Sample records for rapid sensitive selective

  1. Colorimetric and fluorescent detection of hydrazine with high sensitivity and excellent selectivity

    NASA Astrophysics Data System (ADS)

    Shi, Bingjie; Qi, Sujie; Yu, Mingming; Liu, Chunxia; Li, Zhanxian; Wei, Liuhe; Ni, Zhonghai

    2018-01-01

    It is critical to develop probes for rapid, selective, and sensitive detection of the highly toxic hydrazine in both environmental and biological science. In this work, under mild condition, a novel colorimetric and off-on fluorescent probe was synthesized for rapid recognition of hydrazine with excellent selectivity over other various species including some biological species, metal ions and anions. The limit of quantification (LOQ) value was 1.5 × 10- 4 M-3.2 × 10- 3 M (colorimetric method) and 1.5 × 10- 4 M - 3.2 × 10- 3 M (fluorescent method) with as low as detection limit of 46.2 μM.

  2. Synthesis of molecularly imprinted dye-silica nanocomposites with high selectivity and sensitivity: Fluorescent imprinted sensor for rapid and efficient detection of τ-fluvalinate in vodka.

    PubMed

    Wang, Yunyun; Wang, Jixiang; Cheng, Rujia; Sun, Lin; Dai, Xiaohui; Yan, Yongsheng

    2018-04-01

    An imprinted fluorescent sensor was fabricated based on SiO 2 nanoparticles encapsulated with a molecularly imprinted polymer containing allyl fluorescein. High fluorine cypermethirin as template molecules, methyl methacrylate as functional monomer, and allyl fluorescein as optical materials synthesized a core-shell fluorescent molecular imprinted sensor, which showed a high and rapid sensitivity and selectivity for the detection of τ-fluvalinate. The sensor presented appreciable sensitivity with a limit of 13.251 nM, rapid detection that reached to equilibrium within 3 min, great linear relationship in the relevant concentration range from 0 to 150 nM, and excellent selectivity over structural analogues. In addition, the fluorescent sensor demonstrated desirable regeneration ability (eight cycling operations). The molecularly imprinted polymers ensured specificity, while the fluorescent dyes provided the stabile sensitivity. Finally, an effective application of the sensor was implemented by the detection of τ-fluvalinate in real samples from vodka. The molecularly imprinted fluorescent sensor showed a promising potential in environmental monitoring and food safety. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rapid analysis of N-linked oligosaccharides in glycoproteins (ovalbumin, ribonuclease B and fetuin) by reversed-phase ultra-performance liquid chromatography with fluorescence detection and electrospray ionization time-of-flight mass spectrometry.

    PubMed

    Kurihara, Takamasa; Min, Jun Zhe; Hirata, Asuka; Toyo'oka, Toshimasa; Inagaki, Shinsuke

    2009-05-01

    Rapid, selective and sensitive determination of N-linked oligosaccharides in glycoproteins (ovalbumin, ribonuclease B and fetuin) was performed by ultra-performance liquid chromatography (UPLC) with fluorescence (FL) and electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). The asparaginyl-oligosaccharide moiety was first liberated from each glycoprotein by pronase E (a proteolitic enzyme). The oligosaccharide fractions separated by gel-permeation chromatography were labeled with 1-pyrenesulfonyl chloride (PSC, a fluorescence reagent), separated by UPLC in a short run time, and then detected by FL and TOF-MS. The PSC-labeled oligosaccharides were selectively identified from the FL detection and then sensitively determined by ESI-TOF-MS. As the results, 15, eight and four kinds of N-linked oligosaccharides were detected from ovalbumin, ribonuclease B and fetuin, respectively. Because the present method is rapid (within 9 min), selective and sensitive (approximate 60 fmol, S/N = 5), the determination of N-linked oligosaccharides in various glycoproteins seems to be possible.

  4. Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor.

    PubMed

    Yu, Xiaofan; Chen, Fang; Wang, Ronghui; Li, Yanbin

    2018-01-20

    The rapid detection of foodborne pathogens is critical to ensure food safety. The objective of this study is to select aptamers specifically bound to Escherichia coli O157:H7 using the whole-bacterium SELEX (Systematic Evolution of Ligands by Exponential Enrichment) and apply the selected aptamer to a QCM (quartz crystal microbalance) sensor for rapid and sensitive detection of target bacteria. A total of 19 rounds of selection against live E. coli O157:H7 and 6 rounds of counter selection against a mixture of Staphylococcus aureus, Listeria monocytogenes, and Salmonella Typhimurium, were performed. The aptamer pool from the last round was cloned and sequenced. One sequence S1 that appeared 16 times was characterized and a dissociation constant (K d ) of 10.30nM was obtained. Subsequently, a QCM aptasensor was developed for the rapid detection of E. coli O157:H7. The limit of detection (LOD) and the detection time of the aptasensor was determined to be 1.46×10 3 CFU/ml and 50min, respectively. This study demonstrated that the ssDNA aptamer selected by the whole-bacterium SELEX possessed higher sensitivity than previous work and the potential use of the constructed QCM aptasensor in rapid screening of foodborne pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Aptamer Selection Express: A Novel Method for Rapid Single-Step Selection and Sensing of Aptamers

    PubMed Central

    Fan, Maomian; McBurnett, Shelly Roper; Andrews, Carrie J.; Allman, Amity M.; Bruno, John G.; Kiel, Johnathan L.

    2008-01-01

    Here we describe a new DNA capture element (DCE) sensing system, based on the quenching and dequenching of a double-stranded aptamer. This system shows very good sensitivity and thermal stability. While quenching, dequenching, and separating the DCE systems made from different aptamers (all selected by SELEX), an alternative method to rapidly select aptamers was developed—the Aptamer Selection Express (ASExp). This process has been used to select aptamers against different types of targets (Bacillus anthracis spores, Bacillus thuringiensis spores, MS-2 bacteriophage, ovalbumin, and botulinum neurotoxin). The DCE systems made from botulinum neurotoxin aptamers selected by ASExp have been investigated. The results of this investigation indicate that ASExp can be used to rapidly select aptamers for the DCE sensing system. PMID:19183794

  6. A novel immunochromatographic electrochemical biosensor for highly sensitive and selective detection of trichloropyridinol, a biomarker of exposure to chlorpyrifos.

    PubMed

    Wang, Limin; Lu, Donglai; Wang, Jun; Du, Dan; Zou, Zhexiang; Wang, Hua; Smith, Jordan N; Timchalk, Charles; Liu, Fengquan; Lin, Yuehe

    2011-02-15

    We present a novel portable immunochromatographic electrochemical biosensor (IEB) for simple, rapid, and sensitive biomonitoring of trichloropyridinol (TCP), a metabolite biomarker of exposure to organophosphorus insecticides. Our new approach takes the advantage of immunochromatographic test strip for a rapid competitive immunoreaction and a disposable screen-printed carbon electrode for a rapid and sensitive electrochemical analysis of captured HRP labeling. Several key experimental parameters (e.g. immunoreaction time, the amount of HRP labeled TCP, concentration of the substrate for electrochemical measurements, and the blocking agents for the nitrocellulose membrane) were optimized to achieve a high sensitivity, selectivity and stability. Under optimal conditions, the IEB has demonstrated a wide linear range (0.1-100 ng/ml) with a detection limit as low as 0.1 ng/ml TCP. Furthermore, the IEB has been successfully applied for biomonitoring of TCP in the rat plasma samples with in vivo exposure to organophosphorus insecticides like Chlorpyrifos-oxon (CPF-oxon). The IEB thus opens up new pathways for designing a simple, rapid, clinically accurate, and quantitative tool for TCP detection, as well as holds a great promise for in-field screening of metabolite biomarkers, e.g., TCP, for humans exposed to organophosphorus insecticides. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. A highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB.

    PubMed

    Liang, Junfei; Wei, Ran; He, Shuai; Liu, Yikan; Guo, Lin; Li, Lidong

    2013-03-21

    Oncoprotein platelet derived growth factor-BB (PDGF-BB) is one of the most critical growth factors that regulates tumor growth and division. In this work, a highly sensitive and selective fluorescence resonance energy transfer (FRET) aptasensor for PDGF-BB detection based on the assembly of dye-labeled aptamer and graphene oxide (GO) is developed for the first time. Due to the non-covalent assembly between aptamer and GO, fluorescence quenching of the dye takes place because of FRET. In the presence of PDGF-BB, the binding between aptamer and PDGF-BB will disturb the interaction between aptamer and GO, and release the dye-labeled aptamer from the GO surface, resulting in restoration of the fluorophore fluorescence. Because of the high fluorescence quenching efficiency, unique structure, and electronic properties of GO, the GO aptasensor exhibits extraordinarily high sensitivity. We also demonstrate that two highly related molecular variants of PDGF (AA, AB) can be distinguished from PDGF-BB, which indicates the aptasensor has excellent selectivity. Such an aptasensor opens a rapid, selective and sensitive route for the detection of PDGF-BB and provides a promising strategy for other cancer-related proteins detections.

  8. Single-layer MnO2 nanosheets for sensitive and selective detection of glutathione by a colorimetric method

    NASA Astrophysics Data System (ADS)

    Di, Weihua; Zhang, Xiang; Qin, Weiping

    2017-04-01

    The rapid, sensitive and selective detection of glutathione (GSH) is of great importance in the biological systems. In this work, a template-free and one-step method was used to synthesize the single-layer MnO2 nanosheets via a redox reaction. The resulting product was characterized by XRD, TEM, FTIR, XPS and UV-vis absorption. The addition of GSH results in the change of solution color depth owing to the occurrence of a redox reaction between MnO2 and GSH, enabling colorimetric detection of GSH. At a pH of 3.6, the proposed sensor gives a linear calibration over a GSH concentration range of 10-100 μM, with a rapid response of less than 2 min and a low detection limit of 0.5 μM. The relative standard deviation for seven repeated determinations of GSH is lower than 5.6%. Furthermore, the chemical response of the synthesized MnO2 nanosheets toward GSH is selective. Owing to the advantages with good water solubility, rapid response, high sensitivity, good biocompatibility and operation simplicity, this two-dimensional MnO2-based sensing material might be potential for detecting GSH in biological applications.

  9. Gold nanoparticle-sensitized quartz crystal microbalance sensor for rapid and highly selective determination of Cu(II) ions.

    PubMed

    Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui

    2013-09-21

    A novel quartz crystal microbalance (QCM) sensor for rapid, highly selective and sensitive detection of copper ions was developed. As a signal amplifier, gold nanoparticles (Au NPs) were self-assembled onto the surface of the sensor. A simple dip-and-dry method enabled the whole detection procedure to be accomplished within 20 min. High selectivity of the sensor towards copper ions is demonstrated by both individual and coexisting assays with interference ions. This gold nanoparticle mediated amplification allowed a detection limit down to 3.1 μM. Together with good repeatability and regeneration, the QCM sensor was also applied to the analysis of copper contamination in drinking water. This work provides a flexible method for fabricating QCM sensors for the analysis of important small molecules in environmental and biological samples.

  10. Mapping dominant negative mutation for triforine sensitivity in lettuce and its use as a selectable marker for detecting hybrids.

    USDA-ARS?s Scientific Manuscript database

    Some lettuce cultivars are highly sensitive to triforine, an inhibitor of sterol biosynthesis found in some commercial systemic fungicides. First symptoms of a sensitive reaction are usually observed within 24 to 48 hours after treatment and include severe wilting, necrosis and rapid plant death. We...

  11. Direct measurement of glutamate release in the brain using a dual enzyme-based electrochemical sensor.

    PubMed

    Hu, Y; Mitchell, K M; Albahadily, F N; Michaelis, E K; Wilson, G S

    1994-10-03

    The in vivo measurement of the rapid changes in the extracellular concentrations of L-glutamic acid in the mammalian brain during normal neuronal activity or following excessive release due to episodes of anoxia or ischemia has not been possible to this date. Current techniques for the measurement of the release of endogenous glutamate into the extracellular space of the central nervous system are relatively slow and do not measure the actual concentration of free glutamate in the extracellular space. An enzyme-based electrode with rapid response times (about 1 s) and high degree of sensitivity (less than 2 microM) and selectivity for L-glutamic acid is described in this paper. This electrode has both L-glutamate and ascorbate oxidase immobilized on its surface. The latter enzyme removes almost completely any interferences produced by the high levels of extracellular ascorbate present in brain tissue. The response of the electrode to glutamate and other potentially interfering substances was fully characterized in vitro and its selectivity, sensitivity and rapidity in responding to a rise in extracellular glutamate concentrations was also demonstrated in vivo. Placement of the electrode in the dentate gyrus of the hippocampus led to the detection of both KCl-induced release of L-glutamic acid and the release induced by stimulation of the axons in the perforant pathway. The development of this selective, sensitive and rapidly responding glutamate sensor should make it now possible to measure the dynamic events associated with glutamate neurotransmission in the central nervous system.

  12. A rapid, sensitive and selective electrochemical biosensor with concanavalin A for the preemptive detection of norovirus.

    PubMed

    Hong, Sung A; Kwon, Joseph; Kim, Duwoon; Yang, Sung

    2015-02-15

    Norovirus (NoV) is a foodborne pathogen that can cause sporadic and epidemic gastrointestinal diseases. Rapid screening is crucial to promptly identify the presence of NoV and prevent food poisoning. Here, we present a sensitive, selective, and rapid electrochemical biosensor for the detection of NoV. The proposed electrochemical biosensor is composed of a nanostructured gold electrode conjugated with concanavalin A (ConA). ConA functions as a recognition element that selectively captures NoV. Cyclic voltammetry revealed a linear relationship (R(2) = 0.998) between the current and concentration of NoV (in the range of 10(2) and 10(6) copies/mL), with a relatively short assay time (1h) and a good detection limit (35 copies/mL). Additionally, the signals of Hepatitis A and E in the selectively test were found to be only 2.0% and 2.8% of the NoV signal at an identical concentration of 10(3) copies/mL, proving that the electrochemical biosensor has a selectively of approximately 98%. Moreover, the concentration of NoV was measured in a realistic environment, i.e., a sample solution extracted from lettuce, to demonstrate a potential application of the proposed biosensor (LoD = 60 copies/mL). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A Novel Sensitive Luminescence Probe Microspheres for Rapid and Efficient Detection of τ-Fluvalinate in Taihu Lake

    PubMed Central

    Wang, Jixiang; Wang, Yunyun; Qiu, Hao; Sun, Lin; Dai, Xiaohui; Pan, Jianming; Yan, Yongsheng

    2017-01-01

    Fluorescent molecularly imprinted polymers have shown great promise in biological or chemical separations and detection, due to their high stability, selectivity and sensitivity. In this work, fluorescent molecularly imprinted microsphere was synthesized via precipitation polymerization, which could separate efficiently and rapidly detect τ-fluvalinate (a toxic insecticide) in water samples, was reported. The fluorescent imprinted sensor showed excellent stability, outstanding selectivity and the limit of detection low to 12.14 nM, good regeneration ability which still kept good sensitivity after 8 cycling experiments and fluorescence quenching mechanism was illustrated in details. In addition, the fluorescent sensor was further used to detect τ-fluvalinate in real samples from Taihu Lake. Despite the relatively complex components of the environment water, the fluorescent imprinted microspheres sitll showed good recovery, clearly demonstrating the potental value of this smart sensor nanomaterial in environment monitoring. PMID:28485402

  14. Network and neuronal membrane properties in hybrid networks reciprocally regulate selectivity to rapid thalamocortical inputs.

    PubMed

    Pesavento, Michael J; Pinto, David J

    2012-11-01

    Rapidly changing environments require rapid processing from sensory inputs. Varying deflection velocities of a rodent's primary facial vibrissa cause varying temporal neuronal activity profiles within the ventral posteromedial thalamic nucleus. Local neuron populations in a single somatosensory layer 4 barrel transform sparsely coded input into a spike count based on the input's temporal profile. We investigate this transformation by creating a barrel-like hybrid network with whole cell recordings of in vitro neurons from a cortical slice preparation, embedding the biological neuron in the simulated network by presenting virtual synaptic conductances via a conductance clamp. Utilizing the hybrid network, we examine the reciprocal network properties (local excitatory and inhibitory synaptic convergence) and neuronal membrane properties (input resistance) by altering the barrel population response to diverse thalamic input. In the presence of local network input, neurons are more selective to thalamic input timing; this arises from strong feedforward inhibition. Strongly inhibitory (damping) network regimes are more selective to timing and less selective to the magnitude of input but require stronger initial input. Input selectivity relies heavily on the different membrane properties of excitatory and inhibitory neurons. When inhibitory and excitatory neurons had identical membrane properties, the sensitivity of in vitro neurons to temporal vs. magnitude features of input was substantially reduced. Increasing the mean leak conductance of the inhibitory cells decreased the network's temporal sensitivity, whereas increasing excitatory leak conductance enhanced magnitude sensitivity. Local network synapses are essential in shaping thalamic input, and differing membrane properties of functional classes reciprocally modulate this effect.

  15. Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid phase extraction and UPLC/MS/MS

    EPA Science Inventory

    A rapid and sensitive method has been developed for the analysis of 48 human prescription active pharmaceutical ingredients (APIs) and 6 metabolites of interest, utilizing selective solid-phase extraction (SPE) and ultra performance liquid chromatography in combination with tripl...

  16. Surface Coatings for Gas Detection via Porous Silicon

    NASA Astrophysics Data System (ADS)

    Ozdemir, Serdar; Li, Ji-Guang; Gole, James

    2009-03-01

    Nanopore covered microporous silicon interfaces have been formed via an electrochemical etch for gas sensor applications. Rapid reversible and sensitive gas sensors have been fabricated. The fabricated porous silicon (PS) gas sensors display the advantages of operation at room temperature as well as at a single, readily accessible temperature with an insensitivity to temperature drift; operation in a heat-sunk configuration, ease of coating with gas-selective materials; low cost of fabrication and operation, and the ability to rapidly assess false positives by operating the sensor in a pulsed mode. The PS surface has been modified with unique coatings on the basis of a general theory in order to achieve maximum sensitivity and selectivity. Sensing of NH3, NOx and PH3 at or below the ppm level have been observed. A typical PS nanostructure coated microstructured hybrid configuration when coated with tin oxide (NOx, CO) and gold nanostructures (NH3) provides a greatly increased sensitivity to the indicated gases. Al2O3 coating of the porous silicon using atomic layer deposition and its effect on PH3 sensing has been investigated. 20-100 nm TiO2 nanoparticles have been produced using sol-gel methods to coat PS surfaces and the effects on the selectivity and the sensitivity have been studied.

  17. A rapid and ultrasensitive SERRS assay for histidine and tyrosine based on azo coupling.

    PubMed

    Sui, Huimin; Wang, Yue; Yu, Zhi; Cong, Qian; Han, Xiao Xia; Zhao, Bing

    2016-10-01

    A simple and highly sensitive surface-enhanced resonance Raman scattering (SERRS)-based approach coupled with azo coupling reaction has been put forward for quantitative analysis of histidine and tyrosine. The SERRS-based assay is simple and rapid by mixing the azo reaction products with silver nanoparticles (AgNPs) for measurements within 2min. The limits of detection (LODs) of the method are as low as 4.33×10(-11) and 8.80×10(-11)M for histidine and tyrosine, respectively. Moreover, the SERRS fingerprint information specific to corresponding amino acids guarantees the selective detection for the target histidine and tyrosine. The results from serum indicated the potential application of the proposed approach into biological samples. Compared with the methods ever reported, the main advantages of this methodology are simpleness, rapidity without time-consuming separation or pretreatment steps, high sensitivity, selectivity and the potential for determination of other molecules containing imidazole or phenol groups. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection λ-cyhalothrin in environmental water.

    PubMed

    Wang, Jixiang; Qiu, Hao; Shen, Hongqiang; Pan, Jianming; Dai, Xiaohui; Yan, Yongsheng; Pan, Guoqing; Sellergren, Börje

    2016-11-15

    Molecularly imprinted fluorescent polymers have shown great promise in biological or chemical separations and detections, due to their high stability, selectivity and sensitivity. In this work, molecularly imprinted fluorescent hollow nanoparticles, which could rapidly and efficiently detect λ-cyhalothrin (a toxic insecticide) in water samples, was reported. The molecularly imprinted fluorescent sensor showed excellent sensitivity (the limit of detection low to 10.26nM), rapid detection rate (quantitative detection of λ-cyhalothrin within 8min), regeneration ability (maintaining good fluorescence properties after 8 cycling operation) and appreciable selectivity over several structural analogs. Moreover, the fluorescent sensor was further used to detect λ-cyhalothrin in real samples form the Beijing-Hangzhou Grand Canal Water. Despite the relatively complex components of the environmental water, the molecularly imprinted fluorescent hollow nanosensor still showed good recovery, clearly demonstrating the potential value of this smart sensor nanomaterial in environmental monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Reactive chromophores for sensitive and selective detection of chemical warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Frye-Mason, Greg; Leuschen, Martin; Wald, Lara; Paul, Kateri; Hancock, Lawrence F.

    2005-05-01

    A reactive chromophore developed at MIT exhibits sensitive and selective detection of surrogates for G-class nerve agents. This reporter acts by reacting with the agent to form an intermediate that goes through an internal cyclization reaction. The reaction locks the molecule into a form that provides a strong fluorescent signal. Using a fluorescent sensor platform, Nomadics has demonstrated rapid and sensitive detection of reactive simulants such as diethyl chloro-phosphate (simulant for sarin, soman, and related agents) and diethyl cyanophosphate (simulant for tabun). Since the unreacted chromophore does not fluoresce at the excitation wavelength used for the cyclized reporter, the onset of fluo-rescence can be easily detected. This fluorescence-based detection method provides very high sensitivity and could enable rapid detection at permissible exposure levels. Tests with potential interferents show that the reporter is very selective, with responses from only a few highly toxic, electrophilic chemicals such as phosgene, thionyl chloride, and strong acids such as HF, HCl, and nitric acid. Dimethyl methyl phosphonate (DMMP), a common and inactive simu-lant for other CW detectors, is not reactive enough to generate a signal. The unique selectivity to chemical reactivity means that a highly toxic and hazardous chemical is present when the reporter responds and illustrates that this sensor can provide very low false alarm rates. Current efforts focus on demonstrating the sensitivity and range of agents and toxic industrial chemicals detected with this reporter as well as developing additional fluorescent reporters for a range of chemical reactivity classes. The goal is to produce a hand-held sensor that can sensitively detect a broad range of chemical warfare agent and toxic industrial chemical threats.

  20. Genetic diversity among pandemic 2009 influenza viruses isolated from a transmission chain

    PubMed Central

    2013-01-01

    Background Influenza viruses such as swine-origin influenza A(H1N1) virus (A(H1N1)pdm09) generate genetic diversity due to the high error rate of their RNA polymerase, often resulting in mixed genotype populations (intra-host variants) within a single infection. This variation helps influenza to rapidly respond to selection pressures, such as those imposed by the immunological host response and antiviral therapy. We have applied deep sequencing to characterize influenza intra-host variation in a transmission chain consisting of three cases due to oseltamivir-sensitive viruses, and one derived oseltamivir-resistant case. Methods Following detection of the A(H1N1)pdm09 infections, we deep-sequenced the complete NA gene from two of the oseltamivir-sensitive virus-infected cases, and all eight gene segments of the viruses causing the remaining two cases. Results No evidence for the resistance-causing mutation (resulting in NA H275Y substitution) was observed in the oseltamivir-sensitive cases. Furthermore, deep sequencing revealed a subpopulation of oseltamivir-sensitive viruses in the case carrying resistant viruses. We detected higher levels of intra-host variation in the case carrying oseltamivir-resistant viruses than in those infected with oseltamivir-sensitive viruses. Conclusions Oseltamivir-resistance was only detected after prophylaxis with oseltamivir, suggesting that the mutation was selected for as a result of antiviral intervention. The persisting oseltamivir-sensitive virus population in the case carrying resistant viruses suggests either that a small proportion survive the treatment, or that the oseltamivir-sensitive virus rapidly re-establishes itself in the virus population after the bottleneck. Moreover, the increased intra-host variation in the oseltamivir-resistant case is consistent with the hypothesis that the population diversity of a RNA virus can increase rapidly following a population bottleneck. PMID:23587185

  1. Rapid Prototyping of a High Sensitivity Graphene Based Glucose Sensor Strip.

    PubMed

    Tehrani, Farshad; Reiner, Lisa; Bavarian, Behzad

    2015-01-01

    A rapid prototyping of an inexpensive, disposable graphene and copper nanocomposite sensor strip using polymeric flexible substrate for highly sensitive and selective nonenzymatic glucose detection has been developed and tested for direct oxidization of glucose. The CuNPs were electrochemically deposited on to the graphene sheets to improve electron transfer rates and to enhance electrocatalytic activity toward glucose. The graphene based electrode with CuNPs demonstrated a high degree of sensitivity (1101.3 ± 56 μA/mM.cm2), excellent selectivity (without an interference with Ascorbic Acid, Uric Acid, Dopamine, and Acetaminophen), good stability with a linear response to glucose ranging from 0.1 mM to 0.6 mM concentration, and detection limits of 0.025 mM to 0.9 mM. Characterization of the electrodes was performed by scanning electron microscopy (FESEM and SEM). The electrochemical properties of the modified graphene electrodes were inspected by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry.

  2. A rapid, ratiometric, enzyme-free, and sensitive single-step miRNA detection using three-way junction based FRET probes

    NASA Astrophysics Data System (ADS)

    Luo, Qingying; Liu, Lin; Yang, Cai; Yuan, Jing; Feng, Hongtao; Chen, Yan; Zhao, Peng; Yu, Zhiqiang; Jin, Zongwen

    2018-03-01

    MicroRNAs (miRNAs) are single stranded endogenous molecules composed of only 18-24 nucleotides which are critical for gene expression regulating the translation of messenger RNAs. Conventional methods based on enzyme-assisted nucleic acid amplification techniques have many problems, such as easy contamination, high cost, susceptibility to false amplification, and tendency to have sequence mismatches. Here we report a rapid, ratiometric, enzyme-free, sensitive, and highly selective single-step miRNA detection using three-way junction assembled (or self-assembled) FRET probes. The developed strategy can be operated within the linear range from subnanomolar to hundred nanomolar concentrations of miRNAs. In comparison with the traditional approaches, our method showed high sensitivity for the miRNA detection and extreme selectivity for the efficient discrimination of single-base mismatches. The results reveal that the strategy paved a new avenue for the design of novel highly specific probes applicable in diagnostics and potentially in microscopic imaging of miRNAs in real biological environments.

  3. Rapid Prototyping of a High Sensitivity Graphene Based Glucose Sensor Strip

    PubMed Central

    Tehrani, Farshad; Reiner, Lisa; Bavarian, Behzad

    2015-01-01

    A rapid prototyping of an inexpensive, disposable graphene and copper nanocomposite sensor strip using polymeric flexible substrate for highly sensitive and selective nonenzymatic glucose detection has been developed and tested for direct oxidization of glucose. The CuNPs were electrochemically deposited on to the graphene sheets to improve electron transfer rates and to enhance electrocatalytic activity toward glucose. The graphene based electrode with CuNPs demonstrated a high degree of sensitivity (1101.3±56 μA/mM.cm2), excellent selectivity (without an interference with Ascorbic Acid, Uric Acid, Dopamine, and Acetaminophen), good stability with a linear response to glucose ranging from 0.1 mM to 0.6 mM concentration, and detection limits of 0.025 mM to 0.9 mM. Characterization of the electrodes was performed by scanning electron microscopy (FESEM and SEM). The electrochemical properties of the modified graphene electrodes were inspected by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry. PMID:26678700

  4. Sensitive and selective determination of methylenedioxylated amphetamines by high-performance liquid chromatography with fluorimetric detection.

    PubMed

    Sadeghipour, F; Veuthey, J L

    1997-11-07

    A rapid, sensitive and selective liquid chromatographic method with fluorimetric detection was developed for the separation and quantification of four methylenedioxylated amphetamines without interference of other drugs of abuse and common substances found in illicit tablets. The method was validated by examining linearity, precision and accuracy as well as detection and quantification limits. Methylenedioxylated amphetamines were quantified in eight tablets from illicit drug seizures and results were quantitatively compared to HPLC-UV analyses. To demonstrate the better sensitivity of the fluorimetric detection, methylenedioxylated amphetamines were analyzed in serum after a liquid-liquid extraction procedure and results were also compared to HPLC-UV analyses.

  5. Comparison of two rapid biochemical tests and four chromogenic selective media for detection of carbapenemase-producing Gram-negative bacteria.

    PubMed

    Hinić, Vladimira; Amrein, Ivo; Stammler, Sabrina; Heckendorn, Judith; Meinel, Dominik; Frei, Reno; Egli, Adrian

    2017-04-01

    We evaluated RAPIDEC® CARBA NP, Neo-Rapid CARB, chromID® CARBA SMART (CARB/OXA), Brilliance™ CRE/ESBL, ChromArt CRE and BBL™ CHROMagar™ CPE for the detection of carbapenemase-producing bacteria. The analytical sensitivity of RAPIDEC® CARBA NP was better than that of Neo-Rapid CARB. A combination of carbapenemase and ESBL screening plates could be advantageous. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Spatial and temporal processing in healthy aging: implications for perceptions of driving skills.

    PubMed

    Conlon, Elizabeth; Herkes, Kathleen

    2008-07-01

    Sensitivity to the attributes of a stimulus (form or motion) and accuracy when detecting rapidly presented stimulus information were measured in older (N = 36) and younger (N = 37) groups. Before and after practice, the older group was significantly less sensitive to global motion (but not to form) and less accurate on a rapid sequencing task when detecting the individual elements presented in long but not short sequences. These effect sizes produced power for the different analyses that ranged between 0.5 and 1.00. The reduced sensitivity found among older individuals to temporal but not spatial stimuli, adds support to previous findings of a selective age-related deficit in temporal processing. Older women were significantly less sensitive than older men, younger men and younger women on the global motion task. Gender effects were evident when, in response to global motion stimuli, complex extraction and integration processes needed to be undertaken rapidly. Significant moderate correlations were found between age, global motion sensitivity and reports of perceptions of other vehicles and road signs when driving. These associations suggest that reduced motion sensitivity may produce functional difficulties for the older adults when judging speeds or estimating gaps in traffic while driving.

  7. A highly selective and sensitive fluorescent chemosensor and its application for rapid on-site detection of Al3 +

    NASA Astrophysics Data System (ADS)

    Yue, Xiao-li; Wang, Zhao-qing; Li, Chao-rui; Yang, Zheng-yin

    2018-03-01

    In this paper, a simple naphthalene-based derivative (HL) has been designed and synthesized as a Al3 +-selective fluorescent chemosensor based on the PET mechanism. HL exhibited high selectivity and sensitivity towards Al3 + over other commonly coexisting metal ions in ethanol with a detection limit of 2.72 nM. The 1:1 binding stoichiometry of the complex (HL-Al3 +) was determined from the Job's plot based on fluorescence titrations and the ESI-MS spectrum data. Moreover, the binding site of HL with Al3 + was assured by the 1H NMR titration experiment. The binding constant (Ka) of the complex (HL-Al3 +) was calculated to be 5.06 × 104 M- 1 according to the Benesi-Hildebrand equation. In addition, the recognizing process of HL towards Al3 + was chemically reversible by adding Na2EDTA. Importantly, HL could directly and rapidly detect aluminum ion through the filter paper without resorting to additional instrumental analysis.

  8. cap alpha. /sub 2/-Adrenergic receptor-mediated sensitization of forskolin-stimulated cyclic AMP production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.B.; Toews, M.L.; Turner, J.T.

    1987-03-01

    Preincubation of HT29 human colonic adenocarcinoma cells with ..cap alpha../sub 2/-adrenergic agonists resulted in a 10- to 20-fold increase in forskolin-stimulated cyclic AMP production as compared to cells preincubated without agonist. Similar results were obtained using either a (/sup 3/H)adenine prelabeling assay or a cyclic AMP radioimmunoassay to measure cyclic AMP levels. This phenomenon, which is termed sensitization, is ..cap alpha../sub 2/-adrenergic receptor-mediated and rapid in onset and reversal. Yohimbine, an ..cap alpha../sub 2/-adrenergic receptor-selective antagonist, blocked norepinephrine-induced sensitization, whereas prazosin (..cap alpha../sub 1/-adrenergic) and sotalol (..beta..-adrenergic) did not. The time for half-maximal sensitization was 5 min and the half-timemore » for reversal was 10 min. Only a 2-fold sensitization of cyclic AMP production stimulated by vasoactive intestinal peptide was observed, indicating that sensitization is relatively selective for forskolin. Sensitization reflects an increased production of cyclic AMP and not a decreased degradation of cyclic AMP, since incubation with a phosphodiesterase inhibitor and forskolin did not mimic sensitization. Increasing the levels of cyclic AMP during the preincubation had no effect on sensitization, indicating that sensitization is not caused by decreased cyclic AMP levels during the preincubation. This rapid and dramatic sensitization of forskolin-stimulated cyclic AMP production is a previously unreported effect that can be added to the growing list of ..cap alpha../sub 2/-adrenergic responses that are not mediated by a decrease in cyclic AMP.« less

  9. Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid, selective and sensitive colorimetric biosensing of Staphylococcus aureus.

    PubMed

    Liu, Pei; Han, Lei; Wang, Fei; Petrenko, Valery A; Liu, Aihua

    2016-08-15

    Staphylococcus aureus (S. aureus) is one of the most ubiquitous pathogens in public healthcare worldwide. It holds great insterest in establishing robust analytical method for S. aureus. Herein, we report a S. aureus-specific recognition element, isolated from phage monoclone GQTTLTTS, which was selected from f8/8 landscape phage library against S. aureus in a high-throughput way. By functionalizing cysteamine (CS)-stabilized gold nanoparticles (CS-AuNPs) with S. aureus-specific pVIII fusion protein (fusion-pVIII), a bifunctional nanoprobe (CS-AuNPs@fusion-pVIII) for S. aureus was developed. In this strategy, the CS-AuNPs@fusion-pVIII could be induced to aggregate quickly in the presence of target S. aureus, resulting in a rapid colorimetric response of gold nanoparticles. More importantly, the as-designed probe exhibited excellent selectivity over other bacteria. Thus, the CS-AuNPs@fusion-pVIII could be used as the indicator of target S. aureus. This assay can detect as low as 19CFUmL(-1)S. aureus within 30min. Further, this approach can be applicable to detect S. aureus in real water samples. Due to its sensitivity, specificity and rapidness, this proposed method is promising for on-site testing of S. aureus without using any costly instruments. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Novel Platform Development Using an Assembly of Carbon Nanotube, Nanogold and Immobilized RNA Capture Element Towards Rapid, Selective Sensing of Bacteria

    DTIC Science & Technology

    2012-06-12

    Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine . Anal. Chem. 2007, 79, 2583–2587...biosensor with aptamers as bio-recognition element. Sensors 2010, 10, 5859–5871. Sensors 2012, 12 8144 14. Hernandez, F.J.; Ozalp, V.C. Graphene

  11. Rapid, sensitive and direct analysis of exopolysaccharides from biofilm on aluminum surfaces exposed to sea water using MALDI-TOF MS.

    PubMed

    Hasan, Nazim; Gopal, Judy; Wu, Hui-Fen

    2011-11-01

    Biofilm studies have extensive significance since their results can provide insights into the behavior of bacteria on material surfaces when exposed to natural water. This is the first attempt of using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) for detecting the polysaccharides formed in a complex biofilm consisting of a mixed consortium of marine microbes. MALDI-MS has been applied to directly analyze exopolysaccharides (EPS) in the biofilm formed on aluminum surfaces exposed to seawater. The optimal conditions for MALDI-MS applied to EPS analysis of biofilm have been described. In addition, microbiologically influenced corrosion of aluminum exposed to sea water by a marine fungus was also observed and the fungus identity established using MALDI-MS analysis of EPS. Rapid, sensitive and direct MALDI-MS analysis on biofilm would dramatically speed up and provide new insights into biofilm studies due to its excellent advantages such as simplicity, high sensitivity, high selectivity and high speed. This study introduces a novel, fast, sensitive and selective platform for biofilm study from natural water without the need of tedious culturing steps or complicated sample pretreatment procedures. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection.

    PubMed

    Ma, Yingxin; Li, Hao; Peng, Shan; Wang, Leyu

    2012-10-02

    Rapid, sensitive, and selective detection of explosives such as 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP), especially using a facile paper sensor, is in high demand for homeland security and public safety. Although many strategies have been successfully developed for the detection of TNT, it is not easy to differentiate the influence from TNP. Also, few methods were demonstrated for the selective detection of TNP. In this work, via a facile and versatile method, 8-hydroxyquinoline aluminum (Alq(3))-based bluish green fluorescent composite nanospheres were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These polymer-coated nanocomposites are not only water-stable but also highly luminescent. Based on the dramatic and selective fluorescence quenching of the nanocomposites via adding TNP into the aqueous solution, a sensitive and robust platform was developed for visual detection of TNP in the mixture of nitroaromatics including TNT, 2,4-dinitrotoluene (DNT), and nitrobenzene (NB). Meanwhile, the fluorescence intensity is proportional to the concentration of TNP in the range of 0.05-7.0 μg/mL with the 3σ limit of detection of 32.3 ng/mL. By handwriting or finger printing with TNP solution as ink on the filter paper soaked with the fluorescent nanocomposites, the bluish green fluorescence was instantly and dramatically quenched and the dark patterns were left on the paper. Therefore, a convenient and rapid paper sensor for TNP-selective detection was fabricated.

  13. Characterization and Selection of Polymer Materials for Binary Munitions Storage. Part 3. Branch Content Determination.

    DTIC Science & Technology

    1987-09-01

    accuracy. The data aquisition system combines a position- sensitive X-ray detector with a 65 kilobyte microcomputer capable of operating as a...The rapid X-ray diffraction system measures intensity versus 20 patterns by placing the detector with its sensitivity axis positioned parallel to the...plane of the diffractometer (see Figure 2). As shown in Figure 2, the detector sensitivity axis z is coplanar with both the incident beam and the

  14. Facile and sensitive determination of N-nitrosamines in food samples by high-performance liquid chromatography via combining fluorescent labeling with dispersive liquid-liquid microextraction.

    PubMed

    Lu, Shuaimin; Wu, Di; Li, Guoliang; Lv, Zhengxian; Gong, Peiwei; Xia, Lian; Sun, Zhiwei; Chen, Guang; Chen, Xuefeng; You, Jinmao; Wu, Yongning

    2017-11-01

    The intake of N-nitrosamines (NAs) from foodstuffs is considered to be an important influence factor for several cancers. But the rapid and sensitive screening of NAs remains a challenge in the field of food safety. Inspired by that, a sensitive and rapid method was demonstrated for determination of five NAs (Nitrosopyrrolidine, Nitrosodimethylamine, Nitrosodiethylamine, Nitrosodipropylamine and Nitrosodibutylamine) using dispersive liquid-liquid microextraction (DLLME) followed by high-performance liquid chromatography with fluorescence detection (HPLC-FLD). The NAs were firstly denitrosated and labeled by 2-(11H-benzo[a]carbazol-11-yl) ethyl carbonochloridate (BCEC-Cl) and finally enriched by DLLME. Furthermore, the main DLLME conditions were optimized systematically. Under the optimal conditions, satisfactory limits of detection (LODs) were obtained with a range of 0.01-0.07ngg -1 , which were significantly lower than the reported methods. The developed method showed many merits including rapidity, simplicity, high sensitivity and excellent selectivity, which shows a broad prospect in food safety analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays.

    PubMed

    Lichtenstein, Amir; Havivi, Ehud; Shacham, Ronen; Hahamy, Ehud; Leibovich, Ronit; Pevzner, Alexander; Krivitsky, Vadim; Davivi, Guy; Presman, Igor; Elnathan, Roey; Engel, Yoni; Flaxer, Eli; Patolsky, Fernando

    2014-06-24

    The capability to detect traces of explosives sensitively, selectively and rapidly could be of great benefit for applications relating to civilian national security and military needs. Here, we show that, when chemically modified in a multiplexed mode, nanoelectrical devices arrays enable the supersensitive discriminative detection of explosive species. The fingerprinting of explosives is achieved by pattern recognizing the inherent kinetics, and thermodynamics, of interaction between the chemically modified nanosensors array and the molecular analytes under test. This platform allows for the rapid detection of explosives, from air collected samples, down to the parts-per-quadrillion concentration range, and represents the first nanotechnology-inspired demonstration on the selective supersensitive detection of explosives, including the nitro- and peroxide-derivatives, on a single electronic platform. Furthermore, the ultrahigh sensitivity displayed by our platform may allow the remote detection of various explosives, a task unachieved by existing detection technologies.

  16. Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays

    NASA Astrophysics Data System (ADS)

    Lichtenstein, Amir; Havivi, Ehud; Shacham, Ronen; Hahamy, Ehud; Leibovich, Ronit; Pevzner, Alexander; Krivitsky, Vadim; Davivi, Guy; Presman, Igor; Elnathan, Roey; Engel, Yoni; Flaxer, Eli; Patolsky, Fernando

    2014-06-01

    The capability to detect traces of explosives sensitively, selectively and rapidly could be of great benefit for applications relating to civilian national security and military needs. Here, we show that, when chemically modified in a multiplexed mode, nanoelectrical devices arrays enable the supersensitive discriminative detection of explosive species. The fingerprinting of explosives is achieved by pattern recognizing the inherent kinetics, and thermodynamics, of interaction between the chemically modified nanosensors array and the molecular analytes under test. This platform allows for the rapid detection of explosives, from air collected samples, down to the parts-per-quadrillion concentration range, and represents the first nanotechnology-inspired demonstration on the selective supersensitive detection of explosives, including the nitro- and peroxide-derivatives, on a single electronic platform. Furthermore, the ultrahigh sensitivity displayed by our platform may allow the remote detection of various explosives, a task unachieved by existing detection technologies.

  17. Investigation of the Sensitivity, Selectivity, and Reversibility of the Chemically-Sensitive Field-Effect Transistor (CHEMFET) to Detect Nitrogen Dioxide, Dimethyl Methylphosphonate, and Boron Trifluoride

    DTIC Science & Technology

    1993-09-01

    SENSITIVE FIELD- EFFECT TRANSISTOR (CHEMFET) TO DETECT NITROGEN DIOXIDE, DIMETHYL METHYLPHOSPHONATE, AND BORON TRIFLUORIDE CHAPTER 1 1 Introduction Our rapidly...AND REVERSIBILITY OF THE CHEMICALLY-SENSITIVE FIELD- EFFECT TRANSISTOR (CHEMFET) TO DETECT NITROGEN 3 E I1• DIOXIDE, DIMETHYL METHYLPHOSPHONATE, ELECTE...AND BORON TRIFLUORIDE Neal Terence Hauschild Second Lieutenant, USAF AFIT/GE/ENG/9 3S-10 93-23815I II11l11l11 l gll I 1i 1111 11 I DEPARTMENT OF THE

  18. Selective testing strategies for diagnosing group A streptococcal infection in children with pharyngitis: a systematic review and prospective multicentre external validation study

    PubMed Central

    Cohen, Jérémie F.; Cohen, Robert; Levy, Corinne; Thollot, Franck; Benani, Mohamed; Bidet, Philippe; Chalumeau, Martin

    2015-01-01

    Background: Several clinical prediction rules for diagnosing group A streptococcal infection in children with pharyngitis are available. We aimed to compare the diagnostic accuracy of rules-based selective testing strategies in a prospective cohort of children with pharyngitis. Methods: We identified clinical prediction rules through a systematic search of MEDLINE and Embase (1975–2014), which we then validated in a prospective cohort involving French children who presented with pharyngitis during a 1-year period (2010–2011). We diagnosed infection with group A streptococcus using two throat swabs: one obtained for a rapid antigen detection test (StreptAtest, Dectrapharm) and one obtained for culture (reference standard). We validated rules-based selective testing strategies as follows: low risk of group A streptococcal infection, no further testing or antibiotic therapy needed; intermediate risk of infection, rapid antigen detection for all patients and antibiotic therapy for those with a positive test result; and high risk of infection, empiric antibiotic treatment. Results: We identified 8 clinical prediction rules, 6 of which could be prospectively validated. Sensitivity and specificity of rules-based selective testing strategies ranged from 66% (95% confidence interval [CI] 61–72) to 94% (95% CI 92–97) and from 40% (95% CI 35–45) to 88% (95% CI 85–91), respectively. Use of rapid antigen detection testing following the clinical prediction rule ranged from 24% (95% CI 21–27) to 86% (95% CI 84–89). None of the rules-based selective testing strategies achieved our diagnostic accuracy target (sensitivity and specificity > 85%). Interpretation: Rules-based selective testing strategies did not show sufficient diagnostic accuracy in this study population. The relevance of clinical prediction rules for determining which children with pharyngitis should undergo a rapid antigen detection test remains questionable. PMID:25487666

  19. A Rapid and Sensitive Strip-Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY-Modified Silica Materials.

    PubMed

    Climent, Estela; Biyikal, Mustafa; Gawlitza, Kornelia; Dropa, Tomáš; Urban, Martin; Costero, Ana M; Martínez-Máñez, Ramón; Rurack, Knut

    2016-08-01

    Test strips that in combination with a portable fluorescence reader or digital camera can rapidly and selectively detect chemical warfare agents (CWAs) such as Tabun (GA), Sarin (GB), and Soman (GD) and their simulants in the gas phase have been developed. The strips contain spots of a hybrid indicator material consisting of a fluorescent BODIPY indicator covalently anchored into the channels of mesoporous SBA silica microparticles. The fluorescence quenching response allows the sensitive detection of CWAs in the μg m(-3) range in a few seconds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Human dopamine receptor nanovesicles for gate-potential modulators in high-performance field-effect transistor biosensors

    NASA Astrophysics Data System (ADS)

    Park, Seon Joo; Song, Hyun Seok; Kwon, Oh Seok; Chung, Ji Hyun; Lee, Seung Hwan; An, Ji Hyun; Ahn, Sae Ryun; Lee, Ji Eun; Yoon, Hyeonseok; Park, Tai Hyun; Jang, Jyongsik

    2014-03-01

    The development of molecular detection that allows rapid responses with high sensitivity and selectivity remains challenging. Herein, we demonstrate the strategy of novel bio-nanotechnology to successfully fabricate high-performance dopamine (DA) biosensor using DA Receptor-containing uniform-particle-shaped Nanovesicles-immobilized Carboxylated poly(3,4-ethylenedioxythiophene) (CPEDOT) NTs (DRNCNs). DA molecules are commonly associated with serious diseases, such as Parkinson's and Alzheimer's diseases. For the first time, nanovesicles containing a human DA receptor D1 (hDRD1) were successfully constructed from HEK-293 cells, stably expressing hDRD1. The nanovesicles containing hDRD1 as gate-potential modulator on the conducting polymer (CP) nanomaterial transistors provided high-performance responses to DA molecule owing to their uniform, monodispersive morphologies and outstanding discrimination ability. Specifically, the DRNCNs were integrated into a liquid-ion gated field-effect transistor (FET) system via immobilization and attachment processes, leading to high sensitivity and excellent selectivity toward DA in liquid state. Unprecedentedly, the minimum detectable level (MDL) from the field-induced DA responses was as low as 10 pM in real- time, which is 10 times more sensitive than that of previously reported CP based-DA biosensors. Moreover, the FET-type DRNCN biosensor had a rapid response time (<1 s) and showed excellent selectivity in human serum.

  1. Aptamer-Nanoparticle Strip Biosensor for Rapid and Sensitive Detection of Cancer Cells

    PubMed Central

    Mao, Xun; Phillips, Joseph A.; Xu, Hui; Tan, Weihong; Zeng, Lingwen; Liu, Guodong

    2009-01-01

    We report an aptamer-nanoparticle strip biosensor (ANSB) for the rapid, specific, sensitive and low-cost detection of circulating cancer cells. Known for their high specificity and affinity, aptamers were first selected from live cells by the cell-SELEX (systematic evolution of ligands by exponential enrichment) process. When next combined with the unique optical properties of gold nanoparticles (Au-NPs), ANSBs were prepared on a lateral flow device. Ramos cells were used as a model target cell to demonstrate proof of principle. Under optimal conditions, the ANSB was capable of detecting a minimum of 4000 Ramos cells without instrumentation (visual judgment) and 800 Ramos cells with a portable strip reader within 15 minutes. Importantly, ANSB has successfully detected Ramos cells in human blood, thus providing a rapid, sensitive and low-cost quantitative tool for the detection of circulating cancer cells. ANSB therefore shows great promise for in-field and point-of-care cancer diagnosis and therapy. PMID:19904989

  2. The genomic landscape of rapid repeated evolutionary ...

    EPA Pesticide Factsheets

    Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl hydrocarbon receptor–based signaling pathway as a shared target of selection. This suggests evolutionary constraint on adaptive solutions to complex toxicant mixtures at each site. However, distinct molecular variants apparently contribute to adaptive pathway modification among tolerant populations. Selection also targets other toxicity-mediatinggenes and genes of connected signaling pathways; this indicates complex tolerance phenotypes and potentially compensatory adaptations. Molecular changes are consistent with selection on standing genetic variation. In killifish, high nucleotide diversityhas likely been a crucial substrate for selective sweeps to propel rapid adaptation. This manuscript describes genomic evaluations that contribute to our understanding of the ecological and evolutionary risks associated with chronic contaminant exposures to wildlife populations. Here, we assessed genetic patterns associated with long-term response to an important class of highly toxic environmental pollutants. Specifically, chemical-specific tolerance has rapidly and repeatedly evolved in an estuarine fish species resident to estuaries of the Atlantic U.S. coast. We used laboratory studies to ch

  3. A novel, colorimetric method for biogenic amine detection based on arylalkylamine N-acetyltransferase.

    PubMed

    Leng, Pei-Qiang; Zhao, Feng-Lan; Yin, Bin-Cheng; Ye, Bang-Ce

    2015-05-21

    We developed a novel colorimetric method for rapid detection of biogenic amines based on arylalkylamine N-acetyltransferase (aaNAT). The proposed method offers distinct advantages including simple handling, high speed, low cost, good sensitivity and selectivity.

  4. Inflammatory Cytokines as Preclinical Markers of Adverse Responses to Chemical Stressors

    EPA Science Inventory

    Abstract: The in vivo cytokine response to chemical stressors is a promising mainstream tool used to assess potential systemic inflammation and immune function changes. Notably, new instrumentation and statistical analysis provide the selectivity and sensitivity to rapidly diff...

  5. A flexible and rapid frequency selective scheme for SRS microscopy

    NASA Astrophysics Data System (ADS)

    Li, Jingting; Yue, Yuankai; Shih, Wei-Chuan

    2017-02-01

    Stimulated Raman scattering (SRS) is a label-free imaging technique suitable for studying biological systems. Due to stimulated nature by ultrafast laser pulses, SRS microscopy has the advantage of significantly higher sensitivity but often reduced spectroscopic information. In this paper, we present a newly constructed femtosecond SRS microscope with a high-speed dynamic micromirror device based pulse shaper to achieve flexible and rapid frequency selection within the C-H stretch region near 2800 to 3100 cm-1 with spectral width of 30 cm-1. This technique is applicable to lipid profiling such as cell activity mapping, lipid distribution mapping and distinction among subclasses.

  6. Single Nanochannel-Aptamer-Based Biosensor for Ultrasensitive and Selective Cocaine Detection.

    PubMed

    Wang, Jian; Hou, Jue; Zhang, Huacheng; Tian, Ye; Jiang, Lei

    2018-01-17

    Ultrasensitive and selective detection of molecules at nano or sub-nanomolar level is very important for many areas such as early diagnosis and drug testing. Herein, we report a high-sensitive cocaine sensor based on a single nanochannel coupled with DNA aptamers. The single nanochannel-aptamer-based biosensor can recognize cocaine molecules with an excellent sensitivity and good selectivity. A linear relationship between target cocaine concentration and output ionic current is obtained in a wide concentration range of cocaine from 1 nM to 10 μM. The cocaine sensor also shows a detection limit down to 1 nM. This study provides a new avenue to develop new nanochannel-aptamer-based biosensors for rapid and ultratrace detection of a variety of illicit drugs.

  7. Porous silicon photoluminescence biosensor for rapid and sensitive detection of toxins

    NASA Astrophysics Data System (ADS)

    Melnyk, Yulia; Pavlova, Karyna; Myndrul, Valerii; Viter, Roman; Smyntyna, Valentyn; Iatsunskyi, Igor

    2017-08-01

    A rapid and low cost photoluminescence (PL) immunosensor for the determination of low concentrations of Ochratoxin A(OTA) and Aflatoxine B1 (AfB1) has been developed. This biosensor was based on porous silicon (PSi) fabricated by metal-assisted chemical etching (MACE) and modified by antibodies against OTA/AfB1 (anti-OTA/anti-AfB1). Biofunctionalization method of the PSi surface by anti-OTA/ anti-AfB1 was developed. The changes of the PL intensity after interaction of the immobilized anti-OTA/anti-AfB1with OTA/AfB1 antigens were used as biosensor signal, allowing sensitive and selective detection of OTA/AfB1 antigens in BSA solution. The sensitivity of the reported optical biosensor towards OTA/AfB1 antigens is in the range from 10-3 to 102 ng/ml.

  8. Highly sensitive oligothiophene-phenylamine-based dual-functional fluorescence "turn-on" sensor for rapid and simultaneous detection of Al3+ and Fe3+ in environment and food samples.

    PubMed

    Guo, Zongrang; Niu, Qingfen; Li, Tianduo

    2018-07-05

    Developing low-cost and efficient sensors for rapid, selective and sensitive detection of the transition metal ions in environmental and food science is very important. In this study, a novel dual-functional fluorescent "turn-on" sensor 3TP based on oligothiophene-phenylamine Schiff base has been synthesized for discrimination and simultaneous detection of both Al 3+ and Fe 3+ ions with high selectivity and anti-interference over other metal ions. Sensor 3TP displayed a very fast fluorescence-enhanced response towards Al 3+ and Fe 3+ ions with low detection limits (0.177μM for Al 3+ and 0.172μM for Fe 3+ ) and wide pH response range (4.0-12.0). The Al 3+ /Fe 3+ sensing mechanisms were investigated by fluorescence experiments, 1 H NMR titrations, FT-IR and ESI-MS spectra. Importantly, sensor 3TP was served as an efficient solid material for the highly sensitive and selective detection of Fe 3+ on TLC plates. Moreover, the sensor 3TP has been successfully used to detect trace Al 3+ and Fe 3+ in environment and food samples with satisfactory results and good recoveries, revealing a convenient, reliable and accurate method for Al 3+ and Fe 3+ analysis in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Highly sensitive oligothiophene-phenylamine-based dual-functional fluorescence "turn-on" sensor for rapid and simultaneous detection of Al3+ and Fe3+ in environment and food samples

    NASA Astrophysics Data System (ADS)

    Guo, Zongrang; Niu, Qingfen; Li, Tianduo

    2018-07-01

    Developing low-cost and efficient sensors for rapid, selective and sensitive detection of the transition metal ions in environmental and food science is very important. In this study, a novel dual-functional fluorescent "turn-on" sensor 3TP based on oligothiophene-phenylamine Schiff base has been synthesized for discrimination and simultaneous detection of both Al3+ and Fe3+ ions with high selectivity and anti-interference over other metal ions. Sensor 3TP displayed a very fast fluorescence-enhanced response towards Al3+ and Fe3+ ions with low detection limits (0.177 μM for Al3+ and 0.172 μM for Fe3+) and wide pH response range (4.0-12.0). The Al3+/Fe3+ sensing mechanisms were investigated by fluorescence experiments, 1H NMR titrations, FT-IR and ESI-MS spectra. Importantly, sensor 3TP was served as an efficient solid material for the highly sensitive and selective detection of Fe3+ on TLC plates. Moreover, the sensor 3TP has been successfully used to detect trace Al3+ and Fe3+ in environment and food samples with satisfactory results and good recoveries, revealing a convenient, reliable and accurate method for Al3+ and Fe3+ analysis in real samples.

  10. Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons.

    PubMed

    Mensi, Skander; Hagens, Olivier; Gerstner, Wulfram; Pozzorini, Christian

    2016-02-01

    The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter--describing somatic integration--and the spike-history filter--accounting for spike-frequency adaptation--dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations.

  11. Facile fabrication of networked patterns and their superior application to realize the virus immobilized networked pattern circuit.

    PubMed

    Choi, Kyung Min; Lee, Seok Jae; Choi, Jung Hoon; Park, Tae Jung; Park, Jong Wan; Shin, Weon Ho; Kang, Jeung Ku

    2010-12-07

    A facile route to fabricate a protein-immobilized network pattern circuit for rapid and highly sensitive diagnosis was developed via the evaporation directed impromptu patterning method and selective avian influenza virus (AIV) immobilization. The response to the 10 fg mL(-1) anti-AI antibody demonstrates that this easy and simple circuit has about 1000 times higher sensitivity compared to those of conventional approaches.

  12. A Novel Inhibitor Of Topoisomerase I is Selectively Toxic For A Subset of Non-Small Cell Lung Cancer Cell Lines | Office of Cancer Genomics

    Cancer.gov

    SW044248, identified through a screen for chemicals that are selectively toxic for NSCLC cell lines, was found to rapidly inhibit macromolecular synthesis in sensitive, but not in insensitive cells. SW044248 killed approximately 15% of a panel of 74 NSCLC cell lines and was non-toxic to immortalized human bronchial cell lines.

  13. Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe.

    PubMed

    Liu, Jia-Ming; Lin, Li-ping; Wang, Xin-Xing; Lin, Shao-Qin; Cai, Wen-Lian; Zhang, Li-Hong; Zheng, Zhi-Yong

    2012-06-07

    Based on the ability of lysine (Lys) to enhance the fluorescence intensity of bovine serum albumin modified-carbon dots (CDs-BSA) to decrease surface defects and quench fluorescence of the CDs-BSA-Lys system in the presence of Cu(2+) under conditions of phosphate buffer (PBS, pH = 5.0) at 45 °C for 10 min, a sensitive Lys enhancing CDs-BSA fluorescent probe was designed. The environment-friendly, simple, rapid, selective and sensitive fluorescent probe has been utilized to detect Cu(2+) in hair and tap water samples and it achieved consistent results with those obtained by inductively coupled plasma mass spectroscopy (ICP-MS). The mechanism of the proposed assay for the detection of Cu(2+) is discussed.

  14. Advanced defect classification by smart sampling, based on sub-wavelength anisotropic scatterometry

    NASA Astrophysics Data System (ADS)

    van der Walle, Peter; Kramer, Esther; Ebeling, Rob; Spruit, Helma; Alkemade, Paul; Pereira, Silvania; van der Donck, Jacques; Maas, Diederik

    2018-03-01

    We report on advanced defect classification using TNO's RapidNano particle scanner. RapidNano was originally designed for defect detection on blank substrates. In detection-mode, the RapidNano signal from nine azimuth angles is added for sensitivity. In review-mode signals from individual angles are analyzed to derive additional defect properties. We define the Fourier coefficient parameter space that is useful to study the statistical variation in defect types on a sample. By selecting defects from each defect type for further review by SEM, information on all defects can be obtained efficiently.

  15. A portable synthesis of water-soluble carbon dots for highly sensitive and selective detection of chlorogenic acid based on inner filter effect

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Yang, Liu; Yuan, Yusheng; Pan, Shuang; Yang, Jidong; Yan, Jingjing; Zhang, Hui; Sun, Qianqian; Hu, Xiaoli

    2018-01-01

    In this work, a simple and facile hydrothermal method for synthesis of water-soluble carbon dots (CDs) with malic acid and urea, and were then employed as a high-performance fluorescent probe for selective and sensitive determination of chlorogenic acid (CGA) based on inner filter effect. The as-synthesized CDs was systematically characterized by Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Energy disperse spectroscopy (EDS), UV-vis absorption spectroscopy, spectrofluorophotometry, and the results indicated that the sizes of CDs were mainly distributed in the range of 1.0 nm-3.0 nm with an average diameter of 2.1 nm. More significantly, the as-prepared CDs possessed remarkable selectivity and sensitivity towards CGA with the linear range of 0.15 μmol L- 1-60 μmol L- 1 and the detection limit for CGA was 45 nmol L- 1 (3σ/k). The practical applications of CDs for detection of CGA have already been successfully demonstrated in Honeysuckle. This sensitive, selective method has a great application prospect in the pharmaceutical and biological analysis field owing to its simplicity and rapidity for the detection of CGA.

  16. Shortened Time to Identify Staphylococcus Species from Blood Cultures and Methicillin Resistance Testing Using CHROMAgar

    PubMed Central

    Chihara, Shingo; Hayden, Mary K.; Minogue-Corbett, Eileen; Singh, Kamaljit

    2009-01-01

    The ability to rapidly differentiate coagulase-negative staphylococcus (CoNS) from Staphylococcus aureus and to determine methicillin resistance is important as it affects the decision to treat empiric antibiotic selection. The objective of this study was to evaluate CHROMagar S. aureus and CHROMagar MRSA (Becton Dickinson) for rapid identification of Staphylococcus spp. directly from blood cultures. Consecutive blood culture bottles (BacT Alert 3D SA and SN, bioMérieux) growing gram-positive cocci in clusters were evaluated. An aliquot was plated onto CHROMagar MRSA (C-MRSA) and CHROMagar S. aureus (C-SA) plates, which were read at 12 to 16 hours. C-SA correctly identified 147/147 S. aureus (100% sensitivity); 2 CoNS were misidentified as S. aureus (98% specificity). C-MRSA correctly identified 74/77 MRSA (96% sensitivity). None of the MSSA isolates grew on C-MRSA (100% specificity). In conclusion, CHROMagar is a rapid and sensitive method to distinguish MRSA, MSSA, and coagulase-negative Staphylococcus and may decrease time of reporting positive results. PMID:20016679

  17. A selectively rhodamine-based colorimetric probe for detecting copper(II) ion.

    PubMed

    Zhang, Jiangang; Zhang, Li; Wei, Yanli; Chao, Jianbing; Shuang, Shaomin; Cai, Zongwei; Dong, Chuan

    2014-11-11

    A novel rhodamine derivative 3-bromo-5-methylsalicylaldehyde rhodamine B hydrazone (BMSRH) has been synthesized by reacting rhodamine B hydrazide with 3-bromo-5-methylsalicylaldehyde and developed as a new colorimetric probe for the selective and sensitive detection of Cu2+. Addition of Cu2+ to the solution of BMSRH results in a rapid color change from colorless to red together with an obvious new band appeared at 552 nm in the UV-vis absorption spectra. This change is attributed to the spirocycle form of BMSRH opened via coordination with Cu2+ in a 1:1 stoichiometry and their association constant is determined as 3.2×10(4) L mol(-1). Experimental results indicate that the BMSRH can provide a rapid, selective and sensitive response to Cu2+ with a linear dynamic range 0.667-240 μmol/L. Common interferent ions do not show any interference on the Cu2+ determination. It is anticipated that BMSRH can be a good candidate probe and has potential application for Cu2+ determination. The proposed probe exhibits the following advantages: a quick, simple and facile synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Label-Free Biological and Chemical Sensing Using Whispering Gallery Mode Optical Resonators: Past, Present, and Future

    PubMed Central

    Su, Judith

    2017-01-01

    Sensitive and rapid label-free biological and chemical sensors are needed for a wide variety of applications including early disease diagnosis and prognosis, the monitoring of food and water quality, as well as the detection of bacteria and viruses for public health concerns and chemical threat sensing. Whispering gallery mode optical resonator based sensing is a rapidly developing field due to the high sensitivity and speed of these devices as well as their label-free nature. Here, we describe the history of whispering gallery mode optical resonator sensors, the principles behind detection, the latest developments in the fields of biological and chemical sensing, current challenges toward widespread adoption of these devices, and an outlook for the future. In addition, we evaluate the performance capabilities of these sensors across three key parameters: sensitivity, selectivity, and speed. PMID:28282881

  19. A sensitive and selective resonance Rayleigh scattering method for quick detection of avidin using affinity labeling Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Huang, Xi; Fu, Xuan; Deng, Huan; Ma, Meihu; Cai, Zhaoxia

    2016-06-01

    Avidin is a glycoprotein with antinutritional property, which should be limited in daily food. We developed an affinity biosensor system based on resonance Rayleigh scattering (RRS) and using affinity biotin labeling Au nanoparticles (AuNPs). This method was selective and sensitive for quick avidin detection due to the avidin-biotin affinitive interaction. Under optimal conditions, RRS intensity of biotin-AuNPs increase linearly with an increasing concentration of avidin from 5 to 160 ng/mL. The lower limit of detection was 0.59 ng/mL. This rapid and selective avidin detection method was used in synthetic samples and egg products with recoveries of between 102.97 and 107.92%, thereby demonstrating the feasible and practical application of this assay.

  20. Molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin.

    PubMed

    Wang, Xiaoyan; Yu, Jialuo; Kang, Qi; Shen, Dazhong; Li, Jinhua; Chen, Lingxin

    2016-03-15

    A facile strategy was developed to prepare molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin (PC) based on fluorescence resonance energy transfer (FRET), via a sol-gel polymerization process using nitrobenzoxadiazole (NBD) as fluorescent signal source. The ratio of two fluorescence peak emission intensities of NBD and PC was utilized to determine the concentration of PC, which could effectively reduce the background interference and fluctuation of diverse conditions. As a result, this sensor obtained high sensitivity with a low detection limit of 0.14 nM within 6 min, and excellent recognition specificity for PC over its analogues with a high imprinting factor of 9.1. Furthermore, the sensor attained high recoveries in the range of 93.8-110.2% at three spiking levels of PC, with precisions below 4.7% in seawater and lake water samples. The developed sensor strategy demonstrated simplicity, reliability, rapidity, high selectivity and high sensitivity, proving to be a feasible way to develop high efficient fluorescence sensors and thus potentially applicable for ultratrace analysis of complicated matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A novel fluorescent probe for rapid and sensitive detection of hydrogen sulfide in living cells

    NASA Astrophysics Data System (ADS)

    Pan, Jian; Xu, Junchao; Zhang, Youlai; Wang, Liang; Qin, Caiqin; Zeng, Lintao; Zhang, Yue

    2016-11-01

    A novel fluorescent probe for H2S was developed based on a far-red emitting indole-BODIPY, which was decorated with morpholine and 2,4-dinitrobenzenesulfonyl (DNBS) group. This probe showed rapid response (t1/2 = 3 min), high selectivity and sensitivity for H2S with significant colorimetric and fluorescence OFF-ON signals, which was triggered by cleavage of 2,4-dinitrobenzenesulfonyl group. This probe could quantitatively detect the concentrations of H2S ranging from 0 to 60 μM, and the detection of limit was found to be as low as 26 nM. Cell imaging results indicated that the probe could detect and visualize H2S in the living cells.

  2. Rapid Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) by the Vitek MS Saramis system.

    PubMed

    Shan, Weiguang; Li, Jiaping; Fang, Ying; Wang, Xuan; Gu, Danxia; Zhang, Rong

    2016-01-01

    A rapid, sensitive, and accurate Vitek MS assay was developed to distinguish clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) from clinical isolates of methicillin-sensitive Staphylococcus aureus (MSSA) by developing an in-house knowledgebase of SuperSpectra. Three unique peaks, including peaks at 2305.6 and 3007.3 Da specific to MRSA, and 6816.7 Da specific to MSSA, were selected for differentiating MRSA and MSSA. This assay accurately identified 84 and 91% of clinical MRSA and MSSA strains out of the total 142 clinically acquired S. aureus strains that were tested. This method will greatly improve the efficiency of single clinical sample identification of MRSA, thereby facilitating a reduction in the transmission of MRSA in clinical settings.

  3. Rapid and Sensitive Detection of Protein Biomarker Using a Portable Fluorescence Biosensor based on Quantum Dots and a Lateral Flow Test Strip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaohui; Wang, Ying; Wang, Jun

    2010-08-15

    A portable fluorescence biosensor with rapid and ultrasensitive response for trace protein has been built up with quantum dots and lateral flow test strip. The superior signal brightness and high photostability of quantum dots are combined with the promising advantages of lateral flow test strip and resulted in high sensitivity, selectivity and speedy for protein detection. Nitrated ceruloplasmin, a significant biomarker for cardiovascular disease, lung cancer and stress response to smoking, was used as model protein to demonstrate the good performances of this proposed Qdot-based lateral flow test strip. Quantitative detection of nitrated ceruloplasmin was realized by recording the fluorescencemore » intensity of quantum dots captured on the test line. Under optimal conditions, this portable fluorescence biosensor displays rapid responses for nitrated ceruloplasmin in wide dynamic range with a detection limit of 0.1ng/mL (S/N=3). Furthermore, the biosensor was successfully utilized for spiked human plasma sample detection with the concentration as low as 1ng/mL. The results demonstrate that the quantum dot-based lateral flow test strip is capable for rapid, sensitive, and quantitative detection of nitrated ceruloplasmin and hold a great promise for point-of-care and in field analysis of other protein biomarkers.« less

  4. Empirical validation of guidelines for the management of pharyngitis in children and adults.

    PubMed

    McIsaac, Warren J; Kellner, James D; Aufricht, Peggy; Vanjaka, Anita; Low, Donald E

    2004-04-07

    Recent guidelines for management of pharyngitis vary in their recommendations concerning empirical antibiotic treatment and the need for laboratory confirmation of group A streptococcus (GAS). To assess the impact of guideline recommendations and alternative approaches on identification and treatment of GAS pharyngitis in children and adults. Throat cultures and rapid antigen tests were performed on 787 children and adults aged 3 to 69 years with acute sore throat attending a family medicine clinic in Calgary, Alberta, from September 1999 to August 2002. Recommendations from 2 guidelines (those of the Infectious Diseases Society of America and of the American College of Physicians-American Society of Internal Medicine/American Academy of Family Physicians/US Centers for Disease Control and Prevention) were compared with rapid testing alone, a clinical prediction rule (ie, the modified Centor score), and a criterion standard of treatment for positive throat culture results only. Sensitivity and specificity of each strategy for identifying GAS pharyngitis, total antibiotics recommended, and unnecessary antibiotic prescriptions. In children, sensitivity for streptococcal infection ranged from 85.8% (133/155; 95% confidence interval [CI], 79.3%-90.0%) for rapid testing to 100% for culturing all. In adults, sensitivity ranged from 76.7% (56/73; 95% CI, 65.4%-85.8%) for rapid testing without culture confirmation of negative results to 100% for culturing all. In children, specificity ranged from 90.3% (270/299; 95% CI, 86.4%-93.4%) for use of modified Centor score and throat culture to 100% for culturing all. In adults, specificity ranged from 43.8% (114/260; 95% CI, 37.7%-50.1%) for empirical treatment based on a modified Centor score of 3 or 4 to 100% for culturing all. Total antibiotic prescriptions were lowest with rapid testing (24.7% [194/787]; 95% CI, 21.7%-27.8%) and highest with empirical treatment of high-risk adults (45.7% [360/787]; 95% CI, 42.2%-49.3%), due to a high rate of unnecessary prescriptions in adults (43.8% [146/333]; 95% CI, 38.4%-49.4%). Guideline recommendations for the selective use of throat cultures but antibiotic treatment based only on positive rapid test or throat culture results can reduce unnecessary use of antibiotics for treatment of pharyngitis. However, empirical treatment of adults having a Centor score of 3 or 4 is associated with a high rate of unnecessary antibiotic use. In children, strategies incorporating throat culture or throat culture confirmation of negative rapid antigen test results are highly sensitive and specific. Throat culture of all adults or those selected on the basis of a clinical prediction rule had the highest sensitivity and specificity.

  5. Towards Detection and Diagnosis of Ebola Virus Disease at Point-of-Care

    PubMed Central

    Kaushik, Ajeet; Tiwari, Sneham; Jayant, Rahul Dev; Marty, Aileen; Nair, Madhavan

    2015-01-01

    Ebola outbreak-2014 (mainly Zaire strain related Ebola virus) has been declared most widely spread deadly persistent epidemic due to unavailability of rapid diagnostic, detection, and therapeutics. Ebola virus disease (EVD), a severe viral hemorrhagic fever syndrome caused by Ebola virus (EBOV) is transmitted by direct contact with the body fluids of infected person and objects contaminated with virus or infected animals. World Health Organization (WHO) has declared EVD epidemic as public health emergency of international concern with severe global economic burden. At fatal EBOV infection stage, patients usually die before the antibody response. Currently, rapid blood tests to diagnose EBOV infection include the antigen or antibodies capture using ELISA and RNA detection using RT/Q-PCR within 3–10 days after the onset of symptoms. Moreover, few nanotechnology-based colorimetric and paper-based immunoassay methods have been recently reported to detect Ebola virus. Unfortunately, these methods are limited to laboratory only. As state-of-the art (SoA) diagnostics time to confirm Ebola infection, varies from 6 hours to about 3 days, it causes delay in therapeutic approaches. Thus developing a cost-effective, rapid, sensitive, and selective sensor to detect EVD at point-of-care (POC) is certainly worth exploring to establish rapid diagnostics to decide therapeutics. This review highlights SoA of Ebola diagnostics and also a call to develop rapid, selective and sensitive POC detection of EBOV for global health care. We propose that adopting miniaturized electrochemical EBOV immunosensing can detect virus level at pM concentration within ~40 minute compared to 3 days of ELISA test at nM levels. PMID:26319169

  6. [Measurement of Water COD Based on UV-Vis Spectroscopy Technology].

    PubMed

    Wang, Xiao-ming; Zhang, Hai-liang; Luo, Wei; Liu, Xue-mei

    2016-01-01

    Ultraviolet/visible (UV/Vis) spectroscopy technology was used to measure water COD. A total of 135 water samples were collected from Zhejiang province. Raw spectra with 3 different pretreatment methods (Multiplicative Scatter Correction (MSC), Standard Normal Variate (SNV) and 1st Derivatives were compared to determine the optimal pretreatment method for analysis. Spectral variable selection is an important strategy in spectrum modeling analysis, because it tends to parsimonious data representation and can lead to multivariate models with better performance. In order to simply calibration models, the preprocessed spectra were then used to select sensitive wavelengths by competitive adaptive reweighted sampling (CARS), Random frog and Successive Genetic Algorithm (GA) methods. Different numbers of sensitive wavelengths were selected by different variable selection methods with SNV preprocessing method. Partial least squares (PLS) was used to build models with the full spectra, and Extreme Learning Machine (ELM) was applied to build models with the selected wavelength variables. The overall results showed that ELM model performed better than PLS model, and the ELM model with the selected wavelengths based on CARS obtained the best results with the determination coefficient (R2), RMSEP and RPD were 0.82, 14.48 and 2.34 for prediction set. The results indicated that it was feasible to use UV/Vis with characteristic wavelengths which were obtained by CARS variable selection method, combined with ELM calibration could apply for the rapid and accurate determination of COD in aquaculture water. Moreover, this study laid the foundation for further implementation of online analysis of aquaculture water and rapid determination of other water quality parameters.

  7. Highly sensitive chemiluminescent aptasensor for detecting HBV infection based on rapid magnetic separation and double-functionalized gold nanoparticles.

    PubMed

    Xi, Zhijiang; Gong, Quan; Wang, Chao; Zheng, Bing

    2018-06-21

    Hepatitis B virus (HBV) infection is a major global public health problem and one of the leading causes of chronic liver disease. HBsAg is the first serological marker to appear in the blood and is the most important marker of HBV infection. Detection of HBsAg in serum samples is commonly carried out using an immunoassay such as an enzyme-linked immunosorbent assay (ELISA), which is complex to perform, time-consuming, and unsatisfactory for testing sensitivity. Therefore, new methods for highly sensitive detection of HBV infection are urgently needed. Aptamers are specific recognition molecules with high affinity and specificity toward their targets. Biosensors that employ aptamers as biorecognition elements are known as aptasensors. In this study, we select an HBsAg-specific aptamer and use it to develop a new chemiluminescent aptasensor based on rapid magnetic separation and double-functionalized gold nanoparticles. This sensor enables rapid magnetic separation and highly sensitive detection of HBsAg in HBV-positive serum. The detection limit of this HBsAg-detecting chemiluminescent aptasensor is as low as 0.05 ng/mL, which is much lower than the 0.5 ng/mL limit of a typical ELISA used in hospitals. Furthermore, this aptasensor works well and is highly specific to HBV infection.

  8. Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons

    PubMed Central

    Mensi, Skander; Hagens, Olivier; Gerstner, Wulfram; Pozzorini, Christian

    2016-01-01

    The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter—describing somatic integration—and the spike-history filter—accounting for spike-frequency adaptation—dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations. PMID:26907675

  9. Large-scale human immunodeficiency virus rapid test evaluation in a low-prevalence ugandan blood bank population.

    PubMed

    Eller, Leigh A; Eller, Michael A; Ouma, Benson J; Kataaha, Peter; Bagaya, Bernard S; Olemukan, Robert L; Erima, Simon; Kawala, Lilian; de Souza, Mark S; Kibuuka, Hannah; Wabwire-Mangen, Fred; Peel, Sheila A; O'Connell, Robert J; Robb, Merlin L; Michael, Nelson L

    2007-10-01

    The use of rapid tests for human immunodeficiency virus (HIV) has become standard in HIV testing algorithms employed in resource-limited settings. We report an extensive HIV rapid test validation study conducted among Ugandan blood bank donors at low risk for HIV infection. The operational characteristics of four readily available commercial HIV rapid test kits were first determined with 940 donor samples and were used to select a serial testing algorithm. Uni-Gold Recombigen HIV was used as the screening test, followed by HIV-1/2 STAT-PAK for reactive samples. OraQuick HIV-1 testing was performed if the first two test results were discordant. This algorithm was then tested with 5,252 blood donor samples, and the results were compared to those of enzyme immunoassays (EIAs) and Western blotting. The unadjusted algorithm sensitivity and specificity were 98.6 and 99.9%, respectively. The adjusted sensitivity and specificity were 100 and 99.96%, respectively. This HIV testing algorithm is a suitable alternative to EIAs and Western blotting for Ugandan blood donors.

  10. Ultra-preconcentration and determination of selected pharmaceutical and personal care products in different water matrices by solid-phase extraction combined with dispersive liquid-liquid microextraction prior to ultra high pressure liquid chromatography tandem mass spectrometry analysis.

    PubMed

    Celano, Rita; Piccinelli, Anna Lisa; Campone, Luca; Rastrelli, Luca

    2014-08-15

    Pharmaceutical and personal care products (PPCPs) are one of the most important classes of emerging contaminants. The potential of ecological and environmental impacts associated with PPCPs are of particular concern because they continually penetrate the aquatic environment. This work describes a novel ultra-preconcentration technique for the rapid and highly sensitive analysis of selected PPCPs in environmental water matrices at ppt levels. Selected PPCPs were rapidly extracted and concentrated from large volumes of aqueous solutions (500 and 250mL) by solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME) and then analyzed using UHPLC-MS/MS. Experimental parameters were carefully investigated and optimized to achieve the best SPE-DLLME efficiency and higher enrichment factors. The best results were obtained using the ternary mixture acetonitrile/methanol/dichloromethane 3:3:4, v/v/v, both as SPE eluent and DLLME extractant/dispersive mixture. DLLME aqueous solution (5% NaCl, 10mgL(-1) TBAB) was also modified to improve the extraction efficiency of more hydrophilic PPCPs. Under the optimal conditions, an exhaustive extraction for most of the investigated analytes (recoveries >70%), with a precision (RSD <10%) and very high enrichment factors were attained for different aqueous matrices (drinking, sea, river and wastewater). Method detection and quantification limits were at very low ppt levels and below 1 and 3ngL(-1), respectively, for 15 of selected PPCPs. The proposed analytical procedure offers numerous advantages such as the simplicity of operation, rapidity, a high enrichment factor and sensitivity. So it is suitable for monitoring and studies of occurrence of PPCPs in different environmental compartments. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Potentials for Soil Enzyme as Indicators of Ecological Management

    NASA Technical Reports Server (NTRS)

    Senwo, Z. N.; Manu, A.; Coleman, T. L.

    1997-01-01

    Activity measurements of selected soil enzymes (cellulase, glucosidase, amidohydrolase, phosphatase, arylsulfatase) involved in carbon, nitrogen, phosphorus, and sulfur cycling in the biosphere, hold potential as early and sensitive indicators of soil ecological stress and restoration, These measurements are advantageous because the procedures are simple, rapid, and reproducible over time. Enzyme activities are sensitive to short-term changes in soil and kind-use management. Enzyme activities have also been observed to be closely related to soil organic matter proposed as an index of soil quality.

  12. Risk assessment, cross-resistance potential, and biochemical mechanism of resistance to emamectin benzoate in a field strain of house fly (Musca domestica Linnaeus).

    PubMed

    Khan, Hafiz Azhar Ali; Akram, Waseem; Khan, Tiyyabah; Haider, Muhammad Saleem; Iqbal, Naeem; Zubair, Muhammad

    2016-05-01

    Reduced sensitivity to insecticides in insect pests often results in control failures and increases in the dose and frequency of applications, ultimately polluting the environment. Reduced sensitivity to emamectin benzoate, a broad-spectrum agrochemical belonging to the avermectin group of pesticides, was reported in house flies (Musca domestica L.) collected from Punjab, Pakistan, in 2013. The aim of the present study was to investigate the risk for resistance development, biochemical mechanism, and cross-resistance potential to other insecticides in an emamectin benzoate selected (EB-SEL) strain of house flies. A field-collected strain showing reduced sensitivity to emamectin was re-selected in the laboratory for five consecutive generations and compared with a laboratory susceptible (Lab-Susceptible) reference strain, using bioassays. The field strain showed rapid development of resistance to emamectin (resistance ratio (RR) increased from 35.15 to 149.26-fold) as a result of selection experiments; however, resistance declined when the selection pressure uplifted. The EB-SEL strain showed reduction in resistance to abamectin, indoxacarb, and thiamethoxam. The results of synergism experiments using piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) enzyme inhibitors and biochemical analyses revealed that the metabolic resistance mechanism was not responsible in developing emamectin resistance in the EB-SEL strain. In conclusion, the risk for the rapid development of emamectin resistance under continuous selection pressure suggests using a multifaceted integrated pest management approach for house flies. Moreover, the instable nature of emamectin resistance in the EB-SEL strain and lack of cross-resistance to other insecticides provide windows for the rotational use of insecticides with different modes of action. This will ultimately reduce emamectin selection pressure and help improving management programs for house flies without polluting the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Highly selective and sensitive determination of Cu2+ in drink and water samples based on a 1,8-diaminonaphthalene derived fluorescent sensor

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Li, Yang; Niu, Qingfen; Li, Tianduo; Liu, Yan

    2018-04-01

    A new simple and efficient fluorescent sensor L based on 1,8-diaminonaphthalene Schiff-base for highly sensitive and selective determination of Cu2+ in drink and water has been developed. This Cu2+-selective detection over other tested metal ions displayed an obvious color change from blue to colorless easily detected by naked eye. The detection limit is determined to be as low as 13.2 nM and the response time is very fast within 30 s. The 1:1 binding mechanism was well confirmed by fluorescence measurements, IR analysis and DFT calculations. Importantly, this sensor L was employed for quick detection of Cu2+ in drink and environmental water samples with satisfactory results, providing a simple, rapid, reliable and feasible Cu2+-sensing method.

