Sample records for rapid single-step methods

  1. A manual and an automatic TERS based virus discrimination

    NASA Astrophysics Data System (ADS)

    Olschewski, Konstanze; Kämmer, Evelyn; Stöckel, Stephan; Bocklitz, Thomas; Deckert-Gaudig, Tanja; Zell, Roland; Cialla-May, Dana; Weber, Karina; Deckert, Volker; Popp, Jürgen

    2015-02-01

    Rapid techniques for virus identification are more relevant today than ever. Conventional virus detection and identification strategies generally rest upon various microbiological methods and genomic approaches, which are not suited for the analysis of single virus particles. In contrast, the highly sensitive spectroscopic technique tip-enhanced Raman spectroscopy (TERS) allows the characterisation of biological nano-structures like virions on a single-particle level. In this study, the feasibility of TERS in combination with chemometrics to discriminate two pathogenic viruses, Varicella-zoster virus (VZV) and Porcine teschovirus (PTV), was investigated. In a first step, chemometric methods transformed the spectral data in such a way that a rapid visual discrimination of the two examined viruses was enabled. In a further step, these methods were utilised to perform an automatic quality rating of the measured spectra. Spectra that passed this test were eventually used to calculate a classification model, through which a successful discrimination of the two viral species based on TERS spectra of single virus particles was also realised with a classification accuracy of 91%.Rapid techniques for virus identification are more relevant today than ever. Conventional virus detection and identification strategies generally rest upon various microbiological methods and genomic approaches, which are not suited for the analysis of single virus particles. In contrast, the highly sensitive spectroscopic technique tip-enhanced Raman spectroscopy (TERS) allows the characterisation of biological nano-structures like virions on a single-particle level. In this study, the feasibility of TERS in combination with chemometrics to discriminate two pathogenic viruses, Varicella-zoster virus (VZV) and Porcine teschovirus (PTV), was investigated. In a first step, chemometric methods transformed the spectral data in such a way that a rapid visual discrimination of the two examined viruses was enabled. In a further step, these methods were utilised to perform an automatic quality rating of the measured spectra. Spectra that passed this test were eventually used to calculate a classification model, through which a successful discrimination of the two viral species based on TERS spectra of single virus particles was also realised with a classification accuracy of 91%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07033j

  2. One-step purification of nisin A by immunoaffinity chromatography.

    PubMed

    Suárez, A M; Azcona, J I; Rodríguez, J M; Sanz, B; Hernández, P E

    1997-12-01

    The lantibiotic nisin A was purified to homogeneity by a single-step immunoaffinity chromatography method. An immunoadsorption matrix was developed by direct binding of anti-nisin A monoclonal antibodies to N-hydroxysuccinimide-activated Sepharose. The purification procedure was rapid and reproducible and rendered much higher final yields of nisin than any other described method.

  3. A rapid and efficient newly established method to detect COL1A1-PDGFB gene fusion in dermatofibrosarcoma protuberans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, Yoko; Shimizu, Akira; Okada, Etsuko

    Highlights: Black-Right-Pointing-Pointer We developed new method to rapidly identify COL1A1-PDGFB fusion in DFSP. Black-Right-Pointing-Pointer New PCR method using a single primer pair detected COL1A1-PDGFB fusion in DFSP. Black-Right-Pointing-Pointer This is the first report of DFSP with a novel COL1A1 breakpoint in exon 5. -- Abstract: The detection of fusion transcripts of the collagen type 1{alpha}1 (COL1A1) and platelet-derived growth factor-BB (PDGFB) genes by genetic analysis has recognized as a reliable and valuable molecular tool for the diagnosis of dermatofibrosarcoma protuberans (DFSP). To detect the COL1A1-PDGFB fusion, almost previous reports performed reverse transcription polymerase chain reaction (RT-PCR) using multiplex forward primersmore » from COL1A1. However, it has possible technical difficulties with respect to the handling of multiple primers and reagents in the procedure. The objective of this study is to establish a rapid, easy, and efficient one-step method of PCR using only a single primer pair to detect the fusion transcripts of the COL1A1 and PDGFB in DFSP. To validate new method, we compared the results of RT-PCR in five patients of DFSP between the previous method using multiplex primers and our established one-step RT-PCR using a single primer pair. In all cases of DFSP, the COL1A1-PDGFB fusion was detected by both previous method and newly established one-step PCR. Importantly, we detected a novel COL1A1 breakpoint in exon 5. The newly developed method is valuable to rapidly identify COL1A1-PDGFB fusion transcripts in DFSP.« less

