems can be invasive prediction maps, as well as quantitative accuracy assessments like confusion matrices, user accuracies, and producer accuracies. For all of these research endeavors, the PIs have developed numerous advanced signal and image processing methodologies, as well a suite of associated software modules. However, the use of the prototype software modules has been primarily contained to Mississippi State University. The project described in this presentation and paper will enable future systematic inclusion of these software modules into a DSS with national scope.

  16. Simulation of the Fissureless Technique for Thoracoscopic Segmentectomy Using Rapid Prototyping

    PubMed Central

    Nakada, Takeo; Inagaki, Takuya

    2014-01-01

    The fissureless lobectomy or anterior fissureless technique is a novel surgical technique, which avoids dissection of the lung parenchyma over the pulmonary artery during lobectomy by open thoracotomy approach or direct vision thoracoscopic surgery. This technique is indicated for fused lobes. We present two cases where thoracoscopic pulmonary segmentectomy was performed using the fissureless technique simulated by three-dimensional (3D) pulmonary models. The 3D model and rapid prototyping provided an accurate anatomical understanding of the operative field in both cases. We believe that the construction of these models is useful for thoracoscopic and other complicated surgeries of the chest. PMID:24633132

  17. Object-oriented productivity metrics

    NASA Technical Reports Server (NTRS)

    Connell, John L.; Eller, Nancy

    1992-01-01

    Software productivity metrics are useful for sizing and costing proposed software and for measuring development productivity. Estimating and measuring source lines of code (SLOC) has proven to be a bad idea because it encourages writing more lines of code and using lower level languages. Function Point Analysis is an improved software metric system, but it is not compatible with newer rapid prototyping and object-oriented approaches to software development. A process is presented here for counting object-oriented effort points, based on a preliminary object-oriented analysis. It is proposed that this approach is compatible with object-oriented analysis, design, programming, and rapid prototyping. Statistics gathered on actual projects are presented to validate the approach.

  18. Three-dimensional pulmonary model using rapid-prototyping in patient with lung cancer requiring segmentectomy.

    PubMed

    Akiba, Tadashi; Nakada, Takeo; Inagaki, Takuya

    2014-01-01

    Thoracoscopic pulmonary segmentectomy of the lung is sometime adopted for the lung cancer, but a problem with segmentectomy is variable anatomy. Recently, we are exploring the impact of three-dimensional models using rapid-prototyping technique. It is useful for decision making, surgical planning, and intraoperative orientation for surgical treatment in patient with lung cancer who underwent pulmonary segmentectomy. These newly created models allow us to clearly identify the surgical margin and the intersegmental plane, vessels, and bronchi related to the cancer in the posterior segment. To the best of our knowledge, there are few reports describing a pulmonary model so far.

  19. Thoracoscopic anatomical subsegmentectomy of the right S2b + S3 using a 3D printing model with rapid prototyping.

    PubMed

    Nakada, Takeo; Akiba, Tadashi; Inagaki, Takuya; Morikawa, Toshiaki

    2014-10-01

    Thoracoscopic segmentectomies and subsegmentectomies are more difficult than lobectomy because of the complexity of the procedure; therefore, preoperative decision-making and surgical procedure planning are essential. In the literature, we could successfully perform thoracoscopic anatomical subsegmentectomy of the right S2b + S3 using a 3D printing model with rapid prototyping. This innovative surgical support model is extremely useful for planning a surgical procedure and identifying the surgical margin. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  20. Simulation of the fissureless technique for thoracoscopic segmentectomy using rapid prototyping.

    PubMed

    Akiba, Tadashi; Nakada, Takeo; Inagaki, Takuya

    2015-01-01

    The fissureless lobectomy or anterior fissureless technique is a novel surgical technique, which avoids dissection of the lung parenchyma over the pulmonary artery during lobectomy by open thoracotomy approach or direct vision thoracoscopic surgery. This technique is indicated for fused lobes. We present two cases where thoracoscopic pulmonary segmentectomy was performed using the fissureless technique simulated by three-dimensional (3D) pulmonary models. The 3D model and rapid prototyping provided an accurate anatomical understanding of the operative field in both cases. We believe that the construction of these models is useful for thoracoscopic and other complicated surgeries of the chest.

  1. Pen-on-paper strategy for point-of-care testing: Rapid prototyping of fully written microfluidic biosensor.

    PubMed

    Li, Zedong; Li, Fei; Xing, Yue; Liu, Zhi; You, Minli; Li, Yingchun; Wen, Ting; Qu, Zhiguo; Ling Li, Xiao; Xu, Feng

    2017-12-15

    Paper-based microfluidic biosensors have recently attracted increasing attentions in point-of-care testing (POCT) territories benefiting from their affordable, accessible and eco-friendly features, where technologies for fabricating such biosensors are preferred to be equipment free, easy-to-operate and capable of rapid prototyping. In this work, we developed a pen-on-paper (PoP) strategy based on two custom-made pens, i.e., a wax pen and a conductive-ink pen, to fully write paper-based microfluidic biosensors through directly writing both microfluidic channels and electrodes. Particularly, the proposed wax pen is competent to realize one-step fabrication of wax channels on paper, as the melted wax penetrates into paper during writing process without any post-treatments. The practical applications of the fabricated paper-based microfluidic biosensors are demonstrated by both colorimetric detection of Salmonella typhimurium DNA with detection limit of 1nM and electrochemical measurement of glucose with detection limit of 1mM. The developed PoP strategy for making microfluidic biosensors on paper characterized by true simplicity, prominent portability and excellent capability for rapid prototyping shows promising prospect in POCT applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Rapid Prototyping of an Aircraft Model in an Object-Oriented Simulation

    NASA Technical Reports Server (NTRS)

    Kenney, P. Sean

    2003-01-01

    A team was created to participate in the Mars Scout Opportunity. Trade studies determined that an aircraft provided the best opportunity to complete the science objectives of the team. A high fidelity six degree of freedom flight simulation was required to provide credible evidence that the aircraft design fulfilled mission objectives and to support the aircraft design process by providing performance evaluations. The team created the simulation using the Langley Standard Real-Time Simulation in C++ (LaSRS++) application framework. A rapid prototyping approach was necessary because the team had only three months to both develop the aircraft simulation model and evaluate aircraft performance as the design and mission parameters matured. The design of LaSRS++ enabled rapid-prototyping in several ways. First, the framework allowed component models to be designed, implemented, unit-tested, and integrated quickly. Next, the framework provides a highly reusable infrastructure that allowed developers to maximize code reuse while concentrating on aircraft and mission specific features. Finally, the framework reduces risk by providing reusable components that allow developers to build a quality product with a compressed testing cycle that relies heavily on unit testing of new components.

  3. Design and preparation of polymeric scaffolds for tissue engineering.

    PubMed

    Weigel, Thomas; Schinkel, Gregor; Lendlein, Andreas

    2006-11-01

    Polymeric scaffolds for tissue engineering can be prepared with a multitude of different techniques. Many diverse approaches have recently been under development. The adaptation of conventional preparation methods, such as electrospinning, induced phase separation of polymer solutions or porogen leaching, which were developed originally for other research areas, are described. In addition, the utilization of novel fabrication techniques, such as rapid prototyping or solid free-form procedures, with their many different methods to generate or to embody scaffold structures or the usage of self-assembly systems that mimic the properties of the extracellular matrix are also described. These methods are reviewed and evaluated with specific regard to their utility in the area of tissue engineering.

  4. Rapid response deluge system

    NASA Astrophysics Data System (ADS)

    Mille, J. R.

    1984-08-01

    The development of a rapid response deluge system by the Ammunition Equipment Directorate (AED) for use in suppressing propellant fires during demilitarization shows great promise. Prototype systems have been tested and data acquired on their efficiencies. Present system vs previous generations and lessons learned are discussed.

  5. Airplane numerical simulation for the rapid prototyping process

    NASA Astrophysics Data System (ADS)

    Roysdon, Paul F.

    Airplane Numerical Simulation for the Rapid Prototyping Process is a comprehensive research investigation into the most up-to-date methods for airplane development and design. Uses of modern engineering software tools, like MatLab and Excel, are presented with examples of batch and optimization algorithms which combine the computing power of MatLab with robust aerodynamic tools like XFOIL and AVL. The resulting data is demonstrated in the development and use of a full non-linear six-degrees-of-freedom simulator. The applications for this numerical tool-box vary from un-manned aerial vehicles to first-order analysis of manned aircraft. A Blended-Wing-Body airplane is used for the analysis to demonstrate the flexibility of the code from classic wing-and-tail configurations to less common configurations like the blended-wing-body. This configuration has been shown to have superior aerodynamic performance -- in contrast to their classic wing-and-tube fuselage counterparts -- and have reduced sensitivity to aerodynamic flutter as well as potential for increased engine noise abatement. Of course without a classic tail elevator to damp the nose up pitching moment, and the vertical tail rudder to damp the yaw and possible rolling aerodynamics, the challenges in lateral roll and yaw stability, as well as pitching moment are not insignificant. This thesis work applies the tools necessary to perform the airplane development and optimization on a rapid basis, demonstrating the strength of this tool through examples and comparison of the results to similar airplane performance characteristics published in literature.

  6. A microcontroller platform for the rapid prototyping of functional electrical stimulation-based gait neuroprostheses.

    PubMed

    Luzio de Melo, Paulo; da Silva, Miguel Tavares; Martins, Jorge; Newman, Dava

    2015-05-01

    Functional electrical stimulation (FES) has been used over the last decades as a method to rehabilitate lost motor functions of individuals with spinal cord injury, multiple sclerosis, and post-stroke hemiparesis. Within this field, researchers in need of developing FES-based control solutions for specific disabilities often have to choose between either the acquisition and integration of high-performance industry-level systems, which are rather expensive and hardly portable, or develop custom-made portable solutions, which despite their lower cost, usually require expert-level electronic skills. Here, a flexible low-cost microcontroller-based platform for rapid prototyping of FES neuroprostheses is presented, designed for reduced execution complexity, development time, and production cost. For this reason, the Arduino open-source microcontroller platform was used, together with off-the-shelf components whenever possible. The developed system enables the rapid deployment of portable FES-based gait neuroprostheses, being flexible enough to allow simple open-loop strategies but also more complex closed-loop solutions. The system is based on a modular architecture that allows the development of optimized solutions depending on the desired FES applications, even though the design and testing of the platform were focused toward drop foot correction. The flexibility of the system was demonstrated using two algorithms targeting drop foot condition within different experimental setups. Successful bench testing of the device in healthy subjects demonstrated these neuroprosthesis platform capabilities to correct drop foot. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Anaerobic microplate assay for direct microbial conversion of switchgrass and Avicel using Clostridium thermocellum

    DOE PAGES

    Oguntimein, Gbekeloluwa B.; Rodriguez, Jr., Miguel; Dumitrache, Alexandru; ...

    2017-11-09

    Here, to develop and prototype a high-throughput microplate assay to assess anaerobic microorganisms and lignocellulosic biomasses in a rapid, cost-effective screen for consolidated bioprocessing potential. Clostridium thermocellum parent Δ hpt strain deconstructed Avicel to cellobiose, glucose, and generated lactic acid, formic acid, acetic acid and ethanol as fermentation products in titers and ratios similar to larger scale fermentations confirming the suitability of a plate-based method for C. thermocellum growth studies. C. thermocellum strain LL1210, with gene deletions in the key central metabolic pathways, produced higher ethanol titers in the Consolidated Bioprocessing (CBP) plate assay for both Avicel and switchgrass fermentationsmore » when compared to the Δ hpt strain. A prototype microplate assay system is developed that will facilitate high-throughput bioprospecting for new lignocellulosic biomass types, genetic variants and new microbial strains for bioethanol production.« less

  8. Anaerobic microplate assay for direct microbial conversion of switchgrass and Avicel using Clostridium thermocellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguntimein, Gbekeloluwa B.; Rodriguez, Jr., Miguel; Dumitrache, Alexandru

    Here, to develop and prototype a high-throughput microplate assay to assess anaerobic microorganisms and lignocellulosic biomasses in a rapid, cost-effective screen for consolidated bioprocessing potential. Clostridium thermocellum parent Δ hpt strain deconstructed Avicel to cellobiose, glucose, and generated lactic acid, formic acid, acetic acid and ethanol as fermentation products in titers and ratios similar to larger scale fermentations confirming the suitability of a plate-based method for C. thermocellum growth studies. C. thermocellum strain LL1210, with gene deletions in the key central metabolic pathways, produced higher ethanol titers in the Consolidated Bioprocessing (CBP) plate assay for both Avicel and switchgrass fermentationsmore » when compared to the Δ hpt strain. A prototype microplate assay system is developed that will facilitate high-throughput bioprospecting for new lignocellulosic biomass types, genetic variants and new microbial strains for bioethanol production.« less

  9. Micro sculpting technology using DPSSL

    NASA Astrophysics Data System (ADS)

    Chang, Won-Seok; Shin, Bosung; Kim, Jae-gu; Whang, Kyung-Hyun

    2003-11-01

    Multiple pulse laser ablation of polymer is performed with DPSS (Diode Pumped Solid State) 3rd harmonic Nd:YVO4 laser (355 nm) in order to fabricate three-dimensional micro components. Here we considered mechanistic aspects of the interaction between UV laser and polymer to obtain optimum process conditions for maskless photomachining using DPSSL. The photo-physical and photochemical parameters such as laser wavelength and optical characteristics of polymers are investigated by experiments to reduce plume effect, which induce the re-deposited debris on the surface of substrate. In this study, LDST (laser direct sculpting technique) are developed to gain various three-dimensional shape with size less than 500 micrometer. Main process sequences are from rapid prototyping technology such as CAD/CAM modeling of products, machining path generation, layer-by-layer machining, and so on. This method can be applied to manufacture the prototype of micro device and the polymer mould for mass production without expensive mask fabrication.

  10. A regional estimate of convective transport of CO from biomass burning

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Scala, John R.; Thompson, Anne M.; Tao, Wei-Kuo; Simpson, Joanne

    1992-01-01

    A regional-scale estimate of the fraction of biomass burning emissions that are transported to the free troposphere by deep convection is presented. The focus is on CO and the study region is a part of Brazil that underwent intensive deforestation in the 1980s. The method of calculation is stepwise, scaling up from a prototype convective event, the dynamics of which are well-characterized, to the vertical mass flux of carbon monoxide over the region. Given uncertainties in CO emissions from biomass burning and the representativeness of the prototype event, it is estimated that 10-40 percent of CO emissions from the burning region may be rapidly transported to the free troposphere over the burning region. These relatively fresh emissions will produce O3 efficiently in the free troposphere where O3 has a longer lifetime than in the boundary layer.

  11. A browsing tool for the Internet Logical Library of the HPCC Software Exchange

    NASA Technical Reports Server (NTRS)

    Biro, Ross

    1993-01-01

    As the quantity of information available on the Internet grows, locating a particular piece of information becomes more difficult. One possible solution is for a database of pointers to all available information to be maintained at a central site. Subject classifications for all the information could also be maintained in order to make searching possible. This paper describes one possible method of searching such an index. In particular a prototype browsing tool has been created using TCL/TK to demonstrate several possible features: rapidly scanning at any rank of the index, narrowing the index to any scope, regular-expression searching, and creation of a list of pointers answering to any set of index terms. The prototype browser is an easy-to-use independent X application designed for use in the Catalog of Repositories of the HPCC (High Performance Computing and Communications) Software Exchange.

  12. Internally Cooled Monolithic Silicon Nitride Aerospace Components

    NASA Technical Reports Server (NTRS)

    Best, Jonathan E.; Cawley, James D.; Bhatt, Ramakrishna T.; Fox, Dennis S.; Lang, Jerry (Technical Monitor)

    2000-01-01

    A set of rapid prototyping (RP) processes have been combined with gelcasting to make ceramic aerospace components that contain internal cooling geometry. A mold and core combination is made using a MM6Pro (Sanders Prototyping, Inc.) and SLA-250/40 (3Dsystems, Inc.). The MM6Pro produces cores from ProtoBuild (trademarked) wax that are dissolved in room temperature ethanol following gelcasting. The SLA-250/40 yields epoxy/acrylate reusable molds. Parts produced by this method include two types of specimens containing a high density of thin long cooling channels, thin-walled cylinders and plates, as well as a model hollow airfoil shape that can be used for burner rig evaluation of coatings. Both uncoated and mullite-coated hollow airfoils has been tested in a Mach 0.3 burner rig with cooling air demonstrating internal cooling and confirming the effectiveness of mullite coatings.

  13. Semi-automated delineation of breast cancer tumors and subsequent materialization using three-dimensional printing (rapid prototyping).

    PubMed

    Schulz-Wendtland, Rüdiger; Harz, Markus; Meier-Meitinger, Martina; Brehm, Barbara; Wacker, Till; Hahn, Horst K; Wagner, Florian; Wittenberg, Thomas; Beckmann, Matthias W; Uder, Michael; Fasching, Peter A; Emons, Julius

    2017-03-01

    Three-dimensional (3D) printing has become widely available, and a few cases of its use in clinical practice have been described. The aim of this study was to explore facilities for the semi-automated delineation of breast cancer tumors and to assess the feasibility of 3D printing of breast cancer tumors. In a case series of five patients, different 3D imaging methods-magnetic resonance imaging (MRI), digital breast tomosynthesis (DBT), and 3D ultrasound-were used to capture 3D data for breast cancer tumors. The volumes of the breast tumors were calculated to assess the comparability of the breast tumor models, and the MRI information was used to render models on a commercially available 3D printer to materialize the tumors. The tumor volumes calculated from the different 3D methods appeared to be comparable. Tumor models with volumes between 325 mm 3 and 7,770 mm 3 were printed and compared with the models rendered from MRI. The materialization of the tumors reflected the computer models of them. 3D printing (rapid prototyping) appears to be feasible. Scenarios for the clinical use of the technology might include presenting the model to the surgeon to provide a better understanding of the tumor's spatial characteristics in the breast, in order to improve decision-making in relation to neoadjuvant chemotherapy or surgical approaches. J. Surg. Oncol. 2017;115:238-242. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. History in Your Hand: Design Elements to Enhance Adoption of a Mobile Multimedia Historical Tour

    ERIC Educational Resources Information Center

    Mallchok, Malia M.

    2017-01-01

    The purpose of this qualitative design case study was to determine the design elements that can lead to technology acceptance of a mobile multimedia tour at an informal historical site. Using rapid prototyping, a tour prototype was developed using a low-cost Website building platform. The tour was then tested with thirteen participants in two…

  15. Rapid Prototyping of Physiologically-Based Toxicokinetic (PBTK) Models (SOT annual meeting)

    EPA Science Inventory

    Determining the tissue concentrations resulting from chemical exposure (i.e., toxicokinetics (TK)) is essential in emergency or other situations where time and data are lacking. Generic TK models can be created rapidly using in vitro assays and computational approaches to generat...

  16. Fast-responder: Rapid mobile-phone access to recent remote sensing imagery for first responders

    NASA Astrophysics Data System (ADS)

    Talbot, L. M.; Talbot, B. G.

    We introduce Fast-Responder, a novel prototype data-dissemination application and architecture concept to rapidly deliver remote sensing imagery to smartphones to enable situational awareness. The architecture implements a Fast-Earth image caching system on the phone and interacts with a Fast-Earth server. Prototype evaluation successfully demonstrated that National Guard users could select a location, download multiple remote sensing images, and flicker between images, all in less than a minute on a 3G mobile commercial link. The Fast-Responder architecture is a significant advance that is designed to meet the needs of mobile users, such as National Guard response units, to rapidly access information during a crisis, such as a natural or man-made disaster. This paper focuses on the architecture design and advanced user interface concepts for small-screens for highly active mobile users. Novel Fast-Responder concepts can also enable rapid dissemination and evaluation of imagery on the desktop, opening new technology horizons for both desktop and mobile users.

  17. LinkWinds: An Approach to Visual Data Analysis

    NASA Technical Reports Server (NTRS)

    Jacobson, Allan S.

    1992-01-01

    The Linked Windows Interactive Data System (LinkWinds) is a prototype visual data exploration and analysis system resulting from a NASA/JPL program of research into graphical methods for rapidly accessing, displaying and analyzing large multivariate multidisciplinary datasets. It is an integrated multi-application execution environment allowing the dynamic interconnection of multiple windows containing visual displays and/or controls through a data-linking paradigm. This paradigm, which results in a system much like a graphical spreadsheet, is not only a powerful method for organizing large amounts of data for analysis, but provides a highly intuitive, easy to learn user interface on top of the traditional graphical user interface.

  18. Cryolipolysis for Reduction of Arm Fat: Safety and Efficacy of a Prototype CoolCup Applicator With Flat Contour

    PubMed Central

    Humphrey, Shannon; Rivers, Jason K.