  14. Highly Selective and Sensitive Self-Powered Glucose Sensor Based on Capacitor Circuit.

    PubMed

    Slaughter, Gymama; Kulkarni, Tanmay

    2017-05-03

    Enzymatic glucose biosensors are being developed to incorporate nanoscale materials with the biological recognition elements to assist in the rapid and sensitive detection of glucose. Here we present a highly sensitive and selective glucose sensor based on capacitor circuit that is capable of selectively sensing glucose while simultaneously powering a small microelectronic device. Multi-walled carbon nanotubes (MWCNTs) is chemically modified with pyrroloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at anode and cathode, respectively, in the biofuel cell arrangement. The input voltage (as low as 0.25 V) from the biofuel cell is converted to a stepped-up power and charged to the capacitor to the voltage of 1.8 V. The frequency of the charge/discharge cycle of the capacitor corresponded to the oxidation of glucose. The biofuel cell structure-based glucose sensor synergizes the advantages of both the glucose biosensor and biofuel cell. In addition, this glucose sensor favored a very high selectivity towards glucose in the presence of competing and non-competing analytes. It exhibited unprecedented sensitivity of 37.66 Hz/mM.cm 2 and a linear range of 1 to 20 mM. This innovative self-powered glucose sensor opens new doors for implementation of biofuel cells and capacitor circuits for medical diagnosis and powering therapeutic devices.

  15. A 3D Chemically Modified Graphene Hydrogel for Fast, Highly Sensitive, and Selective Gas Sensor.

    PubMed

    Wu, Jin; Tao, Kai; Guo, Yuanyuan; Li, Zhong; Wang, Xiaotian; Luo, Zhongzhen; Feng, Shuanglong; Du, Chunlei; Chen, Di; Miao, Jianmin; Norford, Leslie K

    2017-03-01

    Reduced graphene oxide (RGO) has proved to be a promising candidate in high-performance gas sensing in ambient conditions. However, trace detection of different kinds of gases with simultaneously high sensitivity and selectivity is challenging. Here, a chemiresistor-type sensor based on 3D sulfonated RGO hydrogel (S-RGOH) is reported, which can detect a variety of important gases with high sensitivity, boosted selectivity, fast response, and good reversibility. The NaHSO 3 functionalized RGOH displays remarkable 118.6 and 58.9 times higher responses to NO 2 and NH 3 , respectively, compared with its unmodified RGOH counterpart. In addition, the S-RGOH sensor is highly responsive to volatile organic compounds. More importantly, the characteristic patterns on the linearly fitted response-temperature curves are employed to distinguish various gases for the first time. The temperature of the sensor is elevated rapidly by an imbedded microheater with little power consumption. The 3D S-RGOH is characterized and the sensing mechanisms are proposed. This work gains new insights into boosting the sensitivity of detecting various gases by combining chemical modification and 3D structural engineering of RGO, and improving the selectivity of gas sensing by employing temperature dependent response characteristics of RGO for different gases.

  16. Real-time PCR detection of Listeria monocytogenes in infant formula and lettuce following macrophage-based isolation and enrichment.

    PubMed

    Day, J B; Basavanna, U

    2015-01-01

    To develop a rapid detection procedure for Listeria monocytogenes in infant formula and lettuce using a macrophage-based enrichment protocol and real-time PCR. A macrophage cell culture system was employed for the isolation and enrichment of L. monocytogenes from infant formula and lettuce for subsequent identification using real-time PCR. Macrophage monolayers were exposed to infant formula and lettuce contaminated with a serial dilution series of L. monocytogenes. As few as approx. 10 CFU ml(-1) or g(-1) of L. monocytogenes were detected in infant formula and lettuce after 16 h postinfection by real-time PCR. Internal positive PCR controls were utilized to eliminate the possibility of false-negative results. Co-inoculation with Listeria innocua did not reduce the L. monocytogenes detection sensitivity. Intracellular L. monocytogenes could also be isolated on Listeria selective media from infected macrophage lysates for subsequent confirmation. The detection method is highly sensitive and specific for L. monocytogenes in infant formula and lettuce and establishes a rapid identification time of 20 and 48 h for presumptive and confirmatory identification, respectively. The method is a promising alternative to many currently used q-PCR detection methods which employ traditional selective media for enrichment of contaminated food samples. Macrophage enrichment of L. monocytogenes eliminates PCR inhibitory food elements and contaminating food microflora which produce cleaner samples that increase the rapidity and sensitivity of detection. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  17. Selection of a battery of rapid toxicity sensors for drinking water evaluation.

    PubMed

    van der Schalie, William H; James, Ryan R; Gargan, Thomas P

    2006-07-15

    Comprehensive identification of chemical contaminants in Army field water supplies can be a lengthy process, but rapid analytical methods suitable for field use are limited. A complementary approach is to directly measure toxicity instead of individual chemical constituents. Ten toxicity sensors utilizing enzymes, bacteria, or vertebrate cells were tested to determine the minimum number of sensors that could rapidly identify toxicity in water samples containing one of 12 industrial chemicals. The ideal sensor would respond at a concentration just exceeding the Military Exposure Guideline (MEG) level for the chemical (an estimated threshold for adverse effects) but below the human lethal concentration. Chemical solutions were provided to testing laboratories as blind samples. No sensors responded to deionized water blanks, and only one sensor responded to a hard water blank. No single toxicity sensor responded to more than six chemicals in the desired response range, and one chemical (nicotine) was not detected by any sensor with the desired sensitivity. A combination of three sensors (Microtox, the Electric Cell Substrate Impedance Sensing (ECIS) test, and the Hepatocyte low density lipoprotein (LDL) uptake test) responded appropriately to nine of twelve chemicals. Adding a fourth sensor (neuronal microelectrode array) to the test battery allowed detection of two additional chemicals (aldicarb and methamidophos), but the neuronal microelectrode array was overly sensitive to paraquat. Evaluating sensor performance using a standard set of chemicals and a desired sensitivity range provides a basis both for selecting among available toxicity sensors and for evaluating emerging sensor technologies. Recommendations for future toxicity sensor evaluations are discussed.

  18. A rapid screen for four corticosteroids in equine synovial fluid.

    PubMed

    Agrawal, Karan; Ebel, Joseph G; Bischoff, Karyn

    2014-06-01

    Most antidoping method development in the equine industry has been for plasma and urine, though there has been recent interest in the analysis of synovial fluid for evidence of doping by intra-articular corticosteroid injection. Published methods for corticosteroid analysis in synovial fluid are primarily singleplex methods, do not screen for all corticosteroids of interest and are not adequately sensitive. The purpose of this study is to develop a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) screening method for the detection of four of the most common intra-articularly administered corticosteroids--betamethasone, methylprednisolone, methylprednisolone acetate and triamcinolone acetonide. Sample preparation consisted of protein precipitation followed by a basified liquid-liquid extraction. LC-MS-MS experiments consisted of a six-min isocratic separation using a Phenomenex Polar-RP stationary phase and a mobile phase consisting of 35% acetonitrile, 5 mM ammonium acetate and 0.1% formic acid in nanopure water. The detection system used was a triple quadrupole mass analyzer with thermospray ionization, and compounds were identified using selective reaction monitoring. The method was validated to the ISO/IEC 17025 standard, and real synovial fluid samples were analyzed to demonstrate the application of the method in an antidoping context. The method was highly selective for the four corticosteroids with limits of detection of 1-3 ng/mL. The extraction efficiency was 50-101%, and the matrix effects were 14-31%. These results indicate that the method is a rapid and sensitive screen for the four corticosteroids in equine synovial fluid, fit for purpose for equine antidoping assays.

  19. Methods for comparative evaluation of propulsion system designs for supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Tyson, R. M.; Mairs, R. Y.; Halferty, F. D., Jr.; Moore, B. E.; Chaloff, D.; Knudsen, A. W.

    1976-01-01

    The propulsion system comparative evaluation study was conducted to define a rapid, approximate method for evaluating the effects of propulsion system changes for an advanced supersonic cruise airplane, and to verify the approximate method by comparing its mission performance results with those from a more detailed analysis. A table look up computer program was developed to determine nacelle drag increments for a range of parametric nacelle shapes and sizes. Aircraft sensitivities to propulsion parameters were defined. Nacelle shapes, installed weights, and installed performance was determined for four study engines selected from the NASA supersonic cruise aircraft research (SCAR) engine studies program. Both rapid evaluation method (using sensitivities) and traditional preliminary design methods were then used to assess the four engines. The method was found to compare well with the more detailed analyses.

  20. Rapid, highly sensitive detection of herpes simplex virus-1 using multiple antigenic peptide-coated superparamagnetic beads.

    PubMed

    Ran, Ying-Fen; Fields, Conor; Muzard, Julien; Liauchuk, Viktoryia; Carr, Michael; Hall, William; Lee, Gil U

    2014-12-07

    A sensitive, rapid, and label free magnetic bead aggregation (MBA) assay has been developed that employs superparamagnetic (SPM) beads to capture, purify, and detect model proteins and the herpes simplex virus (HSV). The MBA assay is based on monitoring the aggregation state of a population of SPM beads using light scattering of individual aggregates. A biotin-streptavidin MBA assay had a femtomolar (fM) level sensitivity for analysis times less than 10 minutes, but the response of the assay becomes nonlinear at high analyte concentrations. A MBA assay for the detection of HSV-1 based on a novel peptide probe resulted in the selective detection of the virus at concentrations as low as 200 viral particles (vp) per mL in less than 30 min. We define the parameters that determine the sensitivity and response of the MBA assay, and the mechanism of enhanced sensitivity of the assay for HSV. The speed, relatively low cost, and ease of application of the MBA assay promise to make it useful for the identification of viral load in resource-limited and point-of-care settings where molecular diagnostics cannot be easily implemented.

  1. A model of directional selection applied to the evolution of drug resistance in HIV-1.

    PubMed

    Seoighe, Cathal; Ketwaroo, Farahnaz; Pillay, Visva; Scheffler, Konrad; Wood, Natasha; Duffet, Rodger; Zvelebil, Marketa; Martinson, Neil; McIntyre, James; Morris, Lynn; Hide, Winston

    2007-04-01

    Understanding how pathogens acquire resistance to drugs is important for the design of treatment strategies, particularly for rapidly evolving viruses such as HIV-1. Drug treatment can exert strong selective pressures and sites within targeted genes that confer resistance frequently evolve far more rapidly than the neutral rate. Rapid evolution at sites that confer resistance to drugs can be used to help elucidate the mechanisms of evolution of drug resistance and to discover or corroborate novel resistance mutations. We have implemented standard maximum likelihood methods that are used to detect diversifying selection and adapted them for use with serially sampled reverse transcriptase (RT) coding sequences isolated from a group of 300 HIV-1 subtype C-infected women before and after single-dose nevirapine (sdNVP) to prevent mother-to-child transmission. We have also extended the standard models of codon evolution for application to the detection of directional selection. Through simulation, we show that the directional selection model can provide a substantial improvement in sensitivity over models of diversifying selection. Five of the sites within the RT gene that are known to harbor mutations that confer resistance to nevirapine (NVP) strongly supported the directional selection model. There was no evidence that other mutations that are known to confer NVP resistance were selected in this cohort. The directional selection model, applied to serially sampled sequences, also had more power than the diversifying selection model to detect selection resulting from factors other than drug resistance. Because inference of selection from serial samples is unlikely to be adversely affected by recombination, the methods we describe may have general applicability to the analysis of positive selection affecting recombining coding sequences when serially sampled data are available.

  2. Evaluation of rapid SYS system as screen for Yersinia enterocolitica in the United States.

    PubMed Central

    Mele, L; Nadler, H; Gomez, S

    1987-01-01

    Clinical isolates (n = 150) from stool specimens were selected for evaluation of the Rapid SYS system (Analytab Products, Plainview, N.Y.) as a screening test for Shigella spp., Yersinia enterocolitica, and Salmonella spp. The Gram-Negative Identification Card (Vitek Systems, Inc., Hazelwood, Mo.) was used for identification. Although acceptable performance of the Rapid SYS system was described, the interpretative criteria provided by the vendor for previous studies led to inappropriate screening for Y. enterocolitica, particularly biotype 1. When corrected screening criteria were used for the present study, the sensitivity for the detection of 76 enteric pathogens was 98.7%. Of the 76 pathogens, 1 of 21 Shigella spp. was not detected. However, specificity was only 16.6% when 72 selected nonpathogens frequently encountered in stools were eliminated. Although the Rapid SYS system can identify Shigella spp., Y. enterocolitica, and Salmonella spp., only phenylalanine deaminase-producing and cytochrome oxidase-producing organisms can be eliminated from additional testing. Therefore, the Rapid SYS system cannot be used as a three-pathogen screen in the United States or in other geographic locales where Y. enterocolitica biotype 1 may be encountered. PMID:3323232

  3. Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae.

    PubMed

    Vásquez, Gersson; Rey, Alba; Rivera, Camilo; Iregui, Carlos; Orozco, Jahir

    2017-01-15

    Pathogenic bacteria are responsible for several diseases in humans and in a variety of hosts. Detection of pathogenic bacteria is imperative to avoid and/or fight their potential harmful effects. This work reports on the first amperometric biosensor for the rapid detection of Streptococcus agalactiae (S. agalactiae). The biosensor relies on a single biotinylated antibody that immobilizes the bacteria on a screen-printed carbon electrode while is further linked to a streptavidin-conjugated HRP reporter. The biotinylated antibody provides selectivity to the biosensor whereas serves as an anchoring point to the reporter for further amplification of the electrochemical signal. The resultant immunosensor is simple, responds rapidly, and allows for the selective and highly sensitive quantification of S. agalactiae cells in a concentration range of 10 1 -10 7 CFUml -1 , with a detection limit of 10CFUml -1 . The approach not only enables a rapid detection and quantification of S. agalactiae in environmental samples but also opens up new opportunities for the simple fabrication of electrochemical immunosensors for different target pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Highly selective SERS probe for Hg(II) detection using tryptophan-protected popcorn shaped gold nanoparticles.

    PubMed

    Senapati, Tapas; Senapati, Dulal; Singh, Anant Kumar; Fan, Zhen; Kanchanapally, Rajashekhar; Ray, Paresh Chandra

    2011-10-07

    Contamination of the environment with toxic Hg(II) is becoming a huge concern throughout the world now. Driven by the need, this communication reports for the first time a tryptophan protected popcorn shaped gold nanomaterials based SERS probe for rapid, easy and highly selective recognition of Hg(II) ions in the 5 ppb level from aqueous solution, with high sensitivity and selectivity over competing analytes. We demonstrate that our SERS assay is capable of measuring the amount of Hg(II) in alkaline battery. This journal is © The Royal Society of Chemistry 2011

  5. Rapid and selective extraction of multiple macrolide antibiotics in foodstuff samples based on magnetic molecularly imprinted polymers.

    PubMed

    Zhou, Yusun; Zhou, Tingting; Jin, Hua; Jing, Tao; Song, Bin; Zhou, Yikai; Mei, Surong; Lee, Yong-Ill

    2015-05-01

    Magnetic molecularly imprinted polymers (MMIPs) were prepared based on surface molecular imprinting using erythromycin (ERY) as template molecule and Fe3O4 nanoparticles as support substrate. The MMIPs possessed high adsorption capacity of 94.1 mg/g for ERY and the imprinting factor was 11.9 indicating good imprinted effect for ERY. Selective evaluation demonstrated favorable selectivity of MMIPs for multiple macrolide antibiotics (MACs). Using MMIPs as adsorptive material, a rapid and convenient magnetic solid-phase extraction (MSPE) procedure was established for simultaneous and selective separation of six MACs in pork, fish and shrimp samples, then the MACs was subjected to high-performance liquid chromatography-ultraviolet (HPLC-UV) analysis. At different fortified concentrations, the extraction recoveries could reach 89.1% and the relative standard deviations were lower than 12.4%. Chromatogram revealed the response signals of MACs in spiked samples were greatly enhanced and matrix interferences were effectively eliminated after treatment with MSPE. The proposed MSPE procedure coupled with HPLC-UV realized selective and sensitive determination of multiple MACs in foodstuff samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A novel, highly sensitive, selective, reversible and turn-on chemi-sensor based on Schiff base for rapid detection of Cu(II)

    NASA Astrophysics Data System (ADS)

    Saleh, Sayed M.; Ali, Reham; Ali, Ibrahim A. I.

    2017-08-01

    In this work, a novel optical fluoro-chemisensor was designed and synthesized for copper (II) ions detection. The sensor film is created by embedded N,N-Bis(2-hydroxo-5-bromobenzyl)ethylenediamine in poly vinyl chloride (PVC) film in presence of dioctyl phthalate (DOP) as plasticizer. The receptor Schiff base reveals "off-on" mode with high selectivity, significant sensitivity to Cu(II) ions. The selectivity of optical sensor for Cu(II) ions is the result of chelation enhanced fluorescence (CHEF). The optimal conditions of pH and response time at which higher efficiency of sensor film is performed was found to be 6.8 and 2.48 min. The possible interference of other metal ions in solution was examined in presence of different types of metal ions. This film shows high selectivity and ultra-sensitivity with low detection limit LOD (1.1 × 10- 8 M). Thus, these considerable properties make it viable to monitor copper metal ions within very low concentration range (0-15 × 10- 6 M Cu(II)) and highly selective even in the presence of different types of metal ions. The sensor reversibility was achieved by utilizing EDTA solution with concentration of 0.1 M solution.

  7. NEAR-REAL TIME, HIGHLY SENSITIVE AND SELECTIVE FIELD DEPLOYABLE BIOSENSOR FOR CYANOTOXINS AND CYANOBACTERIA USING BOTH ANTIBODIES AND DNA-SIGNATURES

    EPA Science Inventory

    The overall goal of the proposed research is to develop piezoelectric-excited millimeter-sized cantilever sensors (PEMC) for cyanotoxins in source, finished and system waters that measures in a field-deployable format and rapidly in 15 minutes so that cyanotoxin(s) hazard a...

  8. Rapid and ratiometric detection of hypochlorite with real application in tap water: molecules to low cost devices (TLC sticks).

    PubMed

    Goswami, Shyamaprosad; Manna, Abhishek; Paul, Sima; Quah, Ching Kheng; Fun, Hoong-Kun

    2013-12-25

    We have designed a chemodosimeter DPNO (weak fluorescence) which can be oxidized to HPNO (strong blue fluorescence) by OCl(-) with high selectivity and sensitivity in a ratiometric approach with a noticeably lower detection limit. The sensor could be useful for the detection of hypochlorites in tap water.

  9. Privileged Detection of Conspecifics: Evidence from Inversion Effects during Continuous Flash Suppression

    ERIC Educational Resources Information Center

    Stein, Timo; Sterzer, Philipp; Peelen, Marius V.

    2012-01-01

    The rapid visual detection of other people in our environment is an important first step in social cognition. Here we provide evidence for selective sensitivity of the human visual system to upright depictions of conspecifics. In a series of seven experiments, we assessed the impact of stimulus inversion on the detection of person silhouettes,…

  10. Methicillin-Resistant Staphylococcus aureus (MRSA) Detection: Comparison of Two Molecular Methods (IDI-MRSA PCR Assay and GenoType MRSA Direct PCR Assay) with Three Selective MRSA Agars (MRSA ID, MRSASelect, and CHROMagar MRSA) for Use with Infection-Control Swabs▿

    PubMed Central

    van Hal, S. J.; Stark, D.; Lockwood, B.; Marriott, D.; Harkness, J.

    2007-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an increasing problem. Rapid detection of MRSA-colonized patients has the potential to limit spread of the organism. We evaluated the sensitivities and specificities of MRSA detection by two molecular methods (IDI-MRSA PCR assay and GenoType MRSA Direct PCR assay) and three selective MRSA agars (MRSA ID, MRSASelect, and CHROMagar MRSA), using 205 (101 nasal, 52 groin, and 52 axillary samples) samples from consecutive known MRSA-infected and/or -colonized patients. All detection methods had higher MRSA detection rates for nasal swabs than for axillary and groin swabs. Detection of MRSA by IDI-MRSA was the most sensitive method, independent of the site (94% for nasal samples, 80% for nonnasal samples, and 90% overall). The sensitivities of the GenoType MRSA Direct assay and the MRSA ID, MRSASelect, and CHROMagar MRSA agars with nasal swabs were 70%, 72%, 68%, and 75%, respectively. All detection methods had high specificities (95 to 99%), independent of the swab site. Extended incubation for a further 24 h with selective MRSA agars increased the detection of MRSA, with a corresponding decline in specificity secondary to a significant increase in false-positive results. There was a noticeable difference in test performance of the GenoType MRSA Direct assay in detection of MRSA (28/38 samples [74%]) compared with detection of nonmultiresistant MRSA (17/31 samples [55%]) (susceptible to two or more non-β-lactam antibiotics). This was not observed with selective MRSA agar plates or IDI-MRSA. Although it is more expensive, in addition to rapid turnaround times of 2 to 4 h, IDI-MRSA offers greater detection of MRSA colonization, independent of the swab site, than do conventional selective agars and GenoType MRSA Direct. PMID:17537949

  11. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples.

    PubMed

    Li, Xiuyan; Cheng, Ruojie; Shi, Huijie; Tang, Bo; Xiao, Hanshuang; Zhao, Guohua

    2016-03-05

    A simple and highly sensitive aptamer-based colorimetric sensor was developed for selective detection of Microcystin-LR (MC-LR). The aptamer (ABA) was employed as recognition element which could bind MC-LR with high-affinity, while gold nanoparticles (AuNPs) worked as sensing materials whose plasma resonance absorption peaks red shifted upon binding of the targets at a high concentration of sodium chloride. With the addition of MC-LR, the random coil aptamer adsorbed on Au NPs altered into regulated structure to form MC-LR-aptamer complexes and broke away from the surface of Au NPs, leading to the aggregation of AuNPs, and the color converted from red to blue due to the interparticle plasmon coupling. Results showed that our aptamer-based colorimetric sensor exhibited rapid and sensitive detection performance for MC-LR with linear range from 0.5 nM to 7.5 μM and the detection limit reached 0.37 nM. Meanwhile, the pollutants usually coexisting with MC-LR in pollutant water samples had not demonstrated disturbance for detecting of MC-LR. The mechanism was also proposed suggesting that high affinity interaction between aptamer and MC-LR significantly enhanced the sensitivity and selectivity for MC-LR detection. Besides, the established method was utilized in analyzing real water samples and splendid sensitivity and selectivity were obtained as well. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Supersonic molecular beam-hyperthermal surface ionisation coupled with time-of-flight mass spectrometry applied to trace level detection of polynuclear aromatic hydrocarbons in drinking water for reduced sample preparation and analysis time.

    PubMed

    Davis, S C; Makarov, A A; Hughes, J D

    1999-01-01

    Analysis of sub-ppb levels of polynuclear aromatic hydrocarbons (PAHs) in drinking water by high performance liquid chromatography (HPLC) fluorescence detection typically requires large water samples and lengthy extraction procedures. The detection itself, although selective, does not give compound identity confirmation. Benchtop gas chromatography/mass spectrometry (GC/MS) systems operating in the more sensitive selected ion monitoring (SIM) acquisition mode discard spectral information and, when operating in scanning mode, are less sensitive and scan too slowly. The selectivity of hyperthermal surface ionisation (HSI), the high column flow rate capacity of the supersonic molecular beam (SMB) GC/MS interface, and the high acquisition rate of time-of-flight (TOF) mass analysis, are combined here to facilitate a rapid, specific and sensitive technique for the analysis of trace levels of PAHs in water. This work reports the advantages gained by using the GC/HSI-TOF system over the HPLC fluorescence method, and discusses in some detail the nature of the instrumentation used.

  13. A nanoscale Zr-based fluorescent metal-organic framework for selective and sensitive detection of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Li, Yanping; Zhang, Xin; Zhang, Ling; Jiang, Ke; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2017-11-01

    Hydrogen sulfide (H2S) has been commonly viewed as a gas signaling molecule in various physiological and pathological processes. However, the highly efficient H2S detection still remains challenging. Herein, we designed a new robust nano metal-organic framework (MOF) UiO-66-CH=CH2 as a fluorescent probe for rapid, sensitive and selective detection of biological H2S. UiO-66-CH=CH2 was prepared by heating ZrCl4 and 2-vinylterephthalic acid via a simple method. UiO-66-CH=CH2 displayed fluorescence quenching to H2S and kept excellent selectivity in the presence of biological relevant analytes especially the cysteine and glutathione. This MOF-based probe also exhibited fast response (10 s) and high sensitivity with a detection limit of 6.46 μM which was within the concentration range of biological H2S in living system. Moreover, this constructed MOF featured water-stability, nanoscale (20-30 nm) and low toxicity, which made it a promising candidate for biological H2S sensing.

  14. A highly sensitive and selective aptamer-based colorimetric sensor for the rapid detection of PCB 77.

    PubMed

    Cheng, Ruojie; Liu, Siyao; Shi, Huijie; Zhao, Guohua

    2018-01-05

    A highly sensitive, specific and simple colorimetric sensor based on aptamer was established for the detection of polychlorinated biphenyls (PCB 77). The use of unmodified gold nanoparticles as a colorimetric probe for aptamer sensors enabled the highly sensitive and selective detection of polychlorinated biphenyls (PCB 77). A linear range of 0.5nM to 900nM was obtained for the colorimetric assay with a minimum detection limit of 0.05nM. In addition, by the methods of circular dichroism, UV and naked eyes, we found that the 35 base fragments retained after cutting 5 bases from the 5 'end of aptamer plays the most significant role in the PCB 77 specific recognition process. We found a novel way to truncated nucleotides to optimize the detection of PCB 77, and the selected nucleotides also could achieve high affinity with PCB 77. At the same time, the efficient detection of the PCB 77 by our colorimetric sensor in the complex environmental water samples was realized, which shows a good application prospect. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Laser vaporization of trace explosives for enhanced non-contact detection

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Papantonakis, Michael; Kendziora, Christopher A.; Bubb, Daniel M.; Corgan, Jeffrey; McGill, R. Andrew

    2010-04-01

    Trace explosives contamination is found primarily in the form of solid particulates on surfaces, due to the low vapor pressure of most explosives materials. Today, the standard sampling procedure involves physical removal of particulate matter from surfaces of interest. A variety of collection methods have been used including air-jetting or swabbing surfaces of interest. The sampled particles are typically heated to generate vapor for analysis in hand held, bench top, or portal detection systems. These sampling methods are time-consuming (and hence costly), require a skilled technician for optimal performance, and are inherently non-selective, allowing non-explosives particles to be co-sampled and analyzed. This can adversely affect the sensitivity and selectivity of detectors, especially those with a limited dynamic range. We present a new approach to sampling solid particles on a solid surface that is targeted, non-contact, and which selectively enhances trace explosive signatures thus improving the selectivity and sensitivity of existing detectors. Our method involves the illumination of a surface of interest with infrared laser light with a wavelength that matches a distinctive vibrational mode of an explosive. The resonant coupling of laser energy results in rapid heating of explosive particles and rapid release of a vapor plume. Neighboring particles unrelated to explosives are generally not directly heated as their vibrational modes are not resonant with the laser. As a result, the generated vapor plume includes a higher concentration of explosives than if the particles were heated with a non-selective light source (e.g. heat lamp). We present results with both benchtop infrared lasers as well as miniature quantum cascade lasers.

  16. [Evaluation of Mascia Brunelli rapid antigen test in the diagnosis of group A streptococcal pharyngitis].

    PubMed

    Barış, Ayşe; Anlıaçık, Nur; Bulut, Mehmet Emin; Deniz, Rıdvan; Yücel, Elif; Aktaş, Elif

    2017-01-01

    Pharyngitis in most cases is due to viral microorganisms however drug therapy without the detection of etiological agent leads to unnecessary use of antibiotics. On the other hand, when the etiologic agent is group A beta-hemolytic streptococci (GAS) it is important to identify the etiologic agent rapidly which will guide the treatment with appropriate antibiotics. The use of highly sensitive rapid tests will contribute significantly to early diagnosis and appropriate therapy. The aim of this study is to evaluate the efficacy of Mascia Brunelli rapid antigen test for the detection of GAS in throat swab samples. A total of 833 throat swab samples submitted to our laboratory with pre-diagnosis of pharyngitis were assessed between June 2016 and August 2016. The samples were simultaneously cultured and tested by rapid Mascia Brunelli Strep-A Card (Mascia Brunelli S.p.a, Italy). For identification, bacitracin sensitivity, PYR test and latex agglutination test in addition to Bruker MALDI-TOF MS (Daltonics, Germany) system were used. The density of GAS growth in the culture was noted. The samples that were false negative with Mascia Brunelli test were re-tested with QuickVue + Strep A Test (Quidel Corporation, San Diego, USA) rapid antigen test. A total of 833 patients, 376 (45.2%) female and 457 (54.8%) male were included in the study. The age range was between 0-94 years with a mean value of 7.86 ± 6.72. 125 (15%) and 94 (11.28%) of the samples were positive with culture and rapid antigen test, respectively. Mascia Brunelli antigen test gave negative results for 31 culture positive samples. Of these 31 samples, 28 were found positive by QuickVue + Strep A antigen test. As a result, the sensitivity of the test was found to be independent of the inoculum effect. The culture positivity rate in patients between 5-15 years was 18.4%. The sensitivity, specificity, positive predictive value, negative predictive value and the accuracy of Mascia Brunelli antigen test, with respect to culture, were 75.2%, 100%, 100%, 95.81% and 96.28%, respectively. In conclusion, the selection of rapid antigen tests with high sensitivity in the diagnosis of GAS pharyngitis will contribute to the prevention of resistance development by appropriate use of antibiotics as well as early diagnosis and appropriate treatment. However, confirmation of negative rapid antigen test results by culture is very important in terms of false diagnosis and prevention of incomplete treatment.

  17. Impedance biosensor for the rapid detection of Listeria spp. based on aptamer functionalized Pt-interdigitated microelectrodes array

    NASA Astrophysics Data System (ADS)

    Sidhu, R.; Rong, Y.; Vanegas, D. C.; Claussen, J.; McLamore, E. S.; Gomes, C.

    2016-05-01

    Listeria monocytogenes is one of the most common causes of food illness deaths worldwide, with multiple outbreaks in the United States alone. Current methods to detect foodborne pathogens are laborious and can take several hours to days to produce results. Thus, faster techniques are needed to detect bacteria within the same reliability level as traditional techniques. This study reports on a rapid, accurate, and sensitive aptamer biosensor device for Listeria spp. detection based on platinum interdigitated array microelectrodes (Pt-IDEs). Pt-IDEs with different geometric electrode gaps were fabricated by lithographic techniques and characterized by cyclic voltammetric (CV), electrochemical impedance spectroscopy (EIS), and potential amperometry (DCPA) measurements of reversible redox species. Based on these results, 50 μm Pt-IDE was chosen to further functionalize with a Listeria monocytogenes DNA aptamer selective to the cell surface protein internalin A, via metal-thiol self-assembly at the 5' end of the 47-mer's. EIS analysis was used to detect Listeria spp. without the need for label amplification and pre-concentration steps. The optimized aptamer concentration of 800 nM was selected to capture the bacteria through internalin A binding and the aptamer hairpin structure near the 3' end. The aptasensor was capable of detecting a wide range of bacteria concentration from 10 to 106 CFU/mL at lower detection limit of 5.39 +/- 0.21 CFU/mL with sensitivity of 268.1 +/- 25.40 (Ohms/log [CFU/mL]) in 17 min. The aptamer based biosensor offers a portable, rapid and sensitive alternative for food safety applications with one of the lowest detection limits reported to date.

  18. A novel fluorescent aptasensor for the highly sensitive and selective detection of cardiac troponin I based on a graphene oxide platform.

    PubMed

    Liu, Dongkui; Lu, Xing; Yang, Yiwen; Zhai, Yunyun; Zhang, Jian; Li, Lei

    2018-05-04

    Acute myocardial infarction (AMI) is one of the leading risks to global health. Thus, the rapid, accurate early diagnosis of AMI is highly critical. Human cardiac troponin I (cTnI) has been regarded as a golden biomarker for AMI due to its excellent selectivity. In this work, a novel fluorescent aptasensor based on a graphene oxide (GO) platform was developed for the highly sensitive and selective detection of cTnI. GO binds to the fluorescent anti-cTnI aptamer and quenches its fluorescence. In the presence of cTnI, the fluorescent anti-cTnI aptamer leaves the surface of GO, combines with cTnI because of the powerful affinity of the fluorescent anti-cTnI aptamer and cTnI, and then restores the fluorescence of the fluorescent anti-cTnI aptamer. Fluorescence-enhanced detection is highly sensitive and selective to cTnI. The method exhibited good analytical performance with a reasonable dynamic linearity at the concentration range of 0.10-6.0 ng/mL and a low detection limit of 0.07 ng/mL (S/N = 3). The fluorescent aptasensor also exhibited high selectivity toward cTnI compared with other interference proteins. The proposed method may be a potentially useful tool for cTnI determination in human serum. Graphical abstract A novel fluorescent aptasensor for the highly sensitive and selective detection of cardiac troponin I based on a graphene oxide platform.

  19. Role of re-screening of cervical smears in internal quality control.

    PubMed Central

    Baker, A; Melcher, D; Smith, R

    1995-01-01

    AIMS--To investigate the use of rapid re-screening as a quality control method for previously screened cervical slides; to compare this method with 10% random re-screening and clinically indicated double screening. METHODS--Between June 1990 and December 1994, 117,890 negative smears were subjected to rapid re-screening. RESULTS--This study shows that rapid re-screening detects far greater numbers of false negative cases when compared with both 10% random re-screening and clinically indicated double screening, with no additional demand on human resources. The technique also identifies variation in the performance of screening personnel as an additional benefit. CONCLUSION--Rapid re-screening is an effective method of quality control. Although less sensitive, rapid re-screening should replace 10% random re-screening and selected re-screening as greater numbers of false negative results are detected while consuming less resources. PMID:8543619

  20. In vitro selection of single-stranded DNA molecular recognition elements against S. aureus alpha toxin and sensitive detection in human serum.

    PubMed

    Hong, Ka L; Battistella, Luisa; Salva, Alysia D; Williams, Ryan M; Sooter, Letha J

    2015-01-27

    Alpha toxin is one of the major virulence factors secreted by Staphylococcus aureus, a bacterium that is responsible for a wide variety of infections in both community and hospital settings. Due to the prevalence of S. aureus related infections and the emergence of methicillin-resistant S. aureus, rapid and accurate diagnosis of S. aureus infections is crucial in benefiting patient health outcomes. In this study, a rigorous Systematic Evolution of Ligands by Exponential Enrichment (SELEX) variant previously developed by our laboratory was utilized to select a single-stranded DNA molecular recognition element (MRE) targeting alpha toxin with high affinity and specificity. At the end of the 12-round selection, the selected MRE had an equilibrium dissociation constant (Kd) of 93.7 ± 7.0 nM. Additionally, a modified sandwich enzyme-linked immunosorbent assay (ELISA) was developed by using the selected ssDNA MRE as the toxin-capturing element and a sensitive detection of 200 nM alpha toxin in undiluted human serum samples was achieved.

  1. Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application.

    PubMed

    Jia, Qianqian; Ji, Huiming; Zhang, Ying; Chen, Yalu; Sun, Xiaohong; Jin, Zhengguo

    2014-07-15

    Hierarchical nanostructured ZnO dandelion-like spheres were synthesized via solvothermal reaction at 200°C for 4h. The products were pure hexagonal ZnO with large exposure of (002) polar facet. Side-heating gas sensor based on hierarchical ZnO spheres was prepared to evaluate the acetone gas sensing properties. The detection limit to acetone for the ZnO sensor is 0.25ppm. The response (Ra/Rg) toward 100ppm acetone was 33 operated at 230°C and the response time was as short as 3s. The sensor exhibited remarkable acetone selectivity with negligible response toward other hazardous gases and water vapor. The high proportion of electron depletion region and oxygen vacancies contributed to high gas response sensitivity. The hollow and porous structure of dandelion-like ZnO spheres facilitated the diffusion of gas molecules, leading to a rapid response speed. The largely exposed (002) polar facets could adsorb acetone gas molecules easily and efficiently, resulting in a rapid response speed and good selectivity of hierarchical ZnO spheres gas sensor at low operating temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. APTES Functionalized Iron Oxide-Silver Magnetic Hetero-Nanocomposites for Selective Capture and Rapid Removal of Salmonella enteritidis from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Trang, Vu Thi; Dinh, Ngo Xuan; Lan, Hoang; Tam, Le Thi; Huy, Tran Quang; Tuan, Pham Anh; Phan, Vu Ngoc; Le, Anh-Tuan

    2018-02-01

    Magnetic nanomaterials, as a promising platform for the fast and sensitive detection of bacterial pathogens, have attracted increasing interest from researchers in recent years. In this work, by utilizing a two-step synthetic technique consisting of co-precipitation and subsequent hydrothermal reaction, followed by functionalization steps with (3-aminopropyl)triethoxysilane (APTES) and the antibody against Salmonella enteritidis, antibody-conjugated Fe3O4-Ag@APTES hetero-nanocomposites were successfully prepared. Due to the specific antibody, the developed Fe3O4-Ag@APTES@SE-Ab conjugates are capable of selectively capturing S. enteritidis at a low concentration of about 101 CFU/mL. Moreover, the prepared magnetic conjugates also revealed that the S. enteritidis could be rapidly removed from water solution in 20 min by using an external magnetic field with a removal efficiency obtained of ˜ 91.36%. These results indicated that the Fe3O4-Ag@APTES@SE-Ab conjugates are promising for the rapid selective capture and removal of bacterial pathogens from aqueous environments, and can be used for improving the detection quality of pathogens in water samples using immunosensor-based diagnostic tests.

  3. Plasma stable, pH-sensitive non-ionic surfactant vesicles simultaneously enhance antiproliferative effect and selectivity of Sirolimus.

    PubMed

    Ghanbarzadeh, Saeed; Khorrami, Arash; Pourmoazzen, Zhaleh; Arami, Sanam

    2015-05-01

    The purpose of the present investigation was to prepare a plasma stable, pH-sensitive niosomal formulation to enhance Sirolimus efficacy and selectivity. pH-sensitive niosomal formulations bearing PEG-Poly (monomethyl itaconate)-CholC6 (PEG-PMMI-CholC6) copolymers and cholesteryl hemisuccinate (CHEMS) were prepared by a modified ethanol injection method and characterized with regard to pH-responsiveness and stability in human serum. The ability of pH-sensitive niosomes to enhance the Sirolimus cytotoxicity was evaluated in vitro using human erythromyeloblastoid leukemia cell line (K562) and compared with cytotoxicity effect on human umbilical vein endothelial cells (HUVEC). This study showed that both formulations can be rendered pH-sensitive property and were found to rapidly release their contents under mildly acidic conditions. However, the CHEMS-based niosomes lost their pH-sensitivity after incubation in plasma, whereas, PEG-PMMI-CholC6 niosomes preserved their ability to respond to pH change. Sirolimus encapsulated in pH-sensitive niosomes exhibited a higher cytotoxicity than the control conventional formulation on K562 cell line. On the other hand, both pH-sensitive niosomes showed lower antiproliferative effect on HUVEC cells. Plasma stable, pH-sensitive PEG-PMMI-CholC6-based niosomes can improve the in vitro efficiency and also reduce the side effects of Sirolimus.

  4. A new hydroxynaphthyl benzothiazole derived fluorescent probe for highly selective and sensitive Cu2 + detection

    NASA Astrophysics Data System (ADS)

    Tang, Lijun; He, Ping; Zhong, Keli; Hou, Shuhua; Bian, Yanjiang

    2016-12-01

    A new reactive probe, 1-(benzo[d]thiazol-2-yl)naphthalen-2-yl-picolinate (BTNP), was designed and synthesized. BTNP acts as a highly selective probe to Cu2 + in DMSO/H2O (7/3, v/v, Tris-HCl 10 mM, pH = 7.4) solution based on Cu2 + catalyzed hydrolysis of the picolinate ester moiety in BTNP, which leads to the formation of an ESIPT active product with dual wavelength emission enhancement. The probe also possesses the advantages of simple synthesis, rapid response and high sensitivity. The pseudo-first-order reaction rate constant was calculated to be 0.205 min- 1. Moreover, application of BTNP to Cu2 + detection in living cells and real water samples was also explored.

  5. Nested PCR Assay for Eight Pathogens: A Rapid Tool for Diagnosis of Bacterial Meningitis.

    PubMed

    Bhagchandani, Sharda P; Kubade, Sushant; Nikhare, Priyanka P; Manke, Sonali; Chandak, Nitin H; Kabra, Dinesh; Baheti, Neeraj N; Agrawal, Vijay S; Sarda, Pankaj; Mahajan, Parikshit; Ganjre, Ashish; Purohit, Hemant J; Singh, Lokendra; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S

    2016-02-01

    Bacterial meningitis is a dreadful infectious disease with a high mortality and morbidity if remained undiagnosed. Traditional diagnostic methods for bacterial meningitis pose a challenge in accurate identification of pathogen, making prognosis difficult. The present study is therefore aimed to design and evaluate a specific and sensitive nested 16S rDNA genus-based polymerase chain reaction (PCR) assay using clinical cerebrospinal fluid (CSF) for rapid diagnosis of eight pathogens causing the disease. The present work was dedicated to development of an in-house genus specific 16S rDNA nested PCR covering pathogens of eight genera responsible for causing bacterial meningitis using newly designed as well as literature based primers for respective genus. A total 150 suspected meningitis CSF obtained from the patients admitted to Central India Institute of Medical Sciences (CIIMS), India during the period from August 2011 to May 2014, were used to evaluate clinical sensitivity and clinical specificity of optimized PCR assays. The analytical sensitivity and specificity of our newly designed genus-specific 16S rDNA PCR were found to be ≥92%. With such a high sensitivity and specificity, our in-house nested PCR was able to give 100% sensitivity in clinically confirmed positive cases and 100% specificity in clinically confirmed negative cases indicating its applicability in clinical diagnosis. Our in-house nested PCR system therefore can diagnose the accurate pathogen causing bacterial meningitis and therefore be useful in selecting a specific treatment line to minimize morbidity. Results are obtained within 24 h and high sensitivity makes this nested PCR assay a rapid and accurate diagnostic tool compared to traditional culture-based methods.

  6. Detection of plant quarantine pathogen Ralstonia solanacearum r3b2 with portable POCKIT™ and BLItz® systems

    USDA-ARS?s Scientific Manuscript database

    Ralstonia solanacearum (Rs) race 3 biovar 2 (r3b2) is designated as a quarantine pathogen in many countries and additionally as a Select Agent in the United States. Rapid, sensitive and accurate detection methods are urgently needed. We report here the development of two portable platforms for r3b...

  7. Rapid detection of Salmonella Typhimurium in chicken carcass using a SPR biosensor

    NASA Astrophysics Data System (ADS)

    Wang, Shizhou; Lan, Yubin; Yin, Yongguang; Dasari, Thirumala R.

    2005-11-01

    The SPR biosensor was sensitive to the presence of Salmonella Typhimurium in chicken carcass. The selectivity of the SPR biosensor was assayed using a series of antibody concentrations and dilution series of the organism. The SPR biosensor was specific to Salmonella Typhimurium at concentrations of 106 CFU/ml. Initial results show potential for its application for pathogenic bacteria monitoring.

  8. PCR-based Methodologies Used to Detect and Differentiate the Burkholderia pseudomallei complex: B. pseudomallei, B. mallei, and B. thailandensis.

    PubMed

    Lowe, Woan; March, Jordon K; Bunnell, Annette J; O'Neill, Kim L; Robison, Richard A

    2014-01-01

    Methods for the rapid detection and differentiation of the Burkholderia pseudomallei complex comprising B. pseudomallei, B. mallei, and B. thailandensis, have been the topic of recent research due to the high degree of phenotypic and genotypic similarities of these species. B. pseudomallei and B. mallei are recognized by the CDC as tier 1 select agents. The high mortality rates of glanders and melioidosis, their potential use as bioweapons, and their low infectious dose, necessitate the need for rapid and accurate detection methods. Although B. thailandensis is generally avirulent in mammals, this species displays very similar phenotypic characteristics to that of B. pseudomallei. Optimal identification of these species remains problematic, due to the difficulty in developing a sensitive, selective, and accurate assay. The development of PCR technologies has revolutionized diagnostic testing and these detection methods have become popular due to their speed, sensitivity, and accuracy. The purpose of this review is to provide a comprehensive overview and evaluation of the advancements in PCR-based detection and differentiation methodologies for the B. pseudomallei complex, and examine their potential uses in diagnostic and environmental testing.

  9. Quick and Selective Dual Mode Detection of H2S Gas by Mobile App Employing Silver Nanorods Array.

    PubMed

    Gahlaut, Shashank Kumar; Yadav, Kavita; Sharan, Chandrashekhar; Singh, Jitendra Pratap

    2017-12-19

    Hydrogen sulfide (H 2 S) is a hazardous gas, which not only harms living beings but also poses a significant risk to damage materials placed in culture and art museums, due to its corrosive nature. We demonstrate a novel approach for selective rapid detection of H 2 S gas using silver nanorods (AgNRs) arrays on glass substrates at ambient conditions. The arrays were prepared by glancing angle deposition method. The colorimetric and water wetting properties of as-fabricated arrays were found to be highly sensitive toward the sulfurization, in the presence of H 2 S gas with a minimal concentration in ppm range. The performance of AgNRs as H 2 S gas sensor is investigated by its sensing ability of 5 ppm of gas with an exposure time of only 30 s. We have developed an android-based mobile app to monitor real-time colorimetric detection of H 2 S. The wettability detection has been carried out by a mobile camera. A comparative analysis for different gases reveals the highest sensitivity and selectivity of the array AgNRs toward H 2 S. The rapid detection has also been demonstrated for H 2 S emission from aged wool fabric. Thus, high sensing ability of AgNRs toward H 2 S gas may have potential applications in health monitoring and art conservation.

  10. Evaluation of a culture-based pathogen identification kit for bacterial causes of bovine mastitis.

    PubMed

    Viora, L; Graham, E M; Mellor, D J; Reynolds, K; Simoes, P B A; Geraghty, T E

    2014-07-26

    Accurate identification of mastitis-causing bacteria supports effective management and can be used to implement selective use of antimicrobials for treatment. The objectives of this study were to compare the results from a culture-based mastitis pathogen detection test kit ('VetoRapid', Vétoquinol) with standard laboratory culture and to evaluate the potential suitability of the test kit to inform a selective treatment programme. Overall 231 quarter milk samples from five UK dairy farms were collected. The sensitivity and specificity of the test kit for the identification of Escherichia coli, Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis and Enterococcus spp. ranged from 17 per cent to 84 per cent and 92 per cent to 98 per cent, respectively. In total, 23 of 68 clinical samples were assigned as meeting the requirement for antimicrobial treatment (Gram-positive organism cultured) according to standard culture results, with the test kit results having sensitivity and specificity of 91 per cent and 78 per cent, respectively. Several occurrences of misidentification are reported, including S. aureus being misidentified as coagulase-negative staphylococci and vice versa. The test kit provides rapid preliminary identification of five common causes of bovine mastitis under UK field conditions and is likely to be suitable for informing selective treatment of clinical mastitis caused by Gram-positive organisms. British Veterinary Association.

  11. Designing of fluorescent and magnetic imprinted polymer for rapid, selective and sensitive detection of imidacloprid via activators regenerated by the electron transfer-atom transfer radical polymerization (ARGET-ATRP) technique

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Karfa, Paramita; Madhuri, Rashmi; Sharma, Prashant K.

    2018-05-01

    In this work, we report on a dual-behavior electrochemical/optical sensor for sensitive determination of Imidacloprid by fluorescent dye (fluorescein, FL) and imprinted polymer modified europium doped superparamagnetic iron oxide nanoparticles (FL@SPIONs@MIP). The imidacloprid (IMD)-imprinted polymer was directly synthesized on the Eu-SPIONs surface via Activators regenerated by the electron transfer-atom transfer radical polymerization (ARGET-ATRP) technique. Preparation, characterization and application of the prepared FL@SPIONs@MIP were systematically investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), fluorescence spectroscopy and electrochemical techniques. The electrochemical experiments exhibited a remarkable selectivity of the prepared sensor towards IMD. Determination of IMD by the square wave stripping voltammetry method represented a wide linear range of 0.059-0.791 μg L-1 with a detection limit of 0.0125 μg L-1. In addition, the fluorescence method shows a linear range of 0.039-0.942 μg L-1 and LOD of 0.0108 μg L-1. The fluorescence property of prepared FL@SPIONs@MIP was used for rapid, on-spot but selective detection of IMD in real samples. The proposed electrode displayed excellent repeatability and long-term stability and was successfully applied for quantitative and trace level determination of IMD in several real samples.

  12. Enzyme-modified carbon-fiber microelectrode for the quantification of dynamic fluctuations of nonelectroactive analytes using fast-scan cyclic voltammetry.

    PubMed

    Lugo-Morales, Leyda Z; Loziuk, Philip L; Corder, Amanda K; Toups, J Vincent; Roberts, James G; McCaffrey, Katherine A; Sombers, Leslie A

    2013-09-17

    Neurotransmission occurs on a millisecond time scale, but conventional methods for monitoring nonelectroactive neurochemicals are limited by slow sampling rates. Despite a significant global market, a sensor capable of measuring the dynamics of rapidly fluctuating, nonelectroactive molecules at a single recording site with high sensitivity, electrochemical selectivity, and a subsecond response time is still lacking. To address this need, we have enabled the real-time detection of dynamic glucose fluctuations in live brain tissue using background-subtracted, fast-scan cyclic voltammetry. The novel microbiosensor consists of a simple carbon fiber surface modified with an electrodeposited chitosan hydrogel encapsulating glucose oxidase. The selectivity afforded by voltammetry enables quantitative and qualitative measurements of enzymatically generated H2O2 without the need for additional strategies to eliminate interfering agents. The microbiosensors possess a sensitivity and limit of detection for glucose of 19.4 ± 0.2 nA mM(-1) and 13.1 ± 0.7 μM, respectively. They are stable, even under deviations from physiological normoxic conditions, and show minimal interference from endogenous electroactive substances. Using this approach, we have quantitatively and selectively monitored pharmacologically evoked glucose fluctuations with unprecedented chemical and spatial resolution. Furthermore, this novel biosensing strategy is widely applicable to the immobilization of any H2O2 producing enzyme, enabling rapid monitoring of many nonelectroactive enzyme substrates.

  13. Alleviation of rapid, futile ammonium cycling at the plasma membrane by potassium reveals K+-sensitive and -insensitive components of NH4+ transport.

    PubMed

    Szczerba, Mark W; Britto, Dev T; Balkos, Konstantine D; Kronzucker, Herbert J

    2008-01-01

    Futile plasma membrane cycling of ammonium (NH4+) is characteristic of low-affinity NH4+ transport, and has been proposed to be a critical factor in NH4+ toxicity. Using unidirectional flux analysis with the positron-emitting tracer 13N in intact seedlings of barley (Hordeum vulgare L.), it is shown that rapid, futile NH4+ cycling is alleviated by elevated K+ supply, and that low-affinity NH4+ transport is mediated by a K+-sensitive component, and by a second component that is independent of K+. At low external [K+] (0.1 mM), NH4+ influx (at an external [NH4+] of 10 mM) of 92 micromol g(-1) h(-1) was observed, with an efflux:influx ratio of 0.75, indicative of rapid, futile NH4+ cycling. Elevating K+ supply into the low-affinity K+ transport range (1.5-40 mM) reduced both influx and efflux of NH4+ by as much as 75%, and substantially reduced the efflux:influx ratio. The reduction of NH4+ fluxes was achieved rapidly upon exposure to elevated K+, within 1 min for influx and within 5 min for efflux. The channel inhibitor La3+ decreased high-capacity NH4+ influx only at low K+ concentrations, suggesting that the K+-sensitive component of NH4+ influx may be mediated by non-selective cation channels. Using respiratory measurements and current models of ion flux energetics, the energy cost of concomitant NH4+ and K+ transport at the root plasma membrane, and its consequences for plant growth are discussed. The study presents the first demonstration of the parallel operation of K+-sensitive and -insensitive NH4+ flux mechanisms in plants.

  14. Rapid Estrogen Receptor-Mediated Mechanisms Determine the Sexually Dimorphic Sensitivity of Ventricular Myocytes to 17β-Estradiol and the Environmental Endocrine Disruptor Bisphenol A

    PubMed Central

    Belcher, Scott M.; Chen, Yamei; Yan, Sujuan

    2012-01-01

    Previously we showed that 17β-estradiol (E2) and/or the xenoestrogen bisphenol A (BPA) alter ventricular myocyte Ca2+ handing, resulting in increased cardiac arrhythmias in a female-specific manner. In the present study, the roles of estrogen receptors (ER) in mediating the rapid contractile and arrhythmogenic effects of estrogens were examined. Contractility was used as an index to assess the impact of E2 or BPA on Ca2+ handling in rodent ventricular myocytes. The concentration-response curve for the stimulatory effects of BPA and E2 on female myocyte was inverted-U shaped. Detectable effects for each compound were observed at 10−12 m, and the most efficacious concentrations for each were at 10−9 m. Sensitivity to E2 and BPA was not observed in male myocytes and was abolished in myocytes from ovariectomized females. Analysis using protein-conjugated E2 suggests that these rapid actions are induced by membrane-associated receptors. Analysis using selective ER agonists and antagonists and a genetic ERβ knockout mouse model showed that ERα and ERβ have opposing actions in myocytes and that the balance between ERβ and ERα signaling is the prime regulator of the sex-specific sensitivity toward estrogens. The response of female myocytes to E2 and BPA is dominated by the stimulatory ERβ-mediated signaling, and the absence of BPA and E2 responsiveness in males is due to a counterbalancing-suppressive action of ERα. We conclude that the sex-specific sensitivity of myocytes to estrogens and the rapid arrhythmogenic effects of BPA and estradiol in the female heart are regulated by the balance between ERα and ERβ signaling. PMID:22166976

  15. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework

    NASA Astrophysics Data System (ADS)

    Xia, Tifeng; Zhu, Fengliang; Cui, Yuanjing; Yang, Yu; Wang, Zhiyu; Qian, Guodong

    2017-01-01

    A water-stable metal-organic framework (MOF) EuNDC has been synthesized for selective detection of the well-known contaminant and toxicant picric acid (PA) in aqueous solution. Due to the photo-induced electron transfer and self-absorption mechanism, EuNDC displayed rapid, selective and sensitive detection of PA with a detection limit of 37.6 ppb. Recyclability experiments revealed that EuNDC retains its initial luminescent intensity and same quenching efficiency in each cycle, suggesting high photostability and reusability for long-term sensing applications. The excellent detection performance of EuNDC makes it a promising PA sensing material for practical applications.

  16. A rapid and selective fluorescent probe with a large Stokes shift for the detection of hydrogen sulfide.

    PubMed

    Chen, Song; Hou, Peng; Wang, Jing; Fu, Shuang; Liu, Lei

    2018-05-28

    We have successfully developed a new green-emitting H 2 S fluorescence probe employing a 2,4-dinitrophenyl ether moiety as the sensing group based on 3'-formyl-4'-hydroxybiphenyl-4-carbonitrile. This probe displayed a rapid (2 min), sensitive (the detection limit was 0.18 μM) and selective with a large Stokes shift (183 nm) in response to H 2 S, which was beneficial for fluorescence sensing and cell imaging studies. Moreover, this probe can qualitatively and quantitatively detect H 2 S with a good linearity (R 2  = 0.9991). Importantly, this probe had been used for the detection of H 2 S in living MDA-MB-231 cells with good performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Optimization of ultrahigh-speed multiplex PCR for forensic analysis.

    PubMed

    Gibson-Daw, Georgiana; Crenshaw, Karin; McCord, Bruce

    2018-01-01

    In this paper, we demonstrate the design and optimization of an ultrafast PCR amplification technique, used with a seven-locus multiplex that is compatible with conventional capillary electrophoresis systems as well as newer microfluidic chip devices. The procedure involves the use of a high-speed polymerase and a rapid cycling protocol to permit multiplex PCR amplification of forensic short tandem repeat loci in 6.5 min. We describe the selection and optimization of master mix reagents such as enzyme, buffer, MgCl 2 , and dNTPs, as well as primer ratios, total volume, and cycle conditions, in order to get the best profile in the shortest time possible. Sensitivity and reproducibility studies are also described. The amplification process utilizes a small high-speed thermocycler and compact laptop, making it portable and potentially useful for rapid, inexpensive on-site genotyping. The seven loci of the multiplex were taken from conventional STR genotyping kits and selected for their size and lack of overlap. Analysis was performed using conventional capillary electrophoresis and microfluidics with fluorescent detection. Overall, this technique provides a more rapid method for rapid sample screening of suspects and victims. Graphical abstract Rapid amplification of forensic DNA using high speed thermal cycling followed by capillary or microfluidic electrophoresis.

  18. Rapid, highly sensitive detection of Gram-negative bacteria with lipopolysaccharide based disposable aptasensor.

    PubMed

    Zhang, Jian; Oueslati, Rania; Cheng, Cheng; Zhao, Ling; Chen, Jiangang; Almeida, Raul; Wu, Jayne

    2018-07-30

    Gram-negative bacteria are one of the most common microorganisms in the environment. Their differential detection and recognition from Gram-positive bacteria has been attracting much attention over the years. Using Escherichia coli (E. coli) as a model, we demonstrated on-site detection of Gram-negative bacteria by an AC electrokinetics-based capacitive sensing method using commercial microelectrodes functionalized with an aptamer specific to lipopolysaccharides. Dielectrophoresis effect was utilized to enrich viable bacteria to the microelectrodes rapidly, achieving a detection limit of 10 2 cells/mL within a 30 s' response time. The sensor showed a negligible response to Staphylococcus aureus (S. aureus), a Gram-positive species. The developed sensor showed significant advantages in sensitivity, selectivity, cost, operation simplicity, and response time. Therefore, this sensing method has shown great application potential for environmental monitoring, food safety, and real-time diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. A rapid, naked-eye detection of hypochlorite and bisulfite using a robust and highly-photostable indicator dye Quinaldine Red in aqueous medium

    NASA Astrophysics Data System (ADS)

    Dutta, Tanoy; Chandra, Falguni; Koner, Apurba L.

    2018-02-01

    A ;naked-eye; detection of health hazardous bisulfite (HSO3-) and hypochlorite (ClO-) using an indicator dye (Quinaldine Red, QR) in a wide range of pH is demonstrated. The molecule contains a quinoline moiety linked to an N,N-dimethylaniline moiety with a conjugated double bond. Treatment of QR with HSO3- and ClO-, in aqueous solution at near-neutral pH, resulted in a colorless product with high selectivity and sensitivity. The detection limit was 47.8 μM and 0.2 μM for HSO3- and ClO- respectively. However, ClO- was 50 times more sensitive and with 2 times faster response compared to HSO3-. The detail characterization and related analysis demonstrate the potential of QR for a rapid, robust and highly efficient colorimetric sensor for the practical applications to detect hypochlorite in water samples.

  20. Mass spectrometric-based stable isotopic 2-aminobenzoic acid glycan mapping for rapid glycan screening of biotherapeutics.

    PubMed

    Prien, Justin M; Prater, Bradley D; Qin, Qiang; Cockrill, Steven L

    2010-02-15

    Fast, sensitive, robust methods for "high-level" glycan screening are necessary during various stages of a biotherapeutic product's lifecycle, including clone selection, process changes, and quality control for lot release testing. Traditional glycan screening involves chromatographic or electrophoretic separation-based methods, and, although reproducible, these methods can be time-consuming. Even ultrahigh-performance chromatographic and microfluidic integrated LC/MS systems, which work on the tens of minute time scale, become lengthy when hundreds of samples are to be analyzed. Comparatively, a direct infusion mass spectrometry (MS)-based glycan screening method acquires data on a millisecond time scale, exhibits exquisite sensitivity and reproducibility, and is amenable to automated peak annotation. In addition, characterization of glycan species via sequential mass spectrometry can be performed simultaneously. Here, we demonstrate a quantitative high-throughput MS-based mapping approach using stable isotope 2-aminobenzoic acid (2-AA) for rapid "high-level" glycan screening.

  1. Evaluation of a new rapid diagnostic test for the detection of influenza and RSV.

    PubMed

    Gómez, Sara; Prieto, Columbiana; Vera, Carmen; R Otero, Joaquín; Folgueira, Lola

    2016-05-01

    Influenza viruses and respiratory syncytial virus (RSV) can cause an acute respiratory disease that occurs seasonally in epidemic waves. This retrospective study was conducted to evaluate the Sofia(®) Influenza A+B and the Sofia(®) RSV fluorescence immunoassays (FIAs), two novel rapid detection tests (RDTs) for influenza A and B and RSV. Two hundred and nine breath samples were selected from patients with respiratory symptoms determined to be positive/negative for influenza A, influenza B or RSV using one of the reference diagnostic techniques, cell culture and/or RT-PCR (Simplexa™Flu A/B & RSV). The Sofia Influenza A+B FIA was tested on 123 samples (63 from children and 60 from adults) and the Sofia RSV FIA was tested on 86 pediatric samples. Sensitivity and specificity values of both assays were calculated assuming the reference techniques as the gold standard. Sensitivity and specificity values for the Sofia Influenza A+B FIA were 73.1% and 97.8%, respectively. Sensitivity and specificity values for the Sofia RSV FIA were 87.5% and 86.7%, respectively. The sensitivity results obtained for the two assays were considerably higher than those reported for other RDTs. In conclusion, the Sofia Influenza A+B and the Sofia RSV FIAs are appropriate tools for the rapid diagnosis of these viruses. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  2. A Simple and Selective Spectrophotometric Method for the Determination of Trace Gold in Real, Environmental, Biological, Geological and Soil Samples Using Bis (Salicylaldehyde) Orthophenylenediamine

    PubMed Central

    Soomro, Rubina; Ahmed, M. Jamaluddin; Memon, Najma; Khan, Humaira

    2008-01-01

    A simple high sensitive, selective, and rapid spectrophotometric method for the determination of trace gold based on the rapid reaction of gold(III) with bis(salicylaldehyde)orthophenylenediamine (BSOPD) in aqueous and micellar media has been developed. BSOPD reacts with gold(III) in slightly acidic solution to form a 1:1 brownish-yellow complex, which has an maximum absorption peak at 490 nm in both aqueous and micellar media. The most remarkable point of this method is that the molar absorptivities of the gold-BSOPD complex form in the presence of the nonionic TritonX-100 surfactant are almost a 10 times higher than the value observed in the aqueous solution, resulting in an increase in the sensitivity and selectivity of the method. The apparent molar absorptivities were found to be 2.3 × 104 L mol−1 cm−1 and 2.5 × 105 L mol−1 cm−1 in aqueous and micellar media, respectively. The reaction is instantaneous and the maximum absorbance was obtained after 10 min at 490 nm and remains constant for over 24 h at room temperature. The linear calibration graphs were obtained for 0.1–30 mg L−1 and 0.01–30 mg L−1 of gold(III) in aqueous and surfactant media, respectively. The interference from over 50 cations, anions and complexing agents has been studied at 1 mg L−1 of Au(III); most metal ions can be tolerated in considerable amounts in aqueous micellar solutions. The Sandell’s sensitivity, the limit of detection and relative standard deviation (n = 9) were found to be 5 ng cm−2, 1 ng mL−1 and 2%, respectively in aqueous micellar solutions. Its sensitivity and selectivity are remarkably higher than that of other reagents in the literature. The proposed method was successfully used in the determination of gold in several standard reference materials (alloys and steels), environmental water samples (potable and polluted), and biological samples (blood and urine), geological, soil and complex synthetic mixtures. The results obtained agree well with those samples analyzed by atomic absorption spectrophotometry (AAS). PMID:19609392

  3. Acquisition of Drug Resistance and Dependence by Prions

    PubMed Central

    Oelschlegel, Anja M.; Weissmann, Charles

    2013-01-01

    We have reported that properties of prion strains may change when propagated in different environments. For example, when swainsonine-sensitive 22L prions were propagated in PK1 cells in the presence of swainsonine, drug-resistant variants emerged. We proposed that prions constitute quasi- populations comprising a range of variants with different properties, from which the fittest are selected in a particular environment. Prion populations developed heterogeneity even after biological cloning, indicating that during propagation mutation-like processes occur at the conformational level. Because brain-derived 22L prions are naturally swainsonine resistant, it was not too surprising that prions which had become swa sensitive after propagation in cells could revert to drug resistance. Because RML prions, both after propagation in brain or in PK1 cells, are swainsonine sensitive, we investigated whether it was nonetheless possible to select swainsonine-resistant variants by propagation in the presence of the drug. Interestingly, this was not possible with the standard line of PK1 cells, but in certain PK1 sublines not only swainsonine-resistant, but even swainsonine-dependent populations (i.e. that propagated more rapidly in the presence of the drug) could be isolated. Once established, they could be passaged indefinitely in PK1 cells, even in the absence of the drug, without losing swainsonine dependence. The misfolded prion protein (PrPSc) associated with a swainsonine-dependent variant was less rapidly cleared in PK1 cells than that associated with its drug-sensitive counterpart, indicating that likely structural differences of the misfolded PrP underlie the properties of the prions. In summary, propagation of prions in the presence of an inhibitory drug may not only cause the selection of drug-resistant prions but even of stable variants that propagate more efficiently in the presence of the drug. These adaptations are most likely due to conformational changes of the abnormal prion protein. PMID:23408888

  4. No evidence for faster male hybrid sterility in population crosses of an intertidal copepod (Tigriopus californicus).

    PubMed

    Willett, Christopher S

    2008-06-01

    Two different forces are thought to contribute to the rapid accumulation of hybrid male sterility that has been observed in many inter-specific crosses, namely the faster male and the dominance theories. For male heterogametic taxa, both faster male and dominance would work in the same direction to cause the rapid evolution of male sterility; however, for taxa lacking differentiated sex chromosomes only the faster male theory would explain the rapid evolution of male hybrid sterility. It is currently unknown what causes the faster evolution of male sterility, but increased sexual selection on males and the sensitivity of genes involved in male reproduction are two hypotheses that could explain the observation. Here, patterns of hybrid sterility in crosses of genetically divergent copepod populations are examined to test potential mechanisms of faster male evolution. The study species, Tigriopus californicus, lacks differentiated, hemizygous sex chromosomes and appears to have low levels of divergence caused by sexual selection acting upon males. Hybrid sterility does not accumulate more rapidly in males than females in these crosses suggesting that in this taxon male reproductive genes are not inherently more prone to disruption in hybrids.

  5. Rapid and sensitive screening and selective quantification of antibiotics in human urine by two-dimensional ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    PubMed

    Wang, He-Xing; Wang, Bin; Zhou, Ying; Jiang, Qing-Wu

    2014-12-01

    A rapid and sensitive method for the screening and selective quantification of antibiotics in urine by two-dimensional ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was developed. This method allowed the injection of 200 μL urine extract. The 200-μL injection volume used in this method increased the absolute sensitivity for target antibiotics in solvent by an average 13.3 times, with a range from 8.4 to 28.5 times, compared with the 10-μL conventional injection volume. A 96-well solid phase extraction procedure was established to eliminate the contamination on the chromatographic column resulting from the large-volume injection and increase the throughput of sample preparation. Fourteen target antibiotics from six common categories (β-lactams, quinolones, tetracyclines, macrolides, sulfonamides, and chloramphenicols) were selected as model compounds, and a database containing an additional 74 antibiotics was compiled for posttarget screening. The limit of detection of the target antibiotics, defined as a signal-to-noise ratio of 3, ranged from 0.04 to 1.99 ng/mL. The mean interday recoveries ranged between 79.6 and 121.3 %, with a relative standard deviation from 2.9 to 18.3 % at three spiking levels of 20 ng/mL, 50 ng/mL, and 100 ng/mL. This method was successfully applied in 60 real urine samples from schoolchildren aged 8-11 years, and four target antibiotics (azithromycin, sulfadiazine, trimethoprim, and oxytetracycline) and two posttarget antibiotics (sulfadimidine and cefaclor) were found in the urine samples. This method can be used as a large-scale biomonitoring tool for exposure of the human population to antibiotics.

  6. Cooperation, competition and antibiotic resistance in bacterial colonies.

    PubMed

    Frost, Isabel; Smith, William P J; Mitri, Sara; Millan, Alvaro San; Davit, Yohan; Osborne, James M; Pitt-Francis, Joe M; MacLean, R Craig; Foster, Kevin R

    2018-06-01

    Bacteria commonly live in dense and genetically diverse communities associated with surfaces. In these communities, competition for resources and space is intense, and yet we understand little of how this affects the spread of antibiotic-resistant strains. Here, we study interactions between antibiotic-resistant and susceptible strains using in vitro competition experiments in the opportunistic pathogen Pseudomonas aeruginosa and in silico simulations. Selection for intracellular resistance to streptomycin is very strong in colonies, such that resistance is favoured at very low antibiotic doses. In contrast, selection for extracellular resistance to carbenicillin is weak in colonies, and high doses of antibiotic are required to select for resistance. Manipulating the density and spatial structure of colonies reveals that this difference is partly explained by the fact that the local degradation of carbenicillin by β-lactamase-secreting cells protects neighbouring sensitive cells from carbenicillin. In addition, we discover a second unexpected effect: the inducible elongation of cells in response to carbenicillin allows sensitive cells to better compete for the rapidly growing colony edge. These combined effects mean that antibiotic treatment can select against antibiotic-resistant strains, raising the possibility of treatment regimes that suppress sensitive strains while limiting the rise of antibiotic resistance. We argue that the detailed study of bacterial interactions will be fundamental to understanding and overcoming antibiotic resistance.

  7. Recent Advances in Bacteria Identification by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Using Nanomaterials as Affinity Probes

    PubMed Central

    Chiu, Tai-Chia

    2014-01-01

    Identifying trace amounts of bacteria rapidly, accurately, selectively, and with high sensitivity is important to ensuring the safety of food and diagnosing infectious bacterial diseases. Microbial diseases constitute the major cause of death in many developing and developed countries of the world. The early detection of pathogenic bacteria is crucial in preventing, treating, and containing the spread of infections, and there is an urgent requirement for sensitive, specific, and accurate diagnostic tests. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an extremely selective and sensitive analytical tool that can be used to characterize different species of pathogenic bacteria. Various functionalized or unmodified nanomaterials can be used as affinity probes to capture and concentrate microorganisms. Recent developments in bacterial detection using nanomaterials-assisted MALDI-MS approaches are highlighted in this article. A comprehensive table listing MALDI-MS approaches for identifying pathogenic bacteria, categorized by the nanomaterials used, is provided. PMID:24786089

  8. Sensitive determination of endogenous hydroxyl radical in live cell by a BODIPY based fluorescent probe.

    PubMed

    Lei, Kepeng; Sun, Mingtai; Du, Libo; Zhang, Xiaojie; Yu, Huan; Wang, Suhua; Hayat, Tasawar; Alsaedi, Ahmed

    2017-08-01

    The sensitive and selective fluorescence probe for hydroxyl radical analysis is of significance because hydroxyl radical plays key roles in many physiological and pathological processes. In this work, a novel organic fluorescence molecular probe OHP for hydroxyl radical is synthesized by a two-step route. The probe employs 4-bora-3a,4a-diaza-s-indacene (difluoroboron dipyrromethene, BODIPY) as the fluorophore and possesses relatively high fluorescence quantum yields (77.14%). Hydroxyl radical can rapidly react with the probe and quench the fluorescence in a good linear relationship (R 2 =0.9967). The limit of detection is determined to be as low as 11nM. In addition, it has been demonstrated that the probe has a good stability against pH and light illumination, low cytotoxicity and high biocompatibility. Cell culture experimental results show that the probe OHP is sensitive and selective for imaging and tracking endogenous hydroxyl radical in live cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein.

    PubMed

    Kaushik, Ajeet; Yndart, Adriana; Kumar, Sanjeev; Jayant, Rahul Dev; Vashist, Arti; Brown, Ashley N; Li, Chen-Zhong; Nair, Madhavan

    2018-06-26

    This work, as a proof of principle, presents a sensitive and selective electrochemical immunosensor for Zika-virus (ZIKV)-protein detection using a functionalized interdigitated micro-electrode of gold (IDE-Au) array. A miniaturized IDE-Au immunosensing chip was prepared via immobilization of ZIKV specific envelop protein antibody (Zev-Abs) onto dithiobis(succinimidyl propionate) i.e., (DTSP) functionalized IDE-Au (electrode gap/width of 10 µm). Electrochemical impedance spectroscopy (EIS) was performed to measure the electrical response of developed sensing chip as a function of ZIKV-protein concentrations. The results of EIS studies confirmed that sensing chip detected ZIKV-protein selectively and exhibited a detection range from 10 pM to 1 nM and a detection limit of 10 pM along with a high sensitivity of 12 kΩM -1 . Such developed ZIKV immune-sensing chip can be integrated with a miniaturized potentiostat (MP)-interfaced with a smartphone for rapid ZIKV-infection detection required for early stage diagnostics at point-of-care application.

  10. Recent advances in bacteria identification by matrix-assisted laser desorption/ionization mass spectrometry using nanomaterials as affinity probes.

    PubMed

    Chiu, Tai-Chia

    2014-04-28

    Identifying trace amounts of bacteria rapidly, accurately, selectively, and with high sensitivity is important to ensuring the safety of food and diagnosing infectious bacterial diseases. Microbial diseases constitute the major cause of death in many developing and developed countries of the world. The early detection of pathogenic bacteria is crucial in preventing, treating, and containing the spread of infections, and there is an urgent requirement for sensitive, specific, and accurate diagnostic tests. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an extremely selective and sensitive analytical tool that can be used to characterize different species of pathogenic bacteria. Various functionalized or unmodified nanomaterials can be used as affinity probes to capture and concentrate microorganisms. Recent developments in bacterial detection using nanomaterials-assisted MALDI-MS approaches are highlighted in this article. A comprehensive table listing MALDI-MS approaches for identifying pathogenic bacteria, categorized by the nanomaterials used, is provided.

  11. Aptamer-Based Biosensors for Antibiotic Detection: A Review.

    PubMed

    Mehlhorn, Asol; Rahimi, Parvaneh; Joseph, Yvonne

    2018-06-11

    Antibiotic resistance and, accordingly, their pollution because of uncontrolled usage has emerged as a serious problem in recent years. Hence, there is an increased demand to develop robust, easy, and sensitive methods for rapid evaluation of antibiotics and their residues. Among different analytical methods, the aptamer-based biosensors (aptasensors) have attracted considerable attention because of good selectivity, specificity, and sensitivity. This review gives an overview about recently-developed aptasensors for antibiotic detection. The use of various aptamer assays to determine different groups of antibiotics, like β-lactams, aminoglycosides, anthracyclines, chloramphenicol, (fluoro)quinolones, lincosamide, tetracyclines, and sulfonamides are presented in this paper.

  12. Modification of the Rappaport rapid test in large-scale testing for syphilis. Evaluation of the rapid plate and rapid card tests.

    PubMed

    Ghinsberg, R; Meir, E; Blumstein, G; Kafeman, R

    1975-11-01

    The Rappaport rapid (RR) plate and card tests were developed as modifications of the RR tube test to permit rapid and inexpensive screening of large numbers of subjects for the diagnosis of syphilis. More than 2,000 sera were examined in parallel by the Venereal Disease Research Laboratory (VDRL) slide test, the rapid plasma reagin (RPR) card test and the RR plate and card tests. There was complete agreement between the RR plate and card tests and the VDRL slide and RPR card tests in 96.6% of sera. In a selected group of 1,530 sera examined, in addition, by the fluorescent treponemal antibody absorption (FTA-ABS) test, there was agreement between the RR plate and card tests and the FTA-ABS test in 74.3% of sera and between the VDRL and RPR tests and the FTA-ABS test in 73.7% of sera. The RR plate test was found to be sufficiently sensitive and specific for the diagnosis of syphilis, although the VDRL slide test is perhaps more sensitive in primary and late latent syphilis. Since the antigen used in the RR tests is colored and stable and the sera do not require inactivation before the test, the tests are easier to perform than the VDRL slide test: the RR plate and card tests could therefore replace the VDRL test as a screening test, with hardly any loss of accuracy.

  13. Evaluation of a new in-clinic test system to detect feline immunodeficiency virus and feline leukemia virus infection.

    PubMed

    Sand, Christina; Englert, Theresa; Egberink, Herman; Lutz, Hans; Hartmann, Katrin

    2010-06-01

    Many in-house tests for the diagnosis of feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) infection are licensed for use in veterinary practice. A new test with unknown performance has recently appeared on the market. The aims of this study were to define the efficacy of a new in-clinic test system, the Anigen Rapid FIV Ab/FeLV Ag Test, and to compare it with the current leading in-clinic test, the SNAP Kombi Plus FeLV Antigen/FIB Antibody Test. Three-hundred serum samples from randomly selected healthy and diseased cats presented to the Clinic of Small Animal Medicine at Ludwig Maximilian University were tested using both the Anigen Rapid Test and the SNAP Kombi Plus Test. Diagnostic sensitivity, specificity, and positive and negative predictive values were calculated for both tests using Western blot as the gold standard for verification of FIV infection and PCR as the gold standard for FeLV infection. The presence of antibodies against FIV was confirmed by Western blot in 9/300 samples (prevalence 3%). FeLV DNA was detected by PCR in 15/300 samples (prevalence 5%). For FIV infection the Anigen Rapid Test had a sensitivity of 88.9%, specificity of 99.7%, positive predictive value of 88.9%, and negative predictive value of 99.7%. For FeLV infection, the Anigen Rapid Test had a sensitivity of 40.0%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 96.9%. Diagnostic accuracy was similar to that of the SNAP Kombi Plus Test. The new Anigen Rapid FIV Ab/FeLV Ag Test performed very well and can be recommended for use in veterinary practice.

  14. Plasma stable, pH-sensitive fusogenic polymer-modified liposomes: A promising carrier for mitoxantrone.

    PubMed

    Ghanbarzadeh, Saeed; Arami, Sanam; Pourmoazzen, Zhaleh; Ghasemian-Yadegari, Javad; Khorrami, Arash

    2014-07-01

    pH-sensitive liposomes are designed to undergo acid-triggered destabilization. In the present study, we prepared polymer-modified, plasma stable, pH-sensitive fusogenic mitoxantrone liposomes to increase efficacy and selectivity on cancer cell lines. Conventional liposomes were prepared using cholesterol and dipalmitoyl-sn-glycero-3-phosphatidylethanolamine. Dioleoylphosphatidylethanolamine and a cholesteryl derivative, poly(monomethylitaconate)-co-poly(N,N-dimethylaminoethyl methacrylate) (PMMI-co-PDMAEMA), were used for the preparation of pH-sensitive fusogenic liposomes. Using polyethylene glycol (PEG)-poly(monomethylitaconate)-CholC6 (PEG-PMMI-CholC6) copolymers instead of cholesterol introduced pH-sensitive and plasma stability properties simultaneously in prepared liposomes. All formulations were prepared by thin film hydration method and subsequently, pH-sensitivity and stability in human serum were evaluated. The ability of pH-sensitive fusogenic liposomes to enhance the mitoxantrone cytotoxicity and selectivity in cancerous cell lines was assessed in vitro compared to normal cell line using human breast cancer cell line (MCF-7), human prostate cancer cell line (PC-3), and human umbilical vein endothelial cells line. Results revealed that both PMMI-co-PDMAEMA and PEG-PMMI-CholC6-based formulations showed pH-sensitive property and were found to rapidly release mitoxantrone under mildly acidic conditions. Nevertheless, only the PEG-PMMI-CholC6-based liposomes preserved pH-sensitivity after incubation in plasma. Mitoxantrone loaded-pH-sensitive fusogenic liposomes exhibited a higher cytotoxicity than the control conventional liposomes on MCF-7 and PC-3 cell lines. On the contrary, both pH-sensitive fusogenic liposomes showed lower cytotoxic effect on human umbilical vein endothelial cell line. Plasma stable, pH-sensitive fusogenic liposomes are promising carriers for enhancing the efficiency and selectivity, besides reduction of the side effects of anticancer agents. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. Rapid Generation of Marker-Free P. falciparum Fluorescent Reporter Lines Using Modified CRISPR/Cas9 Constructs and Selection Protocol.

    PubMed

    Mogollon, Catherin Marin; van Pul, Fiona J A; Imai, Takashi; Ramesar, Jai; Chevalley-Maurel, Séverine; de Roo, Guido M; Veld, Sabrina A J; Kroeze, Hans; Franke-Fayard, Blandine M D; Janse, Chris J; Khan, Shahid M

    2016-01-01

    The CRISPR/Cas9 system is a powerful genome editing technique employed in a wide variety of organisms including recently the human malaria parasite, P. falciparum. Here we report on further improvements to the CRISPR/Cas9 transfection constructs and selection protocol to more rapidly modify the P. falciparum genome and to introduce transgenes into the parasite genome without the inclusion of drug-selectable marker genes. This method was used to stably integrate the gene encoding GFP into the P. falciparum genome under the control of promoters of three different Plasmodium genes (calmodulin, gapdh and hsp70). These genes were selected as they are highly transcribed in blood stages. We show that the three reporter parasite lines generated in this study (GFP@cam, GFP@gapdh and GFP@hsp70) have in vitro blood stage growth kinetics and drug-sensitivity profiles comparable to the parental P. falciparum (NF54) wild-type line. Both asexual and sexual blood stages of the three reporter lines expressed GFP-fluorescence with GFP@hsp70 having the highest fluorescent intensity in schizont stages as shown by flow cytometry analysis of GFP-fluorescence intensity. The improved CRISPR/Cas9 constructs/protocol will aid in the rapid generation of transgenic and modified P. falciparum parasites, including those expressing different reporters proteins under different (stage specific) promoters.

  16. Rapid Generation of Marker-Free P. falciparum Fluorescent Reporter Lines Using Modified CRISPR/Cas9 Constructs and Selection Protocol

    PubMed Central

    Mogollon, Catherin Marin; van Pul, Fiona J. A.; Imai, Takashi; Ramesar, Jai; Chevalley-Maurel, Séverine; de Roo, Guido M.; Veld, Sabrina A. J.; Kroeze, Hans; Franke-Fayard, Blandine M. D.; Janse, Chris J.

    2016-01-01

    The CRISPR/Cas9 system is a powerful genome editing technique employed in a wide variety of organisms including recently the human malaria parasite, P. falciparum. Here we report on further improvements to the CRISPR/Cas9 transfection constructs and selection protocol to more rapidly modify the P. falciparum genome and to introduce transgenes into the parasite genome without the inclusion of drug-selectable marker genes. This method was used to stably integrate the gene encoding GFP into the P. falciparum genome under the control of promoters of three different Plasmodium genes (calmodulin, gapdh and hsp70). These genes were selected as they are highly transcribed in blood stages. We show that the three reporter parasite lines generated in this study (GFP@cam, GFP@gapdh and GFP@hsp70) have in vitro blood stage growth kinetics and drug-sensitivity profiles comparable to the parental P. falciparum (NF54) wild-type line. Both asexual and sexual blood stages of the three reporter lines expressed GFP-fluorescence with GFP@hsp70 having the highest fluorescent intensity in schizont stages as shown by flow cytometry analysis of GFP-fluorescence intensity. The improved CRISPR/Cas9 constructs/protocol will aid in the rapid generation of transgenic and modified P. falciparum parasites, including those expressing different reporters proteins under different (stage specific) promoters. PMID:27997583

  17. Highly selective detection of p-nitrophenol using fluorescence assay based on boron, nitrogen co-doped carbon dots.

    PubMed

    Xiao, Na; Liu, Shi Gang; Mo, Shi; Li, Na; Ju, Yan Jun; Ling, Yu; Li, Nian Bing; Luo, Hong Qun

    2018-07-01

    p-Nitrophenol (p-NP) contaminants seriously endanger environmental and living beings health, hence to establish a sensitive and selective method is of great importance for the determination of p-NP. In this work, boron and nitrogen co-doped carbon dots (B,N-CDs) were synthesized by one-step hydrothermal method using 3-aminophenylboronic acid as the sole precursor. The product was characterized through high-resolution transmission electron microscopy, fluorescence spectroscopy, UV-visible absorption spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. Without any functionalized modification, B,N-CDs can be directly applied as a 'turn-off' fluorescent probe for rapid, highly selective, and sensitive detection of p-NP. The fluorescent sensor based on the B,N-CDs exhibited a broad linear response to the concentration of p-NP in the range of 0.5 - 60 μM and 60 - 200 μM, respectively, and provided a detection limit of 0.2 μM. It was found that only the absorption spectrum of p-NP has a wide overlap with the fluorescence excitation and emission spectra of B,N-CDs compared to those of other representative analogues. The response mechanism was due to the inner filter effect and the formation of dynamic covalent B-O bonds between B,N-CDs and p-NP, which endowed the sensing platform with the rapid response and high selectivity to p-NP. Finally, the sensor showed the practicability of p-NP determination in environmental water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. The sensitivity of ecosystem service models to choices of input data and spatial resolution

    Treesearch

    Kenneth J. Bagstad; Erika Cohen; Zachary H. Ancona; Steven. G. McNulty; Ge   Sun

    2018-01-01

    Although ecosystem service (ES) modeling has progressed rapidly in the last 10–15 years, comparative studies on data and model selection effects have become more common only recently. Such studies have drawn mixed conclusions about whether different data and model choices yield divergent results. In this study, we compared the results of different models to address...