  4. One-step purification of nisin A by immunoaffinity chromatography.

    PubMed Central

    Suárez, A M; Azcona, J I; Rodríguez, J M; Sanz, B; Hernández, P E

    1997-01-01

    The lantibiotic nisin A was purified to homogeneity by a single-step immunoaffinity chromatography method. An immunoadsorption matrix was developed by direct binding of anti-nisin A monoclonal antibodies to N-hydroxysuccinimide-activated Sepharose. The purification procedure was rapid and reproducible and rendered much higher final yields of nisin than any other described method. PMID:9406424

  5. Antibody-Mediated Small Molecule Detection Using Programmable DNA-Switches.

    PubMed

    Rossetti, Marianna; Ippodrino, Rudy; Marini, Bruna; Palleschi, Giuseppe; Porchetta, Alessandro

    2018-06-13

    The development of rapid, cost-effective, and single-step methods for the detection of small molecules is crucial for improving the quality and efficiency of many applications ranging from life science to environmental analysis. Unfortunately, current methodologies still require multiple complex, time-consuming washing and incubation steps, which limit their applicability. In this work we present a competitive DNA-based platform that makes use of both programmable DNA-switches and antibodies to detect small target molecules. The strategy exploits both the advantages of proximity-based methods and structure-switching DNA-probes. The platform is modular and versatile and it can potentially be applied for the detection of any small target molecule that can be conjugated to a nucleic acid sequence. Here the rational design of programmable DNA-switches is discussed, and the sensitive, rapid, and single-step detection of different environmentally relevant small target molecules is demonstrated.

  6. A rapid, ratiometric, enzyme-free, and sensitive single-step miRNA detection using three-way junction based FRET probes

    NASA Astrophysics Data System (ADS)

    Luo, Qingying; Liu, Lin; Yang, Cai; Yuan, Jing; Feng, Hongtao; Chen, Yan; Zhao, Peng; Yu, Zhiqiang; Jin, Zongwen

    2018-03-01

    MicroRNAs (miRNAs) are single stranded endogenous molecules composed of only 18-24 nucleotides which are critical for gene expression regulating the translation of messenger RNAs. Conventional methods based on enzyme-assisted nucleic acid amplification techniques have many problems, such as easy contamination, high cost, susceptibility to false amplification, and tendency to have sequence mismatches. Here we report a rapid, ratiometric, enzyme-free, sensitive, and highly selective single-step miRNA detection using three-way junction assembled (or self-assembled) FRET probes. The developed strategy can be operated within the linear range from subnanomolar to hundred nanomolar concentrations of miRNAs. In comparison with the traditional approaches, our method showed high sensitivity for the miRNA detection and extreme selectivity for the efficient discrimination of single-base mismatches. The results reveal that the strategy paved a new avenue for the design of novel highly specific probes applicable in diagnostics and potentially in microscopic imaging of miRNAs in real biological environments.

  7. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases

    PubMed Central

    Su, Yan; Guengerich, F. Peter

    2016-01-01

    Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. PMID:27248785

  8. Dual initiation strip charge apparatus and methods for making and implementing the same

    DOEpatents

    Jakaboski, Juan-Carlos [Albuquerque, NM; Todd,; Steven, N [Rio Rancho, NM; Polisar, Stephen [Albuquerque, NM; Hughs, Chance [Tijeras, NM

    2011-03-22

    A Dual Initiation Strip Charge (DISC) apparatus is initiated by a single initiation source and detonates a strip of explosive charge at two separate contacts. The reflection of explosively induced stresses meet and create a fracture and breach a target along a generally single fracture contour and produce generally fragment-free scattering and no spallation. Methods for making and implementing a DISC apparatus provide numerous advantages over previous methods of creating explosive charges by utilizing steps for rapid prototyping; by implementing efficient steps and designs for metering consistent, repeatable, and controlled amount of high explosive; and by utilizing readily available materials.

  9. Gold Nanorod-based Photo-PCR System for One-Step, Rapid Detection of Bacteria

    PubMed Central

    Kim, Jinjoo; Kim, Hansol; Park, Ji Ho; Jon, Sangyong

    2017-01-01

    The polymerase chain reaction (PCR) has been an essential tool for diagnosis of infectious diseases, but conventional PCR still has some limitations with respect to applications to point-of-care (POC) diagnostic systems that require rapid detection and miniaturization. Here we report a light-based PCR method, termed as photo-PCR, which enables rapid detection of bacteria in a single step. In the photo-PCR system, poly(enthylene glycol)-modified gold nanorods (PEG-GNRs), used as a heat generator, are added into the PCR mixture, which is subsequently periodically irradiated with a 808-nm laser to create thermal cycling. Photo-PCR was able to significantly reduce overall thermal cycling time by integrating bacterial cell lysis and DNA amplification into a single step. Furthermore, when combined with KAPA2G fast polymerase and cooling system, the entire process of bacterial genomic DNA extraction and amplification was further shortened, highlighting the potential of photo-PCR for use in a portable, POC diagnostic system. PMID:29071186

  10. Rapid detection of avian influenza virus a and subtype H5N1 by single step multiplex reverse transcription-polymerase chain reaction.