    2017-01-01

    BACKGROUND Cryolipolysis of the arms has been shown to be an effective but somewhat time-consuming process. OBJECTIVE The study evaluated safety and efficacy of a contoured cup cryolipolysis applicator for reduction of arm fat. The prototype was designed to maximize tissue contact with the cooling surface to improve comfort, while reducing treatment time by 25 minutes. MATERIALS AND METHODS Both arms were treated using a prototype device that delivered treatment in 35 minutes at −11°C. Photographic and ultrasound documentation was captured at baseline and 12 weeks post-treatment. Efficacy was assessed by photo review and measurement of fat reduction in ultrasound images. Immediately after 1, 4, and 12 weeks post-treatment, clinical assessments were performed to evaluate treatment areas and sensory alterations. RESULTS Thirty women were enrolled and completed treatments to both arms. Ultrasound measurements found mean fat layer reduction of 3.2 mm with an SD of 2.7 mm. Blinded independent photo review found 85.2% correct identification of baseline photographs by at least 2/3 of reviewers. There were no unanticipated adverse device effects. Four study subjects experienced numbness in the treatment area beyond the 12-week visit that subsequently resolved without intervention. CONCLUSION These data suggest that the CoolCup prototype applicator provides rapid, safe, and effective arm treatment. PMID:28595246

  19. Computational modeling and prototyping of a pediatric airway management instrument.

    PubMed

    Gonzalez-Cota, Alan; Kruger, Grant H; Raghavan, Padmaja; Reynolds, Paul I

    2010-09-01

    Anterior retraction of the tongue is used to enhance upper airway patency during pediatric fiberoptic intubation. This can be achieved by the use of Magill forceps as a tongue retractor, but lingual grip can become unsteady and traumatic. Our objective was to modify this instrument using computer-aided engineering for the purpose of stable tongue retraction. We analyzed the geometry and mechanical properties of standard Magill forceps with a combination of analytical and empirical methods. This design was captured using computer-aided design techniques to obtain a 3-dimensional model allowing further geometric refinements and mathematical testing for rapid prototyping. On the basis of our experimental findings we adjusted the design constraints to optimize the device for tongue retraction. Stereolithography prototyping was used to create a partially functional plastic model to further assess the functional and ergonomic effectiveness of the design changes. To reduce pressure on the tongue by regular Magill forceps, we incorporated (1) a larger diameter tip for better lingual tissue pressure profile, (2) a ratchet to stabilize such pressure, and (3) a soft molded tip with roughened surface to improve grip. Computer-aided engineering can be used to redesign and prototype a popular instrument used in airway management. On a computational model, our modified Magill forceps demonstrated stable retraction forces, while maintaining the original geometry and versatility. Its application in humans and utility during pediatric fiberoptic intubation are yet to be studied.

  20. Prototyping of Poly(dimethylsiloxane) Interfaces for Flow Gating, Reagent Mixing, and Tubing Connection in Capillary Electrophoresis

    PubMed Central

    Zhang, Qiyang; Gong, Maojun

    2014-01-01

    Integrated microfluidic systems coupled with electrophoretic separations have broad application in biological and chemical analysis. Interfaces for the connection of various functional parts play a major role in the performance of a system. Here we developed a rapid prototyping method to fabricate monolithic poly(dimethylsiloxane) (PDMS) Interfaces for flow-gated injection, online reagent mixing, and tube-to-tube connection in an integrated capillary electrophoresis (CE) system. The basic idea was based on the properties of PDMS: elasticity, transparency, and suitability for prototyping. The molds for these interfaces were prepared by using commercially available stainless steel wires and nylon lines or silica capillaries. A steel wire was inserted through the diameter of a nylon line and a cross format was obtained as the mold for PDMS casting of flow gates and 4-way mixers. These interfaces accommodated tubing connection through PDMS elasticity and provided easy visual trouble shooting. The flow gate used smaller channel diameters thus reducing flow rate by 25 fold for effective gating compared with mechanically machined counterparts. Both PDMS mixers and the tube-to-tube connectors could minimize the sample dead volume by using an appropriate capillary configuration. As a whole, the prototyped PDMS interfaces are reusable, inexpensive, convenient for connection, and robust when integrated with the CE detection system. Therefore, these interfaces could see potential applications in CE and CE-coupled systems. PMID:24331370

  1. Rapid prototyping of microchannels with surface patterns for fabrication of polymer fibers

    DOE PAGES

    Goodrich, Payton J.; Sharifi, Farrokh; Hashemi, Nastaran

    2015-08-14

    Microfluidic technology has provided innovative solutions to numerous problems, but the cost of designing and fabricating microfluidic channels is impeding its expansion. In this study, Shrinky-Dink thermoplastic sheets are used to create multilayered complex templates for microfluidic channels. We also used inkjet and laserjet printers to raise a predetermined microchannel geometry by depositing several layers of ink for each feature consecutively. We achieved feature heights over 100 μm, which were measured and compared with surface profilometry. Templates closest to the target geometry were then used to create microfluidic devices from soft-lithography with the molds as a template. These microfluidic devicesmore » were, futhermore used to fabricate polymer microfibers using the microfluidic focusing approach to demonstrate the potential that this process has for microfluidic applications. Finally, an economic analysis was conducted to compare the price of common microfluidic template manufacturing methods. We showed that multilayer microchannels can be created significantly quicker and cheaper than current methods for design prototyping and point-of-care applications in the biomedical area.« less

  2. Are anticoagulant independent mechanical valves within reach—fast prototype fabrication and in vitro testing of innovative bi-leaflet valve models

    PubMed Central

    Siegel, Rolland

    2015-01-01

    Background Exploration for causes of prosthetic valve thrombogenicity has frequently focused on forward or post-closure flow detail. In prior laboratory studies, we uncovered high amplitude flow velocities of short duration close to valve closure implying potential for substantial shear stress with subsequent initiation of blood coagulation pathways. This may be relevant to widely accepted clinical disparity between mechanical and tissue valves vis-à-vis thrombogenicity. With a series of prototype bi-leaflet mechanical valves, we attempt reduction of closure related velocities with the objective of identifying a prototype valve with thrombogenic potential similar to our tissue valve control. This iterative design approach may find application in preclinical assessment of valves for anticoagulation independence. Methods Tested valves included: prototype mechanical bi-leaflet BVs (n=56), controls (n=2) and patented early prototype mechanicals (n=2) from other investigators. Pulsatile and quasi-steady flow systems were used for testing. Projected dynamic valve area (PDVA) was measured using previously described novel technology. Flow velocity over the open and closing periods was determined by volumetric flow rate/PDVA. For the closed valve interval, use was made of data obtained from quasi-steady back pressure/flow tests. Performance was ranked by a proposed thrombogenicity potential index (TPI) relative to tissue and mechanical control valves. Results Optimization of the prototype valve designs lead to a 3-D printed model (BV3D). For the mitral/aortic site, BV3D has lower TPI (1.10/1.47) relative to the control mechanical valve (3.44/3.93) and similar to the control tissue valve (ideal TPI ≤1.0). Conclusions Using unique technology, rapid prototyping and thrombogenicity ranking, optimization of experimental valves for reduced thrombogenic potential was expedited and simplified. Innovative mechanical valve configurations were identified that merit consideration for further development which may bring the anti-coagulation independent mechanical valve within reach. PMID:26417581

  3. A new approach to configurable primary data collection.

    PubMed

    Stanek, J; Babkin, E; Zubov, M

    2016-09-01

    The formats, semantics and operational rules of data processing tasks in genomics (and health in general) are highly divergent and can rapidly change. In such an environment, the problem of consistent transformation and loading of heterogeneous input data to various target repositories becomes a critical success factor. The objective of the project was to design a new conceptual approach to configurable data transformation, de-identification, and submission of health and genomic data sets. Main motivation was to facilitate automated or human-driven data uploading, as well as consolidation of heterogeneous sources in large genomic or health projects. Modern methods of on-demand specialization of generic software components were applied. For specification of input-output data and required data collection activities, we propose a simple data model of flat tables as well as a domain-oriented graphical interface and portable representation of transformations in XML. Using such methods, the prototype of the Configurable Data Collection System (CDCS) was implemented in Java programming language with Swing graphical interfaces. The core logic of transformations was implemented as a library of reusable plugins. The solution is implemented as a software prototype for a configurable service-oriented system for semi-automatic data collection, transformation, sanitization and safe uploading to heterogeneous data repositories-CDCS. To address the dynamic nature of data schemas and data collection processes, the CDCS prototype facilitates interactive, user-driven configuration of the data collection process and extends basic functionality with a wide range of third-party plugins. Notably, our solution also allows for the reduction of manual data entry for data originally missing in the output data sets. First experiments and feedback from domain experts confirm the prototype is flexible, configurable and extensible; runs well on data owner's systems; and is not dependent on vendor's standards. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Additive and Photochemical Manufacturing of Copper

    PubMed Central

    Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-01-01

    In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics. PMID:28000733

  5. Additive and Photochemical Manufacturing of Copper

    NASA Astrophysics Data System (ADS)

    Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-12-01

    In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics.

  6. A Design Study Investigating Augmented Reality and Photograph Annotation in a Digitalized Grossing Workstation.

    PubMed

    Chow, Joyce A; Törnros, Martin E; Waltersson, Marie; Richard, Helen; Kusoffsky, Madeleine; Lundström, Claes F; Kurti, Arianit

    2017-01-01

    Within digital pathology, digitalization of the grossing procedure has been relatively underexplored in comparison to digitalization of pathology slides. Our investigation focuses on the interaction design of an augmented reality gross pathology workstation and refining the interface so that information and visualizations are easily recorded and displayed in a thoughtful view. The work in this project occurred in two phases: the first phase focused on implementation of an augmented reality grossing workstation prototype while the second phase focused on the implementation of an incremental prototype in parallel with a deeper design study. Our research institute focused on an experimental and "designerly" approach to create a digital gross pathology prototype as opposed to focusing on developing a system for immediate clinical deployment. Evaluation has not been limited to user tests and interviews, but rather key insights were uncovered through design methods such as " rapid ethnography " and " conversation with materials ". We developed an augmented reality enhanced digital grossing station prototype to assist pathology technicians in capturing data during examination. The prototype uses a magnetically tracked scalpel to annotate planned cuts and dimensions onto photographs taken of the work surface. This article focuses on the use of qualitative design methods to evaluate and refine the prototype. Our aims were to build on the strengths of the prototype's technology, improve the ergonomics of the digital/physical workstation by considering numerous alternative design directions, and to consider the effects of digitalization on personnel and the pathology diagnostics information flow from a wider perspective. A proposed interface design allows the pathology technician to place images in relation to its orientation, annotate directly on the image, and create linked information. The augmented reality magnetically tracked scalpel reduces tool switching though limitations in today's augmented reality technology fall short of creating an ideal immersive workflow by requiring the use of a monitor. While this technology catches up, we recommend focusing efforts on enabling the easy creation of layered, complex reports, linking, and viewing information across systems. Reflecting upon our results, we argue for digitalization to focus not only on how to record increasing amounts of data but also how these data can be accessed in a more thoughtful way that draws upon the expertise and creativity of pathology professionals using the systems.

  7. Two Photon Polymerization of Microneedles for Transdermal Drug Delivery

    PubMed Central

    Gittard, Shaun D.; Ovsianikov, Aleksandr; Chichkov, Boris N.; Doraiswamy, Anand; Narayan, Roger J.

    2010-01-01

    Importance of the field Microneedles are small-scale devices that are finding use for transdermal delivery of protein-based pharmacologic agents and nucleic acid-based pharmacologic agents; however, microneedles prepared using conventional microelectronics-based technologies have several shortcomings, which have limited translation of these devices into widespread clinical use. Areas covered in this review Two photon polymerization is a laser-based rapid prototyping technique that has been recently used for direct fabrication of hollow microneedles with a wide variety of geometries. In addition, an indirect rapid prototyping method that involves two photon polymerization and polydimethyl siloxane micromolding has been used for fabrication of solid microneedles with exceptional mechanical properties. What the reader will gain In this review, the use of two photon polymerization for fabricating in-plane and out-of-plane hollow microneedle arrays is described. The use of two photon polymerization-micromolding for fabrication of solid microneedles is also reviewed. In addition, fabrication of microneedles with antimicrobial properties is discussed; antimicrobial microneedles may reduce the risk of infection associated with formation of channels through the stratum corneum. Take home message It is anticipated that the use of two photon polymerization as well as two photon polymerization-micromolding for fabrication of microneedles and other microstructured drug delivery devices will increase over the coming years. PMID:20205601

  8. Application of Rapid Prototyping Technique and Intraoperative Navigation System for the Repair and Reconstruction of Orbital Wall Fractures

    PubMed Central

    Cha, Jong Hyun; Lee, Yong Hae; Ruy, Wan Chul; Roe, Young; Moon, Myung Ho

    2016-01-01

    Background Restoring the orbital cavity in large blow out fractures is a challenge for surgeons due to the anatomical complexity. This study evaluated the clinical outcomes and orbital volume after orbital wall fracture repair using a rapid prototyping (RP) technique and intraoperative navigation system. Methods This prospective study was conducted on the medical records and radiology records of 12 patients who had undergone a unilateral blow out fracture reconstruction using a RP technique and an intraoperative navigation system from November 2014 to March 2015. The surgical results were assessed by an ophthalmic examination and a comparison of the preoperative and postoperative orbital volume ratio (OVR) values. Results All patients had a successful treatment outcome without complications. Volumetric analysis revealed a significant decrease in the mean OVR from 1.0952±0.0662 (ranging from 0.9917 to 1.2509) preoperatively to 0.9942±0.0427 (ranging from 0.9394 to 1.0680) postoperatively. Conclusion The application of a RP technique for the repair of orbital wall fractures is a useful tool that may help improve the clinical outcomes by understanding the individual anatomy, determining the operability, and restoring the orbital cavity volume through optimal implant positioning along with an intraoperative navigation system. PMID:28913272

  9. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging

    PubMed Central

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J.; Ramella-Roman, Jessica C.; Mathews, Scott A.; Coburn, James C.; Sorg, Brian S.; Chen, Yu; Joshua Pfefer, T.

    2015-01-01

    Abstract. The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance. PMID:26662064

  10. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling

    PubMed Central

    Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla

    2017-01-01

    Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal. PMID:28211898

  11. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling

    NASA Astrophysics Data System (ADS)

    Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla

    2017-02-01

    Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal.

  12. New Directions in 3D Medical Modeling: 3D-Printing Anatomy and Functions in Neurosurgical Planning

    PubMed Central

    Árnadóttir, Íris; Gíslason, Magnús; Ólafsson, Ingvar

    2017-01-01

    This paper illustrates the feasibility and utility of combining cranial anatomy and brain function on the same 3D-printed model, as evidenced by a neurosurgical planning case study of a 29-year-old female patient with a low-grade frontal-lobe glioma. We herein report the rapid prototyping methodology utilized in conjunction with surgical navigation to prepare and plan a complex neurosurgery. The method introduced here combines CT and MRI images with DTI tractography, while using various image segmentation protocols to 3D model the skull base, tumor, and five eloquent fiber tracts. This 3D model is rapid-prototyped and coregistered with patient images and a reported surgical navigation system, establishing a clear link between the printed model and surgical navigation. This methodology highlights the potential for advanced neurosurgical preparation, which can begin before the patient enters the operation theatre. Moreover, the work presented here demonstrates the workflow developed at the National University Hospital of Iceland, Landspitali, focusing on the processes of anatomy segmentation, fiber tract extrapolation, MRI/CT registration, and 3D printing. Furthermore, we present a qualitative and quantitative assessment for fiber tract generation in a case study where these processes are applied in the preparation of brain tumor resection surgery. PMID:29065569

  13. Comparison of Conventional Methods and Laser-Assisted Rapid Prototyping for Manufacturing Fixed Dental Prostheses: An In Vitro Study.

    PubMed

    Pompa, Giorgio; Di Carlo, Stefano; De Angelis, Francesca; Cristalli, Maria Paola; Annibali, Susanna

    2015-01-01

    This study assessed whether there are differences in marginal fit between laser-fusion and conventional techniques to produce fixed dental prostheses (FDPs). A master steel die with 2 abutments was produced to receive a posterior 4-unit FDPs and single copings. These experimental models were divided into three groups (n = 20/group) manufactured: group 1, Ni-Cr alloy, with a lost-wax casting technique; group 2, Co-Cr alloy, with selective laser melting (SLM); and group 3, yttria-tetragonal zirconia polycrystal (Y-TZP), with a milling system. All specimens were cut along the longitudinal axis and their adaptation was measured at the marginal and shoulder areas on the right and left sides of each abutment. Measurements were made using a stereomicroscope (×60 magnification) and a scanning electron microscope (×800 magnification). The data were analyzed using one-way analysis of variance and the Bonferroni post hoc test, with a significance cutoff of 5%. Significant differences (P < 0.05) were observed between group 3 and the other groups. The marginal opening was smallest with Co-Cr alloy substructures, while the shoulder opening was smallest with Ni-Cr alloy substructures. Within the limitations of this study, the marginal fit of an FDP is better with rapid prototyping (RP) via SLM than conventional manufacturing systems.

  14. New Design for Rapid Prototyping of Digital Master Casts for Multiple Dental Implant Restorations

    PubMed Central

    Romero, Luis; Jiménez, Mariano; Espinosa, María del Mar; Domínguez, Manuel

    2015-01-01

    Aim This study proposes the replacement of all the physical devices used in the manufacturing of conventional prostheses through the use of digital tools, such as 3D scanners, CAD design software, 3D implants files, rapid prototyping machines or reverse engineering software, in order to develop laboratory work models from which to finish coatings for dental prostheses. Different types of dental prosthetic structures are used, which were adjusted by a non-rotatory threaded fixing system. Method From a digital process, the relative positions of dental implants, soft tissue and adjacent teeth of edentulous or partially edentulous patients has been captured, and a maser working model which accurately replicates data relating to the patients oral cavity has been through treatment of three-dimensional digital data. Results Compared with the conventional master cast, the results show a significant cost savings in attachments, as well as an increase in the quality of reproduction and accuracy of the master cast, with the consequent reduction in the number of patient consultation visits. The combination of software and hardware three-dimensional tools allows the optimization of the planning of dental implant-supported rehabilitations protocol, improving the predictability of clinical treatments and the production cost savings of master casts for restorations upon implants. PMID:26696528

  15. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging.

    PubMed

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J; Ramella-Roman, Jessica C; Mathews, Scott A; Coburn, James C; Sorg, Brian S; Chen, Yu; Pfefer, T Joshua

    2015-01-01

    The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance.

  16. NASA'S SERVIR Gulf of Mexico Project: The Gulf of Mexico Regional Collaborative (GoMRC)

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Irwin, Daniel; Presson, Joan; Estes, Maury; Estes, Sue; Judd, Kathleen

    2006-01-01

    The Gulf of Mexico Regional Collaborative (GoMRC) is a NASA-funded project that has as its goal to develop an integrated, working, prototype IT infrastructure for Earth science data, knowledge and models for the five Gulf U.S. states and Mexico, and to demonstrate its ability to help decision-makers better understand critical Gulf-scale issues. Within this preview, the mission of this project is to provide cross cutting solution network and rapid prototyping capability for the Gulf of Mexico region, in order to demonstrate substantial, collaborative, multi-agency research and transitional capabilities using unique NASA data sets and models to address regional problems. SERVIR Mesoamerica is seen as an excellent existing framework that can be used to integrate observational and GIs data bases, provide a sensor web interface, visualization and interactive analysis tools, archival functions, data dissemination and product generation within a Rapid Prototyping concept to assist decision-makers in better understanding Gulf-scale environmental issues.

  17. Low-temperature deposition manufacturing: A novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold.

    PubMed

    Liu, Wei; Wang, Daming; Huang, Jianghong; Wei, You; Xiong, Jianyi; Zhu, Weimin; Duan, Li; Chen, Jielin; Sun, Rong; Wang, Daping

    2017-01-01

    Developed in recent years, low-temperature deposition manufacturing (LDM) represents one of the most promising rapid prototyping technologies. It is not only based on rapid deposition manufacturing process but also combined with phase separation process. Besides the controlled macropore size, tissue-engineered scaffold fabricated by LDM has inter-connected micropores in the deposited lines. More importantly, it is a green manufacturing process that involves non-heating liquefying of materials. It has been employed to fabricate tissue-engineered scaffolds for bone, cartilage, blood vessel and nerve tissue regenerations. It is a promising technology in the fabrication of tissue-engineered scaffold similar to ideal scaffold and the design of complex organs. In the current paper, this novel LDM technology is introduced, and its control parameters, biomedical applications and challenges are included and discussed as well. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A novel method for designing and fabricating low-cost facepiece prototypes.