  19. Designed to dissolve: suppression of colloidal aggregation of Cu(I)-selective fluorescent probes in aqueous buffer and in-gel detection of a metallochaperone.

    PubMed

    Morgan, M Thomas; Bagchi, Pritha; Fahrni, Christoph J

    2011-10-12

    Due to the lipophilicity of the metal-ion receptor, previously reported Cu(I)-selective fluorescent probes form colloidal aggregates, as revealed by dynamic light scattering. To address this problem, we have developed a hydrophilic triarylpyrazoline-based fluorescent probe, CTAP-2, that dissolves directly in water and shows a rapid, reversible, and highly selective 65-fold fluorescence turn-on response to Cu(I) in aqueous solution. CTAP-2 proved to be sufficiently sensitive for direct in-gel detection of Cu(I) bound to the metallochaperone Atox1, demonstrating the potential for cation-selective fluorescent probes to serve as tools in metalloproteomics for identifying proteins with readily accessible metal-binding sites.

  20. New highly sensitive and selective fluorescent terbium complex for the detection of aluminium ions

    NASA Astrophysics Data System (ADS)

    Anwar, Zeinab M.; Ibrahim, Ibrahim A.; Kamel, Rasha M.; Abdel-Salam, Enas T.; El-Asfoury, Mahmoud H.

    2018-02-01

    A highly sensitive and selective spectrofluorimetric method has been developed for the rapid determination of aluminium ions. The method is based on the fluorescence enhancement of Tb complex with 3,4-dimetyl-thieno[2,3 b] thiophene-2,5-dicarboxylic acid (LN) after addition trace amount of aluminium ions. The fluorescence of the probe is monitored at the characteristic an emission wavelength of Tb3+ at 545 nm with excitation at 300 nm. Optimum detection was obtained in DMSO-H2O (2:8, v/v) and at pH 6.0 using MOPSO buffer. Under the optimum conditions linear calibration curves were obtained from 0.5 μ mol L-1 to 20 μ mol L-1 with detection limit of 0.1 μ mol L-1. Effect of interference of other ions was studied.

  1. Sensitive and selective liquid chromatography-tandem mass spectrometry method for the quantification of aniracetam in human plasma.

    PubMed

    Zhang, Jingjing; Liang, Jiabi; Tian, Yuan; Zhang, Zunjian; Chen, Yun

    2007-10-15

    A rapid, sensitive and selective LC-MS/MS method was developed and validated for the quantification of aniracetam in human plasma using estazolam as internal standard (IS). Following liquid-liquid extraction, the analytes were separated using a mobile phase of methanol-water (60:40, v/v) on a reverse phase C18 column and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode using the respective [M+H]+ ions, m/z 220-->135 for aniracetam and m/z 295-->205 for the IS. The assay exhibited a linear dynamic range of 0.2-100 ng/mL for aniracetam in human plasma. The lower limit of quantification (LLOQ) was 0.2 ng/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The validated LC-MS/MS method has been successfully applied to study the pharmacokinetics of aniracetam in healthy male Chinese volunteers.

  2. Advances in developing rapid, reliable and portable detection systems for alcohol.

    PubMed

    Thungon, Phurpa Dema; Kakoti, Ankana; Ngashangva, Lightson; Goswami, Pranab

    2017-11-15

    Development of portable, reliable, sensitive, simple, and inexpensive detection system for alcohol has been an instinctive demand not only in traditional brewing, pharmaceutical, food and clinical industries but also in rapidly growing alcohol based fuel industries. Highly sensitive, selective, and reliable alcohol detections are currently amenable typically through the sophisticated instrument based analyses confined mostly to the state-of-art analytical laboratory facilities. With the growing demand of rapid and reliable alcohol detection systems, an all-round attempt has been made over the past decade encompassing various disciplines from basic and engineering sciences. Of late, the research for developing small-scale portable alcohol detection system has been accelerated with the advent of emerging miniaturization techniques, advanced materials and sensing platforms such as lab-on-chip, lab-on-CD, lab-on-paper etc. With these new inter-disciplinary approaches along with the support from the parallel knowledge growth on rapid detection systems being pursued for various targets, the progress on translating the proof-of-concepts to commercially viable and environment friendly portable alcohol detection systems is gaining pace. Here, we summarize the progress made over the years on the alcohol detection systems, with a focus on recent advancement towards developing portable, simple and efficient alcohol sensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Rapid microfluidic analysis of a Y-STR multiplex for screening of forensic samples.

    PubMed

    Gibson-Daw, Georgiana; Albani, Patricia; Gassmann, Marcus; McCord, Bruce

    2017-02-01

    In this paper, we demonstrate a rapid analysis procedure for use with a small set of rapidly mutating Y chromosomal short tandem repeat (Y-STR) loci that combines both rapid polymerase chain reaction (PCR) and microfluidic separation elements. The procedure involves a high-speed polymerase and a rapid cycling protocol to permit PCR amplification in 16 min. The resultant amplified sample is next analysed using a short 1.8-cm microfluidic electrophoresis system that permits a four-locus Y-STR genotype to be produced in 80 s. The entire procedure takes less than 25 min from sample collection to result. This paper describes the rapid amplification protocol as well as studies of the reproducibility and sensitivity of the procedure and its optimisation. The amplification process utilises a small high-speed thermocycler, microfluidic device and compact laptop, making it portable and potentially useful for rapid, inexpensive on-site genotyping. The four loci used for the multiplex were selected due to their rapid mutation rates and should proved useful in preliminary screening of samples and suspects. Overall, this technique provides a method for rapid sample screening of suspect and crime scene samples in forensic casework. Graphical abstract ᅟ.

  4. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel

    NASA Technical Reports Server (NTRS)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.

  5. Stigma Sensitivity and the Duration of Temporary Closure Are Affected by Pollinator Identity in Mazus miquelii (Phrymaceae), a Species with Bilobed Stigma.

    PubMed

    Jin, Xiao-Fang; Ye, Zhong-Ming; Amboka, Grace M; Wang, Qing-Feng; Yang, Chun-Feng

    2017-01-01

    A sensitive bilobed stigma is thought to assure reproduction, avoid selfing and promote outcrossing. In addition, it may also play a role in pollinator selection since only pollinators with the appropriate body size can trigger this mechanism. However, no experimental study has investigated how the sensitive stigma responds to different pollinators and its potential effects on pollination. Mazus miquelii (Phrymaceae), a plant with a bilobed stigma was studied to investigate the relationship between stigma behaviors and its multiple insect pollinators. The reaction time of stigma closure after touched, duration of temporary closure, and factors determining permanent closure of the stigma were studied when flowers were exposed to different visitors and conducted with hand pollination. Manual stimulation was also used to detect the potential differences in stigmas when touched with different degrees of external forces. Results indicated that, compared to pollinators with a small body size, larger pollinators transferred more pollen grains to the stigma, causing a rapid stigma response and resulting in a higher percentage of permanent closures. Duration of temporary closure was negatively correlated with the speed of stigma closure; a stigma that closed more rapidly reopened more slowly. Manual stimulation showed that reaction time of stigma closure was likely a response to external mechanical forces. Hand pollination treatments revealed that the permanent closure of a stigma was determined by the size of stigmatic pollen load. For large pollinators, the speedy reaction of the stigma might help to reduce pollen loss, enhance pollen germination and avoid obstructing pollen export. Stigmas showed low sensitivity when touched by inferior pollinators, which may have increased the possibility of pollen deposition by subsequent visits. Therefore, the stigma behavior in M. miquelii is likely a mechanism of pollinator selection to maximize pollination success.

  6. Rapid development of new protein biosensors utilizing peptides obtained via phage display.

    PubMed

    Wu, Jun; Park, Jong Pil; Dooley, Kevin; Cropek, Donald M; West, Alan C; Banta, Scott

    2011-01-01

    There is a consistent demand for new biosensors for the detection of protein targets, and a systematic method for the rapid development of new sensors is needed. Here we present a platform where short unstructured peptides that bind to a desired target are selected using M13 phage display. The selected peptides are then chemically synthesized and immobilized on gold, allowing for detection of the target using electrochemical techniques such as electrochemical impedance spectroscopy (EIS). A quartz crystal microbalance (QCM) is also used as a diagnostic tool during biosensor development. We demonstrate the utility of this approach by creating a novel peptide-based electrochemical biosensor for the enzyme alanine aminotransferase (ALT), a well-known biomarker of hepatotoxicity. Biopanning of the M13 phage display library over immobilized ALT, led to the rapid identification of a new peptide (ALT5-8) with an amino acid sequence of WHWRNPDFWYLK. Phage particles expressing this peptide exhibited nanomolar affinity for immobilized ALT (K(d,app) = 85±20 nM). The newly identified ALT5-8 peptide was then chemically synthesized with a C-terminal cysteine for gold immobilization. The performance of the gold-immobilized peptides was studied with cyclic voltammetry (CV), QCM, and EIS. Using QCM, the sensitivity for ALT detection was 8.9±0.9 Hz/(µg/mL) and the limit of detection (LOD) was 60 ng/mL. Using EIS measurements, the sensitivity was 142±12 impedance percentage change %/(µg/mL) and the LOD was 92 ng/mL. In both cases, the LOD was below the typical concentration of ALT in human blood. Although both QCM and EIS produced similar LODs, EIS is preferable due to a larger linear dynamic range. Using QCM, the immobilized peptide exhibited a nanomolar dissociation constant for ALT (K(d) = 20.1±0.6 nM). These results demonstrate a simple and rapid platform for developing and assessing the performance of sensitive, peptide-based biosensors for new protein targets.

  7. DNA capture elements for rapid detection and identification of biological agents

    NASA Astrophysics Data System (ADS)

    Kiel, Johnathan L.; Parker, Jill E.; Holwitt, Eric A.; Vivekananda, Jeeva

    2004-08-01

    DNA capture elements (DCEs; aptamers) are artificial DNA sequences, from a random pool of sequences, selected for their specific binding to potential biological warfare agents. These sequences were selected by an affinity method using filters to which the target agent was attached and the DNA isolated and amplified by polymerase chain reaction (PCR) in an iterative, increasingly stringent, process. Reporter molecules were attached to the finished sequences. To date, we have made DCEs to Bacillus anthracis spores, Shiga toxin, Venezuelan Equine Encephalitis (VEE) virus, and Francisella tularensis. These DCEs have demonstrated specificity and sensitivity equal to or better than antibody.

  8. Sensitive and Selective NH₃ Monitoring at Room Temperature Using ZnO Ceramic Nanofibers Decorated with Poly(styrene sulfonate).

    PubMed

    Andre, Rafaela S; Kwak, Dongwook; Dong, Qiuchen; Zhong, Wei; Correa, Daniel S; Mattoso, Luiz H C; Lei, Yu

    2018-04-01

    Ammonia (NH₃) gas is a prominent air pollutant that is frequently found in industrial and livestock production environments. Due to the importance in controlling pollution and protecting public health, the development of new platforms for sensing NH₃ at room temperature has attracted great attention. In this study, a sensitive NH₃ gas device with enhanced selectivity is developed based on zinc oxide nanofibers (ZnO NFs) decorated with poly(styrene sulfonate) (PSS) and operated at room temperature. ZnO NFs were prepared by electrospinning followed by calcination at 500 °C for 3 h. The electrospun ZnO NFs are characterized to evaluate the properties of the as-prepared sensing materials. The loading of PSS to prepare ZnO NFs/PSS composite is also optimized based on the best sensing performance. Under the optimal composition, ZnO NFs/PSS displays rapid, reversible, and sensitive response upon NH₃ exposure at room temperature. The device shows a dynamic linear range up to 100 ppm and a limit of detection of 3.22 ppm and enhanced selectivity toward NH₃ in synthetic air, against NO₂ and CO, compared to pure ZnO NFs. Additionally, a sensing mechanism is proposed to illustrate the sensing performance using ZnO NFs/PSS composite. Therefore, this study provides a simple methodology to design a sensitive platform for NH₃ monitoring at room temperature.

  9. A luminescent hybridoma-based biosensor for rapid detection of V. cholerae upon induction of calcium signaling pathway.

    PubMed

    Zamani, Parichehr; Sajedi, Reza H; Hosseinkhani, Saman; Zeinoddini, Mehdi; Bakhshi, Bita

    2016-05-15

    In this study, a hybridoma based biosensor was developed for rapid, sensitive and selective detection of Vibrio cholerae O1 which converts the antibody-antigen binding to bioluminescence light. After investigation on hybridoma performance, the biosensor was constructed by transfecting specific hybridoma cells with aequorin reporter gene and the bioluminescence activities of stable biosensor were measured. The sensitivity of biosensor was as few as 50 CFU/ml and it showed no responses to other entric bacteria. Moreover, the response time of biosensor was estimated in 7th second which means this method is considerably faster than many available detection assays. In addition, this biosensor was successfully applied to V. cholerae detection in environmental samples with no significant loss in sensitivity, demonstrating our proposed biosensor provides a sensitive and reliable method for detection of V. cholerae in natural samples. The application of whole hybridoma cell directly as a sensing element in biosensor construction which mentioned for the first time in present study suggests that hybridoma cells could provide a valuable tool for future studies in both basic and diagnostic sciences and could be considered as a fast and specific sensing element for detection of other pathogens in different applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Rapid Damage Assessment. Volume I. Methodology for Selecting Repair Area of Ordnance-Damaged Pavements.

    DTIC Science & Technology

    1980-09-01

    this system be given no further consideration. 14AGNETOMETER TECHNIQUES Four types of magnetometers are commonly in use today: fluxgate , proton...that are cumbersome to operate and less accurate than fluxgate and proton mag- netometers. The proton magnetometer is also gradually replacing the... fluxgate magnetometer because of its greater sensitivity (I gamma or better), absolute accuracy, nonmoving parts, and its ability Lo measure absolute

  11. A Prospective, Randomized Investigation of Plasma First Resuscitation for Traumatic Hemorrhage and Attenuation of Acute Coagulopathy of Trauma

    DTIC Science & Technology

    2016-05-01

    TL, Silliman, CC, and Banerjee, A: Tranexamic Acid Inhibited Thromboelastography is a More Sensitive and Rapid Predictor of Hyperfibrinolytic...A: Alpha-enolase, A Glycolytic Enzyme Elevated in Hemorrhagic Shock, Potentiates Fibrinolysis, and is Reversible by Tranexamic Acid (Presented at the...Silliman, CC. Rationale for the Selective Administration of Tranexamic Acid to Inhibit-Fibrinolysis in the Injured Patient. (Presented at Trauma

  12. Metal-Free Cataluminescence Gas Sensor for Hydrogen Sulfide Based on Its Catalytic Oxidation on Silicon Carbide Nanocages.

    PubMed

    Wu, Liqian; Zhang, Lichun; Sun, Mingxia; Liu, Rui; Yu, Lingzhu; Lv, Yi

    2017-12-19

    Cataluminescence- (CTL-) based sensors are among the most attractive and effective tools for gas sensing, owing to their efficient selectivity, high sensitivity, and rapidity. As the sensing materials of CTL-based sensors, metal-based catalysts easily bring about high costs and environmental pollution of heavy metals. More importantly, the long-term stability of metal-based catalysts is usually rather poor. Metal-free catalysts have unique advantages such as environmental friendliness, low costs, and long-term stability, making them promising materials for CTL-based sensors. Herein, we report the fabrication of a CTL sensor based on a metal-free catalyst. F-doped cage-like SiC was synthesized by wet chemical etching. The as-prepared products showed a rapid, stable, highly selective, and sensitive cataluminescent response to H 2 S. The stability of the sensor was demonstrated to be fairly good for at least 15 days. After CTL tests, F-doped cage-like SiC retained its original morphology, structure, and chemical composition. In addition, to the best of our knowledge, this is the first report of a metal-free CTL sensor. Metal-free catalysts are environmentally friendly and low in cost and exhibit long-term stability, which could open a new avenue of CTL sensing.

  13. The Dynamics of Son Preference, Technology Diffusion, and Fertility Decline Underlying Distorted Sex Ratios at Birth: A Simulation Approach.

    PubMed

    Kashyap, Ridhi; Villavicencio, Francisco

    2016-10-01

    We present a micro-founded simulation model that formalizes the "ready, willing, and able" framework, originally used to explain historical fertility decline, to the practice of prenatal sex selection. The model generates sex ratio at birth (SRB) distortions from the bottom up and attempts to quantify plausible levels, trends, and interactions of son preference, technology diffusion, and fertility decline that underpin SRB trajectories at the macro level. Calibrating our model for South Korea, we show how even as the proportion with a preference for sons was declining, SRB distortions emerged due to rapid diffusion of prenatal sex determination technology combined with small but growing propensities to abort at low birth parities. Simulations reveal that relatively low levels of son preference (about 20 % to 30 % wanting one son) can result in skewed SRB levels if technology diffuses early and steadily, and if fertility falls rapidly to encourage sex-selective abortion at low parities. Model sensitivity analysis highlights how the shape of sex ratio trajectories is particularly sensitive to the timing and speed of prenatal sex-determination technology diffusion. The maximum SRB levels reached in a population are influenced by how the readiness to abort rises as a function of the fertility decline.

  14. A visual assay and spectrophotometric determination of LLM-105 explosive using detection of gold nanoparticle aggregation at two pH values.

    PubMed

    He, Yi; Cheng, Yang

    2016-08-01

    We report a simple, rapid, and sensitive assay for visual and spectrophotometric detection of the 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) explosive. The assay is based on different interactions between LLM-105 and gold nanoparticle (AuNP) dispersions at two pH values, leading to the formation of dispersed or aggregated AuNPs. Two AuNP dispersions at two pH values were applied to recognize and detect LLM-105 instead of traditional AuNP dispersion under an aptotic pH to improve the anti-interference ability. The developed assay showed excellent sensitivity with a detection limit of 3 ng/mL, and the presence of as low as 0.2 μg/mL LLM-105 can be directly detected with the bare eye. This sensitivity is about six orders of magnitude higher than that of the reported traditional assays. Additionally, the assay exhibited good selectivity toward LLM-105 over other explosives, sulfur-containing compounds, and amines. Graphical abstract A simple, sensitive, and selective assay for LLM-105 was developed based on the pH-dependent interaction between the LLM-105 explosive and gold nanoparticle dispersion.

  15. Label-Free Nanopore Biosensor for Rapid and Highly Sensitive Cocaine Detection in Complex Biological Fluids.

    PubMed

    Rauf, Sana; Zhang, Ling; Ali, Asghar; Liu, Yang; Li, Jinghong

    2017-02-24

    Detection of very low amounts of illicit drugs such as cocaine in clinical fluids like serum continues to be important for many areas in the fight against drug trafficking. Herein, we constructed a label-free nanopore biosensor for rapid and highly sensitive detection of cocaine in human serum and saliva samples based on target-induced strand release strategy. In this bioassay, an aptamer for cocaine was prehybridized with a short complementary DNA. Owing to cocaine specific binding with aptamer, the short DNA strand was displaced from aptamer and translocation of this output DNA through α-hemolysin nanopore generated distinct spike-like current blockages. When plotted in double-logarithmic scale, a linear relationship between target cocaine concentration and output DNA event frequency was obtained in a wide concentration range from 50 nM to 100 μM of cocaine, with the limit of detection down to 50 nM. In addition, this aptamer-based sensor method was successfully applied for cocaine detection in complex biological fluids like human saliva and serum samples with great selectivity. Simple preparation, low cost, rapid, label-free, and real sample detection are the motivating factors for practical application of the proposed biosensor.

  16. Rapid enzyme immunoassay for determination of toxigenicity among clinical isolates of corynebacteria.

    PubMed

    Engler, K H; Efstratiou, A

    2000-04-01

    A rapid enzyme immunoassay (EIA) was developed for the phenotypic detection of diphtheria toxin among clinical isolates of corynebacteria. The assay uses equine polyclonal antitoxin as the capture antibody and an alkaline phosphatase-labeled monoclonal antibody, specific for fragment A of the toxin molecule, as the detecting antibody. The assay is rapid, sensitive, and specific: a final result is available within 3 h of colony selection, and the limits of detection are 0.1 ng of pure diphtheria toxin/ml. Toxigenicity could be detected with isolates grown on a diverse range of culture media, including selective agars. Toxin detection using the EIA was compared to that with the Elek test and PCR detection of fragment A of the diphtheria toxin (tox) gene, using 245 isolates of corynebacteria. The results for the EIA were in complete concordance with those of the Elek test: 87 toxigenic and 158 nontoxigenic isolates. Ten of the phenotypically nontoxigenic strains were found to contain fragment A of the tox gene but did not express the toxin protein. These isolates were found to be nontoxigenic in the Vero cell tissue culture cytotoxicity assay and were therefore nontoxigenic for diagnostic purposes. The EIA is a simple rapid phenotypic test which provides a definitive result on toxigenicity within one working day.

  17. Rapid Enzyme Immunoassay for Determination of Toxigenicity among Clinical Isolates of Corynebacteria

    PubMed Central

    Engler, Kathryn H.; Efstratiou, Androulla

    2000-01-01

    A rapid enzyme immunoassay (EIA) was developed for the phenotypic detection of diphtheria toxin among clinical isolates of corynebacteria. The assay uses equine polyclonal antitoxin as the capture antibody and an alkaline phosphatase-labeled monoclonal antibody, specific for fragment A of the toxin molecule, as the detecting antibody. The assay is rapid, sensitive, and specific: a final result is available within 3 h of colony selection, and the limits of detection are 0.1 ng of pure diphtheria toxin/ml. Toxigenicity could be detected with isolates grown on a diverse range of culture media, including selective agars. Toxin detection using the EIA was compared to that with the Elek test and PCR detection of fragment A of the diphtheria toxin (tox) gene, using 245 isolates of corynebacteria. The results for the EIA were in complete concordance with those of the Elek test: 87 toxigenic and 158 nontoxigenic isolates. Ten of the phenotypically nontoxigenic strains were found to contain fragment A of the tox gene but did not express the toxin protein. These isolates were found to be nontoxigenic in the Vero cell tissue culture cytotoxicity assay and were therefore nontoxigenic for diagnostic purposes. The EIA is a simple rapid phenotypic test which provides a definitive result on toxigenicity within one working day. PMID:10747112

  18. Pulmonary infections in critical/intensive care - rapid diagnosis and optimizing antimicrobial usage.

    PubMed

    Douglas, Ivor S

    2017-05-01

    Diagnosis of pulmonary infection, including hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) in the critically ill patient remains a common and therapeutically challenging diagnosis with significant attributable morbidity, mortality, and cost. Current clinical approaches to surveillance, early detection and, conventional culture-based microbiology are inadequate for optimal targeted antibiotic treatment and stewardship. Efforts to enhance diagnosis of HAP and VAP and the impact of these novel approaches on rational antimicrobial selection and stewardship are the focus of recent studies reviewed here. Recent consensus guidelines for diagnosis and management of HAP and VAP are relatively silent on the potential role of novel rapid microbiological techniques and reply heavily on conventional culture strategies of noninvasively obtained (including endotracheal aspirate samples). Novel rapid microbiological diagnostics, including nucleic acid amplification, mass spectrometry, and fluorescence microscopy-based technologies are promising approaches for the future. Exhaled breath biomarkers, including measurement of VOC represent a future approach. Further validation of novel diagnostic technology platforms will be required to evaluate their utility for enhancing diagnosis and guiding treatment of pulmonary infections in the critically ill. However, the integration of novel diagnostics for rapid microbial identification, resistance phenotyping, and antibiotic sensitivity testing into usual care practice could significantly transform the care of patients and potentially inform improved targeted antimicrobial selection, de-escalation, and stewardship.

  19. Multiattribute selection of acute stroke imaging software platform for Extending the Time for Thrombolysis in Emergency Neurological Deficits (EXTEND) clinical trial.

    PubMed

    Churilov, Leonid; Liu, Daniel; Ma, Henry; Christensen, Soren; Nagakane, Yoshinari; Campbell, Bruce; Parsons, Mark W; Levi, Christopher R; Davis, Stephen M; Donnan, Geoffrey A

    2013-04-01

    The appropriateness of a software platform for rapid MRI assessment of the amount of salvageable brain tissue after stroke is critical for both the validity of the Extending the Time for Thrombolysis in Emergency Neurological Deficits (EXTEND) Clinical Trial of stroke thrombolysis beyond 4.5 hours and for stroke patient care outcomes. The objective of this research is to develop and implement a methodology for selecting the acute stroke imaging software platform most appropriate for the setting of a multi-centre clinical trial. A multi-disciplinary decision making panel formulated the set of preferentially independent evaluation attributes. Alternative Multi-Attribute Value Measurement methods were used to identify the best imaging software platform followed by sensitivity analysis to ensure the validity and robustness of the proposed solution. Four alternative imaging software platforms were identified. RApid processing of PerfusIon and Diffusion (RAPID) software was selected as the most appropriate for the needs of the EXTEND trial. A theoretically grounded generic multi-attribute selection methodology for imaging software was developed and implemented. The developed methodology assured both a high quality decision outcome and a rational and transparent decision process. This development contributes to stroke literature in the area of comprehensive evaluation of MRI clinical software. At the time of evaluation, RAPID software presented the most appropriate imaging software platform for use in the EXTEND clinical trial. The proposed multi-attribute imaging software evaluation methodology is based on sound theoretical foundations of multiple criteria decision analysis and can be successfully used for choosing the most appropriate imaging software while ensuring both robust decision process and outcomes. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.

  20. Bacterial clonal diagnostics as a tool for evidence-based empiric antibiotic selection

    PubMed Central

    Tchesnokova, Veronika; Avagyan, Hovhannes; Rechkina, Elena; Chan, Diana; Muradova, Mariya; Haile, Helen Ghirmai; Radey, Matthew; Weissman, Scott; Riddell, Kim; Scholes, Delia; Johnson, James R.

    2017-01-01

    Despite the known clonal distribution of antibiotic resistance in many bacteria, empiric (pre-culture) antibiotic selection still relies heavily on species-level cumulative antibiograms, resulting in overuse of broad-spectrum agents and excessive antibiotic/pathogen mismatch. Urinary tract infections (UTIs), which account for a large share of antibiotic use, are caused predominantly by Escherichia coli, a highly clonal pathogen. In an observational clinical cohort study of urgent care patients with suspected UTI, we assessed the potential for E. coli clonal-level antibiograms to improve empiric antibiotic selection. A novel PCR-based clonotyping assay was applied to fresh urine samples to rapidly detect E. coli and the urine strain's clonotype. Based on a database of clonotype-specific antibiograms, the acceptability of various antibiotics for empiric therapy was inferred using a 20%, 10%, and 30% allowed resistance threshold. The test's performance characteristics and possible effects on prescribing were assessed. The rapid test identified E. coli clonotypes directly in patients’ urine within 25–35 minutes, with high specificity and sensitivity compared to culture. Antibiotic selection based on a clonotype-specific antibiogram could reduce the relative likelihood of antibiotic/pathogen mismatch by ≥ 60%. Compared to observed prescribing patterns, clonal diagnostics-guided antibiotic selection could safely double the use of trimethoprim/sulfamethoxazole and minimize fluoroquinolone use. In summary, a rapid clonotyping test showed promise for improving empiric antibiotic prescribing for E. coli UTI, including reversing preferential use of fluoroquinolones over trimethoprim/sulfamethoxazole. The clonal diagnostics approach merges epidemiologic surveillance, antimicrobial stewardship, and molecular diagnostics to bring evidence-based medicine directly to the point of care. PMID:28350870

  1. Bacterial clonal diagnostics as a tool for evidence-based empiric antibiotic selection.

    PubMed

    Tchesnokova, Veronika; Avagyan, Hovhannes; Rechkina, Elena; Chan, Diana; Muradova, Mariya; Haile, Helen Ghirmai; Radey, Matthew; Weissman, Scott; Riddell, Kim; Scholes, Delia; Johnson, James R; Sokurenko, Evgeni V

    2017-01-01

    Despite the known clonal distribution of antibiotic resistance in many bacteria, empiric (pre-culture) antibiotic selection still relies heavily on species-level cumulative antibiograms, resulting in overuse of broad-spectrum agents and excessive antibiotic/pathogen mismatch. Urinary tract infections (UTIs), which account for a large share of antibiotic use, are caused predominantly by Escherichia coli, a highly clonal pathogen. In an observational clinical cohort study of urgent care patients with suspected UTI, we assessed the potential for E. coli clonal-level antibiograms to improve empiric antibiotic selection. A novel PCR-based clonotyping assay was applied to fresh urine samples to rapidly detect E. coli and the urine strain's clonotype. Based on a database of clonotype-specific antibiograms, the acceptability of various antibiotics for empiric therapy was inferred using a 20%, 10%, and 30% allowed resistance threshold. The test's performance characteristics and possible effects on prescribing were assessed. The rapid test identified E. coli clonotypes directly in patients' urine within 25-35 minutes, with high specificity and sensitivity compared to culture. Antibiotic selection based on a clonotype-specific antibiogram could reduce the relative likelihood of antibiotic/pathogen mismatch by ≥ 60%. Compared to observed prescribing patterns, clonal diagnostics-guided antibiotic selection could safely double the use of trimethoprim/sulfamethoxazole and minimize fluoroquinolone use. In summary, a rapid clonotyping test showed promise for improving empiric antibiotic prescribing for E. coli UTI, including reversing preferential use of fluoroquinolones over trimethoprim/sulfamethoxazole. The clonal diagnostics approach merges epidemiologic surveillance, antimicrobial stewardship, and molecular diagnostics to bring evidence-based medicine directly to the point of care.

  2. Plasmonic Nanobubbles Rapidly Detect and Destroy Drug-Resistant Tumors

    PubMed Central

    Lukianova-Hleb, Ekaterina Y.; Ren, Xiaoyang; Townley, Debra; Wu, Xiangwei; Kupferman, Michael E.; Lapotko, Dmitri O.

    2012-01-01

    The resistance of residual cancer cells after oncological resection to adjuvant chemoradiotherapies results in both high recurrence rates and high non-specific tissue toxicity, thus preventing the successful treatment of such cancers as head and neck squamous cell carcinoma (HNSCC). The patients' survival rate and quality of life therefore depend upon the efficacy, selectivity and low non-specific toxicity of the adjuvant treatment. We report a novel, theranostic in vivo technology that unites both the acoustic diagnostics and guided intracellular delivery of anti-tumor drug (liposome-encapsulated doxorubicin, Doxil) in one rapid process, namely a pulsed laser-activated plasmonic nanobubble (PNB). HNSCC-bearing mice were treated with gold nanoparticle conjugates, Doxil, and single near-infrared laser pulses of low energy. Tumor-specific clusters of gold nanoparticles (solid gold spheres) converted the optical pulses into localized PNBs. The acoustic signals of the PNB detected the tumor with high specificity and sensitivity. The mechanical impact of the PNB, co-localized with Doxil liposomes, selectively ejected the drug into the cytoplasm of cancer cells. Cancer cell-specific generation of PNBs and their intracellular co-localization with Doxil improved the in vivo therapeutic efficacy from 5-7% for administration of only Doxil or PNBs alone to 90% thus demonstrating the synergistic therapeutic effect of the PNB-based intracellular drug release. This mechanism also reduced the non-specific toxicity of Doxil below a detectable level and the treatment time to less than one minute. Thus PNBs combine highly sensitive diagnosis, overcome drug resistance and minimize non-specific toxicity in a single rapid theranostic procedure for intra-operative treatment. PMID:23139725

  3. Detection of Antigenic Variants of Subtype H3 Swine Influenza A Viruses from Clinical Samples

    PubMed Central

    Martin, Brigitte E.; Li, Lei; Nolting, Jacqueline M.; Smith, David R.; Hanson, Larry A.

    2017-01-01

    ABSTRACT A large population of genetically and antigenically diverse influenza A viruses (IAVs) are circulating among the swine population, playing an important role in influenza ecology. Swine IAVs not only cause outbreaks among swine but also can be transmitted to humans, causing sporadic infections and even pandemic outbreaks. Antigenic characterizations of swine IAVs are key to understanding the natural history of these viruses in swine and to selecting strains for effective vaccines. However, influenza outbreaks generally spread rapidly among swine, and the conventional methods for antigenic characterization require virus propagation, a time-consuming process that can significantly reduce the effectiveness of vaccination programs. We developed and validated a rapid, sensitive, and robust method, the polyclonal serum-based proximity ligation assay (polyPLA), to identify antigenic variants of subtype H3N2 swine IAVs. This method utilizes oligonucleotide-conjugated polyclonal antibodies and quantifies antibody-antigen binding affinities by quantitative reverse transcription-PCR (RT-PCR). Results showed the assay can rapidly detect H3N2 IAVs directly from nasal wash or nasal swab samples collected from laboratory-challenged animals or during influenza surveillance at county fairs. In addition, polyPLA can accurately separate the viruses at two contemporary swine IAV antigenic clusters (H3N2 swine IAV-α and H3N2 swine IAV-ß) with a sensitivity of 84.9% and a specificity of 100.0%. The polyPLA can be routinely used in surveillance programs to detect antigenic variants of influenza viruses and to select vaccine strains for use in controlling and preventing disease in swine. PMID:28077698

  4. Selective One-Dimensional Total Correlation Spectroscopy Nuclear Magnetic Resonance Experiments for a Rapid Identification of Minor Components in the Lipid Fraction of Milk and Dairy Products: Toward Spin Chromatography?

    PubMed

    Papaemmanouil, Christina; Tsiafoulis, Constantinos G; Alivertis, Dimitrios; Tzamaloukas, Ouranios; Miltiadou, Despoina; Tzakos, Andreas G; Gerothanassis, Ioannis P

    2015-06-10

    We report a rapid, direct, and unequivocal spin-chromatographic separation and identification of minor components in the lipid fraction of milk and common dairy products with the use of selective one-dimensional (1D) total correlation spectroscopy (TOCSY) nuclear magnetic resonance (NMR) experiments. The method allows for the complete backbone spin-coupling network to be elucidated even in strongly overlapped regions and in the presence of major components from 4 × 10(2) to 3 × 10(3) stronger NMR signal intensities. The proposed spin-chromatography method does not require any derivatization steps for the lipid fraction, is selective with excellent resolution, is sensitive with quantitation capability, and compares favorably to two-dimensional (2D) TOCSY and gas chromatography-mass spectrometry (GC-MS) methods of analysis. The results of the present study demonstrated that the 1D TOCSY NMR spin-chromatography method can become a procedure of primary interest in food analysis and generally in complex mixture analysis.

  5. Signatures of local adaptation along environmental gradients in a range-expanding damselfly (Ischnura elegans).

    PubMed

    Dudaniec, Rachael Y; Yong, Chuan Ji; Lancaster, Lesley T; Svensson, Erik I; Hansson, Bengt

    2018-06-01

    Insect distributions are shifting rapidly in response to climate change and are undergoing rapid evolutionary change. We investigate the molecular signatures underlying local adaptation in the range-expanding damselfly, Ischnura elegans. Using a landscape genomic approach combined with generalized dissimilarity modelling (GDM), we detect selection signatures on loci via allelic frequency change along environmental gradients. We analyse 13,612 single nucleotide polymorphisms (SNPs), derived from restriction site-associated DNA sequencing (RADseq), in 426 individuals from 25 sites spanning the I. elegans distribution in Sweden, including its expanding northern range edge. Environmental association analysis (EAA) and the magnitude of allele frequency change along the range expansion gradient revealed significant signatures of selection in relation to high maximum summer temperature, high mean annual precipitation and low wind speeds at the range edge. SNP annotations with significant signatures of selection revealed gene functions associated with ongoing range expansion, including heat shock proteins (HSP40 and HSP70), ion transport (V-ATPase) and visual processes (long-wavelength-sensitive opsin), which have implications for thermal stress response, salinity tolerance and mate discrimination, respectively. We also identified environmental thresholds where climate-mediated selection is likely to be strong, and indicate that I. elegans is rapidly adapting to the climatic environment during its ongoing range expansion. Our findings empirically validate an integrative approach for detecting spatially explicit signatures of local adaptation along environmental gradients. © 2018 John Wiley & Sons Ltd.

  6. UTILIZATION OF THE LEAST SHREW AS A RAPID AND SELECTIVE SCREENING MODEL FOR THE ANTIEMETIC POTENTIAL AND BRAIN PENETRATION OF SUBSTANCE P AND NK1 RECEPTOR ANTAGONISTS

    PubMed Central

    Darmani, Nissar A.; Wang, Yaozhi; Abad, Joseph; Ray, Andrew P.; Thrush, Gerald R.; Ramirez, Juan

    2008-01-01

    Substance P (SP) is thought to play a cardinal role in emesis via the activation of central tachykinin NK1 receptors during the delayed phase of vomiting produced by chemotherapeutics. Although the existing supportive evidence is significant, due to lack of an appropriate animal model, the evidence is indirect. As yet, no study has confirmed that emesis produced by SP or a selective NK1 receptor agonist is sensitive to brain penetrating antagonists of either NK1, NK2, or NK3 receptors. The goals of this investigation were to demonstrate: 1) whether intraperitoneal (i.p.) administration of either SP, a brain penetrating (GR73632) or non-penetrating (e.g. SarMet – SP) NK1 receptor agonist, an NK2 receptor agonist (GR64349), or an NK3 receptor agonist (Pro7-NKB), would induce vomiting and/or scratching in the least shrew (Cryptotis parva) in a dose-dependent manner; and whether these effects are sensitive to the above selective receptor antagonists; 2) whether an exogenous emetic dose of SP (50 mg/kg, i.p.) can penetrate into the shrew brain stem and frontal cortex; 3) whether GR73632 (2.5 mg/kg, i.p.)-induced activation of NK1 receptors increases Fos-measured neuronal activity in the neurons of both brain stem emetic nuclei and the enteric nervous system of the gut; and 4) whether selective ablation of peripheral NK1 receptors can affect emesis produced by GR73632. The results clearly demonstrated that while SP produced vomiting only, GR73632 caused both emesis and scratching behavior dose-dependently in shrews, and these effects were sensitive to NK1-, but not NK2- or NK3-receptor antagonists. Neither the selective, non-penetrating NK1 receptor agonists, nor the selective NK2- or NK3-receptor agonists, caused a significant dose-dependent behavioral effect. An emetic dose of SP selectively and rapidly penetrated the brain stem but not the frontal cortex. Systemic GR73632 increased Fos expression in the enteric nerve plexi, the medial subnucleus of nucleus tractus solitarius, and the dorsal motor nucleus of the vagus, but not the area postrema. Ablation of peripheral NK1 receptors attenuated the ability of GR73632 to induce a maximal frequency of emesis and shifted its percent animals vomiting dose-response curve to the right. The NK1-ablated shrews exhibited scratching behavior after systemic GR73632-injection. These results, for the first time, affirm a cardinal role for central NK1 receptors in SP-induced vomiting, and a facilitatory role for gastrointestinal NK1 receptors. In addition, these data support the validation of the least shrew as a specific and rapid behavioral animal model to screen concomitantly both the CNS penetration and the antiemetic potential of tachykinin NK1 receptor antagonists. PMID:18471804

  7. The Broad Spectrum Receptor Tyrosine Kinase Inhibitor Dovitinib Suppresses Growth of BRAF Mutant Melanoma Cells in Combination with Other Signaling Pathway Inhibitors

    PubMed Central

    Langdon, Casey G.; Held, Matthew A.; Platt, James T.; Meeth, Katrina; Iyidogan, Pinar; Mamillapalli, Ramanaiah; Koo, Andrew B.; Klein, Michael; Liu, Zongzhi; Bosenberg, Marcus W.; Stern, David F.

    2016-01-01

    Summary BRAF inhibitors have revolutionized treatment of mutant BRAF metastatic melanomas. However, resistance develops rapidly following BRAF inhibitor treatment. We have found that BRAF-mutant melanoma cell lines are more sensitive than wild-type BRAF cells to the small molecule tyrosine kinase inhibitor dovitinib. Sensitivity is associated with inhibition of a series of known dovitinib targets. Dovitinib in combination with several agents inhibits growth more effectively than either agent alone. These combinations inhibit BRAF-mutant melanoma and colorectal carcinoma cell lines, including cell lines with intrinsic or selected BRAF inhibitor resistance. Hence, combinations of dovitinib with second agents are potentially effective therapies for BRAF-mutant melanomas, regardless of their sensitivity to BRAF inhibitors. PMID:25854919

  8. Hardware cleanliness methodology and certification

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Lash, Thomas J.; Rawls, J. Richard

    1995-01-01

    Inadequacy of mass loss cleanliness criteria for selection of materials for contamination sensitive uses, and processing of flight hardware for contamination sensitive instruments is discussed. Materials selection for flight hardware is usually based on mass loss (ASTM E-595). However, flight hardware cleanliness (MIL 1246A) is a surface cleanliness assessment. It is possible for materials (e.g. Sil-Pad 2000) to pass ASTM E-595 and fail MIL 1246A class A by orders of magnitude. Conversely, it is possible for small amounts of nonconforming material (Huma-Seal conformal coating) to not present significant cleanliness problems to an optical flight instrument. Effective cleaning (precleaning, precision cleaning, and ultra cleaning) and cleanliness verification are essential for contamination sensitive flight instruments. Polish cleaning of hardware, e.g. vacuum baking for vacuum applications, and storage of clean hardware, e.g. laser optics, is discussed. Silicone materials present special concerns for use in space because of the rapid conversion of the outgassed residues to glass by solar ultraviolet radiation and/or atomic oxygen. Non ozone depleting solvent cleaning and institutional support for cleaning and certification are also discussed.

  9. Multifunctional Nanotechnology-Enabled Sensors for Rapid Capture and Detection of Pathogens.

    PubMed

    Mustafa, Fatima; Hassan, Rabeay Y A; Andreescu, Silvana

    2017-09-15

    Nanomaterial-based sensing approaches that incorporate different types of nanoparticles (NPs) and nanostructures in conjunction with natural or synthetic receptors as molecular recognition elements provide opportunities for the design of sensitive and selective assays for rapid detection of contaminants. This review summarizes recent advancements over the past ten years in the development of nanotechnology-enabled sensors and systems for capture and detection of pathogens. The most common types of nanostructures and NPs, their modification with receptor molecules and integration to produce viable sensing systems with biorecognition, amplification and signal readout are discussed. Examples of all-in-one systems that combine multifunctional properties for capture, separation, inactivation and detection are also provided. Current trends in the development of low-cost instrumentation for rapid assessment of food contamination are discussed as well as challenges for practical implementation and directions for future research.

  10. An integrated optical oxygen sensor fabricated using rapid-prototyping techniques.

    PubMed

    Chang-Yen, David A; Gale, Bruce K

    2003-11-01

    This paper details the design and fabrication of an integrated optical biochemical sensor using a select oxygen-sensitive fluorescent dye, tris(2,2'-bipyridyl) dichlororuthenium(ii) hexahydrate, combined with polymeric waveguides that are fabricated on a glass substrate. The sensor uses evanescent interaction of light confined within the waveguide with the dye that is immobilized on an SU-8 waveguide surface. Adhesion of the dye to the integrated waveguide surface is accomplished using a unique process of spin-coating/electrostatic layer-by-layer formation. The SU-8 waveguide was chemically modified to allow the deposition process. Exposure of the dye molecules to the analyte and subsequent chemical interaction is achieved by directly coupling the fluid channel to the integrated waveguide. The completed sensor was linear in the dissolved oxygen across a wide range of interest and had a sensitivity of 0.6 ppm. A unique fabrication aspect of this sensor is the inherent simplicity of the design, and the resulting rapidity of fabrication, while maintaining a high degree of functionality and flexibility.

  11. Enzyme-Encapsulated Liposome-Linked Immunosorbent Assay Enabling Sensitive Personal Glucose Meter Readout for Portable Detection of Disease Biomarkers.

    PubMed

    Lin, Bingqian; Liu, Dan; Yan, Jinmao; Qiao, Zhi; Zhong, Yunxin; Yan, Jiawei; Zhu, Zhi; Ji, Tianhai; Yang, Chaoyong James

    2016-03-23

    There is considerable demand for sensitive, selective, and portable detection of disease-associated proteins, particularly in clinical practice and diagnostic applications. Portable devices are highly desired for detection of disease biomarkers in daily life due to the advantages of being simple, rapid, user-friendly, and low-cost. Herein we report an enzyme-encapsulated liposome-linked immunosorbent assay for sensitive detection of proteins using personal glucose meters (PGM) for portable quantitative readout. Liposomes encapsulating a large amount of amyloglucosidase or invertase are surface-coated with recognition elements such as aptamers or antibodies for target recognition. By translating molecular recognition signal into a large amount of glucose with the encapsulated enzyme, disease biomarkers such as thrombin or C-reactive protein (CRP) can be quantitatively detected by a PGM with a high detection limit of 1.8 or 0.30 nM, respectively. With the advantages of portability, ease of use, and low-cost, the method reported here has potential for portable and quantitative detection of various targets for different POC testing scenarios, such as rapid diagnosis in clinic offices, health monitoring at the bedside, and chemical/biochemical safety control in the field.

  12. Frequency-agile, rapid scanning spectroscopy: absorption sensitivity of 2 × 10-12 cm-1 Hz-1/2 with a tunable diode laser

    NASA Astrophysics Data System (ADS)

    Long, D. A.; Truong, G.-W.; van Zee, R. D.; Plusquellic, D. F.; Hodges, J. T.

    2014-03-01

    We present ultrasensitive measurements of molecular absorption using frequency-agile rapid scanning, cavity ring-down spectroscopy with an external-cavity diode laser. A microwave source that drives an electro-optic phase modulator with a bandwidth of 20 GHz generates pairs of sidebands on the probe laser. The optical cavity provides for high sensitivity and filters the carrier and all but a single, selected sideband. Absorption spectra were acquired by stepping the tunable sideband from mode-to-mode of the ring-down cavity at a rate that was limited only by the cavity decay time. This approach allows for scanning rates of 8 kHz per cavity resonance, a minimum detectable absorption coefficient of 1.7 × 10-11 cm-1 after only 20 ms of averaging, and a noise-equivalent absorption coefficient of 1.7 × 10-12 cm-1 Hz-1/2. By comparison with cavity-enhanced laser absorption spectrometers reported in the literature, the present system is, to the best of our knowledge, among the most sensitive and has by far the highest spectrum scanning rate.

  13. One-step, room temperature, colorimetric melamine sensing using an in-situ formation of silver nanoparticles through modified Tollens process

    NASA Astrophysics Data System (ADS)

    Wang, Huiying; Chen, Dinglong; Yu, Longquan; Chang, Ming; Ci, Lijie

    2015-02-01

    We have developed a rapid, sensitive, one-step, and selective colorimetric detection method for melamine (MEL) in milk powder based upon an in-situ formation of silver nanoparticles (AgNPs) through modified Tollens process at room temperature. The triazine ring N atoms of MEL molecule were strategically designed to complex the Ag+ through electron donor-acceptor interaction. During the AgNPs formation procedure, the MEL molecule, which has been covalently bonded with the Ag+ ions, was adsorbed to the surface of as-prepared AgNPs, resulting in the aggregation of the adjacent AgNPs with detectable decreases of absorption signal. The concentration of MEL can be determined with the naked eye or a UV-vis spectrometer at which the yellow-to-brown color change associated with aggregate enhancement takes place. This method enables rapid (less than 30 min) and sensitive (limit of detection, LOD, 10 nM) detection, and it was also able to discriminate MEL from sixteen other milk relevant coexisting compounds. This assay does not utilize organic cosolvents, enzymatic reactions, light-sensitive dye molecules, lengthy protocols, or sophisticated instrumentation thereby overcoming some of the limitations of conventional methods.

  14. Use of Cdse/ZnS quantum dots for sensitive detection and quantification of paraquat in water samples.

    PubMed

    Durán, Gema M; Contento, Ana M; Ríos, Ángel

    2013-11-01

    Based on the highly sensitive fluorescence change of water-soluble CdSe/ZnS core-shell quantum dots (QD) by paraquat herbicide, a simple, rapid and reproducible methodology was developed to selectively determine paraquat (PQ) in water samples. The methodology enabled the use of simple pretreatment procedure based on the simple water solubilization of CdSe/ZnS QDs with hydrophilic heterobifunctional thiol ligands, such as 3-mercaptopropionic acid (3-MPA), using microwave irradiation. The resulting water-soluble QDs exhibit a strong fluorescence emission at 596 nm with a high and reproducible photostability. The proposed analytical method thus satisfies the need for a simple, sensible and rapid methodology to determine residues of paraquat in water samples, as required by the increasingly strict regulations for health protection introduced in recent years. The sensitivity of the method, expressed as detection limits, was as low as 3.0 ng L(-1). The lineal range was between 10-5×10(3) ng L(-1). RSD values in the range of 71-102% were obtained. The analytical applicability of proposed method was demonstrated by analyzing water samples from different procedence. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis.

    PubMed

    Santiago-Felipe, S; Tortajada-Genaro, L A; Puchades, R; Maquieira, A

    2014-02-06

    Polymerase chain reaction in conjunction with enzyme-linked immunosorbent assay (PCR-ELISA) is a well-established technique that provides a suitable rapid, sensitive, and selective method for a broad range of applications. However, the need for precise rapid temperature cycling of PCR is an important drawback that can be overcome by employing isothermal amplification reactions such as recombinase polymerase amplification (RPA). The RPA-ELISA combination is proposed for amplification at a low, constant temperature (40°C) in a short time (40 min), for the hybridisation of labelled products to specific 5'-biotinylated probes/streptavidin in coated microtiter plates at room temperature, and for detection by colorimetric immunoassay. RPA-ELISA was applied to screen common safety threats in foodstuffs, such as allergens (hazelnut, peanut, soybean, tomato, and maize), genetically modified organisms (P35S and TNOS), pathogenic bacteria (Salmonella sp. and Cronobacter sp.), and fungi (Fusarium sp.). Satisfactory sensitivity and reproducibility results were achieved for all the targets. The RPA-ELISA technique does away with thermocycling and provides a suitable sensitive, specific, and cost-effective method for routine applications, and proves particularly useful for resource-limited settings. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Highly sensitive nanostructure SnO2 based gas sensor for environmental pollutants

    NASA Astrophysics Data System (ADS)

    Korgaokar, Sushil; Moradiya, Meet; Prajapati, Om; Thakkar, Pranav; Pala, Jay; Savaliya, Chirag; Parikh, Sachin; Markna, J. H.

    2017-05-01

    A major quantity of pollutants are produced from industries and vehicles in the form of gas. New approaches are needed to solve well-known environmental pollutants like CO, CO2, NO2, SOx. Therefore detection with effective gas sensors is a vital part of pollution prevention efforts. There is a need to develop fast, rapid, cost-effective, highly sensitive, low power, and non-intrusive rugged sensors that can be easily installed. In the present study, nanostructured SnO2 used as a sensitive material in the devices and synthesized using hydrothermal process. The detailed development of the fabrication of SnO2 nanostructures gas sensor is described, which shows the remarkable change in the sensing properties with varying particle size. Additionally, we have used X-ray diffraction, scanning electron microscopy (SEM) for characterization and carefully examined the relative parameters like response magnitude (sensitivity) and selectivity of SnO2 nano structures with different particle size.

  17. A fluorescent graphitic carbon nitride nanosheet biosensor for highly sensitive, label-free detection of alkaline phosphatase.

    PubMed

    Xiang, Mei-Hao; Liu, Jin-Wen; Li, Na; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui

    2016-02-28

    Graphitic C3N4 (g-C3N4) nanosheets provide an attractive option for bioprobes and bioimaging applications. Utilizing highly fluorescent and water-dispersible ultrathin g-C3N4 nanosheets, a highly sensitive, selective and label-free biosensor has been developed for ALP detection for the first time. The developed approach utilizes a natural substrate of ALP in biological systems and thus affords very high catalytic efficiency. This novel biosensor is demonstrated to enable quantitative analysis of ALP in a wide range from 0.1 to 1000 U L(-1) with a low detection limit of 0.08 U L(-1), which is among the most sensitive assays for ALP. It is expected that the developed method may provide a low-cost, convenient, rapid and highly sensitive platform for ALP-based clinical diagnostics and biomedical applications.

  18. A new aggregation-induced emission fluorescent probe for rapid detection of nitroreductase and its application in living cells

    NASA Astrophysics Data System (ADS)

    Xu, Gaoping; Tang, Yonghe; Ma, Yanyan; Xu, An; Lin, Weiying

    2018-01-01

    The biological activity of nitroreductase (NTR) is closely related to biological hypoxia status in organisms. The development of effective methods for monitoring the activity of NTR is of great significance for medical diagnosis and tumor research. Toward this goal, we have developed a new aggregation-induced emission (AIE) fluorescence NTR probe TPE-HY used the tetraphenylethene as the fluorophore, and used the nitro group as the NTR recognition site. The probe TPE-HY has many excellent properties, including rapid response, AIE characteristics, high sensitivity and selectivity, and low cytotoxicity. Importantly, the probe TPE-HY is successfully applied to monitor endogenous NTR in living HeLa cells.

  19. Highly selective and sensitive determination of dopamine in biological samples via tuning the particle size of label-free gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohseni, Naimeh; Bahram, Morteza

    2018-03-01

    Herein, a rapid, sensitive and selective approach for the colorimetric detection of dopamine (DA) was developed utilizing unmodified gold nanoparticles (AuNPs). This assay relied upon the size-dependent aggregation behavior of DA and three other structurally similar catecholamines (CAs), offering highly specific and accurate detection of DA. By means of this study, we attempted to overcome the tedious procedures of surface premodifications and achieve selectivity through tuning the particle size of AuNPs. DA could induce the aggregation of the AuNPs via hydrogen-bonding interactions, resulting in a color change from pink to blue which can be monitored by spectrophotometry or even the naked-eye. The proposed colorimetric probe works over the 0.1 to 4 μM DA concentration range, with a lower detection limit (LOD) of 22 nM, which is much lower than the therapeutic lowest abnormal concentrations of DA in urine (0.57 μM) and blood (16 μM) samples. Furthermore, the selectivity and potential applicability of the developed method in spiked actual biological (human plasma and urine) specimens were investigated, suggesting that the present assay could satisfy the requirements for clinical diagnostics and biosensors.

  20. Application of a unique server-based oligonucleotide probe selection tool toward a novel biosensor for the detection of Streptococcus pyogenes.

    PubMed

    Nugen, Sam R; Leonard, Barbara; Baeumner, Antje J

    2007-05-15

    We developed a software program for the rapid selection of detection probes to be used in nucleic acid-based assays. In comparison to commercially available software packages, our program allows the addition of oligotags as required by nucleic acid sequence-based amplification (NASBA) as well as automatic BLAST searches for all probe/primer pairs. We then demonstrated the usefulness of the program by designing a novel lateral flow biosensor for Streptococcus pyogenes that does not rely on amplification methods such as the polymerase chain reaction (PCR) or NASBA to obtain low limits of detection, but instead uses multiple reporter and capture probes per target sequence and an instantaneous amplification via dye-encapsulating liposomes. These assays will decrease the detection time to just a 20 min hybridization reaction and avoid costly enzymatic gene amplification reactions. The lateral flow assay was developed quantifying the 16S rRNA from S. pyogenes by designing reporter and capture probes that specifically hybridize with the RNA and form a sandwich. DNA reporter probes were tagged with dye-encapsulating liposomes, biotinylated DNA oligonucleotides were used as capture probes. From the initial number of capture and reporter probes chosen, a combination of two capture and three reporter probes were found to provide optimal signal generation and significant enhancement over single capture/reporter probe combinations. The selectivity of the biosensor was proven by analyzing organisms closely related to S. pyogenes, such as other Streptococcus and Enterococcus species. All probes had been selected by the software program within minutes and no iterative optimization and re-design of the oligonucleotides was required which enabled a very rapid biosensor prototyping. While the sensitivity obtained with the biosensor was only 135 ng, future experiments will decrease this significantly by the addition of more reporter and capture probes for either the same rRNA or a different nucleic acid target molecule. This will lead to the possibility of detecting S. pyogenes with a rugged assay that does not require a cell culturing or gene amplification step and will therefore enable rapid, specific and sensitive onsite testing.

  1. Magnetic Fe3O4@TiO2 Nanoparticles-based Test Strip Immunosensing Device for Rapid Detection of Phosphorylated Butyrylcholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe

    2013-12-15

    An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized bymore » quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.« less

  2. Fluorescence detection of trace PCB101 based on PITC immobilized on porous AAO membrane.

    PubMed

    Wang, Meiling; Meng, Guowen; Huang, Qing; Li, Mingtao; Li, Zhongbo; Tang, Chaolong

    2011-01-21

    A sensitive and selective fluorescent membrane for rapid detection of trace 2,2',4,5,5'-pentachlorinated biphenyl (PCB101) has been achieved by immobilizing the fluorophore phenyl isothiocyanate (PITC) onto porous anodic aluminium oxide (AAO) membrane (denoted as PITC@AAO). The fluorescence of the PITC@AAO membrane is obviously enhanced after titrating the analyte PCB101 into the membrane, being ascribed to the halogen-bonding interaction between the fluorophore PITC and the analyte PCB101. The fluorescence intensity increases with the PCB101 concentration in the low range below 1 ppm, and there exists an approximate linear relationship between the relative fluorescence intensity and the PCB101 concentration in the low range of 1-6 ppb. Moreover, the PITC@AAO membrane shows good selectivity; for example, it is insensitive to common structural analogs (polychlorinated aromatics). The mechanisms of the fluorescence enhancement and the better sensitivity and selectivity of the PITC@AAO membrane to PCB101 than that of PITC/n-hexane solution are also discussed. This work demonstrates that trace (in ppb range) PCBs can be detected by simple fluorescence measurement.

  3. Amplified electrochemical detection of nucleic acid hybridization via selective preconcentration of unmodified gold nanoparticles.

    PubMed

    Li, Yuan; Tian, Rui; Zheng, Xingwang; Huang, Rongfu

    2016-08-31

    The common drawback of optical methods for rapid detection of nucleic acid by exploiting the differential affinity of single-/double-stranded nucleic acids for unmodified gold nanoparticles (AuNPs) is its relatively low sensitivity. In this article, on the basis of selective preconcentration of AuNPs unprotected by single-stranded DNA (ssDNA) binding, a novel electrochemical strategy for nucleic acid sequence identification assay has been developed. Through detecting the redox signal mediated by AuNPs on 1, 6-hexanedithiol blocked gold electrode, the proposed method is able to ensure substantial signal amplification and a low background current. This strategy is demonstrated for quantitative analysis of the target microRNA (let-7a) in human breast adenocarcinoma cells, and a detection limit of 16 fM is readily achieved with desirable specificity and sensitivity. These results indicate that the selective preconcentration of AuNPs for electrochemical signal readout can offer a promising platform for the detection of specific nucleic acid sequence. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Biogenic unmodified gold nanoparticles for selective and quantitative detection of cerium using UV-vis spectroscopy and photon correlation spectroscopy (DLS).

    PubMed

    Priyadarshini, E; Pradhan, N; Panda, P K; Mishra, B K

    2015-06-15

    The ability of self-functionalized biogenic GNPs towards highly selective colorimetric detection of rare earth element cerium is being reported for the first time. GNPs underwent rapid aggregation on addition of cerium indicated by red shift of SPR peak followed by complete precipitation. Hereby, this concept of co-ordination of cerium ions onto the GNP surface has been utilized for detection of cerium. The remarkable capacity of GNPs to sensitively detect Ce without proves beneficial compared to previous reports of colorimetric sensing. MDL was 15 and 35 ppm by DLS and UV-vis spectroscopy respectively, suggesting DLS to be highly sensitive and a practical alternative in ultrasensitive detection studies. The sensing system showed a good linear fit favouring feasible detection of cerium in range of 2-50 ppm. Similar studies further showed the superior selectivity of biogenic GNPs compared to chemically synthesized counterparts. The sensing system favours on-site analysis as it overcomes need of complex instrumentation, lengthy protocols and surface modification of GNP. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Portable, universal, and visual ion sensing platform based on the light emitting diode-based self-referencing-ion selective field-effect transistor.

    PubMed

    Zhang, Xiaowei; Han, Yanchao; Li, Jing; Zhang, Libing; Jia, Xiaofang; Wang, Erkang

    2014-02-04

    In this work, a novel and universal ion sensing platform was presented, which enables the visual detection of various ions with high sensitivity and selectivity. Coaxial potential signals (millivolt-scale) of the sample from the self-referencing (SR) ion selective chip can be transferred into the ad620-based amplifier with an output of volt-scale potentials. The amplified voltage is high enough to drive a light emitting diode (LED), which can be used as an amplifier and indicator to report the sample information. With this double amplification device (light emitting diode-based self-referencing-ion selective field-effect transistor, LED-SR-ISFET), a tiny change of the sample concentration can be observed with a distinguishable variation of LED brightness by visual inspection. This LED-based luminescent platform provided a facile, low-cost, and rapid sensing strategy without the need of additional expensive chemiluminescence reagent and instruments. Moreover, the SR mode also endows this device excellent stability and reliability. With this innovative design, sensitive determination of K(+), H(+), and Cl(-) by the naked eye was achieved. It should also be noticed that this sensing strategy can easily be extended to other ions (or molecules) by simply integrating the corresponding ion (or molecule) selective electrode.

  6. Detection of Peanut Allergen Ara h 6 in Commercially Processed Foods using a Single-Walled Carbon Nanotube-Based Biosensor.

    PubMed

    Sobhan, Abdus; Oh, Jun-Hyun; Park, Mi-Kyung; Lee, Jinyoung

    2018-06-12

    Background : The peanut protein Arachis hypogaea (Ara h) 6 is one ofthe most serious food allergens that contributes to food-related, life-threatening problems worldwide. The extremely low allergic dose demands for more selective and rapid methods for detecting Ara h 6. Objective : The goal of this study was to develop a single-walled carbon nanotube (SWCNT)-based biosensor for the rapid detection of Ara h 6 in commercial food products. Methods : The detection principle of this biosensor was based on the binding of Ara h 6 to the anti-Ara h 6 antibody (pAb) through 1-pyrenibutanoic acid succinimidyl ester. The resistance difference (ΔR) was calculated via linear sweep voltammetry using a potentiostat. Results : The ∆R increased as the Ara h 6 concentrations increased above the range of 10 0 -10 7 pg/L. A specificity analysis showed that the anti-Ara h 6 pAb selectively interacted with Ara h 6 molecules in the buffer solution (pH 7.4). Conclusions : This research proposes that an SWCNT-based biosensor in self-assembly with antibodies could be an effective tool for the rapid detection of allergen proteins in food. Highlights : The developed biosensor exhibited higher sensitivity and selectivity. Application studies resulted in precise Ara h 6 detection in peanut-containing processed food.

  7. Reversing Bacterial Resistance to Antibiotics by Phage-Mediated Delivery of Dominant Sensitive Genes

    PubMed Central

    Edgar, Rotem; Friedman, Nir; Molshanski-Mor, Shahar

    2012-01-01

    Pathogen resistance to antibiotics is a rapidly growing problem, leading to an urgent need for novel antimicrobial agents. Unfortunately, development of new antibiotics faces numerous obstacles, and a method that resensitizes pathogens to approved antibiotics therefore holds key advantages. We present a proof of principle for a system that restores antibiotic efficiency by reversing pathogen resistance. This system uses temperate phages to introduce, by lysogenization, the genes rpsL and gyrA conferring sensitivity in a dominant fashion to two antibiotics, streptomycin and nalidixic acid, respectively. Unique selective pressure is generated to enrich for bacteria that harbor the phages carrying the sensitizing constructs. This selection pressure is based on a toxic compound, tellurite, and therefore does not forfeit any antibiotic for the sensitization procedure. We further demonstrate a possible way of reducing undesirable recombination events by synthesizing dominant sensitive genes with major barriers to homologous recombination. Such synthesis does not significantly reduce the gene's sensitization ability. Unlike conventional bacteriophage therapy, the system does not rely on the phage's ability to kill pathogens in the infected host, but instead, on its ability to deliver genetic constructs into the bacteria and thus render them sensitive to antibiotics prior to host infection. We believe that transfer of the sensitizing cassette by the constructed phage will significantly enrich for antibiotic-treatable pathogens on hospital surfaces. Broad usage of the proposed system, in contrast to antibiotics and phage therapy, will potentially change the nature of nosocomial infections toward being more susceptible to antibiotics rather than more resistant. PMID:22113912

  8. Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes.

    PubMed

    Edgar, Rotem; Friedman, Nir; Molshanski-Mor, Shahar; Qimron, Udi

    2012-02-01

    Pathogen resistance to antibiotics is a rapidly growing problem, leading to an urgent need for novel antimicrobial agents. Unfortunately, development of new antibiotics faces numerous obstacles, and a method that resensitizes pathogens to approved antibiotics therefore holds key advantages. We present a proof of principle for a system that restores antibiotic efficiency by reversing pathogen resistance. This system uses temperate phages to introduce, by lysogenization, the genes rpsL and gyrA conferring sensitivity in a dominant fashion to two antibiotics, streptomycin and nalidixic acid, respectively. Unique selective pressure is generated to enrich for bacteria that harbor the phages carrying the sensitizing constructs. This selection pressure is based on a toxic compound, tellurite, and therefore does not forfeit any antibiotic for the sensitization procedure. We further demonstrate a possible way of reducing undesirable recombination events by synthesizing dominant sensitive genes with major barriers to homologous recombination. Such synthesis does not significantly reduce the gene's sensitization ability. Unlike conventional bacteriophage therapy, the system does not rely on the phage's ability to kill pathogens in the infected host, but instead, on its ability to deliver genetic constructs into the bacteria and thus render them sensitive to antibiotics prior to host infection. We believe that transfer of the sensitizing cassette by the constructed phage will significantly enrich for antibiotic-treatable pathogens on hospital surfaces. Broad usage of the proposed system, in contrast to antibiotics and phage therapy, will potentially change the nature of nosocomial infections toward being more susceptible to antibiotics rather than more resistant.

  9. A sensitive and innovative detection method for rapid C-reactive proteins analysis based on a micro-fluxgate sensor system

    PubMed Central

    Yang, Zhen; Zhi, Shaotao; Feng, Zhu; Lei, Chong; Zhou, Yong

    2018-01-01

    A sensitive and innovative assay system based on a micro-MEMS-fluxgate sensor and immunomagnetic beads-labels was developed for the rapid analysis of C-reactive proteins (CRP). The fluxgate sensor presented in this study was fabricated through standard micro-electro-mechanical system technology. A multi-loop magnetic core made of Fe-based amorphous ribbon was employed as the sensing element, and 3-D solenoid copper coils were used to control the sensing core. Antibody-conjugated immunomagnetic microbeads were strategically utilized as signal tags to label the CRP via the specific conjugation of CRP to polyclonal CRP antibodies. Separate Au film substrates were applied as immunoplatforms to immobilize CRP-beads labels through classical sandwich assays. Detection and quantification of the CRP at different concentrations were implemented by detecting the stray field of CRP labeled magnetic beads using the newly-developed micro-fluxgate sensor. The resulting system exhibited the required sensitivity, stability, reproducibility, and selectivity. A detection limit as low as 0.002 μg/mL CRP with a linearity range from 0.002 μg/mL to 10 μg/mL was achieved, and this suggested that the proposed biosystem possesses high sensitivity. In addition to the extremely low detection limit, the proposed method can be easily manipulated and possesses a quick response time. The response time of our sensor was less than 5 s, and the entire detection period for CRP analysis can be completed in less than 30 min using the current method. Given the detection performance and other advantages such as miniaturization, excellent stability and specificity, the proposed biosensor can be considered as a potential candidate for the rapid analysis of CRP, especially for point-of-care platforms. PMID:29601593

  10. Printed Graphene Electrochemical Biosensors Fabricated by Inkjet Maskless Lithography for Rapid and Sensitive Detection of Organophosphates.

    PubMed

    Hondred, John A; Breger, Joyce C; Alves, Nathan J; Trammell, Scott A; Walper, Scott A; Medintz, Igor L; Claussen, Jonathan C

    2018-04-04

    Solution phase printing of graphene-based electrodes has recently become an attractive low-cost, scalable manufacturing technique to create in-field electrochemical biosensors. Here, we report a graphene-based electrode developed via inkjet maskless lithography (IML) for the direct and rapid monitoring of triple-O linked phosphonate organophosphates (OPs); these constitute the active compounds found in chemical warfare agents and pesticides that exhibit acute toxicity as well as long-term pollution to soils and waterways. The IML-printed graphene electrode is nano/microstructured with a 1000 mW benchtop laser engraver and electrochemically deposited platinum nanoparticles (dia. ∼25 nm) to improve its electrical conductivity (sheet resistance decreased from ∼10 000 to 100 Ω/sq), surface area, and electroactive nature for subsequent enzyme functionalization and biosensing. The enzyme phosphotriesterase (PTE) was conjugated to the electrode surface via glutaraldehyde cross-linking. The resulting biosensor was able to rapidly measure (5 s response time) the insecticide paraoxon (a model OP) with a low detection limit (3 nM), and high sensitivity (370 nA/μM) with negligible interference from similar nerve agents. Moreover, the biosensor exhibited high reusability (average of 0.3% decrease in sensitivity per sensing event), stability (90% anodic current signal retention over 1000 s), longevity (70% retained sensitivity after 8 weeks), and the ability to selectively sense OP in actual soil and water samples. Hence, this work presents a scalable printed graphene manufacturing technique that can be used to create OP biosensors that are suitable for in-field applications as well as, more generally, for low-cost biosensor test strips that could be incorporated into wearable or disposable sensing paradigms.

  11. Adaptive population divergence and directional gene flow across steep elevational gradients in a climate‐sensitive mammal

    USGS Publications Warehouse

    Waterhouse, Matthew D.; Erb, Liesl P.; Beever, Erik; Russello, Michael A.

    2018-01-01

    The American pika is a thermally sensitive, alpine lagomorph species. Recent climate-associated population extirpations and genetic signatures of reduced population sizes range-wide indicate the viability of this species is sensitive to climate change. To test for potential adaptive responses to climate stress, we sampled pikas along two elevational gradients (each ~470 to 1640 m) and employed three outlier detection methods, BAYESCAN, LFMM, and BAYPASS, to scan for genotype-environment associations in samples genotyped at 30,763 SNP loci. We resolved 173 loci with robust evidence of natural selection detected by either two independent analyses or replicated in both transects. A BLASTN search of these outlier loci revealed several genes associated with metabolic function and oxygen transport, indicating natural selection from thermal stress and hypoxia. We also found evidence of directional gene flow primarily downslope from large high-elevation populations and reduced gene flow at outlier loci, a pattern suggesting potential impediments to the upward elevational movement of adaptive alleles in response to contemporary climate change. Finally, we documented evidence of reduced genetic diversity associated the south-facing transect and an increase in corticosterone stress levels associated with inbreeding. This study suggests the American pika is already undergoing climate-associated natural selection at multiple genomic regions. Further analysis is needed to determine if the rate of climate adaptation in the American pika and other thermally sensitive species will be able to keep pace with rapidly changing climate conditions.

  12. Use of a Smartphone as a Colorimetric Analyzer in Paper-based Devices for Sensitive and Selective Determination of Mercury in Water Samples.

    PubMed

    Jarujamrus, Purim; Meelapsom, Rattapol; Pencharee, Somkid; Obma, Apinya; Amatatongchai, Maliwan; Ditcharoen, Nadh; Chairam, Sanoe; Tamuang, Suparb

    2018-01-01

    A smartphone application, called CAnal, was developed as a colorimetric analyzer in paper-based devices for sensitive and selective determination of mercury(II) in water samples. Measurement on the double layer of a microfluidic paper-based analytical device (μPAD) fabricated by alkyl ketene dimer (AKD)-inkjet printing technique with special design doped with unmodified silver nanoparticles (AgNPs) onto the detection zones was performed by monitoring the gray intensity in the blue channel of AgNPs, which disintegrated when exposed to mercury(II) on μPAD. Under the optimized conditions, the developed approach showed high sensitivity, low limit of detection (0.003 mg L -1 , 3SD blank/slope of the calibration curve), small sample volume uptake (two times of 2 μL), and short analysis time. The linearity range of this technique ranged from 0.01 to 10 mg L -1 (r 2 = 0.993). Furthermore, practical analysis of various water samples was also demonstrated to have acceptable performance that was in agreement with the data from cold vapor atomic absorption spectrophotometry (CV-AAS), a conventional method. The proposed technique allows for a rapid, simple (instant report of the final mercury(II) concentration in water samples via smartphone display), sensitive, selective, and on-site analysis with high sample throughput (48 samples h -1 , n = 3) of trace mercury(II) in water samples, which is suitable for end users who are unskilled in analyzing mercury(II) in water samples.

  13. Highly sensitive and selective spectrophotometric method for determination of trace gold in geological samples with 5-(2-hydroxy-5-nitrophenylazo)rhodanine.

    PubMed

    Zaijun, Li; Jiaomai, Pan; Jian, Tang

    2003-02-01

    A excellent sensitive and selective method for spectrophotometric determination of trace gold has been developed, the method is based on the color reaction of gold(III) with new reagent 5-(2-hydroxy-5-nitrophenylazo)rhodanine (HNAR). Under optimal conditions, HNAR reacts with gold(III) to form a 1:5 orange complex, which has an maximum absorption peak at 480 nm. Maximum enhancement of the absorbance of the complex was obtained in the presence of the mixed surfactant of Triton X-100 and CTMAB; the reaction completed rapidly and the absorbance is stable for 5 h at least at 20 degrees C; 0-48 microg L(-1) Au(III) obeyed Beer's law. The apparent molar absorptivity of the complex, Sandell's sensitivity, the limit of quantification, the limit of detection and relative standard deviation were found to be 2.0x10(6) L mol(-1) cm(-1), 0.000,098,483 micro g cm(-2), 1.02 ng mL(-1), 0.35 ng mL(-1) and 1.09%, respectively. The effect of co-existing ions was studied seriously; most metal ions can be tolerated in considerable amounts. Its sensitivity and selectivity are remarkably superior to other reagents in the literature. The proposed method was used successfully to determine trace gold in geological samples. Moreover, the synthesis, characteristics and analytical reaction of HNAR with gold are also described in detail.

  14. Ultrafast, sensitive and large-volume on-chip real-time PCR for the molecular diagnosis of bacterial and viral infections.

    PubMed

    Houssin, Timothée; Cramer, Jérémy; Grojsman, Rébecca; Bellahsene, Lyes; Colas, Guillaume; Moulet, Hélène; Minnella, Walter; Pannetier, Christophe; Leberre, Maël; Plecis, Adrien; Chen, Yong

    2016-04-21

    To control future infectious disease outbreaks, like the 2014 Ebola epidemic, it is necessary to develop ultrafast molecular assays enabling rapid and sensitive diagnoses. To that end, several ultrafast real-time PCR systems have been previously developed, but they present issues that hinder their wide adoption, notably regarding their sensitivity and detection volume. An ultrafast, sensitive and large-volume real-time PCR system based on microfluidic thermalization is presented herein. The method is based on the circulation of pre-heated liquids in a microfluidic chip that thermalize the PCR chamber by diffusion and ultrafast flow switches. The system can achieve up to 30 real-time PCR cycles in around 2 minutes, which makes it the fastest PCR thermalization system for regular sample volume to the best of our knowledge. After biochemical optimization, anthrax and Ebola simulating agents could be respectively detected by a real-time PCR in 7 minutes and a reverse transcription real-time PCR in 7.5 minutes. These detections are respectively 6.4 and 7.2 times faster than with an off-the-shelf apparatus, while conserving real-time PCR sample volume, efficiency, selectivity and sensitivity. The high-speed thermalization also enabled us to perform sharp melting curve analyses in only 20 s and to discriminate amplicons of different lengths by rapid real-time PCR. This real-time PCR microfluidic thermalization system is cost-effective, versatile and can be then further developed for point-of-care, multiplexed, ultrafast and highly sensitive molecular diagnoses of bacterial and viral diseases.

  15. A sensitive and specific LC-MS/MS method for rapid diagnosis of Niemann-Pick C1 disease from human plasma[S

    PubMed Central

    Jiang, Xuntian; Sidhu, Rohini; Porter, Forbes D.; Yanjanin, Nicole M.; Speak, Anneliese O.; te Vruchte, Danielle Taylor; Platt, Frances M.; Fujiwara, Hideji; Scherrer, David E.; Zhang, Jessie; Dietzen, Dennis J.; Schaffer, Jean E.; Ory, Daniel S.

    2011-01-01

    Niemann-Pick type C1 (NPC1) disease is a rare, progressively fatal neurodegenerative disease for which there are no FDA-approved therapies. A major barrier to developing new therapies for this disorder has been the lack of a sensitive and noninvasive diagnostic test. Recently, we demonstrated that two cholesterol oxidation products, specifically cholestane-3β,5α,6β-triol (3β,5α,6β-triol) and 7-ketocholesterol (7-KC), were markedly increased in the plasma of human NPC1 subjects, suggesting a role for these oxysterols in diagnosis of NPC1 disease and evaluation of therapeutics in clinical trials. In the present study, we describe the development of a sensitive and specific LC-MS/MS method for quantifying 3β,5α,6β-triol and 7-KC human plasma after derivatization with N,N-dimethylglycine. We show that dimethylglycine derivatization successfully enhanced the ionization and fragmentation of 3β,5α,6β-triol and 7-KC for mass spectrometric detection of the oxysterol species in human plasma. The oxysterol dimethylglycinates were resolved with high sensitivity and selectivity, and enabled accurate quantification of 3β,5α,6β-triol and 7-KC concentrations in human plasma. The LC-MS/MS assay was able to discriminate with high sensitivity and specificity between control and NPC1 subjects, and offers for the first time a noninvasive, rapid, and highly sensitive method for diagnosis of NPC1 disease. PMID:21518695

  16. Use of the thyrocyte sodium iodide symporter as the basis for a perchlorate cell-based assay.

    PubMed

    MacAllister, Irene E; Jakoby, Michael G; Geryk, Bruce; Schneider, Roger L; Cropek, Donald M

    2009-02-01

    Perchlorates are strong oxidants widely employed in military and civilian energetic materials and recently have been scrutinized as persistent environmental pollutants. The perchlorate anion, ClO(4)(-), is a well-known and potent competitive inhibitor of iodide transport by the sodium iodide symporter (NIS) expressed in the basolateral membranes of thyroid follicular cells (thyrocytes). Iodide uptake by thyroid follicular cells is rapid and reproducible. The competitive radiotransporter assay in this study shows promise as a rapid and convenient method to assay for ClO(4)(-) in water samples at the nM level. This work describes the initial efforts to define the assay conditions that enhance NIS selectivity for ClO(4)(-). Experiments of 10 min co-incubation of ClO(4)(-) and (125)I(-) demonstrate a more significant effect on (125)I(-) transport, with a quantifiable ClO(4)(-) concentration range of 50 nM (5 ppb) to 2 microM (200 ppb), and IC(50) of 180 nM (18 ppb), nearly three-fold lower than previous reports. Since the IC(50) in our assay for other known competitor anions (SCN(-), ClO(3)(-), NO(3)(-)) remains unchanged from previous research, the increased sensitivity for ClO(4)(-) also produces a three-fold enhancement in selectivity. In addition to the possible applicability of the thyrocyte to the development of a cellular perchlorate biosensor, we propose that the high affinity of the NIS for ClO(4)(-) also creates the potential for exploiting this membrane protein as a selective, sensitive, and broadly applicable biomechanical mechanism for controlled movement and concentration of perchlorate.

  17. Disrupting mitochondrial Ca2+ homeostasis causes tumor-selective TRAIL sensitization through mitochondrial network abnormalities.

    PubMed

    Ohshima, Yohei; Takata, Natsuhiko; Suzuki-Karasaki, Miki; Yoshida, Yukihiro; Tokuhashi, Yasuaki; Suzuki-Karasaki, Yoshihiro

    2017-10-01

    The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has emerged as a promising anticancer agent with high tumor-selective cytotoxicity. The congenital and acquired resistance of some cancer types including malignant melanoma and osteosarcoma impede the current TRAIL therapy of these cancers. Since fine tuning of the intracellular Ca2+ level is essential for cell function and survival, Ca2+ dynamics could be a promising target for cancer treatment. Recently, we demonstrated that mitochondrial Ca2+ removal increased TRAIL efficacy toward malignant melanoma and osteosarcoma cells. Here we report that mitochondrial Ca2+ overload leads to tumor-selective sensitization to TRAIL cytotoxicity. Treatment with the mitochondrial Na+/Ca2+ exchanger inhibitor CGP-37157 and oxidative phosphorylation inhibitor antimycin A and FCCP resulted in a rapid and persistent mitochondrial Ca2+ rise. These agents also increased TRAIL sensitivity in a tumor-selective manner with a switching from apoptosis to a nonapoptotic cell death. Moreover, we found that mitochondrial Ca2+ overload led to increased mitochondrial fragmentation, while mitochondrial Ca2+ removal resulted in mitochondrial hyperfusion. Regardless of their reciprocal actions on the mitochondrial dynamics, both interventions commonly exacerbated TRAIL-induced mitochondrial network abnormalities. These results expand our previous study and suggest that an appropriate level of mitochondrial Ca2+ is essential for maintaining the mitochondrial dynamics and the survival of these cells. Thus, disturbing mitochondrial Ca2+ homeostasis may serve as a promising approach to overcome the TRAIL resistance of these cancers with minimally compromising the tumor-selectivity.

  18. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches

    PubMed Central

    Unser, Sarah; Bruzas, Ian; He, Jie; Sagle, Laura

    2015-01-01

    Localized surface plasmon resonance (LSPR) has emerged as a leader among label-free biosensing techniques in that it offers sensitive, robust, and facile detection. Traditional LSPR-based biosensing utilizes the sensitivity of the plasmon frequency to changes in local index of refraction at the nanoparticle surface. Although surface plasmon resonance technologies are now widely used to measure biomolecular interactions, several challenges remain. In this article, we have categorized these challenges into four categories: improving sensitivity and limit of detection, selectivity in complex biological solutions, sensitive detection of membrane-associated species, and the adaptation of sensing elements for point-of-care diagnostic devices. The first section of this article will involve a conceptual discussion of surface plasmon resonance and the factors affecting changes in optical signal detected. The following sections will discuss applications of LSPR biosensing with an emphasis on recent advances and approaches to overcome the four limitations mentioned above. First, improvements in limit of detection through various amplification strategies will be highlighted. The second section will involve advances to improve selectivity in complex media through self-assembled monolayers, “plasmon ruler” devices involving plasmonic coupling, and shape complementarity on the nanoparticle surface. The following section will describe various LSPR platforms designed for the sensitive detection of membrane-associated species. Finally, recent advances towards multiplexed and microfluidic LSPR-based devices for inexpensive, rapid, point-of-care diagnostics will be discussed. PMID:26147727

  19. Breakdown of middle lamella pectin by (●) OH during rapid abscission in Azolla.

    PubMed

    Yamada, Yoshiya; Koibuchi, Mizuki; Miyamoto, Kensuke; Ueda, Junichi; Uheda, Eiji

    2015-08-01

    Azolla, a small water fern, abscises its roots and branches within 30 min upon treatment with various stresses. This study was conducted to test whether, in the rapid abscission that occurs in Azolla, breakdown of wall components of abscission zone cells by (●) OH is involved. Experimentally generated (●) OH caused the rapid separation of abscission zone cells from detached roots and the rapid shedding of roots from whole plants. Electron microscopic observations revealed that (●) OH rapidly and selectively dissolved a well-developed middle lamella between abscission zone cells and resultantly caused rapid cell separation and shedding. Treatment of abscission zones of Impatiens leaf petiole with (●) OH also accelerated the separation of abscission zone cells. However, compared with that of Azolla roots, accelerative effects in Impatiens were weak. A large amount of (●) OH was cytochemically detected in abscission zone cells both of Azolla roots and of Impatiens leaf petioles. These results suggest that (●) OH is involved in the cell separation process not only in the rapid abscission in Azolla but also in the abscission of Impatiens. However, for rapid abscission to occur, a well-developed middle lamella, a unique structure, which is sensitive to the attack of (●) OH, might be needed. © 2015 John Wiley & Sons Ltd.

  20. Facile synthesis of hollow Co3O4 microspheres and its use as a rapid responsive CL sensor of combustible gases.

    PubMed

    Teng, Fei; Yao, Wenqing; Zheng, Youfei; Ma, Yutao; Xu, Tongguang; Gao, Guizhi; Liang, Shuhui; Teng, Yang; Zhu, Yongfa

    2008-09-15

    The hollow Co(3)O(4) microspheres (HCMs) were prepared by the carbonaceous templates, which did not need the surface pretreatment. The chemiluminescence (CL) and catalytic properties for CO oxidation over these hollow samples were evaluated. The samples were characterized by scanning electron microscopy (SEM), energy disperse spectra (EDS), transmission electron microscopy (TEM), selected area electron diffraction (ED), X-ray diffraction (XRD), temperature-programmed desorption (TPD) and N(2) adsorption. The influences of filter' band length, flow rate of gas, test temperature, and particle structure on CL intensities were mainly investigated. It was found that compared with the solid Co(3)O(4) particles (SCPs), HCMs had a stronger CL intensity, which was ascribed to its hollow structure; and that CL properties of the catalysts were well correlated with their reaction activities. Moreover, HCMs were used to fabricate a highly sensitive gas detector, which is a rapid and effective method for the selection of catalysts or the detection of environmental deleterious gases.

  1. Electrochemical hydrogen sulfide biosensors.

    PubMed

    Xu, Tailin; Scafa, Nikki; Xu, Li-Ping; Zhou, Shufeng; Abdullah Al-Ghanem, Khalid; Mahboob, Shahid; Fugetsu, Bunshi; Zhang, Xueji

    2016-02-21

    The measurement of sulfide, especially hydrogen sulfide, has held the attention of the analytical community due to its unique physiological and pathophysiological roles in biological systems. Electrochemical detection offers a rapid, highly sensitive, affordable, simple, and real-time technique to measure hydrogen sulfide concentration, which has been a well-documented and reliable method. This review details up-to-date research on the electrochemical detection of hydrogen sulfide (ion selective electrodes, polarographic hydrogen sulfide sensors, etc.) in biological samples for potential therapeutic use.

  2. Microfabricated thermionic detector

    DOEpatents

    Lewis, Patrick R; Manginell, Ronald P; Wheeler, David R; Trudell, Daniel E

    2012-10-30

    A microfabricated TID comprises a microhotplate and a thermionic source disposed on the microhotplate. The microfabricated TID can provide high sensitivity and selectivity to nitrogen- and phosphorous-containing compounds and other compounds containing electronegative function groups. The microfabricated TID can be microfabricated with semiconductor-based materials. The microfabricated TID can be combined with a microfabricated separation column and used in microanalytical system for the rapid on-site detection of pesticides, chemical warfare agents, explosives, pharmaceuticals, and other organic compounds that contain nitrogen or phosphorus.

  3. Recombinant Phage Probes for Salmonella Typhimurium Detection

    DTIC Science & Technology

    2005-03-23

    food safety analysis that are slower, labor-intensive, and cost-inefficient. Confirmation of presence in food products can take as long as 48 hours by conventional culture. Current rapid detection initiatives include biosensors that routinely incorporate antibodies as the biorecognition unit. Although sensitive and specific, antibodies are costly and may degrade under unfavorable environmental conditions. We believe that a stable, inexpensive substitute for antibodies is filamentous phage manipulated through phage display technique then affinity selected for specificity to

  4. Biomimetic ELISA detection of malachite green based on magnetic molecularly imprinted polymers.

    PubMed

    Li, Lu; Lin, Zheng-Zhong; Peng, Ai-Hong; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2016-11-01

    A direct competitive enzyme-linked immunosorbent assay (ELISA) method was used for the detection of malachite green (MG) with a high sensitivity and selectivity using magnetic molecularly imprinted polymers (MMIPs) as a bionic antibody. MMIPs were prepared through emulsion polymerization using Fe 3 O 4 nanoparticles as magnetic nuclei, MG as a template, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent and span-80/tween-80 as mixed emulsifiers. The MMIPs were characterized by scanning electron micrographs (SEM), thermal-gravimetric analyzer (TGA), Fourier transform infrared spectrometer (FT-IR) and vibrating sample magnetometer (VSM), respectively. A high magnetic saturation value of 54.1emug -1 was obtained, resulting in rapid magnetic separation of MMIPs with an external magnet. The IC 50 of the established ELISA method was 20.1μgL -1 and the detection limit (based on IC 85 ) was 0.1μgL -1 . The MMIPs exhibited high selective binding capacity for MG with cross-reactivities less than 3.9% for MG structural analogues. The MG spiking recoveries were 85.0%-106% with the relative standard deviations less than 4.7%. The results showed that the biomimetic ELISA method by using MMIPs as bionic antibody could be used to detect MG rapidly in fish samples with a high sensitivity and accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Capillary electrophoresis coupled with chloroform-acetonitrile extraction for rapid and highly selective determination of cysteine and homocysteine levels in human blood plasma and urine.

    PubMed

    Ivanov, Alexander Vladimirovich; Bulgakova, Polina Olegovna; Virus, Edward Danielevich; Kruglova, Maria Petrovna; Alexandrin, Valery Vasil'evich; Gadieva, Viktoriya Aleksandrovna; Luzyanin, Boris Petrovich; Kushlinskii, Nikolai Evgen'evich; Fedoseev, Anatolij Nikolaevich; Kubatiev, Aslan Amirkhanovich

    2017-10-01

    A rapid and selective method has been developed for highly sensitive determination of total cysteine and homocysteine levels in human blood plasma and urine by capillary electrophoresis (CE) coupled with liquid-liquid extraction. Analytes were first derivatized with 1,1'-thiocarbonyldiimidazole and then samples were purified by chloroform-ACN extraction. Electrophoretic separation was performed using 0.1 M phosphate with 30 mM triethanolamine, pH 2, containing 25 μM CTAB, 2.5 μM SDS, and 2.5% polyethylene glycol 600. Samples were injected into the capillary (with total length 32 cm and 50 μm id) at 2250 mbar*s and subsequent injection was performed for 30 s with 0.5 M KОН. The total analysis time was less than 9 min, accuracy was 98%, and precision was <2.6%. The LOD was 0.2 μM for homocysteine and 0.5 μM for cysteine. The use of liquid-liquid extraction allowed the precision and sensitivity of the CE method to be significantly increased. The validated method was applied to determine total cysteine and homocysteine content in human blood plasma and urine samples obtained from healthy volunteers and patients with kidney disorders. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Multifunctional Nanotechnology-Enabled Sensors for Rapid Capture and Detection of Pathogens

    PubMed Central

    Mustafa, Fatima; Andreescu, Silvana

    2017-01-01

    Nanomaterial-based sensing approaches that incorporate different types of nanoparticles (NPs) and nanostructures in conjunction with natural or synthetic receptors as molecular recognition elements provide opportunities for the design of sensitive and selective assays for rapid detection of contaminants. This review summarizes recent advancements over the past ten years in the development of nanotechnology-enabled sensors and systems for capture and detection of pathogens. The most common types of nanostructures and NPs, their modification with receptor molecules and integration to produce viable sensing systems with biorecognition, amplification and signal readout are discussed. Examples of all-in-one systems that combine multifunctional properties for capture, separation, inactivation and detection are also provided. Current trends in the development of low-cost instrumentation for rapid assessment of food contamination are discussed as well as challenges for practical implementation and directions for future research. PMID:28914769

  7. Serodiagnosis of Tuberculosis in Asian Elephants (Elephas maximus) in Southern India: A Latent Class Analysis

    PubMed Central

    Dendukuri, Nandini; Cheeran, Jacob Varghese; Sukumar, Raman

    2012-01-01

    Background Mycobacterium tuberculosis, a causative agent of chronic tuberculosis disease, is widespread among some animal species too. There is paucity of information on the distribution, prevalence and true disease status of tuberculosis in Asian elephants (Elephas maximus). The aim of this study was to estimate the sensitivity and specificity of serological tests to diagnose M. tuberculosis infection in captive elephants in southern India while simultaneously estimating sero-prevalence. Methodology/Principal Findings Health assessment of 600 elephants was carried out and their sera screened with a commercially available rapid serum test. Trunk wash culture of select rapid serum test positive animals yielded no animal positive for M. tuberculosis isolation. Under Indian field conditions where the true disease status is unknown, we used a latent class model to estimate the diagnostic characteristics of an existing (rapid serum test) and new (four in-house ELISA) tests. One hundred and seventy nine sera were randomly selected for screening in the five tests. Diagnostic sensitivities of the four ELISAs were 91.3–97.6% (95% Credible Interval (CI): 74.8–99.9) and diagnostic specificity were 89.6–98.5% (95% CI: 79.4–99.9) based on the model we assumed. We estimate that 53.6% (95% CI: 44.6–62.8) of the samples tested were free from infection with M. tuberculosis and 15.9% (97.5% CI: 9.8 - to 24.0) tested positive on all five tests. Conclusions/Significance Our results provide evidence for high prevalence of asymptomatic M. tuberculosis infection in Asian elephants in a captive Indian setting. Further validation of these tests would be important in formulating area-specific effective surveillance and control measures. PMID:23166708

  8. Serodiagnosis of tuberculosis in Asian elephants (Elephas maximus) in Southern India: a latent class analysis.

    PubMed

    Verma-Kumar, Shalu; Abraham, David; Dendukuri, Nandini; Cheeran, Jacob Varghese; Sukumar, Raman; Balaji, Kithiganahalli Narayanaswamy

    2012-01-01

    Mycobacterium tuberculosis, a causative agent of chronic tuberculosis disease, is widespread among some animal species too. There is paucity of information on the distribution, prevalence and true disease status of tuberculosis in Asian elephants (Elephas maximus). The aim of this study was to estimate the sensitivity and specificity of serological tests to diagnose M. tuberculosis infection in captive elephants in southern India while simultaneously estimating sero-prevalence. Health assessment of 600 elephants was carried out and their sera screened with a commercially available rapid serum test. Trunk wash culture of select rapid serum test positive animals yielded no animal positive for M. tuberculosis isolation. Under Indian field conditions where the true disease status is unknown, we used a latent class model to estimate the diagnostic characteristics of an existing (rapid serum test) and new (four in-house ELISA) tests. One hundred and seventy nine sera were randomly selected for screening in the five tests. Diagnostic sensitivities of the four ELISAs were 91.3-97.6% (95% Credible Interval (CI): 74.8-99.9) and diagnostic specificity were 89.6-98.5% (95% CI: 79.4-99.9) based on the model we assumed. We estimate that 53.6% (95% CI: 44.6-62.8) of the samples tested were free from infection with M. tuberculosis and 15.9% (97.5% CI: 9.8 - to 24.0) tested positive on all five tests. Our results provide evidence for high prevalence of asymptomatic M. tuberculosis infection in Asian elephants in a captive Indian setting. Further validation of these tests would be important in formulating area-specific effective surveillance and control measures.

  9. Detection of Antigenic Variants of Subtype H3 Swine Influenza A Viruses from Clinical Samples.

    PubMed

    Martin, Brigitte E; Bowman, Andrew S; Li, Lei; Nolting, Jacqueline M; Smith, David R; Hanson, Larry A; Wan, Xiu-Feng

    2017-04-01

    A large population of genetically and antigenically diverse influenza A viruses (IAVs) are circulating among the swine population, playing an important role in influenza ecology. Swine IAVs not only cause outbreaks among swine but also can be transmitted to humans, causing sporadic infections and even pandemic outbreaks. Antigenic characterizations of swine IAVs are key to understanding the natural history of these viruses in swine and to selecting strains for effective vaccines. However, influenza outbreaks generally spread rapidly among swine, and the conventional methods for antigenic characterization require virus propagation, a time-consuming process that can significantly reduce the effectiveness of vaccination programs. We developed and validated a rapid, sensitive, and robust method, the polyclonal serum-based proximity ligation assay (polyPLA), to identify antigenic variants of subtype H3N2 swine IAVs. This method utilizes oligonucleotide-conjugated polyclonal antibodies and quantifies antibody-antigen binding affinities by quantitative reverse transcription-PCR (RT-PCR). Results showed the assay can rapidly detect H3N2 IAVs directly from nasal wash or nasal swab samples collected from laboratory-challenged animals or during influenza surveillance at county fairs. In addition, polyPLA can accurately separate the viruses at two contemporary swine IAV antigenic clusters (H3N2 swine IAV-α and H3N2 swine IAV-ß) with a sensitivity of 84.9% and a specificity of 100.0%. The polyPLA can be routinely used in surveillance programs to detect antigenic variants of influenza viruses and to select vaccine strains for use in controlling and preventing disease in swine. Copyright © 2017 American Society for Microbiology.

  10. Validation of a Rapid Bacteria Endospore Enumeration System for Planetary Protection Application

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Kern, Roger; Kazarians, Gayane; Venkateswaran, Kasthuri

    NASA monitors spacecraft surfaces to assure that the presence of bacterial endospores meets strict criteria at launch, to minimize the risk of inadvertent contamination of the surface of Mars. Currently, the only approved method for enumerating the spores is a culture based assay that requires three days to produce results. In order to meet the demanding schedules of spacecraft assembly, a more rapid spore detection assay is being considered as an alternate method to the NASA standard culture-based assay. The Millipore Rapid Microbiology Detection System (RMDS) has been used successfully for rapid bioburden enumeration in the pharmaceutical and food industries. The RMDS is rapid and simple, shows high sensitivity (to 1 colony forming unit [CFU]/sample), and correlates well with traditional culture-based methods. It combines membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and image analysis based on photon detection with a Charge Coupled Device (CCD) camera. In this study, we have optimized the assay conditions and evaluated the use of the RMDS as a rapid spore detection tool for NASA applications. In order to select for spores, the samples were subjected to a heat shock step before proceeding with the RMDS incubation protocol. Seven species of Bacillus (nine strains) that have been repeatedly isolated from clean room environments were assayed. All strains were detected by the RMDS in 5 hours and these assay times were repeatedly demonstrated along with low image background noise. Validation experiments to compare the Rapid Sore Assay (RSA) and NASA standard assay (NSA) were also performed. The evaluation criteria were modeled after the FDA Guideline of Process Validation, and Analytical Test Methods. This body of research demonstrates that the Rapid Spore Assay (RSA) is quick, and of equivalent sensitivity to the NASA standard assay, potentially reducing the assay time for bacterial endospores from over 72 hours to less than 8 hours. Accordingly, JPL has produced a report recommending that NASA adopt the RSA method as a suitable alternative to the NASA standard assay.

  11. Simultaneous detection of perchlorate and bromate using rapid high-performance ion exchange chromatography-tandem mass spectrometry and perchlorate removal in drinking water.

    PubMed

    West, Danielle M; Mu, Ruipu; Gamagedara, Sanjeewa; Ma, Yinfa; Adams, Craig; Eichholz, Todd; Burken, Joel G; Shi, Honglan

    2015-06-01

    Perchlorate and bromate occurrence in drinking water causes health concerns due to their effects on thyroid function and carcinogenicity, respectively. The purpose of this study was threefold: (1) to advance a sensitive method for simultaneous rapid detection of perchlorate and bromate in drinking water system, (2) to systematically study the occurrence of these two contaminants in Missouri drinking water treatment systems, and (3) to examine effective sorbents for minimizing perchlorate in drinking water. A rapid high-performance ion exchange chromatography-tandem mass spectrometry (HPIC-MS/MS) method was advanced for simultaneous detection of perchlorate and bromate in drinking water. The HPIC-MS/MS method was rapid, required no preconcentration of the water samples, and had detection limits for perchlorate and bromate of 0.04 and 0.01 μg/L, respectively. The method was applied to determine perchlorate and bromate concentrations in total of 23 selected Missouri drinking water treatment systems during differing seasons. The water systems selected include different source waters: groundwater, lake water, river water, and groundwater influenced by surface water. The concentrations of perchlorate and bromate were lower than or near to method detection limits in most of the drinking water samples monitored. The removal of perchlorate by various adsorbents was studied. A cationic organoclay (TC-99) exhibited effective removal of perchlorate from drinking water matrices.

  12. Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity.

    PubMed

    Belda, Ignacio; Ruiz, Javier; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-05-16

    The development of a selective medium for the rapid differentiation of yeast species with increased aromatic thiol release activity has been achieved. The selective medium was based on the addition of S-methyl-l-cysteine (SMC) as β-lyase substrate. In this study, a panel of 245 strains of Saccharomyces cerevisiae strains was tested for their ability to grow on YCB-SMC medium. Yeast strains with an increased β-lyase activity grew rapidly because of their ability to release ammonium from SMC in comparison to others, and allowed for the easy isolation and differentiation of yeasts with promising properties in oenology, or another field, for aromatic thiol release. The selective medium was also helpful for the discrimination between those S. cerevisiae strains, which present a common 38-bp deletion in the IRC7 sequence (present in around 88% of the wild strains tested and are likely to be less functional for 4-mercapto-4-methylpentan-2-one (4MMP) production), and those S. cerevisiae strains homozygous for the full-length IRC7 allele. The medium was also helpful for the selection of non-Saccharomyces yeasts with increased β-lyase activity. Based on the same medium, a highly sensitive, reproducible and non-expensive GC-MS method for the evaluation of the potential volatile thiol release by different yeast isolates was developed. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. New medium for rapid screening and enumeration of Clostridium perfringens in foods.

    PubMed Central

    Erickson, J E; Deibel, R H

    1978-01-01

    A rapid and sensitive procedure for estimating low numbers of Clostridium perfringens has been investigated and compared to methods used currently in the food industry. The new liquid medium, RPM (rapid perfringens medium), was compared with sulfite-polymyxin-sulfadiazine agar and tryptose-sulfite-cycloserine agar in recovery studies with naturally contaminated and with inoculated foods. The medium consists of a mixture of litmus milk and fluid thioglycolate medium fortified with glucose, peptone, gelatin, yeast extract, sodium chloride, and ferrous sulfate. Selectivity is based on an antibiotic system (polymyxin B sulfate and neomycin sulfate) incorporated into the medium, coupled with an incubation temprature of 46 to 48 degrees C for 24 h. Tubes were scored as positive if a stormy fermentation was observed. All tubes demonstrating stormy fermentation were confirmed as containing C. perfringens. Of a total of 774 naturally contaminated food samples, 546 samples (71%) were found to contain C. perfringens with RPM, whereas only 168 (22%) of the samples were positive using sulfite-polymyxin-sulfadiazine agar. C. perfringens was isolated from 71% of 85 other samples using RPM as compared to 14% with tryptose-sulfite-cycloserine agar. Enumeration studies on 14 individual samples using the most probable number technique also demonstrated greater sensitivity with RPM. PMID:213019

  14. Restoration of euglycemia after duodenal bypass surgery is reliant on central and peripheral inputs in Zucker fa/fa rats.

    PubMed

    Jiao, Jian; Bae, Eun Ju; Bandyopadhyay, Gautam; Oliver, Jason; Marathe, Chaitra; Chen, Michael; Hsu, Jer-Yuan; Chen, Yu; Tian, Hui; Olefsky, Jerrold M; Saberi, Maziyar

    2013-04-01

    Gastrointestinal bypass surgeries that result in rerouting and subsequent exclusion of nutrients from the duodenum appear to rapidly alleviate hyperglycemia and hyperinsulinemia independent of weight loss. While the mechanism(s) responsible for normalization of glucose homeostasis remains to be fully elucidated, this rapid normalization coupled with the well-known effects of vagal inputs into glucose homeostasis suggests a neurohormonally mediated mechanism. Our results show that duodenal bypass surgery on obese, insulin-resistant Zucker fa/fa rats restored insulin sensitivity in both liver and peripheral tissues independent of body weight. Restoration of normoglycemia was attributable to an enhancement in key insulin-signaling molecules, including insulin receptor substrate-2, and substrate metabolism through a multifaceted mechanism involving activation of AMP-activated protein kinase and downregulation of key regulatory genes involved in both lipid and glucose metabolism. Importantly, while central nervous system-derived vagal nerves were not essential for restoration of insulin sensitivity, rapid normalization in hepatic gluconeogenic capacity and basal hepatic glucose production required intact vagal innervation. Lastly, duodenal bypass surgery selectively altered the tissue concentration of intestinally derived glucoregulatory hormone peptides in a segment-specific manner. The present data highlight and support the significance of vagal inputs and intestinal hormone peptides toward normalization of glucose and lipid homeostasis after duodenal bypass surgery.

  15. Endpoint visual detection of three genetically modified rice events by loop-mediated isothermal amplification.

    PubMed

    Chen, Xiaoyun; Wang, Xiaofu; Jin, Nuo; Zhou, Yu; Huang, Sainan; Miao, Qingmei; Zhu, Qing; Xu, Junfeng

    2012-11-07

    Genetically modified (GM) rice KMD1, TT51-1, and KF6 are three of the most well known transgenic Bt rice lines in China. A rapid and sensitive molecular assay for risk assessment of GM rice is needed. Polymerase chain reaction (PCR), currently the most common method for detecting genetically modified organisms, requires temperature cycling and relatively complex procedures. Here we developed a visual and rapid loop-mediated isothermal amplification (LAMP) method to amplify three GM rice event-specific junction sequences. Target DNA was amplified and visualized by two indicators (SYBR green or hydroxy naphthol blue [HNB]) within 60 min at an isothermal temperature of 63 °C. Different kinds of plants were selected to ensure the specificity of detection and the results of the non-target samples were negative, indicating that the primer sets for the three GM rice varieties had good levels of specificity. The sensitivity of LAMP, with detection limits at low concentration levels (0.01%−0.005% GM), was 10- to 100-fold greater than that of conventional PCR. Additionally, the LAMP assay coupled with an indicator (SYBR green or HNB) facilitated analysis. These findings revealed that the rapid detection method was suitable as a simple field-based test to determine the status of GM crops.

  16. Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit

    PubMed Central

    Chao, Michael Y.; Komatsu, Hidetoshi; Fukuto, Hana S.; Dionne, Heather M.; Hart, Anne C.

    2004-01-01

    Serotonin (5-HT) modulates synaptic efficacy in the nervous system of vertebrates and invertebrates. In the nematode Caenorhabditis elegans, many behaviors are regulated by 5-HT levels, which are in turn regulated by the presence or absence of food. Here, we show that both food and 5-HT signaling modulate chemosensory avoidance response of octanol in C. elegans, and that this modulation is both rapid and reversible. Sensitivity to octanol is decreased when animals are off food or when 5-HT levels are decreased; conversely, sensitivity is increased when animals are on food or have increased 5-HT signaling. Laser microsurgery and behavioral experiments reveal that sensory input from different subsets of octanol-sensing neurons is selectively used, depending on stimulus strength, feeding status, and 5-HT levels. 5-HT directly targets at least one pair of sensory neurons, and 5-HT signaling requires the Gα protein GPA-11. Glutamatergic signaling is required for response to octanol, and the GLR-1 glutamate receptor plays an important role in behavioral response off food but not on food. Our results demonstrate that 5-HT modulation of neuronal activity via G protein signaling underlies behavioral plasticity by rapidly altering the functional circuitry of a chemosensory circuit. PMID:15492222

  17. SnO2 quantum dots with rapid butane detection at lower ppm-level

    NASA Astrophysics Data System (ADS)

    Cai, Pan; Dong, Chengjun; Jiang, Ming; Shen, Yuanyuan; Tao, You; Wang, Yude

    2018-04-01

    SnO2 quantum dots (QDs) were successfully synthesized by a facile approach employing benzyl alcohol and ammonium hydroxide at lower temperature of 130 °C. It is revealed that the SnO2 QDs is about 3 nm in size to form clusters. The gas sensor based on SnO2 QDs shows a high potential for detecting low-ppm-level butane at 400 °C, exhibiting a high sensitivity, short response and rapid recovery time, and effective selectivity. The sensing mechanism is understood in terms of adsorbed oxygen species. Significantly, the excellent sensing performance is attributed to the smaller size of SnO2 and larger surface area (204.85 m2/g).

  18. Disease-Related Detection with Electrochemical Biosensors: A Review.

    PubMed

    Huang, Ying; Xu, Jin; Liu, Junjie; Wang, Xiangyang; Chen, Bin

    2017-10-17

    Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  19. Stigma Sensitivity and the Duration of Temporary Closure Are Affected by Pollinator Identity in Mazus miquelii (Phrymaceae), a Species with Bilobed Stigma

    PubMed Central

    Jin, Xiao-Fang; Ye, Zhong-Ming; Amboka, Grace M.; Wang, Qing-Feng; Yang, Chun-Feng

    2017-01-01

    A sensitive bilobed stigma is thought to assure reproduction, avoid selfing and promote outcrossing. In addition, it may also play a role in pollinator selection since only pollinators with the appropriate body size can trigger this mechanism. However, no experimental study has investigated how the sensitive stigma responds to different pollinators and its potential effects on pollination. Mazus miquelii (Phrymaceae), a plant with a bilobed stigma was studied to investigate the relationship between stigma behaviors and its multiple insect pollinators. The reaction time of stigma closure after touched, duration of temporary closure, and factors determining permanent closure of the stigma were studied when flowers were exposed to different visitors and conducted with hand pollination. Manual stimulation was also used to detect the potential differences in stigmas when touched with different degrees of external forces. Results indicated that, compared to pollinators with a small body size, larger pollinators transferred more pollen grains to the stigma, causing a rapid stigma response and resulting in a higher percentage of permanent closures. Duration of temporary closure was negatively correlated with the speed of stigma closure; a stigma that closed more rapidly reopened more slowly. Manual stimulation showed that reaction time of stigma closure was likely a response to external mechanical forces. Hand pollination treatments revealed that the permanent closure of a stigma was determined by the size of stigmatic pollen load. For large pollinators, the speedy reaction of the stigma might help to reduce pollen loss, enhance pollen germination and avoid obstructing pollen export. Stigmas showed low sensitivity when touched by inferior pollinators, which may have increased the possibility of pollen deposition by subsequent visits. Therefore, the stigma behavior in M. miquelii is likely a mechanism of pollinator selection to maximize pollination success. PMID:28539934

  20. Ultrasensitive quantum dot fluorescence quenching assay for selective detection of mercury ions in drinking water.

    PubMed

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-07-09

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg(2+) ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples.

  1. Ultrasensitive Quantum Dot Fluorescence quenching Assay for Selective Detection of Mercury Ions in Drinking Water

    PubMed Central

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-01-01

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg2+ ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples. PMID:25005836

  2. Development of molecularly imprinted column-on line-two dimensional liquid chromatography for rapidly and selectively monitoring estradiol in cosmetics.

    PubMed

    Guo, Pengqi; Xu, Xinya; Xian, Liang; Ge, Yanhui; Luo, Zhimin; Du, Wei; Jing, Wanghui; Zeng, Aiguo; Chang, Chun; Fu, Qiang

    2016-12-01

    Nowadays, the illegal use of estradiol in cosmetics has caused a series of events which endangering public health seriously. Therefore, it is imperative to establish a simple, fast and specific method for monitoring the illegal use of estradiol in cosmetics. In current study, we developed a molecular imprinted monolithic column two dimensional liquid chromatography method (MIMC-2D-LC) for rapid and selective determination of estradiol in various cosmetic samples. The best polymerization, morphology, structure property, surface groups, and the adsorption performance of the prepared material were investigated. The MIMC-2D-LC was validated and successfully used for detecting estradiol in cosmetic samples with good selectivity, sensitivity, efficiency and reproducibility. The linear range of the MIMC-2D-LC for estradiol was 0.5-50μgg -1 with the limit of detection of 0.08μgg -1 . Finally, six batches of cosmetic samples obtained from local markets were tested by the proposed method. The test results showed that the illegal use of estradiol still existed in the commercially available samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. UNE-EN ISO/IEC 17025:2005-accredited method for the determination of pesticide residues in fruit and vegetable samples by LC-MS/MS.

    PubMed

    Camino-Sánchez, F J; Zafra-Gómez, A; Oliver-Rodríguez, B; Ballesteros, O; Navalón, A; Crovetto, G; Vílchez, J L

    2010-11-01

    A rapid, simple and sensitive multi-residue method was developed and validated for the simultaneous quantification and confirmation of 69 pesticides in fruit and vegetables using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted following the quick, easy, cheap, effective, rugged and safe method known as QuEChERS. Mass spectrometric conditions were individually optimised for each analyte in order to achieve maximum sensitivity in multiple reaction monitoring (MRM) mode. Using the developed chromatographic conditions, 69 pesticides can be separated in less than 17 min. Two selected reaction monitoring (SRM) assays were used for each pesticide to obtain simultaneous quantification and identification in one run. With this method in SRM mode, more than 150 pesticides can be analysed and quantified, but their confirmation is not possible in all cases according to the European regulations on pesticide residues. Nine common representative matrices (zucchini, melon, cucumber, watermelon, tomato, garlic, eggplant, lettuce and pepper) were selected to investigate the effect of different matrices on recovery and precision. Mean recoveries ranged from 70% to 120%, with relative standard deviations (RSDs) lower than 20% for all the pesticides. The proposed method was applied to the analysis of more than 2000 vegetable samples from the extensive greenhouse cultivation in the province of Almeria, Spain, during one year. The methodology combines the advantages of both QuEChERS and LC-MS/MS producing a very rapid, sensitive, accurate and reliable procedure that can be applied in routine analytical laboratories. The method was validated and accredited according to UNE-EN-ISO/IEC 17025:2005 international standard (accreditation number 278/LE1027).

  4. Selective chest imaging for blunt trauma patients: The national emergency X-ray utilization studies (NEXUS-chest algorithm).

    PubMed

    Rodriguez, Robert M; Hendey, Gregory W; Mower, William R

    2017-01-01

    Chest imaging plays a prominent role in blunt trauma patient evaluation, but indiscriminate imaging is expensive, may delay care, and unnecessarily exposes patients to potentially harmful ionizing radiation. To improve diagnostic chest imaging utilization, we conducted 3 prospective multicenter studies over 12years to derive and validate decision instruments (DIs) to guide the use of chest x-ray (CXR) and chest computed tomography (CT). The first DI, NEXUS Chest x-ray, consists of seven criteria (Age >60years; rapid deceleration mechanism; chest pain; intoxication; altered mental status; distracting painful injury; and chest wall tenderness) and exhibits a sensitivity of 99.0% (95% confidence interval [CI] 98.2-99.4%) and a specificity of 13.3% (95% CI, 12.6%-14.0%) for detecting clinically significant injuries. We developed two NEXUS Chest CT DIs, which are both highly reliable in detecting clinically major injuries (sensitivity of 99.2%; 95% CI 95.4-100%). Designed primarily to focus on detecting major injuries, the NEXUS Chest CT-Major DI consists of six criteria (abnormal CXR; distracting injury; chest wall tenderness; sternal tenderness; thoracic spine tenderness; and scapular tenderness) and exhibits higher specificity (37.9%; 95% CI 35.8-40.1%). Designed to reliability detect both major and minor injuries (sensitivity 95.4%; 95% CI 93.6-96.9%) with resulting lower specificity (25.5%; 95% CI 23.5-27.5%), the NEXUS CT-All rule consists of seven elements (the six NEXUS CT-Major criteria plus rapid deceleration mechanism). The purpose of this review is to synthesize the three DIs into a novel, cohesive summary algorithm with practical implementation recommendations to guide selective chest imaging in adult blunt trauma patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Sensitivity and Specificity of Human Immunodeficiency Virus Rapid Serologic Assays and Testing Algorithms in an Antenatal Clinic in Abidjan, Ivory Coast

    PubMed Central

    Koblavi-Dème, Stéphania; Maurice, Chantal; Yavo, Daniel; Sibailly, Toussaint S.; N′guessan, Kabran; Kamelan-Tano, Yvonne; Wiktor, Stefan Z.; Roels, Thierry H.; Chorba, Terence; Nkengasong, John N.

    2001-01-01

    To evaluate serologic testing algorithms for human immunodeficiency virus (HIV) based on a combination of rapid assays among persons with HIV-1 (non-B subtypes) infection, HIV-2 infection, and HIV-1–HIV-2 dual infections in Abidjan, Ivory Coast, a total of 1,216 sera with known HIV serologic status were used to evaluate the sensitivity and specificity of four rapid assays: Determine HIV-1/2, Capillus HIV-1/HIV-2, HIV-SPOT, and Genie II HIV-1/HIV-2. Two serum panels obtained from patients recently infected with HIV-1 subtypes B and non-B were also included. Based on sensitivity and specificity, three of the four rapid assays were evaluated prospectively in parallel (serum samples tested by two simultaneous rapid assays) and serial (serum samples tested by two consecutive rapid assays) testing algorithms. All assays were 100% sensitive, and specificities ranged from 99.4 to 100%. In the prospective evaluation, both the parallel and serial algorithms were 100% sensitive and specific. Our results suggest that rapid assays have high sensitivity and specificity and, when used in parallel or serial testing algorithms, yield results similar to those of enzyme-linked immunosorbent assay-based testing strategies. HIV serodiagnosis based on rapid assays may be a valuable alternative in implementing HIV prevention and surveillance programs in areas where sophisticated laboratories are difficult to establish. PMID:11325995

  6. PROPOSAL OF ANTI-TUBERCULOSIS REGIMENS BASED ON SUSCEPTIBILITY TO ISONIAZID AND RIFAMPICIN

    PubMed Central

    Mendoza-Ticona, Alberto; Moore, David AJ; Alarcón, Valentina; Samalvides, Frine; Seas, Carlos

    2014-01-01

    Objective To elaborate optimal anti-tuberculosis regimens following drug susceptibility testing (DST) to isoniazid (H) and rifampicin (R). Design 12 311 M. tuberculosis strains (National Health Institute of Peru 2007-2009) were classified in four groups according H and R resistance. In each group the sensitivity to ethambutol (E), pirazinamide (Z), streptomycin (S), kanamycin (Km), capreomycin (Cm), ciprofloxacin (Cfx), ethionamide (Eto), cicloserine (Cs) and p-amino salicilic acid (PAS) was determined. Based on resistance profiles, domestic costs, and following WHO guidelines, we elaborated and selected optimal putative regimens for each group. The potential efficacy (PE) variable was defined as the proportion of strains sensitive to at least three or four drugs for each regimen evaluated. Results Selected regimes with the lowest cost, and highest PE of containing 3 and 4 effective drugs for TB sensitive to H and R were: HRZ (99,5%) and HREZ (99,1%), respectively; RZECfx (PE=98,9%) and RZECfxKm (PE=97,7%) for TB resistant to H; HZECfx (96,8%) and HZECfxKm (95,4%) for TB resistant to R; and EZCfxKmEtoCs (82.9%) for MDR-TB. Conclusion Based on resistance to H and R it was possible to select anti-tuberculosis regimens with high probability of success. This proposal is a feasible alternative to tackle tuberculosis in Peru where the access to rapid DST to H and R is improving progressively. PMID:23949502

  7. Label free selective detection of estriol using graphene oxide-based fluorescence sensor

    NASA Astrophysics Data System (ADS)

    Kushwaha, H. S.; Sao, Reshma; Vaish, Rahul

    2014-07-01

    Water-soluble and fluorescent Graphene oxide (GO) is biocompatible, easy, and economical to synthesize. Interestingly, GO is also capable of quenching fluorescence. On the basis of its fluorescence and quenching abilities, GO has been reported to serve as an energy acceptor in a fluorescence resonance energy transfer (FRET) sensor. GO-based FRET biosensors have been widely reported for sensing of proteins, nucleic acid, ATP (Adenosine triphosphate), etc. GO complexes with fluorescent dyes and enzymes have been used to sense metal ions. Graphene derivatives have been used for sensing endocrine-disrupting chemicals like bisphenols and chlorophenols with high sensitivity and good reproducibility. On this basis, a novel GO based fluorescent sensor has been successfully designed to detect estriol with remarkable selectivity and sensitivity. Estriol is one of the three estrogens in women and is considered to be medically important. Estriol content of maternal urine or plasma acts as an important screening marker for estimating foetal growth and development. In addition, estriol is also used as diagnostic marker for diseases like breast cancer, osteoporosis, neurodegenerative and cardiovascular diseases, insulin resistance, lupus erythematosus, endometriosis, etc. In this present study, we report for the first time a rapid, sensitive with detection limit of 1.3 nM, selective and highly biocompatible method for label free detection of estriol under physiological conditions using fluorescence assay.

  8. Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages.

    PubMed

    Gong, Yunqian; Yu, Bin; Yang, Wen; Zhang, Xiaoling

    2016-05-15

    Phosphorus and nitrogen doped carbon dots (PN-CDs) were conveniently prepared by carbonization of adenosine-5'-triphosphate using a hydrothermal treatment. The PN-CDs with P/C atomic ratio of ca. 9.2/100 emit blue luminescence with high quantum yields of up to 23.5%. The PN-CDs were used as a novel sensing platform for live cell imaging of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including ClO(-), ONOO(-), and NO in macrophages. The nanosensor design is based on our new finding that the strong fluorescence of the PN-CDs can be sensitively and selectively quenched by ROS and RNS both in vitro and in vivo. These results reveal that the PN-CDs can serve as a sensitive sensor for rapid imaging of ROS and RNS signaling with high selectivity and contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal-organic framework nanorods: Synergies of the metal center and organic linker.

    PubMed

    Tian, Jingqi; Liu, Qian; Shi, Jinle; Hu, Jianming; Asiri, Abdullah M; Sun, Xuping; He, Yuquan

    2015-09-15

    Considerable recent attention has been paid to homogeneous fluorescent DNA detection with the use of nanostructures as a universal "quencher", but it still remains a great challenge to develop such nanosensor with the benefits of low cost, high speed, sensitivity, and selectivity. In this work, we report the use of iron-based metal-organic framework nanorods as a high-efficient sensing platform for fluorescent DNA detection. It only takes about 4 min to complete the whole "mix-and-detect" process with a low detection limit of 10 pM and a strong discrimination of single point mutation. Control experiments reveal the remarkable sensing behavior is a consequence of the synergies of the metal center and organic linker. This work elucidates how composition control of nanostructures can significantly impact their sensing properties, enabling new opportunities for the rational design of functional materials for analytical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Low-cost optical fabrication of flexible copper electrode via laser-induced reductive sintering and adhesive transfer

    NASA Astrophysics Data System (ADS)

    Back, Seunghyun; Kang, Bongchul

    2018-02-01

    Fabricating copper electrodes on heat-sensitive polymer films in air is highly challenging owing to the need of expensive copper nanoparticles, rapid oxidation of precursor during sintering, and limitation of sintering temperature to prevent the thermal damage of the polymer film. A laser-induced hybrid process of reductive sintering and adhesive transfer is demonstrated to cost-effectively fabricate copper electrode on a polyethylene film with a thermal resistance below 100 °C. A laser-induced reductive sintering process directly fabricates a high-conductive copper electrode onto a glass donor from copper oxide nanoparticle solution via photo-thermochemical reduction and agglomeration of copper oxide nanoparticles. The sintered copper patterns were transferred in parallel to a heat-sensitive polyethylene film through self-selective surface adhesion of the film, which was generated by the selective laser absorption of the copper pattern. The method reported here could become one of the most important manufacturing technologies for fabricating low-cost wearable and disposable electronics.

  11. Rapid and reliable quantitation of amino acids and myo-inositol in mouse brain by high performance liquid chromatography and tandem mass spectrometry.

    PubMed

    Bathena, Sai P; Huang, Jiangeng; Epstein, Adrian A; Gendelman, Howard E; Boska, Michael D; Alnouti, Yazen

    2012-04-15

    Amino acids and myo-inositol have long been proposed as putative biomarkers for neurodegenerative diseases. Accurate measures and stability have precluded their selective use. To this end, a sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method based on multiple reaction monitoring was developed to simultaneously quantify glutamine, glutamate, γ-aminobutyric acid (GABA), aspartic acid, N-acetyl aspartic acid, taurine, choline, creatine, phosphocholine and myo-inositol in mouse brain by methanol extractions. Chromatography was performed using a hydrophilic interaction chromatography silica column within in a total run time of 15 min. The validated method is selective, sensitive, accurate, and precise. The method has a limit of quantification ranging from 2.5 to 20 ng/ml for a range of analytes and a dynamic range from 2.5-20 to 500-4000 ng/ml. This LC-MS/MS method was validated for biomarker discovery in models of human neurological disorders. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Sensitive analytical method for simultaneous analysis of some vasoconstrictors with highly overlapped analytical signals

    NASA Astrophysics Data System (ADS)

    Nikolić, G. S.; Žerajić, S.; Cakić, M.

    2011-10-01

    Multivariate calibration method is a powerful mathematical tool that can be applied in analytical chemistry when the analytical signals are highly overlapped. The method with regression by partial least squares is proposed for the simultaneous spectrophotometric determination of adrenergic vasoconstrictors in decongestive solution containing two active components: phenyleprine hydrochloride and trimazoline hydrochloride. These sympathomimetic agents are that frequently associated in pharmaceutical formulations against the common cold. The proposed method, which is, simple and rapid, offers the advantages of sensitivity and wide range of determinations without the need for extraction of the vasoconstrictors. In order to minimize the optimal factors necessary to obtain the calibration matrix by multivariate calibration, different parameters were evaluated. The adequate selection of the spectral regions proved to be important on the number of factors. In order to simultaneously quantify both hydrochlorides among excipients, the spectral region between 250 and 290 nm was selected. A recovery for the vasoconstrictor was 98-101%. The developed method was applied to assay of two decongestive pharmaceutical preparations.

  13. Biosensors for Non-Invasive Detection of Celiac Disease Biomarkers in Body Fluids.

    PubMed

    Pasinszki, Tibor; Krebsz, Melinda

    2018-06-16

    Celiac disease is a chronic gluten-initiated autoimmune disorder that predominantly damages the mucosa of the small intestine in genetically-susceptible individuals. It affects a large and increasing number of the world’s population. The diagnosis of this disease and monitoring the response of patients to the therapy, which is currently a life-long gluten-free diet, require the application of reliable, rapid, sensitive, selective, simple, and cost-effective analytical tools. Celiac disease biomarker detection in full blood, serum, or plasma offers a non-invasive way to do this and is well-suited to being the first step of diagnosis. Biosensors provide a novel and alternative way to perform conventional techniques in biomarker sensing, in which electrode material and architecture play important roles in achieving sensitive, selective, and stable detection. There are many opportunities to build and modify biosensor platforms using various materials and detection methods, and the aim of the present review is to summarize developments in this field.

  14. Selection of specific aptamer against enrofloxacin and fabrication of graphene oxide based label-free fluorescent assay.

    PubMed

    Dolati, Somayeh; Ramezani, Mohammad; Nabavinia, Maryam Sadat; Soheili, Vahid; Abnous, Khalil; Taghdisi, Seyed Mohammad

    2018-05-15

    Specific ssDNA aptamers for the antibiotic enrofloxacin (ENR) were isolated from an enriched nucleotide library by SELEX (Systematic Evolution of Ligands by EXponential enrichment) method with high binding affinity. After seven rounds, five aptamers were selected and identified. Apt58 with highest affinity and sensitivity (K d  = 14.19 nM) was employed to develop a label-free fluorescent biosensing approach based on aptamer, graphene oxide (GO) and native fluorescence of ENR for determination of ENR residue in raw milk samples. Under optimized experimental conditions, the linear range was from 5 nM to 250 nM and LOD was calculated to be 3.7 nM, and the recovery rate was between 94.1% and 108.5%. The integration of aptamer and GO in this bioassay provides a promising way for rapid, sensitive and cost-effective detection of ENR in real samples like raw milk. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Highly sensitive and selective determination of Hg(II) based on microfluidic chip with on-line fluorescent derivatization.

    PubMed

    Peng, Guilong; Chen, Yi; Deng, Ruoyu; He, Qiang; Liu, Dun; Lu, Ying; Lin, Jin-Ming

    2018-06-07

    In this study, a convenient, sensitive, rapid and simple method was developed on microfluidic chip which was integrated with on-line complexing and laser-induced fluorescence detection. A rhodamine derivative (RD) was developed as a fluorescent chemosensor for Hg(II). It exhibited high selective recognition toward Hg(II) over other examined metal ions in water samples. Under the optimized conditions, the response was linearly proportional to the concentration of Hg(II) in the range of 0-70 μM with a detection limit of 0.031 μM. Satisfactory repeatability and reproducibility were achieved, with a relative standard deviation (RSD) of 6.62%. The established method was successfully applied for the determination of Hg(II) in environmental water samples (surface water, tap water, and waste water). Recoveries obtained for the determination of Hg(II) in spiking samples ranged from 85% to 103%. Copyright © 2018. Published by Elsevier B.V.

  16. A fluorescent aptasensor for sensitive analysis oxytetracycline based on silver nanoclusters.

    PubMed

    Hosseini, Morteza; Mehrabi, Fatemeh; Ganjali, Mohammad Reza; Norouzi, Parviz

    2016-11-01

    A fluorescent aptasensor for detection of oxytetracycline (OTC) was presented based on fluorescence quenching of DNA aptamer-templated silver nanoclusters (AgNCs). The specific DNA scaffolds with two different nucleotides fragments were used: one was enriched with a cytosine sequence fragment (C12) that could produce DNA-AgNCs via a chemical reduction method, and another was the OTC aptamer fragment that could selectively bind to the OTC antibiotic. Thus, the as-prepared AgNCs could exhibit quenched fluorescence after binding to the target OTC. The fluorescence ratio of the DNA-AgNCs was quenched in a linearly proportional manner to the concentration of the target in the range of 0.5 nM to 100 nM with a detection limit of 0.1 nM. This proposed nanobiosensor was demonstrated to be sensitive, selective, and simple, introducing a viable alternative for rapid determination of toxin OTC in honey and water samples. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices

    NASA Astrophysics Data System (ADS)

    Chen, Po-Cheng; Li, Yu-Chi; Ma, Jia-Yin; Huang, Jia-Yu; Chen, Chien-Fu; Chang, Huan-Tsung

    2016-04-01

    Polystyrene sulfonate (PSS), a strong polyelectrolyte, was used to prepare red photoluminescent PSS-penicillamine (PA) copper (Cu) nanoclusters (NC) aggregates, which displayed high selectivity and sensitivity to the detection of hydrogen sulfide (H2S). The size of the PSS-PA-Cu NC aggregates could be readily controlled from 5.5 μm to 173 nm using different concentrations of PSS, which enabled better dispersity and higher sensitivity towards H2S. PSS-PA-Cu NC aggregates provided rapid H2S detection by using the strong Cu-S interaction to quench NC photoluminescence as a sensing mechanism. As a result, a detection limit of 650 nM, which is lower than the maximum level permitted in drinking water by the World Health Organization, was achieved for the analysis of H2S in spring-water samples. Moreover, highly dispersed PSS-PA-Cu NC aggregates could be incorporated into a plate-format paper-based analytical device which enables ultra-low sample volumes (5 μL) and feature shorter analysis times (30 min) compared to conventional solution-based methods. The advantages of low reagent consumption, rapid result readout, limited equipment, and long-term storage make this platform sensitive and simple enough to use without specialized training in resource constrained settings.

  18. Mercaptosuccinic acid-coated NIR-emitting gold nanoparticles for the sensitive and selective detection of Hg2.

    PubMed

    Xiong, Xiaodong; Lai, Xiaoqi; Liu, Jinbin

    2018-01-05

    A sensitive fluorescent detection platform for Hg 2+ was constructed based on mercaptosuccinic acid (MSA) coated near-infrared (NIR)-emitting gold nanoparticles (AuNPs). The thiolated mercaptosuccinic acid was employed as both reducing agent and surface coating ligand in a one-step synthesis of NIR-emitting AuNPs (MSA-AuNPs), which exhibited stable fluorescence with the maximum wavelength at 800nm and a wide range of excitation (220-650nm) with the maxima at 413nm. The MSA coated NIR-emitting AuNPs showed a rapid fluorescence quenching toward Hg 2+ over other metal ions with a limit of detection (LOD, 3δ) as low as 4.8nM. The sensing mechanism investigation revealed that the AuNPs formed aggregation due to the "recognition" of Hg 2+ from the MSA, and the resultant strong coupling interaction between Hg 2+ and Au (I) to further quench the fluorescence of the AuNPs, which synergistically resulted in a highly sensitive and selective fluorescence response toward Hg 2+ . This proposed strategy was also demonstrated the possibility to be used for Hg 2+ detection in water samples. Copyright © 2017. Published by Elsevier B.V.

  19. Mercaptosuccinic acid-coated NIR-emitting gold nanoparticles for the sensitive and selective detection of Hg2 +

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaodong; Lai, Xiaoqi; Liu, Jinbin

    2018-01-01

    A sensitive fluorescent detection platform for Hg2 + was constructed based on mercaptosuccinic acid (MSA) coated near-infrared (NIR)-emitting gold nanoparticles (AuNPs). The thiolated mercaptosuccinic acid was employed as both reducing agent and surface coating ligand in a one-step synthesis of NIR-emitting AuNPs (MSA-AuNPs), which exhibited stable fluorescence with the maximum wavelength at 800 nm and a wide range of excitation (220-650 nm) with the maxima at 413 nm. The MSA coated NIR-emitting AuNPs showed a rapid fluorescence quenching toward Hg2 + over other metal ions with a limit of detection (LOD, 3δ) as low as 4.8 nM. The sensing mechanism investigation revealed that the AuNPs formed aggregation due to the "recognition" of Hg2 + from the MSA, and the resultant strong coupling interaction between Hg2 + and Au (I) to further quench the fluorescence of the AuNPs, which synergistically resulted in a highly sensitive and selective fluorescence response toward Hg2 +. This proposed strategy was also demonstrated the possibility to be used for Hg2 + detection in water samples.

  20. Construction of novel sensitive electrochemical sensor for electro-oxidation and determination of citalopram based on zinc oxide nanoparticles and multi-walled carbon nanotubes.

    PubMed

    Ghaedi, Hamed; Afkhami, Abbas; Madrakian, Tayyebeh; Soltani-Felehgari, Farzaneh

    2016-02-01

    A new chemically modified carbon paste electrode (CMCPE) was applied to the simple, rapid, highly selective and sensitive determination of citalopram in human serum and pharmaceutical preparations using adsorptive square wave voltammetry (ASWV). The ZnO nanoparticles and multi-walled carbon nanotubes modified CPE (ZnO-MWCNT/CPE) electrode was prepared by incorporation of the ZnO nanoparticles and multi-walled carbon nanotubes (MWCNT) in carbon paste electrode. The limit of detection and the linear range were found to be 0.005 and 0.012 to 1.54μmolL(-1) of citalopram, respectively. The effects of potentially interfering substances on the determination of this compound were investigated and found that the electrode is highly selective. The proposed CMCPE was used to the determination of citalopram in human serum, urine and pharmaceutical samples. This reveals that ZnO-MWCNT/CPE shows excellent analytical performance for the determination of citalopram in terms of very low detection limit, high sensitivity, very good repeatability and reproducibility over other methods reported in the literature. Copyright © 2015. Published by Elsevier B.V.

  1. Solution Process Synthesis of High Aspect Ratio ZnO Nanorods on Electrode Surface for Sensitive Electrochemical Detection of Uric Acid

    NASA Astrophysics Data System (ADS)

    Ahmad, Rafiq; Tripathy, Nirmalya; Ahn, Min-Sang; Hahn, Yoon-Bong

    2017-04-01

    This study demonstrates a highly stable, selective and sensitive uric acid (UA) biosensor based on high aspect ratio zinc oxide nanorods (ZNRs) vertical grown on electrode surface via a simple one-step low temperature solution route. Uricase enzyme was immobilized on the ZNRs followed by Nafion covering to fabricate UA sensing electrodes (Nafion/Uricase-ZNRs/Ag). The fabricated electrodes showed enhanced performance with attractive analytical response, such as a high sensitivity of 239.67 μA cm-2 mM-1 in wide-linear range (0.01-4.56 mM), rapid response time (~3 s), low detection limit (5 nM), and low value of apparent Michaelis-Menten constant (Kmapp, 0.025 mM). In addition, selectivity, reproducibility and long-term storage stability of biosensor was also demonstrated. These results can be attributed to the high aspect ratio of vertically grown ZNRs which provides high surface area leading to enhanced enzyme immobilization, high electrocatalytic activity, and direct electron transfer during electrochemical detection of UA. We expect that this biosensor platform will be advantageous to fabricate ultrasensitive, robust, low-cost sensing device for numerous analyte detection.

  2. [Rapid Detection of Adenovirus in Fecal Samples by Capillary Electrophoresis-laser Induced Fluorescence and Microchip Capillary Electrophoresis-laser Induced Fluorescence].

    PubMed

    Ruan, Jia; Ren, Dong-xia; Yang, Dan-ni; Long, Pin-pin; Zhao, Hong-yue; Wang, Yi-qi; Li, Yong-xin

    2015-07-01

    To establish a rapid and sensitive method based on polymerase chain reaction (PCR) combined with capillary electrophoresis-laser induced fluorescence (CE-LIF) and microchip capillary electrophoresis-laser induced fluorescence (MCE-LIF) for detecting adenoviruses in fecal samples. The DNA of adenovirus in fecal samples were extracted by the commercial kits and the conserved region of hexon gene was selected as the target gene and amplified by PCR reaction. After labeling highly sensitive nucleic acid fluorescent dye SYBR Gold and SYBR Orange respectively, PCR amplification products were separated by CE and MCE under the optimized condition and detected by LIF detector. PCR amplification products could be detected within 9 min by CE-LIF and 6 min by MCE-LIF under the optimized separation condition. The sequenced PCR product showed good specificity in comparison with the prototype sequences from NCBI. The intraday and inter-day relative standard deviation (RSD) of the size (bp) of the target DNA was in the range of 1.14%-1.34% and 1.27%- 2.76%, respectively, for CE-LIF, and 1.18%-1.48% and 2.85%-4.06%, respectively, for MCE-LIF. The detection limits was 2.33 x 10(2) copies/mL for CE-LIF and 2.33 x 10(3) copies/mL for MCE-LIF. The two proposed methods were applied to detect fecal samples, both showing high accuracy. The two proposed methods of PCR-CE-LIF and PCR-MCE-LIF can detect adenovirus in fecal samples rapidly, sensitively and specifically.

  3. Development of recombinase polymerase amplification assays for the rapid detection of peste des petits ruminants virus.

    PubMed

    Zhang, Yongning; Wang, Jianchang; Zhang, Zhou; Mei, Lin; Wang, Jinfeng; Wu, Shaoqiang; Lin, Xiangmei

    2018-04-01

    Peste des petits ruminants (PPR) is a severe infectious disease of small ruminants caused by PPR virus (PPRV). Rapid and sensitive detection of PPRV is critical for controlling PPR. This report describes the development and evaluation of a conventional reverse transcription recombinase polymerase amplification (RT-RPA) assay and a real-time RT-RPA assay, targeting the PPRV N gene. Sensitivity analysis revealed that the conventional RT-RPA assay could detect 852 copies of standard PPRV RNA per reaction at 95% probability within 20 min at 41 °C, and the real-time RT-RPA assay could detect 103 copies of RNA molecules per reaction at 95% probability. Specificity analysis showed that both assays have no cross-reactivity with nucleic acid templates prepared from other selected viruses or common pathogens. Clinical evaluation using 162 ovine and hircine serum and nasal swab samples showed that the performance of both the real-time RT-RPA assay and the conventional RT-RPA assay were comparable to that of real-time RT-PCR. The overall agreements between real-time RT-PCR and real-time RT-RPA, and conventional RT-RPA were 99.4% (161/162) and 98.8% (160/162), respectively. The R 2 value of real-time RT-RPA and real-time RT-PCR was 0.900 by linear regression analysis. Our results suggest that both RT-RPA assays have a potential application in the rapid, sensitive and specific detection of PPRV. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Highly selective visual monitoring of hazardous fluoride ion in aqueous media using thiobarbituric-capped gold nanoparticles.

    PubMed

    Boken, Jyoti; Thatai, Sheenam; Khurana, Parul; Prasad, Surendra; Kumar, Dinesh

    2015-01-01

    The rapid, selective and sensitive measurement and monitoring of hazardous materials as analytes are the central themes in the development of any successful analytical technique. With this aim, we have synthesized the thiobarbituric-capped gold nanoparticles (TBA-capped Au NPs) involving chemical reduction of HAuCl4 using 2-thiobarbituric acid (TBA) as a reducing and capping agent. The morphology of the TBA-capped Au NPs was confirmed using transmission electron microscope images. For the first time this article reports that the developed TAB-capped Au NPs displays selective, ultrafast and sensitive colorimetric detection of fluoride ion in aqueous samples. The detection of fluoride ion was confirmed by the disappearance of the localized surface plasmon resonance (LSPR) band at 554 nm using UV-vis spectroscopy. The interaction of F(-) with TBA-capped Au NPs in aqueous solution has also been confirmed by Raman and FTIR spectroscopy. One of the most exciting accomplishments is the visual detection limit for fluoride ion has been found to be 10 mM at commonly acceptable water pH range 7-8. The whole detection procedure takes not more than 40s with excellent selectivity providing sample throughput of more than 60 per hour. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Direct expression and validation of phage-selected peptide variants in mammalian cells.

    PubMed

    Quinlan, Brian D; Gardner, Matthew R; Joshi, Vinita R; Chiang, Jessica J; Farzan, Michael

    2013-06-28

    Phage display is a key technology for the identification and maturation of high affinity peptides, antibodies, and other proteins. However, limitations of bacterial expression restrict the range and sensitivity of assays that can be used to evaluate phage-selected variants. To address this problem, selected genes are typically transferred to mammalian expression vectors, a major rate-limiting step in the iterative improvement of peptides and proteins. Here we describe a system that combines phage display and efficient mammalian expression in a single vector, pDQ1. This system permits immediate expression of phage-selected genes as IgG1-Fc fusions in mammalian cells, facilitating the rapid, sensitive characterization of a large number of library outputs for their biochemical and functional properties. We demonstrate the utility of this system by improving the ability of a CD4-mimetic peptide to bind the HIV-1 envelope glycoprotein and neutralize HIV-1 entry. We further improved the potency of the resulting peptide, CD4mim6, by limiting its ability to induce the CD4-bound conformation of the envelope glycoprotein. Thus, CD4mim6 and its variants can be used to investigate the properties of the HIV-1 envelope glycoprotein, and pDQ1 can accelerate the discovery of new peptides and proteins through phage display.

  6. Improvement of the antiproliferative effect of rapamycin on tumor cell lines by poly (monomethylitaconate)-based pH-sensitive, plasma stable liposomes.

    PubMed

    Ghanbarzadeh, Saeed; Arami, Sanam; Pourmoazzen, Zhaleh; Khorrami, Arash

    2014-03-01

    pH-responsive polymers produce liposomes with pH-sensitive property which can release their encapsulated drug under mild acidic conditions found inside the cellular endosomes, inflammatory tissues and cancerous cells. The aim of this study was preparing pH-sensitive and plasma stable liposomes in order to enhance the selectivity and antiproliferative effect of Rapamycin. In the present study we used PEG-poly (monomethylitaconate)-CholC6 (PEG-PMMI-CholC6) copolymer and Oleic acid (OA) to induce pH-sensitive property in Rapamycin liposomes. pH-sensitive liposomal formulations bearing copolymer PEG-PMMI-CholC6 and OA were characterized in regard to physicochemical stability, pH-responsiveness and stability in human plasma. The ability of pH-sensitive liposomes in enhancing the cytotoxicity of Rapamycin was evaluated in vitro by using colon cancer cell line (HT-29) and compared with its cytotoxicity on human umbilical vein endothelial cell (HUVEC) line. Both formulations were found to release their contents under mild acidic conditions rapidly. However, unlike OA-based liposomes, the PEG-PMMI-CholC6 bearing liposomes preserved their pH-sensitivity in plasma. Both types of pH-sensitive Rapamycin-loaded liposomes exhibited high physicochemical stability and could deliver antiproliferative agent into HT-29 cells much more efficiently in comparison with conventional liposomes. Conversely, the antiproliferative effect of pH-sensitive liposomes on HUVEC cell line was less than conventional liposomes. This study showed that both OA and PEG-PMMI-CholC6-based vesicles could submit pH-sensitive property, however, only PEG-PMMI-CholC6-based liposomes could preserve pH-sensitive property after incubation in plasma. As a result pH-sensitive PEG-PMMI-CholC6-based liposomal formulation can improve the selectivity, stability and antiproliferative effect of Rapamycin. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Structure-Function Modeling of Optical Coherence Tomography and Standard Automated Perimetry in the Retina of Patients with Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Smith, Travis B.; Parker, Maria; Steinkamp, Peter N.; Weleber, Richard G.; Smith, Ning; Wilson, David J.

    2016-01-01

    Purpose To assess relationships between structural and functional biomarkers, including new topographic measures of visual field sensitivity, in patients with autosomal dominant retinitis pigmentosa. Methods Spectral domain optical coherence tomography line scans and hill of vision (HOV) sensitivity surfaces from full-field standard automated perimetry were semi-automatically aligned for 60 eyes of 35 patients. Structural biomarkers were extracted from outer retina b-scans along horizontal and vertical midlines. Functional biomarkers were extracted from local sensitivity profiles along the b-scans and from the full visual field. These included topographic measures of functional transition such as the contour of most rapid sensitivity decline around the HOV, herein called HOV slope for convenience. Biomarker relationships were assessed pairwise by coefficients of determination (R2) from mixed-effects analysis with automatic model selection. Results Structure-function relationships were accurately modeled (conditional R2>0.8 in most cases). The best-fit relationship models and correlation patterns for horizontally oriented biomarkers were different than vertically oriented ones. The structural biomarker with the largest number of significant functional correlates was the ellipsoid zone (EZ) width, followed by the total photoreceptor layer thickness. The strongest correlation observed was between EZ width and HOV slope distance (marginal R2 = 0.85, p<10−10). The mean sensitivity defect at the EZ edge was 7.6 dB. Among all functional biomarkers, the HOV slope mean value, HOV slope mean distance, and maximum sensitivity along the b-scan had the largest number of significant structural correlates. Conclusions Topographic slope metrics show promise as functional biomarkers relevant to the transition zone. EZ width is strongly associated with the location of most rapid HOV decline. PMID:26845445

  8. Structure-Function Modeling of Optical Coherence Tomography and Standard Automated Perimetry in the Retina of Patients with Autosomal Dominant Retinitis Pigmentosa.

    PubMed

    Smith, Travis B; Parker, Maria; Steinkamp, Peter N; Weleber, Richard G; Smith, Ning; Wilson, David J

    2016-01-01

    To assess relationships between structural and functional biomarkers, including new topographic measures of visual field sensitivity, in patients with autosomal dominant retinitis pigmentosa. Spectral domain optical coherence tomography line scans and hill of vision (HOV) sensitivity surfaces from full-field standard automated perimetry were semi-automatically aligned for 60 eyes of 35 patients. Structural biomarkers were extracted from outer retina b-scans along horizontal and vertical midlines. Functional biomarkers were extracted from local sensitivity profiles along the b-scans and from the full visual field. These included topographic measures of functional transition such as the contour of most rapid sensitivity decline around the HOV, herein called HOV slope for convenience. Biomarker relationships were assessed pairwise by coefficients of determination (R2) from mixed-effects analysis with automatic model selection. Structure-function relationships were accurately modeled (conditional R(2)>0.8 in most cases). The best-fit relationship models and correlation patterns for horizontally oriented biomarkers were different than vertically oriented ones. The structural biomarker with the largest number of significant functional correlates was the ellipsoid zone (EZ) width, followed by the total photoreceptor layer thickness. The strongest correlation observed was between EZ width and HOV slope distance (marginal R(2) = 0.85, p<10(-10)). The mean sensitivity defect at the EZ edge was 7.6 dB. Among all functional biomarkers, the HOV slope mean value, HOV slope mean distance, and maximum sensitivity along the b-scan had the largest number of significant structural correlates. Topographic slope metrics show promise as functional biomarkers relevant to the transition zone. EZ width is strongly associated with the location of most rapid HOV decline.

  9. Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites.

    PubMed

    Labroo, Pratima; Cui, Yue

    2014-02-27

    The development of a miniaturized and low-cost platform for the highly sensitive, selective and rapid detection of multiplexed metabolites is of great interest for healthcare, pharmaceuticals, food science, and environmental monitoring. Graphene is a delicate single-layer, two-dimensional network of carbon atoms with extraordinary electrical sensing capability. Microfluidic paper with printing technique is a low cost matrix. Here, we demonstrated the development of graphene-ink based biosensor arrays on a microfluidic paper for the multiplexed detection of different metabolites, such as glucose, lactate, xanthine and cholesterol. Our results show that the graphene biosensor arrays can detect multiple metabolites on a microfluidic paper sensitively, rapidly and simultaneously. The device exhibits a fast measuring time of less than 2 min, a low detection limit of 0.3 μM, and a dynamic detection range of 0.3-15 μM. The process is simple and inexpensive to operate and requires a low consumption of sample volume. We anticipate that these results could open exciting opportunities for a variety of applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. New diagnostic methods for pneumonia in the ICU.

    PubMed

    Douglas, Ivor S

    2016-04-01

    Pneumonia leading to severe sepsis and critical illness including respiratory failure remains a common and therapeutically challenging diagnosis. Current clinical approaches to surveillance, early detection, and conventional culture-based microbiology are inadequate for optimal targeted antibiotic treatment and stewardship. Efforts to enhance diagnosis of community-acquired and health care-acquired pneumonia, including ventilator-associated pneumonia (VAP), are the focus of recent studies reviewed here. Newer surveillance definitions are sensitive for pneumonia in the ICU including VAP but consistently underdetect patients that are clinically shown to have bacterial VAP based on clinical diagnostic criteria and response to antibiotic treatment. Routinely measured plasma biomarkers, including procalcitonin and C-reactive protein, lack sufficient precision and predictive accuracy to inform diagnosis. Novel rapid microbiological diagnostics, including nucleic-acid amplification, mass spectrometry, and fluorescence microscopy-based technologies are promising approaches for the future. Exhaled breath biomarkers, including measurement of volatile organic compounds, represent a future approach. The integration of novel diagnostics for rapid microbial identification, resistance phenotyping, and antibiotic sensitivity testing into usual care practice could significantly transform the care of patients and potentially inform significantly improved targeted antimicrobial selection, de-escalation, and stewardship.

  11. High-throughput label-free microcontact printing graphene-based biosensor for valley fever.

    PubMed

    Tsai, Shih-Ming; Goshia, Tyler; Chen, Yen-Chang; Kagiri, Agnes; Sibal, Angelo; Chiu, Meng-Hsuen; Gadre, Anand; Tung, Vincent; Chin, Wei-Chun

    2018-06-18

    The highly prevalent and virulent disease in the Western Hemisphere Coccidioidomycosis, also known as Valley Fever, can cause serious illness such as severe pneumonia with respiratory failure. It can also take on a disseminated form where the infection spreads throughout the body. Thus, a serious impetus exists to develop effective detection of the disease that can also operate in a rapid and high-throughput fashion. Here, we report the assembly of a highly sensitive biosensor using reduced graphene oxide (rGO) with Coccidioides(cocci) antibodies as the target analytes. The facile design made possible by the scalable microcontact printing (μCP) surface patterning technique which enables rapid, ultrasensitive detection. It provides a wide linear range and sub picomolar (2.5 pg/ml) detection, while also delivering high selectivity and reproducibility. This work demonstrates an important advancement in the development of a sensitive label-free rGO biosensor for Coccidioidomycosis detection. This result also provides the potential application of direct pathogen diagnosis for the future biosensor development. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A colorimetric and fluorescent probe for detecting intracellular biothiols.

    PubMed

    Chen, Chunyang; Liu, Wei; Xu, Cong; Liu, Weisheng

    2016-11-15

    A new rapid and highly sensitive coumarin-based probe (probe 1) has been designed and synthesized for detecting intracellular thiols. Probe 1 was prepared by a 4-step procedure as a latent fluorescence probe to achieve high sensitivity and fluorescence turn-on response toward cysteine and homocysteine over GSH and other various natural amino acids under physiological conditions. Owing to specific cyclization between thiols and aldehyde group, probe 1 displayed a highly selectivity toward cysteine and homocysteine. Above all, probe 1 was successfully used for fluorescence imaging of biothiols in Hela cells, and quantitative determination had been achieved within a certain range. Then specific fluorescence imaging of mice organ tissues was obtained for proving the permeability of probe 1. Simultaneously, the viability was measured to be more than 80%, which shows probe 1 can be a rapid and biocompatible probe for biothiols in cells. Furthermore, the measurement of thiols detection in 5 kinds of animal serum showed that probe 1 can be used in determination of biothiols in blood. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Comparison of rapid diagnostic tests for the detection of Plasmodium vivax malaria in South Korea.

    PubMed

    Kim, Jung-Yeon; Ji, So-Young; Goo, Youn-Kyoung; Na, Byoung-Kuk; Pyo, Hyo-Joo; Lee, Han-Na; Lee, Juyoung; Kim, Nam Hee; von Seidlein, Lorenz; Cheng, Qin; Cho, Shin-Hyung; Lee, Won-Ja

    2013-01-01

    South Korea is one of many countries with endemic Plasmodium vivax malaria. Here we report the evaluation of four rapid diagnostic tests (RDTs) for diagnosis of this disease. A total of 253 subjects were enrolled in the study. The sensitivities, specificities and agreement frequencies were estimated by comparing the four RDTs against the standard of nested-PCR and microscopic examination. The CareStart(TM) and SD Bioline had higher test sensitivities (99.4 and 98.8%, respectively) compared with the NanoSign and Asan Easy tests (93.0 and 94.7%, respectively). The CareStart(TM) and SD Bioline tests could detect P. vivax in samples with parasite densities <150/μl, which was a slightly better performance than the other two RDTs. The quantitative accuracy of the four RDTs was also estimated by comparing results with P. vivax counts from blood samples. Lower test price would result in increased use of these RDTs in the field. The results of this study contribute valuable information that will aid in the selection of a diagnostic method for the detection of malaria.

  14. Simple and rapid silver nanoparticles based antioxidant capacity assays: Reactivity study for phenolic compounds.

    PubMed

    Della Pelle, Flavio; Scroccarello, Annalisa; Sergi, Manuel; Mascini, Marcello; Del Carlo, Michele; Compagnone, Dario

    2018-08-01

    A single-step, rapid (10 min), sensitive silver nanoparticles (AgNPs) based spectrophotometric method for antioxidant capacity (AOC) assay has been developed. The assay is based on the ability of natural polyphenols to reduce Ag(I) and stabilize the produced AgNPs(0) at room temperature. Localized surface plasmon resonance (LSPR) of AgNPs at ≈420 nm is then measured. Using different conditions of pH (8.4) and temperature (45 °C) a further assay based on the production of AgNPs with selectivity for flavonols was also developed. The reactivity of the two AgNPs based assays vs. 15 polyphenols belonging to different chemical classes and 9 different samples has been studied and compared with ABTS, Folin and AuNPs based methods for AOC. The proposed assays had good reproducibility (RSD ≤ 13) and are simple, sensitive and cost effective. Moreover, used in conjunction with the classical AOC assays, can improve the information on the polyphenolic pool of food samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Comparison of Rapid Diagnostic Tests for the Detection of Plasmodium vivax Malaria in South Korea

    PubMed Central

    Goo, Youn-Kyoung; Na, Byoung-Kuk; Pyo, Hyo-Joo; Lee, Han-Na; Lee, Juyoung; Kim, Nam Hee; von Seidlein, Lorenz; Cheng, Qin; Cho, Shin-Hyung; Lee, Won-Ja

    2013-01-01

    South Korea is one of many countries with endemic Plasmodium vivax malaria. Here we report the evaluation of four rapid diagnostic tests (RDTs) for diagnosis of this disease. A total of 253 subjects were enrolled in the study. The sensitivities, specificities and agreement frequencies were estimated by comparing the four RDTs against the standard of nested-PCR and microscopic examination. The CareStartTM and SD Bioline had higher test sensitivities (99.4 and 98.8%, respectively) compared with the NanoSign and Asan Easy tests (93.0 and 94.7%, respectively). The CareStartTM and SD Bioline tests could detect P. vivax in samples with parasite densities <150/μl, which was a slightly better performance than the other two RDTs. The quantitative accuracy of the four RDTs was also estimated by comparing results with P. vivax counts from blood samples. Lower test price would result in increased use of these RDTs in the field. The results of this study contribute valuable information that will aid in the selection of a diagnostic method for the detection of malaria. PMID:23667710

  16. Continuous-Flow Detector for Rapid Pathogen Identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Louise M.; Skulan, Andrew J.; Singh, Anup K.

    2006-09-01

    This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit frommore » the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).« less

  17. A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNA walkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction.

    PubMed

    Zhang, Jing; Wang, Liang-Liang; Hou, Mei-Feng; Xia, Yao-Kun; He, Wen-Hui; Yan, An; Weng, Yun-Ping; Zeng, Lu-Peng; Chen, Jing-Hua

    2018-04-15

    Sensitive and selective detection of microRNAs (miRNAs) in cancer cells derived exosomes have attracted rapidly growing interest owing to their potential in diagnostic and prognostic applications. Here, we design a ratiometric electrochemical biosensor based on bipedal DNA walkers for the attomolar detection of exosomal miR-21. In the presence of miR-21, DNA walkers are activated to walk continuously along DNA tracks, resulting in conformational changes as well as considerable increases of the signal ratio produced by target-respond and target-independent reporters. With the signal cascade amplification of DNA walkers, the biosensor exhibits ultrahigh sensitivity with the limit of detection (LOD) down to 67 aM. Furthermore, owing to the background-correcting function of target-independent reporters termed as reference reporters, the biosensor is robust and stable enough to be applied in the detection of exosomal miR-21 extracted from breast cancer cell lines and serums. In addition, because locked nucleic acid (LNA) modified toehold mediate strand displacement reaction (TMSDR) has extraordinary discriminative ability, the biosensor displays excellent selectivity even against the single-base-mismatched target. It is worth mentioning that our sensor is regenerative and stable for at least 5 cycles without diminution in sensitivity. In brief, the high sensitivity, selectivity and reproducibility, together with cheap, make the proposed biosensor a promising approach for exosomal miRNAs detection, in conjunction with early point-of-care testing (POCT) of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation.

    PubMed

    Zhou, Yaoyu; Tang, Lin; Zeng, Guangming; Chen, Jun; Cai, Ye; Zhang, Yi; Yang, Guide; Liu, Yuanyuan; Zhang, Chen; Tang, Wangwang

    2014-11-15

    Herein, we reported here a promising biosensor by taking advantage of the unique ordered mesoporous carbon nitride material (MCN) to convert the recognition information into a detectable signal with enzyme firstly, which could realize the sensitive, especially, selective detection of catechol and phenol in compost bioremediation samples. The mechanism including the MCN based on electrochemical, biosensor assembly, enzyme immobilization, and enzyme kinetics (elucidating the lower detection limit, different linear range and sensitivity) was discussed in detail. Under optimal conditions, GCE/MCN/Tyr biosensor was evaluated by chronoamperometry measurements and the reduction current of phenol and catechol was proportional to their concentration in the range of 5.00 × 10(-8)-9.50 × 10(-6)M and 5.00 × 10(-8)-1.25 × 10(-5)M with a correlation coefficient of 0.9991 and 0.9881, respectively. The detection limits of catechol and phenol were 10.24 nM and 15.00 nM (S/N=3), respectively. Besides, the data obtained from interference experiments indicated that the biosensor had good specificity. All the results showed that this material is suitable for load enzyme and applied to the biosensor due to the proposed biosensor exhibited improved analytical performances in terms of the detection limit and specificity, provided a powerful tool for rapid, sensitive, especially, selective monitoring of catechol and phenol simultaneously. Moreover, the obtained results may open the way to other MCN-enzyme applications in the environmental field. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. CCI-007, a novel small molecule with cytotoxic activity against infant leukemia with MLL rearrangements

    PubMed Central

    Middlemiss, Shiloh M.C.; Wen, Victoria W.; Clifton, Molly; Kwek, Alan; Liu, Bing; Mayoh, Chelsea; Bongers, Angelika; Karsa, Mawar; Pan, Sukey; Cruikshank, Sarah; Scandlyn, Marissa; Hoang, Wendi; Imamura, Toshihiko; Kees, Ursula R.; Gudkov, Andrei V.; Chernova, Olga B.

    2016-01-01

    There is an urgent need for the development of less toxic, more selective and targeted therapies for infants with leukemia characterized by translocation of the mixed lineage leukemia (MLL) gene. In this study, we performed a cell-based small molecule library screen on an infant MLL-rearranged (MLL-r) cell line, PER-485, in order to identify selective inhibitors for MLL-r leukemia. After screening initial hits for a cytotoxic effect against a panel of 30 cell lines including MLL-r and MLL wild-type (MLL-wt) leukemia, solid tumours and control cells, small molecule CCI-007 was identified as a compound that selectively and significantly decreased the viability of a subset of MLL-r and related leukemia cell lines with CALM-AF10 and SET-NUP214 translocation. CCI-007 induced a rapid caspase-dependent apoptosis with mitochondrial depolarization within twenty-four hours of treatment. CCI-007 altered the characteristic MLL-r gene expression signature in sensitive cells with downregulation of the expression of HOXA9, MEIS1, CMYC and BCL2, important drivers in MLL-r leukemia, within a few hours of treatment. MLL-r leukemia cells that were resistant to the compound were characterised by significantly higher baseline gene expression levels of MEIS1 and BCL2 in comparison to CCI-007 sensitive MLL-r leukemia cells. In conclusion, we have identified CCI-007 as a novel small molecule that displays rapid toxicity towards a subset of MLL-r, CALM-AF10 and SET-NUP214 leukemia cell lines. Our findings suggest an important new avenue in the development of targeted therapies for these deadly diseases and indicate that different therapeutic strategies might be needed for different subtypes of MLL-r leukemia. PMID:27317766

  20. Highly Sensitive, Label-Free Detection of 2,4-Dichlorophenoxyacetic Acid Using an Optofluidic Chip.

    PubMed

    Feng, Xueling; Zhang, Gong; Chin, Lip Ket; Liu, Ai Qun; Liedberg, Bo

    2017-07-28

    A highly sensitive approach for rapid and label-free detection of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) using an optofluidic chip is demonstrated. The optofluidic chip is prepared by covalent immobilization of 2,4-D-bovine serum albumin (2,4-D-BSA) conjugate to an integrated microring resonator. Subsequent detection of 2,4-D carried out in a competitive immunoreaction format enables selective detection of 2,4-D in different types of water samples, including bottled, tap, and lake water, at a limit of detection (LOD) of 4.5 pg/mL and in a quantitative range of 15-10 5 pg/mL. The microring resonator-based optofluidic chip is reusable with ultrahigh sensitivity that offers real-time and on-site detection of low-molecular-weight targets for potential applications in food safety and environmental monitoring.

  1. The Verriest Lecture: Short-wave-sensitive cone pathways across the life span

    PubMed Central

    Werner, John S.

    2017-01-01

    Structurally and functionally, the short-wave-sensitive (S) cone pathways are thought to decline more rapidly with normal aging than the middle- and long-wave-sensitive cone pathways. This would explain the celebrated results by Verriest and others demonstrating that the largest age-related color discrimination losses occur for stimuli on a tritan axis. Here, we challenge convention, arguing from psychophysical data that selective S-cone pathway losses do not cause declines in color discrimination. We show substantial declines in chromatic detection and discrimination, as well as in temporal and spatial vision tasks, that are mediated by S-cone pathways. These functional losses are not, however, unique to S-cone pathways. Finally, despite reduced photon capture by S cones, their postreceptoral pathways provide robust signals for the visual system to renormalize itself to maintain nearly stable color perception across the life span. PMID:26974914

  2. Therapeutic Drug Monitoring of Phenytoin by Simple, Rapid, Accurate, Highly Sensitive and Novel Method and Its Clinical Applications.

    PubMed

    Shaikh, Abdul S; Guo, Ruichen

    2017-01-01

    Phenytoin has very challenging pharmacokinetic properties. To prevent its toxicity and ensure efficacy, continuous therapeutic monitoring is required. It is hard to get a simple, accurate, rapid, easily available, economical and highly sensitive assay in one method for therapeutic monitoring of phenytoin. The present study is directed towards establishing and validating a simpler, rapid, an accurate, highly sensitive, novel and environment friendly liquid chromatography/mass spectrometry (LC/MS) method for offering rapid and reliable TDM results of phenytoin in epileptic patients to physicians and clinicians for making immediate and rational decision. 27 epileptics patients with uncontrolled seizures or suspected of non-compliance or toxicity of phenytoin were selected and advised for TDM of phenytoin by neurologists of Qilu Hospital Jinan, China. The LC/MS assay was used for performing of therapeutic monitoring of phenytoin. The Agilent 1100 LC/MS system was used for TDM. The mixture of Ammonium acetate 5mM: Methanol at (35: 65 v/v) was used for the composition of mobile phase. The Diamonsil C18 (150mm×4.6mm, 5μm) column was used for the extraction of analytes in plasma. The samples were prepared with one step simple protein precipitation method. The technique was validated with the guidelines of International Conference on Harmonisation (ICH). The calibration curve demonstrated decent linearity within (0.2-20 µg/mL) concentration range with linearity equation, y= 0.0667855 x +0.00241785 and correlation coefficient (R2) of 0.99928. The specificity, recovery, linearity, accuracy, precision and stability results were within the accepted limits. The concentration of 0.2 µg/mL was observed as lower limit of quantitation (LLOQ), which is 12.5 times lower than the currently available enzyme-multiplied immunoassay technique (EMIT) for measurement of phenytoin in epilepsy patients. A rapid, simple, economical, precise, highly sensitive and novel LC/MS assay has been established, validated and applied successfully in TDM of 27 epileptics patients. It was alarmingly found that TDM results of all these patients were out of safe range except two patients. However, it needs further evaluation. Besides TDM, the stated method can also be applied in bioequivalence, pharmacokinetics, toxicokinetics and pharmacovigilance studies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Rapid and Highly Sensitive Detection of Dopamine Using Conjugated Oxaborole-Based Polymer and Glycopolymer Systems.