    PubMed

    Joe, Paula S; Shum, Phillip C; Brown, David W; Lungu, Claudiu T

    2014-01-01

    In 2010, the National Institute for Occupational Safety and Health (NIOSH) published new digital head form models based on their recently updated fit-test panel. The new panel, based on the 2000 census to better represent the modern work force, created two additional sizes: Short/Wide and Long/Narrow. While collecting the anthropometric data that comprised the panel, additional three-dimensional data were collected on a subset of the subjects. Within each sizing category, five individuals' three-dimensional data were used to create the new head form models. While NIOSH has recommended a switch to a five-size system for designing respirators, little has been done in assessing the potential benefits of this change. With commercially available elastomeric facepieces available in only three or four size systems, it was necessary to develop the facepieces to enable testing. This study aims to develop a method for designing and fabricating elastomeric facepieces tailored to the new head form designs for use in fit-testing studies. This novel method used computed tomography of a solid silicone facepiece and a number of computer-aided design programs (VolView, ParaView, MEGG3D, and RapidForm XOR) to develop a facepiece model to accommodate the Short/Wide head form. The generated model was given a physical form by means of three-dimensional printing using stereolithography (SLA). The printed model was then used to create a silicone mold from which elastomeric prototypes can be cast. The prototype facepieces were cast in two types of silicone for use in future fit-testing.

  19. Applying NISHIJIN historical textile technique for e-Textile.

    PubMed

    Kuroda, Tomohiro; Hirano, Kikuo; Sugimura, Kazushige; Adachi, Satoshi; Igarashi, Hidetsugu; Ueshima, Kazuo; Nakamura, Hideo; Nambu, Masayuki; Doi, Takahiro

    2013-01-01

    The e-Textile is the key technology for continuous ambient health monitoring to increase quality of life of patients with chronic diseases. The authors introduce techniques of Japanese historical textile, NISHIJIN, which illustrate almost any pattern from one continuous yarn within the machine weaving process, which is suitable for mixed flow production. Thus, NISHIJIN is suitable for e-Textile production, which requires rapid prototyping and mass production of very complicated patterns. The authors prototyped and evaluated a few vests to take twelve-lead electrocardiogram. The result tells that the prototypes obtains electrocardiogram, which is good enough for diagnosis.

  20. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm

    PubMed Central

    Sidky, Emil Y.; Jørgensen, Jakob H.; Pan, Xiaochuan

    2012-01-01

    The primal-dual optimization algorithm developed in Chambolle and Pock (CP), 2011 is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems for the purpose of designing iterative image reconstruction algorithms for CT. The primal-dual algorithm is briefly summarized in the article, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application modeling breast CT with low-intensity X-ray illumination is presented. PMID:22538474

  1. CCD Detects Two Images In Quick Succession

    NASA Technical Reports Server (NTRS)

    Janesick, James R.; Collins, Andy

    1996-01-01

    Prototype special-purpose charge-coupled device (CCD) designed to detect two 1,024 x 1,024-pixel images in rapid succession. Readout performed slowly to minimize noise. CCD operated in synchronism with pulsed laser, stroboscope, or other pulsed source of light to form pairs of images of rapidly moving objects.

  2. Development of 3D Advanced Rapid Prototyping Multipurpose Structures with Micro and Nano Materials

    DTIC Science & Technology

    2006-05-01

    dynamic parts, cinematic behavior, geometric evaluation, quality and reliability). The RP elements produced normally are moulds (for metal casting but...rapid tooling from Stereo Lithography”, Proceedings of the Seventh International ICRP Conference, California, USA, 9–12 March 1997, pp. 338–354 [5] P

  3. Excitonic AND Logic Gates on DNA Brick Nanobreadboards.

    PubMed

    Cannon, Brittany L; Kellis, Donald L; Davis, Paul H; Lee, Jeunghoon; Kuang, Wan; Hughes, William L; Graugnard, Elton; Yurke, Bernard; Knowlton, William B

    2015-03-18

    A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems.

  4. Excitonic AND Logic Gates on DNA Brick Nanobreadboards

    PubMed Central

    2015-01-01

    A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems. PMID:25839049

  5. Recognizing human actions by learning and matching shape-motion prototype trees.

    PubMed

    Jiang, Zhuolin; Lin, Zhe; Davis, Larry S

    2012-03-01

    A shape-motion prototype-based approach is introduced for action recognition. The approach represents an action as a sequence of prototypes for efficient and flexible action matching in long video sequences. During training, an action prototype tree is learned in a joint shape and motion space via hierarchical K-means clustering and each training sequence is represented as a labeled prototype sequence; then a look-up table of prototype-to-prototype distances is generated. During testing, based on a joint probability model of the actor location and action prototype, the actor is tracked while a frame-to-prototype correspondence is established by maximizing the joint probability, which is efficiently performed by searching the learned prototype tree; then actions are recognized using dynamic prototype sequence matching. Distance measures used for sequence matching are rapidly obtained by look-up table indexing, which is an order of magnitude faster than brute-force computation of frame-to-frame distances. Our approach enables robust action matching in challenging situations (such as moving cameras, dynamic backgrounds) and allows automatic alignment of action sequences. Experimental results demonstrate that our approach achieves recognition rates of 92.86 percent on a large gesture data set (with dynamic backgrounds), 100 percent on the Weizmann action data set, 95.77 percent on the KTH action data set, 88 percent on the UCF sports data set, and 87.27 percent on the CMU action data set.

  6. Liquid on Paper: Rapid Prototyping of Soft Functional Components for Paper Electronics.

    PubMed

    Han, Yu Long; Liu, Hao; Ouyang, Cheng; Lu, Tian Jian; Xu, Feng

    2015-07-01

    This paper describes a novel approach to fabricate paper-based electric circuits consisting of a paper matrix embedded with three-dimensional (3D) microchannels and liquid metal. Leveraging the high electric conductivity and good flowability of liquid metal, and metallophobic property of paper, it is possible to keep electric and mechanical functionality of the electric circuit even after a thousand cycles of deformation. Embedding liquid metal into paper matrix is a promising method to rapidly fabricate low-cost, disposable, and soft electric circuits for electronics. As a demonstration, we designed a programmable displacement transducer and applied it as variable resistors and pressure sensors. The unique metallophobic property, combined with softness, low cost and light weight, makes paper an attractive alternative to other materials in which liquid metal are currently embedded.

  7. Creation of an in vitro biomechanical model of the trachea using rapid prototyping.

    PubMed

    Walenga, Ross L; Longest, P Worth; Sundaresan, Gobalakrishnan

    2014-06-03

    Previous in vitro models of the airways are either rigid or, if flexible, have not matched in vivo compliance characteristics. Rapid prototyping provides a quickly evolving approach that can be used to directly produce in vitro airway models using either rigid or flexible polymers. The objective of this study was to use rapid prototyping to directly produce a flexible hollow model that matches the biomechanical compliance of the trachea. The airway model consisted of a previously developed characteristic mouth-throat region, the trachea, and a portion of the main bronchi. Compliance of the tracheal region was known from a previous in vivo imaging study that reported cross-sectional areas over a range of internal pressures. The compliance of the tracheal region was matched to the in vivo data for a specific flexible resin by iteratively selecting the thicknesses and other dimensions of tracheal wall components. Seven iterative models were produced and illustrated highly non-linear expansion consisting of initial rapid size increase, a transition region, and continued slower size increase as pressure was increased. Thickness of the esophageal interface membrane and initial trachea indention were identified as key parameters with the final model correctly predicting all phases of expansion within a value of 5% of the in vivo data. Applications of the current biomechanical model are related to endotracheal intubation and include determination of effective mucus suctioning and evaluation of cuff sealing with respect to gases and secretions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Method comparison and validation of a prototype device for measurement of ionized calcium concentrations cow-side against a point-of-care instrument and a benchtop blood-gas analyzer reference method.

    PubMed

    Neves, R C; Stokol, T; Bach, K D; McArt, J A A

    2018-02-01

    The objective of this study was to assess an optimized ion-selective electrode Ca-module prototype as a potential cow-side device for ionized Ca (iCa) measurements in bovine blood. A linearity experiment showed no deviation from linearity over a range of iCa concentrations compared with a commercial point-of-care (POC) device commonly used in the field (POC VS ; VetScan i-STAT, Abaxis North America, Union City, CA) and a laboratory gold standard benchtop blood-gas analyzer [reference analyzer (RA); ABL-800 FLEX, Radiometer Medical, Copenhagen, Denmark]. Coefficient of variation on 3 samples with high, within-range, and low iCa concentrations ranged from 1.0 to 3.9% for the prototype. A follow-up validation experiment was performed, in which our objectives were to (1) assess the performance of the prototype cow-side against the POC VS (farm gold-standard) using fresh non-anticoagulated whole-blood samples; (2) assess the performance of the prototype and the POC VS against the RA in a diagnostic laboratory using blood collected in a heparin-balanced syringe; and (3) assess the agreement of the prototype and POC VS on-farm (fresh non-anticoagulated whole blood) against the RA on heparin-balanced blood. Finally, sensitivity and specificity of the results obtained by the prototype and the POC VS cow-side compared with the results obtained by the laboratory RA using 3 different iCa cut points for classification of subclinical hypocalcemia were calculated. A total of 101 periparturient Holstein cows from 3 dairy farms in New York State were used for the second experiment. Ionized Ca results from the prototype cow-side were, on average, 0.06 mmol/L higher than the POC VS . With heparin-balanced samples under laboratory conditions, the prototype and POC VS measured an average 0.04 mmol/L higher and lower, respectively, compared with the RA. Results from the prototype and POC VS cow-side were 0.01 mmol/L higher and 0.05 mmol/L lower, respectively, compared with results from the laboratory RA on heparinized blood. Sensitivity and specificity for the prototype and the POC VS under farm conditions at 3 potential subclinical hypocalcemia cut points were 100 and ≥93.5%, respectively. This novel ion-selective electrode Ca-module could become a rapid low-cost tool for assessing iCa cow-side, while qualitatively allowing classification of subclinical hypocalcemia on-farm. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  9. Implementation and Validation of 3-D Ice Accretion Measurement Methodology

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy P.; Kreeger, Richard E.; Potapczuk, Mark; Utt, Lloyd

    2014-01-01

    A research program has been implemented to develop and validate the use of a commercial 3-D laser scanning system to record ice accretion geometry in the NASA Icing Research Tunnel. A main component of the program was the geometric assessment of the 3- D laser scanning system on a 2-D (straight wing) and a 3-D (swept wing) airfoil geometries. This exercise consisted of comparison of scanned ice accretion to castings of the same ice accretion. The scan data were also used to create rapid prototype artificial ice shapes that were scanned and compared to the original ice accretion. The results from geometric comparisons on the straight wing showed that the ice shape models generated through the scan/rapid prototype process compared reasonably well with the cast shapes. Similar results were obtained with the geometric comparisons on the swept wing. It was difficult to precisely compare the scans of the cast shapes to the original ice accretion scans because the cast shapes appear to have shrunk during the mold/casting process by as much as 0.10-inch. However the comparison of the local ice-shape features were possible and produced better results. The rapid prototype manufacturing process was shown to reproduce the original ice accretion scan normally within 0.01-inch.

  10. Rapid prototyping of an EEG-based brain-computer interface (BCI).

    PubMed

    Guger, C; Schlögl, A; Neuper, C; Walterspacher, D; Strein, T; Pfurtscheller, G

    2001-03-01

    The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional digital signal processor (DSP) board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive (AAR) model and linear discriminant analysis (LDA).

  11. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology.

    PubMed

    Yu, D; Li, Q; Mu, X; Chang, T; Xiong, Z

    2008-10-01

    Active artificial bone composed of poly lactide-co-glycolide (PLGA)/ tricalcium phosphate (TCP) was prefabricated using low-temperature rapid-prototyping technology so that the process of osteogenesis could be observed in it. PLGA and TCP were the primary materials, they were molded at low temperature, then recombinant human bone morphogenetic protein-2 (rhBMP-2) was added to form an active artificial bone. Goats with standard cranial defects were randomly divided into experimental (implants with rhBMP-2 added) and control (implants without rhBMP-2) groups, and osteogenesis was observed and evaluated by imaging and biomechanical and histological examinations. The PLGA-TCP artificial bone scaffold (90% porosity) had large and small pores of approximately 360microm and 3-5microm diameter. Preliminary and complete repair of the cranial defect in the goats occurred 12 and 24 weeks after surgery, respectively. The three-point bending strength of the repaired defects attained that of the normal cranium. In conclusion, low-temperature rapid-prototyping technology can preserve the biological activity of this scaffold material. The scaffold has a good three-dimensional structure and it becomes an active artificial bone after loading with rhBMP-2 with a modest degradation rate and excellent osteogenesis in the goat.

  12. Creation of a 3D printed temporal bone model from clinical CT data.

    PubMed

    Cohen, Joss; Reyes, Samuel A

    2015-01-01

    Generate and describe the process of creating a 3D printed, rapid prototype temporal bone model from clinical quality CT images. We describe a technique to create an accurate, alterable, and reproducible rapid prototype temporal bone model using freely available software to segment clinical CT data and generate three different 3D models composed of ABS plastic. Each model was evaluated based on the appearance and size of anatomical structures and response to surgical drilling. Mastoid air cells had retained scaffolding material in the initial versions. This required modifying the model to allow drainage of the scaffolding material. External auditory canal dimensions were similar to those measured from the clinical data. Malleus, incus, oval window, round window, promontory, horizontal semicircular canal, and mastoid segment of the facial nerve canal were identified in all models. The stapes was only partially formed in two models and absent in the third. Qualitative feel of the ABS plastic was softer than bone. The pate produced by drilling was similar to bone dust when appropriate irrigation was used. We present a rapid prototype temporal bone model made based on clinical CT data using 3D printing technology. The model can be made quickly and inexpensively enough to have potential applications for educational training. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Rapid Prototyping of Nanofluidic Slits in a Silicone Bilayer

    PubMed Central

    Kole, Thomas P.; Liao, Kuo-Tang; Schiffels, Daniel; Ilic, B. Robert; Strychalski, Elizabeth A.; Kralj, Jason G.; Liddle, J. Alexander; Dritschilo, Anatoly; Stavis, Samuel M.

    2015-01-01

    This article reports a process for rapidly prototyping nanofluidic devices, particularly those comprising slits with microscale widths and nanoscale depths, in silicone. This process consists of designing a nanofluidic device, fabricating a photomask, fabricating a device mold in epoxy photoresist, molding a device in silicone, cutting and punching a molded silicone device, bonding a silicone device to a glass substrate, and filling the device with aqueous solution. By using a bilayer of hard and soft silicone, we have formed and filled nanofluidic slits with depths of less than 400 nm and aspect ratios of width to depth exceeding 250 without collapse of the slits. An important attribute of this article is that the description of this rapid prototyping process is very comprehensive, presenting context and details which are highly relevant to the rational implementation and reliable repetition of the process. Moreover, this process makes use of equipment commonly found in nanofabrication facilities and research laboratories, facilitating the broad adaptation and application of the process. Therefore, while this article specifically informs users of the Center for Nanoscale Science and Technology (CNST) at the National Institute of Standards and Technology (NIST), we anticipate that this information will be generally useful for the nanofabrication and nanofluidics research communities at large, and particularly useful for neophyte nanofabricators and nanofluidicists. PMID:26958449

  14. Towards the development of a spring-based continuum robot for neurosurgery

    NASA Astrophysics Data System (ADS)

    Kim, Yeongjin; Cheng, Shing Shin; Desai, Jaydev P.

    2015-03-01

    Brain tumor is usually life threatening due to the uncontrolled growth of abnormal cells native to the brain or the spread of tumor cells from outside the central nervous system to the brain. The risks involved in carrying out surgery within such a complex organ can cause severe anxiety in cancer patients. However, neurosurgery, which remains one of the more effective ways of treating brain tumors focused in a confined volume, can have a tremendously increased success rate if the appropriate imaging modality is used for complete tumor removal. Magnetic resonance imaging (MRI) provides excellent soft-tissue contrast and is the imaging modality of choice for brain tumor imaging. MRI combined with continuum soft robotics has immense potential to be the revolutionary treatment technique in the field of brain cancer. It eliminates the concern of hand tremor and guarantees a more precise procedure. One of the prototypes of Minimally Invasive Neurosurgical Intracranial Robot (MINIR-II), which can be classified as a continuum soft robot, consists of a snake-like body made of three segments of rapid prototyped plastic springs. It provides improved dexterity with higher degrees of freedom and independent joint control. It is MRI-compatible, allowing surgeons to track and determine the real-time location of the robot relative to the brain tumor target. The robot was manufactured in a single piece using rapid prototyping technology at a low cost, allowing it to disposable after each use. MINIR-II has two DOFs at each segment with both joints controlled by two pairs of MRI-compatible SMA spring actuators. Preliminary motion tests have been carried out using vision-tracking method and the robot was able to move to different positions based on user commands.

  15. A multi-level rapid prototyping drill guide template reduces the perforation risk of pedicle screw placement in the lumbar and sacral spine.

    PubMed

    Merc, Matjaz; Drstvensek, Igor; Vogrin, Matjaz; Brajlih, Tomaz; Recnik, Gregor

    2013-07-01

    The method of free-hand pedicle screw placement is generally safe although it carries potential risks. For this reason, several highly accurate computer-assisted systems were developed and are currently on the market. However, these devices have certain disadvantages. We have developed a method of pedicle screw placement in the lumbar and sacral region using a multi-level drill guide template, created with the rapid prototyping technology and have validated it in a clinical study. The aim of the study was to manufacture and evaluate the accuracy of a multi-level drill guide template for lumbar and first sacral pedicle screw placement and to compare it with the free-hand technique under fluoroscopy supervision. In 2011 and 2012, a randomized clinical trial was performed on 20 patients. 54 screws were implanted in the trial group using templates and 54 in the control group using the fluoroscopy-supervised free-hand technique. Furthermore, applicability for the first sacral level was tested. Preoperative CT-scans were taken and templates were designed using the selective laser sintering method. Postoperative evaluation and statistical analysis of pedicle violation, displacement, screw length and deviation were performed for both groups. The incidence of cortex perforation was significantly reduced in the template group; likewise, the deviation and displacement level of screws in the sagittal plane. In both groups there was no significantly important difference in deviation and displacement level in the transversal plane as not in pedicle screw length. The results for the first sacral level resembled the main investigated group. The method significantly lowers the incidence of cortex perforation and is therefore potentially applicable in clinical practice, especially in some selected cases. The applied method, however, carries a potential for errors during manufacturing and practical usage and therefore still requires further improvements.

  16. A swarm-trained k-nearest prototypes adaptive classifier with automatic feature selection for interval data.

    PubMed

    Silva Filho, Telmo M; Souza, Renata M C R; Prudêncio, Ricardo B C

    2016-08-01

    Some complex data types are capable of modeling data variability and imprecision. These data types are studied in the symbolic data analysis field. One such data type is interval data, which represents ranges of values and is more versatile than classic point data for many domains. This paper proposes a new prototype-based classifier for interval data, trained by a swarm optimization method. Our work has two main contributions: a swarm method which is capable of performing both automatic selection of features and pruning of unused prototypes and a generalized weighted squared Euclidean distance for interval data. By discarding unnecessary features and prototypes, the proposed algorithm deals with typical limitations of prototype-based methods, such as the problem of prototype initialization. The proposed distance is useful for learning classes in interval datasets with different shapes, sizes and structures. When compared to other prototype-based methods, the proposed method achieves lower error rates in both synthetic and real interval datasets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Towards point of care testing for C. difficile infection by volatile profiling, using the combination of a short multi-capillary gas chromatography column with metal oxide sensor detection

    NASA Astrophysics Data System (ADS)

    McGuire, N. D.; Ewen, R. J.; de Lacy Costello, B.; Garner, C. E.; Probert, C. S. J.; Vaughan, K.; Ratcliffe, N. M.

    2014-06-01

    Rapid volatile profiling of stool sample headspace was achieved using a combination of short multi-capillary chromatography column (SMCC), highly sensitive heated metal oxide semiconductor sensor and artificial neural network software. For direct analysis of biological samples this prototype offers alternatives to conventional gas chromatography (GC) detectors and electronic nose technology. The performance was compared to an identical instrument incorporating a long single capillary column (LSCC). The ability of the prototypes to separate complex mixtures was assessed using gas standards and homogenized in house ‘standard’ stool samples, with both capable of detecting more than 24 peaks per sample. The elution time was considerably faster with the SMCC resulting in a run time of 10 min compared to 30 min for the LSCC. The diagnostic potential of the prototypes was assessed using 50 C. difficile positive and 50 negative samples. The prototypes demonstrated similar capability of discriminating between positive and negative samples with sensitivity and specificity of 85% and 80% respectively. C. difficile is an important cause of hospital acquired diarrhoea, with significant morbidity and mortality around the world. A device capable of rapidly diagnosing the disease at the point of care would reduce cases, deaths and financial burden.