    PubMed

    Jiang, Keren; Wang, Yinan; Thakur, Garima; Kotsuchibashi, Yohei; Naicker, Selvaraj; Narain, Ravin; Thundat, Thomas

    2017-05-10

    A conjugated polymer interface consisting of an oxaborole containing polymer and a glycopolymer was used for achieving very high selectivity in dopamine (DA) detection. The optimum binding affinity between the polymers promotes the selectivity to DA through a displacement mechanism while remaining unaffected by other structurally related analogs and saccharide derivatives. Real-time detection of DA with very high selectivity and sensitivity has been demonstrated by immobilizing the polymer conjugates on surface plasmon resonance (SPR) and microcantilever (MCL) sensor platforms. Using the conjugated polymer sensing layer, the SPR biosensor was capable of detecting DA in the concentration range of 1 × 10 -9 to 1 × 10 -4 mol L -1 , whereas the MCL sensor showed a limit of detection (LOD) of 5 × 10 -11 mol L -1 . We find that the sensing mechanism is based on DA-induced reversible swelling of the conjugated polymer layer and this allows regeneration and reuse of the sensor multiple times. Also, we conclude that SPR is a suitable sensor platform for DA in-line detection at clinical level considering the detection time and stability, whereas MCL can achieve a much lower LOD.

  4. A simple and rapid creatinine sensing via DLS selectivity, using calix[4]arene thiol functionalized gold nanoparticles.

    PubMed

    Sutariya, Pinkesh G; Pandya, Alok; Lodha, Anand; Menon, Shobhana K

    2016-01-15

    A new, simple, ultra-sensitive and selective approach has been reported for the "on spot" colorimetric detection of creatinine based on calix[4]arene functionalized gold nanoparticles (AuNPs) with excellent discrimination in the presence of other biomolecules. The lower detection limit of the method is 2.16nM. The gold nanoparticles and p-tert-butylcalix[4]arene were synthesized by microwave assisted method. Specifically, in our study, we used dynamic light scattering (DLS) which is a powerful method for the determination of small changes in particle size, improved selectivity and sensitivity of the creatinine detection system over colorimetric method. The nanoassembly is characterized by Transmission electron microscopy (TEM), DLS, UV-vis and ESI-MS spectroscopy, which demonstrates the binding affinity due its ability of hydrogen bonding and electrostatic interaction between -NH group of creatinine and pSDSC4. It exhibits fast response time (<60s) to creatinine and has long shelf-life (>5 weeks). The developed pSDSC4-AuNPs based creatinine biosensor will be established as simple, reliable and accurate tool for the determination of creatinine in human urine samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Nosocomial Candidiasis: Antifungal Stewardship and the Importance of Rapid Diagnosis.

    PubMed

    Pfaller, Michael A; Castanheira, Mariana

    2016-01-01

    Candidemia and other forms of candidiasis are associated with considerable excess mortality and costs. Despite the addition of several new antifungal agents with improved spectrum and potency, the frequency of Candida infection and associated mortality have not decreased in the past two decades. The lack of rapid and sensitive diagnostic tests has led to considerable overuse of antifungal agents resulting in increased costs, selection pressure for resistance, unnecessary drug toxicity, and adverse drug interactions. Both the lack of timely diagnostic tests and emergence of antifungal resistance pose considerable problems for antifungal stewardship. Whereas antifungal stewardship with a focus on nosocomial candidiasis should be able to improve the administration of antifungal therapy in terms of drug selection, proper dose and duration, source control and de-escalation therapy, an important parameter, timeliness of antifungal therapy, remains a victim of slow and insensitive diagnostic tests. Fortunately, new proteomic and molecular diagnostic tools are improving the time to species identification and detection. In this review we will describe the potential impact that rapid diagnostic testing and antifungal stewardship can have on the management of nosocomial candidiasis. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Rapid Detection of Urinary Tract Infections via Bacterial Nuclease Activity.

    PubMed

    Flenker, Katie S; Burghardt, Elliot L; Dutta, Nirmal; Burns, William J; Grover, Julia M; Kenkel, Elizabeth J; Weaver, Tyler M; Mills, James; Kim, Hyeon; Huang, Lingyan; Owczarzy, Richard; Musselman, Catherine A; Behlke, Mark A; Ford, Bradley; McNamara, James O

    2017-06-07

    Rapid and accurate bacterial detection methods are needed for clinical diagnostic, water, and food testing applications. The wide diversity of bacterial nucleases provides a rich source of enzymes that could be exploited as signal amplifying biomarkers to enable rapid, selective detection of bacterial species. With the exception of the use of micrococcal nuclease activity to detect Staphylococcus aureus, rapid methods that detect bacterial pathogens via their nuclease activities have not been developed. Here, we identify endonuclease I as a robust biomarker for E. coli and develop a rapid ultrasensitive assay that detects its activity. Comparison of nuclease activities of wild-type and nuclease-knockout E. coli clones revealed that endonuclease I is the predominant DNase in E. coli lysates. Endonuclease I is detectable by immunoblot and activity assays in uropathogenic E. coli strains. A rapid assay that detects endonuclease I activity in patient urine with an oligonucleotide probe exhibited substantially higher sensitivity for urinary tract infections than that reported for rapid urinalysis methods. The 3 hr turnaround time is much shorter than that of culture-based methods, thereby providing a means for expedited administration of appropriate antimicrobial therapy. We suggest this approach could address various unmet needs for rapid detection of E. coli. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  7. Ebolavirus Nucleoprotein C-Termini Potently Attract Single Domain Antibodies Enabling Monoclonal Affinity Reagent Sandwich Assay (MARSA) Formulation

    PubMed Central

    Sherwood, Laura J.; Hayhurst, Andrew

    2013-01-01

    Background Antigen detection assays can play an important part in environmental surveillance and diagnostics for emerging threats. We are interested in accelerating assay formulation; targeting the agents themselves to bypass requirements for a priori genome information or surrogates. Previously, using in vitro affinity reagent selection on Marburg virus we rapidly established monoclonal affinity reagent sandwich assay (MARSA) where one recombinant antibody clone was both captor and tracer for polyvalent nucleoprotein (NP). Hypothesizing that the closely related Ebolavirus genus may share the same Achilles' heel, we redirected the scheme to see whether similar assays could be delivered and began to explore their mechanism. Methods and Findings In parallel we selected panels of llama single domain antibodies (sdAb) from a semi-synthetic library against Zaire, Sudan, Ivory Coast, and Reston Ebola viruses. Each could perform as both captor and tracer in the same antigen sandwich capture assay thereby forming MARSAs. All sdAb were specific for NP and those tested required the C-terminal domain for recognition. Several clones were cross-reactive, indicating epitope conservation across the Ebolavirus genus. Analysis of two immune shark sdAb revealed they also targeted the C-terminal domain, and could be similarly employed, yet were less sensitive than a comparable llama sdAb despite stemming from immune selections. Conclusions The C-terminal domain of Ebolavirus NP is a strong attractant for antibodies and enables sensitive sandwich immunoassays to be rapidly generated using a single antibody clone. The polyvalent nature of nucleocapsid borne NP and display of the C-terminal region likely serves as a bountiful affinity sink during selections, and a highly avid target for subsequent immunoassay capture. Combined with the high degree of amino acid conservation through 37 years and across wide geographies, this domain makes an ideal handle for monoclonal affinity reagent driven antigen sandwich assays for the Ebolavirus genus. PMID:23577211

  8. Highly sensitive and selective determination of redox states of coenzymes Q9 and Q10 in mice tissues: Application of orbitrap mass spectrometry.

    PubMed

    Pandey, Renu; Riley, Christopher L; Mills, Edward M; Tiziani, Stefano

    2018-06-29

    Coenzyme Q (CoQ) is a redox active molecule that plays a fundamental role in mitochondrial energy generation and functions as a potent endogenous antioxidant. Redox ratio of CoQ has been suggested as a good marker of mitochondrial dysfunction and oxidative stress. Nevertheless, simultaneous measurement of redox states of CoQ is challenging owing to its hydrophobicity and instability of the reduced form. In order to improve the analytical methodology, paying special attention to this instability, we developed a highly sensitive and selective high-resolution/accurate-mass (HR/AM) UHPLC-MS/MS method for the rapid determination of redox states of CoQ 9 and CoQ 10 by ultra-performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometry. CoQs were extracted using hexane with the addition of butylated hydroxytoluene to limit oxidation during sample preparation. Chromatographic separation of the analytes was achieved on a Kinetex C 18 column with the isocratic elution of 5 mM ammonium formate in 2-propanol/methanol (60:40) within 4 min. A full MS/all ion fragmentation (AIF) acquisition mode with mass accuracy < 5 ppm was used for detection and determination of redox states of CoQ 9 and CoQ 10 in healthy mice tissues using reduced and oxidized CoQ 4 as internal standards. The validated method showed good linearity (r 2  ≥ 0.9991), intraday, inter-day precision (CVs ≤ 11.9%) and accuracy (RE ≤±15.2%). In contrast to existing methods, the current method offers enhanced sensitivity (up to 52 fold) with LOD and LOQ ranged from 0.01 to 0.49 ng mL -1 and 0.04-1.48 ng mL -1 , respectively. Moreover, we evaluated various diluents to investigate bench top stability (at 4 °C) of targeted analytes in tissue samples during LC-MS assay up to 24 h. Ethanol was determined to be an optimum diluent without any significant oxidation of reduced CoQ up to 24 h. The developed method offers a rapid, highly sensitive and selective strategy for the measurement of redox states of CoQs in clinical studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Disease-Related Detection with Electrochemical Biosensors: A Review

    PubMed Central

    Huang, Ying; Xu, Jin; Liu, Junjie; Wang, Xiangyang; Chen, Bin

    2017-01-01

    Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed. PMID:29039742

  10. Application of Fourier transform near-infrared spectroscopy combined with high-performance liquid chromatography in rapid and simultaneous determination of essential components in crude Radix Scrophulariae.

    PubMed

    Li, Xiaomeng; Fang, Dansi; Cong, Xiaodong; Cao, Gang; Cai, Hao; Cai, Baochang

    2012-12-01

    A method is described using rapid and sensitive Fourier transform near-infrared spectroscopy combined with high-performance liquid chromatography-diode array detection for the simultaneous identification and determination of four bioactive compounds in crude Radix Scrophulariae samples. Partial least squares regression is selected as the analysis type and multiplicative scatter correction, second derivative, and Savitzky-Golay filter were adopted for the spectral pretreatment. The correlation coefficients (R) of the calibration models were above 0.96 and the root mean square error of predictions were under 0.028. The developed models were applied to unknown samples with satisfactory results. The established method was validated and can be applied to the intrinsic quality control of crude Radix Scrophulariae.

  11. Organic conjugated small molecule materials based optical probe for rapid, colorimetric and UV-vis spectral detection of phosphorylated protein in placental tissue

    NASA Astrophysics Data System (ADS)

    Wang, Yanfang; Yang, Na; Liu, Yi

    2018-04-01

    A novel organic small molecule with D-Pi-A structure was prepared, which was found to be a promising colorimetric and ratiometric UV-vis spetral probe for detection of phosphorylated proteins with the help of tetravalent zirconium ion. Such optical probe based on chromophore WYF-1 shows a rapid response (within 10 s) and high selectivity and sensitivity for phosphorylated proteins, giving distinct colorimetric and ratiometric UV-vis changes at 720 and 560 nm. The detection limit for phosphorylated proteins was estimated to be 100 nM. In addition, detection of phosphorylated proteins in placental tissue samples with this probe was successfully applied, which indicates that this probe holds great potential for phosphorylated proteins detection.

  12. Development of a POC Test for TB Based on Multiple Immunodominant Epitopes of M. tuberculosis Specific Cell-Wall Proteins

    PubMed Central

    Gonzalez, Jesus M.; Francis, Bryan; Burda, Sherri; Hess, Kaitlyn; Behera, Digamber; Gupta, Dheeraj; Agarwal, Ashutosh Nath; Verma, Indu; Verma, Ajoy; Myneedu, Vithal Prasad; Niedbala, Sam; Laal, Suman

    2014-01-01

    The need for an accurate, rapid, simple and affordable point-of-care (POC) test for Tuberculosis (TB) that can be implemented in microscopy centers and other peripheral health-care settings in the TB-endemic countries remains unmet. This manuscript describes preliminary results of a new prototype rapid lateral flow TB test based on detection of antibodies to immunodominant epitopes (peptides) derived from carefully selected, highly immunogenic M. tuberculosis cell-wall proteins. Peptide selection was initially based on recognition by antibodies in sera from TB patients but not in PPD-/PPD+/BCG-vaccinated individuals from TB-endemic settings. The peptides were conjugated to BSA; the purified peptide-BSA conjugates striped onto nitrocellulose membrane and adsorbed onto colloidal gold particles to devise the prototype test, and evaluated for reactivity with sera from 3 PPD-, 29 PPD+, 15 PPD-unknown healthy subjects, 10 patients with non-TB lung disease and 124 smear-positive TB patients. The assay parameters were adjusted to determine positive/negative status within 15 minutes via visual or instrumented assessment. There was minimal or no reactivity of sera from non-TB subjects with the striped BSA-peptides demonstrating the lack of anti-peptide antibodies in subjects with latent TB and/or BCG vaccination. Sera from most TB patients demonstrated reactivity with one or more peptides. The sensitivity of antibody detection ranged from 28–85% with the 9 BSA-peptides. Three peptides were further evaluated with sera from 400 subjects, including additional PPD-/PPD+/PPD-unknown healthy contacts, close hospital contacts and household contacts of untreated TB patients, patients with non-TB lung disease, and HIV+TB- patients. Combination of the 3 peptides provided sensitivity and specificity>90%. While the final fully optimized lateral flow POC test for TB is under development, these preliminary results demonstrate that an antibody-detection based rapid POC lateral flow test based on select combinations of immunodominant M. tb-specific epitopes may potentially replace microscopy for TB diagnosis in TB-endemic settings. PMID:25247820

  13. Development of a rapid diagnostic method for identification of Staphylococcus aureus and antimicrobial resistance in positive blood culture bottles using a PCR-DNA-chromatography method.

    PubMed

    Ohshiro, Takeya; Miyagi, Chihiro; Tamaki, Yoshikazu; Mizuno, Takuya; Ezaki, Takayuki

    2016-06-01

    Blood culturing and the rapid reporting of results are essential for infectious disease clinics to obtain bacterial information that can affect patient prognosis. When gram-positive coccoid cells are observed in blood culture bottles, it is important to determine whether the strain is Staphylococcus aureus and whether the strain has resistance genes, such as mecA and blaZ, for proper antibiotic selection. Previous work led to the development of a PCR method that is useful for rapid identification of bacterial species and antimicrobial susceptibility. However, that method has not yet been adopted in community hospitals due to the high cost and methodological complexity. We report here the development of a quick PCR and DNA-chromatography test, based on single-tag hybridization chromatography, that permits detection of S. aureus and the mecA and blaZ genes; results can be obtained within 1 h for positive blood culture bottles. We evaluated this method using 42 clinical isolates. Detection of S. aureus and the resistance genes by the PCR-DNA-chromatography method was compared with that obtained via the conventional identification method and actual antimicrobial susceptibility testing. Our method had a sensitivity of 97.0% and a specificity of 100% for the identification of the bacterial species. For the detection of the mecA gene of S. aureus, the sensitivity was 100% and the specificity was 95.2%. For the detection of the blaZ gene of S. aureus, the sensitivity was 100% and the specificity was 88.9%. The speed and simplicity of this PCR-DNA-chromatography method suggest that our method will facilitate rapid diagnoses. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. Prospective Evaluation of Light Scatter Technology Paired with Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Rapid Diagnosis of Urinary Tract Infections

    PubMed Central

    Montgomery, Sandra; Roman, Kiana; Ngyuen, Lan; Cardenas, Ana Maria; Knox, James; Tomaras, Andrew P.

    2017-01-01

    ABSTRACT Urinary tract infections are one of the most common reasons for health care visits. Diagnosis and optimal treatment often require a urine culture, which takes an average of 1.5 to 2 days from urine collection to results, delaying optimal therapy. Faster, but accurate, alternatives are needed. Light scatter technology has been proposed for several years as a rapid screening tool, whereby negative specimens are excluded from culture. A commercially available light scatter device, BacterioScan 216Dx (BacterioScan, Inc.), has recently been advertised for this application. Paired use of mass spectrometry (MS) for bacterial identification and automated-system-based susceptibility testing straight from the light scatter suspension might provide dramatic improvement in times to a result. The present study prospectively evaluated the BacterioScan device, with culture as the reference standard. Positive light scatter specimens were used for downstream rapid matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS organism identification and automated-system-based antimicrobial susceptibility testing. Prospective evaluation of 439 urine samples showed a sensitivity of 96.5%, a specificity of 71.4%, and positive and negative predictive values of 45.1% and 98.8%, respectively. MALDI-TOF MS analysis of the suspension after density-based selection yielded a sensitivity of 72.1% and a specificity of 96.9%. Antimicrobial susceptibility testing of the samples identified by MALDI-TOF MS produced an overall categorical agreement of 99.2%. Given the high sensitivity and negative predictive value of results obtained, BacterioScan 216Dx is a reasonable approach for urine screening and might produce negative results in as few as 3 h, with no downstream workup. Paired rapid identification and susceptibility testing might be useful when MALDI-TOF MS results in an organism identification, and it might decrease the time to a result by more than 24 h. PMID:28356414

  15. Prospective Evaluation of Light Scatter Technology Paired with Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Rapid Diagnosis of Urinary Tract Infections.

    PubMed

    Montgomery, Sandra; Roman, Kiana; Ngyuen, Lan; Cardenas, Ana Maria; Knox, James; Tomaras, Andrew P; Graf, Erin H

    2017-06-01

    Urinary tract infections are one of the most common reasons for health care visits. Diagnosis and optimal treatment often require a urine culture, which takes an average of 1.5 to 2 days from urine collection to results, delaying optimal therapy. Faster, but accurate, alternatives are needed. Light scatter technology has been proposed for several years as a rapid screening tool, whereby negative specimens are excluded from culture. A commercially available light scatter device, BacterioScan 216Dx (BacterioScan, Inc.), has recently been advertised for this application. Paired use of mass spectrometry (MS) for bacterial identification and automated-system-based susceptibility testing straight from the light scatter suspension might provide dramatic improvement in times to a result. The present study prospectively evaluated the BacterioScan device, with culture as the reference standard. Positive light scatter specimens were used for downstream rapid matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS organism identification and automated-system-based antimicrobial susceptibility testing. Prospective evaluation of 439 urine samples showed a sensitivity of 96.5%, a specificity of 71.4%, and positive and negative predictive values of 45.1% and 98.8%, respectively. MALDI-TOF MS analysis of the suspension after density-based selection yielded a sensitivity of 72.1% and a specificity of 96.9%. Antimicrobial susceptibility testing of the samples identified by MALDI-TOF MS produced an overall categorical agreement of 99.2%. Given the high sensitivity and negative predictive value of results obtained, BacterioScan 216Dx is a reasonable approach for urine screening and might produce negative results in as few as 3 h, with no downstream workup. Paired rapid identification and susceptibility testing might be useful when MALDI-TOF MS results in an organism identification, and it might decrease the time to a result by more than 24 h. Copyright © 2017 American Society for Microbiology.

  16. The ionic selectivity and calcium dependence of the light-sensitive pathway in toad rods.

    PubMed Central

    Hodgkin, A L; McNaughton, P A; Nunn, B J

    1985-01-01

    A new method is described for determining the effects of rapid changes in ionic concentration on the light-sensitive currents of rod outer segments. Replacing Na with another monovalent cation caused a rapid change in current followed by an exponential decline of time constant 0.5-2 s. From the magnitude of the initial rapid change in current we conclude that Li, Na, and K and Rb ions pass readily through the light-sensitive channel in the presence of 1 mM-Ca, whereas Cs crosses with difficulty and choline, tetramethylammonium and tetraethylammonium not at all. The effect of reducing Ca in the external medium indicates that the residual inward current recorded for a few seconds when Na is replaced by an impermeant ion is carried largely by Ca ions. With 1 microM-Ca in the external medium the relative ability of monovalent cations to carry light-sensitive current is Li:Na:K:Rb:Cs = 1.4:1:0.8:0.6:0.15. The same order applied in the physiological region but the values are less certain. Large transient inward currents are seen if external Ca is raised form 1 microM to 5 mM or more; these currents which are maximal in an isotonic Ca solution are presumably carried by Ca. The effect of monovalent cations on the number of open light-sensitive channels was tested by adding the cation to a solution containing 55 mM-Na. Na ions open light-sensitive channels with a delay, probably by promoting Na-Ca exchange; K and Rb close channels by inhibiting exchange; Li and Cs seem inert in the exchange mechanism. The rate at which inward current declines in low [Na]o or high [Ca]o is accelerated by weak background lights and slowed by 3-isobutyl-1-methylxanthine (IBMX), which inhibits the hydrolysis of cGMP. On returning to Ringer solution after a period in low [Na]o the current recovers with a delay of about 1 s which decreases as the Ca concentration of the low [Na]o medium is reduced. We conclude that intracellular Ca has a strong effect on the number of open light-sensitive channels. None the less, several observations are inconsistent with channel closure being dependent simply on combination with internal Ca. PMID:2580087

  17. Development of a rapid, sensitive and specific diagnostic assay for fish Aquareovirus based on RT-PCR.

    PubMed

    Seng, E K; Fang, Q; Lam, T J; Sin, Y M

    2004-06-15

    A rapid, sensitive and highly specific detection method for Aquareovirus based on reverse-transcription polymerase chain reaction (RT-PCR) was developed. Based on multiple sequence alignment of the cloned sequences of a local isolates, the Threadfin reovirus (TFV) and Guppy reovirus (GPV) with Grass carp reovirus (GCRV), a pair of degenerate primers was selected carefully and synthesized. Using this primer combination, only one specific product, approximately 450 bp in length was obtained when RT-PCR was carried out using the genomic double-stranded RNA (dsRNA) of TFV, GPV and GCRV. Similar results were also obtained when Chum salmon reovirus (CSRV) and Striped bass reovirus (SBRV) dsRNA were used as templates. No products were observed when nucleic acids other than the dsRNA of the aquareoviruses described above were used as RT-PCR templates. This technique could detect not only TFV but also GPV and GCRV in low titer virus-infected cell cultured cells. Furthermore, this method has also been shown to be able to diagnose GPV-infected guppy (Poecilia reticulata) that exhibit clinical symptoms as well as GPV-carrier guppy. Collectively, these results showed that the RT-PCR amplification method using specific degenerate primers described below is very useful for rapid and accurate detection of a variety of aquareovirus strains isolated from different host species and origin.

  18. Dual-emissive Polymer Dots for Rapid Detection of Fluoride in Pure Water and Biological Systems with Improved Reliability and Accuracy

    PubMed Central

    Zhao, Qiang; Zhang, Chuanqi; Liu, Shujuan; Liu, Yahong; Zhang, Kenneth Yin; Zhou, Xiaobo; Jiang, Jiayang; Xu, Wenjuan; Yang, Tianshe; Huang, Wei

    2015-01-01

    It is of paramount importance to develop new probes that can selectively, sensitively, accurately and rapidly detect fluoride in aqueous media and biological systems, because F- is found to be closely related to many health and environmental concerns. Herein, a dual-emissive conjugated polyelectrolyte P1 containing phosphorescent iridium(III) complex was designed and synthesized, which can form ultrasmall polymer dots (Pdots) in aqueous media. The F--responsive tert-butyldiphenylsilyl moiety was introduced into iridium(III) complex as the signaling unit for sensing F− with the quenched phosphorescence. Thus, the dual-emissive Pdots can rapidly and accurately detect F− in aqueous media and live cells as a ratiometric probe by measuring the change in the ratio of the F−-sensitive red phosphorescence from iridium(III) complex to the F−-insensitive blue fluorescence from polyfluorene. Moreover, the interaction of Pdots with F− also changes its emission lifetime, and the lifetime-based detection of F− in live cells has been realized through photoluminescence lifetime imaging microscopy for the first time. Both the ratiometric luminescence and lifetime imaging have been demonstrated to be resistant to external influences, such as the probe’s concentration and excitation power. This study provides a new perspective for the design of promising Pdots-based probes for biological applications. PMID:26552859

  19. SPRAT: Spectrograph for the Rapid Acquisition of Transients

    NASA Astrophysics Data System (ADS)

    Piascik, A. S.; Steele, Iain A.; Bates, Stuart D.; Mottram, Christopher J.; Smith, R. J.; Barnsley, R. M.; Bolton, B.

    2014-07-01

    We describe the development of a low cost, low resolution (R ~ 350), high throughput, long slit spectrograph covering visible (4000-8000) wavelengths. The spectrograph has been developed for fully robotic operation with the Liverpool Telescope (La Palma). The primary aim is to provide rapid spectral classification of faint (V ˜ 20) transient objects detected by projects such as Gaia, iPTF (intermediate Palomar Transient Factory), LOFAR, and a variety of high energy satellites. The design employs a volume phase holographic (VPH) transmission grating as the dispersive element combined with a prism pair (grism) in a linear optical path. One of two peak spectral sensitivities are selectable by rotating the grism. The VPH and prism combination and entrance slit are deployable, and when removed from the beam allow the collimator/camera pair to re-image the target field onto the detector. This mode of operation provides automatic acquisition of the target onto the slit prior to spectrographic observation through World Coordinate System fitting. The selection and characterisation of optical components to maximise photon throughput is described together with performance predictions.

  20. Detection of Campylobacter jejuni added to foods by using a combined selective enrichment and nucleic acid sequence-based amplification (NASBA).

    PubMed Central

    Uyttendaele, M; Schukkink, R; van Gemen, B; Debevere, J

    1995-01-01

    An assay to detect Campylobacter jejuni in foods that uses a short selective enrichment culture, a simple and rapid isolation procedure, NASBA amplification of RNA, and a nonradioactive in solution hybridization was studied. The presence of high numbers of indigenous flora affected the sensitivity of the assay. However, detection of C. jejuni was possible up to a ratio of indigenous flora to C. jejuni of 10,000:1. Interference by food components was eliminated by centrifugation following the enrichment step. Fourteen food samples artificially inoculated with C. jejuni (1 to 1,000 CFU/10 g) were analyzed with the NASBA assay and the conventional culture method with Campylobacter charcoal differential agar (CCDA). A few false-negative results were obtained by both NASBA (1.42%) and CCDA (2.86%) isolation. Yet the use of enrichment culture and NASBA shortened the analysis time from 6 days to 26 h. The relative simplicity and rapidity of the NASBA assay make it an attractive alternative for detection of C. jejuni in food samples. PMID:7747955

  1. An assay for evoked locomotor behavior in Drosophila reveals a role for integrins in ethanol sensitivity and rapid ethanol tolerance.

    PubMed

    Bhandari, Poonam; Kendler, Kenneth S; Bettinger, Jill C; Davies, Andrew G; Grotewiel, Mike

    2009-10-01

    Ethanol induces similar behavioral responses in mammals and the fruit fly, Drosophila melanogaster. By coupling assays for ethanol-related behavior to the genetic tools available in flies, a number of genes have been identified that influence physiological responses to ethanol. To enhance the utility of the Drosophila model for investigating genes involved in ethanol-related behavior, we explored the value of an assay that measures the sedative effects of ethanol on negative geotaxis, an evoked locomotor response. We established eRING (ethanol Rapid Iterative Negative Geotaxis) as an assay for quantitating the sedative effects of ethanol on negative geotaxis (i.e., startle-induced climbing). We validated the assay by assessing acute sensitivity to ethanol and rapid ethanol tolerance in several different control strains and in flies with mutations known to disrupt these behaviors. We also used eRING in a candidate screen to identify mutants with altered ethanol-related behaviors. Negative geotaxis measured in eRING assays was dose-dependently impaired by ethanol exposure. Flies developed tolerance to the intoxicating effects of ethanol when tested during a second exposure. Ethanol sensitivity and rapid ethanol tolerance varied across 4 control strains, but internal ethanol concentrations were indistinguishable in the 4 strains during a first and second challenge with ethanol. Ethanol sensitivity and rapid ethanol tolerance, respectively, were altered in flies with mutations in amnesiac and hangover, genes known to influence these traits. Additionally, mutations in the beta integrin gene myospheroid and the alpha integrin gene scab increased the initial sensitivity to ethanol and enhanced the development of rapid ethanol tolerance without altering internal ethanol concentrations. The eRING assay is suitable for investigating genetic mechanisms that influence ethanol sensitivity and rapid ethanol tolerance. Ethanol sensitivity and rapid ethanol tolerance depend on the function of alpha and beta integrins in flies.

  2. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A.

    PubMed

    Wang, Xue; Lu, Xianbo; Wu, Lidong; Chen, Jiping

    2015-03-15

    As is well known, bisphenol A (BPA), usually exists in daily plastic products, is one of the most important endocrine disrupting chemicals. In this work, copper-centered metal-organic framework (Cu-MOF) was synthesized, which was characterized by SEM, TEM, XRD, FTIR and electrochemical method. The resultant Cu-MOF was explored as a robust electrochemical biosensing platform by choosing tyrosinase (Tyr) as a model enzyme for ultrasensitive and rapid detection of BPA. The Cu-MOF provided a 3D structure with a large specific surface area, which was beneficial for enzyme and BPA absorption, and thus improved the sensitivity of the biosensor. Furthermore, Cu-MOF as a novel sorbent could increase the available BPA concentration to react with tyrosinase through π-π stacking interactions between BPA and Cu-MOF. The Tyr biosensor exhibited a high sensitivity of 0.2242A M(-1) for BPA, a wide linear range from 5.0×10(-8) to 3.0×10-6moll(-1), and a low detection limit of 13nmoll(-1). The response time for detection of BPA is less than 11s. The proposed method was successfully applied to rapid and selective detection of BPA in plastic products with satisfactory results. The recoveries are in the range of 94.0-101.6% for practical applications. With those remarkable advantages, MOFs-based 3D structures show great prospect as robust biosensing platform for ultrasensitive and rapid detection of BPA. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  3. Accuracy of dengue clinical diagnosis with and without NS1 antigen rapid test: Comparison between human and Bayesian network model decision.

    PubMed

    Sa-Ngamuang, Chaitawat; Haddawy, Peter; Luvira, Viravarn; Piyaphanee, Watcharapong; Iamsirithaworn, Sopon; Lawpoolsri, Saranath

    2018-06-18

    Differentiating dengue patients from other acute febrile illness patients is a great challenge among physicians. Several dengue diagnosis methods are recommended by WHO. The application of specific laboratory tests is still limited due to high cost, lack of equipment, and uncertain validity. Therefore, clinical diagnosis remains a common practice especially in resource limited settings. Bayesian networks have been shown to be a useful tool for diagnostic decision support. This study aimed to construct Bayesian network models using basic demographic, clinical, and laboratory profiles of acute febrile illness patients to diagnose dengue. Data of 397 acute undifferentiated febrile illness patients who visited the fever clinic of the Bangkok Hospital for Tropical Diseases, Thailand, were used for model construction and validation. The two best final models were selected: one with and one without NS1 rapid test result. The diagnostic accuracy of the models was compared with that of physicians on the same set of patients. The Bayesian network models provided good diagnostic accuracy of dengue infection, with ROC AUC of 0.80 and 0.75 for models with and without NS1 rapid test result, respectively. The models had approximately 80% specificity and 70% sensitivity, similar to the diagnostic accuracy of the hospital's fellows in infectious disease. Including information on NS1 rapid test improved the specificity, but reduced the sensitivity, both in model and physician diagnoses. The Bayesian network model developed in this study could be useful to assist physicians in diagnosing dengue, particularly in regions where experienced physicians and laboratory confirmation tests are limited.

  4. FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila.

    PubMed

    Bath, Daniel E; Stowers, John R; Hörmann, Dorothea; Poehlmann, Andreas; Dickson, Barry J; Straw, Andrew D

    2014-07-01

    Rapidly and selectively modulating the activity of defined neurons in unrestrained animals is a powerful approach in investigating the circuit mechanisms that shape behavior. In Drosophila melanogaster, temperature-sensitive silencers and activators are widely used to control the activities of genetically defined neuronal cell types. A limitation of these thermogenetic approaches, however, has been their poor temporal resolution. Here we introduce FlyMAD (the fly mind-altering device), which allows thermogenetic silencing or activation within seconds or even fractions of a second. Using computer vision, FlyMAD targets an infrared laser to freely walking flies. As a proof of principle, we demonstrated the rapid silencing and activation of neurons involved in locomotion, vision and courtship. The spatial resolution of the focused beam enabled preferential targeting of neurons in the brain or ventral nerve cord. Moreover, the high temporal resolution of FlyMAD allowed us to discover distinct timing relationships for two neuronal cell types previously linked to courtship song.

  5. A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy.

    PubMed

    Mi, Peng; Kokuryo, Daisuke; Cabral, Horacio; Wu, Hailiang; Terada, Yasuko; Saga, Tsuneo; Aoki, Ichio; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2016-08-01

    Engineered nanoparticles that respond to pathophysiological parameters, such as pH or redox potential, have been developed as contrast agents for the magnetic resonance imaging (MRI) of tumours. However, beyond anatomic assessment, contrast agents that can sense these pathological parameters and rapidly amplify their magnetic resonance signals are desirable because they could potentially be used to monitor the biological processes of tumours and improve cancer diagnosis. Here, we report an MRI contrast agent that rapidly amplifies magnetic resonance signals in response to pH. We confined Mn(2+) within pH-sensitive calcium phosphate (CaP) nanoparticles comprising a poly(ethylene glycol) shell. At a low pH, such as in solid tumours, the CaP disintegrates and releases Mn(2+) ions. Binding to proteins increases the relaxivity of Mn(2+) and enhances the contrast. We show that these nanoparticles could rapidly and selectively brighten solid tumours, identify hypoxic regions within the tumour mass and detect invisible millimetre-sized metastatic tumours in the liver.

  6. A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy

    NASA Astrophysics Data System (ADS)

    Mi, Peng; Kokuryo, Daisuke; Cabral, Horacio; Wu, Hailiang; Terada, Yasuko; Saga, Tsuneo; Aoki, Ichio; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2016-08-01

    Engineered nanoparticles that respond to pathophysiological parameters, such as pH or redox potential, have been developed as contrast agents for the magnetic resonance imaging (MRI) of tumours. However, beyond anatomic assessment, contrast agents that can sense these pathological parameters and rapidly amplify their magnetic resonance signals are desirable because they could potentially be used to monitor the biological processes of tumours and improve cancer diagnosis. Here, we report an MRI contrast agent that rapidly amplifies magnetic resonance signals in response to pH. We confined Mn2+ within pH-sensitive calcium phosphate (CaP) nanoparticles comprising a poly(ethylene glycol) shell. At a low pH, such as in solid tumours, the CaP disintegrates and releases Mn2+ ions. Binding to proteins increases the relaxivity of Mn2+ and enhances the contrast. We show that these nanoparticles could rapidly and selectively brighten solid tumours, identify hypoxic regions within the tumour mass and detect invisible millimetre-sized metastatic tumours in the liver.

  7. Rapid Diagnostic Tests for Identifying Avian Influenza A(H7N9) Virus in Clinical Samples

    PubMed Central

    Chen, Yu; Wang, Dayan; Zheng, Shufa; Shu, Yuelong; Chen, Wenxiang; Cui, Dawei; Li, Jinming; Yu, Hongjie; Wang, Yu; Li, Lanjuan

    2015-01-01

    To determine sensitivity of rapid diagnostic tests for detecting influenza A(H7N9) virus, we compared rapid tests with PCR results and tested different types of clinical samples. Usefulness of seasonal influenza rapid tests for A(H7N9) virus infections is limited because of their low sensitivity for detecting virus in upper respiratory tract specimens. PMID:25529064

  8. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase.

    PubMed

    Mutero, A; Pralavorio, M; Bride, J M; Fournier, D

    1994-06-21

    Extensive utilization of pesticides against insects provides us with a good model for studying the adaptation of a eukaryotic genome to a strong selective pressure. One mechanism of resistance is the alteration of acetylcholinesterase (EC 3.1.1.7), the molecular target for organophosphates and carbamates. Here, we report the sequence analysis of the Ace gene in several resistant field strains of Drosophila melanogaster. This analysis resulted in the identification of five point mutations associated with reduced sensitivities to insecticides. In some cases, several of these mutations were found to be combined in the same protein, leading to different resistance patterns. Our results suggest that recombination between resistant alleles preexisting in natural populations is a mechanism by which insects rapidly adapt to new selective pressures.

  9. The failure of routine rapid HIV testing: a case study of improving low sensitivity in the field.

    PubMed

    Wolpaw, Benjamin J; Mathews, Catherine; Chopra, Mickey; Hardie, Diana; de Azevedo, Virginia; Jennings, Karen; Lurie, Mark N

    2010-03-22

    The rapid HIV antibody test is the diagnostic tool of choice in low and middle-income countries. Previous evidence suggests that rapid HIV diagnostic tests may underperform in the field, failing to detect a substantial number of infections. A research study inadvertently discovered that a clinic rapid HIV testing process was failing to detect cases of established (high antibody titer) infection, exhibiting an estimated 68.7% sensitivity (95% CI [41.3%-89.0%]) over the course of the first three weeks of observation. The setting is a public service clinic that provides STI diagnosis and treatment in an impoverished, peri-urban community outside of Cape Town, South Africa. The researchers and local health administrators collaborated to investigate the cause of the poor test performance and make necessary corrections. The clinic changed the brand of rapid test being used and later introduced quality improvement measures. Observations were made of the clinic staff as they administered rapid HIV tests to real patients. Estimated testing sensitivity was calculated as the number of rapid HIV test positive individuals detected by the clinic divided by this number plus the number of PCR positive, highly reactive 3rd generation ELISA patients identified among those who were rapid test negative at the clinic. In the period of five months after the clinic made the switch of rapid HIV tests, estimated sensitivity improved to 93.5% (95% CI [86.5%-97.6%]), during which time observations of counselors administering tests at the clinic found poor adherence to the recommended testing protocol. Quality improvement measures were implemented and estimated sensitivity rose to 95.1% (95% CI [83.5%-99.4%]) during the final two months of full observation. Poor testing procedure in the field can lead to exceedingly low levels of rapid HIV test sensitivity, making it imperative that stringent quality control measures are implemented where they do not already exist. Certain brands of rapid-testing kits may perform better than others when faced with sub-optimal use.

  10. Selection of affinity peptides for interference-free detection of cholera toxin.

    PubMed

    Lim, Jong Min; Heo, Nam Su; Oh, Seo Yeong; Ryu, Myung Yi; Seo, Jeong Hyun; Park, Tae Jung; Huh, Yun Suk; Park, Jong Pil

    2018-01-15

    Cholera toxin is a major virulent agent of Vibrio cholerae, and it can rapidly lead to severe dehydration, shock, causing death within hours without appropriate clinical treatments. In this study, we present a method wherein unique and short peptides that bind to cholera toxin subunit B (CTX-B) were selected through M13 phage display. Biopanning over recombinant CTX-B led to rapid screening of a unique peptide with an amino acid sequence of VQCRLGPPWCAK, and the phage-displayed peptides analyzed using ELISA, were found to show specific affinities towards CTX-B. To address the use of affinity peptides in development of the biosensor, sequences of newly selected peptides were modified and chemically synthesized to create a series of affinity peptides. Performance of the biosensor was studied using plasmonic-based optical techniques: localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS). The limit of detection (LOD) obtained by LSPR with 3σ-rule was 1.89ng/mL, while SERS had a LOD of 3.51pg/mL. In both cases, the sensitivity was much higher than the previously reported values, and our sensor system was specific towards actual CTX-B secreted from V. cholera, but not for CTX-AB 5 . Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Rapid electrochemical assessment of tumor suppressor gene methylations in raw human serum, and tumor cells and tissues using immuno-magnetic beads and selective DNA hybridization.

    PubMed

    Povedano, Eloy; Valverde, Alejandro; Ruiz-Valdepeñas Montiel, Víctor; Pedrero, María; Yáñez-Sedeño, Paloma; Barderas, Rodrigo; San Segundo-Acosta, Pablo; Peláez-García, Alberto; Mendiola, Marta; Hardisson, David; Campuzano, Susana; Pingarron, José Manuel

    2018-05-09

    We report a rapid and sensitive electrochemical strategy for the detection of gene-specific 5-methylcytosine DNA methylation. Magnetic beads (MBs) modified with an antibody specific for 5-methylcytosines (5-mC) are employed for the selective capture of any 5-mC methylated single-stranded (ss)DNA sequence. A flanking region next to the 5-mCs of the captured methylated ssDNA is recognized by selective hybridization with a synthetic biotinylated DNA sequence, further labeled with an HRP streptavidin conjugate. Amperometric transduction at disposable screen-printed carbon electrodes (SPCEs) is employed. The developed biosensor exhibits a dynamic range from 3.9 to 500 pM and a detection limit of 1.2 pM for the methylated synthetic sequence of the tumor suppressor gene O-6-methylguanine-DNA methyltransferase (MGMT) promoter region. The applicability of this strategy is demonstrated through the 45 min-analysis of specific methylation in the MGMT promoter region directly in raw spiked human serum samples and in genomic DNA extracted from U-87 glioblastoma cells and paraffin-embedded brain tumor tissues without any amplification and pretreatment step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Rapid Recycling of Ca2+ between IP3-Sensitive Stores and Lysosomes

    PubMed Central

    López Sanjurjo, Cristina I.; Tovey, Stephen C.; Taylor, Colin W.

    2014-01-01

    Inositol 1,4,5-trisphosphate (IP3) evokes release of Ca2+ from the endoplasmic reticulum (ER), but the resulting Ca2+ signals are shaped by interactions with additional intracellular organelles. Bafilomycin A1, which prevents lysosomal Ca2+ uptake by inhibiting H+ pumping into lysosomes, increased the amplitude of the initial Ca2+ signals evoked by carbachol in human embryonic kidney (HEK) cells. Carbachol alone and carbachol in combination with parathyroid hormone (PTH) evoke Ca2+ release from distinct IP3-sensitive Ca2+ stores in HEK cells stably expressing human type 1 PTH receptors. Bafilomycin A1 similarly exaggerated the Ca2+ signals evoked by carbachol or carbachol with PTH, indicating that Ca2+ released from distinct IP3-sensitive Ca2+ stores is sequestered by lysosomes. The Ca2+ signals resulting from store-operated Ca2+ entry, whether evoked by thapsigargin or carbachol, were unaffected by bafilomycin A1. Using Gd3+ (1 mM) to inhibit both Ca2+ entry and Ca2+ extrusion, HEK cells were repetitively stimulated with carbachol to assess the effectiveness of Ca2+ recycling to the ER after IP3-evoked Ca2+ release. Blocking lysosomal Ca2+ uptake with bafilomycin A1 increased the amplitude of each carbachol-evoked Ca2+ signal without affecting the rate of Ca2+ recycling to the ER. This suggests that Ca2+ accumulated by lysosomes is rapidly returned to the ER. We conclude that lysosomes rapidly, reversibly and selectively accumulate the Ca2+ released by IP3 receptors residing within distinct Ca2+ stores, but not the Ca2+ entering cells via receptor-regulated, store-operated Ca2+ entry pathways. PMID:25337829

  13. Rapid recycling of Ca2+ between IP3-sensitive stores and lysosomes.

    PubMed

    López Sanjurjo, Cristina I; Tovey, Stephen C; Taylor, Colin W

    2014-01-01

    Inositol 1,4,5-trisphosphate (IP3) evokes release of Ca2+ from the endoplasmic reticulum (ER), but the resulting Ca2+ signals are shaped by interactions with additional intracellular organelles. Bafilomycin A1, which prevents lysosomal Ca2+ uptake by inhibiting H+ pumping into lysosomes, increased the amplitude of the initial Ca2+ signals evoked by carbachol in human embryonic kidney (HEK) cells. Carbachol alone and carbachol in combination with parathyroid hormone (PTH) evoke Ca2+ release from distinct IP3-sensitive Ca2+ stores in HEK cells stably expressing human type 1 PTH receptors. Bafilomycin A1 similarly exaggerated the Ca2+ signals evoked by carbachol or carbachol with PTH, indicating that Ca2+ released from distinct IP3-sensitive Ca2+ stores is sequestered by lysosomes. The Ca2+ signals resulting from store-operated Ca2+ entry, whether evoked by thapsigargin or carbachol, were unaffected by bafilomycin A1. Using Gd3+ (1 mM) to inhibit both Ca2+ entry and Ca2+ extrusion, HEK cells were repetitively stimulated with carbachol to assess the effectiveness of Ca2+ recycling to the ER after IP3-evoked Ca2+ release. Blocking lysosomal Ca2+ uptake with bafilomycin A1 increased the amplitude of each carbachol-evoked Ca2+ signal without affecting the rate of Ca2+ recycling to the ER. This suggests that Ca2+ accumulated by lysosomes is rapidly returned to the ER. We conclude that lysosomes rapidly, reversibly and selectively accumulate the Ca2+ released by IP3 receptors residing within distinct Ca2+ stores, but not the Ca2+ entering cells via receptor-regulated, store-operated Ca2+ entry pathways.

  14. Integration of TerraSAR-X, RapidEye and airborne lidar for remote sensing of intertidal bedforms on the upper flats of Norderney (German Wadden Sea)

    NASA Astrophysics Data System (ADS)

    Adolph, Winny; Jung, Richard; Schmidt, Alena; Ehlers, Manfred; Heipke, Christian; Bartholomä, Alexander; Farke, Hubert

    2017-04-01

    The Wadden Sea is a large coastal transition area adjoining the southern North Sea uniting ecological key functions with an important role in coastal protection. The region is strictly protected by EU directives and national law and is a UNESCO World Heritage Site, requiring frequent quality assessments and regular monitoring. In 2014 an intertidal bedform area characterised by alternating crests and water-covered troughs on the tidal flats of the island of Norderney (German Wadden Sea sector) was chosen to test different remote sensing methods for habitat mapping: airborne lidar, satellite-based radar (TerraSAR-X) and electro-optical sensors (RapidEye). The results revealed that, although sensitive to different surface qualities, all sensors were able to image the bedforms. A digital terrain model generated from the lidar data shows crests and slopes of the bedforms with high geometric accuracy in the centimetre range, but high costs limit the operation area. TerraSAR-X data enabled identifying the positions of the bedforms reflecting the residual water in the troughs also with a high resolution of up to 1.1 m, but with larger footprints and much higher temporal availability. RapidEye data are sensitive to differences in sediment moisture employed to identify crest areas, slopes and troughs, with high spatial coverage but the lowest resolution (6.5 m). Monitoring concepts may differ in their remote sensing requirements regarding areal coverage, spatial and temporal resolution, sensitivity and geometric accuracy. Also financial budgets limit the selection of sensors. Thus, combining differing assets into an integrated concept of remote sensing contributes to solving these issues.

  15. An improved, rapid competitive ELISA using a novel conserved 3B epitope for the detection of serum antibodies to foot-and-mouth disease virus.

    PubMed

    Chung, Chungwon J; Clavijo, Alfonso; Bounpheng, Mangkey A; Uddowla, Sabena; Sayed, Abu; Dancho, Brooke; Olesen, Ian C; Pacheco, Juan; Kamicker, Barbara J; Brake, David A; Bandaranayaka-Mudiyanselage, Carey L; Lee, Stephen S; Rai, Devendra K; Rieder, Elizabeth

    2018-06-01

    The highly contagious foot-and-mouth disease virus (FMDV) afflicts cloven-hoofed animals, resulting in significant costs because of loss of trade and recovery from disease. We developed a sensitive, specific, and rapid competitive ELISA (cELISA) to detect serum antibodies to FMDV. The cELISA utilized a monoclonal blocking antibody specific for a highly conserved FMDV nonstructural 3B epitope, a recombinant mutant FMDV 3ABC coating protein, and optimized format variables including serum incubation for 90 min at 20-25°C. Samples from 16 animals experimentally infected with one FMDV serotype (A, O, Asia, or SAT-1) demonstrated early detection capacity beginning 7 d post-inoculation. All samples from 55 vesicular stomatitis virus antibody-positive cattle and 44 samples from cloven-hoofed animals affected by non-FMD vesicular diseases were negative in the cELISA, demonstrating 100% analytical specificity. The diagnostic sensitivity was 100% against sera from 128 cattle infected with isolates of all FMDV serotypes, emphasizing serotype-agnostic results. Diagnostic specificities of U.S. cattle ( n = 1135) and swine ( n = 207) sera were 99.4% and 100%, respectively. High repeatability and reproducibility were demonstrated with 3.1% coefficient of variation in percent inhibition data and 100% agreement using 2 kit lots and 400 negative control serum samples, with no difference between bench and biosafety cabinet operation. Negative results from vaccinated, uninfected cattle, pig, and sheep sera confirmed the DIVA (differentiate infected from vaccinated animals) capability. This rapid (<3 h), select agent-free assay with high sensitivity and specificity, DIVA capability, and room temperature processing capability will serve as a useful tool in FMDV surveillance, emergency preparedness, response, and outbreak recovery programs.

  16. Rapid Rule-Out of Acute Myocardial Injury Using a Single High-Sensitivity Cardiac Troponin I Measurement.

    PubMed

    Sandoval, Yader; Smith, Stephen W; Shah, Anoop S V; Anand, Atul; Chapman, Andrew R; Love, Sara A; Schulz, Karen; Cao, Jing; Mills, Nicholas L; Apple, Fred S

    2017-01-01

    Rapid rule-out strategies using high-sensitivity cardiac troponin assays are largely supported by studies performed outside the US in selected cohorts of patients with chest pain that are atypical of US practice, and focused exclusively on ruling out acute myocardial infarction (AMI), rather than acute myocardial injury, which is more common and associated with a poor prognosis. Prospective, observational study of consecutive patients presenting to emergency departments [derivation (n = 1647) and validation (n = 2198) cohorts], where high-sensitivity cardiac troponin I (hs-cTnI) was measured on clinical indication. The negative predictive value (NPV) and diagnostic sensitivity of an hs-cTnI concentration

  17. Analytical sensitivity of current best-in-class malaria rapid diagnostic tests.

    PubMed

    Jimenez, Alfons; Rees-Channer, Roxanne R; Perera, Rushini; Gamboa, Dionicia; Chiodini, Peter L; González, Iveth J; Mayor, Alfredo; Ding, Xavier C

    2017-03-24

    Rapid diagnostic tests (RDTs) are today the most widely used method for malaria diagnosis and are recommended, alongside microscopy, for the confirmation of suspected cases before the administration of anti-malarial treatment. The diagnostic performance of RDTs, as compared to microscopy or PCR is well described but the actual analytical sensitivity of current best-in-class tests is poorly documented. This value is however a key performance indicator and a benchmark value needed to developed new RDTs of improved sensitivity. Thirteen RDTs detecting either the Plasmodium falciparum histidine rich protein 2 (HRP2) or the plasmodial lactate dehydrogenase (pLDH) antigens were selected from the best performing RDTs according to the WHO-FIND product testing programme. The analytical sensitivity of these products was evaluated using a range of reference materials including P. falciparum and Plasmodium vivax whole parasite samples as well as recombinant proteins. The best performing HRP2-based RDTs could detect all P. falciparum cultured samples at concentrations as low as 0.8 ng/mL of HRP2. The limit of detection of the best performing pLDH-based RDT specifically detecting P. vivax was 25 ng/mL of pLDH. The analytical sensitivity of P. vivax and Pan pLDH-based RDTs appears to vary considerably from product to product, and improvement of the limit-of-detection for P. vivax detecting RDTs is needed to match the performance of HRP2 and Pf pLDH-based RDTs for P. falciparum. Different assays using different reference materials produce different values for antigen concentration in a given specimen, highlighting the need to establish universal reference assays.

  18. Ionic solution and nanoparticle assisted MALDI-MS as bacterial biosensors for rapid analysis of yogurt.

    PubMed

    Lee, Chia-Hsun; Gopal, Judy; Wu, Hui-Fen

    2012-01-15

    Bacterial analysis from food samples is a highly challenging task because food samples contain intensive interferences from proteins and carbohydrates. Three different conditions of yogurt were analyzed: (1) the fresh yogurt immediately after purchasing, (2) the yogurt after expiry date stored in the refrigerator and (3) the yogurt left outside, without refrigeration. The shelf lives of both these yogurt was compared in terms of the decrease in bacterial signals. AB which initially contained 10(9) cells/mL drastically reduced to 10(7) cells/mL. However, Lin (Feng-Yin) yogurt which initially (fresh) had 10(8) cells/mL, even after two weeks beyond the expiry period showed no marked drop in bacterial count. Conventional MALDI-MS analysis showed limited sensitivity for analysis of yogurt bacteria amidst the complex milk proteins present in yogurt. A cost effective ionic solution, CrO(4)(2-) solution was used to enable the successful detection of bacterial signals (40-fold increased in sensitivity) selectively without the interference of the milk proteins. 0.035 mg of Ag nanoparticles (NPs) were also found to improve the detection of bacteria 2-6 times in yogurt samples. The current approach can be further applied as a rapid, sensitive and effective platform for bacterial analysis from food. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Specific and sensitive detection of the conifer pathogen Gremmeniella abietina by nested PCR

    PubMed Central

    Zeng, Qing-Yin; Hansson, Per; Wang, Xiao-Ru

    2005-01-01

    Background Gremmeniella abietina (Lagerb.) Morelet is an ascomycete fungus that causes stem canker and shoot dieback in many conifer species. The fungus is widespread and causes severe damage to forest plantations in Europe, North America and Asia. To facilitate early diagnosis and improve measures to control the spread of the disease, rapid, specific and sensitive detection methods for G. abietina in conifer hosts are needed. Results We designed two pairs of specific primers for G. abietina based on the 18S rDNA sequence variation pattern. These primers were validated against a wide range of fungi and 14 potential conifer hosts. Based on these specific primers, two nested PCR systems were developed. The first system employed universal fungal primers to enrich the fungal DNA targets in the first round, followed by a second round selective amplification of the pathogen. The other system employed G. abietina-specific primers in both PCR steps. Both approaches can detect the presence of G. abietina in composite samples with high sensitivity, as little as 7.5 fg G. abietina DNA in the host genomic background. Conclusion The methods described here are rapid and can be applied directly to a wide range of conifer species, without the need for fungal isolation and cultivation. Therefore, it represents a promising alternative to disease inspection in forest nurseries, plantations and quarantine control facilities. PMID:16280082

  20. Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of Salmonella Typhimurium.

    PubMed

    Wu, Wenhe; Li, Jun; Pan, Dun; Li, Jiang; Song, Shiping; Rong, Mingge; Li, Zixi; Gao, Jimin; Lu, Jianxin

    2014-10-08

    Enzyme-linked immunosorbent assay (ELISA) provides a convenient means for the detection of Salmonella enterica serovar Typhimurium (STM), which is important for rapid diagnosis of foodborne pathogens. However, conventional ELISA is limited by antibody-antigen immunoreactions and suffers from poor sensitivity and tedious sample pretreatment. Therefore, development of novel ELISA remains challenging. Herein, we designed a comprehensive strategy for rapid, sensitive, and quantitative detection of STM with high specificity by gold nanoparticle-based enzyme-linked antibody-aptamer sandwich (nano-ELAAS) method. STM was captured and preconcentrated from samples with aptamer-modified magnetic particles, followed by binding with detector antibodies. Then nanoprobes carrying a large amount of reporter antibodies and horseradish peroxidase molecules were used for colorimetric signal amplification. Under the optimized reaction conditions, the nano-ELAAS assay had a quantitative detection range from 1 × 10(3) to 1 × 10(8) CFU mL(-1), a limit of detection of 1 × 10(3) CFU mL(-1), and a selectivity of >10-fold for STM in samples containing other bacteria at higher concentration with an assay time less than 3 h. In addition, the developed nanoprobes were improved in terms of detection range and/or sensitivity when compared with two commercial enzyme-labeled antibody signal reporters. Finally, the nano-ELAAS method was demonstrated to work well in milk samples, a common source of STM contamination.

  1. Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices

    PubMed Central

    Chen, Po-Cheng; Li, Yu-Chi; Ma, Jia-Yin; Huang, Jia-Yu; Chen, Chien-Fu; Chang, Huan-Tsung

    2016-01-01

    Polystyrene sulfonate (PSS), a strong polyelectrolyte, was used to prepare red photoluminescent PSS-penicillamine (PA) copper (Cu) nanoclusters (NC) aggregates, which displayed high selectivity and sensitivity to the detection of hydrogen sulfide (H2S). The size of the PSS-PA-Cu NC aggregates could be readily controlled from 5.5 μm to 173 nm using different concentrations of PSS, which enabled better dispersity and higher sensitivity towards H2S. PSS-PA-Cu NC aggregates provided rapid H2S detection by using the strong Cu-S interaction to quench NC photoluminescence as a sensing mechanism. As a result, a detection limit of 650 nM, which is lower than the maximum level permitted in drinking water by the World Health Organization, was achieved for the analysis of H2S in spring-water samples. Moreover, highly dispersed PSS-PA-Cu NC aggregates could be incorporated into a plate-format paper-based analytical device which enables ultra-low sample volumes (5 μL) and feature shorter analysis times (30 min) compared to conventional solution-based methods. The advantages of low reagent consumption, rapid result readout, limited equipment, and long-term storage make this platform sensitive and simple enough to use without specialized training in resource constrained settings. PMID:27113330

  2. Clostridium difficile infection diagnostics - evaluation of the C. DIFF Quik Chek Complete assay, a rapid enzyme immunoassay for detection of toxigenic C. difficile in clinical stool samples.

    PubMed

    Johansson, Karin; Karlsson, Hanna; Norén, Torbjörn

    2016-11-01

    Diagnostic testing for Clostridium difficile infection (CDI) has, in recent years, seen the introduction of rapid dual-EIA (enzyme immunoassay) tests combining species-specific glutamate dehydrogenase (GDH) with toxin A/B. In a prospective study, we compared the C. DIFF Quik Chek Complete test to a combination of selective culture (SC) and loop-mediated isothermal amplification (LAMP) of the toxin A gene. Of 419 specimens, 68 were positive in SC including 62 positive in LAMP (14.7%). The combined EIA yielded 82 GDH positives of which 47 were confirmed toxin A/B positive (11%) corresponding to a sensitivity and specificity of 94% for GDH EIA compared to SC and for toxin A/B EIA a sensitivity of 71% and a specificity of 99% compared to LAMP. Twenty different PCR ribotypes were evenly distributed except for UK 081 where only 25% were toxin A/B positive compared to LAMP. We propose a primary use of a combined GDH toxin A/B EIA permitting a sensitive 1-h result of 379 of 419 (90%, all negatives plus GDH and toxin EIA positives) referred specimens. The remaining 10% being GDH positive should be tested for toxin A/B gene on the same day and positive results left to a final decision by the physician. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  3. Nanostructured Gas Sensors for Health Care: An Overview

    PubMed Central

    Kaushik, Ajeet; Kumar, Rajesh; Jayant, Rahul Dev; Nair, Madhavan

    2015-01-01

    Nanostructured platforms have been utilized for fabrication of small, sensitive and reliable gas sensing devices owing to high functionality, enhanced charge transport and electro-catalytic property. As a result of globalization, rapid, sensitive and selective detection of gases in environment is essential for health care and security. Nonmaterial such as metal, metal oxides, organic polymers, and organic-inorganic hybrid nanocomposites exhibit interesting optical, electrical, magnetic and molecular properties, and hence are found potential gas sensing materials. Morphological, electrical, and optical properties of such nanostructures can be tailored via controlling the precursor concentration and synthesis conditions resulting to achieve desired sensing. This review presents applications of nano-enabling gas sensors to detect gases for environment monitoring. The recent update, challenges, and future vision for commercial applications of such sensor are also described here. PMID:26491544

  4. A Water-Soluble Fluorescent Probe for SO2 Derivatives in Aqueous Solution and Serum Based on Phenanthroimidazole Dye.

    PubMed

    Zhou, Yang; Wang, Ying; Xiao, Shuzhang; He, Xiafeng; Zhang, Nuonuo; Li, Dejiang; Zheng, Kaibo

    2017-05-01

    A water-soluble fluorescent SO 2 derivatives probe PI-SO 2 based on a phenanthroimidazole dye, and a sensitive SO 2 recognition site, aldehyde was constructed. The probe PI-SO 2 exhibits desirable properties such as high sensitivity, high selectivity and good water-solubility. Significantly, we have demonstrated that the probe PI-SO 2 is suitable for rapidly fluorescence detecting of SO 2 derivatives in aqueous solution and serum. The application of the novel probe PI-SO 2 proved that it was not only a useful tool for the detection of SO 2 derivatives in vitro, but also a potential assay for investigating the effects of SO 2 derivatives, and demonstrating its value in practical applicationin of complex biological samples.

  5. Low-Cost and Rapid Fabrication of Metallic Nanostructures for Sensitive Biosensors Using Hot-Embossing and Dielectric-Heating Nanoimprint Methods.

    PubMed

    Lee, Kuang-Li; Wu, Tsung-Yeh; Hsu, Hsuan-Yeh; Yang, Sen-Yeu; Wei, Pei-Kuen

    2017-07-02

    We propose two approaches-hot-embossing and dielectric-heating nanoimprinting methods-for low-cost and rapid fabrication of periodic nanostructures. Each nanofabrication process for the imprinted plastic nanostructures is completed within several seconds without the use of release agents and epoxy. Low-cost, large-area, and highly sensitive aluminum nanostructures on A4 size plastic films are fabricated by evaporating aluminum film on hot-embossing nanostructures. The narrowest bandwidth of the Fano resonance is only 2.7 nm in the visible light region. The periodic aluminum nanostructure achieves a figure of merit of 150, and an intensity sensitivity of 29,345%/RIU (refractive index unit). The rapid fabrication is also achieved by using radio-frequency (RF) sensitive plastic films and a commercial RF welding machine. The dielectric-heating, using RF power, takes advantage of the rapid heating/cooling process and lower electric power consumption. The fabricated capped aluminum nanoslit array has a 5 nm Fano linewidth and 490.46 nm/RIU wavelength sensitivity. The biosensing capabilities of the metallic nanostructures are further verified by measuring antigen-antibody interactions using bovine serum albumin (BSA) and anti-BSA. These rapid and high-throughput fabrication methods can benefit low-cost, highly sensitive biosensors and other sensing applications.

  6. Low-Cost and Rapid Fabrication of Metallic Nanostructures for Sensitive Biosensors Using Hot-Embossing and Dielectric-Heating Nanoimprint Methods

    PubMed Central

    Lee, Kuang-Li; Wu, Tsung-Yeh; Hsu, Hsuan-Yeh; Yang, Sen-Yeu; Wei, Pei-Kuen

    2017-01-01

    We propose two approaches—hot-embossing and dielectric-heating nanoimprinting methods—for low-cost and rapid fabrication of periodic nanostructures. Each nanofabrication process for the imprinted plastic nanostructures is completed within several seconds without the use of release agents and epoxy. Low-cost, large-area, and highly sensitive aluminum nanostructures on A4 size plastic films are fabricated by evaporating aluminum film on hot-embossing nanostructures. The narrowest bandwidth of the Fano resonance is only 2.7 nm in the visible light region. The periodic aluminum nanostructure achieves a figure of merit of 150, and an intensity sensitivity of 29,345%/RIU (refractive index unit). The rapid fabrication is also achieved by using radio-frequency (RF) sensitive plastic films and a commercial RF welding machine. The dielectric-heating, using RF power, takes advantage of the rapid heating/cooling process and lower electric power consumption. The fabricated capped aluminum nanoslit array has a 5 nm Fano linewidth and 490.46 nm/RIU wavelength sensitivity. The biosensing capabilities of the metallic nanostructures are further verified by measuring antigen–antibody interactions using bovine serum albumin (BSA) and anti-BSA. These rapid and high-throughput fabrication methods can benefit low-cost, highly sensitive biosensors and other sensing applications. PMID:28671600

  7. Rapid antibiotic susceptibility testing in a microfluidic pH sensor.

    PubMed

    Tang, Yanyan; Zhen, Li; Liu, Jingqing; Wu, Jianmin

    2013-03-05

    For appropriate selection of antibiotics in the treatment of pathogen infection, rapid antibiotic susceptibility testing (AST) is urgently needed in clinical practice. This study reports the utilization of a microfluidic pH sensor for monitoring bacterial growth rate in culture media spiked with different kinds of antibiotics. The microfluidic pH sensor was fabricated by integration of pH-sensitive chitosan hydrogel with poly(dimethylsiloxane) (PDMS) microfluidic channels. For facilitating the reflectometric interference spectroscopic measurements, the chitosan hydrogel was coated on an electrochemically etched porous silicon chip, which was used as the substrate of the microfluidic channel. Real-time observation of the pH change in the microchannel can be realized by Fourier transform reflectometric interference spectroscopy (FT-RIFS), in which the effective optical thickness (EOT) was selected as the optical signal for indicating the reversible swelling process of chitosan hydrogel stimulated by pH change. With this microfluidic pH sensor, we demonstrate that confinement of bacterial cells in a nanoliter size channel allows rapid accumulation of metabolic products and eliminates the need for long-time preincubation, thus reducing the whole detection time. On the basis of this technology, the whole bacterial growth curve can be obtained in less than 2 h, and consequently rapid AST can be realized. Compared with conventional methods, the AST data acquired from the bacterial growth curve can provide more detailed information for studying the antimicrobial behavior of antibiotics during different stages. Furthermore, the new technology also provides a convenient method for rapid minimal inhibition concentration (MIC) determination of individual antibiotics or the combinations of antibiotics against human pathogens that will find application in clinical and point-of-care medicine.

  8. Development of a highly sensitive immunochromatographic detection kit for H5 influenza virus hemagglutinin using silver amplification.

    PubMed

    Wada, Atsuhiko; Sakoda, Yoshihiro; Oyamada, Takayoshi; Kida, Hiroshi

    2011-12-01

    H5N1, a highly pathogenic avian influenza virus (HPAIV), has become a serious epizootic threat to the poultry population in Asia. In addition, significant numbers of human cases of HPAIV infection have been reported to date. To prevent the spread of HPAIV among humans and to allow for timely medical intervention, a rapid and high sensitive method is needed to detect and subtype the causative HPAIVs. In the present study, a silver amplification technique used in photographic development was combined with immunochromatography technologies and a highly sensitive and rapid diagnostic test to detect the hemagglutinin of H5 influenza viruses was developed. The sensitivity of the test kit was increased 500 times by silver amplification. The sensitivity of the method was more than 10 times higher than those of conventional rapid influenza diagnostic tests, which detect viral nucleoproteins. The diagnostic system developed in the present study can therefore provide rapid and highly sensitive results and will be useful for diagnosis of H5 HPAIV infection in humans and animals. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Multifunctional inorganic-organic hybrid nanospheres for rapid and selective luminescence detection of TNT in mixed nitroaromatics via magnetic separation.

    PubMed

    Ma, Yingxin; Huang, Sheng; Wang, Leyu

    2013-11-15

    Rapid, sensitive and selective detection of 2,4,6-trinitrotoluene (TNT) in aqueous solution differentiating from other nitroaromatics and independent of complicated instruments is in high demand for public safety and environmental monitoring. Despite of many methods for TNT detection, it is hard to differentiate TNT from 2,4,6-trinitrophenol (TNP) due to their highly similar structures and properties. In this work, via a simple and versatile method, LaF3ːCe(3+)-Tb(3+)and Fe3O4 nanoparticle-codoped multifunctional nanospheres were prepared through self-assembly of the building blocks. The luminescence of these nanocomposites was dramatically quenched via adding nitroaromatics into the aqueous solution. After the magnetic separation, however, the interference of other nitroaromatics including 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT), and nitrobenzene (NB) was effectively overcome due to the removal of these coexisting nitroaromatics from the surface of nanocomposites. Due to the formation of TNT(-)-RCONH3(+), the TNT was attached to the surface of the nanocomposites and was quantitatively detected by the postexposure luminescence quenching. Meanwhile, the luminescence intensity is negatively proportional to the concentration of TNT in the range of 0.01-5.0 μg/mL with the 3σ limit of detection (LOD) of 10.2 ng/mL. Therefore, the as-developed method provides a novel strategy for rapid and selective detection of TNT in the mixture solution of nitroaromatics by postexposure luminescence quenching. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Rapid polymerase chain reaction-based screening assay for bacterial biothreat agents.

    PubMed

    Yang, Samuel; Rothman, Richard E; Hardick, Justin; Kuroki, Marcos; Hardick, Andrew; Doshi, Vishal; Ramachandran, Padmini; Gaydos, Charlotte A

    2008-04-01

    To design and evaluate a rapid polymerase chain reaction (PCR)-based assay for detecting Eubacteria and performing early screening for selected Class A biothreat bacterial pathogens. The authors designed a two-step PCR-based algorithm consisting of an initial broad-based universal detection step, followed by specific pathogen identification targeted for identification of the Class A bacterial biothreat agents. A region in the bacterial 16S rRNA gene containing a highly variable sequence flanked by clusters of conserved sequences was chosen as the target for the PCR assay design. A previously described highly conserved region located within the 16S rRNA amplicon was selected as the universal probe (UniProbe, Integrated DNA Technology, Coralville, IA). Pathogen-specific TaqMan probes were designed for Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Performance of the assay was assessed using genomic DNA extracted from the aforementioned biothreat-related organisms (inactivated or surrogate) and other common bacteria. The UniProbe detected the presence of all tested Eubacteria (31/31) with high analytical sensitivity. The biothreat-specific probes accurately identified organisms down to the closely related species and genus level, but were unable to discriminate between very close surrogates, such as Yersinia philomiragia and Bacillus cereus. A simple, two-step PCR-based assay proved capable of both universal bacterial detection and identification of select Class A bacterial biothreat and biothreat-related pathogens. Although this assay requires confirmatory testing for definitive species identification, the method has great potential for use in ED-based settings for rapid diagnosis in cases of suspected Category A bacterial biothreat agents.

  11. Development of an Advanced Aidman Vision Screener (AVS) for selective assessment of outer and inner laser induced retinal injury

    NASA Astrophysics Data System (ADS)

    Boye, Michael W.; Zwick, Harry; Stuck, Bruce E.; Edsall, Peter R.; Akers, Andre

    2007-02-01

    The need for tools that can assist in evaluating visual function is an essential and a growing requirement as lasers on the modern battlefield mature and proliferate. The requirement for rapid and sensitive vision assessment under field conditions produced the USAMRD Aidman Vision Screener (AVS), designed to be used as a field diagnostic tool for assessing laser induced retinal damage. In this paper, we describe additions to the AVS designed to provide a more sensitive assessment of laser induced retinal dysfunction. The AVS incorporates spectral LogMar Acuity targets without and with neural opponent chromatic backgrounds. Thus, it provides the capability of detecting selective photoreceptor damage and its functional consequences at the level of both the outer and inner retina. Modifications to the original achromatic AVS have been implemented to detect selective cone system dysfunction by providing LogMar acuity Landolt rings associated with the peak spectral absorption regions of the S (short), M (middle), and L (long) wavelength cone photoreceptor systems. Evaluation of inner retinal dysfunction associated with selective outer cone damage employs LogMar spectral acuity charts with backgrounds that are neurally opponent. Thus, the AVS provides the capability to assess the effect of selective cone dysfunction on the normal neural balance at the level of the inner retinal interactions. Test and opponent background spectra have been optimized by using color space metrics. A minimal number of three AVS evaluations will be utilized to provide an estimate of false alarm level.

  12. Systematic Development and Validation of a Thin-Layer Densitometric Bioanalytical Method for Estimation of Mangiferin Employing Analytical Quality by Design (AQbD) Approach

    PubMed Central

    Khurana, Rajneet Kaur; Rao, Satish; Beg, Sarwar; Katare, O.P.; Singh, Bhupinder

    2016-01-01

    The present work aims at the systematic development of a simple, rapid and highly sensitive densitometry-based thin-layer chromatographic method for the quantification of mangiferin in bioanalytical samples. Initially, the quality target method profile was defined and critical analytical attributes (CAAs) earmarked, namely, retardation factor (Rf), peak height, capacity factor, theoretical plates and separation number. Face-centered cubic design was selected for optimization of volume loaded and plate dimensions as the critical method parameters selected from screening studies employing D-optimal and Plackett–Burman design studies, followed by evaluating their effect on the CAAs. The mobile phase containing a mixture of ethyl acetate : acetic acid : formic acid : water in a 7 : 1 : 1 : 1 (v/v/v/v) ratio was finally selected as the optimized solvent for apt chromatographic separation of mangiferin at 262 nm with Rf 0.68 ± 0.02 and all other parameters within the acceptance limits. Method validation studies revealed high linearity in the concentration range of 50–800 ng/band for mangiferin. The developed method showed high accuracy, precision, ruggedness, robustness, specificity, sensitivity, selectivity and recovery. In a nutshell, the bioanalytical method for analysis of mangiferin in plasma revealed the presence of well-resolved peaks and high recovery of mangiferin. PMID:26912808

  13. Beware the black box: investigating the sensitivity of FEA simulations to modelling factors in comparative biomechanics.

    PubMed

    Walmsley, Christopher W; McCurry, Matthew R; Clausen, Phillip D; McHenry, Colin R

    2013-01-01

    Finite element analysis (FEA) is a computational technique of growing popularity in the field of comparative biomechanics, and is an easily accessible platform for form-function analyses of biological structures. However, its rapid evolution in recent years from a novel approach to common practice demands some scrutiny in regards to the validity of results and the appropriateness of assumptions inherent in setting up simulations. Both validation and sensitivity analyses remain unexplored in many comparative analyses, and assumptions considered to be 'reasonable' are often assumed to have little influence on the results and their interpretation. HERE WE REPORT AN EXTENSIVE SENSITIVITY ANALYSIS WHERE HIGH RESOLUTION FINITE ELEMENT (FE) MODELS OF MANDIBLES FROM SEVEN SPECIES OF CROCODILE WERE ANALYSED UNDER LOADS TYPICAL FOR COMPARATIVE ANALYSIS: biting, shaking, and twisting. Simulations explored the effect on both the absolute response and the interspecies pattern of results to variations in commonly used input parameters. Our sensitivity analysis focuses on assumptions relating to the selection of material properties (heterogeneous or homogeneous), scaling (standardising volume, surface area, or length), tooth position (front, mid, or back tooth engagement), and linear load case (type of loading for each feeding type). Our findings show that in a comparative context, FE models are far less sensitive to the selection of material property values and scaling to either volume or surface area than they are to those assumptions relating to the functional aspects of the simulation, such as tooth position and linear load case. Results show a complex interaction between simulation assumptions, depending on the combination of assumptions and the overall shape of each specimen. Keeping assumptions consistent between models in an analysis does not ensure that results can be generalised beyond the specific set of assumptions used. Logically, different comparative datasets would also be sensitive to identical simulation assumptions; hence, modelling assumptions should undergo rigorous selection. The accuracy of input data is paramount, and simulations should focus on taking biological context into account. Ideally, validation of simulations should be addressed; however, where validation is impossible or unfeasible, sensitivity analyses should be performed to identify which assumptions have the greatest influence upon the results.

  14. Beware the black box: investigating the sensitivity of FEA simulations to modelling factors in comparative biomechanics

    PubMed Central

    McCurry, Matthew R.; Clausen, Phillip D.; McHenry, Colin R.

    2013-01-01

    Finite element analysis (FEA) is a computational technique of growing popularity in the field of comparative biomechanics, and is an easily accessible platform for form-function analyses of biological structures. However, its rapid evolution in recent years from a novel approach to common practice demands some scrutiny in regards to the validity of results and the appropriateness of assumptions inherent in setting up simulations. Both validation and sensitivity analyses remain unexplored in many comparative analyses, and assumptions considered to be ‘reasonable’ are often assumed to have little influence on the results and their interpretation. Here we report an extensive sensitivity analysis where high resolution finite element (FE) models of mandibles from seven species of crocodile were analysed under loads typical for comparative analysis: biting, shaking, and twisting. Simulations explored the effect on both the absolute response and the interspecies pattern of results to variations in commonly used input parameters. Our sensitivity analysis focuses on assumptions relating to the selection of material properties (heterogeneous or homogeneous), scaling (standardising volume, surface area, or length), tooth position (front, mid, or back tooth engagement), and linear load case (type of loading for each feeding type). Our findings show that in a comparative context, FE models are far less sensitive to the selection of material property values and scaling to either volume or surface area than they are to those assumptions relating to the functional aspects of the simulation, such as tooth position and linear load case. Results show a complex interaction between simulation assumptions, depending on the combination of assumptions and the overall shape of each specimen. Keeping assumptions consistent between models in an analysis does not ensure that results can be generalised beyond the specific set of assumptions used. Logically, different comparative datasets would also be sensitive to identical simulation assumptions; hence, modelling assumptions should undergo rigorous selection. The accuracy of input data is paramount, and simulations should focus on taking biological context into account. Ideally, validation of simulations should be addressed; however, where validation is impossible or unfeasible, sensitivity analyses should be performed to identify which assumptions have the greatest influence upon the results. PMID:24255817

  15. Surface-Enhanced Raman Scattering Surface Selection Rules for the Proteomic Liquid Biopsy in Real Samples: Efficient Detection of the Oncoprotein c-MYC.

    PubMed

    Pazos, Elena; Garcia-Algar, Manuel; Penas, Cristina; Nazarenus, Moritz; Torruella, Arnau; Pazos-Perez, Nicolas; Guerrini, Luca; Vázquez, M Eugenio; Garcia-Rico, Eduardo; Mascareñas, José L; Alvarez-Puebla, Ramon A

    2016-11-02

    Blood-based biomarkers (liquid biopsy) offer extremely valuable tools for the noninvasive diagnosis and monitoring of tumors. The protein c-MYC, a transcription factor that has been shown to be deregulated in up to 70% of human cancers, can be used as a robust proteomic signature for cancer. Herein, we developed a rapid, highly specific, and sensitive surface-enhanced Raman scattering (SERS) assay for the quantification of c-MYC in real blood samples. The sensing scheme relies on the use of specifically designed hybrid plasmonic materials and their bioderivatization with a selective peptidic receptor modified with a SERS transducer. Peptide/c-MYC recognition events translate into measurable alterations of the SERS spectra associated with a molecular reorientation of the transducer, in agreement with the surface selection rules. The efficiency of the sensor is demonstrated in cellular lines, healthy donors and a cancer patient.

  16. Evaluation of a New Immunochromatography Technology Test (LDBio Diagnostics) To Detect Toxoplasma IgG and IgM: Comparison with the Routine Architect Technique

    PubMed Central

    Flori, Pierre; Delaunay, Edouard; Guillerme, Cécile; Charaoui, Sana; Raberin, Hélène; Hafid, Jamal; L'Ollivier, Coralie

    2017-01-01

    ABSTRACT A study comparing the ICT (immunochromatography technology) Toxoplasma IgG and IgM rapid diagnostic test (LDBio Diagnostics, France) with a fully automated system, Architect, was performed on samples from university hospitals of Marseille and Saint-Etienne. A total of 767 prospective sera and 235 selected sera were collected. The panels were selected to test various IgG and IgM parameters. The reference technique, Toxoplasma IgGII Western blot analysis (LDBio Diagnostics), was used to confirm the IgG results, and commercial kits Platelia Toxo IgM (Bio-Rad) and Toxo-ISAgA (bioMérieux) were used in Saint-Etienne and Marseille, respectively, as the IgM reference techniques. Sensitivity and specificity of the ICT and the Architect IgG assays were compared using a prospective panel. Sensitivity was 100% for the ICT test and 92.1% for Architect (cutoff at 1.6 IU/ml). The low-IgG-titer serum results confirmed that ICT sensitivity was superior to that of Architect. Specificity was 98.7% (ICT) and 99.8% (Architect IgG). The ICT test is also useful for detecting IgM without IgG and is both sensitive (100%) and specific (100%), as it can distinguish nonspecific IgM from specific Toxoplasma IgM. In comparison, IgM sensitivity and specificity on Architect are 96.1% and 99.6%, respectively (cutoff at 0.5 arbitrary units [AU]/ml). To conclude, this new test overcomes the limitations of automated screening techniques, which are not sensitive enough for IgG and lack specificity for IgM (rare IgM false-positive cases). PMID:28954897

  17. Biotin-streptavidin enzyme-linked immunosorbent assay for detecting Tetrabromobisphenol A in electronic waste.

    PubMed

    Bu, Dan; Zhuang, Huisheng; Zhou, Xinchu; Yang, Guangxin

    2014-03-01

    Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant. A sensitive and selective indirect competitive biotin-streptavidin-amplified enzyme-linked immunosorbent assay (BA-ELISA) was developed for detecting TBBPA. The optimal hapten of TBBPA was 2-(2,6-dibromo-4-(2-(3,5-dibromo-4-hydroxyphenly)propan-2-yl)) acetic acid. Several physiochemical factors that influence assay performance, such as optimal coupling concentration of immunogen and antibody, organic solvent, ionic strength, and pH, were studied and optimized. The limit of detection (IC10) was 0.027 ng/mL and the median inhibitory concentration (IC50) was 0.58 ng/mL. The BA-ELISA was highly selective, with low cross-reactivity with TBBPA analogs. Finally, the assay was used to detect TBBPA in electronic waste samples. The results are consistent with those using liquid chromatography, which proves that the proposed immunoassay is accurate and receptive. This BA-ELISA method is suitable for the rapid and sensitive screening of TBBPA in environmental monitoring. © 2013 Published by Elsevier B.V.

  18. Evolution of a genetic polymorphism with climate change in a Mediterranean landscape

    PubMed Central

    Thompson, John; Charpentier, Anne; Bouguet, Guillaume; Charmasson, Faustine; Roset, Stephanie; Buatois, Bruno; Vernet, Philippe; Gouyon, Pierre-Henri

    2013-01-01

    Many species show changes in distribution and phenotypic trait variation in response to climatic warming. Evidence of genetically based trait responses to climate change is, however, less common. Here, we detected evolutionary variation in the landscape-scale distribution of a genetically based chemical polymorphism in Mediterranean wild thyme (Thymus vulgaris) in association with modified extreme winter freezing events. By comparing current data on morph distribution with that observed in the early 1970s, we detected a significant increase in the proportion of morphs that are sensitive to winter freezing. This increase in frequency was observed in 17 of the 24 populations in which, since the 1970s, annual extreme winter freezing temperatures have risen above the thresholds that cause mortality of freezing-sensitive morphs. Our results provide an original example of rapid ongoing evolutionary change associated with relaxed selection (less extreme freezing events) on a local landscape scale. In species whose distribution and genetic variability are shaped by strong selection gradients, there may be little time lag associated with their ecological and evolutionary response to long-term environmental change. PMID:23382198

  19. Recent biosensing developments in environmental security.

    PubMed

    Wanekaya, Adam K; Chen, Wilfred; Mulchandani, Ashok

    2008-06-01

    Environmental security is one of the fundamental requirements of our well being. However, it still remains a major global challenge. Therefore, in addition to reducing and/or eliminating the amounts of toxic discharges into the environment, there is need to develop techniques that can detect and monitor these environmental pollutants in a sensitive and selective manner to enable effective remediation. Because of their integrated nature, biosensors are ideal for environmental monitoring and detection as they can be portable and provide selective and sensitive rapid responses in real time. In this review we discuss the main concepts behind the development of biosensors that have most relevant applications in the field of environmental monitoring and detection. We also review and document recent trends and challenges in biosensor research and development particularly in the detection of species of environmental significance such as organophosphate nerve agents, heavy metals, organic contaminants, pathogenic microorganisms and their toxins. Special focus will be given to the trends that have the most promising applications in environmental security. We conclude by highlighting the directions towards which future biosensors research in environmental security sector might proceed.

  20. Diagnostics Strategies with Electrochemical Affinity Biosensors Using Carbon Nanomaterials as Electrode Modifiers

    PubMed Central

    Campuzano, Susana; Yáñez-Sedeño, Paloma; Pingarrón, José M.