  18. Towards point of care testing for C. difficile infection by volatile profiling, using the combination of a short multi-capillary gas chromatography column with metal oxide sensor detection

    PubMed Central

    McGuire, N D; Ewen, R J; de Lacy Costello, B; Garner, C E; Probert, C S J; Vaughan, K.; Ratcliffe, N M

    2016-01-01

    Rapid volatile profiling of stool sample headspace was achieved using a combination of short multi-capillary chromatography column (SMCC), highly sensitive heated metal oxide semiconductor (MOS) sensor and artificial neural network (ANN) software. For direct analysis of biological samples this prototype offers alternatives to conventional GC detectors and electronic nose technology. The performance was compared to an identical instrument incorporating a long single capillary column (LSCC). The ability of the prototypes to separate complex mixtures was assessed using gas standards and homogenised in house ‘standard’ stool samples, with both capable of detecting more than 24 peaks per sample. The elution time was considerably faster with the SMCC resulting in a run time of 10 minutes compared to 30 minutes for the LSCC. The diagnostic potential of the prototypes was assessed using 50 C. difficile positive and 50 negative samples. The prototypes demonstrated similar capability of discriminating between positive and negative samples with sensitivity and specificity of 85% and 80% respectively. C. difficile is an important cause of hospital acquired diarrhoea, with significant morbidity and mortality around the world. A device capable of rapidly diagnosing the disease at the point of care would reduce cases, deaths and financial burden. PMID:27212803

  19. Augmented assessment as a means to augmented reality.

    PubMed

    Bergeron, Bryan

    2006-01-01

    Rigorous scientific assessment of educational technologies typically lags behind the availability of the technologies by years because of the lack of validated instruments and benchmarks. Even when the appropriate assessment instruments are available, they may not be applied because of time and monetary constraints. Work in augmented reality, instrumented mannequins, serious gaming, and similar promising educational technologies that haven't undergone timely, rigorous evaluation, highlights the need for assessment methodologies that address the limitations of traditional approaches. The most promising augmented assessment solutions incorporate elements of rapid prototyping used in the software industry, simulation-based assessment techniques modeled after methods used in bioinformatics, and object-oriented analysis methods borrowed from object oriented programming.

  20. Microplasma fabrication: from semiconductor technology for 2D-chips and microfluidic channels to rapid prototyping and 3D-printing of microplasma devices

    NASA Astrophysics Data System (ADS)

    Shatford, R.; Karanassios, Vassili

    2014-05-01

    Microplasmas are receiving attention in recent conferences and current scientific literature. In our laboratory, microplasmas-on-chips proved to be particularly attractive. The 2D- and 3D-chips we developed became hybrid because they were fitted with a quartz plate (quartz was used due to its transparency to UV). Fabrication of 2D- and 3D-chips for microplasma research is described. The fabrication methods described ranged from semiconductor fabrication technology, to Computer Numerical Control (CNC) machining, to 3D-printing. These methods may prove to be useful for those contemplating in entering microplasma research but have no access to expensive semiconductor fabrication equipment.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; Sadlier, Ronald J

    Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to prototype proposed capabilities. We apply the paradigm of software-defined communica- tion for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communication terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the super-dense coding protocol as a test case, we describe implementations of both the transmitter and receiver, and we present results from numerical simulationsmore » of the behavior. We find that while the theoretical benefits of super dense coding are maintained, there is a classical overhead associated with the full implementation.« less

  2. An In-Depth Review on Direct Additive Manufacturing of Metals

    NASA Astrophysics Data System (ADS)

    Azam, Farooq I.; Rani, Ahmad Majdi Abdul; Altaf, Khurram; Rao, T. V. V. L. N.; Aimi Zaharin, Haizum

    2018-03-01

    Additive manufacturing (AM), also known as 3D Printing, is a revolutionary manufacturing technique which has been developing rapidly in the last 30 years. The evolution of this precision manufacturing process from rapid prototyping to ready-to-use parts has significantly alleviated manufacturing constraints and design freedom has been outstandingly widened. AM is a non-conventional manufacturing technique which utilizes a 3D CAD model data to build parts by adding one material layer at a time, rather than removing it and fulfills the demand for manufacturing parts with complex geometric shapes, great dimensional accuracy, and easy to assemble parts. Additive manufacturing of metals has become the area of extensive research, progressing towards the production of final products and replacing conventional manufacturing methods. This paper provides an insight to the available metal additive manufacturing technologies that can be used to produce end user products without using conventional manufacturing methods. The paper also includes the comparison of mechanical and physical properties of parts produced by AM with the parts manufactured using conventional processes.

  3. KISS for STRAP: user extensions for a protein alignment editor.

    PubMed

    Gille, Christoph; Lorenzen, Stephan; Michalsky, Elke; Frömmel, Cornelius

    2003-12-12

    The Structural Alignment Program STRAP is a comfortable comprehensive editor and analyzing tool for protein alignments. A wide range of functions related to protein sequences and protein structures are accessible with an intuitive graphical interface. Recent features include mapping of mutations and polymorphisms onto structures and production of high quality figures for publication. Here we address the general problem of multi-purpose program packages to keep up with the rapid development of bioinformatical methods and the demand for specific program functions. STRAP was remade implementing a novel design which aims at Keeping Interfaces in STRAP Simple (KISS). KISS renders STRAP extendable to bio-scientists as well as to bio-informaticians. Scientists with basic computer skills are capable of implementing statistical methods or embedding existing bioinformatical tools in STRAP themselves. For bio-informaticians STRAP may serve as an environment for rapid prototyping and testing of complex algorithms such as automatic alignment algorithms or phylogenetic methods. Further, STRAP can be applied as an interactive web applet to present data related to a particular protein family and as a teaching tool. JAVA-1.4 or higher. http://www.charite.de/bioinf/strap/

  4. A Roadmap for Using Agile Development in a Traditional Environment

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara; Starbird, Thomas; Grenander, Sven

    2006-01-01

    One of the newer classes of software engineering techniques is called 'Agile Development'. In Agile Development software engineers take small implementation steps and, in some cases, they program in pairs. In addition, they develop automatic tests prior to implementing their small functional piece. Agile Development focuses on rapid turnaround, incremental planning, customer involvement and continuous integration. Agile Development is not the traditional waterfall method or even a rapid prototyping method (although this methodology is closer to Agile Development). At the Jet Propulsion Laboratory (JPL) a few groups have begun Agile Development software implementations. The difficulty with this approach becomes apparent when Agile Development is used in an organization that has specific criteria and requirements handed down for how software development is to be performed. The work at the JPL is performed for the National Aeronautics and Space Agency (NASA). Both organizations have specific requirements, rules and processes for developing software. This paper will discuss some of the initial uses of the Agile Development methodology, the spread of this method and the current status of the successful incorporation into the current JPL development policies and processes.

  5. A Roadmap for Using Agile Development in a Traditional Environment

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; Starbird, Thomas; Grenander, Sven

    2006-01-01

    One of the newer classes of software engineering techniques is called 'Agile Development'. In Agile Development software engineers take small implementation steps and, in some cases they program in pairs. In addition, they develop automatic tests prior to implementing their small functional piece. Agile Development focuses on rapid turnaround, incremental planning, customer involvement and continuous integration. Agile Development is not the traditional waterfall method or even a rapid prototyping method (although this methodology is closer to Agile Development). At Jet Propulsion Laboratory (JPL) a few groups have begun Agile Development software implementations. The difficulty with this approach becomes apparent when Agile Development is used in an organization that has specific criteria and requirements handed down for how software development is to be performed. The work at the JPL is performed for the National Aeronautics and Space Agency (NASA). Both organizations have specific requirements, rules and procedure for developing software. This paper will discuss the some of the initial uses of the Agile Development methodology, the spread of this method and the current status of the successful incorporation into the current JPL development policies.

  6. Advanced Propulsion and TPS for a Rapidly-Prototyped CEV

    NASA Astrophysics Data System (ADS)

    Hudson, Gary C.

    2005-02-01

    Transformational Space Corporation (t/Space) is developing for NASA the initial designs for the Crew Exploration Vehicle family, focusing on a Launch CEV for transporting NASA and civilian passengers from Earth to orbit. The t/Space methodology is rapid prototyping of major vehicle systems, and deriving detailed specifications from the resulting hardware, avoiding "written-in-advance" specs that can force the costly invention of new capabilities simply to meet such specs. A key technology shared by the CEV family is Vapor Pressurized propulsion (Vapak) for simplicity and reliability, which provides electrical power, life support gas and a heat sink in addition to propulsion. The CEV family also features active transpiration cooling of re-entry surfaces (for reusability) backed up by passive thermal protection.

  7. A Case Series of Rapid Prototyping and Intraoperative Imaging in Orbital Reconstruction

    PubMed Central

    Lim, Christopher G.T.; Campbell, Duncan I.; Cook, Nicholas; Erasmus, Jason

    2014-01-01

    In Christchurch Hospital, rapid prototyping (RP) and intraoperative imaging are the standard of care in orbital trauma and has been used since February 2013. RP allows the fabrication of an anatomical model to visualize complex anatomical structures which is dimensionally accurate and cost effective. This assists diagnosis, planning, and preoperative implant adaptation for orbital reconstruction. Intraoperative imaging involves a computed tomography scan during surgery to evaluate surgical implants and restored anatomy and allows the clinician to correct errors in implant positioning that may occur during the same procedure. This article aims to demonstrate the potential clinical and cost saving benefits when both these technologies are used in orbital reconstruction which minimize the need for revision surgery. PMID:26000080

  8. A case series of rapid prototyping and intraoperative imaging in orbital reconstruction.

    PubMed

    Lim, Christopher G T; Campbell, Duncan I; Cook, Nicholas; Erasmus, Jason

    2015-06-01

    In Christchurch Hospital, rapid prototyping (RP) and intraoperative imaging are the standard of care in orbital trauma and has been used since February 2013. RP allows the fabrication of an anatomical model to visualize complex anatomical structures which is dimensionally accurate and cost effective. This assists diagnosis, planning, and preoperative implant adaptation for orbital reconstruction. Intraoperative imaging involves a computed tomography scan during surgery to evaluate surgical implants and restored anatomy and allows the clinician to correct errors in implant positioning that may occur during the same procedure. This article aims to demonstrate the potential clinical and cost saving benefits when both these technologies are used in orbital reconstruction which minimize the need for revision surgery.

  9. Rapid prototyping-assisted maxillofacial reconstruction.

    PubMed

    Peng, Qian; Tang, Zhangui; Liu, Ousheng; Peng, Zhiwei

    2015-05-01

    Rapid prototyping (RP) technologies have found many uses in dentistry, and especially oral and maxillofacial surgery, due to its ability to promote product development while at the same time reducing cost and depositing a part of any degree of complexity theoretically. This paper provides an overview of RP technologies for maxillofacial reconstruction covering both fundamentals and applications of the technologies. Key fundamentals of RP technologies involving the history, characteristics, and principles are reviewed. A number of RP applications to the main fields of oral and maxillofacial surgery, including restoration of maxillofacial deformities and defects, reduction of functional bone tissues, correction of dento-maxillofacial deformities, and fabrication of maxillofacial prostheses, are discussed. The most remarkable challenges for development of RP-assisted maxillofacial surgery and promising solutions are also elaborated.

  10. Detection of Pneumonia Associated Pathogens Using a Prototype Multiplexed Pneumonia Test in Hospitalized Patients with Severe Pneumonia

    PubMed Central

    Schulte, Berit; Eickmeyer, Holm; Heininger, Alexandra; Juretzek, Stephanie; Karrasch, Matthias; Denis, Olivier; Roisin, Sandrine; Pletz, Mathias W.; Klein, Matthias; Barth, Sandra; Lüdke, Gerd H.; Thews, Anne; Torres, Antoni; Cillóniz, Catia; Straube, Eberhard; Autenrieth, Ingo B.; Keller, Peter M.

    2014-01-01

    Severe pneumonia remains an important cause of morbidity and mortality. Polymerase chain reaction (PCR) has been shown to be more sensitive than current standard microbiological methods – particularly in patients with prior antibiotic treatment – and therefore, may improve the accuracy of microbiological diagnosis for hospitalized patients with pneumonia. Conventional detection techniques and multiplex PCR for 14 typical bacterial pneumonia-associated pathogens were performed on respiratory samples collected from adult hospitalized patients enrolled in a prospective multi-center study. Patients were enrolled from March until September 2012. A total of 739 fresh, native samples were eligible for analysis, of which 75 were sputa, 421 aspirates, and 234 bronchial lavages. 276 pathogens were detected by microbiology for which a valid PCR result was generated (positive or negative detection result by Curetis prototype system). Among these, 120 were identified by the prototype assay, 50 pathogens were not detected. Overall performance of the prototype for pathogen identification was 70.6% sensitivity (95% confidence interval (CI) lower bound: 63.3%, upper bound: 76.9%) and 95.2% specificity (95% CI lower bound: 94.6%, upper bound: 95.7%). Based on the study results, device cut-off settings were adjusted for future series production. The overall performance with the settings of the CE series production devices was 78.7% sensitivity (95% CI lower bound: 72.1%) and 96.6% specificity (95% CI lower bound: 96.1%). Time to result was 5.2 hours (median) for the prototype test and 43.5 h for standard-of-care. The Pneumonia Application provides a rapid and moderately sensitive assay for the detection of pneumonia-causing pathogens with minimal hands-on time. Trial Registration Deutsches Register Klinischer Studien (DRKS) DRKS00005684 PMID:25397673

  11. Enabling Real-time Water Decision Support Services Using Model as a Service

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Minsker, B. S.; Lee, J. S.; Salas, F. R.; Maidment, D. R.; David, C. H.

    2014-12-01

    Through application of computational methods and an integrated information system, data and river modeling services can help researchers and decision makers more rapidly understand river conditions under alternative scenarios. To enable this capability, workflows (i.e., analysis and model steps) are created and published as Web services delivered through an internet browser, including model inputs, a published workflow service, and visualized outputs. The RAPID model, which is a river routing model developed at University of Texas Austin for parallel computation of river discharge, has been implemented as a workflow and published as a Web application. This allows non-technical users to remotely execute the model and visualize results as a service through a simple Web interface. The model service and Web application has been prototyped in the San Antonio and Guadalupe River Basin in Texas, with input from university and agency partners. In the future, optimization model workflows will be developed to link with the RAPID model workflow to provide real-time water allocation decision support services.

  12. Software Testing for Evolutionary Iterative Rapid Prototyping

    DTIC Science & Technology

    1990-12-01

    kept later hours than I did. Amidst the hustle and bustle, their prayers and help around the house were a great ast.. Finally, if anything shows the...possible meanings. A basic dictionary definition describes prototyping as "an original type , form, or instance that serves as a modfe] on which later...on program size. Asset instruments 49 the subject procedure and produces a graph of the structure for the type of data flow testing conducted. It

  13. Development of a decision aid for cardiopulmonary resuscitation and invasive mechanical ventilation in the intensive care unit employing user-centered design and a wiki platform for rapid prototyping

    PubMed Central

    Witteman, Holly O.; LeBlanc, Annie; Kryworuchko, Jennifer; Heyland, Daren Keith; Ebell, Mark H.; Blair, Louisa; Tapp, Diane; Dupuis, Audrey; Lavoie-Bérard, Carole-Anne; McGinn, Carrie Anna; Légaré, France; Archambault, Patrick Michel

    2018-01-01

    Background Upon admission to an intensive care unit (ICU), all patients should discuss their goals of care and express their wishes concerning life-sustaining interventions (e.g., cardiopulmonary resuscitation (CPR)). Without such discussions, interventions that prolong life at the cost of decreasing its quality may be used without appropriate guidance from patients. Objectives To adapt an existing decision aid about CPR to create a wiki-based decision aid individually adapted to each patient’s risk factors; and to document the use of a wiki platform for this purpose. Methods We conducted three weeks of ethnographic observation in our ICU to observe intensivists and patients discussing goals of care and to identify their needs regarding decision making. We interviewed intensivists individually. Then we conducted three rounds of rapid prototyping involving 15 patients and 11 health professionals. We recorded and analyzed all discussions, interviews and comments, and collected sociodemographic data. Using a wiki, a website that allows multiple users to contribute or edit content, we adapted the decision aid accordingly and added the Good Outcome Following Attempted Resuscitation (GO-FAR) prediction rule calculator. Results We added discussion of invasive mechanical ventilation. The final decision aid comprises values clarification, risks and benefits of CPR and invasive mechanical ventilation, statistics about CPR, and a synthesis section. We added the GO-FAR prediction calculator as an online adjunct to the decision aid. Although three rounds of rapid prototyping simplified the information in the decision aid, 60% (n = 3/5) of the patients involved in the last cycle still did not understand its purpose. Conclusions Wikis and user-centered design can be used to adapt decision aids to users’ needs and local contexts. Our wiki platform allows other centers to adapt our tools, reducing duplication and accelerating scale-up. Physicians need training in shared decision making skills about goals of care and in using the decision aid. A video version of the decision aid could clarify its purpose. PMID:29447297

  14. Gigaflop (billion floating point operations per second) performance for computational electromagnetics

    NASA Technical Reports Server (NTRS)

    Shankar, V.; Rowell, C.; Hall, W. F.; Mohammadian, A. H.; Schuh, M.; Taylor, K.

    1992-01-01

    Accurate and rapid evaluation of radar signature for alternative aircraft/store configurations would be of substantial benefit in the evolution of integrated designs that meet radar cross-section (RCS) requirements across the threat spectrum. Finite-volume time domain methods offer the possibility of modeling the whole aircraft, including penetrable regions and stores, at longer wavelengths on today's gigaflop supercomputers and at typical airborne radar wavelengths on the teraflop computers of tomorrow. A structured-grid finite-volume time domain computational fluid dynamics (CFD)-based RCS code has been developed at the Rockwell Science Center, and this code incorporates modeling techniques for general radar absorbing materials and structures. Using this work as a base, the goal of the CFD-based CEM effort is to define, implement and evaluate various code development issues suitable for rapid prototype signature prediction.

  15. Liquid on Paper: Rapid Prototyping of Soft Functional Components for Paper Electronics

    PubMed Central

    Long Han, Yu; Liu, Hao; Ouyang, Cheng; Jian Lu, Tian; Xu, Feng

    2015-01-01

    This paper describes a novel approach to fabricate paper-based electric circuits consisting of a paper matrix embedded with three-dimensional (3D) microchannels and liquid metal. Leveraging the high electric conductivity and good flowability of liquid metal, and metallophobic property of paper, it is possible to keep electric and mechanical functionality of the electric circuit even after a thousand cycles of deformation. Embedding liquid metal into paper matrix is a promising method to rapidly fabricate low-cost, disposable, and soft electric circuits for electronics. As a demonstration, we designed a programmable displacement transducer and applied it as variable resistors and pressure sensors. The unique metallophobic property, combined with softness, low cost and light weight, makes paper an attractive alternative to other materials in which liquid metal are currently embedded. PMID:26129723

  16. A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery.

    PubMed

    Karim, Ashty S; Jewett, Michael C

    2016-07-01

    Speeding up design-build-test (DBT) cycles is a fundamental challenge facing biochemical engineering. To address this challenge, we report a new cell-free protein synthesis driven metabolic engineering (CFPS-ME) framework for rapid biosynthetic pathway prototyping. In our framework, cell-free cocktails for synthesizing target small molecules are assembled in a mix-and-match fashion from crude cell lysates either containing selectively enriched pathway enzymes from heterologous overexpression or directly producing pathway enzymes in lysates by CFPS. As a model, we apply our approach to n-butanol biosynthesis showing that Escherichia coli lysates support a highly active 17-step CoA-dependent n-butanol pathway in vitro. The elevated degree of flexibility in the cell-free environment allows us to manipulate physiochemical conditions, access enzymatic nodes, discover new enzymes, and prototype enzyme sets with linear DNA templates to study pathway performance. We anticipate that CFPS-ME will facilitate efforts to define, manipulate, and understand metabolic pathways for accelerated DBT cycles without the need to reengineer organisms. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Neural networks for simultaneous classification and parameter estimation in musical instrument control

    NASA Astrophysics Data System (ADS)

    Lee, Michael; Freed, Adrian; Wessel, David

    1992-08-01

    In this report we present our tools for prototyping adaptive user interfaces in the context of real-time musical instrument control. Characteristic of most human communication is the simultaneous use of classified events and estimated parameters. We have integrated a neural network object into the MAX language to explore adaptive user interfaces that considers these facets of human communication. By placing the neural processing in the context of a flexible real-time musical programming environment, we can rapidly prototype experiments on applications of adaptive interfaces and learning systems to musical problems. We have trained networks to recognize gestures from a Mathews radio baton, Nintendo Power GloveTM, and MIDI keyboard gestural input devices. In one experiment, a network successfully extracted classification and attribute data from gestural contours transduced by a continuous space controller, suggesting their application in the interpretation of conducting gestures and musical instrument control. We discuss network architectures, low-level features extracted for the networks to operate on, training methods, and musical applications of adaptive techniques.