    2016-01-01

    Early diagnosis is often the key to successful patient treatment and survival. The identification of various disease signaling biomarkers which reliably reflect normal and disease states in humans in biological fluids explain the burgeoning research field in developing new methodologies able to determine the target biomarkers in complex biological samples with the required sensitivity and selectivity and in a simple and rapid way. The unique advantages offered by electrochemical sensors together with the availability of high affinity and specific bioreceptors and their great capabilities in terms of sensitivity and stability imparted by nanostructuring the electrode surface with different carbon nanomaterials have led to the development of new electrochemical biosensing strategies that have flourished as interesting alternatives to conventional methodologies for clinical diagnostics. This paper briefly reviews the advantages of using carbon nanostructures and their hybrid nanocomposites as electrode modifiers to construct efficient electrochemical sensing platforms for diagnosis. The review provides an updated overview of some selected examples involving attractive amplification and biosensing approaches which have been applied to the determination of relevant genetic and protein diagnostics biomarkers. PMID:28035946

  1. A Highly Sensitive and Selective Method for the Determination of an Iodate in Table-salt Samples Using Malachite Green-based Spectrophotometry.

    PubMed

    Konkayan, Mongkol; Limchoowong, Nunticha; Sricharoen, Phitchan; Chanthai, Saksit

    2016-01-01

    A simple, rapid, and sensitive malachite green-based spectrophotometric method for the selective trace determination of an iodate has been developed and presented for the first time. The reaction mixture was specifically involved in the liberation of iodine in the presence of an excess of iodide in an acidic condition following an instantaneous reaction between the liberated iodine and malachite green dye. The optimum condition was obtained with a buffer solution pH of 5.2 in the presence of 40 mg L -1 potassium iodide and 1.5 × 10 -5 M malachite green for a 5-min incubation time. The iodate contents in some table-salt samples were in the range of 26 to 45 mg kg -1 , while those of drinking water, tap water, canal water, and seawater samples were not detectable (< 96 ng mL -1 of limits of detection, LOQ) with their satisfied method of recoveries of between 93 and 108%. The results agreed with those obtained using ICP-OES for comparison.

  2. Colorimetric determination of Al(III) based on the aggregation of gold nanoparticles functionalized with novel 4-benzoyl pyrazolone derivative

    NASA Astrophysics Data System (ADS)

    Abubaker, Mariam; Ngah, Che Wan Zanariah Che Wan; Ahmad, Musa; Kuswandi, Bambang

    2018-06-01

    A sensitive and selective colorimetric method has been developed for detection of Al3+ ion using 4-benzoyl pyrazolone-functionalized gold nanoparticles (BMPBP-AuNPs) as novel colorimetric probes. The BMPBP-AuNPs were characterized by UV-visible spectrometry and transmission electron microscopy (TEM). It was found that the addition of the Al3+ ions led to a rapid aggregation of the BMPBP-AuNPs, which changed the color of the mixture from red to blue. Furthermore, there was a shift in the characteristic surface plasmon resonance (SPR) peak from 524 to 650 nm of BMPBP-AuNPs, which confirmed that a good linear relation (R2 = 0.9935) was present between the absorption ratio of 524 and 650 nm. Also, the assay detected the Al3+ ion concentrations in the linear range 0-12 ppm with the detection limit is 0.05 ppm. Finally, the synthesized BMPBP-AuNPs were successfully used as a colorimetric sensor for the selective and sensitive detection of the Al3+ ions in water samples.

  3. [Primary care screening of problems in the elderly and a proposal for a screening protocol with a multidimensional approach].

    PubMed

    Lino, Valéria Teresa Saraiva; Portela, Margareth Crisóstomo; Camacho, Luiz Antonio Bastos; Rodrigues, Nadia Cristina Pinheiro; Andrade, Monica Kramer de Noronha; O'Dwyer, Gisele

    2016-07-21

    The objectives were to examine psychometric properties of a screening test for the elderly and to propose a protocol for use in primary care. The method consisted of four stages: (1) inter-evaluator reliability for performance tests and self-assessment questions for eight functions; (2) sensitivity and specificity of questions on depression and social support; (3) meeting of experts to select instrumental activities of daily living (IADL); and (4) elaboration of the protocol. Screening lasted 16 minutes. Inter-evaluator reliability was excellent for performance tests but poor for questions. Depression and social support showed satisfactory sensitivity and specificity (0.74/0.77 and 0.77/0.96). Four IADL were selected by more than 55% of the experts. Following the results, a screening protocol was elaborated that prioritized the use of performance tests, maintaining questions on mood, social support, and IADL. The study suggests better reproducibility of performance tests when compared to questions. For mood and social support, the questions may provide a first screening stage. The proposed protocol allows rapid screening of problems.

  4. Qualitative and quantitative analysis of the diuretic component ergone in Polyporus umbellatus by HPLC with fluorescence detection and HPLC-APCI-MS/MS.

    PubMed

    Zhao, Ying-Yong; Zhao, Ye; Zhang, Yong-Min; Lin, Rui-Chao; Sun, Wen-Ji

    2009-06-01

    Polyporus umbellatus is a widely used anti-aldosteronic diuretic in Traditional Chinese medicine (TCM). A new, sensitive and selective high-performance liquid chromatography-fluorescence detector (HPLC-FLD) and high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLC-APCI-MS/MS) method for quantitative and qualitative determination of ergosta-4,6,8(14),22-tetraen-3-one(ergone), which is the main diuretic component, was provided for quality control of P. umbellatus crude drug. The ergone in the ethanolic extract of P. umbellatus was unambiguously characterized by HPLC-APCI, and further confirmed by comparing with a standard compound. The trace ergone was detected by the sensitive and selective HPLC-FLD. Linearity (r2 > 0.9998) and recoveries of low, medium and high concentration (100.5%, 100.2% and 100.4%) were consistent with the experimental criteria. The limit of detection (LOD) of ergone was around 0.2 microg/mL. Our results indicated that the content of ergone in P. umbellatus varied significantly from habitat to habitat with contents ranging from 2.13 +/- 0.02 to 59.17 +/- 0.05 microg/g. Comparison among HPLC-FLD and HPLC-UV or HPLC-APCI-MS/MS demonstrated that the HPLC-FLD and HPLC-APCI-MS/MS methods gave similar quantitative results for the selected herb samples, the HPLC-UV methods gave lower quantitative results than HPLC-FLD and HPLC-APCI-MS/MS methods. The established new HPLC-FLD method has the advantages of being rapid, simple, selective and sensitive, and could be used for the routine analysis of P. umbellatus crude drug.

  5. A biolayer interferometry-based enzyme-linked aptamer sorbent assay for real-time and highly sensitive detection of PDGF-BB.

    PubMed

    Gao, Shunxiang; Zheng, Xin; Wu, Jihong

    2018-04-15

    Accurate, fast and sensitive detection of disease-specific protein biomarkers, especially in blood, urine, or other bodily fluids, is an important approach to achieve early disease diagnosis. Platelet-derived growth factor-BB (PDGF-BB), a widely used biomarker, is involved in a substantial number of serious diseases, such as hepatic fibrosis, atherosclerosis, age-related macular degeneration and diabetic eye disease and is often over-expressed in human malignant tumors. Therefore, the development of sensitive and specific detection methods for PDGF-BB is of great importance for the early diagnosis of disease and assessments of patient recovery. In the current study, a biolayer interferometry-based enzyme-linked aptamer sorbent assay (BLI-ELASA) was successfully established for rapid (20-25min), high-throughput (8 or 16 samples) and real-time monitoring of PDGF-BB in clinical samples. The method exhibited a broad detection range from 0.5 to 1000ng/mL of PDGF-BB (good linear range from 0.5 to 10ng/mL), with a low detection limit of 0.08ng/mL. Moreover, BLI-ELASA was applied to the detection of PDGF-BB in spiked serum and urine samples and showed a high degree of selectivity for PDGF-BB, good reproducibility, and stability. We believe that the methodology in this work can be easily adapted to detect other biomolecules in clinical samples, including viruses, pathogens and toxins, in a rapid, sensitive, high-throughput and real-time manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. pH-Sensitive PEGylated liposomes functionalized with a fibronectin-mimetic peptide show enhanced intracellular delivery to colon cancer cell.

    PubMed

    Garg, Ashish; Kokkoli, Efrosini

    2011-08-01

    pH-sensitive liposomes undergo rapid destabilization under mildly acidic conditions such as those found in endocytotic vesicles. Though this makes them promising drug carriers, their application is limited due to their rapid clearance from circulation by the reticulo-endothelial system. Researchers have therefore used pH-sensitive liposomes that are sterically stabilized by polyethylene glycol (PEG) molecules (stealth liposomes) on the liposome surface. The goal of this study is to bring bio-functionality to pH-sensitive PEGylated liposomes in order to facilitate their potential use as a targeted drug delivery agent. To improve the selectivity of these nanoparticles, we included a targeting moiety, PR_b which specifically recognizes and binds to integrin α(5)β(1) expressing cells. PR_b (KSSPHSRN(SG)(5)RGDSP) is a novel fibronectin-mimetic peptide sequence that mimics the cell adhesion domain of fibronectin. Integrin α(5)β(1) is expressed on several types of cancer cells, including colon cancer, and plays an important role in tumor growth and metastasis. We have thoroughly studied the release of calcein from pH-sensitive PEGylated liposomes by varying the lipid composition of the liposomes in the absence and presence of the targeting peptide, PR_b, and accounting for the first time for the effect of both pH and time (photo-bleaching effect) on the fluorescence signal of calcein. We have demonstrated that we can design PR_b-targeted pH-sensitive PEGylated liposomes, which can undergo destabilization under mildly acidic conditions and have shown that incorporating the PR_b peptide does not significantly affect the pH-sensitivity of the liposomes. PR_b-targeted pH-sensitive PEGylated liposomes bind to CT26.WT colon carcinoma cells that express integrin α(5)β(1), undergo cellular internalization, and release their load intracellularly in a short period of time as compared to other formulations. Our studies demonstrate that PR_b-functionalized pH-sensitive targeted delivery systems have the potential to deliver a payload directly to cancer cells in an efficient and specific manner.

  7. Rapid and sensitive detection of ketamine in blood using novel fluorescence genosensor.

    PubMed

    Ding, Yanjun; Li, Xingmei; Guo, Yadong; Yan, Jie; Ling, Jiang; Li, Weichen; Lan, Lingmei; Chang, Yunfeng; Cai, Jifeng; Zha, Lagabaiyla

    2017-12-01

    In recent years, drug abuse has been considered as a most challenging social problem that aroused public attention. Ketamine has increased in unregulated use as a 'recreational drug' in teenagers. However, there is no suitable and maneuverable detection method for ketamine in situ at the moment. Fluorescence sensor technique, with predominant recognition and simple operation, is a good potential application in drug detection. Here, we first reported a highly sensitive and selective fluorescence genosensor for rapid detection of ketamine based on DNA-templated silver nanoclusters (DNA-AgNCs) probes, in which the DNA sequence could specially recognize ketamine with high affinity. Parameters affecting detection efficiency were investigated and optimized. Under optimum conditions, the as-prepared genosensor can allow for the determination of ketamine in the concentration range of 0.0001-20 μg/mL with two linear equations: one is y = 2.84x-7.139 (R 2 = 0.987) for 0.0001-0.1 μg/mL, and the other is y = 1.87x-0.091 (R 2 = 0.962) for 0.1-20 μg/mL, and the estimated detection limit of ketamine is 0.06 ng/mL. Moreover, the feasibility of this proposed method was also demonstrated by analyzing forensic blood samples. Compared with official gas chromatography/mass spectrometry (GC/MS), this fluorescence genosensor is simple, rapid, and accurate for quantitative determination of ketamine in blood for pharmaceutical and forensic analysis. Overall, it is the first report on a fluorescence genosensor for detecting ketamine directly in blood. This research may provide a new insight for the analyst to band fluorescence genosensor technology together with drug monitoring in the battle against drug abuse and forensic examination. Graphical abstract High selectively detection of ketamine using a novel fluorescence genosensor based on DNA-AgNCs probe.

  8. Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin.

    PubMed

    Gao, Shunxiang; Zheng, Xin; Hu, Bo; Sun, Mingjuan; Wu, Jihong; Jiao, Binghua; Wang, Lianghua

    2017-03-15

    In this study, we coupled biolayer interferometry (BLI) with competitive binding assay through an enzyme-linked aptamer and developed a real-time, ultra-sensitive, rapid quantitative method for detection of the marine biotoxin palytoxin. Horseradish peroxidase-labeled aptamers were used as biorecognition receptors to competitively bind with palytoxin, which was immobilized on the biosensor surface. The palytoxin: horseradish peroxidase-aptamer complex was then submerged in a 3,3'-diaminobenzidine solution, which resulted in formation of a precipitated polymeric product directly on the biosensor surface and a large change in the optical thickness of the biosensor layer. This change could obviously shift the interference pattern and generate a response profile on the BLI biosensor. The biosensor showed a broad linear range for palytoxin (200-700pg/mL) with a low detection limit (0.04pg/mL). Moreover, the biosensor was applied to the detection of palytoxin in spiked extracts and showed a high degree of selectivity for palytoxin, good reproducibility, and stability. This enzyme-linked, aptamer-based, competitive BLI biosensor offers a promising method for rapid and sensitive detection of palytoxin and other analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Rapid quantification of clostridial epsilon toxin in complex food and biological matrixes by immunopurification and ultraperformance liquid chromatography-tandem mass spectrometry.

    PubMed

    Seyer, Alexandre; Fenaille, François; Féraudet-Tarisse, Cecile; Volland, Hervé; Popoff, Michel R; Tabet, Jean-Claude; Junot, Christophe; Becher, François

    2012-06-05

    Epsilon toxin (ETX) is one of the most lethal toxins produced by Clostridium species and is considered as a potential bioterrorist weapon. Here, we present a rapid mass spectrometry-based method for ETX quantification in complex matrixes. As a prerequisite, naturally occurring prototoxin and toxin species were first structurally characterized by top-down and bottom-up experiments, to identify the most pertinent peptides for quantification. Following selective ETX immunoextraction and trypsin digestion, two proteotypic peptides shared by all the toxin forms were separated by ultraperformance liquid chromatography (UPLC) and monitored by ESI-MS (electrospray ionization-mass spectrometry) operating in the multiple reaction monitoring mode (MRM) with collision-induced dissociation. Thorough protocol optimization, i.e., a 15 min immunocapture, a 2 h enzymatic digestion, and an UPLC-MS/MS detection, allowed the whole quantification process including the calibration curve to be performed in less than 4 h, without compromising assay robustness and sensitivity. The assay sensitivity in milk and serum was estimated at 5 ng·mL(-1) for ETX, making this approach complementary to enzyme linked immunosorbent assay (ELISA) techniques.

  10. A method of multiplex PCR for detection of field released Beauveria bassiana, a fungal entomopathogen applied for pest management in jute (Corchorus olitorius).

    PubMed

    Biswas, Chinmay; Dey, Piyali; Gotyal, B S; Satpathy, Subrata

    2015-04-01

    The fungal entomopathogen Beauveria bassiana is a promising biocontrol agent for many pests. Some B. bassiana strains have been found effective against jute pests. To monitor the survival of field released B. bassiana a rapid and efficient detection technique is essential. Conventional methods such as plating method or direct culture method which are based on cultivation on selective media followed by microscopy are time consuming and not so sensitive. PCR based methods are rapid, sensitive and reliable. A single primer PCR may fail to amplify some of the strains. However, multiplex PCR increases the possibility of detection as it uses multiple primers. Therefore, in the present investigation a multiplex PCR protocol was developed by multiplexing three primers SCA 14, SCA 15 and SCB 9 to detect field released B. bassiana strains from soil as well as foliage of jute field. Using our multiplex PCR protocol all the five B. bassiana strains could be detected from soil and three strains viz., ITCC 6063, ITCC 4563 and ITCC 4796 could be detected even from the crop foliage after 45 days of spray.

  11. Label-free electrochemical genosensor based on mesoporous silica thin film.

    PubMed

    Saadaoui, Maroua; Fernández, Iñigo; Luna, Gema; Díez, Paula; Campuzano, Susana; Raouafi, Noureddine; Sánchez, Alfredo; Pingarrón, José M; Villalonga, Reynaldo

    2016-10-01

    A novel label-free electrochemical strategy for nucleic acid detection was developed by using gold electrodes coated with mesoporous silica thin films as sensing interface. The biosensing approach relies on the covalent attachment of a capture DNA probe on the surface of the silica nanopores and further hybridization with its complementary target oligonucleotide sequence, causing a diffusion hindering of an Fe(CN)6 (3-/4-) electrochemical probe through the nanochannels of the mesoporous film. This DNA-mesoporous silica thin film-modified electrodes allowed sensitive (91.7 A/M) and rapid (45 min) detection of low nanomolar levels of synthetic target DNA (25 fmol) and were successfully employed to quantify the endogenous content of Escherichia coli 16S ribosomal RNA (rRNA) directly in raw bacterial lysate samples without isolation or purification steps. Moreover, the 1-month stability demonstrated by these biosensing devices enables their advanced preparation and storage, as desired for practical real-life applications. Graphical abstract Mesoporous silica thin films as scaffolds for the development of novel label-free electrochemical genosensors to perform selective, sensitive and rapid detection of target oligonucleotide sequences. Application towards E. coli determination.

  12. Surface-enhanced Raman for monitoring toxins in water

    NASA Astrophysics Data System (ADS)

    Spencer, Kevin M.; Sylvia, James M.; Clauson, Susan L.; Bertone, Jane F.; Christesen, Steven D.

    2004-02-01

    Protection of the drinking water supply from a terrorist attack is of critical importance. Since the water supply is vast, contamination prevention is difficult. Therefore, rapid detection of contaminants, whether a military chemical/biological threat, a hazardous chemical spill, naturally occurring toxins, or bacterial build-up is a priority. The development of rapid environmentally portable and stable monitors that allow continuous monitoring of the water supply is ideal. EIC Laboratories has been developing Surface-Enhanced Raman Spectroscopy (SERS) to detect chemical agents, toxic industrial chemicals (TICs), viruses, cyanotoxins and bacterial agents. SERS is an ideal technique for the Joint Service Agent Water Monitor (JSAWM). SERS uses the enhanced Raman signals observed when an analyte adsorbs to a roughened metal substrate to enable trace detection. Proper development of the metal substrate will optimize the sensitivity and selectivity towards the analytes of interest.

  13. Rapid assessment of tinnitus-related psychological distress using the Mini-TQ.

    PubMed

    Hiller, Wolfgang; Goebel, Gerhard

    2004-01-01

    The aim of this study was to develop an abridged version of the Tinnitus Questionnaire (TQ) to be used as a quick tool for the assessment of tinnitus-related psychological distress. Data from 351 inpatients and 122 outpatients with chronic tinnitus were used to analyse item statistics and psychometric properties. Twelve items with an optimal combination of high item-total correlations, reliability and sensitivity in assessing changes were selected for the Mini-TQ. Correlation with the full TQ was >0.90, and test-retest reliability was 0.89. Validity was confirmed by associations with general psychological symptom patterns. Treatment effects indicated by the Mini-TQ were slightly greater than those indicated by the full TQ. The Mini-TQ is recommended as a psychometrically approved and solid tool for rapid and economical assessment of subjective tinnitus distress.

  14. Organic conjugated small molecule materials based optical probe for rapid, colorimetric and UV-vis spectral detection of phosphorylated protein in placental tissue.

    PubMed

    Wang, Yanfang; Yang, Na; Liu, Yi

    2018-04-05

    A novel organic small molecule with D-Pi-A structure was prepared, which was found to be a promising colorimetric and ratiometric UV-vis spetral probe for detection of phosphorylated proteins with the help of tetravalent zirconium ion. Such optical probe based on chromophore WYF-1 shows a rapid response (within 10s) and high selectivity and sensitivity for phosphorylated proteins, giving distinct colorimetric and ratiometric UV-vis changes at 720 and 560nm. The detection limit for phosphorylated proteins was estimated to be 100nM. In addition, detection of phosphorylated proteins in placental tissue samples with this probe was successfully applied, which indicates that this probe holds great potential for phosphorylated proteins detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Sensitive and selective determination of fluvoxamine maleate using a sensitive chemiluminescence system based on the alkaline permanganate-Rhodamine B-gold nanoparticles reaction.

    PubMed

    Hassanzadeh, Javad; Amjadi, Mohammad

    2015-06-01

    A high-yield chemiluminescence (CL) system based on the alkaline permanganate-Rhodamine B reaction was developed for the sensitive determination of fluvoxamine maleate (Flu). Rhodamine B is oxidized by alkaline KMnO4 and a weak CL emission is produced. It was demonstrated that gold nanoparticles greatly enhance this CL emission due to their interaction with Rhodamine B molecules. It is also observed that sodium dodecyl sulfate, an anionic surfactant, can strongly increase this enhancement. In addition, it was demonstrated that a notable decrease in the CL intensity is observed in the presence of Flu. This may be related to Flu oxidation with KMnO4 . There is a linear relationship between the decrease in CL intensity and the Flu concentration over a range of 2-300 µg/L. A new simple, rapid and sensitive CL method was developed for the determination of Flu with a detection limit (3s) of 1.35 µg/L. The proposed method was used for the determination of Flu in pharmaceutical and urine samples. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Temperature shock, injury and transient sensitivity to nisin in Gram negatives.

    PubMed

    Boziaris, I S; Adams, M R

    2001-10-01

    The effect of thermal stresses on survival, injury and nisin sensitivity was investigated in Salmonella Enteritidis PT4, PT7 and Pseudomonas aeruginosa. Heating at 55 degrees C, rapid chilling to 0.5 degrees C or freezing at -20 degrees C produced transient sensitivity to nisin. Cells were only sensitive if nisin was present during stress. Resistance recovered rapidly afterwards, though some cells displayed residual injury. Injury was assessed by SDS sensitivity, hydrophobicity changes, lipopolysaccharide release and NPN uptake. LPS release and hydrophobicity were not always associated with transient nisin sensitivity. Uptake of NPN correlated better but persisted longer after treatment. Thermal shocks produce transient injury to the outer membrane, allowing nisin access. After treatment, the permeability barrier is rapidly restored by a process apparently involving reorganization rather than biosynthetic repair. Inclusion of nisin during food treatments that impose sub-lethal stress on Gram negatives could increase process lethality, enhancing microbiological safety and stability.

  17. One-step synthesis of fluorescent carbon dots for sensitive and selective detection of hyperin.

    PubMed

    Liu, Lizhen; Mi, Zhi; Hu, Qin; Li, Caiqing; Li, Xiaohua; Feng, Feng

    2018-08-15

    In this article, we presented a new rapid, sensitive and selective method for the determination of hyperin (Hyp) based on the fluorescence quenching of fluorescent carbon dots (CDs). The CDs were prepared by simply mixing an aqueous solution of citric acid with diphosphorus pentoxide. This one-step synthetic route is fast and simple with neither high temperature nor complicated synthesis steps is involved. When Hyp was added to CDs solution, the fluorescence intensity of the CDs significantly decreased. The CDs display high selectivity for Hyp over many potentially interfering substances. Under the optimized conditions, a good linear relationship between the fluorescence intensity ratio F o /F and the concentration of Hyp is obtained in a range of 0.22-55 µM with a detection limit (S/N = 3) of 78.3 nM. The method was successfully applied for the determination of Hyp in fufangmuji granules and human serum samples with recoveries in a range of 93.3-107.0%. This paper highlights the usefulness of CDs as an effective fluorescence probe for the Hyp detection due to its easy preparation, low-cost, excellent photostability, favorable biocompatibility and low cytotoxicity. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. A highly selective electrochemical sensor based on molecularly imprinted polypyrrole-modified gold electrode for the determination of glyphosate in cucumber and tap water.

    PubMed

    Zhang, Chao; She, Yongxin; Li, Tengfei; Zhao, Fengnian; Jin, Maojun; Guo, Yirong; Zheng, Lufei; Wang, Shanshan; Jin, Fen; Shao, Hua; Liu, Haijin; Wang, Jing

    2017-12-01

    An electrochemical sensor based on molecularly imprinted polypyrrole (MIPPy) was developed for selective and sensitive detection of the herbicide glyphosate (Gly) in cucumber and tap water samples. The sensor was prepared via synthesis of molecularly imprinted polymers on a gold electrode in the presence of Gly as the template molecule and pyrrole as the functional monomer by cyclic voltammetry (CV). The sensor preparation conditions including the ratio of template to functional monomers, number of CV cycles in the electropolymerization process, the method of template removal, incubation time, and pH were optimized. Under the optimal experimental conditions, the DPV peak currents of hexacyanoferrate/hexacyanoferrite changed linearly with Gly concentration in the range from 5 to 800 ng mL -1 , with a detection limit of 0.27 ng mL -1 (S/N = 3). The sensor was used to detect the concentration of Gly in cucumber and tap water samples, with recoveries ranging from 72.70 to 98.96%. The proposed sensor showed excellent selectivity, good stability and reversibility, and could detect the Gly in real samples rapidly and sensitively. Graphical abstract Schematic illustration of the experimental procedure to detect Gly using the MIPPy electrode.

  19. The coeruleus/subcoeruleus complex in idiopathic rapid eye movement sleep behaviour disorder.

    PubMed

    Ehrminger, Mickael; Latimier, Alice; Pyatigorskaya, Nadya; Garcia-Lorenzo, Daniel; Leu-Semenescu, Smaranda; Vidailhet, Marie; Lehericy, Stéphane; Arnulf, Isabelle

    2016-04-01

    Idiopathic rapid eye movement sleep behaviour disorder is characterized by nocturnal violence, increased muscle tone during rapid eye movement sleep and the lack of any other neurological disease. However, idiopathic rapid eye movement sleep behaviour disorder can precede parkinsonism and dementia by several years. Using 3 T magnetic resonance imaging and neuromelanin-sensitive sequences, we previously found that the signal intensity was reduced in the locus coeruleus/subcoeruleus area of patients with Parkinson's disease and rapid eye movement sleep behaviour disorder. Here, we studied the integrity of the locus coeruleus/subcoeruleus complex with neuromelanin-sensitive imaging in 21 patients with idiopathic rapid eye movement sleep behaviour disorder and compared the results with those from 21 age- and gender-matched healthy volunteers. All subjects underwent a clinical examination, motor, cognitive, autonomous, psychological, olfactory and colour vision tests, and rapid eye movement sleep characterization using video-polysomnography and 3 T magnetic resonance imaging. The patients more frequently had preclinical markers of alpha-synucleinopathies, including constipation, olfactory deficits, orthostatic hypotension, and subtle motor impairment. Using neuromelanin-sensitive imaging, reduced signal intensity was identified in the locus coeruleus/subcoeruleus complex of the patients with idiopathic rapid eye movement sleep behaviour. The mean sensitivity of the visual analyses of the signal performed by neuroradiologists who were blind to the clinical diagnoses was 82.5%, and the specificity was 81% for the identification of idiopathic rapid eye movement sleep behaviour. The results confirm that this complex is affected in idiopathic rapid eye movement sleep behaviour (to the same degree as it is affected in Parkinson's disease). Neuromelanin-sensitive imaging provides an early marker of non-dopaminergic alpha-synucleinopathy that can be detected on an individual basis. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. A SERS biosensor with magnetic substrate CoFe2O4@Ag for sensitive detection of Hg2+

    NASA Astrophysics Data System (ADS)

    Yang, Xia; He, Yi; Wang, Xueling; Yuan, Ruo

    2017-09-01

    Mercuric ion (Hg2+) is one toxic metal ion existed in aquatic ecosystems which would seriously damage human central nervous system and other organs. So developing an approach to sensitively detect Hg2+ in our living environment is urgent and important. In this work, a novel surface enhancement Raman spectrum(SERS) sensor is fabricated for high selective and ultrasensitive detection of Hg2+ in aqueous solution, based on a stable thymine-Hg2+-thymine (T-Hg2+-T) structure and the π-π interaction between single-stranded DNA (ssDNA) and single walled carbon nanotubes (SWCNTs). Herein, SWCNTs act as Raman labels to produce characteristic Raman peaks which can be a beacon to quantitative detect Hg2+. In the presence of Hg2+, the ssDNA can capture Hg2+ forming T-Hg2+-T structure, which makes SWCNTs leave the hot spots of the SERS-based biosensor. With this design, the Raman intensity of SWCNTs decreased with the increasing concentration of Hg2+. At the same time, CoFe2O4@Ag as active SERS substrates can effectively enhance sensitivity and uniformity of the biosensor through aggregation by magnet. Under optimal conditions, this proposed biosensor can detect Hg2+ at a range from 1 pM to 100 nM with a detection limit of 0.84 pM. With the advantages of good sensitivity, selectivity, simplicity and rapidity, the biosensor is potentially suitable for monitoring of Hg2+ in environmental applications.

  1. Detection of the Antimicrobial Triclosan in Environmental Samples by Immunoassay

    PubMed Central

    Ahn, Ki Chang; Ranganathan, Anupama; Bever, Candace S.; Hwang, Sung Hee; Holland, Erika B.; Morisseau, Kevin; Pessah, Isaac N.; Hammock, Bruce D.; Gee, Shirley J.

    2016-01-01

    A sensitive, competitive enzyme-linked immunosorbent assay (ELISA) for the detection of the antimicrobial triclosan (TCS; 2,4,4’-trichloro-2’-hydroxydiphenyl ether) was developed. Novel immunizing haptens were synthesized by derivatizing at the 4-Cl position of the TCS molecule. Compounds derived from substitutions at 4’-Cl and that replaced the 2’–OH with a –Cl were designed as unique coating antigen haptens. Polyclonal rabbit antisera were screened against the coating antigen library in order to identify combinations of immunoreagents resulting in the most sensitive assays. The most sensitive assay identified was one utilizing antiserum #1155 and a heterologous competitive hapten where the 2’–OH group was substituted with a Cl. An IC50 value and the detection range for TCS in assay buffer were 1.19 and 0.21–6.71 μg/L, respectively. The assay was selective for TCS, providing low cross-reactivity (< 5%) to the major metabolites of TCS and to brominated diphenyl ether-47. A second assay utilizing a competitive hapten containing Br instead of Cl substitutions was broadly selective for both brominated and chlorinated diphenylethers. Using the most sensitive assay combination, TCS concentrations were measured in water samples following dilution. Biosolid samples were analyzed following dilution of a simple solvent extract. The immunoassay results were similar to those determined by LC-MS/MS. This immunoassay can be used as a rapid and convenient tool to screen for human and environmental exposure. PMID:26937944

  2. Detection of the Antimicrobial Triclosan in Environmental Samples by Immunoassay.

    PubMed

    Ahn, Ki Chang; Ranganathan, Anupama; Bever, Candace S; Hwang, Sung Hee; Holland, Erika B; Morisseau, Kevin; Pessah, Isaac N; Hammock, Bruce D; Gee, Shirley J

    2016-04-05

    A sensitive, competitive enzyme-linked immunosorbent assay (ELISA) for the detection of the antimicrobial triclosan (TCS; 2,4,4'-trichloro-2'-hydroxydiphenyl ether) was developed. Novel immunizing haptens were synthesized by derivatizing at the 4-Cl position of the TCS molecule. Compounds derived from substitutions at 4'-Cl and that replaced the 2'-OH with a Cl atom were designed as unique coating antigen haptens. Polyclonal rabbit antisera were screened against the coating antigen library to identify combinations of immunoreagents resulting in the most sensitive assays. The most sensitive assay identified was one utilizing antiserum no. 1155 and a heterologous competitive hapten, where the 2'-OH group was substituted with a Cl atom. An IC50 value and the detection range for TCS in assay buffer were 1.19 and 0.21-6.71 μg/L, respectively. The assay was selective for TCS, providing low cross-reactivity (<5%) to the major metabolites of TCS and to brominated diphenyl ether-47. A second assay utilizing a competitive hapten containing Br instead of Cl substitutions was broadly selective for both brominated and chlorinated diphenylethers. Using the most sensitive assay combination, we measured TCS concentrations in water samples following dilution. Biosolid samples were analyzed following the dilution of a simple solvent extract. The immunoassay results were similar to those determined by LC-MS/MS. This immunoassay can be used as a rapid and convenient tool to screen for human and environmental exposure.

  3. EU-approved rapid tests might underestimate bovine spongiform encephalopathy infection in goats.

    PubMed

    Meloni, Daniela; Bozzetta, Elena; Langeveld, Jan P M; Groschup, Martin H; Goldmann, Wilfred; Andrèoletti, Olivier; Lantier, Isabelle; Van Keulen, Lucien; Bossers, Alex; Pitardi, Danilo; Nonno, Romolo; Sklaviadis, Theodoros; Ingravalle, Francesco; Peletto, Simone; Colussi, Silvia; Acutis, Pier Luigi

    2017-03-01

    We report the diagnostic sensitivity of 3 EU-approved rapid tests (ELISAs; 1 from IDEXX and 2 from Bio-Rad) for the detection of transmissible spongiform encephalopathy diseases in goats. Ninety-eight goat brainstem samples were tested. All the rapid tests had 100% specificity and ≥80% sensitivity, with the IDEXX test significantly more sensitive than the 2 Bio-Rad tests. All tests detected 100% of samples from goats with clinical scrapie, but missed 8% (IDEXX) to 33% (Bio-Rad SG) of samples from preclinical goats. Importantly, only IDEXX picked up all samples from clinical bovine spongiform encephalopathy (BSE)-infected goats, whereas the other 2 rapid tests missed 15% (Bio-Rad SG) to 25% (Bio-Rad SAP). These results show that a fraction of preclinical scrapie infections are likely missed by EU surveillance, with sensitivity of detection strongly dependent on the choice of the rapid test. Moreover, a significant proportion of clinical BSE infections are underestimated by using either Bio-Rad test. Assuming that the same sensitivity on preclinical goats would also occur in BSE-infected goats, our data suggest that IDEXX is likely the most sensitive test for detecting preclinical field cases of BSE infection in goats, although with an 8% failure rate. These results raise some concerns about the reliability of current EU surveillance figures on BSE infection in goats.

  4. The sensitivity and the specifity of rapid antigen test in streptococcal upper respiratory tract infections.

    PubMed

    Gurol, Yesim; Akan, Hulya; Izbirak, Guldal; Tekkanat, Zuhal Tazegun; Gunduz, Tehlile Silem; Hayran, Osman; Yilmaz, Gulden

    2010-06-01

    It is aimed to detect the sensitivity and specificity of rapid antigen detection of group A beta hemolytic streptococci from throat specimen compared with throat culture. The other goal of the study is to help in giving clinical decisions in upper respiratory tract infections according to the age group, by detection of sensitivity and positive predictive values of the rapid tests and throat cultures. Rapid antigen detection and throat culture results for group A beta hemolytic streptococci from outpatients attending to our university hospital between the first of November 2005 and 31st of December 2008 were evaluated retrospectively. Throat samples were obtained by swabs from the throat and transported in the Stuart medium and Quickvue Strep A [Quidel, San Diego, USA] cassette test was applied and for culture, specimen was inoculated on 5% blood sheep agar and identified according to bacitracin and trimethoprim-sulphametaxazole susceptibility from beta hemolytic colonies. During the dates between the first of November 2005 and 31st of December 2008, from 453 patients both rapid antigen detection and throat culture were evaluated. Rapid antigen detection sensitivity and specificity were found to be 64.6% and 96.79%, respectively. The positive predictive value was 80.95% whereas negative predictive value was 92.82%. Kappa index was 0.91. When the results were evaluated according to the age groups, the sensitivity and the positive predictive value of rapid antigen detection in children were 70%, 90.3% and in adults 59.4%, 70.4%. When bacterial infection is concerned to prevent unnecessary antibiotic use, rapid streptococcal antigen test (RSAT) is a reliable method to begin immediate treatment. To get the maximum sensitivity of RSAT, the specimen collection technique used and education of the health care workers is important. While giving clinical decision, it must be taken into consideration that the sensitivity and the positive predictive value of the RSAT is quite lower in adult age group than in pediatric age group. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  5. A New Rapid and Sensitive Stability-Indicating UPLC Assay Method for Tolterodine Tartrate: Application in Pharmaceuticals, Human Plasma and Urine Samples.

    PubMed

    Yanamandra, Ramesh; Vadla, Chandra Sekhar; Puppala, Umamaheshwar; Patro, Balaram; Murthy, Yellajyosula L N; Ramaiah, Parimi Atchuta

    2012-01-01

    A new rapid, simple, sensitive, selective and accurate reversed-phase stability-indicating Ultra Performance Liquid Chromatography (RP-UPLC) technique was developed for the assay of Tolterodine Tartrate in pharmaceutical dosage form, human plasma and urine samples. The developed UPLC method is superior in technology to conventional HPLC with respect to speed, solvent consumption, resolution and cost of analysis. Chromatographic run time was 6 min in reversed-phase mode and ultraviolet detection was carried out at 220 nm for quantification. Efficient separation was achieved for all the degradants of Tolterodine Tartrate on BEH C18 sub-2-μm Acquity UPLC column using Trifluoroacetic acid and acetonitrile as organic solvent in a linear gradient program. The active pharmaceutical ingredient was extracted from tablet dosage form using a mixture of acetonitrile and water as diluent. The calibration graphs were linear and the method showed excellent recoveries for bulk and tablet dosage form. The test solution was found to be stable for 40 days when stored in the refrigerator between 2 and 8 °C. The developed UPLC method was validated and meets the requirements delineated by the International Conference on Harmonization (ICH) guidelines with respect to linearity, accuracy, precision, specificity and robustness. The intra-day and inter-day variation was found be less than 1%. The method was reproducible and selective for the estimation of Tolterodine Tartrate. Because the method could effectively separate the drug from its degradation products, it can be employed as a stability-indicating one.

  6. A New Rapid and Sensitive Stability-Indicating UPLC Assay Method for Tolterodine Tartrate: Application in Pharmaceuticals, Human Plasma and Urine Samples

    PubMed Central

    Yanamandra, Ramesh; Vadla, Chandra Sekhar; Puppala, Umamaheshwar; Patro, Balaram; Murthy, Yellajyosula. L. N.; Ramaiah, Parimi Atchuta

    2012-01-01

    A new rapid, simple, sensitive, selective and accurate reversed-phase stability-indicating Ultra Performance Liquid Chromatography (RP-UPLC) technique was developed for the assay of Tolterodine Tartrate in pharmaceutical dosage form, human plasma and urine samples. The developed UPLC method is superior in technology to conventional HPLC with respect to speed, solvent consumption, resolution and cost of analysis. Chromatographic run time was 6 min in reversed-phase mode and ultraviolet detection was carried out at 220 nm for quantification. Efficient separation was achieved for all the degradants of Tolterodine Tartrate on BEH C18 sub-2-μm Acquity UPLC column using Trifluoroacetic acid and acetonitrile as organic solvent in a linear gradient program. The active pharmaceutical ingredient was extracted from tablet dosage form using a mixture of acetonitrile and water as diluent. The calibration graphs were linear and the method showed excellent recoveries for bulk and tablet dosage form. The test solution was found to be stable for 40 days when stored in the refrigerator between 2 and 8 °C. The developed UPLC method was validated and meets the requirements delineated by the International Conference on Harmonization (ICH) guidelines with respect to linearity, accuracy, precision, specificity and robustness. The intra-day and inter-day variation was found be less than 1%. The method was reproducible and selective for the estimation of Tolterodine Tartrate. Because the method could effectively separate the drug from its degradation products, it can be employed as a stability-indicating one. PMID:22396907

  7. In vivo emergence of HIV-1 highly sensitive to neutralizing antibodies.

    PubMed

    Aasa-Chapman, Marlén M I; Cheney, Kelly M; Hué, Stéphane; Forsman, Anna; O'Farrell, Stephen; Pellegrino, Pierre; Williams, Ian; McKnight, Áine

    2011-01-01

    The rapid and continual viral escape from neutralizing antibodies is well documented in HIV-1 infection. Here we report in vivo emergence of viruses with heightened sensitivity to neutralizing antibodies, sometimes paralleling the development of neutralization escape. Sequential viral envs were amplified from seven HIV-1 infected men monitored from seroconversion up to 5 years after infection. Env-recombinant infectious molecular clones were generated and tested for coreceptor use, macrophage tropism and neutralization sensitivity to homologous and heterologous serum, soluble CD4 and monoclonal antibodies IgG1b12, 2G12 and 17b. We found that HIV-1 evolves sensitivity to contemporaneous neutralizing antibodies during infection. Neutralization sensitive viruses grow out even when potent autologous neutralizing antibodies are present in patient serum. Increased sensitivity to neutralization was associated with susceptibility of the CD4 binding site or epitopes induced after CD4 binding, and mediated by complex envelope determinants including V3 and V4 residues. The development of neutralization sensitive viruses occurred without clinical progression, coreceptor switch or change in tropism for primary macrophages. We propose that an interplay of selective forces for greater virus replication efficiency without the need to resist neutralizing antibodies in a compartment protected from immune surveillance may explain the temporal course described here for the in vivo emergence of HIV-1 isolates with high sensitivity to neutralizing antibodies.

  8. Advances in asthma in 2016: Designing individualized approaches to management.

    PubMed

    Anderson, William C; Apter, Andrea J; Dutmer, Cullen M; Searing, Daniel A; Szefler, Stanley J

    2017-09-01

    In this year's Advances in Asthma review, we discuss viral infections in asthmatic patients and potential therapeutic agents, the microbiome, novel genetic associations with asthma, air quality and climate effects on asthma, exposures during development and long-term sequelae of childhood asthma, patient-centered outcomes research, and precision medicine. In addition, we discuss application of biomarkers to precision medicine and new information on asthma medications. New evidence indicates that rhinovirus-triggered asthma exacerbations become more severe as the degree of sensitization to dust mite and mouse increase. The 2 biggest drivers of asthma severity are an allergy pathway starting with allergic sensitization and an environmental tobacco smoke pathway. In addition, allergic sensitization and blood eosinophils can be used to select medications for management of early asthma in young children. These current findings, among others covered in this review, represent significant steps toward addressing rapidly advancing areas of knowledge that have implications for asthma management. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Construction of a simple optical sensor based on air stable lipid film with incorporated urease for the rapid detection of urea in milk.

    PubMed

    Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P; Methenitis, Constantinos

    2010-08-18

    This work describes the construction of a simple optical sensor for the rapid, selective and sensitive detection of urea in milk using air stable lipid films with incorporated urease. The lipid film is stabilized on a glass filter by polymerization using UV (ultra-violet) radiation prior its use. Methacrylic acid was the functional monomer, ethylene glycol dimethacrylate was the crosslinker and 2,2'-azobis-(2-methylpropionitrile) was the initiator. Urease is incorporated within this mixture prior to the polymerization. The presence of the enzyme in these films quenched this fluorescence and the colour became similar to that of the filters without the lipid films. A drop of aqueous solution of urea provided a "switching on" of the fluorescence which allows the rapid detection of this compound at the levels of 10(-8) M concentrations. The investigation of the effect of potent interferences included a wide range of compounds usually found in foods and also of proteins and lipids. These lipid membranes were used for the rapid detection of urea in milk. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation.

    PubMed

    Yegnasubramanian, Srinivasan; Lin, Xiaohui; Haffner, Michael C; DeMarzo, Angelo M; Nelson, William G

    2006-02-09

    Hypermethylation of CpG island (CGI) sequences is a nearly universal somatic genome alteration in cancer. Rapid and sensitive detection of DNA hypermethylation would aid in cancer diagnosis and risk stratification. We present a novel technique, called COMPARE-MS, that can rapidly and quantitatively detect CGI hypermethylation with high sensitivity and specificity in hundreds of samples simultaneously. To quantitate CGI hypermethylation, COMPARE-MS uses real-time PCR of DNA that was first digested by methylation-sensitive restriction enzymes and then precipitated by methyl-binding domain polypeptides immobilized on a magnetic solid matrix. We show that COMPARE-MS could detect five genome equivalents of methylated CGIs in a 1000- to 10,000-fold excess of unmethylated DNA. COMPARE-MS was used to rapidly quantitate hypermethylation at multiple CGIs in >155 prostate tissues, including benign and malignant prostate specimens, and prostate cell lines. This analysis showed that GSTP1, MDR1 and PTGS2 CGI hypermethylation as determined by COMPARE-MS could differentiate between malignant and benign prostate with sensitivities >95% and specificities approaching 100%. This novel technology could significantly improve our ability to detect CGI hypermethylation.

  11. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase.

    PubMed Central

    Mutero, A; Pralavorio, M; Bride, J M; Fournier, D

    1994-01-01

    Extensive utilization of pesticides against insects provides us with a good model for studying the adaptation of a eukaryotic genome to a strong selective pressure. One mechanism of resistance is the alteration of acetylcholinesterase (EC 3.1.1.7), the molecular target for organophosphates and carbamates. Here, we report the sequence analysis of the Ace gene in several resistant field strains of Drosophila melanogaster. This analysis resulted in the identification of five point mutations associated with reduced sensitivities to insecticides. In some cases, several of these mutations were found to be combined in the same protein, leading to different resistance patterns. Our results suggest that recombination between resistant alleles preexisting in natural populations is a mechanism by which insects rapidly adapt to new selective pressures. Images PMID:8016090

  12. Improved Cell Sensitivity and Longevity in a Rapid Impedance-based Toxicity Sensor

    DTIC Science & Technology

    2009-01-06

    sensitivity and longevity in a rapid impedance-based toxicity sensor† Improved cell sensitivity and longevityTheresa M. Curtis,a** Joel Tabb,a Lori...Romeo,a Steven J. Schwager,b Mark W. Widderc* and William H. van der Schaliec ABSTRACT: A number of toxicity sensors for testing field water using a...range of eukaryotic cell types have been proposed, but it has been difficult to identify sensors with both appropriate sensitivity to toxicants and the

  13. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Tifeng; Zhu, Fengliang; Cui, Yuanjing, E-mail: cuiyj@zju.edu.cn

    A water-stable metal-organic framework (MOF) EuNDC has been synthesized for selective detection of the well-known contaminant and toxicant picric acid (PA) in aqueous solution. Due to the photo-induced electron transfer and self-absorption mechanism, EuNDC displayed rapid, selective and sensitive detection of PA with a detection limit of 37.6 ppb. Recyclability experiments revealed that EuNDC retains its initial luminescent intensity and same quenching efficiency in each cycle, suggesting high photostability and reusability for long-term sensing applications. The excellent detection performance of EuNDC makes it a promising PA sensing material for practical applications. - Graphical abstract: A water-stable europium-based metal-organic framework hasmore » been reported for highly selective sensing of picric acid (PA) with a detection limit of 37.6 ppb in aqueous solution. - Highlights: • A water-stable metal-organic framework (MOF) EuNDC was synthesized. • The highly selective detection of picric acid with a detection limit of 37.6 ppb was realized. • The detection mechanism were also presented and discussed.« less

  14. Rapid and Sensitive Salmonella Typhi Detection in Blood and Fecal Samples Using Reverse Transcription Loop-Mediated Isothermal Amplification.

    PubMed

    Fan, Fenxia; Yan, Meiying; Du, Pengcheng; Chen, Chen; Kan, Biao

    2015-09-01

    Typhoid fever caused by Salmonella enterica serovar Typhi remains a significant public health problem in developing countries. Although the main method for diagnosing typhoid fever is blood culture, the test is time consuming and not always able to detect infections. Thus, it is very difficult to distinguish typhoid from other infections in patients with nonspecific symptoms. A simple and sensitive laboratory detection method remains necessary. The purpose of this study is to establish and evaluate a rapid and sensitive reverse transcription-based loop-mediated isothermal amplification (RT-LAMP) method to detect Salmonella Typhi infection. In this study, a new specific gene marker, STY1607, was selected to develop a STY1607-RT-LAMP assay; this is the first report of specific RT-LAMP detection assay for typhoid. Human-simulated and clinical blood/stool samples were used to evaluate the performance of STY1607-RT-LAMP for RNA detection; this method was compared with STY1607-LAMP, reverse transcription real-time polymerase chain reaction (rRT-PCR), and bacterial culture methods for Salmonella Typhi detection. Using mRNA as the template, STY1607-RT-LAMP exhibited 50-fold greater sensitivity than STY1607-LAMP for DNA detection. The STY1607-RT-LAMP detection limit is 3 colony-forming units (CFU)/mL for both the pure Salmonella Typhi samples and Salmonella Typhi-simulated blood samples and was 30 CFU/g for the simulated stool samples, all of which were 10-fold more sensitive than the rRT-PCR method. RT-LAMP exhibited improved Salmonella Typhi detection sensitivity compared to culture methods and to rRT-PCR of clinical blood and stool specimens from suspected typhoid fever patients. Because it can be performed without sophisticated equipment or skilled personnel, RT-LAMP is a valuable tool for clinical laboratories in developing countries. This method can be applied in the clinical diagnosis and care of typhoid fever patients as well as for a quick public health response.

  15. Supersensitive detection and discrimination of enantiomers by dorsal olfactory receptors: evidence for hierarchical odour coding.

    PubMed

    Sato, Takaaki; Kobayakawa, Reiko; Kobayakawa, Ko; Emura, Makoto; Itohara, Shigeyoshi; Kizumi, Miwako; Hamana, Hiroshi; Tsuboi, Akio; Hirono, Junzo

    2015-09-11

    Enantiomeric pairs of mirror-image molecular structures are difficult to resolve by instrumental analyses. The human olfactory system, however, discriminates (-)-wine lactone from its (+)-form rapidly within seconds. To gain insight into receptor coding of enantiomers, we compared behavioural detection and discrimination thresholds of wild-type mice with those of ΔD mice in which all dorsal olfactory receptors are genetically ablated. Surprisingly, wild-type mice displayed an exquisite "supersensitivity" to enantiomeric pairs of wine lactones and carvones. They were capable of supersensitive discrimination of enantiomers, consistent with their high detection sensitivity. In contrast, ΔD mice showed selective major loss of sensitivity to the (+)-enantiomers. The resulting 10(8)-fold differential sensitivity of ΔD mice to (-)- vs. (+)-wine lactone matched that observed in humans. This suggests that humans lack highly sensitive orthologous dorsal receptors for the (+)-enantiomer, similarly to ΔD mice. Moreover, ΔD mice showed >10(10)-fold reductions in enantiomer discrimination sensitivity compared to wild-type mice. ΔD mice detected one or both of the (-)- and (+)-enantiomers over a wide concentration range, but were unable to discriminate them. This "enantiomer odour discrimination paradox" indicates that the most sensitive dorsal receptors play a critical role in hierarchical odour coding for enantiomer identification.

  16. Supersensitive detection and discrimination of enantiomers by dorsal olfactory receptors: evidence for hierarchical odour coding

    PubMed Central

    Sato, Takaaki; Kobayakawa, Reiko; Kobayakawa, Ko; Emura, Makoto; Itohara, Shigeyoshi; Kizumi, Miwako; Hamana, Hiroshi; Tsuboi, Akio; Hirono, Junzo

    2015-01-01

    Enantiomeric pairs of mirror-image molecular structures are difficult to resolve by instrumental analyses. The human olfactory system, however, discriminates (−)-wine lactone from its (+)-form rapidly within seconds. To gain insight into receptor coding of enantiomers, we compared behavioural detection and discrimination thresholds of wild-type mice with those of ΔD mice in which all dorsal olfactory receptors are genetically ablated. Surprisingly, wild-type mice displayed an exquisite “supersensitivity” to enantiomeric pairs of wine lactones and carvones. They were capable of supersensitive discrimination of enantiomers, consistent with their high detection sensitivity. In contrast, ΔD mice showed selective major loss of sensitivity to the (+)-enantiomers. The resulting 108-fold differential sensitivity of ΔD mice to (−)- vs. (+)-wine lactone matched that observed in humans. This suggests that humans lack highly sensitive orthologous dorsal receptors for the (+)-enantiomer, similarly to ΔD mice. Moreover, ΔD mice showed >1010-fold reductions in enantiomer discrimination sensitivity compared to wild-type mice. ΔD mice detected one or both of the (−)- and (+)-enantiomers over a wide concentration range, but were unable to discriminate them. This “enantiomer odour discrimination paradox” indicates that the most sensitive dorsal receptors play a critical role in hierarchical odour coding for enantiomer identification. PMID:26361056

  17. Sensitivity of influenza rapid diagnostic tests to H5N1 and 2009 pandemic H1N1 viruses.

    PubMed

    Sakai-Tagawa, Yuko; Ozawa, Makoto; Tamura, Daisuke; Le, Mai thi Quynh; Nidom, Chairul A; Sugaya, Norio; Kawaoka, Yoshihiro

    2010-08-01

    Simple and rapid diagnosis of influenza is useful for making treatment decisions in the clinical setting. Although many influenza rapid diagnostic tests (IRDTs) are available for the detection of seasonal influenza virus infections, their sensitivity for other viruses, such as H5N1 viruses and the recently emerged swine origin pandemic (H1N1) 2009 virus, remains largely unknown. Here, we examined the sensitivity of 20 IRDTs to various influenza virus strains, including H5N1 and 2009 pandemic H1N1 viruses. Our results indicate that the detection sensitivity to swine origin H1N1 viruses varies widely among IRDTs, with some tests lacking sufficient sensitivity to detect the early stages of infection when the virus load is low.

  18. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes

    NASA Astrophysics Data System (ADS)

    Lau, Han Yih; Wu, Haoqi; Wee, Eugene J. H.; Trau, Matt; Wang, Yuling; Botella, Jose R.

    2017-01-01

    Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics.

  19. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes.

    PubMed

    Lau, Han Yih; Wu, Haoqi; Wee, Eugene J H; Trau, Matt; Wang, Yuling; Botella, Jose R

    2017-01-17

    Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics.

  20. Development of single-step multiplex real-time RT-PCR assays for rapid diagnosis of enterovirus 71, coxsackievirus A6, and A16 in patients with hand, foot, and mouth disease.

    PubMed

    Puenpa, Jiratchaya; Suwannakarn, Kamol; Chansaenroj, Jira; Vongpunsawad, Sompong; Poovorawan, Yong

    2017-10-01

    Real-time reverse-transcription polymerase chain reaction (rRT-PCR) to detect enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) has facilitated the rapid and accurate identification of the two most common etiological agents underlying hand, foot, and mouth disease (HFMD). However, the worldwide emergence of CV-A6 infection in HFMD necessitates development of an improved multiplex rRT-PCR method. To rapidly determine the etiology of HFMD, two rRT-PCR assays using TaqMan probes were developed to differentiate among three selected common enteroviruses (EV-A71, CV-A16 and CV-A6) and to enable broad detection of enteroviruses (pan-enterovirus assay). No cross-reactions were observed with other RNA viruses examined. The detection limits of both assays were 10 copies per microliter for EV-A71, CV-A6 and CV-A16, and pan-enterovirus. The methods showed high accuracy (EV-A71, 90.6%; CV-A6, 92.0%; CV-A16, 100%), sensitivity (EV-A71, 96.5%; CV-A6, 95.8%; CV-A16, 99.0%), and specificity (EV-A71, 100%; CV-A6, 99.9%; CV-A16, 99.9%) in testing clinical specimens (n=1049) during 2014-2016, superior to those of conventional RT-PCR. Overall, the multiplex rRT-PCR assays enabled highly sensitive detection and rapid simultaneous typing of EV-A71, CV-A6 and CV-A16, and enteroviruses, rendering them feasible and attractive methods for large-scale surveillance of enteroviruses associated with HFMD outbreaks. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Rapid optimization of MRM-MS instrument parameters by subtle alteration of precursor and product m/z targets.

    PubMed

    Sherwood, Carly A; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Mirzaei, Hamid; Falkner, Jayson A; Martin, Daniel B

    2009-07-01

    Multiple reaction monitoring (MRM) is a highly sensitive method of targeted mass spectrometry (MS) that can be used to selectively detect and quantify peptides based on the screening of specified precursor peptide-to-fragment ion transitions. MRM-MS sensitivity depends critically on the tuning of instrument parameters, such as collision energy and cone voltage, for the generation of maximal product ion signal. Although generalized equations and values exist for such instrument parameters, there is no clear indication that optimal signal can be reliably produced for all types of MRM transitions using such an algorithmic approach. To address this issue, we have devised a workflow functional on both Waters Quattro Premier and ABI 4000 QTRAP triple quadrupole instruments that allows rapid determination of the optimal value of any programmable instrument parameter for each MRM transition. Here, we demonstrate the strategy for the optimizations of collision energy and cone voltage, but the method could be applied to other instrument parameters, such as declustering potential, as well. The workflow makes use of the incremental adjustment of the precursor and product m/z values at the hundredth decimal place to create a series of MRM targets at different collision energies that can be cycled through in rapid succession within a single run, avoiding any run-to-run variability in execution or comparison. Results are easily visualized and quantified using the MRM software package Mr. M to determine the optimal instrument parameters for each transition.

  2. Rapid Optimization of MRM-MS Instrument Parameters by Subtle Alteration of Precursor and Product m/z Targets

    PubMed Central

    Sherwood, Carly A.; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Mirzaei, Hamid; Falkner, Jayson A.; Martin, Daniel B.

    2009-01-01

    Multiple reaction monitoring (MRM) is a highly sensitive method of targeted mass spectrometry (MS) that can be used to selectively detect and quantify peptides based on the screening of specified precursor peptide-to-fragment ion transitions. MRM-MS sensitivity depends critically on the tuning of instrument parameters, such as collision energy and cone voltage, for the generation of maximal product ion signal. Although generalized equations and values exist for such instrument parameters, there is no clear indication that optimal signal can be reliably produced for all types of MRM transitions using such an algorithmic approach. To address this issue, we have devised a workflow functional on both Waters Quattro Premier and ABI 4000 QTRAP triple quadrupole instruments that allows rapid determination of the optimal value of any programmable instrument parameter for each MRM transition. Here, we demonstrate the strategy for the optimizations of collision energy and cone voltage, but the method could be applied to other instrument parameters, such as declustering potential, as well. The workflow makes use of the incremental adjustment of the precursor and product m/z values at the hundredth decimal place to create a series of MRM targets at different collision energies that can be cycled through in rapid succession within a single run, avoiding any run-to-run variability in execution or comparison. Results are easily visualized and quantified using the MRM software package Mr. M to determine the optimal instrument parameters for each transition. PMID:19405522

  3. A rapid, partial leach and organic separation for the sensitive determination of Ag, Bi, Cd, Cu, Mo, Pb, Sb, and Zn in surface geologic materials by flame atomic absorption

    USGS Publications Warehouse

    Viets, J.G.; Clark, J.R.; Campbell, W.L.

    1984-01-01

    A solution of dilute hydrochloric acid, ascorbic acid, and potassium iodide has been found to dissolve weakly bound metals in soils, stream sediments, and oxidized rocks. Silver, Bi, Cd, Cu, Mo, Pb, Sb, and Zn are selectively extracted from this solution by a mixture of Aliquat 336 (tricaprylyl methyl ammonium chloride) and MIBK (methyl isobutyl ketone). Because potentially interfering major and minor elements do not extract, the organic separation allows interference-free determinations of Ag and Cd to the 0.05 ppm level, Mo, Cu, and Zn to 0.5 ppm, and Bi, Pb, and Sb to 1 ppm in the sample using flame atomic absorption spectroscopy. The analytical absorbance values of the organic solution used in the proposed method are generally enhanced more than threefold as compared to aqueous solutions, due to more efficient atomization and burning characteristics. The leaching and extraction procedures are extremely rapid; as many as 100 samples may be analyzed per day, yielding 800 determinations, and the technique is adaptable to field use. The proposed method was compared to total digestion methods for geochemical reference samples as well as soils and stream sediments from mineralized and unmineralized areas. The partial leach showed better anomaly contrasts than did total digestions. Because the proposed method is very rapid and is sensitive to pathfinder elements for several types of ore deposits, it should be useful for reconnaissance surveys for concealed deposits. ?? 1984.

  4. Optical resonance-enhanced absorption-based near-field immunochip biosensor for allergen detection.

    PubMed

    Maier, Irene; Morgan, Michael R A; Lindner, Wolfgang; Pittner, Fritz

    2008-04-15

    An optical immunochip biosensor has been developed as a rapid method for allergen detection in complex food matrixes, and its application evaluated for the detection of the egg white allergens, ovalbumin and ovomucoid. The optical near-field phenomenon underlying the basic principle of the sensor design is called resonance-enhanced absorption (REA), which utilizes gold nanoparticles (Au NPs) as signal transducers in a highly sensitive interferometric setup. Using this approach, a novel, simple, and rapid colorimetric solid-phase immunoassay on a planar chip substrate was realized in direct and sandwich assay formats, with a detection system that does not require any instrumentation for readout. Semiquantitative immunochemical responses are directly visible to the naked eye of the analyst. The biosensor shows concentration-dependent color development by capturing antibody-functionalized Au NPs on allergen-coated chips and has a detection limit of 1 ng/mL. To establish a rapid method, we took advantage of the physicochemical microenvironment of the Au NP-antibody bioconjugate to be bound directly over an interacting poly(styrene-methyl methacrylate) interlayer by an immobilized antigen. In the direct assay format, a coating time with allergen of only 5 min under "soft" nondenaturing conditions was sufficient for accurate reproducibility and sensitivity. In conclusion, the REA-based immunochip sensor is easy to fabricate, is reproducible and selective in its performance, has minimal technical requirements, and will enable high-throughput screening of affinity binding interactions in technological and medical applications.

  5. Development and characterization of surface engineered PPI dendrimers for targeted drug delivery.

    PubMed

    Kaur, Avleen; Jain, Keerti; Mehra, Neelesh Kumar; Jain, N K

    2017-05-01

    In this study, we reported folate-conjugated polypropylene imine dendrimers (FA-PPI) as efficient carrier for model anticancer drug, methotrexate (MTX), for pH-sensitive drug release, selective targeting to cancer cells, and anticancer activity. In the in vitro drug release studies this nanoconjugate of MTX showed initial rapid release followed by gradual slow release, and the drug release was found to be pH sensitive with greater release at acidic pH. The ex vivo investigations with human breast cancer cell lines, MCF-7, showed enhanced cytotoxicity of MTX-FA-PPI with significantly enhanced intracellular uptake. The biofate of nanoconjugate was determined in Wistar rat where MTX-FA-PPI showed 37.79-fold increase in the concentration of MTX in liver after 24 h in comparison with free MTX formulation.

  6. Optimized and validated flow-injection spectrophotometric analysis of topiramate, piracetam and levetiracetam in pharmaceutical formulations.

    PubMed

    Hadad, Ghada M; Abdel-Salam, Randa A; Emara, Samy

    2011-12-01

    Application of a sensitive and rapid flow injection analysis (FIA) method for determination of topiramate, piracetam, and levetiracetam in pharmaceutical formulations has been investigated. The method is based on the reaction with ortho-phtalaldehyde and 2-mercaptoethanol in a basic buffer and measurement of absorbance at 295 nm under flow conditions. Variables affecting the determination such as sample injection volume, pH, ionic strength, reagent concentrations, flow rate of reagent and other FIA parameters were optimized to produce the most sensitive and reproducible results using a quarter-fraction factorial design, for five factors at two levels. Also, the method has been optimized and fully validated in terms of linearity and range, limit of detection and quantitation, precision, selectivity and accuracy. The method was successfully applied to the analysis of pharmaceutical preparations.

  7. Colour reaction of gold with 5-(4-sodium sulphonatephenylazo)-8-aminoquinoline and its analytical application.

    PubMed

    Zeng, Z; Xu, Q

    1992-04-01

    The synthesis of 5-(4-sodium sulphonatephenylazo)-8-aminoquinoline (SPAQ) is described, and a simple, rapid, selective and sensitive new spectrophotometric method for determination of gold is developed. SPAQ reacts with gold(III), and in the presence of cetyl trimethyl ammonium bromide cationic surfactant and upon making the solution alkaline, forms a blue-green 1:3 (metal:ligand) with an absorption maximum at 605 nm. Beer's law is obeyed over the concentration range 0-2 microg/ml gold. The molar absorptivity and Sandell's sensitivity of the method are 1.48 x 10(5) 1.mole(-1).cm(-1) and 0.0013 microg/cm(2), respectively. The interference of various ions has been studied and the method has been used for the determination of microamounts of gold in ores and anode slimes.

  8. Sensitivity and rapidity of vegetational response to abrupt climate change

    NASA Technical Reports Server (NTRS)

    Peteet, D.

    2000-01-01

    Rapid climate change characterizes numerous terrestrial sediment records during and since the last glaciation. Vegetational response is best expressed in terrestrial records near ecotones, where sensitivity to climate change is greatest, and response times are as short as decades.

  9. Carbon nanotubes-based chemiresistive immunosensor for small molecules: detection of nitroaromatic explosives.

    PubMed

    Park, Miso; Cella, Lakshmi N; Chen, Wilfred; Myung, Nosang V; Mulchandani, Ashok

    2010-12-15

    In recent years, there has been a growing focus on use of one-dimensional (1-D) nanostructures, such as carbon nanotubes and nanowires, as transducer elements for label-free chemiresistive/field-effect transistor biosensors as they provide label-free and high sensitivity detection. While research to-date has elucidated the power of carbon nanotubes- and other 1-D nanostructure-based field effect transistors immunosensors for large charged macromolecules such as proteins and viruses, their application to small uncharged or charged molecules has not been demonstrated. In this paper we report a single-walled carbon nanotubes (SWNTs)-based chemiresistive immunosensor for label-free, rapid, sensitive and selective detection of 2,4,6-trinitrotoluene (TNT), a small molecule. The newly developed immunosensor employed a displacement mode/format in which SWNTs network forming conduction channel of the sensor was first modified with trinitrophenyl (TNP), an analog of TNT, and then ligated with the anti-TNP single chain antibody. Upon exposure to TNT or its derivatives the bound antibodies were displaced producing a large change, several folds higher than the noise, in the resistance/conductance of SWNTs giving excellent limit of detection, sensitivity and selectivity. The sensor detected between 0.5 ppb and 5000 ppb TNT with good selectivity to other nitroaromatic explosives and demonstrated good accuracy for monitoring TNT in untreated environmental water matrix. We believe this new displacement format can be easily generalized to other one-dimensional nanostructure-based chemiresistive immuno/affinity-sensors for detecting small and/or uncharged molecules of interest in environmental monitoring and health care. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease

    PubMed Central

    Boelaert, Marleen; Verdonck, Kristien; Menten, Joris; Sunyoto, Temmy; van Griensven, Johan; Chappuis, Francois; Rijal, Suman

    2014-01-01

    Background The diagnosis of visceral leishmaniasis (VL) in patients with fever and a large spleen relies on showing Leishmania parasites in tissue samples and on serological tests. Parasitological techniques are invasive, require sophisticated laboratories, consume time, or lack accuracy. Recently, rapid diagnostic tests that are easy to perform have become available. Objectives To determine the diagnostic accuracy of rapid tests for diagnosing VL in patients with suspected disease presenting at health services in endemic areas. Search methods We searched MEDLINE, EMBASE, LILACS, CIDG SR, CENTRAL, SCI-expanded, Medion, Arif, CCT, and the WHO trials register on 3 December 2013, without applying language or date limits. Selection criteria This review includes original, phase III, diagnostic accuracy studies of rapid tests in patients clinically suspected to have VL. As reference standards, we accepted: (1) direct smear or culture of spleen aspirate; (2) composite reference standard based on one or more of the following: parasitology, serology, or response to treatment; and (3) latent class analysis. Data collection and analysis Two review authors independently extracted data and assessed quality of included studies using the QUADAS-2 tool. Discrepancies were resolved by a third author. We carried out a meta-analysis to estimate sensitivity and specificity of rapid tests, using a bivariate normal model with a complementary log-log link function. We analysed each index test separately. As possible sources of heterogeneity, we explored: geographical area, commercial brand of index test, type of reference standard, disease prevalence, study size, and risk of bias (QUADAS-2). We also undertook a sensitivity analysis to assess the influence of imperfect reference standards. Main results Twenty-four studies containing information about five index tests (rK39 immunochromatographic test (ICT), KAtex latex agglutination test in urine, FAST agglutination test, rK26 ICT, and rKE16 ICT) recruiting 4271 participants (2605 with VL) were included. We carried out a meta-analysis for the rK39 ICT (including 18 studies; 3622 participants) and the latex agglutination test (six studies; 1374 participants). The results showed considerable heterogeneity. For the rK39 ICT, the overall sensitivity was 91.9% (95% confidence interval (95% CI) 84.8 to 96.5) and the specificity 92.4% (95% CI 85.6 to 96.8). The sensitivity was lower in East Africa (85.3%; 95% CI 74.5 to 93.2) than in the Indian subcontinent (97.0%; 95% CI 90.0 to 99.5). For the latex agglutination test, overall sensitivity was 63.6% (95% CI 40.9 to 85.6) and specificity 92.9% (95% CI 76.7 to 99.2). Authors' conclusions The rK39 ICT shows high sensitivity and specificity for the diagnosis of visceral leishmaniasis in patients with febrile splenomegaly and no previous history of the disease, but the sensitivity is notably lower in east Africa than in the Indian subcontinent. Other rapid tests lack accuracy, validation, or both. PLAIN LANGUAGE SUMMARY Rapid diagnostic tests for visceral leishmaniasis Visceral leishmaniasis (or kala-azar) is caused by a parasite, results in fever, a large spleen and other health problems, occuring in India, Bangladesh and Nepal, east Africa, the Mediterranean region and Brazil. Without treatment people die, and proper treatment can result in cure, so diagnosis is important. Many of the tests that are used to determine if a person has visceral leishmaniasis are complicated, costly, painful and sometimes dangerous for the patients. Now rapid diagnostic tests that are safe and easy to perform are available. This Cochrane review describes how accurate these rapid diagnostic tests are for diagnosing visceral leishmaniasis. We summarize those studies that evaluated the rapid tests in people who, according to their physicians, could have the disease. We only included studies in which the researchers had used established methods to distinguish the people with visceral leishmaniasis from those who did not have the disease. We found 24 studies, which contained information about five different rapid tests. A total of 4271 people participated in these studies. One of the rapid tests (called the rK39 immunochromatographic test) gave correct, positive results in 92% of the people with visceral leishmaniasis and it gave correct, negative results in 92% of the people who did not have the disease. This test worked better in India and Nepal than in east Africa. In India and Nepal, it gave correct, positive results in 97% of the people with the disease. In east Africa, it gave correct, positive results in only 85% of the people with the disease. A second rapid test (called latex agglutination test) gave correct, positive results in 64% of the people with the disease and it gave correct, negative results in 93% of the people without the disease. For the other rapid tests evaluated, there are too few studies to know how accurate they are. PMID:24947503

  11. Sensitivity of human auditory cortex to rapid frequency modulation revealed by multivariate representational similarity analysis.

    PubMed

    Joanisse, Marc F; DeSouza, Diedre D

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) was used to investigate the extent, magnitude, and pattern of brain activity in response to rapid frequency-modulated sounds. We examined this by manipulating the direction (rise vs. fall) and the rate (fast vs. slow) of the apparent pitch of iterated rippled noise (IRN) bursts. Acoustic parameters were selected to capture features used in phoneme contrasts, however the stimuli themselves were not perceived as speech per se. Participants were scanned as they passively listened to sounds in an event-related paradigm. Univariate analyses revealed a greater level and extent of activation in bilateral auditory cortex in response to frequency-modulated sweeps compared to steady-state sounds. This effect was stronger in the left hemisphere. However, no regions showed selectivity for either rate or direction of frequency modulation. In contrast, multivoxel pattern analysis (MVPA) revealed feature-specific encoding for direction of modulation in auditory cortex bilaterally. Moreover, this effect was strongest when analyses were restricted to anatomical regions lying outside Heschl's gyrus. We found no support for feature-specific encoding of frequency modulation rate. Differential findings of modulation rate and direction of modulation are discussed with respect to their relevance to phonetic discrimination.

  12. Cytidine-stabilized gold nanocluster as a fluorescence turn-on and turn-off probe for dual functional detection of Ag(+) and Hg(2+).

    PubMed

    Zhang, Yuanyuan; Jiang, Hui; Wang, Xuemei

    2015-04-22

    In this study, we have developed a label-free, dual functional detection strategy for highly selective and sensitive determination of aqueous Ag(+) and Hg(2+) by using cytidine stabilized Au NCs and AuAg NCs as fluorescent turn-on and turn off probes, respectively. The Au NCs and AuAg NCs showed a remarkably rapid response and high selectivity for Ag(+) and Hg(2+) over other metal ions, and relevant detection limit of Ag(+) and Hg(2+) is ca. 10 nM and 30 nM, respectively. Importantly, the fluorescence enhanced Au NCs by doping Ag(+) can be conveniently reusable for the detection of Hg(2+) based on the corresponding fluorescence quenching. The sensing mechanism was based on the high-affinity metallophilic Hg(2+)-Ag(+) interaction, which effectively quenched the fluorescence of AuAg NCs. Furthermore, these fluorescent nanoprobes could be readily applied to Ag(+) and Hg(2+) detection in environmental water samples, indicating their possibility to be utilized as a convenient, dual functional, rapid response, and label-free fluorescence sensor for related environmental and health monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Rapid and selective determination of multi-sulfonamides by high-performance thin layer chromatography coupled to fluorescent densitometry and electrospray ionization mass detection.

    PubMed

    Chen, Yisheng; Schwack, Wolfgang

    2014-02-28

    In the European Union (EU), sulfonamides are among the most widely administrated groups of antibiotics in animal husbandry. Therefore, monitoring their residues in edible animal tissues plays an important role in the EU food safety framework. In this work, a simple and efficient method for the rapid screening of twelve prior sulfonamides frequently prescribed as veterinary drugs by high-performance thin-layer chromatography (HPTLC) was established. Sample extracts obtained with acetonitrile were tenfold concentrated and applied to HPTLC without any further cleanup. Following separation and fluram derivatization, sensitive and selective quantitation of the analytes can readily be accomplished with fluorescent densitometry. Limits of detection and quantitation were 15-40 and 35-70μg/kg, respectively. Additionally, a confirmative detection by HPTLC-electrospray ionization mass spectrometry (HPTLC-ESI/MS) was optimized, offering straightforward identification of target zones. Therefore, the risk of potential false positive findings can efficiently be reduced. The method was validated to meet the enforced commission regulation (EU) No. 37/2010, regarding different matrix complexities (bovine milk, porcine liver and kidney). Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A Novel Immunoassay Test System for Detection of Modified Allergen Residues Present in Almond-, Cashew-, Coconut-, Hazelnut-, and Soy-Based Nondairy Beverages.

    PubMed

    Masiri, Jongkit; Benoit, Lora; Meshgi, Mahzad; Day, Jeffrey; Nadala, Cesar; Samadpour, Mansour

    2016-09-01

    A growing number of plant-based milk substitutes have become commercially available, providing an array of options for consumers with dietary restrictions. Though several of these products rival cow's milk in terms of their nutritional profiles, beverages prepared with soy and tree nuts can be a significant concern to consumers because of potential contamination with food allergens. Adding to this concern is the fact that allergen residues from plant-based beverages are modified during manufacturing, thereby decreasing the sensitivity of antibody-based detection methods. Consequently, many commercially available allergen detection kits are less effective for allergens derived from nondairy milk substitutes. To address this limitation, we developed a panel of polyclonal antibodies directed against the modified proteins present in almond, cashew, coconut, hazelnut, and soy milks and incorporated them into rapid lateral flow immunoassay tests configured in both sandwich and competitive format. The tests had robust detection capabilities when used with a panel of various brand-name products, with a sensitivity of 1 ppm and selectivity values of 3 to 5 ppm in nondairy beverages. Minimal cross-reactivity to extracts prepared from common commodities was observed. The development of a highly sensitive and rapid test specifically designed to detect trace quantities of highly modified allergen residues in plant-based, dairy-free beverages will aid food manufacturers and regulatory agencies in monitoring products for these modified allergens when testing environmental and food samples.

  15. Fluorescent-Magnetic-Biotargeting Multifunctional Nanobioprobes for Detecting and Isolating Multiple Types of Tumor Cells

    PubMed Central

    Song, Er-Qun; Hu, Jun; Wen, Cong-Ying; Tian, Zhi-Quan; Yu, Xu; Zhang, Zhi-Ling; Shi, Yun-Bo; Pang, Dai-Wen

    2011-01-01

    Fluorescent-magnetic-biotargeting multifunctional nanobioprobes (FMBMNs) have attracted great attention in recent years due to their increasing, important applications in biomedical research, clinical diagnosis, and biomedicine. We have previously developed such nanobioprobes for the detection and isolation of a single kind of tumor cells. Detection and isolation of multiple tumor markers or tumor cells from complex samples sensitively and with high efficiency is critical for the early diagnosis of tumors, especially malignant tumors or cancers, which will improve clinical diagnosis outcomes and help to select effective treatment approaches. Here, we expanded the application of the monoclonal antibody (mAb)-coupled FMBMNs for multiplexed assays. Multiple types of cancer cells, such as leukemia cells and prostate cancer cells, were detected and collected from mixed samples within 25 minutes by using a magnet and an ordinary fluorescence microscope. The capture efficiencies of mAb-coupled FMBMNs for the above mentioned two types of cells were 96% and 97% respectively. Furthermore, by using the mAb-coupled FMBMNs, specific and sensitive detection and rapid separation of a small number of spiked leukemia cells and prostate cancer cells in a large population of cultured normal cells (about 0.01% were tumor cells) were achieved simply and inexpensively without any sample pretreatment before cell analysis. Therefore, mAb-coupled multicolour FMBMNs may be used for very sensitive detection and rapid isolation of multiple cancer cells in biomedical research and medical diagnostics. PMID:21250650

  16. Label-free SPR detection of gluten peptides in urine for non-invasive celiac disease follow-up.

    PubMed

    Soler, Maria; Estevez, M-Carmen; Moreno, Maria de Lourdes; Cebolla, Angel; Lechuga, Laura M

    2016-05-15

    Motivated by the necessity of new and efficient methods for dietary gluten control of celiac patients, we have developed a simple and highly sensitive SPR biosensor for the detection of gluten peptides in urine. The sensing methodology enables rapid and label-free quantification of the gluten immunogenic peptides (GIP) by using G12 mAb. The overall performance of the biosensor has been in-depth optimized and evaluated in terms of sensitivity, selectivity and reproducibility, reaching a limit of detection of 0.33 ng mL(-1). Besides, the robustness and stability of the methodology permit the continuous use of the biosensor for more than 100 cycles with excellent repeatability. Special efforts have been focused on preventing and minimizing possible interferences coming from urine matrix enabling a direct analysis in this fluid without requiring extraction or purification procedures. Our SPR biosensor has proven to detect and identify gluten consumption by evaluating urine samples from healthy and celiac individuals with different dietary gluten conditions. This novel biosensor methodology represents a novel approach to quantify the digested gluten peptides in human urine with outstanding sensitivity in a rapid and non-invasive manner. Our technique should be considered as a promising opportunity to develop Point-of-Care (POC) devices for an efficient, simple and accurate gluten free diet (GFD) monitoring as well as therapy follow-up of celiac disease patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A rapid and highly sensitive UPLC-MS/MS method using pre-column derivatization with 2-picolylamine for intravenous and percutaneous pharmacokinetics of valproic acid in rats.

    PubMed

    Joo, Kyung-Mi; Choi, Dalwoong; Park, Yang-Hui; Yi, Chang-Geun; Jeong, Hye-Jin; Cho, Jun-Cheol; Lim, Kyung-Min

    2013-11-01

    A rapid, highly sensitive and specific ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) for the detection of valproic acid (VPA) in rat plasma following the topical application was developed and validated. This method was carried out with pre-column derivatization using 2-picolylamine (PA) which reacts with the carboxylic acid group of VPA. The derivatization was completed in 10min and the resulting PA-VPA derivative enabled the sensitive detection of VPA in selected reaction monitoring (SRM) mode. Sample preparation was done with simple liquid-liquid extraction and chromatographic separation was achieved within 5min on a C18 column using a gradient elution with the mobile phase of 2mM ammonium formate containing 0.1% formic acid and methanol. The standard curves were linear over the concentration range of 0.07-200μg/mL with a correlation coefficient higher than 0.99. The limit of detection (LOD) and the lower limit of quantification (LLOQ) was 0.03 and 0.07μg/mL, respectively with 100μL of plasma sample. The intra- and inter-day precisions were measured to be below 10.7% and accuracies were within the range of 94.1-115.9%. The validated method was successfully applied to the pharmacokinetics of VPA in the rat following topical and intravenous applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Biological sensing with surface-enhanced Raman spectroscopy (SERS) using a facile and rapid silver colloid-based synthesis technique

    NASA Astrophysics Data System (ADS)

    Smyth, C.; Mehigan, S.; Rakovich, Y. P.; Bell, S. E. J.; McCabe, E. M.

    2011-03-01

    Optical techniques towards the realisation of sensitive and selective biosensing platforms have received a considerable amount of attention in recent times. Techniques based on interferometry, surface plasmon resonance, field-effect transistors and waveguides have all proved popular, and in particular, spectroscopy offers a large range of options. Raman spectroscopy has always been viewed as an information rich technique in which the vibrational frequencies reveal a lot about the structure of a compound. The issue with Raman spectroscopy has traditionally been that its rather low cross section leads to poor limits-of-detection. In response to this problem, Surface-enhanced Raman Scattering (SERS), which increases sensitivity by bringing the sample in contact with many types of enhanceing substrates, has been developed. Here we discuss a facile and rapid technique for the detection of pterins using colloidal silver suspensions. Pteridine compounds are a family of biochemicals, heterocyclic in structure, and employed in nature as components of colour pigmentation and also as facilitators for many metabolic pathways, particularly those relating to the amino acid hydroxylases. In this work, xanthopterin, isoxanthopterin and 7,8- dihydrobiopterin have been examined whilst absorbed to SERS-active silver colloids. SERS, while far more sensitive than regular Raman spectroscopy, has its own issues relating to the reproducibility of substrates. In order to obtain quantitative data for the pteridine compounds mentioned above, exploratory studies of methods for introducing an internal standard for normalisation of the signals have been carried out.e

  19. Amino-Functionalized Luminescent Metal-Organic Framework Test Paper for Rapid and Selective Sensing of SO2 Gas and Its Derivatives by Luminescence Turn-On Effect.

    PubMed

    Wang, Meng; Guo, Lin; Cao, Dapeng

    2018-03-06

    Rapid and selective sensing of sulfur dioxide (SO 2 ) gas has attracted more and more attention because SO 2 not only causes environmental pollution but also severely affects the health of human beings. Here we report an amino-functionalized luminescent metal-organic framework (MOF) material (i.e., MOF-5-NH 2 ) and further investigate its sensing property for SO 2 gas and its derivatives as a luminescent probe. The results indicate that the MOF-5-NH 2 probe can selectively and sensitively sense SO 2 derivatives (i.e., SO 3 2- ) in real time by a luminescence turn-on effect with a lower detection limit of 0.168 ppm and a response time of less than 15 s. Importantly, the luminescence turn-on phenomenon can be observed by the naked eye. We also assembled MOF-5-NH 2 into a test paper to achieve the aim of portable detection, and the lower-limit concentration of the test paper for sensing SO 2 in real time was found to be about 0.05 ppm. Moreover, MOF-5-NH 2 also shows good anti-interference ability, strong luminescence stability, and reusability, which means that this material is an excellent sensing candidate. The amino functionalization may also provide a modification strategy to design luminescent sensors for other atmospheric pollutants.

  20. Rapid evaluation by lung-cardiac-inferior vena cava (LCI) integrated ultrasound for differentiating heart failure from pulmonary disease as the cause of acute dyspnea in the emergency setting

    PubMed Central

    2012-01-01

    Background Rapid and accurate diagnosis and management can be lifesaving for patients with acute dyspnea. However, making a differential diagnosis and selecting early treatment for patients with acute dyspnea in the emergency setting is a clinical challenge that requires complex decision-making in order to achieve hemodynamic balance, improve functional capacity, and decrease mortality. In the present study, we examined the screening potential of rapid evaluation by lung-cardiac-inferior vena cava (LCI) integrated ultrasound for differentiating acute heart failure syndromes (AHFS) from primary pulmonary disease in patients with acute dyspnea in the emergency setting. Methods Between March 2011 and March 2012, 90 consecutive patients (45 women, 78.1 ± 9.9 years) admitted to the emergency room of our hospital for acute dyspnea were enrolled. Within 30 minutes of admission, all patients underwent conventional physical examination, rapid ultrasound (lung-cardiac-inferior vena cava [LCI] integrated ultrasound) examination with a hand-held device, routine laboratory tests, measurement of brain natriuretic peptide, and chest X-ray in the emergency room. Results The final diagnosis was acute dyspnea due to AHFS in 53 patients, acute dyspnea due to pulmonary disease despite a history of heart failure in 18 patients, and acute dyspnea due to pulmonary disease in 19 patients. Lung ultrasound alone showed a sensitivity, specificity, negative predictive value, and positive predictive value of 96.2, 54.0, 90.9, and 75.0%, respectively, for differentiating AHFS from pulmonary disease. On the other hand, LCI integrated ultrasound had a sensitivity, specificity, negative predictive value, and positive predictive value of 94.3, 91.9, 91.9, and 94.3%, respectively. Conclusions Our study demonstrated that rapid evaluation by LCI integrated ultrasound is extremely accurate for differentiating acute dyspnea due to AHFS from that caused by primary pulmonary disease in the emergency setting. PMID:23210515

  1. A multiplex immunochromatographic test using gold nanoparticles for the rapid and simultaneous detection of four nitrofuran metabolites in fish samples.

    PubMed

    Wang, Quan; Liu, Yingchun; Wang, Mingyan; Chen, Yongjun; Jiang, Wei

    2018-01-01

    There is an urgent need for the rapid and simultaneous detection of multiple analytes present in a sample matrix. Here, a multiplex immunochromatographic test (multi-ICT) was developed that successfully allowed for the rapid and simultaneous detection of four major nitrofuran metabolites, i.e., 3-amino-2-oxazolidinone (AOZ), semicarbazide (SEM), 3-amino-5-methylmorpholino-2-oxazolidinone (AMOZ), and 1-aminohydantoin (AHD), in fish samples. Four different antigens were separately immobilized in four test lines on a nitrocellulose membrane. Goat anti-mouse immunoglobulin (IgG) was used as a control. Sensitive and specific monoclonal antibodies (mAbs) that recognize the corresponding antigens were selected for the assay, and no cross-reactivity between the antibodies in the detection assay was observed. The free analytes in samples or standards were pre-incubated with freeze-dried mAb-gold conjugates to improve the sensitivity of the detection assay. The multi-ICT detection was accomplished in less than 15 min by the naked eye. The cutoff values for the strip test were 0.5 ng/mL for AOZ and 0.75 ng/mL for AHD, SEM, and AMOZ, which were all below the maximum residue levels set by the European Union and China. A high degree of consistency was observed between the multi-ICT method and commercially available enzyme-linked immunosorbent assay (ELISA) kits using spiked, incurred, and "blind" fish samples, indicating the accuracy, reproducibility, and reliability of the novel test strip. This newly developed multi-ICT strip assay is suitable for the rapid and high-throughput screening of four nitrofuran metabolites in fish samples on-site, with no treatment or devices required. Graphical abstract A multiplex immunochromatographic test (multi-ICT) was developed that successfully allowed for the rapid and simultaneous detection of four major nitrofuran metabolites (AOZ, SEM, AMOZ, and AHD) in fish samples.

  2. Comparison of the Vidas C. difficile GDH Automated Enzyme-Linked Fluorescence Immunoassay (ELFA) with Another Commercial Enzyme Immunoassay (EIA) (Quik Chek-60), Two Selective Media, and a PCR Assay for gluD for Detection of Clostridium difficile in Fecal Samples.

    PubMed

    Davies, K A; Berry, C E; Morris, K A; Smith, R; Young, S; Davis, T E; Fuller, D D; Buckner, R J; Wilcox, M H

    2015-06-01

    Prevention and management of Clostridium difficile infection (CDI) can be improved by rapid and reliable diagnostics. The Vidas C. difficile glutamate dehydrogenase assay had performance comparable to that of the Quik Chek-60 assay (overall agreement, 95%) and a sensitivity of >93%; thus, it is suitable as the first test in two-stage algorithms for a CDI diagnosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Measures of fish behavior as indicators of sublethal toxicosis during standard toxicity tests

    USGS Publications Warehouse

    Little, E.E.; DeLonay, A.J.

    1996-01-01

    Behavioral functions essential for growth and survival can be dramatically altered by sublethal exposure to toxicants. Measures of these behavioral responses are effective in detecting adverse effects of sublethal contaminant exposure. Behavioral responses of fishes can be qualitatively and quantitatively evaluated during routine toxicity tests. At selected intervals of exposure, qualitative evaluations are accomplished through direct observations, whereas video recordings are used for quantitative evaluations. Standardized procedures for behavioral evaluation are readily applicable to different fish species and provide rapid, sensitive, and ecologically relevant assessments of sublethal exposure. The methods are readily applied to standardized test protocols.

  4. Exploiting bacterial drug resistance: a single construct for the diagnosis and treatment of drug resistant infections

    NASA Astrophysics Data System (ADS)

    Sallum, Ulysses W.; Zheng, Xiang; Verma, Sarika; Hasan, Tayyaba

    2009-06-01

    β-lactamase enzyme-activated photosensitizer (β-LEAP). We aim to exploit drug resistance mechanisms to selectively release photosensitizers (PSs) for a specific photodynamic antimicrobial effect and reduced host tissue damage. Consequently, the fluorescence emission intensity of the PSs increases and allows for the detection of enzyme activity. In this work we sought to evaluate β-LEAP for use as a sensitive molecular probe. We have reported the enzyme specific antibacterial action of β-LEAP. Here we report the use of β-LEAP for the rapid functional definition of a β-lactamase.

  5. Two colorimetric and ratiometric fluorescence probes for hydrogen sulfide based on AIE strategy of α-cyanostilbenes

    NASA Astrophysics Data System (ADS)

    Zhao, Baoying; Yang, Binsheng; Hu, Xiangquan; Liu, Bin

    2018-06-01

    Aggregation-induced emission (AIE) active fluorescent probes have attracted great potential in biological sensors. In this paper two cyanostilbene based fluorescence chemoprobe Cya-NO2 (1) and Cya-N3 (2) were developed and evaluated for the selective and sensitive detection of hydrogen sulfide (H2S). Both of these probes behave aggression-induced emission (AIE) activity which fluoresces in the red region with a large Stokes shift. They exhibit rapid response to H2S with enormous colorimetric and ratiometric fluorescent changes. They are readily employed for assessing intracellular H2S levels.

  6. A study of parton fragmentation in hadronic Z 0 decays using Λ Λ correlations

    NASA Astrophysics Data System (ADS)

    OPAL Collaboration; Abbiendi, G.; et al.

    2000-03-01

    The correlated production of Λ and Λ baryons has been studied using 4.3 million multihadronic Z0 decays recorded with the Opal detector at Lep. Lambda pairs were investigated in the full data sample and for the first time also in 2-jet and 3-jet events selected with the k⊥ algorithm. The distributions of rapidity differences from correlated Λ Λ pairs exhibit short-range, local correlations and prove to be a sensitive tool to test models, particularly for 2-jet events. The Jetset model describes the data best but some extra parameter tuning is needed to improve agreement with the experimental results in the rates and the rapidity spectra simultaneously. The recently developed modification of Jetset, the MOdified Popcorn Scenarium (Mops), and also Herwig do not give satisfactory results. This study of di-lambda production in 2- and 3-jet events supports the short-range compensation of quantum numbers.

  7. Developmental effects of the protein kinase inhibitor kenpaullone on the sea urchin embryo.

    PubMed

    Anello, Letizia; Cavalieri, Vincenzo; Di Bernardo, Maria

    2018-01-01

    The selection and validation of bioactive compounds require multiple approaches, including in-depth analyses of their biological activity in a whole-animal context. We exploited the sea urchin embryo in a rapid, medium-scale range screening to test the effects of the small synthetic kinase inhibitor kenpaullone. We show that sea urchin embryos specifically respond to this molecule depending on both dose and timing of administration. Phenotypic effects of kenpaullone are not immediately visible, since this molecule affects neither the fertilization nor the spatial arrangement of blastomeres at early developmental stages. Nevertheless, kenpaullone exposure from the beginning of embryogenesis profoundly perturbs specification, detachment from the epithelium, and migration of the primary mesenchyme cells, thus affecting the whole embryonic epithelial mesenchymal transition process. Our results reaffirm the sea urchin embryo as an excellent and sensitive in vivo system, which provides straightforward and rapid response to external stimuli. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Real-Time Continuous Identification of Greenhouse Plant Pathogens Based on Recyclable Microfluidic Bioassay System.

    PubMed

    Qu, Xiangmeng; Li, Min; Zhang, Hongbo; Lin, Chenglie; Wang, Fei; Xiao, Mingshu; Zhou, Yi; Shi, Jiye; Aldalbahi, Ali; Pei, Hao; Chen, Hong; Li, Li

    2017-09-20

    The development of a real-time continuous analytical platform for the pathogen detection is of great scientific importance for achieving better disease control and prevention. In this work, we report a rapid and recyclable microfluidic bioassay system constructed from oligonucleotide arrays for selective and sensitive continuous identification of DNA targets of fungal pathogens. We employ the thermal denaturation method to effectively regenerate the oligonucleotide arrays for multiple sample detection, which could considerably reduce the screening effort and costs. The combination of thermal denaturation and laser-induced fluorescence detection technique enables real-time continuous identification of multiple samples (<10 min per sample). As a proof of concept, we have demonstrated that two DNA targets of fungal pathogens (Botrytis cinerea and Didymella bryoniae) can be sequentially analyzed using our rapid microfluidic bioassay system, which provides a new paradigm in the design of microfluidic bioassay system and will be valuable for chemical and biomedical analysis.

  9. Simple colorimetric detection of doxycycline and oxytetracycline using unmodified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Jie; Fan, Shumin; Li, Zhigang; Xie, Yuanzhe; Wang, Rui; Ge, Baoyu; Wu, Jing; Wang, Ruiyong

    2014-08-01

    The interaction between tetracycline antibiotics and gold nanoparticles was studied. With citrate-coated gold nanoparticles as colorimetric probe, a simple and rapid detection method for doxycycline and oxytetracycline has been developed. This method relies on the distance-dependent optical properties of gold nanoparticles. In weakly acidic buffer medium, doxycycline and oxytetracycline could rapidly induce the aggregation of gold nanoparticles, resulting in red-to-blue (or purple) colour change. The experimental parameters were optimized with regard to pH, the concentration of the gold nanoparticles and the reaction time. Under optimal experimental conditions, the linear range of the colorimetric sensor for doxycycline/oxytetracycline was 0.06-0.66 and 0.59-8.85 μg mL-1, respectively. The corresponding limit of detection for doxycycline and oxytetracycline was 0.0086 and 0.0838 μg mL-1, respectively. This assay was sensitive, selective, simple and readily used to detect tetracycline antibiotics in food products.

  10. The IceCube realtime alert system

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2017-06-01

    Although high-energy astrophysical neutrinos were discovered in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts for the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole site and at IceCube facilities in the north that have enabled this fast follow-up program to be implemented. Additionally, this paper presents the first realtime analyses to be activated within this framework, highlights their sensitivities to astrophysical neutrinos and background event rates, and presents an outlook for future discoveries.

  11. [Flow injection biamperometric analysis of isoniazid].

    PubMed

    Zhang, J C; Zhao, C; Song, J F

    2001-09-01

    To establish a simple, rapid, and accurate electrochemical method for on-line determination of isoniazid. Based on the flow injection biamperometry for irreversible couple system, and using two preanodized platinum electrodes with the applied potential difference of 0 V, the biamperometric method for the determination of isoniazid has been proposed by coupling the catalytic oxidation of isoniazid and the reduction of platinum oxide. Common excipients, inorganic ions, amino acids, vitamins and proteins do not interfere with the determination. Linear relationship between current and the concentration of isoniazid is obtained in the range of 1.0 x 10(-6)-1.0 x 10(-4) mol.L-1 (gamma = 0.998, n = 11). The RSD of 1.8% was obtained for 8 successive determinations of 1.0 x 10(-5) mol.L-1 isoniazid. The proposed method has been shown to be sensitive, selective, rapid (120 samples.h-1), and suitable for the on-line direct determination of isoniazid.

  12. Systematic Development and Validation of a Thin-Layer Densitometric Bioanalytical Method for Estimation of Mangiferin Employing Analytical Quality by Design (AQbD) Approach.

    PubMed

    Khurana, Rajneet Kaur; Rao, Satish; Beg, Sarwar; Katare, O P; Singh, Bhupinder

    2016-01-01

    The present work aims at the systematic development of a simple, rapid and highly sensitive densitometry-based thin-layer chromatographic method for the quantification of mangiferin in bioanalytical samples. Initially, the quality target method profile was defined and critical analytical attributes (CAAs) earmarked, namely, retardation factor (Rf), peak height, capacity factor, theoretical plates and separation number. Face-centered cubic design was selected for optimization of volume loaded and plate dimensions as the critical method parameters selected from screening studies employing D-optimal and Plackett-Burman design studies, followed by evaluating their effect on the CAAs. The mobile phase containing a mixture of ethyl acetate : acetic acid : formic acid : water in a 7 : 1 : 1 : 1 (v/v/v/v) ratio was finally selected as the optimized solvent for apt chromatographic separation of mangiferin at 262 nm withRf 0.68 ± 0.02 and all other parameters within the acceptance limits. Method validation studies revealed high linearity in the concentration range of 50-800 ng/band for mangiferin. The developed method showed high accuracy, precision, ruggedness, robustness, specificity, sensitivity, selectivity and recovery. In a nutshell, the bioanalytical method for analysis of mangiferin in plasma revealed the presence of well-resolved peaks and high recovery of mangiferin. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Development of a nested-PCR assay for the rapid detection of Pilidiella granati in pomegranate fruit

    PubMed Central

    Yang, Xue; Hameed, Uzma; Zhang, Ai-Fang; Zang, Hao-Yu; Gu, Chun-Yan; Chen, Yu; Xu, Yi-Liu

    2017-01-01

    Pilidiella granati, a causal agent of twig blight and crown rot of pomegranate, is an emerging threat that may cause severe risk to the pomegranate industry in the future. Development of a rapid assay for the timely and accurate detection of P. granati will be helpful in the active surveillance and management of the disease caused by this pathogen. In this study, a nested PCR method was established for the detection of P. granati. Comparative analysis of genetic diversity within 5.8S rDNA internal transcribed spacer (ITS) sequences of P. granati and 21 other selected fungal species was performed to design species-specific primers (S1 and S2). This primer pair successfully amplified a 450 bp product exclusively from the genomic DNA of P. granati. The developed method can detect 10 pg genomic DNA of the pathogen in about 6 h. This technique was successfully applied to detect the natural infection of P. granati in the pomegranate fruit. The designed protocol is rapid and precise with a high degree of sensitivity. PMID:28106107

  14. A novel aptamer-based online magnetic solid phase extraction method for the selective determination of 8-hydroxy-2'-deoxyguanosine in human urine.

    PubMed

    Gan, Haijiao; Xu, Hui

    2018-05-30

    In this work, an innovative magnetic aptamer adsorbent (Fe 3 O 4 -aptamer MNPs) was synthesized for the selective extraction of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Amino-functionalized-Fe 3 O 4 was crosslinked with 8-OHdG aptamer by glutaraldehyde and fixed into a steel stainless tube as the sorbent of magnetic solid phase extraction (MSPE). After selective extraction by the aptamer adsorbent, the adsorbed 8-OHdG was desorbed dynamically and online analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS). The synthesized sorbent presented outstanding features, including specific selectivity, high enrichment capacity, stability and biocompatibility. Moreover, this proposed MSPE-HPLC-MS can achieve adsorption and desorption operation integration, greatly simplify the analysis process and reduce human errors. When compared with offline MSPE, a sensitivity enhancement of 800 times was obtained for the online method. Some experimental parameters such as the amount of the sorbent, sample flow rate and sample volume, were optimized systematically. Under the optimal conditions, low limit of detection (0.01 ng mL -1 , S/N = 3), limit of quantity (0.03 ng mL -1 , S/N = 10) and wide linear range with a satisfactory correlation coefficient (R 2  ≥ 0.9992) were obtained. And the recoveries of 8-OHdG in the urine samples varied from 82% to 116%. All these results revealed that the method is simple, rapid, selective, sensitive and automated, and it could be expected to become a potential approach for the selective determination of trace 8-OHdG in complex urinary samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Computer simulation of gene detection without PCR by single molecule detection

    NASA Astrophysics Data System (ADS)

    Davis, Lloyd M.; Williams, John G.; Lamb, Don T.

    1999-01-01

    Pioneer Hi-Bred is developing a low-cost method for rapid screening of DNA, for use in research on elite crop seed genetics. Unamplified genomic DNA with the requisite base sequence is simultaneously labeled by two different colored fluorescent probes, which hybridize near the selected gene. Dual-channel single molecule detection (SMD) within a flow cell, then provides a sensitive and specific assay for the gene. The technique has been demonstrated using frequency- doubled Nd:YAG laser excitation of two visible-wavelength dyes. A prototype instrument employing infrared fluorophores and laser diodes for excitation has been developed. Here, we report results from a Monte Carlo simulation of the new instrument, in which experimentally determined photophysical parameters for candidate infrared dyes are used for parametric studies of experimental operating conditions. Fluorophore photostability is found to be a key factor in determining the instrument sensitivity. Most infrared dyes have poor photostability, resulting in inefficient SMD. However, the normalized cross-correlation function of the photon signals from each of the two channels can still yield a discernable peak, provided that the concentration of dual- labeled molecules is sufficiently high. Further, for low concentrations, processing of the two photon streams with Gaussian -weighted sliding sum digital filters and selection of simultaneously occurring peaks can also provide a sensitive indicator of the presence of dual-labeled molecules, although accidental coincidences must be considered in the interpretation of results.

  16. Robust Selectivity for Faces in the Human Amygdala in the Absence of Expressions

    PubMed Central

    Mende-Siedlecki, Peter; Verosky, Sara C.; Turk-Browne, Nicholas B.; Todorov, Alexander

    2014-01-01

    There is a well-established posterior network of cortical regions that plays a central role in face processing and that has been investigated extensively. In contrast, although responsive to faces, the amygdala is not considered a core face-selective region, and its face selectivity has never been a topic of systematic research in human neuroimaging studies. Here, we conducted a large-scale group analysis of fMRI data from 215 participants. We replicated the posterior network observed in prior studies but found equally robust and reliable responses to faces in the amygdala. These responses were detectable in most individual participants, but they were also highly sensitive to the initial statistical threshold and habituated more rapidly than the responses in posterior face-selective regions. A multivariate analysis showed that the pattern of responses to faces across voxels in the amygdala had high reliability over time. Finally, functional connectivity analyses showed stronger coupling between the amygdala and posterior face-selective regions during the perception of faces than during the perception of control visual categories. These findings suggest that the amygdala should be considered a core face-selective region. PMID:23984945

  17. Rapid desensitization induces internalization of antigen-specific IgE on mouse mast cells.

    PubMed

    Oka, Tatsuya; Rios, Eon J; Tsai, Mindy; Kalesnikoff, Janet; Galli, Stephen J

    2013-10-01

    Rapid desensitization transiently prevents severe allergic reactions, allowing administration of life-saving therapies in previously sensitized patients. However, the mechanisms underlying successful rapid desensitization are not fully understood. We sought to investigate whether the mast cell (MC) is an important target of rapid desensitization in mice sensitized to exhibit IgE-dependent passive systemic anaphylaxis in vivo and to investigate the antigen specificity and underlying mechanisms of rapid desensitization in our mouse model. C57BL/6 mice (in vivo) or primary isolated C57BL/6 mouse peritoneal mast cells (PMCs; in vitro) were passively sensitized with antigen-specific anti-2,4-dinitrophenyl IgE, anti-ovalbumin IgE, or both. MCs were exposed over a short period of time to increasing amounts of antigen (2,4-dinitrophenyl-human serum albumin or ovalbumin) in the presence of extracellular calcium in vitro or by means of intravenous administration to sensitized mice in vivo before challenging the mice with or exposing the PMCs to optimal amounts of specific or irrelevant antigen. Rapidly exposing mice or PMCs to progressively increasing amounts of specific antigen inhibited the development of antigen-induced hypothermia in sensitized mice in vivo and inhibited antigen-induced PMC degranulation and prostaglandin D2 synthesis in vitro. Such MC hyporesponsiveness was induced antigen-specifically and was associated with a significant reduction in antigen-specific IgE levels on MC surfaces. Rapidly exposing MCs to progressively increasing amounts of antigen can both enhance the internalization of antigen-specific IgE on the MC surface and also desensitize these cells in an antigen-specific manner in vivo and in vitro. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  18. Rapid desensitization induces internalization of antigen-specific IgE on mouse mast cells

    PubMed Central

    Oka, Tatsuya; Rios, Eon J.; Tsai, Mindy; Kalesnikoff, Janet; Galli, Stephen J.

    2013-01-01

    Background Rapid desensitization transiently prevents severe allergic reactions, allowing administration of life-saving therapies in previously sensitized patients. However, the mechanisms underlying successful rapid desensitization are not fully understood. Objectives We sought to investigate whether the mast cell (MC) is an important target of rapid desensitization in mice sensitized to exhibit IgE-dependent passive systemic anaphylaxis in vivo and to investigate the antigen specificity and underlying mechanisms of rapid desensitization in our mouse model. Methods C57BL/6 mice (in vivo) or primary isolated C57BL/6 mouse peritoneal mast cells (PMCs; in vitro) were passively sensitized with antigen-specific anti–2,4-dinitrophenyl IgE, anti-ovalbumin IgE, or both. MCs were exposed over a short period of time to increasing amounts of antigen (2,4-dinitrophenyl–human serum albumin or ovalbumin) in the presence of extracellular calcium in vitro or by means of intravenous administration to sensitized mice in vivo before challenging the mice with or exposing the PMCs to optimal amounts of specific or irrelevant antigen. Results Rapidly exposing mice or PMCs to progressively increasing amounts of specific antigen inhibited the development of antigen-induced hypothermia in sensitized mice in vivo and inhibited antigen-induced PMC degranulation and prostaglandin D2 synthesis in vitro. Such MC hyporesponsiveness was induced antigen-specifically and was associated with a significant reduction in antigen-specific IgE levels on MC surfaces. Conclusions Rapidly exposing MCs to progressively increasing amounts of antigen can both enhance the internalization of antigen-specific IgE on the MC surface and also desensitize these cells in an antigen-specific manner in vivo and in vitro. PMID:23810240

  19. Diagnostic accuracy of three monoclonal stool tests in a large series of untreated Helicobacter pylori infected patients.

    PubMed

    Lario, Sergio; Ramírez-Lázaro, María José; Montserrat, Antònia; Quílez, María Elisa; Junquera, Félix; Martínez-Bauer, Eva; Sanfeliu, Isabel; Brullet, Enric; Campo, Rafael; Segura, Ferran; Calvet, Xavier

    2016-06-01

    Immunochromatographic tests need to be improved in order to enhance their reliability. Recently, several new kits have appeared on the market. The objective was to evaluate the diagnostic accuracy of three monoclonal rapid stool tests - the new Uni-Gold™ H.pylori Antigen (Trinity Biotech, Ireland), the RAPID Hp StAR (Oxoid Ltd., UK) and the ImmunoCard STAT! HpSA (Meridian Diagnostics, USA) - for detecting H. pylori infection prior to eradication treatment. Diagnostic accuracy (sensitivity and specificity) and reliability (concordance between observers) were evaluated in 250 untreated consecutive dyspeptic patients. The gold standard for diagnosing H. pylori infection was defined as the concordance of two or more of rapid urease test (RUT), histopathology and urease breath test (UBT) or positive culture in isolation. Readings of immunochromatographic tests were performed by two different observers. Sensitivity, specificity, positive and negative predictive values and 95% confidence intervals were calculated. Sensitivity and specificity were compared using the McNemar test. The three tests showed a good correlation, with Kappa values>0.9. RAPID Hp StAR had a sensitivity of 91%-92% and a specificity ranging from 77% to 85%. Its sensitivity was higher than that of Uni-Gold™ H.pylori Antigen and ImmunoCard STAT! HpSA (p<0.01). Uni-Gold™ H.pylori Antigen kit showed a sensitivity of 83%, similar to ImmunoCard STAT! HpSA. Specificity of Uni-Gold™ H.pylori Antigen approached 90% (87-89%) and was superior to that of RAPID Hp StAR (p<0.01). Uni-Gold™ H.pylori Antigen and ImmunoCard STAT! HpSA present similar levels of diagnostic accuracy. RAPID Hp StAR was the most sensitive but less reliable of the three immunochromatographic stool tests. None are as accurate and reliable as UBT, RUT and histology. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  20. Functionalized bioinspired microstructured optical fiber pores for applications in chemical vapor sensing

    NASA Astrophysics Data System (ADS)

    Calkins, Jacob A.

    Chemical vapor sensing for defense, homeland security, environmental, and agricultural application is a challenge, which due combined requirements of ppt sensitivity, high selectivity, and rapid response, cannot be met using conventional analytical chemistry techniques. New sensing approaches and platforms are necessary in order to make progress in this rapidly evolving field. Inspired by the functionalized nanopores on moth sensilla hairs that contribute to the high selectivity and sensitivity of this biological system, a chemical vapor sensor based on the micro to nanoscale pores in microstructured optical fibers (MOFs) was designed. This MOF based chemical vapor sensor design utilizes MOF pores functionalized with organic self-assembled monolayers (SAMs) for selectivity and separations and a gold plasmonic sensor for detection and discrimination. Thin well-controlled gold films in MOF pores are critical components for the fabrication of structured plasmonic chemical vapor sensors. Thermal decomposition of dimethyl Au(II) trifluoroacetylacetonate dissolved in near-critical CO2 was used to deposit gold island films within the MOF pores. Using a 3mercatopropyltrimethoxysilane adhesion layer, continuous gold thin films as thin as 20--30 nm were deposited within MOF pores as small as 500 nm in diameter. The gold island films proved to be SERS active and were used to detect 900 ppt 2,4 DNT vapor in high pressure nitrogen and 6 ppm benzaldehyde. MOF based waveguide Raman (WGR), which can probe the air/silica interface between a waveguiding core and surrounding pores, was developed to detect and characterize SAMs and other thin films deposited in micro to nanoscale MOF pores. MOF based WGR was used to characterize an octadecyltrichlorosilane (OTS) SAM deposited in 1.6 mum diameter pores iv to demonstrate that the SAM was well-formed, uniform along the pore length, and only a single layer. MOF based WGR was used to detect a human serum albumin monolayer deposited on the OTS SAM and monitor in-situ the combustion of an OTS SAM in high pressure oxygen. Light scattering, an optical characterization technique that provides ellipsometric data from micro to nanoscale cylinders, was developed in order to characterize highly smooth wires and MOF pores. Clean, bare gold wires etched from MOF pore templates were found to have angle dependent Psi and Delta values that agree with numerically calculated and finite element modeled values over the full angular 340° collection range. Light scattering was shown to be sensitive to ellipticities in the cross-section of silica, gold, and silicon wires down to 1%. Using alkanethiol SAMs deposited on gold wires, light scattering was demonstrated to be able to detect films as thin as 1.5 nm, and able to distinguish between a decanethiol (1.5 nm) and an octadecanethiol SAM (2.7 mn). The high sensitivity of light scattering will allow it to characterize SAMs and thin films on the inner surfaces of MOF pores. WGR and light scattering provide the analytical tools that will allow for the further development of organic SAMs and thin films within MOF pores for analyte selectivity and chromatographic separations. This high selectivity combined with the sensitivity of a 3-dimensional nanostructured gold plasmonic sensor allows for the fabrication of a chemical vapor sensor inspired by the field performance of moth sensilla hairs.

  1. Development and Evaluation of a Rapid and Sensitive EBOV-RPA Test for Rapid Diagnosis of Ebola Virus Disease.

    PubMed

    Yang, Mingjuan; Ke, Yuehua; Wang, Xuesong; Ren, Hang; Liu, Wei; Lu, Huijun; Zhang, Wenyi; Liu, Shiwei; Chang, Guohui; Tian, Shuguang; Wang, Lihua; Huang, Liuyu; Liu, Chao; Yang, Ruifu; Chen, Zeliang

    2016-06-01

    Confirming Ebola virus disease (EVD), a deadly infectious disease, requires real-time RT-PCR, which takes up to a few hours to yield results. Therefore, a rapid diagnostic assay is imperative for EVD diagnosis. A rapid nucleic acid test based on recombinase polymerase amplification (EBOV-RPA) was developed to specifically detect the 2014 outbreak strains. The EBOV-RPA assay was evaluated by testing samples from suspected EVD patients in parallel with RT-PCR. An EBOV-RPA, which could be completed in 20 min, was successfully developed. Of 271 patients who tested positive for Ebola virus by RT-PCR, 264 (sensitivity: 97%, 95% CI: 95.5-99.3%) were positive by EBOV-RPA; 101 of 104 patients (specificity: 97%, 95% CI: 93.9-100%) who tested negative by RT-PCR were also negative by EBOV-RPA. The sensitivity values for samples with a Ct value of <34, which accounted for 95.59% of the samples, was 100%. Discordant samples positive by RT-PCR but negative by EBOV-RPA had significantly high Ct values. Results of external quality assessment samples with EBOV-RPA were 100%, consistent with those of RT-PCR. The EBOV-RPA assay showed 97% sensitivity and 97% specificity for all EVD samples tested, making it a rapid and sensitive test for EVD diagnosis.

  2. [Early diagnosis of streptococcal pharyngitis in paediatric practice: Validity of a rapid antigen detection test].

    PubMed

    Flores Mateo, Gemma; Conejero, Jaume; Grenzner Martinel, Elisabet; Baba, Zeki; Dicono, Susana; Echasabal, Mildrey; Gonzalo Santos, Concepción; Aliaga, Arantxa; Barredo, María; Ruiz, Luis; Carrau, Montserrat

    2010-07-01

    To determine the validity of the rapid antigen test for the diagnoses of acute pharyngitis caused by group A beta-haemolytic Streptococcus (GABHS) compared with culture. Observational study of a consecutive sample of paediatric patients. Two primary care centres (PCC) from the metropolitan area of Barcelona. Children aged 1-14 years with sore throat of no more than 5 days duration were chosen at PCC. Oropharyngeal samples were collected from tonsillar bed and posterior pharynx. A rapid diagnostic test was performed, as well as a throat culture. A total of 211 patients were studied. The overall prevalence of pharyngitis due to Streptococcus was 34.1%. Compared with the throat culture, the sensitivity of the rapid test was 90.3% (95% CI: 81.0-96.0), the specificity was 78.4% (95% CI: 70.6-84.9). The percentage of false negatives was 9.7% and the false positives was 21.6%. Spectrum bias was present, inasmuch as the rapid test sensitivity increased with Centor scores. The diagnostic value of a rapid antigen test for the diagnosis of streptococcal pharyngitis in paediatric patients at PCC is high. However, the percentage of false positives and negatives is too high, and also the sensitivity is too low in patients with fewer symptoms to support the use of rapid antigenic test without culture confirmation and bacterial sensitivity test. 2009 Elsevier España, S.L. All rights reserved.

  3. Development and clinical evaluation of a rapid diagnostic kit for feline leukemia virus infection.

    PubMed

    Kim, Won-Shik; Chong, Chom-Kyu; Kim, Hak-Yong; Lee, Gyu-Cheol; Jeong, Wooseog; An, Dong-Jun; Jeoung, Hye-Young; Lee, Jae-In; Lee, Young-Ki

    2014-01-01

    Feline leukemia virus (FeLV) causes a range of neoplastic and degenerative diseases in cats. To obtain a more sensitive and convenient diagnosis of the disease, we prepared monoclonal antibodies specific for the FeLV p27 to develop a rapid diagnostic test with enhanced sensitivity and specificity. Among these antibodies, we identified two clones (hybridomas 8F8B5 and 8G7D1) that specifically bound to FeLV and were very suitable for a diagnostic kit. The affinity constants for 8F8B5 and 8G7D1 were 0.35 × 10⁸ and 0.86 × 10⁸, respectively. To investigate the diagnostic abilities of the rapid kit using these antibodies, we performed several clinical studies. Assessment of analytical sensitivity revealed that the detection threshold of the rapid diagnostic test was 2 ng/mL for recombinant p27 and 12.5 × 10⁴ IU/mL for FeLV. When evaluating 252 cat sera samples, the kit was found to have a kappa value of 0.88 compared to polymerase chain reaction (PCR), indicating a significant correlation between data from the rapid diagnostic test and PCR. Sensitivity and specificity of the kit were 95.2% (20/21) and 98.5% (257/261), respectively. Our results demonstrated that the rapid diagnostic test would be a suitable diagnostic tool for the rapid detection of FeLV infection in cats.

  4. Facile synthesis of zwitterionic polymer-coated core-shell magnetic nanoparticles for highly specific capture of N-linked glycopeptides

    NASA Astrophysics Data System (ADS)

    Chen, Yajing; Xiong, Zhichao; Zhang, Lingyi; Zhao, Jiaying; Zhang, Quanqing; Peng, Li; Zhang, Weibing; Ye, Mingliang; Zou, Hanfa

    2015-02-01

    Highly selective and efficient capture of glycosylated proteins and peptides from complex biological samples is of profound significance for the discovery of disease biomarkers in biological systems. Recently, hydrophilic interaction liquid chromatography (HILIC)-based functional materials have been extensively utilized for glycopeptide enrichment. However, the low amount of immobilized hydrophilic groups on the affinity material has limited its specificity, detection sensitivity and binding capacity in the capture of glycopeptides. Herein, a novel affinity material was synthesized to improve the binding capacity and detection sensitivity for glycopeptides by coating a poly(2-(methacryloyloxy)ethyl)-dimethyl-(3-sulfopropyl) ammonium hydroxide (PMSA) shell onto Fe3O4@SiO2 nanoparticles, taking advantage of reflux-precipitation polymerization for the first time (denoted as Fe3O4@SiO2@PMSA). The thick polymer shell endows the nanoparticles with excellent hydrophilic property and several functional groups on the polymer chains. The resulting Fe3O4@SiO2@PMSA demonstrated an outstanding ability for glycopeptide enrichment with high selectivity, extremely high detection sensitivity (0.1 fmol), large binding capacity (100 mg g-1), high enrichment recovery (above 73.6%) and rapid magnetic separation. Furthermore, in the analysis of real complicated biological samples, 905 unique N-glycosylation sites from 458 N-glycosylated proteins were reliably identified in three replicate analyses of a 65 μg protein sample extracted from mouse liver, showing the great potential of Fe3O4@SiO2@PMSA in the detection and identification of low-abundance N-linked glycopeptides in biological samples.Highly selective and efficient capture of glycosylated proteins and peptides from complex biological samples is of profound significance for the discovery of disease biomarkers in biological systems. Recently, hydrophilic interaction liquid chromatography (HILIC)-based functional materials have been extensively utilized for glycopeptide enrichment. However, the low amount of immobilized hydrophilic groups on the affinity material has limited its specificity, detection sensitivity and binding capacity in the capture of glycopeptides. Herein, a novel affinity material was synthesized to improve the binding capacity and detection sensitivity for glycopeptides by coating a poly(2-(methacryloyloxy)ethyl)-dimethyl-(3-sulfopropyl) ammonium hydroxide (PMSA) shell onto Fe3O4@SiO2 nanoparticles, taking advantage of reflux-precipitation polymerization for the first time (denoted as Fe3O4@SiO2@PMSA). The thick polymer shell endows the nanoparticles with excellent hydrophilic property and several functional groups on the polymer chains. The resulting Fe3O4@SiO2@PMSA demonstrated an outstanding ability for glycopeptide enrichment with high selectivity, extremely high detection sensitivity (0.1 fmol), large binding capacity (100 mg g-1), high enrichment recovery (above 73.6%) and rapid magnetic separation. Furthermore, in the analysis of real complicated biological samples, 905 unique N-glycosylation sites from 458 N-glycosylated proteins were reliably identified in three replicate analyses of a 65 μg protein sample extracted from mouse liver, showing the great potential of Fe3O4@SiO2@PMSA in the detection and identification of low-abundance N-linked glycopeptides in biological samples. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05955g

  5. Imaging dynamic and selective low-complexity domain interactions that control gene transcription.

    PubMed

    Chong, Shasha; Dugast-Darzacq, Claire; Liu, Zhe; Dong, Peng; Dailey, Gina M; Cattoglio, Claudia; Heckert, Alec; Banala, Sambashiva; Lavis, Luke; Darzacq, Xavier; Tjian, Robert

    2018-06-21

    Many eukaryotic transcription factors (TFs) contain intrinsically disordered low-complexity domains (LCDs), but how they drive transactivation remains unclear. Here, live-cell single-molecule imaging reveals that TF-LCDs form local high-concentration interaction hubs at synthetic and endogenous genomic loci. TF-LCD hubs stabilize DNA binding, recruit RNA polymerase II (Pol II), and activate transcription. LCD-LCD interactions within hubs are highly dynamic, display selectivity with binding partners, and are differentially sensitive to disruption by hexanediols. Under physiological conditions, rapid and reversible LCD-LCD interactions occur between TFs and the Pol II machinery without detectable phase separation. Our findings reveal fundamental mechanisms underpinning transcriptional control and suggest a framework for developing single-molecule imaging screens for novel drugs targeting gene regulatory interactions implicated in disease. Copyright © 2018, American Association for the Advancement of Science.

  6. O2 Plasma Etching and Antistatic Gun Surface Modifications for CNT Yarn Microelectrode Improve Sensitivity and Antifouling Properties.

    PubMed

    Yang, Cheng; Wang, Ying; Jacobs, Christopher B; Ivanov, Ilia N; Venton, B Jill

    2017-05-16

    Carbon nanotube (CNT) based microelectrodes exhibit rapid and selective detection of neurotransmitters. While different fabrication strategies and geometries of CNT microelectrodes have been characterized, relatively little research has investigated ways to selectively enhance their electrochemical properties. In this work, we introduce two simple, reproducible, low-cost, and efficient surface modification methods for carbon nanotube yarn microelectrodes (CNTYMEs): O 2 plasma etching and antistatic gun treatment. O 2 plasma etching was performed by a microwave plasma system with oxygen gas flow and the optimized time for treatment was 1 min. The antistatic gun treatment flows ions by the electrode surface; two triggers of the antistatic gun was the optimized number on the CNTYME surface. Current for dopamine at CNTYMEs increased 3-fold after O 2 plasma etching and 4-fold after antistatic gun treatment. When the two treatments were combined, the current increased 12-fold, showing the two effects are due to independent mechanisms that tune the surface properties. O 2 plasma etching increased the sensitivity due to increased surface oxygen content but did not affect surface roughness while the antistatic gun treatment increased surface roughness but not oxygen content. The effect of tissue fouling on CNT yarns was studied for the first time, and the relatively hydrophilic surface after O 2 plasma etching provided better resistance to fouling than unmodified or antistatic gun treated CNTYMEs. Overall, O 2 plasma etching and antistatic gun treatment improve the sensitivity of CNTYMEs by different mechanisms, providing the possibility to tune the CNTYME surface and enhance sensitivity.

  7. Sensitive ionization of non-volatile analytes using protein solutions as spray liquid in desorption electrospray ionization mass spectrometry.

    PubMed

    Zhu, Zhiqiang; Han, Jing; Zhang, Yan; Zhou, Yafei; Xu, Ning; Zhang, Bo; Gu, Haiwei; Chen, Huanwen

    2012-12-15

    Desorption electrospray ionization (DESI) is the most popular ambient ionization technique for direct analysis of complex samples without sample pretreatment. However, for many applications, especially for trace analysis, it is of interest to improve the sensitivity of DESI-mass spectrometry (MS). In traditional DESI-MS, a mixture of methanol/water/acetic acid is usually used to generate the primary ions. In this article, dilute protein solutions were electrosprayed in the DESI method to create multiply charged primary ions for the desorption ionization of trace analytes on various surfaces (e.g., filter paper, glass, Al-foil) without any sample pretreatment. The analyte ions were then detected and structurally characterized using a LTQ XL mass spectrometer. Compared with the methanol/water/acetic acid (49:49:2, v/v/v) solution, protein solutions significantly increased the signal levels of non-volatile compounds such as benzoic acid, TNT, o-toluidine, peptide and insulin in either positive or negative ion detection mode. For all the analytes tested, the limits of detection (LODs) were reduced to about half of the original values which were obtained using traditional DESI. The results showed that the signal enhancement is highly correlated with the molecular weight of the proteins and the selected solid surfaces. The proposed DESI method is a universal strategy for rapid and sensitive detection of trace amounts of strongly bound and/or non-volatile analytes, including explosives, peptides, and proteins. The results indicate that the sensitivity of DESI can be further improved by selecting larger proteins and appropriate solid surfaces. Copyright © 2012 John Wiley & Sons, Ltd.

  8. A self-assembled fluorescent organic nanoprobe and its application for sulfite detection in food samples and living systems.

    PubMed

    Gao, Tang; Cao, Xiaozheng; Ge, Peng; Dong, Jie; Yang, Shuqi; Xu, Huan; Wu, Yong; Gao, Feng; Zeng, Wenbin

    2017-05-23

    Sulfur dioxide (SO 2 ) is a widely distributed air pollutant, and humans can easily be exposed to sulfite by inhaling SO 2 , thus inducing respiratory responses and diseases. Hence, to develop a rapid, sensitive and selective method for detection of sulfites is of great importance. Herein, we designed and synthesized a novel tetraphenyl imidazole compound TIBM with aggregation-induced emission enhancement (AIEE). TIBM can self-assemble into well-organized nanoparticles and is reported as an excellent probe for detection of sulfite with high selectivity and sensitivity. The nanoprobe performed very well for the detection of sulfite with an ultrafast detection time (15 s) and an ultralow detection limit (7.4 nM), which is superior to most of the reported probes. Moreover, the nanoprobe was successfully used to detect sulfite in food samples with a favorable accuracy. In addition, we developed paper-based devices for point-of-care detection of sulfite with naked eyes. Furthermore, due to its high water solubility, cell membrane permeability and good biocompatibility, the nanoproboe was further applied to detect sulfite in living systems. This study may offer some helpful insights for designing other AIE-based fluorescent nanosensors for various analytes.

  9. Bioinspired Cocatalysts Decorated WO3 Nanotube Toward Unparalleled Hydrogen Sulfide Chemiresistor.

    PubMed

    Kim, Dong-Ha; Jang, Ji-Soo; Koo, Won-Tae; Choi, Seon-Jin; Cho, Hee-Jin; Kim, Min-Hyeok; Kim, Sang-Joon; Kim, Il-Doo

    2018-06-22

    Herein, we incorporated dual biotemplates, i.e., cellulose nanocrystals (CNC) and apoferritin, into electrospinning solution to achieve three distinct benefits, i.e., (i) facile synthesis of a WO 3 nanotube by utilizing the self-agglomerating nature of CNC in the core of as-spun nanofibers, (ii) effective sensitization by partial phase transition from WO 3 to Na 2 W 4 O 13 induced by interaction between sodium-doped CNC and WO 3 during calcination, and (iii) uniform functionalization with monodispersive apoferritin-derived Pt catalytic nanoparticles (2.22 ± 0.42 nm). Interestingly, the sensitization effect of Na 2 W 4 O 13 on WO 3 resulted in highly selective H 2 S sensing characteristics against seven different interfering molecules. Furthermore, synergistic effects with a bioinspired Pt catalyst induced a remarkably enhanced H 2 S response ( R air / R gas = 203.5), unparalleled selectivity ( R air / R gas < 1.3 for the interfering molecules), and rapid response (<10 s)/recovery (<30 s) time at 1 ppm of H 2 S under 95% relative humidity level. This work paves the way for a new class of cosensitization routes to overcome critical shortcomings of SMO-based chemical sensors, thus providing a potential platform for diagnosis of halitosis.

  10. A highly selective colorimetric and ratiometric fluorescent probe for instantaneous sensing of Hg2+ in water, soil and seafood and its application on test strips.

    PubMed

    Lan, Linxin; Niu, Qingfen; Li, Tianduo

    2018-09-06

    A new simple and efficient oligothiophene-based colorimetric and ratiometric fluorescent probe has been developed for highly sensitive and fast detection of Hg 2+ in water, soil and seafood. The probe 5-(1,3-dithiolan-2-yl)-2,2':5',2″-terthiophene 3 TS can selectively detect Hg 2+ via the Hg 2+ -promoted deprotection reaction of thioacetals, which caused a remarkable color change from colorless to yellow and a strong fluorescence enhancement with emission color varying from blue to yellow, enabling naked-eye detection of Hg 2+ . The probe shows high sensitivity with the detection limit down to 1.03 × 10 -8  M. Visual color changes of 3 TS were observed on filter paper and TLC testing strips when they were impregnated on testing strips and immersed in Hg 2+ solution. Moreover, the probe 3 TS has been successfully used to rapidly detect trace amounts of hazardous Hg 2+ ions in tap, distilled, river and lake water, cropland soil, fish, shrimp and kelp samples with acceptable results and good recoveries. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Disposable amperometric biosensor based on nanostructured bacteriophages for glucose detection

    NASA Astrophysics Data System (ADS)

    Kang, Yu Ri; Hwang, Kyung Hoon; Kim, Ju Hwan; Nam, Chang Hoon; Kim, Soo Won

    2010-10-01

    The selection of electrode material profoundly influences biosensor science and engineering, as it heavily influences biosensor sensitivity. Here we propose a novel electrochemical detection method using a working electrode consisting of bio-nanowires from genetically modified filamentous phages and nanoparticles. fd-tet p8MMM filamentous phages displaying a three-methionine (MMM) peptide on the major coat protein pVIII (designated p8MMM phages) were immobilized on the active area of an electrochemical sensor through physical adsorption and chemical bonding. Bio-nanowires composed of p8MMM phages and silver nanoparticles facilitated sensitive, rapid and selective detection of particular molecules. We explored whether the composite electrode with bio-nanowires was an effective platform to detect the glucose oxidase. The current response of the bio-nanowire sensor was high at various glucose concentrations (0.1 µm-0.1 mM). This method provides a considerable advantage to demonstrate analyte detection over low concentration ranges. Especially, phage-enabled bio-nanowires can serve as receptors with high affinity and specificity for the detection of particular biomolecules and provide a convenient platform for designing site-directed multifunctional scaffolds based on bacteriophages and may serve as a simple method for label-free detection.

  12. An Innovative Metal Ions Sensitive “Test Paper” Based on Virgin Nanoporous Silicon Wafer: Highly Selective to Copper(II)

    NASA Astrophysics Data System (ADS)

    Li, Shaoyuan; Chen, Xiuhua; Ma, Wenhui; Ding, Zhao; Zhang, Cong; Chen, Zhengjie; He, Xiao; Shang, Yudong; Zou, Yuxin

    2016-11-01

    Developing an innovative “Test Paper” based on virgin nanoporous silicon (NPSi) which shows intense visible emission and excellent fluorescence stability. The visual fluorescence quenching “Test Paper” was highly selective and sensitive recognizing Cu2+ at μmol/L level. Within the concentration range of 5 × 10-7 ~50 × 10-7mol/L, the linear regression equation of IPL = 1226.3-13.6[CCu2+] (R = 0.99) was established for Cu2+ quantitative detection. And finally, Cu2+ fluorescence quenching mechanism of NPSi prober was proposed by studying the surface chemistry change of NPSi and metal ions immersed-NPSi using XPS characterization. The results indicate that SiHx species obviously contribute to the PL emission of NPSi, and the introduce of oxidization state and the nonradiative recombination center are responsible for the PL quenching. These results demonstrate how virgin NPSi wafer can serve as Cu2+ sensor. This work is of great significant to promote the development of simple instruments that could realize rapid, visible and real-time detection of various toxic metal ions.

  13. Enhanced Charge Collection in MOF‐525–PEDOT Nanotube Composites Enable Highly Sensitive Biosensing

    PubMed Central

    Huang, Tzu‐Yen; Kung, Chung‐Wei; Liao, Yu‐Te; Kao, Sheng‐Yuan; Cheng, Mingshan; Chang, Ting‐Hsiang; Henzie, Joel; Alamri, Hatem R.; Alothman, Zeid A.

    2017-01-01

    Abstract With the aim of a reliable biosensing exhibiting enhanced sensitivity and selectivity, this study demonstrates a dopamine (DA) sensor composed of conductive poly(3,4‐ethylenedioxythiophene) nanotubes (PEDOT NTs) conformally coated with porphyrin‐based metal–organic framework nanocrystals (MOF‐525). The MOF‐525 serves as an electrocatalytic surface, while the PEDOT NTs act as a charge collector to rapidly transport the electron from MOF nanocrystals. Bundles of these particles form a conductive interpenetrating network film that together: (i) improves charge transport pathways between the MOF‐525 regions and (ii) increases the electrochemical active sites of the film. The electrocatalytic response is measured by cyclic voltammetry and differential pulse voltammetry techniques, where the linear concentration range of DA detection is estimated to be 2 × 10−6–270 × 10−6 m and the detection limit is estimated to be 0.04 × 10−6 m with high selectivity toward DA. Additionally, a real‐time determination of DA released from living rat pheochromocytoma cells is realized. The combination of MOF5‐25 and PEDOT NTs creates a new generation of porous electrodes for highly efficient electrochemical biosensing. PMID:29201623

  14. Imaging experiment: The Viking Mars orbiter

    USGS Publications Warehouse

    Carr, M.H.; Baum, W.A.; Briggs, G.A.; Masursky, H.; Wise, D.W.; Montgomery, D.R.

    1972-01-01

    The general objectives of the Imaging Experiment on the Viking Orbiter are to aid the selection of Viking Lander sites, to map and monitor the chosen sites during lander operations, to aid in the selection of future landing sites, and to extend our knowledge of the planet. The imaging system consists of two identical vidicon cameras each attached to a 1026 mm T/8 telescope giving approximately 1?? square field of view. From an altitude of 1500 km the picture elements will be approximately 24m apart. The vidicon is coupled with an image intensifier which provides increased sensitivity and permits electronic shuttering and image motion compensation. A vidicon readout time of 2.24 sec enables pictures to be taken in rapid sequence for contiguous coverage at high resolution. The camera differs from those previously flown to Mars by providing contiguous coverage at high resolution on a single orbital pass, by having sufficient sensitivity to use narrow band color filters at maximum resolution, and by having response in the ultraviolet. These capabilities will be utelized to supplement lander observations and to extend our knowledge particularly of volcanic, erosional, and atmospheric phenomena on Mars. ?? 1972.

  15. A highly sensitive and selective detection of Cr(VI) and ascorbic acid based on nitrogen-doped carbon dots.

    PubMed

    Zhang, Yuhua; Fang, Xian; Zhao, Hong; Li, Zengxi

    2018-05-01

    A highly sensitive and selective detection of hexavalent chromium (Cr(VI)) and ascorbic acid (AA) was proposed using nitrogen-doped carbon dots (N-CDs). In the absence of AA, the quantitative detection of Cr(VI) was realized through Cr(VI) acting as a quencher to quench the fluorescence of N-CDs by inner filter effect (IFE) and static quenching effect. Under the optimal conditions, the linear range for Cr(VI) detection was from 0.01 to 250μM with a detection limit of 5nM (S/N = 3). In the presence of AA, the fluorescence intensity could be rapidly enhanced compared with the fluorescence of N-CDs/Cr(VI) system since Cr(VI) can be reduced into trivalent chromium (Cr(III)) by AA. And a wide linear range for AA detection was obtained from 1 to 750μM. The detection limit was 0.3μM (S/N = 3). More importantly, this method can be successfully applied to the detection of Cr(VI) in real water samples, and AA in vitamins C tablets and human serum sample. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Switch on or switch off: an optical DNA sensor based on poly(p-phenylenevinylene) grafted magnetic beads.

    PubMed

    Srinivas, Anupama R Gulur; Peng, Hui; Barker, David; Travas-Sejdic, Jadranka

    2012-05-15

    There has been an enormous demand for commercial label-free DNA sensors in a diverse range of fields including pre-emptive medicine, diagnostics, environmental monitoring, and food industry. Addressing the need for sensitive, selective and facile DNA sensors, we demonstrate a novel switch on/off sensor design that utilizes sandwich hybridization between photoluminescent anionic conjugated polyelectrolyte (CPE) bound captureprobe coated onto magnetic beads, target and the signaling probe. The hybridization-readout in our sensor was monitored by either fluorescence resonance energy transfer (FRET, switch-on) or superquenching (switch-off) depending on the type of signaling probe used. Moreover recent designs that utilize beads for sensing DNA have been limited towards using electrostatic interactions or intercalation of dyes to observe FRET. To our knowledge this is the first report of a switch on/off sensor utilizing either FRET or superquenching thus providing flexibility for future development of such rapid, facile and sensitive DNA sensors. The FRET-based sensor was investigated by optimizing the reaction parameters and selectivity. A low detection limit of 240 fmol in 2 mL of SSC buffer was achieved. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection.

    PubMed

    Barreda-García, Susana; Miranda-Castro, Rebeca; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Lobo-Castañón, María Jesús

    2018-01-01

    Highly sensitive testing of nucleic acids is essential to improve the detection of pathogens, which pose a major threat for public health worldwide. Currently available molecular assays, mainly based on PCR, have a limited utility in point-of-need control or resource-limited settings. Consequently, there is a strong interest in developing cost-effective, robust, and portable platforms for early detection of these harmful microorganisms. Since its description in 2004, isothermal helicase-dependent amplification (HDA) has been successfully applied in the development of novel molecular-based technologies for rapid, sensitive, and selective detection of viruses and bacteria. In this review, we highlight relevant analytical systems using this simple nucleic acid amplification methodology that takes place at a constant temperature and that is readily compatible with microfluidic technologies. Different strategies for monitoring HDA amplification products are described. In addition, we present technological advances for integrating sample preparation, HDA amplification, and detection. Future perspectives and challenges toward point-of-need use not only for clinical diagnosis but also in food safety testing and environmental monitoring are also discussed. Graphical Abstract Expanding the analytical toolbox for the detection of DNA sequences specific of pathogens with isothermal helicase dependent amplification (HDA).

  18. Polythiophene nanofilms for sensitive fluorescence detection of viruses in drinking water.

    PubMed

    Wankar, Shashwati; Turner, Nicholas W; Krupadam, Reddithota J

    2016-08-15

    Molecular imprints of the tobacco necrosis virus (TNV) have been formed within polythiophene nanofilms with an approximate thickness of 200nm. These films have been electrochemically deposited onto conducting Au surfaces. Upon rebinding, the TNV-polythiophene complex changes the fluorescence intensity of the nanofilm. The fluorescence intensity at 410nm was observed to be proportional to the concentration of viruses in the range of 0.1-10ngL(-1) (0.15-15pg) with the lower calculated detection limit of 2.29ngL(-1) (3.4pg). The intensity of the fluorescence emission is not affected by the thickness of the polythiophene film and the nature of TNV specific binding sites. Kinetic data analyses showed that the nanofilm responds to TNV within 2min; and cross-selectivity studies with tobacco mosaic virus (TMV) showed an excellent specificity for the targeted TNV. These binding experiments demonstrate the potential of fluorescence emission for the specific, label free and rapid detection of viruses using nanofilm sensors. Taking into account the lower limit of detection, the fluorescence sensing reported here is reliable, simple to perform, rapid, cost-effective and offers a sensitive analytical method for virus detection in water resources. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The electronic nose as a rapid sensor for volatile compounds in treated domestic wastewater.

    PubMed

    Dewettinck, T; Van Hege, K; Verstraete, W

    2001-07-01

    An electronic nose consisting of 12 metal oxide sensors was used to monitor volatile compounds in effluent of a domestic wastewater treatment plant. Effluent and reference (deionized water) samples were heated to 60 and 90 degrees C to promote the volatilization and to increase the sensitivity. An effluent measuring campaign of 12 weeks was conducted and the repeatability and reproducibility of the procedure and the apparatus were determined. Processing the obtained fingerprints with principal component analysis (PCA) allowed interpretation and differentiation of the samples in terms of origin and quality, relative to the reference. To minimize the variance due to sensitivity fluctuations of the apparatus and to detect effluents with deviating qualities, two new concepts were defined, i.e. the relative sensorial odour perception (in short: rSOP) and the relative fingerprint. Correlations between the relative overall electronic nose output, expressed as rSOP, and selected routine parameters were weak except for the parameter "volatile suspended solids" (VSS), indicating adsorption of volatile organic compounds (VOCs) onto the organic particles. The results clearly demonstrate the possibility to use the electronic nose as a rapid alarm generator towards volatile compounds, e.g. in specific advanced treatment processes to produce reclaimed water from effluent of the domestic wastewater treatment plant under scrutiny.

  20. Rapid and sensitive detection of early esophageal squamous cell carcinoma with fluorescence probe targeting dipeptidylpeptidase IV

    PubMed Central

    Onoyama, Haruna; Kamiya, Mako; Kuriki, Yugo; Komatsu, Toru; Abe, Hiroyuki; Tsuji, Yosuke; Yagi, Koichi; Yamagata, Yukinori; Aikou, Susumu; Nishida, Masato; Mori, Kazuhiko; Yamashita, Hiroharu; Fujishiro, Mitsuhiro; Nomura, Sachiyo; Shimizu, Nobuyuki; Fukayama, Masashi; Koike, Kazuhiko; Urano, Yasuteru; Seto, Yasuyuki

    2016-01-01

    Early detection of esophageal squamous cell carcinoma (ESCC) is an important prognosticator, but is difficult to achieve by conventional endoscopy. Conventional lugol chromoendoscopy and equipment-based image-enhanced endoscopy, such as narrow-band imaging (NBI), have various practical limitations. Since fluorescence-based visualization is considered a promising approach, we aimed to develop an activatable fluorescence probe to visualize ESCCs. First, based on the fact that various aminopeptidase activities are elevated in cancer, we screened freshly resected specimens from patients with a series of aminopeptidase-activatable fluorescence probes. The results indicated that dipeptidylpeptidase IV (DPP-IV) is specifically activated in ESCCs, and would be a suitable molecular target for detection of esophageal cancer. Therefore, we designed, synthesized and characterized a series of DPP-IV-activatable fluorescence probes. When the selected probe was topically sprayed onto endoscopic submucosal dissection (ESD) or surgical specimens, tumors were visualized within 5 min, and when the probe was sprayed on biopsy samples, the sensitivity, specificity and accuracy reached 96.9%, 85.7% and 90.5%. We believe that DPP-IV-targeted activatable fluorescence probes are practically translatable as convenient tools for clinical application to enable rapid and accurate diagnosis of early esophageal cancer during endoscopic or surgical procedures. PMID:27245876

  1. Rapid-Response Low Infrared Emission Broadband Ultrathin Plasmonic Light Absorber

    PubMed Central

    Tagliabue, Giulia; Eghlidi, Hadi; Poulikakos, Dimos

    2014-01-01

    Plasmonic nanostructures can significantly advance broadband visible-light absorption, with absorber thicknesses in the sub-wavelength regime, much thinner than conventional broadband coatings. Such absorbers have inherently very small heat capacity, hence a very rapid response time, and high light power-to-temperature sensitivity. Additionally, their surface emissivity can be spectrally tuned to suppress infrared thermal radiation. These capabilities make plasmonic absorbers promising candidates for fast light-to-heat applications, such as radiation sensors. Here we investigate the light-to-heat conversion properties of a metal-insulator-metal broadband plasmonic absorber, fabricated as a free-standing membrane. Using a fast IR camera, we show that the transient response of the absorber has a characteristic time below 13 ms, nearly one order of magnitude lower than a similar membrane coated with a commercial black spray. Concurrently, despite the small thickness, due to the large absorption capability, the achieved absorbed light power-to-temperature sensitivity is maintained at the level of a standard black spray. Finally, we show that while black spray has emissivity similar to a black body, the plasmonic absorber features a very low infra-red emissivity of almost 0.16, demonstrating its capability as selective coating for applications with operating temperatures up to 400°C, above which the nano-structure starts to deform. PMID:25418040

  2. Rapid separation and sensitive determination of banned aromatic amines with plastic microchip electrophoresis.

    PubMed

    Li, Ruina; Wang, Lili; Gao, Xiaotong; Du, Gangfeng; Zhai, Honglin; Wang, Xiayan; Guo, Guangsheng; Pu, Qiaosheng

    2013-03-15

    Rapid analysis of trace amount of aromatic amines in environmental samples and daily necessities has attracted considerable attentions because some of them are strongly toxic and carcinogenic. In this study, fast and efficient electrophoretic separation and sensitive determination of 5 banned aromatic amines were explored for practical analysis using disposable plastic microchips combined with a low-cost laser-induced fluorescence detector. The effect of running buffer and its additive was systematically investigated. Under the selected condition, 5 fluorescein isothiocyanate labeled aromatic amines could be baseline separated within 90s by using a 10mmol/L borate buffer containing 2% (w/v) hydroxypropyl cellulose. Calibration curves of peak areas vs. concentrations were linear up to 40 or 120μmol/L for different analytes and limits of detection were in a range of 1-3nmol/L. Theoretical plate numbers of 6.8-8.5×10(5)/m were readily achieved. The method exhibited good repeatability, relative standard deviations (n=5) of peak areas and migration times were no more than 4.6% and 0.9%, respectively. The established method was successfully applied in the quantitative analysis of these banned aromatic amines in real samples of waste water and textile, recoveries of added standards were 85-110%. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Simultaneous determination of water-soluble vitamins in selected food matrices by liquid chromatography/electrospray ionization tandem mass spectrometry.

    PubMed

    Gentili, Alessandra; Caretti, Fulvia; D'Ascenzo, Giuseppe; Marchese, Stefano; Perret, Daniela; Di Corcia, Daniele; Rocca, Lucia Mainero

    2008-07-01

    A rapid, simple and sensitive method based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) with an electrospray ionization (ESI) source for the simultaneous analysis of fourteen water-soluble vitamins (B1, B2, two B3 vitamers, B5, five B6 vitamers, B8, B9, B12 and C) in various food matrices, i.e. maize flour, green and golden kiwi and tomato pulp, is presented here. Analytes were separated by ion-suppression reversed-phase liquid chromatography in less than 10 min and detected in positive ion mode. Sensitivity and specificity of this method allowed two important results to be achieved: (i) limits of detection of the analytes at ng g(-1) levels (except for vitamin C); (ii) development of a rapid sample treatment that minimizes analyte exposition to light, air and heat, eliminating any step of extract concentration. Analyte recovery depended on the type of matrix. In particular, recovery of the analytes in maize flour was > or =70%, with the exception of vitamin C, pyridoxal-5'-phosphate and vitamin B9 (ca 40%); with tomato pulp, recovery was > or =64%, except for vitamin C (41%); with kiwi, recovery was > or =73%, except for nicotinamide (ca. 30%).

  4. Evaluation of the Immunoquick+4 malaria rapid diagnostic test in a non-endemic setting.

    PubMed

    van Dijk, D P J; Gillet, P; Vlieghe, E; Cnops, L; Van Esbroeck, M; Jacobs, J

    2010-05-01

    The aim of this retrospective study was to evaluate the Immunoquick+4 (BioSynex, Strasbourg, France), a three-band malaria rapid diagnostic test (MRDT) targeting histidine-rich protein-2 (HRP-2) and pan Plasmodium-specific parasite lactate dehydrogenase, in a non-endemic reference setting. Stored whole-blood samples (n = 613) from international travellers suspected of malaria were used, with microscopy corrected by polymerase chain reaction (PCR) as the reference method. Samples infected by P. falciparum (n = 323), P. vivax (n = 97), P. ovale (n = 73) and P. malariae (n = 25) were selected, as well as 95 malaria-negative samples. The overall sensitivities of the Immunoquick+4 for the diagnosis of P. falciparum, P. vivax, P. malariae and P. ovale were 88.9, 75.3, 56.0 and 19.2%, respectively. Sensitivity was significantly related to parasite density for P. falciparum (93.6% versus 71.4% at parasite densities >100/microl and 500/microl and

  5. Rapid and specific detection of Salmonella in water samples using real-time PCR and High Resolution Melt (HRM) curve analysis.

    PubMed

    van Blerk, G N; Leibach, L; Mabunda, A; Chapman, A; Louw, D

    2011-01-01

    A real-time PCR assay combined with a pre-enrichment step for the specific and rapid detection of Salmonella in water samples is described. Following amplification of the invA gene target, High Resolution Melt (HRM) curve analysis was used to discriminate between products formed and to positively identify invA amplification. The real-time PCR assay was evaluated for specificity and sensitivity. The assay displayed 100% specificity for Salmonella and combined with a 16-18 h non-selective pre-enrichment step, the assay proved to be highly sensitive with a detection limit of 1.0 CFU/ml for surface water samples. The detection assay also demonstrated a high intra-run and inter-run repeatability with very little variation in invA amplicon melting temperature. When applied to water samples received routinely by the laboratory, the assay showed the presence of Salmonella in particularly surface water and treated effluent samples. Using the HRM based assay, the time required for Salmonella detection was drastically shortened to less than 24 h compared to several days when using standard culturing methods. This assay provides a useful tool for routine water quality monitoring as well as for quick screening during disease outbreaks.

  6. Rapid Magnetic Nanobiosensor for the detection of Serratia marcescen

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Hussein, Emad; Aljumaili, Omar; Zoubi, Mazhar Al; Altrad, Bahaa; Albatayneh, Khaled; Al-razaq, Mutaz A. Abd

    2018-02-01

    The development of rapid, sensitive, accurate and reliable bacterial detection methods are of keen interest to ensure food safety and hospital security. Therefore, the development of a fast, specific, low-cost and trusted methods is in high demand. Magnetic nanoparticles with their unique material properties have been utilized as a tool for pathogen detection. Here, we present a novel iron oxide nanoparticles labeled with specific targeting antibodies to improve specificity and extend the use of nanoparticles as nanosensors. The results indicated that antibody labeled iron oxide platform that binds specifically to Serriata marcescenst in a straightforward method is very specific and sensitive. The system is capable of rapid and specific detection of various clinically relevant bacterial species, with sensitivity down to single bacteria. The generic platform could be used to identify pathogens for a variety of applications rapidly.

  7. RAPID PCR-BASED MONITORING OF INFECTIOUS ENTEROVIRUSES IN DRINKING WATER. (R824756)

    EPA Science Inventory

    Abstract

    Currently, the standard method for the detection of enteroviruses and hepatitis A virus in water involves cell culture assay which is expensive and time consuming. Direct RT-PCR offers a rapid and sensitive alternative to virus detection but sensitivity is oft...

  8. Anomalous resonance in a nanomechanical biosensor

    PubMed Central

    Gupta, Amit K.; Nair, Pradeep R.; Akin, Demir; Ladisch, Michael R.; Broyles, Steve; Alam, Muhammad A.; Bashir, Rashid

    2006-01-01

    The decrease in resonant frequency (−Δωr) of a classical cantilever provides a sensitive measure of the mass of entities attached on its surface. This elementary phenomenon has been the basis of a new class of bio-nanomechanical devices as sensing components of integrated microsystems that can perform rapid, sensitive, and selective detection of biological and biochemical entities. Based on classical analysis, there is a widespread perception that smaller sensors are more sensitive (sensitivity ≈ −0.5ωr/mC, where mC is the mass of the cantilever), and this notion has motivated scaling of biosensors to nanoscale dimensions. In this work, we show that the response of a nanomechanical biosensor is far more complex than previously anticipated. Indeed, in contrast to classical microscale sensors, the resonant frequencies of the nanosensor may actually decrease or increase after attachment of protein molecules. We demonstrate theoretically and experimentally that the direction of the frequency change arises from a size-specific modification of diffusion and attachment kinetics of biomolecules on the cantilevers. This work may have broad impact on microscale and nanoscale biosensor design, especially when predicting the characteristics of bio-nanoelectromechanical sensors functionalized with biological capture molecules. PMID:16938886

  9. Photooxidation of 3-substituted pyrroles:  a postcolumn reaction detection system for singlet molecular oxygen in HPLC.

    PubMed

    Denham, K; Milofsky, R E

    1998-10-01

    A postcolumn photochemical reaction detection scheme, based on the reaction of 3-substituted pyrroles with singlet molecular oxygen ((1)O(2)), has been developed. The method is selective and sensitive for the determination of a class of organic compounds called (1)O(2)-sensitizers and is readily coupled to HPLC. Following separation by HPLC, analytes ((1)O(2)-sensitizers) are excited by a Hg pen-ray lamp. Analytes that are efficient (1)O(2)-sensitizers promote ground-state O(2) ((3)Σ(g)(-)) to an excited state ((1)Σ(g)(+) or (1)Δ(g)), which reacts rapidly with tert-butyl-3,4,5-trimethylpyrrolecarboxylate (BTMPC) or N-benzyl-3-methoxypyrrole-2-tert-carboxylate (BMPC), which is added to the mobile phase. Detection is based on the loss of pyrrole (BTMPC or BMPC). The reaction is catalytic in nature since one analyte molecule may absorb light many times, producing large amounts of (1)O(2). Detection limits for several (1)O(2)-sensitizers were improved by 1-2 orders of magnitude over optimized UV-absorbance detection. This paper discusses the optimization of the reaction conditions for this photochemical reaction detection scheme and its application to the detection of PCBs, nitrogen heterocycles, nitro and chloro aromatics, and other substituted aromatic compounds.

  10. Adverse selection and price sensitivity when low-income people have subsidies to purchase health insurance in the private market.

    PubMed

    Swartz, K; Garnick, D W

    2000-01-01

    Policymakers interested in subsidizing low-income people's purchase of private insurance face two major questions: will such subsidies lead to adverse selection, and how large do the subsidies have to be to induce large numbers of eligible people to purchase the insurance? This study examines New Jersey's short-lived experience with a premium subsidy program, Health Access New Jersey (Access Program). The program was for people in families with incomes below 250% of the poverty level who were not eligible for health insurance provided by an employer, or Medicaid or Medicare, and who wished to purchase policies in the state's individual health insurance market, the Individual Health Coverage Program. Surveying a random sample of Access Program policyholders, we compared their demographic and socioeconomic characteristics, as well as their health status, to those of other New Jersey residents who had family incomes below 250% of the poverty level to determine whether there was any evidence of adverse selection among the people who enrolled in the Access Program. The people who enrolled were not in worse health than uninsured people with incomes below 250% of the poverty level, but they were quite price sensitive. Most enrollees had incomes within the low end of the income eligibility distribution, reflecting the structure of rapidly declining subsidies as income increased.

  11. A highly sensitive and selective optical sensor for Pb2+ by using conjugated polymers and label-free oligonucleotides.

    PubMed

    Lu, Yan; Li, Xiang; Wang, Gongke; Tang, Wen

    2013-01-15

    The detection of Pb(2+) with DNA-based biosensor is usually susceptible to severe interference from Hg(2+) because of the T-Hg(2+)-T interaction between Hg(2+) and T residues. In this study, we developed a rapid, sensitive, selective and label-free sensor for the detection of Pb(2+) in the presence of Hg(2+) based on the Pb(2+)-induced G-quadruplex formation with cationic water-soluble conjugated polymer (PMNT) as a "polymeric stain" to transduce optical signal. We selected a specific sequence oligonucleotide, TBAA (5'-GGAAGGTGTGGAAGG-3'), which can form a G-quadruplex structure upon the addition of Pb(2+). This strategy provided a promising alternative to Pb(2+) determination in the presence of Hg(2+) instead of the universal masking agents of Hg(2+) (such as CN(-), SCN(-)). Based on this observation, a simple "mix-and-detect" optical sensor for the detection of Pb(2+) was proposed due to the distinguishable optical properties of PMNT-ssDNA and PMNT-(G-quadruplex) complexes. By this method, we could identify micromolar Pb(2+) concentrations within 5min even with the naked eye. Furthermore, the detection limit was improved to the nanomolar range by the fluorometric method. We also successfully utilized this biosensor for the determination of Pb(2+) in tap water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. FTIR gas analysis with improved sensitivity and selectivity for CWA and TIC detection

    NASA Astrophysics Data System (ADS)

    Phillips, Charles M.; Tan, Huwei

    2010-04-01

    This presentation describes the use of an FTIR (Fourier Transform Infrared)-based spectrometer designed to continuously monitor ambient air for the presence of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). The necessity of a reliable system capable of quickly and accurately detecting very low levels of CWAs and TICs while simultaneously retaining a negligible false alarm rate will be explored. Technological advancements in FTIR sensing have reduced noise while increasing selectivity and speed of detection. These novel analyzer design characteristics are discussed in detail and descriptions are provided which show how optical throughput, gas cell form factor, and detector response are optimized. The hardware and algorithms described here will explain why this FTIR system is very effective for the simultaneous detection and speciation of a wide variety of toxic compounds at ppb concentrations. Analytical test data will be reviewed demonstrating the system's sensitivity to and selectivity for specific CWAs and TICs; this will include recent data acquired as part of the DHS ARFCAM (Autonomous Rapid Facility Chemical Agent Monitor) project. These results include analyses of the data from live agent testing for the determination of CWA detection limits, immunity to interferences, detection times, residual noise analysis and false alarm rates. Sensing systems such as this are critical for effective chemical hazard identification which is directly relevant to the CBRNE community.

  13. Integrated Lateral Flow Test Strip with Electrochemical Sensor for Quantification of Phosphorylated Cholinesterase: Biomarker of Exposure to Organophosphorus Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Dan; Wang, Jun; Wang, Limin

    An integrated lateral flow test strip with electrochemical sensor (LFTSES) device with rapid, selective and sensitive response for quantification of exposure to organophosphorus (OP) pesticides and nerve agents has been developed. The principle of this approach is based on parallel measurements of post-exposure and baseline acetylcholinesterase (AChE) enzyme activity, where reactivation of the phosphorylated AChE is exploited to enable measurement of total amount of AChE (including inhibited and active) which is used as a baseline for calculation of AChE inhibition. Quantitative measurement of phosphorylated adduct (OP-AChE) was realized by subtracting the active AChE from the total amount of AChE. Themore » proposed LFTSES device integrates immunochromatographic test strip technology with electrochemical measurement using a disposable screen printed electrode which is located under the test zone. It shows linear response between AChE enzyme activity and enzyme concentration from 0.05 to 10 nM, with detection limit of 0.02 nM. Based on this reactivation approach, the LFTSES device has been successfully applied for in vitro red blood cells inhibition studies using chlorpyrifos oxon as a model OP agent. This approach not only eliminates the difficulty in screening of low-dose OP exposure because of individual variation of normal AChE values, but also avoids the problem in overlapping substrate specificity with cholinesterases and avoids potential interference from other electroactive species in biological samples. It is baseline free and thus provides a rapid, sensitive, selective and inexpensive tool for in-field and point-of-care assessment of exposures to OP pesticides and nerve agents.« less

  14. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.

    PubMed

    Wang, Chaoguang; Wu, Xuezhong; Dong, Peitao; Chen, Jian; Xiao, Rui

    2016-12-15

    Paraquat (PQ) pollutions are ultra-toxic to human beings and hard to be decomposed in the environment, thus requiring an on-site detection strategy. Herein, we developed a robust and rapid PQ sensing strategy based on the surface-enhanced Raman scattering (SERS) technique. A hybrid SERS substrate was prepared by grafting the Au@Ag core-shell nanoparticles (NPs) on the Au film over slightly etched nanoparticles (Au FOSEN). Hotspots were engineered at the junctions as indicated by the finite difference time domain calculation. SERS performance of the hybrid substrate was explored using p-ATP as the Raman probe. The hybrid substrate gives higher enhancement factor comparing to either the Au FOSEN substrate or the Au@Ag core-shell NPs, and exhibits excellent reproducibility, homogeneity and stability. The proposed SERS substrates were prepared in batches for the practical PQ sensing. The total analysis time for a single sample, including the pre-treatment and measurement, was less than 5min with a PQ detection limit of 10nM. Peak intensities of the SERS signal were plotted as a function of the PQ concentrations to calibrate the sensitivity by fitting the Hill's equation. The plotted calibration curve showed a good log-log linearity with the coefficient of determination of 0.98. The selectivity of the sensing proposal was based on the "finger print" Raman spectra of the analyte. The proposed substrate exhibited good recovery when it applied to real water samples, including lab tap water, bottled water, and commercially obtained apple juice and grape juice. This SERS-based PQ detection method is simple, rapid, sensitive and selective, which shows great potential in pesticide residue and additives abuse monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Simultaneous Determination of Eight Hypotensive Drugs of Various Chemical Groups in Pharmaceutical Preparations by HPLC-DAD.

    PubMed

    Stolarczyk, Mariusz; Hubicka, Urszula; Żuromska-Witek, Barbara; Krzek, Jan

    2015-01-01

    A new sensitive, simple, rapid, and precise HPLC method with diode array detection has been developed for separation and simultaneous determination of hydrochlorothiazide, furosemide, torasemide, losartane, quinapril, valsartan, spironolactone, and canrenone in combined pharmaceutical dosage forms. The chromatographic analysis of the tested drugs was performed on an ACE C18, 100 Å, 250×4.6 mm, 5 μm particle size column with 0.0.05 M phosphate buffer (pH=3.00)-acetonitrile-methanol (30+20+50 v/v/v) mobile phase at a flow rate of 1.0 mL/min. The column was thermostatted at 25°C. UV detection was performed at 230 nm. Analysis time was 10 min. The elaborated method meets the acceptance criteria for specificity, linearity, sensitivity, accuracy, and precision. The proposed method was successfully applied for the determination of the studied drugs in the selected combined dosage forms.

  16. Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis

    PubMed Central

    Tung, Thanh Tran

    2017-01-01

    The early diagnosis of diseases, e.g., Parkinson’s and Alzheimer’s disease, diabetes, and various types of cancer, and monitoring the response of patients to the therapy plays a critical role in clinical treatment; therefore, there is an intensive research for the determination of many clinical analytes. In order to achieve point-of-care sensing in clinical practice, sensitive, selective, cost-effective, simple, reliable, and rapid analytical methods are required. Biosensors have become essential tools in biomarker sensing, in which electrode material and architecture play critical roles in achieving sensitive and stable detection. Carbon nanomaterials in the form of particle/dots, tube/wires, and sheets have recently become indispensable elements of biosensor platforms due to their excellent mechanical, electronic, and optical properties. This review summarizes developments in this lucrative field by presenting major biosensor types and variability of sensor platforms in biomedical applications. PMID:28825646

  17. A triphenylamine-functionalized luminescent sensor for efficient p-nitroaniline detection.

    PubMed

    Ji, Ning-Ning; Shi, Zhi-Qiang; Hu, Hai-Liang; Zheng, He-Gen

    2018-05-14

    The combination of π-conjugated fluorophores within a hybrid system gives rise to a triphenylamine-functionalized material [Zn(bpba)(NO3)] (1) (Hbpba = 4-(bis(4-(pyridin-4-yl)phenyl)amino)benzoic acid). Compound 1 features a 2D + 2D → 2D parallel polycatenation structure with 63-hcb net. Photophysical studies revealed that the title phase showed superior sensitivity towards p-nitroaniline (p-NA) with a low detection limit (down to ∼0.10 ppm). Specifically, following a new detection route, vapor-sensing experiments using a saturated ethanol solution of nitroaromatic isomers have been established for the first time. Highly sensitive and selective detection of p-NA by the proposed material with a rapid response time (t = 30 s, QE > 90.0%) as compared to that via the control isomers (t = 60s, QE < 6.0%) demonstrates an attractive feasible route and a promising luminescent sensor for nitroaromatic detection.

  18. Determination of ametryn herbicide by bioassay and gas chromatography-mass spectrometry in analysis of residues in drinking water.

    PubMed

    Queiroz, R H; Lanchote, V L; Bonato, P S; Tozato, E; de Carvalho, D; Gomes, M A; Cerdeira, A L

    1999-06-01

    A simple, rapid and quantitative bioassay method was compared to a gas chromatography/mass spectrometry (GC/MS) procedure for the analysis of ametryn in surface and groundwater. This method was based on the activity of ametryn in inhibiting the growth of the primary root and shoot of germinating letuce, Lactuca sativa L. seed. The procedure was sensitive to 0.01 microgram/l and was applicable from this concentration up to 0.6 microgram/l. Initial surface sterilization of the seed, selection of pregerminated seed of certain root lengths and special equipment are not necessary. So, we concluded that the sensitivity of the bioassay method is compatible with the chromatographic method (GC-MS). However, the study of the correlation between methods suggests that the bioassay should be used only as a screening technique for the evaluation of ametryn residues in water.

  19. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles.

    PubMed

    Lou, Tingting; Chen, Lingxin; Chen, Zhaopeng; Wang, Yunqing; Chen, Ling; Li, Jinhua

    2011-11-01

    A colorimetric, label-free, and nonaggregation-based silver coated gold nanoparticles (Ag/Au NPs) probe has been developed for detection of trace Cu(2+) in aqueous solution, based on the fact that Cu(2+) can accelerate the leaching rate of Ag/Au NPs by thiosulfate (S(2)O(3)(2-)). The leaching of Ag/Au NPs would lead to dramatic decrease in the surface plasmon resonance (SPR) absorption as the size of Ag/Au NPs decreased. This colorimetric strategy based on size-dependence of nanoparticles during their leaching process provided a highly sensitive (1.0 nM) and selective detection toward Cu(2+), with a wide linear detection range (5-800 nM) over nearly 3 orders of magnitude. The cost-effective probe allows rapid and sensitive detection of trace Cu(2+) ions in water samples, indicating its potential applicability for the determination of copper in real samples.

  20. Application of a molecular beacon based real-time isothermal amplification (MBRTIA) technology for simultaneous detection of Bacillus cereus and Staphylococcus aureus.

    PubMed

    Mandappa, I M; Joglekar, Prasanna; Manonmani, H K

    2015-07-01

    A multiplex real-time isothermal amplification assay was developed using molecular beacons for the detection of Bacillus cereus and Staphylococcus aureus by targeting four important virulence genes. A correlation between targeting highly accessible DNA sequences and isothermal amplification based molecular beacon efficiency and sensitivity was demonstrated using phi(Φ)29 DNA polymerase at a constant isothermal temperature of 30 °C. It was very selective and consistently detected down to 10(1) copies of DNA. The specificity and sensitivity of this assay, when tested with pure culture were high, surpassing those of currently used PCR assays for the detection of these organisms. The molecular beacon based real-time isothermal amplification (MBRTIA) assay could be carried out entirely in 96 well plates or well strips, enabling a rapid and high-throughput detection of food borne pathogens.

  1. Morphology of seahorse head hydrodynamically aids in capture of evasive prey.

    PubMed

    Gemmell, Brad J; Sheng, Jian; Buskey, Edward J

    2013-01-01

    Syngnathid fish (seahorses, pipefish and sea dragons) are slow swimmers yet capture evasive prey (copepods) using a technique known as the 'pivot' feeding, which involves rapid movement to overcome prey escape capabilities. However, this feeding mode functions only at short range and requires approaching very closely to hydrodynamically sensitive prey without triggering an escape. Here we investigate the role of head morphology on prey capture using holographic and particle image velocimetry (PIV). We show that head morphology functions to create a reduced fluid deformation zone, minimizing hydrodynamic disturbance where feeding strikes occur (above the end of the snout), and permits syngnathid fish to approach highly sensitive copepod prey (Acartia tonsa) undetected. The results explain how these animals can successfully employ short range 'pivot' feeding effectively on evasive prey. The need to approach prey with stealth may have selected for a head shape that produces lower deformation rates than other fish.

  2. Evaluation of a latex agglutination assay for the identification of Burkholderia pseudomallei and Burkholderia mallei.