  18. Novel method of fabricating individual trays for maxillectomy patients by computer-aided design and rapid prototyping.

    PubMed

    Huang, Zhi; Wang, Xin-zhi; Hou, Yue-Zhong

    2015-02-01

    Making impressions for maxillectomy patients is an essential but difficult task. This study developed a novel method to fabricate individual trays by computer-aided design (CAD) and rapid prototyping (RP) to simplify the process and enhance patient safety. Five unilateral maxillectomy patients were recruited for this study. For each patient, a computed tomography (CT) scan was taken. Based on the 3D surface reconstruction of the target area, an individual tray was manufactured by CAD/RP. With a conventional custom tray as control, two final impressions were made using the different types of tray for each patient. The trays were sectioned, and in each section the thickness of the material was measured at six evenly distributed points. Descriptive statistics and paired t-test were used to examine the difference of the impression thickness. SAS 9.3 was applied in the statistical analysis. Afterwards, all casts were then optically 3D scanned and compared digitally to evaluate the feasibility of this method. Impressions of all five maxillectomy patients were successfully made with individual trays fabricated by CAD/RP and traditional trays. The descriptive statistics of impression thickness measurement showed slightly more uneven results in the traditional trays, but no statistical significance was shown. A 3D digital comparison showed acceptable discrepancies within 1 mm in the majority of cast areas. The largest difference of 3 mm was observed in the buccal wall of the defective areas. Moderate deviations of 1 to 2 mm were detected in the buccal and labial vestibular groove areas. This study confirmed the feasibility of a novel method of fabricating individual trays by CAD/RP. Impressions made by individual trays manufactured using CAD/RP had a uniform thickness, with an acceptable level of accuracy compared to those made through conventional processes. © 2014 by the American College of Prosthodontists.

  19. Biosensor UUV payload for underwater detection

    NASA Astrophysics Data System (ADS)

    Kusterbeck, Anne W.; Charles, Paul T.; Melde, Brian J.; Trammell, Scott A.; Adams, André A.; Deschamps, Jeffrey R.

    2010-04-01

    Increased emphasis on maritime domain awareness and port security has led to the development of unmanned underwater vehicles (UUVs) capable of extended missions. These systems rely most frequently on well-developed side scan sonar and acoustic methods to locate potential targets. The Naval Research Laboratory (NRL) is developing biosensors for underwater explosives detection that complement acoustic sensors and can be used as UUV payloads to monitor areas for port and harbor security or in detection of underwater unexploded ordnance (UXO) and biochemical threats. The prototype sensor has recently been demonstrated to detect explosives in seawater at trace levels when run in a continuous sampling mode. To overcome ongoing issues with sample preparation and facilitate rapid detection at trace levels in a marine environment, we have been developing new mesoporous materials for in-line preconcentration of explosives and other small molecules, engineering microfluidic components to improve the signal, and testing alternative signal transduction methods. Additional work is being done to optimize the optical components and sensor response time. Highlights of these current studies and our ongoing efforts to integrate the biosensor with existing detection technologies to reduce false positives are described. In addition, we present the results of field tests that demonstrate the prototype biosensor performance as a UUV payload.

  20. PLUS: open-source toolkit for ultrasound-guided intervention systems.

    PubMed

    Lasso, Andras; Heffter, Tamas; Rankin, Adam; Pinter, Csaba; Ungi, Tamas; Fichtinger, Gabor

    2014-10-01

    A variety of advanced image analysis methods have been under the development for ultrasound-guided interventions. Unfortunately, the transition from an image analysis algorithm to clinical feasibility trials as part of an intervention system requires integration of many components, such as imaging and tracking devices, data processing algorithms, and visualization software. The objective of our paper is to provide a freely available open-source software platform-PLUS: Public software Library for Ultrasound-to facilitate rapid prototyping of ultrasound-guided intervention systems for translational clinical research. PLUS provides a variety of methods for interventional tool pose and ultrasound image acquisition from a wide range of tracking and imaging devices, spatial and temporal calibration, volume reconstruction, simulated image generation, and recording and live streaming of the acquired data. This paper introduces PLUS, explains its functionality and architecture, and presents typical uses and performance in ultrasound-guided intervention systems. PLUS fulfills the essential requirements for the development of ultrasound-guided intervention systems and it aspires to become a widely used translational research prototyping platform. PLUS is freely available as open source software under BSD license and can be downloaded from http://www.plustoolkit.org.

  1. Lithographic manufacturing of adaptive optics components

    NASA Astrophysics Data System (ADS)

    Scott, R. Phillip; Jean, Madison; Johnson, Lee; Gatlin, Ridley; Bronson, Ryan; Milster, Tom; Hart, Michael

    2017-09-01

    Adaptive optics systems and their laboratory test environments call for a number of unusual optical components. Examples include lenslet arrays, pyramids, and Kolmogorov phase screens. Because of their specialized application, the availability of these parts is generally limited, with high cost and long lead time, which can also significantly drive optical system design. These concerns can be alleviated by a fast and inexpensive method of optical fabrication. To that end, we are exploring direct-write lithographic techniques to manufacture three different custom elements. We report results from a number of prototype devices including 1, 2, and 3 wave Multiple Order Diffractive (MOD) lenslet arrays with 0.75 mm pitch and phase screens with near Kolmogorov structure functions with a Fried length r0 around 1 mm. We also discuss plans to expand our research to include a diffractive pyramid that is smaller, lighter, and more easily manufactured than glass versions presently used in pyramid wavefront sensors. We describe how these components can be produced within the limited dynamic range of the lithographic process, and with a rapid prototyping and manufacturing cycle. We discuss exploratory manufacturing methods, including replication, and potential observing techniques enabled by the ready availability of custom components.

  2. Semi-contact-writing of polymer molds for prototyping PDMS chips with low surface roughness, sharp edges and locally varying channel heights

    NASA Astrophysics Data System (ADS)

    Gutzweiler, Ludwig; Stumpf, Fabian; Tanguy, Laurent; Roth, Guenter; Koltay, Peter; Zengerle, Roland; Riegger, Lutz

    2016-04-01

    Microfluidic systems fabricated in polydimethylsiloxane (PDMS) enable a broad variety of applications and are widespread in the field of Lab-on-a-Chip. Here we demonstrate semi-contact-writing, a novel method for fabrication of polymer based molds for casting microfluidic PDMS chips in a highly flexible, time and cost-efficient manner. The method is related to direct-writing of an aqueous polymer solution on a planar glass substrate and substitutes conventional, time- and cost-consuming UV-lithography. This technique facilitates on-demand prototyping in a low-cost manner and is therefore ideally suited for rapid chip layout iterations. No cleanroom facilities and less expertise are required. Fabrication time from scratch to ready-to-use PDMS-chip is less than 5 h. This polymer writing method enables structure widths down to 140 μm and controllable structure heights ranging from 5.5 μm for writing single layers up to 98 μm by stacking. As a unique property, freely selectable height variations across a substrate can be achieved by application of local stacking. Furthermore, the molds exhibit low surface roughness (R a   =  24 nm, R RMS  =  28 nm) and high fidelity edge sharpness. We validated the method by fabrication of molds to cast PDMS chips for droplet based flow-through PCR with single-cell sensitivity.

  3. Ground Deployment Demonstration and Material Testing for Solar Sail

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoqi; Cheng, Zhengai; Liu, Yufei; Wang, Li

    2016-07-01

    Solar Sail is a kind of spacecraft that can achieve extremely high velocity by light pressure instead of chemical fuel. The great accelerate rely on its high area-to-mass ratio. So solar sail is always designed in huge size and it use ultra thin and light weight materials. For 100-meter class solar sail, two key points must be considered in the design process. They are fold-deployment method, and material property change in space environment. To test and verify the fold-deployment technology, a 8*8m principle prototype was developed. Sail membrane folding in method of IKAROS, Nanosail-D , and new proposed L-shape folding pattern were tested on this prototype. Their deployment properties were investigated in detail, and comparisons were made between them. Also, the space environment suitability of ultra thin polyimide films as candidate solar sail material was analyzed. The preliminary test results showed that membrane by all the folding method could deploy well. Moreover, sail membrane folding by L-shape pattern deployed more rapidly and more organized among the three folding pattern tested. The mechanical properties of the polyimide had no significant change after electron irradiation. As the preliminary research on the key technology of solar sail spacecraft, in this paper, the results of the study would provide important basis on large-scale solar sail membrane select and fold-deploying method design.

  4. Direct-write maskless lithography using patterned oxidation of Si-substrate Induced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo

    2013-03-01

    In this study we report a new method for direct-write maskless lithography using oxidized silicon layer induced by high repetition (MHz) ultrafast (femtosecond) laser pulses under ambient condition. The induced thin layer of predetermined pattern can act as an etch stop during etching process in alkaline etchants such as KOH. The proposed method can be leading to promising solutions for direct-write maskless lithography technique since the proposed method offers a higher degree of flexibility and reduced time and cost of fabrication which makes it particularly appropriate for rapid prototyping and custom scale manufacturing. A Scanning Electron Microscope (SEM), Micro-Raman, Energy Dispersive X-ray (EDX), optical microscope and X-ray diffraction spectroscopy (XRD) were used to evaluate the quality of oxidized layer induced by laser pulses.

  5. Parametric Shape Optimization of Lens-Focused Piezoelectric Ultrasound Transducers.

    PubMed

    Thomas, Gilles P L; Chapelon, Jean-Yves; Bera, Jean-Christophe; Lafon, Cyril

    2018-05-01

    Focused transducers composed of flat piezoelectric ceramic coupled with an acoustic lens present an economical alternative to curved piezoelectric ceramics and are already in use in a variety of fields. Using a displacement/pressure (u/p) mixed finite element formulation combined with parametric level-set functions to implicitly define the boundaries between the materials and the fluid-structure interface, a method to optimize the shape of acoustic lens made of either one or multiple materials is presented. From that method, two 400 kHz focused transducers using acoustic lens were designed and built with different rapid prototyping methods, one of them made with a combination of two materials, and experimental measurements of the pressure field around the focal point are in good agreement with the presented model.

  6. Endodontic applications of 3D printing.

    PubMed

    Anderson, J; Wealleans, J; Ray, J

    2018-02-27

    Computer-aided design (CAD) and computer-aided manufacturing (CAM) technologies can leverage cone beam computed tomography data for production of objects used in surgical and nonsurgical endodontics and in educational settings. The aim of this article was to review all current applications of 3D printing in endodontics and to speculate upon future directions for research and clinical use within the specialty. A literature search of PubMed, Ovid and Scopus was conducted using the following terms: stereolithography, 3D printing, computer aided rapid prototyping, surgical guide, guided endodontic surgery, guided endodontic access, additive manufacturing, rapid prototyping, autotransplantation rapid prototyping, CAD, CAM. Inclusion criteria were articles in the English language documenting endodontic applications of 3D printing. Fifty-one articles met inclusion criteria and were utilized. The endodontic literature on 3D printing is generally limited to case reports and pre-clinical studies. Documented solutions to endodontic challenges include: guided access with pulp canal obliteration, applications in autotransplantation, pre-surgical planning and educational modelling and accurate location of osteotomy perforation sites. Acquisition of technical expertise and equipment within endodontic practices present formidable obstacles to widespread deployment within the endodontic specialty. As knowledge advances, endodontic postgraduate programmes should consider implementing 3D printing into their curriculums. Future research directions should include clinical outcomes assessments of treatments employing 3D printed objects. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  7. 3D printing of an aortic aneurysm to facilitate decision making and device selection for endovascular aneurysm repair in complex neck anatomy.

    PubMed

    Tam, Matthew D B S; Laycock, Stephen D; Brown, James R I; Jakeways, Matthew

    2013-12-01

    To describe rapid prototyping or 3-dimensional (3D) printing of aneurysms with complex neck anatomy to facilitate endovascular aneurysm repair (EVAR). A 75-year-old man had a 6.6-cm infrarenal aortic aneurysm that appeared on computed tomographic angiography to have a sharp neck angulation of ~90°. However, although the computed tomography (CT) data were analyzed using centerline of flow, the true neck length and relations of the ostial origins were difficult to determine. No multidisciplinary consensus could be reached as to which stent-graft to use owing to these borderline features of the neck anatomy. Based on past experience with rapid prototyping technology, a decision was taken to print a model of the aneurysm to aid in visualization of the neck anatomy. The CT data were segmented, processed, and converted into a stereolithographic format representing the lumen as a 3D volume, from which a full-sized replica was printed within 24 hours. The model demonstrated that the neck was adequate for stent-graft repair using the Aorfix device. Rapid prototyping of aortic aneurysms is feasible and can aid decision making and device delivery. Further work is required to test the value of 3D replicas in planning procedures and their impact on procedure time, radiation dose, and procedure cost.

  8. 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries.

    PubMed

    Canstein, C; Cachot, P; Faust, A; Stalder, A F; Bock, J; Frydrychowicz, A; Küffer, J; Hennig, J; Markl, M

    2008-03-01

    The knowledge of local vascular anatomy and function in the human body is of high interest for the diagnosis and treatment of cardiovascular disease. A comprehensive analysis of the hemodynamics in the thoracic aorta is presented based on the integration of flow-sensitive 4D MRI with state-of-the-art rapid prototyping technology and computational fluid dynamics (CFD). Rapid prototyping was used to transform aortic geometries as measured by contrast-enhanced MR angiography into realistic vascular models with large anatomical coverage. Integration into a flow circuit with patient-specific pulsatile in-flow conditions and application of flow-sensitive 4D MRI permitted detailed analysis of local and global 3D flow dynamics in a realistic vascular geometry. Visualization of characteristic 3D flow patterns and quantitative comparisons of the in vitro experiments with in vivo data and CFD simulations in identical vascular geometries were performed to evaluate the accuracy of vascular model systems. The results indicate the potential of such patient-specific model systems for detailed experimental simulation of realistic vascular hemodynamics. Further studies are warranted to examine the influence of refined boundary conditions of the human circulatory system such as fluid-wall interaction and their effect on normal and pathological blood flow characteristics associated with vascular geometry. (c) 2008 Wiley-Liss, Inc.

  9. A Comparison of Surface Acoustic Wave Modeling Methods

    NASA Technical Reports Server (NTRS)

    Wilson, W. c.; Atkinson, G. M.

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method a first order model, and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices.

  10. Rapid prototyping of carbon-based chemiresistive gas sensors on paper

    PubMed Central

    Mirica, Katherine A.; Azzarelli, Joseph M.; Weis, Jonathan G.; Schnorr, Jan M.; Swager, Timothy M.

    2013-01-01

    Chemically functionalized carbon nanotubes (CNTs) are promising materials for sensing of gases and volatile organic compounds. However, the poor solubility of carbon nanotubes hinders their chemical functionalization and the subsequent integration of these materials into devices. This manuscript describes a solvent-free procedure for rapid prototyping of selective chemiresistors from CNTs and graphite on the surface of paper. This procedure enables fabrication of functional gas sensors from commercially available starting materials in less than 15 min. The first step of this procedure involves the generation of solid composites of CNTs or graphite with small molecule selectors—designed to interact with specific classes of gaseous analytes—by solvent-free mechanical mixing in a ball mill and subsequent compression. The second step involves deposition of chemiresistive sensors by mechanical abrasion of these solid composites onto the surface of paper. Parallel fabrication of multiple chemiresistors from diverse composites rapidly generates cross-reactive arrays capable of sensing and differentiating gases and volatile organic compounds at part-per-million and part-per-thousand concentrations. PMID:23942132

  11. Rapid development of medical imaging tools with open-source libraries.

    PubMed

    Caban, Jesus J; Joshi, Alark; Nagy, Paul

    2007-11-01

    Rapid prototyping is an important element in researching new imaging analysis techniques and developing custom medical applications. In the last ten years, the open source community and the number of open source libraries and freely available frameworks for biomedical research have grown significantly. What they offer are now considered standards in medical image analysis, computer-aided diagnosis, and medical visualization. A cursory review of the peer-reviewed literature in imaging informatics (indeed, in almost any information technology-dependent scientific discipline) indicates the current reliance on open source libraries to accelerate development and validation of processes and techniques. In this survey paper, we review and compare a few of the most successful open source libraries and frameworks for medical application development. Our dual intentions are to provide evidence that these approaches already constitute a vital and essential part of medical image analysis, diagnosis, and visualization and to motivate the reader to use open source libraries and software for rapid prototyping of medical applications and tools.

  12. Perception SoC Based on an Ultrasonic Array of Sensors: Efficient DSP Core Implementation and Subsequent Experimental Results

    NASA Astrophysics Data System (ADS)

    Kassem, A.; Sawan, M.; Boukadoum, M.; Haidar, A.

    2005-12-01

    We are concerned with the design, implementation, and validation of a perception SoC based on an ultrasonic array of sensors. The proposed SoC is dedicated to ultrasonic echography applications. A rapid prototyping platform is used to implement and validate the new architecture of the digital signal processing (DSP) core. The proposed DSP core efficiently integrates all of the necessary ultrasonic B-mode processing modules. It includes digital beamforming, quadrature demodulation of RF signals, digital filtering, and envelope detection of the received signals. This system handles 128 scan lines and 6400 samples per scan line with a[InlineEquation not available: see fulltext.] angle of view span. The design uses a minimum size lookup memory to store the initial scan information. Rapid prototyping using an ARM/FPGA combination is used to validate the operation of the described system. This system offers significant advantages of portability and a rapid time to market.

  13. Flight Telerobotic Servicer prototype simulator

    NASA Astrophysics Data System (ADS)

    Schein, Rob; Krauze, Linda; Hartley, Craig; Dickenson, Alan; Lavecchia, Tom; Working, Bob

    A prototype simulator for the Flight Telerobotic Servicer (FTS) system is described for use in the design development of the FTS, emphasizing the hand controller and user interface. The simulator utilizes a graphics workstation based on rapid prototyping tools for systems analyses of the use of the user interface and the hand controller. Kinematic modeling, manipulator-control algorithms, and communications programs are contained in the software for the simulator. The hardwired FTS panels and operator interface for use on the STS Orbiter are represented graphically, and the simulated controls function as the final FTS system configuration does. The robotic arm moves based on the user hand-controller interface, and the joint angles and other data are given on the prototype of the user interface. This graphics simulation tool provides the means for familiarizing crewmembers with the FTS system operation, displays, and controls.

  14. Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices

    PubMed Central

    Betancourt, Tania; Brannon-Peppas, Lisa

    2006-01-01

    Micro- and nanofabrication techniques have revolutionized the pharmaceutical and medical fields as they offer the possibility for highly reproducible mass-fabrication of systems with complex geometries and functionalities, including novel drug delivery systems and bionsensors. The principal micro- and nanofabrication techniques are described, including photolithography, soft lithography, film deposition, etching, bonding, molecular self assembly, electrically induced nanopatterning, rapid prototyping, and electron, X-ray, colloidal monolayer, and focused ion beam lithography. Application of these techniques for the fabrication of drug delivery and biosensing systems including injectable, implantable, transdermal, and mucoadhesive devices is described. PMID:17722281

  15. Pulsed laser deposition—invention or discovery?

    NASA Astrophysics Data System (ADS)

    Venkatesan, T.

    2014-01-01

    The evolution of pulsed laser deposition had been an exciting process of invention and discovery, with the development of high Tc superconducting films as the main driver. It has become the method of choice in research and development for rapid prototyping of multicomponent inorganic materials for preparing a variety of thin films, heterostructures and atomically sharp interfaces, and has become an indispensable tool for advancing oxide electronics. In this paper I will give a personal account of the invention and development of this process at Bellcore/Rutgers, the opportunity, challenges and mostly the extraordinary excitement that was generated, typical of any disruptive technology.

  16. Artificial Intelligence in Autonomous Telescopes

    NASA Astrophysics Data System (ADS)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  17. In-vacuum scattered light reduction with black cupric oxide surfaces for sensitive fluorescence detection.

    PubMed

    Norrgard, E B; Sitaraman, N; Barry, J F; McCarron, D J; Steinecker, M H; DeMille, D

    2016-05-01

    We demonstrate a simple and easy method for producing low-reflectivity surfaces that are ultra-high vacuum compatible, may be baked to high temperatures, and are easily applied even on complex surface geometries. Black cupric oxide (CuO) surfaces are chemically grown in minutes on any copper surface, allowing for low-cost, rapid prototyping, and production. The reflective properties are measured to be comparable to commercially available products for creating optically black surfaces. We describe a vacuum apparatus which uses multiple blackened copper surfaces for sensitive, low-background detection of molecules using laser-induced fluorescence.

  18. Augmented reality for anatomical education.

    PubMed

    Thomas, Rhys Gethin; John, Nigel William; Delieu, John Michael

    2010-03-01

    The use of Virtual Environments has been widely reported as a method of teaching anatomy. Generally such environments only convey the shape of the anatomy to the student. We present the Bangor Augmented Reality Education Tool for Anatomy (BARETA), a system that combines Augmented Reality (AR) technology with models produced using Rapid Prototyping (RP) technology, to provide the student with stimulation for touch as well as sight. The principal aims of this work were to provide an interface more intuitive than a mouse and keyboard, and to evaluate such a system as a viable supplement to traditional cadaver based education.

  19. Development and evaluation of an ultrasonic personal aerosol sampler.

    PubMed

    Volckens, J; Quinn, C; Leith, D; Mehaffy, J; Henry, C S; Miller-Lionberg, D

    2017-03-01

    Assessing personal exposure to air pollution has long proven challenging due to technological limitations posed by the samplers themselves. Historically, wearable aerosol monitors have proven to be expensive, noisy, and burdensome. The objective of this work was to develop a new type of wearable monitor, an ultrasonic personal aerosol sampler (UPAS), to overcome many of the technological limitations in personal exposure assessment. The UPAS is a time-integrated monitor that features a novel micropump that is virtually silent during operation. A suite of onboard environmental sensors integrated with this pump measure and record mass airflow (0.5-3.0 L/min, accurate within 5%), temperature, pressure, relative humidity, light intensity, and acceleration. Rapid development of the UPAS was made possible through recent advances in low-cost electronics, open-source programming platforms, and additive manufacturing for rapid prototyping. Interchangeable cyclone inlets provided a close match to the EPA PM 2.5 mass criterion (within 5%) for device flows at either 1.0 or 2.0 L/min. Battery life varied from 23 to 45 hours depending on sample flow rate and selected filter media. Laboratory tests of the UPAS prototype demonstrate excellent agreement with equivalent federal reference method samplers for gravimetric analysis of PM 2.5 across a broad range of concentrations. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  20. Mandibular reconstruction using plates prebent to fit rapid prototyping 3-dimensional printing models ameliorates contour deformity.

    PubMed

    Azuma, Masaki; Yanagawa, Toru; Ishibashi-Kanno, Naomi; Uchida, Fumihiko; Ito, Takaaki; Yamagata, Kenji; Hasegawa, Shogo; Sasaki, Kaoru; Adachi, Koji; Tabuchi, Katsuhiko; Sekido, Mitsuru; Bukawa, Hiroki

    2014-10-23

    Recently, medical rapid prototyping (MRP) models, fabricated with computer-aided design and computer-aided manufacture (CAD/CAM) techniques, have been applied to reconstructive surgery in the treatment of head and neck cancers. Here, we tested the use of preoperatively manufactured reconstruction plates, which were produced using MRP models. The clinical efficacy and esthetic outcome of using these products in mandibular reconstruction was evaluated. A series of 28 patients with malignant oral tumors underwent unilateral segmental resection of the mandible and simultaneous mandibular reconstruction. Twelve patients were treated with prebent reconstruction plates that were molded to MRP mandibular models designed with CAD/CAM techniques and fabricated on a combined powder bed and inkjet head three-dimensional printer. The remaining 16 patients were treated using conventional reconstruction methods. The surgical and esthetic outcomes of the two groups were compared by imaging analysis using post-operative panoramic tomography. The mandibular symmetry in patients receiving the MRP-model-based prebent plates was significantly better than that in patients receiving conventional reconstructive surgery. Patients with head and neck cancer undergoing reconstructive surgery using a prebent reconstruction plate fabricated according to an MRP mandibular model showed improved mandibular contour compared to patients undergoing conventional mandibular reconstruction. Thus, use of this new technology for mandibular reconstruction results in an improved esthetic outcome with the potential for improved quality of life for patients.

  1. Processing of pure Ti by rapid prototyping based on laser cladding

    NASA Astrophysics Data System (ADS)

    Arias-González, F.; del Val, J.; Comesaña, R.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J.

    2013-11-01

    Rapid prototyping based on laser cladding is an additive manufacturing (AM) process based on the overlapping of cladding tracks to produce functional components. Powder or wire are fed into a melting pool created using laser radiation as a heat source and the relative movement between the beam and the work piece makes possible to generate pieces layer-by-layer. This technique can be applied for any material which can be melted and the components can be manufactured directly according to a computer aided design (CAD) model. Additive manufacturing is particularly interesting to produce titanium components because, in this case, the loss of material produced by subtractive manufacturing methods is highly costly. Moreover, titanium and its alloys are widely used in biomedical, aircraft, chemical and marine industries due to their biocompatibility, excellent corrosion resistance and superior strength-to-weight ratio. In this research work, a near-infrared laser delivering a maximum power of 500W is used to produce pure titanium thin parts. Dimensions and surface morphology are characterized using Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), the hardness by nanoindentation and the composition by X-Ray Diffraction (XRD) and Energy Dispersive X-Ray Spectroscopy (EDS). The aim of this work is to establish the conditions under which satisfactory properties are obtained and to understand the relationship between microstructure/properties and deposition parameters.

  2. Experimental Validation of Plastic Mandible Models Produced by a “Low-Cost” 3-Dimensional Fused Deposition Modeling Printer

    PubMed Central

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-01-01

    Background The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Material/Methods Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. Results The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Conclusions Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field. PMID:27003456

  3. Towards rapid prototyped convective microfluidic DNA amplification platform

    NASA Astrophysics Data System (ADS)

    Ajit, Smrithi; Praveen, Hemanth Mithun; Puneeth, S. B.; Dave, Abhishek; Sesham, Bharat; Mohan, K. N.; Goel, Sanket

    2017-02-01

    Today, Polymerase Chain Reaction (PCR) based DNA amplification plays an indispensable role in the field of biomedical research. Its inherent ability to exponentially amplify sample DNA has proven useful for the identification of virulent pathogens like those causing Multiple Drug-Resistant Tuberculosis (MDR-TB). The intervention of Microfluidics technology has revolutionized the concept of PCR from being a laborious and time consuming process into one that is faster, easily portable and capable of being multifunctional. The Microfluidics based PCR outweighs its traditional counterpart in terms of flexibility of varying reaction rate, operation simplicity, need of a fraction of volume and capability of being integrated with other functional elements. The scope of the present work involves the development of a real-time continuous flow microfluidic device, fabricated by 3D printing-governed rapid prototyping method, eventually leading to an automated and robust platform to process multiple DNA samples for detection of MDRTB-associated mutations. The thermal gradient characteristic to the PCR process is produced using peltier units appropriate to the microfluidic environment fully monitored and controlled by a low cost controller driven by a Data Acquisition System. The process efficiency achieved in the microfluidic environment in terms of output per cycle is expected to be on par with the traditional PCR and capable of earning the additional advantages of being faster and minimizing the handling.

  4. Comparison of Conventional Methods and Laser-Assisted Rapid Prototyping for Manufacturing Fixed Dental Prostheses: An In Vitro Study

    PubMed Central

    Pompa, Giorgio; Di Carlo, Stefano; De Angelis, Francesca; Cristalli, Maria Paola; Annibali, Susanna

    2015-01-01

    This study assessed whether there are differences in marginal fit between laser-fusion and conventional techniques to produce fixed dental prostheses (FDPs). A master steel die with 2 abutments was produced to receive a posterior 4-unit FDPs and single copings. These experimental models were divided into three groups (n = 20/group) manufactured: group 1, Ni-Cr alloy, with a lost-wax casting technique; group 2, Co-Cr alloy, with selective laser melting (SLM); and group 3, yttria-tetragonal zirconia polycrystal (Y-TZP), with a milling system. All specimens were cut along the longitudinal axis and their adaptation was measured at the marginal and shoulder areas on the right and left sides of each abutment. Measurements were made using a stereomicroscope (×60 magnification) and a scanning electron microscope (×800 magnification). The data were analyzed using one-way analysis of variance and the Bonferroni post hoc test, with a significance cutoff of 5%. Significant differences (P < 0.05) were observed between group 3 and the other groups. The marginal opening was smallest with Co-Cr alloy substructures, while the shoulder opening was smallest with Ni-Cr alloy substructures. Within the limitations of this study, the marginal fit of an FDP is better with rapid prototyping (RP) via SLM than conventional manufacturing systems. PMID:26576419

  5. Approaches for Evaluating the Usability of Assistive Technology Product Prototypes

    ERIC Educational Resources Information Center

    Choi, Young Mi; Sprigle, Stephen H.

    2011-01-01

    User input is an important component to help guide designers in producing a more usable product. Evaluation of prototypes is one method of obtaining this input, but methods for evaluating assistive technology prototypes during design have not been adequately described or evaluated. This project aimed to compare different methods of evaluating…

  6. The development of an autonomous rendezvous and docking simulation using rapid integration and prototyping technology

    NASA Technical Reports Server (NTRS)

    Shackelford, John H.; Saugen, John D.; Wurst, Michael J.; Adler, James

    1991-01-01

    A generic planar 3 degree of freedom simulation was developed that supports hardware in the loop simulations, guidance and control analysis, and can directly generate flight software. This simulation was developed in a small amount of time utilizing rapid prototyping techniques. The approach taken to develop this simulation tool, the benefits seen using this approach to development, and on-going efforts to improve and extend this capability are described. The simulation is composed of 3 major elements: (1) Docker dynamics model, (2) Dockee dynamics model, and (3) Docker Control System. The docker and dockee models are based on simple planar orbital dynamics equations using a spherical earth gravity model. The docker control system is based on a phase plane approach to error correction.

  7. Application of advanced computing techniques to the analysis and display of space science measurements

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M.; Lapolla, M. V.; Horblit, B.

    1995-01-01

    A prototype system has been developed to aid the experimental space scientist in the display and analysis of spaceborne data acquired from direct measurement sensors in orbit. We explored the implementation of a rule-based environment for semi-automatic generation of visualizations that assist the domain scientist in exploring one's data. The goal has been to enable rapid generation of visualizations which enhance the scientist's ability to thoroughly mine his data. Transferring the task of visualization generation from the human programmer to the computer produced a rapid prototyping environment for visualizations. The visualization and analysis environment has been tested against a set of data obtained from the Hot Plasma Composition Experiment on the AMPTE/CCE satellite creating new visualizations which provided new insight into the data.

  8. Fast prototyping of high-aspect ratio, high-resolution x-ray masks by gas-assisted focused ion beam

    NASA Technical Reports Server (NTRS)

    Hartley, F.; Malek, C.; Neogi, J.

    2001-01-01

    The capacity of chemically-assisted focused ion beam (fib) etching systems to undertake direct and highly anisotropic erosion of thin and thick gold (or other high atomic number [Z])coatings on x-ray mask membranes/substrates provides new levels of precision, flexibility, simplification and rapidity in the manufacture of mask absorber patterns, allowing the fast prototyping of high aspect ratio, high-resolution masks for deep x-ray lithography.

  9. New Technologies for Space Avionics, 1993

    NASA Technical Reports Server (NTRS)

    Aibel, David W.; Harris, David R.; Bartlett, Dave; Black, Steve; Campagna, Dave; Fernald, Nancy; Garbos, Ray

    1993-01-01

    The report reviews a 1993 effort that investigated issues associated with the development of requirements, with the practice of concurrent engineering and with rapid prototyping, in the development of a next-generation Reaction Jet Drive Controller. This report details lessons learned, the current status of the prototype, and suggestions for future work. The report concludes with a discussion of the vision of future avionics architectures based on the principles associated with open architectures and integrated vehicle health management.

  10. Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics.

    PubMed

    Pearce, J M; Anzalone, N C; Heldt, C L

    2016-08-01

    The open-source release of self-replicating rapid prototypers (RepRaps) has created a rich opportunity for low-cost distributed digital fabrication of complex 3-D objects such as scientific equipment. For example, 3-D printable reactionware devices offer the opportunity to combine open hardware microfluidic handling with lab-on-a-chip reactionware to radically reduce costs and increase the number and complexity of microfluidic applications. To further drive down the cost while improving the performance of lab-on-a-chip paper-based microfluidic prototyping, this study reports on the development of a RepRap upgrade capable of converting a Prusa Mendel RepRap into a wax 3-D printer for paper-based microfluidic applications. An open-source hardware approach is used to demonstrate a 3-D printable upgrade for the 3-D printer, which combines a heated syringe pump with the RepRap/Arduino 3-D control. The bill of materials, designs, basic assembly, and use instructions are provided, along with a completely free and open-source software tool chain. The open-source hardware device described here accelerates the potential of the nascent field of electrochemical detection combined with paper-based microfluidics by dropping the marginal cost of prototyping to nearly zero while accelerating the turnover between paper-based microfluidic designs. © 2016 Society for Laboratory Automation and Screening.

  11. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  12. Construction of crystal structure prototype database: methods and applications.

    PubMed

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  13. Construction of crystal structure prototype database: methods and applications

    NASA Astrophysics Data System (ADS)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  14. The Concept and Control Capabilities of Universal Electric Vehicle Prototype using LabView Software

    NASA Astrophysics Data System (ADS)

    Skowronek, Hubert; Waszczuk, Kamil; Kowalski, Maciej; Karolczak, Paweł; Baral, Bivek

    2016-10-01

    The concept of drive control prototype electric car designed in assumptions for sales in the markets of developing countries, mainly in South Asia has been presented in the article. The basic requirements for this type of vehicles and the possibility of rapid prototyping onboard equipment for the purpose of preliminary tests have been presented. The control system was composed of a PC and measurement card myRIO and has two operating modes. In the first of them can simulate changes of each components parameters and checking of program proper functioning. In the second mode, instead of the simulation it is possible to control the real object.

  15. [Research and application of computer-aided technology in restoration of maxillary defect].

    PubMed

    Cheng, Xiaosheng; Liao, Wenhe; Hu, Qingang; Wang, Qian; Dai, Ning

    2008-08-01

    This paper presents a new method of designing restoration model of maxillectomy defect through Computer aided technology. Firstly, 3D maxillectomy triangle mesh model is constructed from Helical CT data. Secondly, the triangle mesh model is transformed into initial computer-aided design (CAD) model of maxillectomy through reverse engineering software. Thirdly, the 3D virtual restoration model of maxillary defect is obtained after designing and adjusting the initial CAD model through CAD software according to the patient's practical condition. Therefore, the 3D virtual restoration can be fitted very well with the broken part of maxilla. The exported design data can be manufactured using rapid prototyping technology and foundry technology. Finally, the result proved that this method is effective and feasible.

  16. Skull defect reconstruction based on a new hybrid level set.

    PubMed

    Zhang, Ziqun; Zhang, Ran; Song, Zhijian

    2014-01-01

    Skull defect reconstruction is an important aspect of surgical repair. Historically, a skull defect prosthesis was created by the mirroring technique, surface fitting, or formed templates. These methods are not based on the anatomy of the individual patient's skull, and therefore, the prosthesis cannot precisely correct the defect. This study presented a new hybrid level set model, taking into account both the global optimization region information and the local accuracy edge information, while avoiding re-initialization during the evolution of the level set function. Based on the new method, a skull defect was reconstructed, and the skull prosthesis was produced by rapid prototyping technology. This resulted in a skull defect prosthesis that well matched the skull defect with excellent individual adaptation.

  17. Innovation and design approaches within prospective ergonomics.

    PubMed

    Liem, André; Brangier, Eric

    2012-01-01

    In this conceptual article the topic of "Prospective Ergonomics" will be discussed within the context of innovation, design thinking and design processes & methods. Design thinking is essentially a human-centred innovation process that emphasises observation, collaboration, interpretation, visualisation of ideas, rapid concept prototyping and concurrent business analysis, which ultimately influences innovation and business strategy. The objective of this project is to develop a roadmap for innovation, involving consumers, designers and business people in an integrative process, which can be applied to product, service and business design. A theoretical structure comprising of Innovation perspectives (1), Worldviews supported by rationalist-historicist and empirical-idealistic dimensions (2) and Models of "design" reasoning (3) precedes the development and classification of existing methods as well as the introduction of new ones.

  18. New protocol for construction of eyeglasses-supported provisional nasal prosthesis using CAD/CAM techniques.

    PubMed

    Ciocca, Leonardo; Fantini, Massimiliano; De Crescenzio, Francesca; Persiani, Franco; Scotti, Roberto

    2010-01-01

    A new protocol for making an immediate provisional eyeglasses-supported nasal prosthesis is presented that uses laser scanning, computer-aided design/computer-aided manufacturing procedures, and rapid prototyping techniques, reducing time and costs while increasing the quality of the final product. With this protocol, the eyeglasses were digitized, and the relative position of the nasal prosthesis was planned and evaluated in a virtual environment without any try-in appointment. This innovative method saves time, reduces costs, and restores the patient's aesthetic appearance after a disfiguration caused by ablation of the nasal pyramid better than conventional restoration methods. Moreover, the digital model of the designed nasal epithesis can be used to develop a definitive prosthesis anchored to osseointegrated craniofacial implants.

  19. Rapid algorithm prototyping and implementation for power quality measurement

    NASA Astrophysics Data System (ADS)

    Kołek, Krzysztof; Piątek, Krzysztof

    2015-12-01

    This article presents a Model-Based Design (MBD) approach to rapidly implement power quality (PQ) metering algorithms. Power supply quality is a very important aspect of modern power systems and will become even more important in future smart grids. In this case, maintaining the PQ parameters at the desired level will require efficient implementation methods of the metering algorithms. Currently, the development of new, advanced PQ metering algorithms requires new hardware with adequate computational capability and time intensive, cost-ineffective manual implementations. An alternative, considered here, is an MBD approach. The MBD approach focuses on the modelling and validation of the model by simulation, which is well-supported by a Computer-Aided Engineering (CAE) packages. This paper presents two algorithms utilized in modern PQ meters: a phase-locked loop based on an Enhanced Phase Locked Loop (EPLL), and the flicker measurement according to the IEC 61000-4-15 standard. The algorithms were chosen because of their complexity and non-trivial development. They were first modelled in the MATLAB/Simulink package, then tested and validated in a simulation environment. The models, in the form of Simulink diagrams, were next used to automatically generate C code. The code was compiled and executed in real-time on the Zynq Xilinx platform that combines a reconfigurable Field Programmable Gate Array (FPGA) with a dual-core processor. The MBD development of PQ algorithms, automatic code generation, and compilation form a rapid algorithm prototyping and implementation path for PQ measurements. The main advantage of this approach is the ability to focus on the design, validation, and testing stages while skipping over implementation issues. The code generation process renders production-ready code that can be easily used on the target hardware. This is especially important when standards for PQ measurement are in constant development, and the PQ issues in emerging smart grids will require tools for rapid development and implementation of such algorithms.

  20. Application of the Malaria Management Model to the Analysis of Costs and Benefits of DDT versus Non-DDT Malaria Control

    PubMed Central

    Pedercini, Matteo; Movilla Blanco, Santiago; Kopainsky, Birgit

    2011-01-01

    Introduction DDT is considered to be the most cost-effective insecticide for combating malaria. However, it is also the most environmentally persistent and can pose risks to human health when sprayed indoors. Therefore, the use of DDT for vector control remains controversial. Methods In this paper we develop a computer-based simulation model to assess some of the costs and benefits of the continued use of DDT for Indoor Residual Spraying (IRS) versus its rapid phase out. We apply the prototype model to the aggregated sub Saharan African region. For putting the question about the continued use of DDT for IRS versus its rapid phase out into perspective we calculate the same costs and benefits for alternative combinations of integrated vector management interventions. Results Our simulation results confirm that the current mix of integrated vector management interventions with DDT as the main insecticide is cheaper than the same mix with alternative insecticides when only direct costs are considered. However, combinations with a stronger focus on insecticide-treated bed nets and environmental management show higher levels of cost-effectiveness than interventions with a focus on IRS. Thus, this focus would also allow phasing out DDT in a cost-effective manner. Although a rapid phase out of DDT for IRS is the most expensive of the tested intervention combinations it can have important economic benefits in addition to health and environmental impacts that are difficult to assess in monetary terms. Those economic benefits captured by the model include the avoided risk of losses in agricultural exports. Conclusions The prototype simulation model illustrates how a computer-based scenario analysis tool can inform debates on malaria control policies in general and on the continued use of DDT for IRS versus its rapid phase out in specific. Simulation models create systematic mechanisms for analyzing alternative interventions and making informed trade offs. PMID:22140467

  1. Rapidly Progressive Dementia

    PubMed Central

    Geschwind, Michael D.