    PubMed

    Duval, Brea D; Elrod, Mindy G; Gee, Jay E; Chantratita, Narisara; Tandhavanant, Sarunporn; Limmathurotsakul, Direk; Hoffmaster, Alex R

    2014-06-01

    Cases of melioidosis and glanders are rare in the United States, but the etiologic agents of each disease (Burkholderia pseudomallei and Burkholderia mallei, respectively) are classified as Tier 1 select agents because of concerns about their potential use as bioterrorism agents. A rapid, highly sensitive, and portable assay for clinical laboratories and field use is required. Our laboratory has further evaluated a latex agglutination assay for its ability to identify B. pseudomallei and B. mallei isolates. This assay uses a monoclonal antibody that specifically recognizes the capsular polysaccharide produced by B. pseudomallei and B. mallei, but is absent in closely related Burkholderia species. A total of 110 B. pseudomallei and B. mallei were tested, and 36 closely related Burkholderia species. The latex agglutination assay was positive for 109 of 110 (99.1% sensitivity) B. pseudomallei and B. mallei isolates tested. © The American Society of Tropical Medicine and Hygiene.

  3. Photoelectrochemical enzymatic biosensors.

    PubMed

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Construction of carbon nanotube based nanoarchitectures for selective impedimetric detection of cancer cells in whole blood.

    PubMed

    Liu, Yang; Zhu, Fanjiao; Dan, Wangxia; Fu, Yu; Liu, Shaoqin

    2014-10-21

    A carbon nanotube (CNT) based nanoarchitecture is developed for rapid, sensitive and specific detection of cancer cells by using real time electrical impedance sensing. The sensor is constructed with carbon nanotube (CNT) multilayers and EpCAM (epithelial cell adhesion molecule) antibodies, which are assembled on an indium tin oxide (ITO) electrode surface. The binding of tumor cells to EpCAM antibodies causes increase of the electron-transfer resistance. The electrochemical impedance of the prepared biosensors is linear with the logarithm of concentration of the liver cancer cell line (HepG2) within the concentration range of 10 to 10(5) cells per mL. The detection limit for HepG2 cells is 5 cells per mL. The proposed impedimetric sensing devices allow for sensitive and specific detection of cancer cells in whole-blood samples without any sample pretreatment steps.

  5. Serine Protease Zymography: Low-Cost, Rapid, and Highly Sensitive RAMA Casein Zymography.

    PubMed

    Yasumitsu, Hidetaro

    2017-01-01

    To detect serine protease activity by zymography, casein and CBB stain have been used as a substrate and a detection procedure, respectively. Casein zymography has been using substrate concentration at 1 mg/mL and employing conventional CBB stain. Although ordinary casein zymography provides reproducible results, it has several disadvantages including time-consuming and relative low sensitivity. Improved casein zymography, RAMA casein zymography, is rapid and highly sensitive. RAMA casein zymography completes the detection process within 1 h after incubation and increases the sensitivity at least by tenfold. In addition to serine protease, the method also detects metalloprotease 7 (MMP7, Matrilysin) with high sensitivity.

  6. Clownfishes evolution below and above the species level

    PubMed Central

    Litsios, Glenn; Faye, Laurélène; Salamin, Nicolas

    2018-01-01

    The difference between rapid morphological evolutionary changes observed in populations and the long periods of stasis detected in the fossil record has raised a decade-long debate about the exact role played by intraspecific mechanisms at the interspecific level. Although they represent different scales of the same evolutionary process, micro- and macroevolution are rarely studied together and few empirical studies have compared the rates of evolution and the selective pressures between both scales. Here, we analyse morphological, genetic and ecological traits in clownfishes at different evolutionary scales and demonstrate that the tempo of molecular and morphological evolution at the species level can be, to some extent, predicted from parameters estimated below the species level, such as the effective population size or the rate of evolution within populations. We also show that similar codons in the gene of the rhodopsin RH1, a light-sensitive receptor protein, are under positive selection at the intra and interspecific scales, suggesting that similar selective pressures are acting at both levels. PMID:29467260

  7. Quantitative assessment of hematopoietic chimerism by quantitative real-time polymerase chain reaction of sequence polymorphism systems after hematopoietic stem cell transplantation.

    PubMed

    Qin, Xiao-ying; Li, Guo-xuan; Qin, Ya-zhen; Wang, Yu; Wang, Feng-rong; Liu, Dai-hong; Xu, Lan-ping; Chen, Huan; Han, Wei; Wang, Jing-zhi; Zhang, Xiao-hui; Li, Jin-lan; Li, Ling-di; Liu, Kai-yan; Huang, Xiao-jun

    2011-08-01

    Analysis of changes in recipient and donor hematopoietic cell origin is extremely useful to monitor the effect of hematopoietic stem cell transplantation (HSCT) and sequential adoptive immunotherapy by donor lymphocyte infusions. We developed a sensitive, reliable and rapid real-time PCR method based on sequence polymorphism systems to quantitatively assess the hematopoietic chimerism after HSCT. A panel of 29 selected sequence polymorphism (SP) markers was screened by real-time PCR in 101 HSCT patients with leukemia and other hematological diseases. The chimerism kinetics of bone marrow samples of 8 HSCT patients in remission and relapse situations were followed longitudinally. Recipient genotype discrimination was possible in 97.0% (98 of 101) with a mean number of 2.5 (1-7) informative markers per recipient/donor pair. Using serial dilutions of plasmids containing specific SP markers, the linear correlation (r) of 0.99, the slope between -3.2 and -3.7 and the sensitivity of 0.1% were proved reproducible. By this method, it was possible to very accurately detect autologous signals in the range from 0.1% to 30%. The accuracy of the method in the very important range of autologous signals below 5% was extraordinarily high (standard deviation <1.85%), which might significantly improve detection accuracy of changes in autologous signals early in the post-transplantation course of follow-up. The main advantage of the real-time PCR method over short tandem repeat PCR chimerism assays is the absence of PCR competition and plateau biases, with demonstrated greater sensitivity and linearity. Finally, we prospectively analyzed bone marrow samples of 8 patients who received allografts and presented the chimerism kinetics of remission and relapse situations that illustrated the sensitivity level and the promising clinical application of this method. This SP-based real-time PCR assay provides a rapid, sensitive, and accurate quantitative assessment of mixed chimerism that can be useful in predicting graft rejection and early relapse.

  8. Comparison of the Diagnostic Accuracy of Three Rapid Tests for the Serodiagnosis of Hepatic Cystic Echinococcosis in Humans

    PubMed Central

    Tamarozzi, Francesca; Covini, Ilaria; Mariconti, Mara; Narra, Roberta; Tinelli, Carmine; De Silvestri, Annalisa; Manzoni, Federica; Casulli, Adriano; Ito, Akira; Neumayr, Andreas; Brunetti, Enrico

    2016-01-01

    Background The diagnosis of cystic echinococcosis (CE) is based primarily on imaging, in particular with ultrasound for abdominal CE, complemented by serology when imaging results are unclear. In rural endemic areas, where expertise in ultrasound may be scant and conventional serology techniques are unavailable due to lack of laboratory equipment, Rapid Diagnostic Tests (RDTs) are appealing. Methodology/Principal Findings We evaluated the diagnostic accuracy of 3 commercial RDTs for the diagnosis of hepatic CE. Sera from 59 patients with single hepatic CE cysts in well-defined ultrasound stages (gold standard) and 25 patients with non-parasitic cysts were analyzed by RDTs VIRapid HYDATIDOSIS (Vircell, Spain), Echinococcus DIGFA (Unibiotest, China), ADAMU-CE (ICST, Japan), and by RIDASCREEN Echinococcus IgG ELISA (R-Biopharm, Germany). Sensitivity, specificity and ROC curves were compared with McNemar and t-test. For VIRapid and DIGFA, correlation between semiquantitative results and ELISA OD values were evaluated by Spearman’s coefficient. Reproducibility was assessed on 16 randomly selected sera with Cohen’s Kappa coefficient. Sensitivity and Specificity of VIRapid (74%, 96%) and ADAMU-CE (57%, 100%) did not differ from ELISA (69%, 96%) while DIGFA (72%, 72%) did (p = 0.045). ADAMU-CE was significantly less sensitive in the diagnosis of active cysts (p = 0.019) while DIGFA was significantly less specific (p = 0.014) compared to ELISA. All tests were poorly sensitive in diagnosing inactive cysts (33.3% ELISA and ADAMU-CE, 42.8% DIGFA, 47.6% VIRapid). The reproducibility of all RDTs was good-very good. Band intensity of VIRapid and DIGFA correlated with ELISA OD values (r = 0.76 and r = 0.79 respectively, p<0.001). Conclusions/Significance RDTs may be useful in resource-poor settings to complement ultrasound diagnosis of CE in uncertain cases. VIRapid test appears to perform best among the examined kits, but all tests are poorly sensitive in the presence of inactive cysts, which may pose problems with accurate diagnosis. PMID:26871432

  9. A novel restriction endonuclease GlaI for rapid and highly sensitive detection of DNA methylation coupled with isothermal exponential amplification reaction.

    PubMed

    Sun, Yueying; Sun, Yuanyuan; Tian, Weimin; Liu, Chenghui; Gao, Kejian; Li, Zhengping

    2018-02-07

    Sensitive and accurate detection of site-specific DNA methylation is of critical significance for early diagnosis of human diseases, especially cancers. Herein, for the first time we employ a novel methylation-dependent restriction endonuclease GlaI to detect site-specific DNA methylation in a highly specific and sensitive way by coupling with isothermal exponential amplification reaction (EXPAR). GlaI can only cut the methylated target site with excellent selectivity but leave the unmethylated DNA intact. Then the newly exposed end fragments of methylated DNA can trigger EXPAR for highly efficient signal amplification while the intact unmethylated DNA will not initiate EXPAR at all. As such, only the methylated DNA is quantitatively and faithfully reflected by the real-time fluorescence signal of the GlaI-EXPAR system, and the potential false positive interference from unmethylated DNA can be effectively eliminated. Therefore, by integrating the unique features of GlaI for highly specific methylation discrimination and EXPAR for rapid and powerful signal amplification, the elegant GlaI-EXPAR assay allows the direct quantification of methylated DNA with ultrahigh sensitivity and accuracy. The detection limit of methylated DNA target has been pushed down to the aM level and the whole detection process of GlaI-EXPAR can be accomplished within a short time of 2 h. More importantly, ultrahigh specificity is achieved and as low as 0.01% methylated DNA can be clearly identified in the presence of a large excess of unmethylated DNA. This GlaI-EXPAR is also demonstrated to be capable of determining site-specific DNA methylations in real genomic DNA samples. Sharing the distinct advantages of ultrahigh sensitivity, outstanding specificity and facile operation, this new GlaI-EXPAR strategy may provide a robust and reliable platform for the detection of site-specific DNA methylations with low abundances.

  10. Performance of two rapid diagnostic tests for malaria diagnosis at the China-Myanmar border area

    PubMed Central

    2013-01-01

    Background Rapid diagnostic tests (RDTs) have become an essential tool in the contemporary malaria control and management programmes in the world. This study aims to evaluate the performance of two commonly used RDTs for malaria diagnosis in the China-Myanmar border area. Methods A total 606 febrile patients in the China-Myanmar border were recruited to this study and were diagnosed for malaria infections by microscopy, two RDTs tests (Pf/Pan device, and Pv/Pf device) and nested PCR. Results Malaria parasites were found in 143 patients by microscopy, of which 51, 73, and 19 were Plasmodium falciparum, Plasmodium vivax and P. falciparum/P. vivax mixed infections, respectively. Compared to microscopy, the sensitivity of the Pf/Pan device was 88.6% for P. falciparum and 69.9% for P. vivax with the specificity of 90.4%. For a subset of 350 patients, the sensitivity of the Pf/Pan device and Pv/Pf device for detection of P. falciparum was 87.5% and 91.7%, respectively; and for detection of P. vivax was 72.0% and 73.8%, respectively. The specificity of the Pf/Pan device and Pv/Pf device was 94.3% and 96.5%, respectively. Nested PCR detected malaria parasites in 174 of 606 samples, of which 67, 79, two and 26 were P. falciparum, P. vivax, P. ovale and P. falciparum/P. vivax mixed infections, respectively. Compared to nested PCR, all other methods had sensitivity below 80%, suggesting that a significant number of cases were missed. Conclusions Compared to PCR, both microscopy and RDTs had lower sensitivities. RDTs had similar performance to microscopy for P. falciparum diagnosis, but performed worse for P. vivax diagnosis. Other RDT products should be selected with higher sensitivity (and good specificity) for both P. falciparum and P. vivax diagnosis. PMID:23433230

  11. Reliable clinical serum analysis with reusable electrochemical sensor: Toward point-of-care measurement of the antipsychotic medication clozapine.

    PubMed

    Kang, Mijeong; Kim, Eunkyoung; Winkler, Thomas E; Banis, George; Liu, Yi; Kitchen, Christopher A; Kelly, Deanna L; Ghodssi, Reza; Payne, Gregory F

    2017-09-15

    Clozapine is one of the most promising medications for managing schizophrenia but it is under-utilized because of the challenges of maintaining serum levels in a safe therapeutic range (1-3μM). Timely measurement of serum clozapine levels has been identified as a barrier to the broader use of clozapine, which is however challenging due to the complexity of serum samples. We demonstrate a robust and reusable electrochemical sensor with graphene-chitosan composite for rapidly measuring serum levels of clozapine. Our electrochemical measurements in clinical serum from clozapine-treated and clozapine-untreated schizophrenia groups are well correlated to centralized laboratory analysis for the readily detected uric acid and for the clozapine which is present at 100-fold lower concentration. The benefits of our electrochemical measurement approach for serum clozapine monitoring are: (i) rapid measurement (≈20min) without serum pretreatment; (ii) appropriate selectivity and sensitivity (limit of detection 0.7μM); (iii) reusability of an electrode over several weeks; and (iv) rapid reliability testing to detect common error-causing problems. This simple and rapid electrochemical approach for serum clozapine measurements should provide clinicians with the timely point-of-care information required to adjust dosages and personalize the management of schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The penetrance of an epigenetic trait in mice is progressively yet reversibly increased by selection and environment.

    PubMed

    Cropley, Jennifer E; Dang, Thurston H Y; Martin, David I K; Suter, Catherine M

    2012-06-22

    Natural selection acts on variation that is typically assumed to be genetic in origin. But epigenetic mechanisms, which are interposed between the genome and its environment, can create diversity independently of genetic variation. Epigenetic states can respond to environmental cues, and can be heritable, thus providing a means by which environmentally responsive phenotypes might be selectable independent of genotype. Here, we have tested the possibility that environment and selection can act together to increase the penetrance of an epigenetically determined phenotype. We used isogenic A(vy) mice, in which the epigenetic state of the A(vy) allele is sensitive to dietary methyl donors. By combining methyl donor supplementation with selection for a silent A(vy) allele, we progressively increased the prevalence of the associated phenotype in the population over five generations. After withdrawal of the dietary supplement, the shift persisted for one generation but was lost in subsequent generations. Our data provide the first demonstration that selection for a purely epigenetic trait can result in cumulative germline effects in mammals. These results present an alternative to the paradigm that natural selection acts only on genetic variation, and suggest that epigenetic changes could underlie rapid adaptation of species in response to natural environmental fluctuations.

  13. The penetrance of an epigenetic trait in mice is progressively yet reversibly increased by selection and environment

    PubMed Central

    Cropley, Jennifer E.; Dang, Thurston H. Y.; Martin, David I. K.; Suter, Catherine M.

    2012-01-01

    Natural selection acts on variation that is typically assumed to be genetic in origin. But epigenetic mechanisms, which are interposed between the genome and its environment, can create diversity independently of genetic variation. Epigenetic states can respond to environmental cues, and can be heritable, thus providing a means by which environmentally responsive phenotypes might be selectable independent of genotype. Here, we have tested the possibility that environment and selection can act together to increase the penetrance of an epigenetically determined phenotype. We used isogenic Avy mice, in which the epigenetic state of the Avy allele is sensitive to dietary methyl donors. By combining methyl donor supplementation with selection for a silent Avy allele, we progressively increased the prevalence of the associated phenotype in the population over five generations. After withdrawal of the dietary supplement, the shift persisted for one generation but was lost in subsequent generations. Our data provide the first demonstration that selection for a purely epigenetic trait can result in cumulative germline effects in mammals. These results present an alternative to the paradigm that natural selection acts only on genetic variation, and suggest that epigenetic changes could underlie rapid adaptation of species in response to natural environmental fluctuations. PMID:22319121

  14. Rapid and sensitive method to identify Mycobacterium avium subsp. paratuberculosis in cow's milk by DNA methylase genotyping.

    PubMed

    Mundo, Silvia Leonor; Gilardoni, Liliana Rosa; Hoffman, Federico José; Lopez, Osvaldo Jorge

    2013-03-01

    Paratuberculosis is an infectious, chronic, and incurable disease that affects ruminants, caused by Mycobacterium avium subsp. paratuberculosis. This bacterium is shed primarily through feces of infected cows but can be also excreted in colostrum and milk and might survive pasteurization. Since an association of genomic sequences of M. avium subsp. paratuberculosis in patients with Crohn's disease has been described; it is of interest to rapidly detect M. avium subsp. paratuberculosis in milk for human consumption. IS900 insertion is used as a target for PCR amplification to identify the presence of M. avium subsp. paratuberculosis in biological samples. Two target sequences were selected: IS1 (155 bp) and IS2 (94 bp). These fragments have a 100% identity among all M. avium subsp. paratuberculosis strains sequenced. M. avium subsp. paratuberculosis was specifically concentrated from milk samples by immunomagnetic separation prior to performing PCR. The amplicons were characterized using DNA methylase Genotyping, i.e., the amplicons were methylated with 6-methyl-adenine and digested with restriction enzymes to confirm their identity. The methylated amplicons from 100 CFU of M. avium subsp. paratuberculosis can be visualized in a Western blot format using an anti-6-methyl-adenine monoclonal antibody. The use of DNA methyltransferase genotyping coupled to a scintillation proximity assay allows for the detection of up to 10 CFU of M. avium subsp. paratuberculosis per ml of milk. This test is rapid and sensitive and allows for automation and thus multiple samples can be tested at the same time.

  15. Rapid and Sensitive Method To Identify Mycobacterium avium subsp. paratuberculosis in Cow's Milk by DNA Methylase Genotyping

    PubMed Central

    Mundo, Silvia Leonor; Gilardoni, Liliana Rosa; Hoffman, Federico José

    2013-01-01

    Paratuberculosis is an infectious, chronic, and incurable disease that affects ruminants, caused by Mycobacterium avium subsp. paratuberculosis. This bacterium is shed primarily through feces of infected cows but can be also excreted in colostrum and milk and might survive pasteurization. Since an association of genomic sequences of M. avium subsp. paratuberculosis in patients with Crohn's disease has been described; it is of interest to rapidly detect M. avium subsp. paratuberculosis in milk for human consumption. IS900 insertion is used as a target for PCR amplification to identify the presence of M. avium subsp. paratuberculosis in biological samples. Two target sequences were selected: IS1 (155 bp) and IS2 (94 bp). These fragments have a 100% identity among all M. avium subsp. paratuberculosis strains sequenced. M. avium subsp. paratuberculosis was specifically concentrated from milk samples by immunomagnetic separation prior to performing PCR. The amplicons were characterized using DNA methylase Genotyping, i.e., the amplicons were methylated with 6-methyl-adenine and digested with restriction enzymes to confirm their identity. The methylated amplicons from 100 CFU of M. avium subsp. paratuberculosis can be visualized in a Western blot format using an anti-6-methyl-adenine monoclonal antibody. The use of DNA methyltransferase genotyping coupled to a scintillation proximity assay allows for the detection of up to 10 CFU of M. avium subsp. paratuberculosis per ml of milk. This test is rapid and sensitive and allows for automation and thus multiple samples can be tested at the same time. PMID:23275511

  16. The effect of prior alcohol consumption on the ataxic response to alcohol in high-alcohol preferring mice

    PubMed Central

    Fritz, Brandon M.; Boehm, Stephen L.

    2014-01-01

    We have previously shown that ethanol-naïve high-alcohol preferring (HAP) mice, genetically predis-posed to consume large quantities of alcohol, exhibited heightened sensitivity and more rapid acute functional tolerance (AFT) to alcohol-induced ataxia compared to low-alcohol preferring mice. The goal of the present study was to evaluate the effect of prior alcohol self-administration on these responses in HAP mice. Naïve male and female adult HAP mice from the second replicate of selection (HAP2) underwent 18 days of 24-h, 2-bottle choice drinking for 10% ethanol vs. water, or water only. After 18 days of fluid access, mice were tested for ataxic sensitivity and rapid AFT following a 1.75 g/kg injection of ethanol on a static dowel apparatus in Experiment 1. In Experiment 2, a separate group of mice was tested for more protracted AFT development using a dual-injection approach where a second, larger (2.0 g/kg) injection of ethanol was given following the initial recovery of performance on the task. HAP2 mice that had prior access to alcohol exhibited a blunted ataxic response to the acute alcohol challenge, but this pre-exposure did not alter rapid within-session AFT capacity in Experiment 1 or more protracted AFT capacity in Experiment 2. These findings suggest that the typically observed increase in alcohol consumption in these mice may be influenced by ataxic functional tolerance development, but is not mediated by a greater capacity for ethanol exposure to positively influence within-session ataxic tolerance. PMID:25454537

  17. Rapid and sensitive detection of malachite green in aquaculture water by electrochemical preconcentration and surface-enhanced Raman scattering.

    PubMed

    Xu, Kai-Xuan; Guo, Mei-Hong; Huang, Yu-Ping; Li, Xiao-Dong; Sun, Jian-Jun

    2018-04-01

    A highly sensitive and rapid method of in-situ surface-enhanced Raman spectroscopy (SERS) combining with electrochemical preconcentration (EP) in detecting malachite green (MG) in aquaculture water was established. Ag nanoparticles (AgNPs) were synthesized and spread onto the surface of gold electrodes after centrifuging to produce SERS-active substrates. After optimizing the pH values, preconcentration potentials and times, in-situ EP-SERS detection was carried out. A sensitive and rapid analysis of the low-concentration MG was accomplished within 200s and the limit of detection was 2.4 × 10 -16 M. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Prediction of Chemical Respiratory Sensitizers Using GARD, a Novel In Vitro Assay Based on a Genomic Biomarker Signature

    PubMed Central

    Albrekt, Ann-Sofie; Borrebaeck, Carl A. K.; Lindstedt, Malin

    2015-01-01

    Background Repeated exposure to certain low molecular weight (LMW) chemical compounds may result in development of allergic reactions in the skin or in the respiratory tract. In most cases, a certain LMW compound selectively sensitize the skin, giving rise to allergic contact dermatitis (ACD), or the respiratory tract, giving rise to occupational asthma (OA). To limit occurrence of allergic diseases, efforts are currently being made to develop predictive assays that accurately identify chemicals capable of inducing such reactions. However, while a few promising methods for prediction of skin sensitization have been described, to date no validated method, in vitro or in vivo, exists that is able to accurately classify chemicals as respiratory sensitizers. Results Recently, we presented the in vitro based Genomic Allergen Rapid Detection (GARD) assay as a novel testing strategy for classification of skin sensitizing chemicals based on measurement of a genomic biomarker signature. We have expanded the applicability domain of the GARD assay to classify also respiratory sensitizers by identifying a separate biomarker signature containing 389 differentially regulated genes for respiratory sensitizers in comparison to non-respiratory sensitizers. By using an independent data set in combination with supervised machine learning, we validated the assay, showing that the identified genomic biomarker is able to accurately classify respiratory sensitizers. Conclusions We have identified a genomic biomarker signature for classification of respiratory sensitizers. Combining this newly identified biomarker signature with our previously identified biomarker signature for classification of skin sensitizers, we have developed a novel in vitro testing strategy with a potent ability to predict both skin and respiratory sensitization in the same sample. PMID:25760038

  19. Real-Time PCR with an Internal Control for Detection of All Known Human Adenovirus Serotypes▿

    PubMed Central

    Damen, Marjolein; Minnaar, René; Glasius, Patricia; van der Ham, Alwin; Koen, Gerrit; Wertheim, Pauline; Beld, Marcel

    2008-01-01

    The “gold standard” for the diagnosis of adenovirus (AV) infection is virus culture, which is rather time-consuming. Especially for immunocompromised patients, in whom severe infections with AV have been described, rapid diagnosis is important. Therefore, an internally controlled AV real-time PCR assay detecting all known human AV serotypes was developed. Primers were chosen from the hexon region, which is the most conserved region, and in order to cover all known serotypes, degenerate primers were used. The internal control (IC) DNA contained the same primer binding sites as the AV DNA control but had a shuffled probe region compared to the conserved 24-nucleotide consensus AV hexon probe region (the target). The IC DNA was added to the clinical sample in order to monitor extraction and PCR efficiency. The sensitivity and the linearity of the AV PCR were determined. For testing the specificity of this PCR assay for human AVs, a selection of 51 AV prototype strains and 66 patient samples positive for other DNA viruses were tested. Moreover, a comparison of the AV PCR method described herein with culture and antigen (Ag) detection was performed with a selection of 151 clinical samples. All 51 AV serotypes were detected in the selection of AV prototype strains. Concordant results from culture or Ag detection and PCR were found for 139 (92.1%) of 151 samples. In 12 cases (7.9%), PCR was positive while the culture was negative. In conclusion, a sensitive, internally controlled nonnested AV real-time PCR assay which is able to detect all known AV serotypes with higher sensitivity than a culture or Ag detection method was developed. PMID:18923006

  20. Recent advances on aptamer-based biosensors to detection of platelet-derived growth factor.

    PubMed

    Razmi, Nasrin; Baradaran, Behzad; Hejazi, Maryam; Hasanzadeh, Mohammad; Mosafer, Jafar; Mokhtarzadeh, Ahad; de la Guardia, Miguel

    2018-08-15

    Platelet-derived growth factor (PDGF-BB), a significant serum cytokine, is an important protein biomarker in diagnosis and recognition of cancer, which straightly rolled in proceeding of various cell transformations, including tumor growth and its development. Fibrosis, atherosclerosis are certain appalling diseases, which PDGF-BB is near to them. Generally, the expression amount of PDGF-BB increases in human life-threatening tumors serving as an indicator for tumor angiogenesis. Thus, identification and quantification of PDGF-BB in biomedical fields are particularly important. Affinity chromatography, immunohistochemical methods and enzyme-linked immunosorbent assay (ELISA), conventional methods for PDGF-BB detection, requiring high-cost and complicated instrumentation, take too much time and offer deficient sensitivity and selectivity, which restrict their usage in real applications. Hence, it is essential to design and build enhanced systems and platforms for the recognition and quantification of protein biomarkers. In the past few years, biosensors especially aptasensors have been received noticeable attention for the detection of PDGF-BB owing to their high sensitivity, selectivity, accuracy, fast response, and low cost. Since the role and importance of developing aptasensors in cancer diagnosis is undeniable. In this review, optical and electrochemical aptasensors, which have been applied by many researchers for PDGF-BB cancer biomarker detection, have been mentioned and merits and demerits of them have been explained and compared. Efforts related to design and development of aptamer-based biosensors using nanoparticles for sensitive and selective detection of PDGF-BB have been reviewed considering: Aptamer importance as recognition elements, principal, application and the recent improvements and developments of aptamer based optical and electrochemical methods. In addition, commercial biosensors and future perspectives for rapid and on-site detection of PDGF-BB have been summarized. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Derivation and validation of two decision instruments for selective chest CT in blunt trauma: a multicenter prospective observational study (NEXUS Chest CT).

    PubMed

    Rodriguez, Robert M; Langdorf, Mark I; Nishijima, Daniel; Baumann, Brigitte M; Hendey, Gregory W; Medak, Anthony J; Raja, Ali S; Allen, Isabel E; Mower, William R

    2015-10-01

    Unnecessary diagnostic imaging leads to higher costs, longer emergency department stays, and increased patient exposure to ionizing radiation. We sought to prospectively derive and validate two decision instruments (DIs) for selective chest computed tomography (CT) in adult blunt trauma patients. From September 2011 to May 2014, we prospectively enrolled blunt trauma patients over 14 y of age presenting to eight US, urban level 1 trauma centers in this observational study. During the derivation phase, physicians recorded the presence or absence of 14 clinical criteria before viewing chest imaging results. We determined injury outcomes by CT radiology readings and categorized injuries as major or minor according to an expert-panel-derived clinical classification scheme. We then employed recursive partitioning to derive two DIs: Chest CT-All maximized sensitivity for all injuries, and Chest CT-Major maximized sensitivity for only major thoracic injuries (while increasing specificity). In the validation phase, we employed similar methodology to prospectively test the performance of both DIs. We enrolled 11,477 patients-6,002 patients in the derivation phase and 5,475 patients in the validation phase. The derived Chest CT-All DI consisted of (1) abnormal chest X-ray, (2) rapid deceleration mechanism, (3) distracting injury, (4) chest wall tenderness, (5) sternal tenderness, (6) thoracic spine tenderness, and (7) scapular tenderness. The Chest CT-Major DI had the same criteria without rapid deceleration mechanism. In the validation phase, Chest CT-All had a sensitivity of 99.2% (95% CI 95.4%-100%), a specificity of 20.8% (95% CI 19.2%-22.4%), and a negative predictive value (NPV) of 99.8% (95% CI 98.9%-100%) for major injury, and a sensitivity of 95.4% (95% CI 93.6%-96.9%), a specificity of 25.5% (95% CI 23.5%-27.5%), and a NPV of 93.9% (95% CI 91.5%-95.8%) for either major or minor injury. Chest CT-Major had a sensitivity of 99.2% (95% CI 95.4%-100%), a specificity of 31.7% (95% CI 29.9%-33.5%), and a NPV of 99.9% (95% CI 99.3%-100%) for major injury and a sensitivity of 90.7% (95% CI 88.3%-92.8%), a specificity of 37.9% (95% CI 35.8%-40.1%), and a NPV of 91.8% (95% CI 89.7%-93.6%) for either major or minor injury. Regarding the limitations of our work, some clinicians may disagree with our injury classification and sensitivity thresholds for injury detection. We prospectively derived and validated two DIs (Chest CT-All and Chest CT-Major) that identify blunt trauma patients with clinically significant thoracic injuries with high sensitivity, allowing for a safe reduction of approximately 25%-37% of unnecessary chest CTs. Trauma evaluation protocols that incorporate these DIs may decrease unnecessary costs and radiation exposure in the disproportionately young trauma population.

  2. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.

    PubMed

    Sheaff, Chrystal N; Eastwood, Delyle; Wai, Chien M

    2007-01-01

    The detection of explosive material is at the forefront of current analytical problems. A detection method is desired that is not restricted to detecting only explosive materials, but is also capable of identifying the origin and type of explosive. It is essential that a detection method have the selectivity to distinguish among compounds in a mixture of explosives. The nitro compounds found in explosives have low fluorescent yields or are considered to be non-fluorescent; however, after reduction, the amino compounds exhibit relatively high fluorescence. We discuss how to increase selectivity of explosive detection using fluorescence; this includes synchronous luminescence and derivative spectroscopy with appropriate smoothing. By implementing synchronous luminescence and derivative spectroscopy, we were able to resolve the reduction products of one major TNT-based explosive compound, 2,4-diaminotoluene, and the reduction products of other minor TNT-based explosives in a mixture. We also report for the first time the quantum yields of these important compounds. Relative quantum yields are useful in establishing relative fluorescence intensities and are an important spectroscopic measurement of molecules. Our approach allows for rapid, sensitive, and selective detection with the discrimination necessary to distinguish among various explosives.

  3. A rapid method for determining salinomycin and monensin sensitivity in Eimeria tenella

    USDA-ARS?s Scientific Manuscript database

    Standard methods of determining the ionophore sensitivity of Eimeria rely on infecting chickens with an isolate or a mixture of Eimeria spp. oocysts in the presence of different anti-coccidial drugs. The purpose of this study was to develop a rapid in vitro method for assessing salinomycin and mone...

  4. Time-Resolved Fluorescent Immunochromatography of Aflatoxin B1 in Soybean Sauce: A Rapid and Sensitive Quantitative Analysis.

    PubMed

    Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Zhang, Wen

    2016-07-14

    Rapid and quantitative sensing of aflatoxin B1 with high sensitivity and specificity has drawn increased attention of studies investigating soybean sauce. A sensitive and rapid quantitative immunochromatographic sensing method was developed for the detection of aflatoxin B1 based on time-resolved fluorescence. It combines the advantages of time-resolved fluorescent sensing and immunochromatography. The dynamic range of a competitive and portable immunoassay was 0.3-10.0 µg·kg(-1), with a limit of detection (LOD) of 0.1 µg·kg(-1) and recoveries of 87.2%-114.3%, within 10 min. The results showed good correlation (R² > 0.99) between time-resolved fluorescent immunochromatographic strip test and high performance liquid chromatography (HPLC). Soybean sauce samples analyzed using time-resolved fluorescent immunochromatographic strip test revealed that 64.2% of samples contained aflatoxin B1 at levels ranging from 0.31 to 12.5 µg·kg(-1). The strip test is a rapid, sensitive, quantitative, and cost-effective on-site screening technique in food safety analysis.

  5. Optimal triage test characteristics to improve the cost-effectiveness of the Xpert MTB/RIF assay for TB diagnosis: a decision analysis.

    PubMed

    van't Hoog, Anna H; Cobelens, Frank; Vassall, Anna; van Kampen, Sanne; Dorman, Susan E; Alland, David; Ellner, Jerrold

    2013-01-01

    High costs are a limitation to scaling up the Xpert MTB/RIF assay (Xpert) for the diagnosis of tuberculosis in resource-constrained settings. A triaging strategy in which a sensitive but not necessarily highly specific rapid test is used to select patients for Xpert may result in a more affordable diagnostic algorithm. To inform the selection and development of particular diagnostics as a triage test we explored combinations of sensitivity, specificity and cost at which a hypothetical triage test will improve affordability of the Xpert assay. In a decision analytical model parameterized for Uganda, India and South Africa, we compared a diagnostic algorithm in which a cohort of patients with presumptive TB received Xpert to a triage algorithm whereby only those with a positive triage test were tested by Xpert. A triage test with sensitivity equal to Xpert, 75% specificity, and costs of US$5 per patient tested reduced total diagnostic costs by 42% in the Uganda setting, and by 34% and 39% respectively in the India and South Africa settings. When exploring triage algorithms with lower sensitivity, the use of an example triage test with 95% sensitivity relative to Xpert, 75% specificity and test costs $5 resulted in similar cost reduction, and was cost-effective by the WHO willingness-to-pay threshold compared to Xpert for all in Uganda, but not in India and South Africa. The gain in affordability of the examined triage algorithms increased with decreasing prevalence of tuberculosis among the cohort. A triage test strategy could potentially improve the affordability of Xpert for TB diagnosis, particularly in low-income countries and with enhanced case-finding. Tests and markers with lower accuracy than desired of a diagnostic test may fall within the ranges of sensitivity, specificity and cost required for triage tests and be developed as such.

  6. Quantitative optical metrology with CMOS cameras

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Kolenovic, Ervin; Ferguson, Curtis F.

    2004-08-01

    Recent advances in laser technology, optical sensing, and computer processing of data, have lead to the development of advanced quantitative optical metrology techniques for high accuracy measurements of absolute shapes and deformations of objects. These techniques provide noninvasive, remote, and full field of view information about the objects of interest. The information obtained relates to changes in shape and/or size of the objects, characterizes anomalies, and provides tools to enhance fabrication processes. Factors that influence selection and applicability of an optical technique include the required sensitivity, accuracy, and precision that are necessary for a particular application. In this paper, sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography (OEH) based on CMOS cameras, are discussed. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gauges, demonstrating the applicability of CMOS cameras in quantitative optical metrology techniques. It is shown that the advanced nature of CMOS technology can be applied to challenging engineering applications, including the study of rapidly evolving phenomena occurring in MEMS and micromechatronics.

  7. Optimization and Validation of a Sensitive Method for HPLC-PDA Simultaneous Determination of Torasemide and Spironolactone in Human Plasma using Central Composite Design.

    PubMed

    Subramanian, Venkatesan; Nagappan, Kannappan; Sandeep Mannemala, Sai

    2015-01-01

    A sensitive, accurate, precise and rapid HPLC-PDA method was developed and validated for the simultaneous determination of torasemide and spironolactone in human plasma using Design of experiments. Central composite design was used to optimize the method using content of acetonitrile, concentration of buffer and pH of mobile phase as independent variables, while the retention factor of spironolactone, resolution between torasemide and phenobarbitone; and retention time of phenobarbitone were chosen as dependent variables. The chromatographic separation was achieved on Phenomenex C(18) column and the mobile phase comprising 20 mM potassium dihydrogen ortho phosphate buffer (pH-3.2) and acetonitrile in 82.5:17.5 v/v pumped at a flow rate of 1.0 mL min(-1). The method was validated according to USFDA guidelines in terms of selectivity, linearity, accuracy, precision, recovery and stability. The limit of quantitation values were 80 and 50 ng mL(-1) for torasemide and spironolactone respectively. Furthermore, the sensitivity and simplicity of the method suggests the validity of method for routine clinical studies.

  8. Detection of Delta9-tetrahydrocannabinol and amphetamine-type stimulants in oral fluid using the Rapid Stat point-of-collection drug-testing device.

    PubMed

    Röhrich, J; Zörntlein, S; Becker, J; Urban, R

    2010-04-01

    The Rapid Stat assay, a point-of-collection drug-testing device for detection of amphetamines, cannabinoids, cocaine, opiates, methadone, and benzodiazepines in oral fluid, was evaluated for cannabis and amphetamine-type stimulants. The Rapid Stat tests (n = 134) were applied by police officers in routine traffic checks. Oral fluid and blood samples were analyzed using gas chromatography-mass spectrometry (GC-MS) for Delta(9)-tetrahydrocannabinol, amphetamine, methamphetamine, methylenedioxymethamphetamine, methylenedioxyethylamphetamine, and methylenedioxyamphetamine. The comparison of GC-MS analysis of oral fluid with the Rapid Stat results for cannabis showed a sensitivity of 85%, a specificity of 87%, and a total confirmation rate of 87%. When compared with serum, the sensitivity of the cannabis assay decreased to 71%, the specificity to 60%, and the total confirmation rate to 66%. These findings were possibly caused by an incorrect reading of the THC test results. Comparison of the Rapid Stat amphetamine assay with GC-MS in oral fluid showed a sensitivity of 94%, a specificity of 97%, and a total confirmation rate of 97%. Compared with serum, a sensitivity of 100%, a specificity of 90%, and a total confirmation rate of 92% was found. The amphetamine assay must, therefore, be regarded as satisfactory.

  9. Performance of a New Rapid Immunoassay Test Kit for Point-of-Care Diagnosis of Significant Bacteriuria

    PubMed Central

    Cox, Marsha E.; DiNello, Robert K.; Geisberg, Mark; Abbott, April; Roberts, Pacita L.; Hooton, Thomas M.

    2015-01-01

    Urinary tract infections (UTIs) are frequently encountered in clinical practice and most commonly caused by Escherichia coli and other Gram-negative uropathogens. We tested RapidBac, a rapid immunoassay for bacteriuria developed by Silver Lake Research Corporation (SLRC), compared with standard bacterial culture using 966 clean-catch urine specimens submitted to a clinical microbiology laboratory in an urban academic medical center. RapidBac was performed in accordance with instructions, providing a positive or negative result in 20 min. RapidBac identified as positive 245/285 (sensitivity 86%) samples with significant bacteriuria, defined as the presence of a Gram-negative uropathogen or Staphylococcus saprophyticus at ≥103 CFU/ml. The sensitivities for Gram-negative bacteriuria at ≥104 CFU/ml and ≥105 CFU/ml were 96% and 99%, respectively. The specificity of the test, detecting the absence of significant bacteriuria, was 94%. The sensitivity and specificity of RapidBac were similar on samples from inpatient and outpatient settings, from male and female patients, and across age groups from 18 to 89 years old, although specificity was higher in men (100%) compared with that in women (92%). The RapidBac test for bacteriuria may be effective as an aid in the point-of-care diagnosis of UTIs especially in emergency and primary care settings. PMID:26063858

  10. Rapid determination of phenolic compounds and alkaloids of carob flour by improved liquid chromatography tandem mass spectrometry.

    PubMed

    Ortega, Nàdia; Macià, Alba; Romero, Maria-Paz; Trullols, Esther; Morello, Jose-Ramón; Anglès, Neus; Motilva, Maria-Jose

    2009-08-26

    An improved chromatographic method was developed using ultra-performance liquid chromatography-tandem mass spectrometry to identify and quantify phenolic compounds and alkaloids, theobromine and caffeine, in carob flour samples. The developed method has been validated in terms of speed, sensitivity, selectivity, peak efficiency, linearity, reproducibility, limits of detection, and limits of quantification. The chromatographic method allows the identification and quantification of 20 phenolic compounds, that is, phenolic acids, flavonoids, and their aglycone and glucoside forms, together with the determination of the alkaloids, caffeine and theobromine, at low concentration levels all in a short analysis time of less than 20 min.

  11. Recent Progresses in Nanobiosensing for Food Safety Analysis

    PubMed Central

    Yang, Tao; Huang, Huifen; Zhu, Fang; Lin, Qinlu; Zhang, Lin; Liu, Junwen

    2016-01-01

    With increasing adulteration, food safety analysis has become an important research field. Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective detection strategies necessary for food safety analysis. This review summarizes various function types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014–present) progress in the design and development of nanobiosensing for the detection of food contaminants including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are sub-classified according to various recognition methods of each analyte. The existing shortcomings and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues are also discussed briefly. PMID:27447636

  12. Expeditious microwave-assisted synthesis of 5-alkoxyoxazoles from α-triflyloxy esters and nitriles.

    PubMed

    Jouanno, Laurie-Anne; Sabot, Cyrille; Renard, Pierre-Yves

    2012-10-05

    A rapid and general access to diversely substituted 5-alkoxyoxazoles 2 (i.e., R(1), R(2) = alkyl, phenyl) from easily accessible α-triflyloxy/hydroxy esters 1 and nitriles with good yields (41-76%) is reported. The versatility of the cyclization is shown for a range of substrates with high selectivity toward triflates over mesylates and proved to be compatible with sensitive functional groups. As an illustration of this transformation, the first synthesis of the recently isolated hydroxypyridine methyl multijuguinate 4 was achieved in four steps through a hetero Diels-Alder reaction of the 5-alkoxyoxazole and acrylic acid, followed by a protodecarboxylation reaction.

  13. Recent Progresses in Nanobiosensing for Food Safety Analysis.

    PubMed

    Yang, Tao; Huang, Huifen; Zhu, Fang; Lin, Qinlu; Zhang, Lin; Liu, Junwen

    2016-07-19

    With increasing adulteration, food safety analysis has become an important research field. Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective detection strategies necessary for food safety analysis. This review summarizes various function types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014-present) progress in the design and development of nanobiosensing for the detection of food contaminants including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are sub-classified according to various recognition methods of each analyte. The existing shortcomings and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues are also discussed briefly.

  14. Optical detection of radon decay in air

    PubMed Central

    Sand, Johan; Ihantola, Sakari; Peräjärvi, Kari; Toivonen, Harri; Toivonen, Juha

    2016-01-01

    An optical radon detection method is presented. Radon decay is directly measured by observing the secondary radiolumines cence light that alpha particles excite in air, and the selectivity of coincident photon detection is further enhanced with online pulse-shape analysis. The sensitivity of a demonstration device was 6.5 cps/Bq/l and the minimum detectable concentration was 12 Bq/m3 with a 1 h integration time. The presented technique paves the way for optical approaches in rapid radon detec tion, and it can be applied beyond radon to the analysis of any alpha-active sample which can be placed in the measurement chamber. PMID:26867800

  15. Array Biosensor for Toxin Detection: Continued Advances

    PubMed Central

    Taitt, Chris Rowe; Shriver-Lake, Lisa C.; Ngundi, Miriam M.; Ligler, Frances S.

    2008-01-01

    The following review focuses on progress made in the last five years with the NRL Array Biosensor, a portable instrument for rapid and simultaneous detection of multiple targets. Since 2003, the Array Biosensor has been automated and miniaturized for operation at the point-of-use. The Array Biosensor has also been used to demonstrate (1) quantitative immunoassays against an expanded number of toxins and toxin indicators in food and clinical fluids, and (2) the efficacy of semi-selective molecules as alternative recognition moieties. Blind trials, with unknown samples in a variety of matrices, have demonstrated the versatility, sensitivity, and reliability of the automated system. PMID:27873991

  16. Self-assembly of graphene oxide with a silyl-appended spiropyran dye for rapid and sensitive colorimetric detection of fluoride ions.

    PubMed

    Li, Yinhui; Duan, Yu; Zheng, Jing; Li, Jishan; Zhao, Wenjie; Yang, Sheng; Yang, Ronghua

    2013-12-03

    Fluoride ion (F(-)), the smallest anion, exhibits considerable significance in a wide range of environmental and biochemical processes. To address the two fundamental and unsolved issues of current F(-) sensors based on the specific chemical reaction (i.e., the long response time and low sensitivity) and as a part of our ongoing interest in the spiropyran sensor design, we reported here a new F(-) sensing approach that, via assembly of a F(-)-specific silyl-appended spiropyran dye with graphene oxide (GO), allows rapid and sensitive detection of F(-) in aqueous solution. 6-(tert-Butyldimethylsilyloxy)-1',3',3'-trimethylspiro [chromene- 2,2'-indoline] (SPS), a spiropyran-based silylated dye with a unique reaction activity for F(-), was designed and synthesized. The nucleophilic substitution reaction between SPS and F(-) triggers cleavage of the Si-O bond to promote the closed spiropyran to convert to its opened merocyanine form, leading to the color changing from colorless to orange-yellow with good selectivity over other anions. With the aid of GO, the response time of SPS for F(-) was shortened from 180 to 30 min, and the detection limit was lowered more than 1 order of magnitude compared to the free SPS. Furthermore, due to the protective effect of nanomaterials, the SPS/GO nanocomposite can function in a complex biological environment. The SPS/GO nanocomposite was characterized by XPS and AFM, etc., and the mechanism for sensing F(-) was studied by (1)H NMR and ESI-MS. Finally, this SPS/GO nanocomposite was successfully applied to monitoring F(-) in the serum.

  17. A sensitive one-step method for quantitative detection of α-amylase in serum and urine using a personal glucose meter.

    PubMed

    Wang, Qing; Wang, Hui; Yang, Xiaohai; Wang, Kemin; Liu, Rongjuan; Li, Qing; Ou, Jinqing

    2015-02-21

    Assays of α-amylase (AMS) activity in serum and urine constitute the important indicator for the diagnosis of acute pancreatitis, mumps, renal disease and abdominal disorders. Since these diseases confer a heavy financial burden on the health care system, AMS detection in point-of-care is fundamental. Here, a one-step assay for direct determination of the AMS activity was developed using a portable personal glucose meter (PGM). In this assay, maltopentaose was used as a substrate for sensitive detection of AMS with the assistance of α-glucosidase. In the presence of AMS, maltopentaose can be readily hydrolyzed to form maltotriose and maltose quickly. With the enzymatic hydrolysis of α-glucosidase, maltotriose and maltose can be turned into glucose rapidly, which can be quantitatively measured using a portable PGM. This assay did not require any cumbersome and time consuming operations, such as surface modification, synthesis of invertase conjugate, washing and centrifugation. Detection of AMS can be achieved using only a one-step mixture, and the limit of detection was 20 U L(-1) which was lower than the clinical cutoff for AMS. More importantly, this sensitive and selective assay was also used for the detection of AMS in human serum/urine samples. The results showed that the recovery of AMS from human serum/urine samples was 91-107%. The rapid and easy-to-operate assay may have potential application in the fields of point-of-care (POC) clinical diagnosis, particularly in rural and remote areas where lab equipment may be limited.

  18. A sensitive and rapid ultra HPLC-MS/MS method for the simultaneous detection of clopidogrel and its derivatized active thiol metabolite in human plasma.

    PubMed

    Peer, Cody J; Spencer, Shawn D; VanDenBerg, Dustin A H; Pacanowski, Michael A; Horenstein, Richard B; Figg, William D

    2012-01-01

    A sensitive, selective, and rapid ultra-high performance liquid chromatography-tandem mass spectrometry (uHPLC-MS/MS) was developed for the simultaneous quantification of clopidogrel (Plavix(®)) and its derivatized active metabolite (CAMD) in human plasma. Derivatization of the active metabolite in blood with 2-bromo-3'-methoxy acetophenone (MPB) immediately after collection ensured metabolite stability during sample handling and storage. Following addition of ticlopidine as an internal standard and simple protein precipitation, the analytes were separated on a Waters Acquity UPLC™ sub-2 μm-C(18) column via gradient elution before detection on a triple-quadrupole MS with multiple-reaction-monitoring via electrospray ionization. The method was validated across the clinically relevant concentration range of 0.01-50 ng/mL for parent clopidogrel and 0.1-150 ng/mL (r(2)=0.99) for CAMD, with a fast run time of 1.5 min to support pharmacokinetic studies using 75, 150, or 300 mg oral doses of clopidogrel. The analytical method measured concentrations of clopidogrel and CAMD with accuracy (%DEV) <±12% and precision (%CV) of <±6%. The method was successfully applied to measure the plasma concentrations of clopidogrel and CAMD in three subjects administered single oral doses of 75, 150, and 300 mg clopidogrel. It was further demonstrated that the derivatizing agent (MPB) does not affect clopidogrel levels, thus from one aliquot of blood drawn clinically, this method can simultaneously quantify both clopidogrel and CAMD with sensitivity in the picogram per mL range. Published by Elsevier B.V.

  19. A Sensitive and Rapid Ultra HPLC-MS/MS Method for the Simultaneous Detection of Clopidogrel and its Derivatized Active Thiol Metabolite in Human Plasma

    PubMed Central

    Peer, Cody J.; Spencer, Shawn D.; VanDenBerg, Dustin A. H.; Pacanowski, Michael A.; Horenstein, Richard B.; Figg, William D.

    2011-01-01

    A sensitive, selective, and rapid ultra-high performance liquid chromatography-tandem mass spectrometry (uHPLC-MS/MS) was developed for the simultaneous quantification of clopidogrel (Plavix®) and its derivatized active metabolite (CAMD) in human plasma. Derivatization of the active metabolite in blood with 2-bromo-3’-methoxy acetophenone (MPB) immediately after collection ensured metabolite stability during sample handling and storage. Following addition of ticlopidine as an internal standard and simple protein precipitation, the analytes were separated on a Waters Acquity UPLC™ sub-2µm-C18 column via gradient elution before detection on a triple-quadrupole MS with multiple-reaction-monitoring via electrospray ionization. The method was validated across the clinically-relevant concentration range of 0.01–50 ng/mL for parent clopidogrel and 0.1–150 ng/mL (r2= 0.99) for CAMD, with a fast run time of 1.5 min to support pharmacokinetic studies using 75, 150, or 300 mg oral doses of clopidogrel. The analytical method measured concentrations of clopidogrel and CAMD with accuracy (%DEV) < ±12% and precision (%CV) of < ±6%. The method was successfully applied to measure the plasma concentrations of clopidogrel and CAMD in three subjects administered single oral doses of 75, 150, and 300 mg clopidogrel. It was further demonstrated that the derivatizing agent (MPB) does not affect clopidogrel levels, thus from one aliquot of blood drawn clinically, this method can simultaneously quantify both clopidogrel and CAMD with sensitivity in the picogram per mL range. PMID:22169056

  20. Evaluation of a Commercial Multiplex PCR for Rapid Detection of Multi Drug Resistant Gram Negative Infections

    PubMed Central

    Chavada, Ruchir; Maley, Michael

    2015-01-01

    Introduction: Community and healthcare associated infections caused by multi-drug resistant gram negative organisms (MDR GN) represent a worldwide threat. Nucleic Acid Detection tests are becoming more common for their detection; however they can be expensive requiring specialised equipment and local expertise. This study was done to evaluate the utility of a commercial multiplex tandem (MT) PCR for detection of MDR GN. Methods: The study was done on stored laboratory MDR GN isolates from sterile and non-sterile specimens (n=126, out of stored 567 organisms). Laboratory validation of the MT PCR was done to evaluate sensitivity, specificity and agreement with the current phenotypic methods used in the laboratory. Amplicon sequencing was also done on selected isolates for assessing performance characteristics. Workflow and cost implications of the MT PCR were evaluated. Results: The sensitivity and specificity of the MT PCR were calculated to be 95% and 96.7% respectively. Agreement with the phenotypic methods was 80%. Major lack of agreement was seen in detection of AmpC beta lactamase in enterobacteriaceae and carbapenemase in non-fermenters. Agreement of the MT PCR with another multiplex PCR was found to be 87%. Amplicon sequencing confirmed the genotype detected by MT PCR in 94.2 % of cases tested. Time to result was faster for the MT PCR but cost per test was higher. Conclusion: This study shows that with carefully chosen targets for detection of resistance genes in MDR GN, rapid and efficient identification is possible. MT PCR was sensitive and specific and likely more accurate than phenotypic methods. PMID:26464612

  1. Accuracy of Rapid Fecal Calprotectin Test in Monitoring Inflammatory Bowel Diseases Under Treatment with TNFα Antagonists.

    PubMed

    Tursi, Antonio; Elisei, Walter; Picchio, Marcello; Giorgetti, GianMarco; Brandimarte, Giovanni

    2015-05-01

    Anti-TNFα antibodies are effective in treating inflammatory bowel diseases (IBDs) unresponsive to the standard treatments. Information about the role of rapid fecal calprotectin (FC) in monitoring ambulatory IBD patients under treatment with anti-TNFα is lacking. Our aim was to assess the accuracy of rapid FC in monitoring those patients. Seventy-two patients (38 males, 34 females, mean age 42.5 years, range 23-57 years), affected by ulcerative colitis (UC) (20 patients) or by Crohn's disease (CD) (52 patients) were treated with anti-TNFα antibodies. FC was assessed by a rapid semiquantitative test. With respect to the absence of clinical remission, FC test showed sensitivity of 71.8 %, specificity of 65.2 %, PPV of 41.8 %, and NPV of 86.9 %. In UC patients, FC test showed a sensitivity of 66.7 %, a specificity of 56.1 %, a PPV of 18.2 %, and a NPV of 92.0 %. In CD patients, FC test showed sensitivity of 70.6 %, specificity of 65.2 %, PPV of 50.0 %, and NPV of 81.8 %. With respect to the presence of endoscopic lesions, FC test showed sensitivity of 73.5 %, specificity of 96.0 %, PPV of 96.2 %, and NPV of 72.7 %. In UC patients, FC test showed sensitivity of 47.2 %, specificity of 84.6 %, PPV of 89.5 %, and NPV of 36.7 %. In CD patients, FC test showed sensitivity of 90.1 %, specificity of 79.7 %, PPV of 71.9 %, and NPV of 93.3 %. Diagnostic accuracy of rapid FC seems better in predicting persistence of endoscopic lesions than clinical remission in IBD patients under treatment with anti-TNFα.

  2. Use of Tethered Enzymes as a Platform Technology for Rapid Analyte Detection

    PubMed Central

    Cohen, Roy; Lata, James P.; Lee, Yurim; Hernández, Jean C. Cruz; Nishimura, Nozomi; Schaffer, Chris B.; Mukai, Chinatsu; Nelson, Jacquelyn L.; Brangman, Sharon A.; Agrawal, Yash; Travis, Alexander J.

    2015-01-01

    Background Rapid diagnosis for time-sensitive illnesses such as stroke, cardiac arrest, and septic shock is essential for successful treatment. Much attention has therefore focused on new strategies for rapid and objective diagnosis, such as Point-of-Care Tests (PoCT) for blood biomarkers. Here we use a biomimicry-based approach to demonstrate a new diagnostic platform, based on enzymes tethered to nanoparticles (NPs). As proof of principle, we use oriented immobilization of pyruvate kinase (PK) and luciferase (Luc) on silica NPs to achieve rapid and sensitive detection of neuron-specific enolase (NSE), a clinically relevant biomarker for multiple diseases ranging from acute brain injuries to lung cancer. We hypothesize that an approach capitalizing on the speed and catalytic nature of enzymatic reactions would enable fast and sensitive biomarker detection, suitable for PoCT devices. Methods and findings We performed in-vitro, animal model, and human subject studies. First, the efficiency of coupled enzyme activities when tethered to NPs versus when in solution was tested, demonstrating a highly sensitive and rapid detection of physiological and pathological concentrations of NSE. Next, in rat stroke models the enzyme-based assay was able in minutes to show a statistically significant increase in NSE levels in samples taken 1 hour before and 0, 1, 3 and 6 hours after occlusion of the distal middle cerebral artery. Finally, using the tethered enzyme assay for detection of NSE in samples from 20 geriatric human patients, we show that our data match well (r = 0.815) with the current gold standard for biomarker detection, ELISA—with a major difference being that we achieve detection in 10 minutes as opposed to the several hours required for traditional ELISA. Conclusions Oriented enzyme immobilization conferred more efficient coupled activity, and thus higher assay sensitivity, than non-tethered enzymes. Together, our findings provide proof of concept for using oriented immobilization of active enzymes on NPs as the basis for a highly rapid and sensitive biomarker detection platform. This addresses a key challenge in developing a PoCT platform for time sensitive and difficult to diagnose pathologies. PMID:26605916

  3. Random ensemble learning for EEG classification.

    PubMed

    Hosseini, Mohammad-Parsa; Pompili, Dario; Elisevich, Kost; Soltanian-Zadeh, Hamid

    2018-01-01

    Real-time detection of seizure activity in epilepsy patients is critical in averting seizure activity and improving patients' quality of life. Accurate evaluation, presurgical assessment, seizure prevention, and emergency alerts all depend on the rapid detection of seizure onset. A new method of feature selection and classification for rapid and precise seizure detection is discussed wherein informative components of electroencephalogram (EEG)-derived data are extracted and an automatic method is presented using infinite independent component analysis (I-ICA) to select independent features. The feature space is divided into subspaces via random selection and multichannel support vector machines (SVMs) are used to classify these subspaces. The result of each classifier is then combined by majority voting to establish the final output. In addition, a random subspace ensemble using a combination of SVM, multilayer perceptron (MLP) neural network and an extended k-nearest neighbors (k-NN), called extended nearest neighbor (ENN), is developed for the EEG and electrocorticography (ECoG) big data problem. To evaluate the solution, a benchmark ECoG of eight patients with temporal and extratemporal epilepsy was implemented in a distributed computing framework as a multitier cloud-computing architecture. Using leave-one-out cross-validation, the accuracy, sensitivity, specificity, and both false positive and false negative ratios of the proposed method were found to be 0.97, 0.98, 0.96, 0.04, and 0.02, respectively. Application of the solution to cases under investigation with ECoG has also been effected to demonstrate its utility. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Multi-scale Sensitivity and Predictability of Hurricane Joaquin (2015) Illuminated Through Adjoint Studies

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Holdaway, D.; Amerault, C. M.

    2017-12-01

    Hurricane Joaquin (2015) was a strong category 4 hurricane (maximum winds of 135 kts) that developed from an upper-level low over the western Atlantic and was noteworthy because of its large impact in the Bahamas, as well as the sinking of the cargo ship El Farroand loss of her 33 crew members. Joaquin initially moved southwest towards the Bahamas and rapidly intensified before sharply turning northeastward. Nearly all operational model forecasts failed to provide an accurate prediction of the rapid intensification and track, even at short lead times. As a result, the National Hurricane Center forecasted landfall in the mid-Atlantic, while in reality the storm moved well offshore. In this study, we utilize two adjoint modeling systems, the Navy COAMPS and the NASA GEOS-5, to investigate the role of initial condition errors that may have led to the relatively poor track and intensity predictions of Hurricane Joaquin. Adjoint models can provide valuable insight into the practical limitations of our ability to predict the path of tropical cyclones and their strength. An adjoint model can be used for the efficient and rigorous computation of numerical weather forecast sensitivity to changes in the initial state. The adjoint sensitivity diagnostics illustrate complex influences on the evolution of Joaquin that occur over a wide range of spatial scales. The sensitivity results highlight the importance of an upper-level trough to the northeast that provided the steering flow for the poorly-predicted southwesterly movement of the hurricane in its early phase. The steering flow and hurricane track are found to be very sensitive to relatively small changes in the initial state to the east-northeast of the hurricane. Additionally, the intensity prediction of Hurricane Joaquin is found to be very sensitive to the initial state moisture including highly structured regions around the storm and in remote regions as well. Hurricane Joaquin was observed in four NASA WB-57 research flights during the ONR Tropical Cyclone Intensity (TCI) experiment. The dropsondes that were deployed in regions of large initial state sensitivity are used to characterize the atmospheric properties of these sensitive regions. We will also quantify the impact of TCI dropsondes on COAMPS forecasts for select forecasts of Hurricane Joaquin.

  5. Can the watershed non-point phosphorus pollution be interpreted by critical soil properties? A new insight of different soil P states.

    PubMed

    Lin, Chen; Ma, Ronghua; Xiong, Junfeng

    2018-07-01

    The physicochemical properties of surface soil play a key role in the fate of watershed non-point source pollution. Special emphasis is needed to identify soil properties that are sensitive to both particulate P (PP) pollution and dissolved P (DP) pollution, which is essential for watershed environmental management. The Chaohu Lake basin, a typical eutrophic lake in China, was selected as the study site. The spatial features of the Non-point Source (NPS) PP loads and DP loads were calculated simultaneously based on the integration of sediment delivery distributed model (SEDD) and pollution loads (PLOAD) model. Then several critical physicochemical soil properties, especially various soil P compositions, were innovatively introduced to determine the response of the critical soil properties to NPS P pollution. The findings can be summarized: i) the mean PP load value of the different sub-basins was 5.87 kg, and PP pollution is regarded to be the primary NPS P pollution state, while the DP loads increased rapidly under the rapid urbanization process. ii) iron-bound phosphorus (Fe-P) and aluminum-bound phosphorus (Al-P) are the main components of available P and showed the most sensitive responses to NPS PP pollution, and the correlation coefficients were approximately 0.9. Otherwise, the residual phosphorus (Res-P) was selected as a sensitive soil P state that was significantly negatively correlated with the DP loads. iii) The DP and PP concentrations were represented differently when they were correlated with various soil properties, and the clay proportion was strongly negatively related to the PP loads. Meanwhile, there is a non-linear relationship between the DP loads and the critical soil properties, such as Fe and Total Nitrogen (TN) concentrations. Specifically, a strong inhibitory effect of TN concentration on the DP load was apparent in the Nanfei river (NF) and Paihe (PH) river basins where the R 2 reached 0.67, which contrasts with the relatively poor relationship within the other five basins. In addition, the degree of correlation between the Fe and DP loads severely degraded in the basins that were mostly covered by construction land or those that underwent a rapid urbanization process. The findings indicate that land use/cover change (LUCC), especially the distribution of agricultural land and construction land, as well as the soil background information (TN, Fe and Soil organic matters, etc.) can be considered as factors that influence NPS P pollution. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Diagnostic sensitivity and specificity of a participatory disease surveillance method for highly pathogenic avian influenza in household chicken flocks in Indonesia.

    PubMed

    Robyn, M; Priyono, W B; Kim, L M; Brum, E

    2012-06-01

    A study was conducted to assess the diagnostic sensitivity and specificity of a disease surveillance method for diagnosis of highly pathogenic avian influenza (HPAI) outbreaks in household chicken flocks used by participatory disease surveillance (PDS) teams in Yogyakarta Province, Indonesia. The Government of Indonesia, in partnership with the Food and Agriculture Organization of the United Nations, has implemented a PDS method for the detection of HPAI outbreaks in poultry since 2006. The PDS method in Indonesia utilizes both a clinical case definition (CD) and the result of a commercial rapid antigen test kit Yogyakarta 55611, to diagnose HPAI outbreaks, primarily in backyard chicken flocks. The following diagnostic sensitivities and specificities were obtained relative to real-time reverse transcription-PCR as the gold standard diagnostic test: 1) 89% sensitivity (CI95: 75%-97%) and 96% specificity (CI95: 89%-99%) for the PDS CD alone; 2) 86% sensitivity (CI95: 71%-95%) and 99% specificity (CI95: 94%-100%) for the rapid antigen test alone; and 3) 84% sensitivity (CI95: 68%-94%) and 100% specificity (CI95: 96%-100%) for the PDS CD result combined with the rapid antigen test result. Based on these results, HPAI outbreaks in extensively raised household chickens can be diagnosed with sufficient sensitivity and specificity using the PDS method as implemented in Indonesia. Subject to further field evaluation, data from this study suggest that the diagnostic sensitivity of the PDS method may be improved by expanding the PDS CD to include more possible clinical presentations of HPAI and by increasing the number of rapid antigen tests to three different birds with HPAI-compatible signs of same flock.

  7. Selective and sensitive fluorimetric determination of carbendazim in apple and orange after preconcentration with magnetite-molecularly imprinted polymer

    NASA Astrophysics Data System (ADS)

    İlktaç, Raif; Aksuner, Nur; Henden, Emur

    2017-03-01

    In this study, magnetite-molecularly imprinted polymer has been used for the first time as selective adsorbent before the fluorimetric determination of carbendazim. Adsorption capacity of the magnetite-molecularly imprinted polymer was found to be 2.31 ± 0.63 mg g- 1 (n = 3). Limit of detection (LOD) and limit of quantification (LOQ) of the method were found to be 2.3 and 7.8 μg L- 1, respectively. Calibration graph was linear in the range of 10-1000 μg L- 1. Rapidity is an important advantage of the method where re-binding and recovery processes of carbendazim can be completed within an hour. The same imprinted polymer can be used for the determination of carbendazim without any capacity loss repeatedly for at least ten times. Proposed method has been successfully applied to determine carbendazim residues in apple and orange, where the recoveries of the spiked samples were found to be in the range of 95.7-103%. Characterization of the adsorbent and the effects of some potential interferences were also evaluated. With the reasonably high capacity and reusability of the adsorbent, dynamic calibration range, rapidity, simplicity, cost-effectiveness and with suitable LOD and LOQ, the proposed method is an ideal method for the determination of carbendazim.

  8. Loop-mediated isothermal amplification assay for rapid and sensitive detection of sheep pox and goat pox viruses in clinical samples.

    PubMed

    Venkatesan, G; Balamurugan, V; Bhanuprakash, V; Singh, R K; Pandey, A B

    2016-06-01

    A Loop-mediated isothermal amplification (LAMP) assay targeting the highly conserved DNA polymerase gene of capripox virus genome was developed and evaluated for rapid detection of sheep pox and goat pox viruses. The optimized LAMP assay is found specific and sensitive for amplification of target DNA with a diagnostic sensitivity and specificity of 96.6% and 100% respectively compared to quantitative PCR. The detection rate of LAMP, PCR and Q-PCR assays is found to be 81.5%, 67% and 83% respectively. This LAMP assay has the potential for rapid clinical diagnosis and surveillance of sheep pox and goat pox in field diagnostic laboratories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Quick and simple estimation of bacteria using a fluorescent paracetamol dimer-Au nanoparticle composite

    NASA Astrophysics Data System (ADS)

    Sahoo, Amaresh Kumar; Sharma, Shilpa; Chattopadhyay, Arun; Ghosh, Siddhartha Sankar

    2012-02-01

    Rapid, simple and sensitive detection of bacterial contamination is critical for safeguarding public health and the environment. Herein, we report an easy method of detection as well as enumeration of the bacterial cell number on the basis of fluorescence quenching of a non-antibacterial fluorescent nanocomposite, consisting of paracetamol dimer (PD) and Au nanoparticles (NPs), in the presence of bacteria. The composite was synthesized by reaction of paracetamol (p-hydroxyacetanilide) with HAuCl4. The Au NPs of the composite were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction and selected area electron diffraction analysis. The paracetamol dimer in the composite showed emission peak at 435 nm when excited at 320 nm. The method successfully detected six bacterial strains with a sensitivity of 100 CFU mL-1. The Gram-positive and Gram-negative bacteria quenched the fluorescence of the composite differently, making it possible to distinguish between the two. The TEM analysis showed interaction of the composite with bacteria without any apparent damage to the bacteria. The chi-square test established the accuracy of the method. Quick, non-specific and highly sensitive detection of bacteria over a broad range of logarithmic dilutions within a short span of time demonstrates the potential of this method as an alternative to conventional methods.Rapid, simple and sensitive detection of bacterial contamination is critical for safeguarding public health and the environment. Herein, we report an easy method of detection as well as enumeration of the bacterial cell number on the basis of fluorescence quenching of a non-antibacterial fluorescent nanocomposite, consisting of paracetamol dimer (PD) and Au nanoparticles (NPs), in the presence of bacteria. The composite was synthesized by reaction of paracetamol (p-hydroxyacetanilide) with HAuCl4. The Au NPs of the composite were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction and selected area electron diffraction analysis. The paracetamol dimer in the composite showed emission peak at 435 nm when excited at 320 nm. The method successfully detected six bacterial strains with a sensitivity of 100 CFU mL-1. The Gram-positive and Gram-negative bacteria quenched the fluorescence of the composite differently, making it possible to distinguish between the two. The TEM analysis showed interaction of the composite with bacteria without any apparent damage to the bacteria. The chi-square test established the accuracy of the method. Quick, non-specific and highly sensitive detection of bacteria over a broad range of logarithmic dilutions within a short span of time demonstrates the potential of this method as an alternative to conventional methods. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11837h

  10. Label-free and sensitive fluorescence detection of nucleic acid, based on combination of a graphene oxid /SYBR green I dye platform and polymerase assisted signal amplification

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao; Xing, Da

    2012-12-01

    A new label-free isothermal fluorescence amplification detection for nucleic acid has been developed. In this paper, we first developed a novel sensitive and specific detection platform with an unmodified hairpin probe (HP) combination of the graphene oxid (GO)/ SYBR green I dye (SG), which was relied on the selective principle of adsorption and the high quenching efficiency of GO. Then for the application of this new strategy, we used Mirco RNA-21 (Mir-21) as the target to evaluate this working principle of our design. When the target was hybridizing with the HP and inducing its conformation of change, an efficient isothermal circular strand-displacement polymerization reaction was activating to assist the first signal amplification. In this format, the formed complex conformation of DNA would interact with its high affinity dye, then detached from the surface of GO after incubating with the platform of GO/intercalating dye. This reaction would accompany with obvious fluorescence recovery, and accomplish farther signal enhancement by a mass of intercalating dye inserting into the minor groove of the long duplex replication product. By taking advantage of the multiple amplification of signal, this method exerted substantial enhancement in sensitivity and could be used for rapid and selective detection of Mir-21 with attomole range. It is expected that this cost-effective GO based sensor might hold considerable potential to apply in bioanalysis studies.

  11. A nanocomposite optosensor containing carboxylic functionalized multiwall carbon nanotubes and quantum dots incorporated into a molecularly imprinted polymer for highly selective and sensitive detection of ciprofloxacin.

    PubMed

    Yuphintharakun, Naphat; Nurerk, Piyaluk; Chullasat, Kochaporn; Kanatharana, Proespichaya; Davis, Frank; Sooksawat, Dhassida; Bunkoed, Opas

    2018-08-05

    A nanocomposite optosensor consisting of carboxylic acid functionalized multiwall carbon nanotubes and CdTe quantum dots embedded inside a molecularly imprinted polymer (COOH@MWCNT-MIP-QDs) was developed for trace ciprofloxacin detection. The COOH@MWCNT-MIP-QDs were synthesized through a facile sol-gel process using ciprofloxacin as a template molecule, 3-aminopropylethoxysilane as a functional monomer and tetraethoxysilane as a cross-linker at a molar ratio of 1:8:20. The synthesized nanocomposite optosensor had high sensitivity, excellent specificity and high binding affinity to ciprofloxacin. Under optimal conditions, the fluorescence intensity of the optosensor decreased in a linear fashion with the concentration of ciprofloxacin and two linear dynamic ranges were obtained, 0.10-1.0 μg L -1 and 1.0-100.0 μg L -1 with a very low limit of detection of 0.066 μg L -1 . The imprinting factors of the two linear range were 17.67 and 4.28, respectively. The developed nanocomposite fluorescence probe was applied towards the determination of ciprofloxacin levels in chicken muscle and milk samples with satisfactory recoveries being obtained in the range of 82.6 to 98.4%. The results were also in good agreement with a HPLC method which indicates that the optosensor can be used as a sensitive, selective and rapid method to detect ciprofloxacin in chicken and milk samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Amplified QCM biosensor for type IV collagenase based on collagenase-cleavage of gold nanoparticles functionalized peptide.

    PubMed

    Dong, Zong-Mu; Jin, Xin; Zhao, Guang-Chao

    2018-05-30

    The present study develops a rapid, simple and efficient method for the determination of type IV collagenase by using a specific peptide-modified quartz crystal microbalance (QCM). A small peptide (P1), contains a specific sequence (Pro-Gly) and a terminal cysteine, was synthetized and immobilized to the surface of QCM electrode via the reaction between Au and thiol of the cysteine. The peptide bond between proline and glycine can be specific hydrolyzed cleavage by type IV collagenase, which enabled the modified electrode with a high selectivity toward type IV collagenase. The cleaving process caused a frequency change of QCM to give a signal related to the concentration of type IV collagenase. The morphologies of the modified electrodes were characterized by scanning electron microscope (SEM) and the specific hydrolyzed cleavage process was monitored by QCM. When P1 was modified with gold nanoparticles (P1-Au NPs), the signal could be amplified to further enhance the sensitivity of the designed sensor due to the high-mass of the modified Au NPs. Compared the direct unamplified assay, the values obtained for the limit of detection for type IV collagenase was 0.96 ng mL -1 , yielding about 6.5 times of magnitude improvement in sensitivity. This signal enhanced peptide based QCM biosensor for type IV collagenase also showed good selectivity and sensitivity in complex matrix. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Bioanalysis of sulprostone, a prostaglandin E2 analogue and selective EP3 agonist, in monkey plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Shi, Yifan; Rankin, Matthew M; Norquay, Lisa D; Weng, Naidong; Patel, Shefali

    2018-05-25

    Sulprostone is a potent prostaglandin E 2 (PGE 2 ) analogue and one of the first identified selective G-protein-coupled receptor 3 (EP 3 ) agonists. It has been investigated as a potential antiulcer agent and frequently used in the research of EP 3 antagonist. To assist pharmacokinetic and pharmacodynamic studies, a rapid and sensitive LC-MS/MS method was developed and qualified for the quantitation of sulprostone in monkey plasma. Using electrospray ionization mass spectrometry, an ammonium adduct in positive mode was chosen for analysis which had seven times of the sensitivity of the depronated ion in negative mode. Latanoprost, a prostaglandin F 2α analogue, was used as the internal standard while good sensitivity and chromatography were obtained on a 2.6 μm core-shell column with pentafluorophenyl stationary phase. An assay dynamic range of 2 to 4000 ng/mL was achieved with a sample volume of 25 μL plasma on a Sciex API4000 instrument with simple protein precipitation. Several esterase inhibitors including sodium fluoride (NaF), phenylmethanesulfonyl fluoride (PMSF), diisopropylfluorophosphate (DFP), paraoxon and dichlorvos as well as wet ice conditions were explored for the stabilization of sulprostone in monkey plasma. The developed method was successfully applied for the evaluation of pharmacokinetics of sulprostone after intravenous administration of 0.5 mg/kg to cynomolgus monkey. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. A novel method for detection of H9N2 influenza viruses by an aptamer-real time-PCR.

    PubMed

    Hmila, Issam; Wongphatcharachai, Manoosak; Laamiri, Nacira; Aouini, Rim; Marnissi, Boutheina; Arbi, Marwa; Sreevatsan, Srinand; Ghram, Abdeljelil

    2017-05-01

    H9N2 Influenza subtype has emerged in Tunisia causing epidemics in poultry and resulting in major economic losses. New mutations in their hemagglutinin and neuraminidase proteins were acquired, suggesting their potential to directly infect humans. Effective surveillance tools should be implemented to help prevent potential spillover of the virus across species. We have developed a highly sensitive real time immuno-polymerase chain reaction (RT-I-PCR) method for detecting H9N2 virus. The assay applies aptamers as ligands to capture and detect the virus. First, a panel of specific ssDNA aptamers was selected via a one step high stringency protocol. Next, the panel of selected aptamers was characterized for their affinities and their specificity to H9N2 virus. The aptamer showing the highest binding affinity to the virus was used as ligand to develop a highly sensitive sandwich Aptamer I-PCR. A 3-log increase in analytical sensitivity was achieved as compared to a routinely used ELISA antigen test, highlighting the potential of this approach to detect very low levels of virus particles. The test was validated using clinical samples and constitutes a rapid and a label-free platform, opening a new venue for the development of aptamer -based viability sensing for a variety of microorganisms of economic importance in Tunisia and surrounding regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Diversity in UV sensitivity and recovery potential among bacterioneuston and bacterioplankton isolates.

    PubMed

    Santos, A L; Lopes, S; Baptista, I; Henriques, I; Gomes, N C M; Almeida, A; Correia, A; Cunha, A

    2011-04-01

    To assess the variability in UV-B (280-320 nm) sensitivity of selected bacterial isolates from the surface microlayer and underlying water of the Ria de Aveiro (Portugal) estuary and their ability to recover from previous UV-induced stress. Bacterial suspensions were exposed to UV-B radiation (3·3 W m⁻²). Effects on culturability and activity were assessed from colony counts and (3) H-leucine incorporation rates, respectively. Among the tested isolates, wide variability in UV-B-induced inhibition of culturability (37·4-99·3%) and activity (36·0-98·0%) was observed. Incubation of UV-B-irradiated suspensions under reactivating regimes (UV-A, 3·65 W m⁻²; photosynthetic active radiation, 40 W m⁻²; dark) also revealed diversity in the extent of recovery from UV-B stress. Trends of enhanced resistance of culturability (up to 15·0%) and enhanced recovery in activity (up to 52·0%) were observed in bacterioneuston isolates. Bacterioneuston isolates were less sensitive and recovered more rapidly from UV-B stress than bacterioplankton isolates, showing enhanced reduction in their metabolism during the irradiation period and decreased culturability during the recovery process compared to bacterioplankton. UV exposure can affect the diversity and activity of microbial communities by selecting UV-resistant strains and alter their metabolic activity towards protective strategies. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  16. Modification of visual function by early visual experience.

    PubMed

    Blakemore, C

    1976-07-01

    Physiological experiments, involving recording from the visual cortex in young kittens and monkeys, have given new insight into human developmental disorders. In the visual cortex of normal cats and monkeys most neurones are selectively sensitive to the orientation of moving edges and they receive very similar signals from both eyes. Even in very young kittens without visual experience, most neurones are binocularly driven and a small proportion of them are genuinely orientation selective. There is no passive maturation of the system in the absence of visual experience, but even very brief exposure to patterned images produces rapid emergence of the adult organization. These results are compared to observations on humans who have "recovered" from early blindness. Covering one eye in a kitten or a monkey, during a sensitive period early in life, produces a virtually complete loss of input from that eye in the cortex. These results can be correlated with the production of "stimulus deprivation amblyopia" in infants who have had one eye patched. Induction of a strabismus causes a loss of binocularity in the visual cortex, and in humans it leads to a loss of stereoscopic vision and binocular fusion. Exposing kittens to lines of one orientation modifies the preferred orientations of cortical cells and there is an analogous "meridional amblyopia" in astigmatic humans. The existence of a sensitive period in human vision is discussed, as well as the possibility of designing remedial and preventive treatments for human developmental disorders.

  17. Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications

    PubMed Central

    Lapotko, Dmitri

    2009-01-01

    This article is focused on the optical generation and detection of photothermal vapor bubbles around plasmonic nanoparticles. We report physical properties of such plasmonic nanobubbles and their biomedical applications as cellular probes. Our experimental studies of gold nanoparticle-generated photothermal bubbles demonstrated the selectivity of photothermal bubble generation, amplification of optical scattering and thermal insulation effect, all realized at the nanoscale. The generation and imaging of photothermal bubbles in living cells (leukemia and carcinoma culture and primary cancerous cells), and tissues (atherosclerotic plaque and solid tumor in animal) demonstrated a noninvasive highly sensitive imaging of target cells by small photothermal bubbles and a selective mechanical, nonthermal damage to the individual target cells by bigger photothermal bubbles due to a rapid disruption of cellular membranes. The analysis of the plasmonic nanobubbles suggests them as theranostic probes, which can be tuned and optically guided at cell level from diagnosis to delivery and therapy during one fast process. PMID:19839816

  18. Review of the Functions of Archimedes’ Spiral Metallic Nanostructures

    PubMed Central

    Li, Zixiang; Zhang, Jingran; Guo, Kai; Shen, Fei; Zhou, Qingfeng; Zhou, Hongping

    2017-01-01

    Here, we have reviewed some typical plasmonic structures based on Archimedes’ spiral (AS) architectures, which can produce polarization-sensitive focusing phenomenon and generate plasmonic vortices (PVs) carrying controllable orbital angular momentum (OAM) because of the relation between the incident polarized states and the chiralities of the spiral structures. These features can be used to analyze different circular polarization states, which has been one of the rapidly developing researching topics in nanophotonics in recent years. Many investigations demonstrate that the multifunctional spiral-based plasmonic structures are excellent choices for chiral selection and generating the transmitted field with well-defined OAM. The circular polarization extinction ratio, as an evaluation criterion for the polarization selectivity of a designed structure, could be effectively improved by properly modulating the parameters of spiral structures. Such functional spiral plasmonic nanostructures are promising for applications in analyzing circular polarization light, full Stokes vector polarimetric sensors, near-field imaging, and so on. PMID:29165382

  19. Development of a selective and sensitive flotation method for determination of trace amounts of cobalt, nickel, copper and iron in environmental samples.

    PubMed

    Karimi, H; Ghaedi, M; Shokrollahi, A; Rajabi, H R; Soylak, M; Karami, B

    2008-02-28

    A simple, selective and rapid flotation method for the separation-preconcentration of trace amounts of cobalt, nickel, iron and copper ions using phenyl 2-pyridyl ketone oxime (PPKO) has been developed prior to their flame atomic absorption spectrometric determinations. The influence of pH, amount of PPKO as collector, type and amount of eluting agent, type and amount of surfactant as floating agent and ionic strength was evaluated on the recoveries of analytes. The influences of the concomitant ions on the recoveries of the analyte ions were also examined. The enrichment factor was 93. The detection limits based on 3 sigma for Cu, Ni, Co and Fe were 0.7, 0.7, 0.8, and 0.7 ng mL(-1), respectively. The method has been successfully applied for determination of trace amounts of ions in various real samples.

  20. Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes.

    PubMed

    Van Le, Quan; Isbell, Lynne A; Matsumoto, Jumpei; Nguyen, Minh; Hori, Etsuro; Maior, Rafael S; Tomaz, Carlos; Tran, Anh Hai; Ono, Taketoshi; Nishijo, Hisao

    2013-11-19

    Snakes and their relationships with humans and other primates have attracted broad attention from multiple fields of study, but not, surprisingly, from neuroscience, despite the involvement of the visual system and strong behavioral and physiological evidence that humans and other primates can detect snakes faster than innocuous objects. Here, we report the existence of neurons in the primate medial and dorsolateral pulvinar that respond selectively to visual images of snakes. Compared with three other categories of stimuli (monkey faces, monkey hands, and geometrical shapes), snakes elicited the strongest, fastest responses, and the responses were not reduced by low spatial filtering. These findings integrate neuroscience with evolutionary biology, anthropology, psychology, herpetology, and primatology by identifying a neurobiological basis for primates' heightened visual sensitivity to snakes, and adding a crucial component to the growing evolutionary perspective that snakes have long shaped our primate lineage.

Top