    2016-01-01

    Purpose of Review: This article presents a practical and informative approach to the evaluation of a patient with a rapidly progressive dementia (RPD). Recent Findings: Prion diseases are the prototypical causes of RPD, but reversible causes of RPD might mimic prion disease and should always be considered in a differential diagnosis. Aside from prion diseases, the most common causes of RPD are atypical presentations of other neurodegenerative disorders, curable disorders including autoimmune encephalopathies, as well as some infections, and neoplasms. Numerous recent case reports suggest dural arterial venous fistulas sometimes cause RPDs. Summary: RPDs, in which patients typically develop dementia over weeks to months, require an alternative differential than the slowly progressive dementias that occur over a few years. Because of their rapid decline, patients with RPDs necessitate urgent evaluation and often require an extensive workup, typically with multiple tests being sent or performed concurrently. Jakob-Creutzfeldt disease, perhaps the prototypical RPD, is often the first diagnosis many neurologists consider when treating a patient with rapid cognitive decline. Many conditions other than prion disease, however, including numerous reversible or curable conditions, can present as an RPD. This chapter discusses some of the major etiologies for RPDs and offers an algorithm for diagnosis. PMID:27042906

  2. Concept and Development of an Electronic Framework Intended for Electrode and Surrounding Environment Characterization In Vivo

    PubMed Central

    Rieger, Stefan B.; Pfau, Jennifer; Stieglitz, Thomas; Asplund, Maria; Ordonez, Juan S.

    2016-01-01

    There has been substantial progress over the last decade towards miniaturizing implantable microelectrodes for use in Active Implantable Medical Devices (AIMD). Compared to the rapid development and complexity of electrode miniaturization, methods to monitor and assess functional integrity and electrical functionality of these electrodes, particularly during long term stimulation, have not progressed to the same extent. Evaluation methods that form the gold standard, such as stimulus pulse testing, cyclic voltammetry and electrochemical impedance spectroscopy, are either still bound to laboratory infrastructure (impractical for long term in vivo experiments) or deliver no comprehensive insight into the material’s behaviour. As there is a lack of cost effective and practical predictive measures to understand long term electrode behaviour in vivo, material investigations need to be performed after explantation of the electrodes. We propose the analysis of the electrode and its environment in situ, to better understand and correlate the effects leading to electrode failure. The derived knowledge shall eventually lead to improved electrode designs, increased electrode functionality and safety in clinical applications. In this paper, the concept, design and prototyping of a sensor framework used to analyse the electrode’s behaviour and to monitor diverse electrode failure mechanisms, even during stimulation pulses, is presented. We focused on the electronic circuitry and data acquisition techniques required for a conceptual multi-sensor system. Functionality of single modules and a prototype framework have been demonstrated, but further work is needed to convert the prototype system into an implantable device. In vitro studies will be conducted first to verify sensor performance and reliability. PMID:28042815

  3. Comparative use of the computer-aided angiography and rapid prototyping technology versus conventional imaging in the management of the Tile C pelvic fractures.

    PubMed

    Li, Baofeng; Chen, Bei; Zhang, Ying; Wang, Xinyu; Wang, Fei; Xia, Hong; Yin, Qingshui

    2016-01-01

    Computed tomography (CT) scan with three-dimensional (3D) reconstruction has been used to evaluate complex fractures in pre-operative planning. In this study, rapid prototyping of a life-size model based on 3D reconstructions including bone and vessel was applied to evaluate the feasibility and prospect of these new technologies in surgical therapy of Tile C pelvic fractures by observing intra- and perioperative outcomes. The authors conducted a retrospective study on a group of 157 consecutive patients with Tile C pelvic fractures. Seventy-six patients were treated with conventional pre-operative preparation (A group) and 81 patients were treated with the help of computer-aided angiography and rapid prototyping technology (B group). Assessment of the two groups considered the following perioperative parameters: length of surgical procedure, intra-operative complications, intra- and postoperative blood loss, postoperative pain, postoperative nausea and vomiting (PONV), length of stay, and type of discharge. The two groups were homogeneous when compared in relation to mean age, sex, body weight, injury severity score, associated injuries and pelvic fracture severity score. Group B was performed in less time (105 ± 19 minutes vs. 122 ± 23 minutes) and blood loss (31.0 ± 8.2 g/L vs. 36.2 ± 7.4 g/L) compared with group A. Patients in group B experienced less pain (2.5 ± 2.3 NRS score vs. 2.8 ± 2.0 NRS score), and PONV affected only 8 % versus 10 % of cases. Times to discharge were shorter (7.8 ± 2.0 days vs. 10.2 ± 3.1 days) in group B, and most of patients were discharged to home. In our study, patients of Tile C pelvic fractures treated with computer-aided angiography and rapid prototyping technology had a better perioperative outcome than patients treated with conventional pre-operative preparation. Further studies are necessary to investigate the advantages in terms of clinical results in the short and long run.

  4. Modeling and prototyping of biometric systems using dataflow programming

    NASA Astrophysics Data System (ADS)

    Minakova, N.; Petrov, I.

    2018-01-01

    The development of biometric systems is one of the labor-intensive processes. Therefore, the creation and analysis of approaches and techniques is an urgent task at present. This article presents a technique of modeling and prototyping biometric systems based on dataflow programming. The technique includes three main stages: the development of functional blocks, the creation of a dataflow graph and the generation of a prototype. A specially developed software modeling environment that implements this technique is described. As an example of the use of this technique, an example of the implementation of the iris localization subsystem is demonstrated. A variant of modification of dataflow programming is suggested to solve the problem related to the undefined order of block activation. The main advantage of the presented technique is the ability to visually display and design the model of the biometric system, the rapid creation of a working prototype and the reuse of the previously developed functional blocks.

  5. Progress in the Development of Direct Osmotic Concentration Wastewater Recovery Process for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Cath, Tzahi Y.; Adams, Dean V.; Childress, Amy; Gormly, Sherwin; Flynn, Michael

    2005-01-01

    Direct osmotic concentration (DOC) has been identified as a high potential technology for recycling of wastewater to drinking water in advanced life support (ALS) systems. As a result the DOC process has been selected for a NASA Rapid Technology Development Team (RTDT) effort. The existing prototype system has been developed to a Technology Readiness Level (TRL) 3. The current project focuses on advancing the development of this technology from TRL 3 to TRL 6 (appropriate for human rated testing). A new prototype of a DOC system is been designed and fabricated that addresses the deficiencies encountered during the testing of the original system and allowing the new prototype to achieve TRL 6. Background information is provided about the technologies investigated and their capabilities, results from preliminary tests, and the milestones plan and activities for the RTDT program intended to develop a second generation prototype of the DOC system.

  6. Development of a prototype real-time automated filter for operational deep space navigation

    NASA Technical Reports Server (NTRS)

    Masters, W. C.; Pollmeier, V. M.

    1994-01-01

    Operational deep space navigation has been in the past, and is currently, performed using systems whose architecture requires constant human supervision and intervention. A prototype for a system which allows relatively automated processing of radio metric data received in near real-time from NASA's Deep Space Network (DSN) without any redesign of the existing operational data flow has been developed. This system can allow for more rapid response as well as much reduced staffing to support mission navigation operations.

  7. Biofabrication of Tobacco mosaic virus-nanoscaffolded supercapacitors via temporal capillary microfluidics

    NASA Astrophysics Data System (ADS)

    Zang, Faheng; Chu, Sangwook; Gerasopoulos, Konstantinos; Culver, James N.; Ghodssi, Reza

    2017-06-01

    This paper reports the implementation of temporal capillary microfluidic patterns and biological nanoscaffolds in autonomous microfabrication of nanostructured symmetric electrochemical supercapacitors. A photoresist layer was first patterned on the substrate, forming a capillary microfluidics layer with two separated interdigitated microchannels. Tobacco mosaic virus (TMV) macromolecules suspended in solution are autonomously delivered into the microfluidics, and form a dense bio-nanoscaffolds layer within an hour. This TMV layer is utilized in the electroless plating and thermal oxidation for creating nanostructured NiO supercapacitor. The galvanostatic charge/discharge cycle showed a 3.6-fold increase in areal capacitance for the nanostructured electrode compared to planar structures. The rapid creation of nanostructure-textured microdevices with only simple photolithography and bionanostructure self-assembly can completely eliminate the needs for sophisticated synthesis or deposition processes. This method will contribute to rapid prototyping of wide range of nano-/micro-devices with enhanced performance.

  8. Web-based UMLS concept retrieval by automatic text scanning: a comparison of two methods.

    PubMed

    Brandt, C; Nadkarni, P

    2001-01-01

    The Web is increasingly the medium of choice for multi-user application program delivery. Yet selection of an appropriate programming environment for rapid prototyping, code portability, and maintainability remain issues. We summarize our experience on the conversion of a LISP Web application, Search/SR to a new, functionally identical application, Search/SR-ASP using a relational database and active server pages (ASP) technology. Our results indicate that provision of easy access to database engines and external objects is almost essential for a development environment to be considered viable for rapid and robust application delivery. While LISP itself is a robust language, its use in Web applications may be hard to justify given that current vendor implementations do not provide such functionality. Alternative, currently available scripting environments for Web development appear to have most of LISP's advantages and few of its disadvantages.

  9. Usefulness of computed tomography in pre-surgical evaluation of maxillo-facial pathology with rapid prototyping and surgical pre-planning by virtual reality.

    PubMed

    Toso, Francesco; Zuiani, Chiara; Vergendo, Maurizio; Salvo, Iolanda; Robiony, Massimo; Politi, Massimo; Bazzocchi, Massimo

    2005-01-01

    To validate a protocol for creating virtual models to be used in the construction of solid prototypes useful for the planning-simulation of maxillo-facial surgery, in particular for very complex anatomic and pathologic problems. To optimize communications between the radiology, engineering and surgical laboratories. We studied 16 patients with different clinical problems of the maxillo-facial district. Exams were performed with multidetector computed tomography (MDCT) and single slice computed tomography (SDCT) with axial scans and collimation of 0.5-2 mm, and reconstruction interval of 1 mm. Subsequently we performed 2D multiplanar reconstructions and 3D volume-rendering reconstructions. We exported the DICOM images to the engineering laboratory, to recognize and isolate the bony structures by software. With these data the solid prototypes were generated using stereolitography. To date, surgery has been preformed on 12 patients after simulation of the procedure on the stereolithographyc model. The solid prototypes constructed in the difficult cases were sufficiently detailed despite problems related to the artefacts generated by dental fillings an d prostheses. In the remaining cases the MPR/3D images were sufficiently detailed for surgical planning. The surgical results were excellent in all patients who underwent surgery, and the surgeons were satisfied with the improvement in quality and the reduction in time required for the procedure. MDCT enables rapid prototyping using solid replication, which was very helpful in maxillo-facial surgery, despite problems related to artifacts due to dental fillings and prosthesis within the acquisition field; solutions for this problem are work in progress. The protocol used for communication between the different laboratories was valid and reproducible.

  10. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.

    PubMed

    Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei

    2015-09-01

    A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.

  11. 3D Reconstruction of human bones based on dictionary learning.

    PubMed

    Zhang, Binkai; Wang, Xiang; Liang, Xiao; Zheng, Jinjin

    2017-11-01

    An effective method for reconstructing a 3D model of human bones from computed tomography (CT) image data based on dictionary learning is proposed. In this study, the dictionary comprises the vertices of triangular meshes, and the sparse coefficient matrix indicates the connectivity information. For better reconstruction performance, we proposed a balance coefficient between the approximation and regularisation terms and a method for optimisation. Moreover, we applied a local updating strategy and a mesh-optimisation method to update the dictionary and the sparse matrix, respectively. The two updating steps are iterated alternately until the objective function converges. Thus, a reconstructed mesh could be obtained with high accuracy and regularisation. The experimental results show that the proposed method has the potential to obtain high precision and high-quality triangular meshes for rapid prototyping, medical diagnosis, and tissue engineering. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. The application of prototype point processes for the summary and description of California wildfires

    USGS Publications Warehouse

    Nichols, K.; Schoenberg, F.P.; Keeley, J.E.; Bray, A.; Diez, D.

    2011-01-01

    A method for summarizing repeated realizations of a space-time marked point process, known as prototyping, is discussed and applied to catalogues of wildfires in California. Prototype summaries are constructed for varying time intervals using California wildfire data from 1990 to 2006. Previous work on prototypes for temporal and space-time point processes is extended here to include methods for computing prototypes with marks and the incorporation of prototype summaries into hierarchical clustering algorithms, the latter of which is used to delineate fire seasons in California. Other results include summaries of patterns in the spatial-temporal distribution of wildfires within each wildfire season. ?? 2011 Blackwell Publishing Ltd.

  13. Prototype design based on NX subdivision modeling application

    NASA Astrophysics Data System (ADS)

    Zhan, Xianghui; Li, Xiaoda

    2018-04-01

    Prototype design is an important part of the product design, through a quick and easy way to draw a three-dimensional product prototype. Combined with the actual production, the prototype could be modified several times, resulting in a highly efficient and reasonable design before the formal design. Subdivision modeling is a common method of modeling product prototypes. Through Subdivision modeling, people can in a short time with a simple operation to get the product prototype of the three-dimensional model. This paper discusses the operation method of Subdivision modeling for geometry. Take a vacuum cleaner as an example, the NX Subdivision modeling functions are applied. Finally, the development of Subdivision modeling is forecasted.

  14. Innovative Applications of Laser Scanning and Rapid Prototype Printing to Rock Breakdown Experiments

    NASA Technical Reports Server (NTRS)

    Bourke, Mary; Viles, Heather; Nicoll, Joe; Lyew-Ayee, Parris; Ghent, Rebecca; Holmlund, James

    2008-01-01

    We present the novel application of two technologies for use in rock breakdown experiments, i.e. close-range, ground-based 3D triangulation scanning and rapid prototype printing. These techniques aid analyses of form-process interactions across the range of scales relevant to breakdown (micron-m). This is achieved through (a) the creation of DEMs (which permit quantitative description and analysis of rock surface morphology and morphological change) and (b) the production of more realistically-shaped experimental blocks. We illustrate the use of these techniques, alongside appropriate data analysis routines, in experiments designed to investigate the persistence of fluvially-derived features in the face of subsequent wind abrasion and weathering. These techniques have a range of potential applications in experimental field and lab-based geomorphic studies beyond those specifically outlined here.

  15. A web-based rapid prototyping and clinical conversational system that complements electronic patient record system.

    PubMed

    Kim, J H; Ferziger, R; Kawaloff, H B; Sands, D Z; Safran, C; Slack, W V

    2001-01-01

    Even the most extensive hospital information system cannot support all the complex and ever-changing demands associated with a clinical database, such as providing department or personal data forms, and rating scales. Well-designed clinical dialogue programs may facilitate direct interaction of patients with their medical records. Incorporation of extensive and loosely structured clinical data into an existing medical record system is an essential step towards a comprehensive clinical information system, and can best be achieved when the practitioner and the patient directly enter the contents. We have developed a rapid prototyping and clinical conversational system that complements the electronic medical record system, with its generic data structure and standard communication interfaces based on Web technology. We believe our approach can enhance collaboration between consumer-oriented and provider-oriented information systems.

  16. Application of Rapid Prototyping Pelvic Model for Patients with DDH to Facilitate Arthroplasty Planning: A Pilot Study.

    PubMed

    Xu, Jie; Li, Deng; Ma, Ruo-fan; Barden, Bertram; Ding, Yue

    2015-11-01

    Total hip arthroplasty (THA) is challenging in cases of osteoarthritis secondary to developmental dysplasia of the hip (DDH). Acetabular deficiency makes the positioning of the acetabular component difficult. Computer tomography based, patient-individual three dimensional (3-D) rapid prototype technology (RPT)-models were used to plan the placement of acetabular cup so that a surgeon was able to identify pelvic structures, assess the ideal extent of reaming and determine the size of cup after a reconstructive procedure. Intraclass correlation coefficients (ICCs) were used to analyze the agreement between the sizes of chosen components on the basis of preoperative planning and the actual sizes used in the operation. The use of the 3-D RPT-model facilitates the surgical procedures due to better planning and improved orientation. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The use of a block diagram simulation language for rapid model prototyping

    NASA Technical Reports Server (NTRS)

    Whitlow, Jonathan E.

    1995-01-01

    The research performed this summer focussed on the development of a predictive model for the loading of liquid oxygen (LO2) into the external tank (ET) of the shuttle prior to launch. A predictive model can greatly aid the operational personnel since instrumentation aboard the orbiter and ET is limited due to weight constraints. The model, which focuses primarily on the orbiter section of the system was developed using a block diagram based simulation language known as VisSim. Simulations were run on LO2 loading data for shuttle flights STS50 and STS55 and the model was demonstrated to accurately predict the sensor data recorded for these flights. As a consequence of the simulation results, it can be concluded that the software tool can be very useful for rapid prototyping of complex models.

  18. Novel CAD/CAM rapid prototyping of next-generation biomedical devices

    NASA Astrophysics Data System (ADS)

    Doraiswamy, Anand

    An aging population with growing healthcare needs demands multifaceted tools for diagnosis and treatment of health conditions. In the near-future, drug-administration devices, implantable devices/sensors, enhanced prosthesis, artificial and unique functional tissue constructs will become increasingly significant. Conventional technologies for mass-produced implants do not adequately take individual patient anatomy into consideration. Development of novel CAD/CAM rapid prototyping techniques may significantly accelerate progress of these devices for next-generation patient-care. In this dissertation, several novel rapid prototyping techniques have been introduced for next-generation biomedical applications. Two-photon polymerization was developed to microfabricate scaffolds for tissue engineering, microneedles for drug-delivery and ossicular replacement prostheses. Various photoplymers were evaluated for feasibility, mechanical properties, cytotoxicity, and surface properties. Laser direct write using MDW was utilized for developing microstructures of bioceramics such as hydroxyapatite, and viable mammalian osteosarcoma cells. CAD/CAM laser micromachining (CLM) was developed to engineer biointerfaces as surface recognition regions for differential adherence of cells and growth into tissue-like networks. CLM was also developed for engineering multi-cellular vascular networks. Cytotoxic evaluations and growth studies demonstrated VEGF-induced proliferation of HAAE-1 human aortic endothelial cells with inhibition of HA-VSMC human aortic smooth muscle cells. Finally, piiezoelectric inkjet printing was developed for controlled administration of natural and synthetic adhesives to overcome several problems associated with conventional tissue bonding materials, and greatly improve wound-repair in next generation eye repair, fracture fixation, organ fixation, wound closure, tissue engineering, and drug delivery devices.

  19. [The reliability of dento-maxillary models created by cone-beam CT and rapid prototyping:a comparative study].

    PubMed

    Lv, Yan; Yan, Bin; Wang, Lin; Lou, Dong-hua

    2012-04-01

    To analyze the reliability of the dento-maxillary models created by cone-beam CT and rapid prototyping (RP). Plaster models were obtained from 20 orthodontic patients who had been scanned by cone-beam CT and 3-D models were formed after the calculation and reconstruction of software. Then, computerized composite models (RP models) were produced by rapid prototyping technique. The crown widths, dental arch widths and dental arch lengths on each plaster model, 3-D model and RP model were measured, followed by statistical analysis with SPSS17.0 software package. For crown widths, dental arch lengths and crowding, there were significant differences(P<0.05) among the 3 models, but the dental arch widths were on the contrary. Measurements on 3-D models were significantly smaller than those on other two models(P<0.05). Compared with 3-D models, RP models had more numbers which were not significantly different from those on plaster models(P>0.05). The regression coefficient among three models were significantly different(P<0.01), ranging from 0.8 to 0.9. But between RP and plaster models was bigger than that between 3-D and plaster models. There is high consistency within 3 models, while some differences were accepted in clinic. Therefore, it is possible to substitute 3-D and RP models for plaster models in order to save storage space and improve efficiency.

  20. TOPPE: A framework for rapid prototyping of MR pulse sequences.

    PubMed

    Nielsen, Jon-Fredrik; Noll, Douglas C

    2018-06-01

    To introduce a framework for rapid prototyping of MR pulse sequences. We propose a simple file format, called "TOPPE", for specifying all details of an MR imaging experiment, such as gradient and radiofrequency waveforms and the complete scan loop. In addition, we provide a TOPPE file "interpreter" for GE scanners, which is a binary executable that loads TOPPE files and executes the sequence on the scanner. We also provide MATLAB scripts for reading and writing TOPPE files and previewing the sequence prior to hardware execution. With this setup, the task of the pulse sequence programmer is reduced to creating TOPPE files, eliminating the need for hardware-specific programming. No sequence-specific compilation is necessary; the interpreter only needs to be compiled once (for every scanner software upgrade). We demonstrate TOPPE in three different applications: k-space mapping, non-Cartesian PRESTO whole-brain dynamic imaging, and myelin mapping in the brain using inhomogeneous magnetization transfer. We successfully implemented and executed the three example sequences. By simply changing the various TOPPE sequence files, a single binary executable (interpreter) was used to execute several different sequences. The TOPPE file format is a complete specification of an MR imaging experiment, based on arbitrary sequences of a (typically small) number of unique modules. Along with the GE interpreter, TOPPE comprises a modular and flexible platform for rapid prototyping of new pulse sequences. Magn Reson Med 79:3128-3134, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Automated Test Case Generation for an Autopilot Requirement Prototype

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Rungta, Neha; Feary, Michael

    2011-01-01

    Designing safety-critical automation with robust human interaction is a difficult task that is susceptible to a number of known Human-Automation Interaction (HAI) vulnerabilities. It is therefore essential to develop automated tools that provide support both in the design and rapid evaluation of such automation. The Automation Design and Evaluation Prototyping Toolset (ADEPT) enables the rapid development of an executable specification for automation behavior and user interaction. ADEPT supports a number of analysis capabilities, thus enabling the detection of HAI vulnerabilities early in the design process, when modifications are less costly. In this paper, we advocate the introduction of a new capability to model-based prototyping tools such as ADEPT. The new capability is based on symbolic execution that allows us to automatically generate quality test suites based on the system design. Symbolic execution is used to generate both user input and test oracles user input drives the testing of the system implementation, and test oracles ensure that the system behaves as designed. We present early results in the context of a component in the Autopilot system modeled in ADEPT, and discuss the challenges of test case generation in the HAI domain.

  2. Communication and logging hub for rapid prototyping of environmental sensors: presenting the Smartphone.

    NASA Astrophysics Data System (ADS)

    Hut, R.

    2017-12-01

    When desiging prototype sensors for environmental variables a critical step is a comparison campaign where the new sensor is compared to current state of the art sensors. In this step one of the headaches for researchers can be connecting their sensor to a logging or communication device. I present a simple solution: to use smartphone that scans for Bluetooth Low Energy transmissions and uploads any measurement to a data server. In this way the prototype sensor only has to transmit its measurement values over BLE, which can be done using off-the-shelf components. The sensors don't have to be physically connected to the phone, allowing for very rapid deployment of sensors in locations that have a communication hub (ie. phone) installed. The communication and logging hub consists of nothing more than a low cost Android smartphone running a dedicated app. The phone is encased in a waterproof box with a large powerbank and a solar panel. I will demonstrate this live at the Fall Meeting. By installing these phones along permanent WMO certified station locations, comparisons campaigns can use the "golden standard" from the WMO without much problems.

  3. Efficient Strategies for Active Interface-Level Network Topology Discovery

    DTIC Science & Technology

    2013-09-01

    Network Information Centre API Application Programming Interface APNIC Asia-Pacific Network Information Centre ARIN American Registry for Internet Numbers...very convenient Application Programming Interface ( API ) for easy primitive implementation. Ark’s API facilitates easy development and rapid...prototyping – important attributes as the char- acteristics of our primitives evolve. The API allows a high-level of abstraction, which in turn leads to rapid

  4. The next generation

    NASA Technical Reports Server (NTRS)

    Yudkin, Howard

    1988-01-01

    The next generation of computer systems are studied by examining the processes and methodologies. The present generation is ok for small projects, but not so good for large projects. They are not good for addressing the iterative nature of requirements, resolution, and implementation. They do not address complexity issues of requirements stabilization. They do not explicitly address reuse opportunities, and they do not help with people shortages. Therefore, there is a need to define and automate improved software engineering processes. Some help may be gained by reuse and prototyping, which are two sides of the same coin. Reuse library parts are used to generate good approximations to desired solutions, i.e., prototypes. And rapid prototype composition implies use of preexistent parts, i.e., reusable parts.

  5. Assessment of polycarbonate filter in a molecular analytical system for the microbiological quality monitoring of recycled waters onboard ISS.

    PubMed

    Bechy-Loizeau, Anne-Laure; Flandrois, Jean-Pierre; Abaibou, Hafid

    2015-07-01

    On the ISS, as on Earth, water is an essential element for life and its quality control on a regular basis allows to ensure the health of the crew and the integrity of equipment. Currently, microbial water analysis onboard ISS still relies on the traditional culture-based microbiology methods. Molecular methods based on the amplification of nucleic acids for microbiological analysis of water quality show enormous potential and are considered as the best alternative to culture-based methods. For this reason, the Midass, a fully integrated and automated prototype was designed conjointly by ESA and bioMérieux for a rapid monitoring of the microbiological quality of air. The prototype allows air sampling, sample processing and the amplification/detection of nucleic acids. We describe herein the proof of principle of an analytical approach based on molecular biology that could fulfill the ESA's need for a rapid monitoring of the microbiological quality of recycled water onboard ISS. Both concentration and recovery of microorganisms are the main critical steps when the microfiltration technology is used for water analysis. Among filters recommended standards for monitoring the microbiological quality of the water, the polycarbonate filter was fully in line with the requirements of the ISO 7704-1985 standard in terms of efficacy of capture and recovery of bacteria. Moreover, this filter does not retain nucleic acids on the surface and has no inhibitory effect on their downstream processing steps such as purification and amplification/detection. Although the Midass system was designed for the treatment of air samples, the first results on the integration of PC filters were encouraging. Nevertheless, system modifications are needed to better adapt the Midass system for the monitoring of the microbiological water quality. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  6. An Automated Sample Preparation Instrument to Accelerate Positive Blood Cultures Microbial Identification by MALDI-TOF Mass Spectrometry (Vitek®MS).

    PubMed

    Broyer, Patrick; Perrot, Nadine; Rostaing, Hervé; Blaze, Jérome; Pinston, Frederic; Gervasi, Gaspard; Charles, Marie-Hélène; Dachaud, Fabien; Dachaud, Jacques; Moulin, Frederic; Cordier, Sylvain; Dauwalder, Olivier; Meugnier, Hélène; Vandenesch, Francois

    2018-01-01

    Sepsis is the leading cause of death among patients in intensive care units (ICUs) requiring an early diagnosis to introduce efficient therapeutic intervention. Rapid identification (ID) of a causative pathogen is key to guide directed antimicrobial selection and was recently shown to reduce hospitalization length in ICUs. Direct processing of positive blood cultures by MALDI-TOF MS technology is one of the several currently available tools used to generate rapid microbial ID. However, all recently published protocols are still manual and time consuming, requiring dedicated technician availability and specific strategies for batch processing. We present here a new prototype instrument for automated preparation of Vitek ® MS slides directly from positive blood culture broth based on an "all-in-one" extraction strip. This bench top instrument was evaluated on 111 and 22 organisms processed using artificially inoculated blood culture bottles in the BacT/ALERT ® 3D (SA/SN blood culture bottles) or the BacT/ALERT Virtuo TM system (FA/FN Plus bottles), respectively. Overall, this new preparation station provided reliable and accurate Vitek MS species-level identification of 87% (Gram-negative bacteria = 85%, Gram-positive bacteria = 88%, and yeast = 100%) when used with BacT/ALERT ® 3D and of 84% (Gram-negative bacteria = 86%, Gram-positive bacteria = 86%, and yeast = 75%) with Virtuo ® instruments, respectively. The prototype was then evaluated in a clinical microbiology laboratory on 102 clinical blood culture bottles and compared to routine laboratory ID procedures. Overall, the correlation of ID on monomicrobial bottles was 83% (Gram-negative bacteria = 89%, Gram-positive bacteria = 79%, and yeast = 78%), demonstrating roughly equivalent performance between manual and automatized extraction methods. This prototype instrument exhibited a high level of performance regardless of bottle type or BacT/ALERT system. Furthermore, blood culture workflow could potentially be improved by converting direct ID of positive blood cultures from a batch-based to real-time and "on-demand" process.

  7. A real-time dashboard for managing pathology processes

    PubMed Central

    Halwani, Fawaz; Li, Wei Chen; Banerjee, Diponkar; Lessard, Lysanne; Amyot, Daniel; Michalowski, Wojtek; Giffen, Randy

    2016-01-01

    Context: The Eastern Ontario Regional Laboratory Association (EORLA) is a newly established association of all the laboratory and pathology departments of Eastern Ontario that currently includes facilities from eight hospitals. All surgical specimens for EORLA are processed in one central location, the Department of Pathology and Laboratory Medicine (DPLM) at The Ottawa Hospital (TOH), where the rapid growth and influx of surgical and cytology specimens has created many challenges in ensuring the timely processing of cases and reports. Although the entire process is maintained and tracked in a clinical information system, this system lacks pre-emptive warnings that can help management address issues as they arise. Aims: Dashboard technology provides automated, real-time visual clues that could be used to alert management when a case or specimen is not being processed within predefined time frames. We describe the development of a dashboard helping pathology clinical management to make informed decisions on specimen allocation and tracking. Methods: The dashboard was designed and developed in two phases, following a prototyping approach. The first prototype of the dashboard helped monitor and manage pathology processes at the DPLM. Results: The use of this dashboard helped to uncover operational inefficiencies and contributed to an improvement of turn-around time within The Ottawa Hospital's DPML. It also allowed the discovery of additional requirements, leading to a second prototype that provides finer-grained, real-time information about individual cases and specimens. Conclusion: We successfully developed a dashboard that enables managers to address delays and bottlenecks in specimen allocation and tracking. This support ensures that pathology reports are provided within time frame standards required for high-quality patient care. Given the importance of rapid diagnostics for a number of diseases, the use of real-time dashboards within pathology departments could contribute to improving the quality of patient care beyond EORLA's. PMID:27217974

  8. Rapid Stencil Mask Fabrication Enabled One-Step Polymer-Free Graphene Patterning and Direct Transfer for Flexible Graphene Devices

    PubMed Central

    Yong, Keong; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo

    2016-01-01

    We report a one-step polymer-free approach to patterning graphene using a stencil mask and oxygen plasma reactive-ion etching, with a subsequent polymer-free direct transfer for flexible graphene devices. Our stencil mask is fabricated via a subtractive, laser cutting manufacturing technique, followed by lamination of stencil mask onto graphene grown on Cu foil for patterning. Subsequently, micro-sized graphene features of various shapes are patterned via reactive-ion etching. The integrity of our graphene after patterning is confirmed by Raman spectroscopy. We further demonstrate the rapid prototyping capability of a stretchable, crumpled graphene strain sensor and patterned graphene condensation channels for potential applications in sensing and heat transfer, respectively. We further demonstrate that the polymer-free approach for both patterning and transfer to flexible substrates allows the realization of cleaner graphene features as confirmed by water contact angle measurements. We believe that our new method promotes rapid, facile fabrication of cleaner graphene devices, and can be extended to other two dimensional materials in the future. PMID:27118249

  9. Open Biomedical Engineering education in Africa.

    PubMed

    Ahluwalia, Arti; Atwine, Daniel; De Maria, Carmelo; Ibingira, Charles; Kipkorir, Emmauel; Kiros, Fasil; Madete, June; Mazzei, Daniele; Molyneux, Elisabeth; Moonga, Kando; Moshi, Mainen; Nzomo, Martin; Oduol, Vitalice; Okuonzi, John

    2015-08-01

    Despite the virtual revolution, the mainstream academic community in most countries remains largely ignorant of the potential of web-based teaching resources and of the expansion of open source software, hardware and rapid prototyping. In the context of Biomedical Engineering (BME), where human safety and wellbeing is paramount, a high level of supervision and quality control is required before open source concepts can be embraced by universities and integrated into the curriculum. In the meantime, students, more than their teachers, have become attuned to continuous streams of digital information, and teaching methods need to adapt rapidly by giving them the skills to filter meaningful information and by supporting collaboration and co-construction of knowledge using open, cloud and crowd based technology. In this paper we present our experience in bringing these concepts to university education in Africa, as a way of enabling rapid development and self-sufficiency in health care. We describe the three summer schools held in sub-Saharan Africa where both students and teachers embraced the philosophy of open BME education with enthusiasm, and discuss the advantages and disadvantages of opening education in this way in the developing and developed world.

  10. X-ray scan detection for cargo integrity

    NASA Astrophysics Data System (ADS)

    Valencia, Juan; Miller, Steve

    2011-04-01

    The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, and easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL's prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels.

  11. Lessons Learned from Applying Design Thinking in a NASA Rapid Design Study in Aeronautics

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria; Bakula, Casey; Castner, Raymond

    2017-01-01

    In late 2015, NASA's Aeronautics Research Mission Directorate (ARMD) funded an experiment in rapid design and rapid teaming to explore new approaches to solving challenging design problems in aeronautics in an effort to cultivate and foster innovation. This report summarizes several lessons learned from the rapid design portion of the study. This effort entailed learning and applying design thinking, a human-centered design approach, to complete the conceptual design for an open-ended design challenge within six months. The design challenge focused on creating a capability to advance experimental testing of autonomous aeronautics systems, an area of great interest to NASA, the US government as a whole, and an entire ecosystem of users and developers around the globe. A team of nine civil servant researchers from three of NASA's aeronautics field centers with backgrounds in several disciplines was assembled and rapidly trained in design thinking under the guidance of the innovation and design firm IDEO. The design thinking process, while used extensively outside the aerospace industry, is less common and even counter to many practices within the aerospace industry. In this report, several contrasts between common aerospace research and development practices and design thinking are discussed, drawing upon the lessons learned from the NASA rapid design study. The lessons discussed included working towards a design solution without a set of detailed design requirements, which may not be practical or even feasible for management to ascertain for complex, challenging problems. This approach allowed for the possibility of redesigning the original problem statement to better meet the needs of the users. Another lesson learned was to approach problems holistically from the perspective of the needs of individuals that may be affected by advances in topic area instead of purely from a technological feasibility viewpoint. The interdisciplinary nature of the design team also provided valuable experience by allowing team members from different technological backgrounds to work side-by-side instead of dividing into smaller teams, as is frequently done in traditional multidisciplinary design. The team also learned how to work with qualitative data obtained primarily through the 70-plus interviews that were conducted over the course of this project, which was a sharp contrast to using quantitative data with regards to identifying, capturing, analyzing, storing, and recalling the data. When identifying potential interviewees who may have useful contributions to the design subject area, the team found great value in talking to non-traditional users and potential beneficiaries of autonomous aeronautics systems whose impact on the aeronautics autonomy ecosystem is growing swiftly. Finally, the team benefitted from using "sacrificial prototyping," which is a method of rapidly prototyping draft concepts and ideas with the intent of enabling potential users to provide significant feedback early in the design process. This contrasts the more common approach of using expensive prototypes that focus on demonstrating technical feasibility. The unique design approach and lessons learned by the team throughout this process culminated in a final design concept that was quite different than what the team originally assumed would be the design concept initially. A summary of the more usercentered final design concept is also provided.

  12. Innovative Approaches to Space-Based Manufacturing and Rapid Prototyping of Composite Materials

    NASA Technical Reports Server (NTRS)

    Hill, Charles S.

    2012-01-01

    The ability to deploy large habitable structures, construct, and service exploration vehicles in low earth orbit will be an enabling capability for continued human exploration of the solar system. It is evident that advanced manufacturing methods to fabricate replacement parts and re-utilize launch vehicle structural mass by converting it to different uses will be necessary to minimize costs and allow flexibility to remote crews engaged in space travel. Recent conceptual developments and the combination of inter-related approaches to low-cost manufacturing of composite materials and structures are described in context leading to the possibility of on-orbit and space-based manufacturing.

  13. Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J.; Effinger, M.; Cooper, K. C.; Gordon, Gail (Technical Monitor)

    2002-01-01

    For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current CVI and PIP processes.

  14. Assessment of Data Assimilation with the Prototype High Resolution Rapid Refresh for Alaska (HRRRAK)

    NASA Technical Reports Server (NTRS)

    Harrison, Kayla; Morton, Don; Zavodsky, Brad; Chou, Shih

    2012-01-01

    The Arctic Region Supercomputing Center has been running a quasi-operational prototype of a High Resolution Rapid Refresh for Alaska (HRRRAK) at 3km resolution, initialized by the 13km Rapid Refresh (RR). Although the RR assimilates a broad range of observations into its analyses, experiments with the HRRRAK suggest that there may be added value in assimilating observations into the 3km initial conditions, downscaled from the 13km RR analyses. The NASA Short-term Prediction Research and Transition (SPoRT) group has been using assimilated data from the Atmospheric Infrared Sounder (AIRS) in WRF and WRF-Var simulations since 2004 with promising results. The sounder is aboard NASA s Aqua satellite, and provides vertical profiles of temperature and humidity. The Gridpoint Statistical Interpolation (GSI) system is then used to assimilate these vertical profiles into WRF forecasts. In this work, we assess the use of AIRS data in combination with other global data assimilation products on non-assimilated HRRRAK case studies. Two separate weather events will be assessed to qualitatively and quantitatively assess the impacts of AIRS data on HRRRAK forecasts.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, B.P.

    This report presents a historical perspective of the difficulties associated with user interface design and a review of interface design techniques. Included in the report is an application using rapid-interface-prototyping to the development of CAMP's user interface. 24 refs., 2 tabs.

  16. Rapid Prototyping in Technology Education.

    ERIC Educational Resources Information Center

    Flowers, Jim; Moniz, Matt

    2002-01-01

    Describes how technology education majors are using a high-tech model builder, called a fused deposition modeling machine, to develop their models directly from computer-based designs without any machining. Gives examples of applications in technology education. (JOW)

  17. Vulnerability mitigation : technology assessment and deployment

    DOT National Transportation Integrated Search

    2003-01-01

    Because of the new terrorist threats since the September 11, 2001 attacks, rapid development, prototyping, and deployment of systems has been necessary. A well integrated physical security system that combines state of the art security and informatio...

  18. Tera-OP Reliable Intelligently Adaptive Processing System (TRIPS) Implementation

    DTIC Science & Technology

    2008-09-01

    38 6.8 Instruction Scheduling ...39 6.8.1 Spatial Path Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.8.2...oblivious scheduling for rapid application prototyping and deployment, environmental adaptivity for resilience in hostile environments, and dynamic

  19. A neurosurgical simulation of skull base tumors using a 3D printed rapid prototyping model containing mesh structures.

    PubMed

    Kondo, Kosuke; Harada, Naoyuki; Masuda, Hiroyuki; Sugo, Nobuo; Terazono, Sayaka; Okonogi, Shinichi; Sakaeyama, Yuki; Fuchinoue, Yutaka; Ando, Syunpei; Fukushima, Daisuke; Nomoto, Jun; Nemoto, Masaaki

    2016-06-01

    Deep regions are not visible in three-dimensional (3D) printed rapid prototyping (RP) models prepared from opaque materials, which is not the case with translucent images. The objectives of this study were to develop an RP model in which a skull base tumor was simulated using mesh, and to investigate its usefulness for surgical simulations by evaluating the visibility of its deep regions. A 3D printer that employs binder jetting and is mainly used to prepare plaster models was used. RP models containing a solid tumor, no tumor, and a mesh tumor were prepared based on computed tomography, magnetic resonance imaging, and angiographic data for four cases of petroclival tumor. Twelve neurosurgeons graded the three types of RP model into the following four categories: 'clearly visible,' 'visible,' 'difficult to see,' and 'invisible,' based on the visibility of the internal carotid artery, basilar artery, and brain stem through a craniotomy performed via the combined transpetrosal approach. In addition, the 3D positional relationships between these structures and the tumor were assessed. The internal carotid artery, basilar artery, and brain stem and the positional relationships of these structures with the tumor were significantly more visible in the RP models with mesh tumors than in the RP models with solid or no tumors. The deep regions of PR models containing mesh skull base tumors were easy to visualize. This 3D printing-based method might be applicable to various surgical simulations.

  20. Plan to procedure: combining 3D templating with rapid prototyping to enhance pedicle screw placement

    NASA Astrophysics Data System (ADS)

    Augustine, Kurt E.; Stans, Anthony A.; Morris, Jonathan M.; Huddleston, Paul M.; Matsumoto, Jane M.; Holmes, David R., III; Robb, Richard A.

    2010-02-01

    Spinal fusion procedures involving the implantation of pedicle screws have steadily increased over the past decade because of demonstrated improvement in biomechanical stability of the spine. However, current methods of spinal fusion carries a risk of serious vascular, visceral, and neurological injury caused by inaccurate placement or inappropriately sized instrumentation, which may lead to patient paralysis or even fatality. 3D spine templating software developed by the Biomedical Imaging Resource (BIR) at Mayo Clinic allows the surgeon to virtually place pedicle screws using pre-operative 3D CT image data. With the template plan incorporated, a patient-specific 3D anatomic model is produced using a commercial rapid prototyping system. The pre-surgical plan and the patient-specific model then are used in the procedure room to provide real-time visualization and quantitative guidance for accurate placement of each pedicle screw, significantly reducing risk of injury. A pilot study was conducted at Mayo Clinic by the Department of Radiology, the Department of Orthopedics, and the BIR, involving seven complicated pediatric spine cases. In each case, pre-operative 3D templating was carried out and patient specific models were generated. The plans and the models were used intra-operatively, providing precise pedicle screw starting points and trajectories. Postoperative assessment by the surgeon confirmed all seven operations were successful. Results from the study suggest that patient-specific, 3D anatomic models successfully acquired from 3D templating tools are valuable for planning and conducting pedicle screw insertion procedures.

Top