    PubMed

    Wei, Hui-Ling; Bai, Gui-Rong; Mweene, Aaron S; Zhou, Ying-Chun; Cong, Yan-Long; Pu, Juan; Wang, Shuai; Kida, Hiroshi; Liu, Jin-Hua

    2006-06-01

    Outbreaks of H5N1 highly pathogenic avian influenza (HPAI) virus caused great economic losses to the poultry industry and resulted in human deaths in Thailand and Viet Nam in 2004. Rapid typing and subtyping of H5N1 viruses, especially from clinical specimens, are desirable for taking prompt control measures to prevent the spread of the disease. Here, we developed a set of oligonucleotide primers able to detect, type and subtype H5 and N1 influenza viruses in a single step multiplex reverse transcription-polymerase chain reaction (RT-PCR). RNA was extracted from allantoic fluid or from specimens with guanidinium isothiocyanate reagent. Reverse transcription and PCR were carried out with a mixture of primers specific for influenza viruses of type A, subtype H5 and N1 in a single reaction system under identical conditions. The amplified DNA fragments were analyzed by agarose gel electrophoresis. All the H5N1 viruses tested in the study and the experimental specimens presented three specific bands by the method established here. The results presented here suggest that the method described below is rapid and specific and, therefore, could be valuable in the rapid detection of H5N1 influenza viruses in clinics.

  11. Rapid one-step purification of single-cells encapsulated in alginate microcapsules from oil to aqueous phase using a hydrophobic filter paper: implications for single-cell experiments.

    PubMed

    Lee, Do-Hyun; Jang, Miran; Park, Je-Kyun

    2014-10-01

    By virtue of the biocompatibility and physical properties of hydrogel, picoliter-sized hydrogel microcapsules have been considered to be a biometric signature containing several features similar to that of encapsulated single cells, including phenotype, viability, and intracellular content. To maximize the experimental potential of encapsulating cells in hydrogel microcapsules, a method that enables efficient hydrogel microcapsule purification from oil is necessary. Current methods based on centrifugation for the conventional stepwise rinsing of oil, are slow and laborious and decrease the monodispersity and yield of the recovered hydrogel microcapsules. To remedy these shortcomings we have developed a simple one-step method to purify alginate microcapsules, containing a single live cell, from oil to aqueous phase. This method employs oil impregnation using a commercially available hydrophobic filter paper without multistep centrifugal purification and complicated microchannel networks. The oil-suspended alginate microcapsules encapsulating single cells from mammalian cancer cell lines (MCF-7, HepG2, and U937) and microorganisms (Chlorella vulgaris) were successfully exchanged to cell culture media by quick (~10 min) depletion of the surrounding oil phase without coalescence of neighboring microcapsules. Cell proliferation and high integrity of the microcapsules were also demonstrated by long-term incubation of microcapsules containing a single live cell. We expect that this method for the simple and rapid purification of encapsulated single-cell microcapsules will attain widespread adoption, assisting cell biologists and clinicians in the development of single-cell experiments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Single-step colony assay for screening antibody libraries.

    PubMed

    Kato, Mieko; Hanyu, Yoshiro

    2017-08-10

    We describe a method, single-step colony assay, for simple and rapid screening of single-chain Fv fragment (scFv) libraries. Colonies of Escherichia coli expressing the scFv library are formed on a hydrophilic filter that is positioned in contact with a membrane coated with an antigen. scFv expression is triggered upon treatment of colonies with an induction reagent, following which scFvs are secreted from the cells and diffused to the antigen-coated membrane. scFvs that exhibit binding affinity for the antigen are captured by the membrane-immobilized antigen. Lastly, detection of scFv binding of the antigen on the membrane allows identification of the clones on the filter that express antigen-specific scFvs. We tested this methodology by using an anti-rabbit IgG scFv, scFv(A10B), and a rat immune scFv library. Experiments conducted using scFv(A10B) revealed that this method improves scFv expression during the colony assay. By using our method to screen an immune library of 3×10 3 scFv clones, we established several clones exhibiting affinity for the antigen. Moreover, we tested 7 other antigens, including peptides, and successfully identified positive clones. We believe that this simple procedure and controlled scFv expression of the single-step colony assay could make the antibody screening both rapid and reliable and lead to successful isolation of positive clones from antibody libraries. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A Lateral Flow Biosensor for the Detection of Single Nucleotide Polymorphisms.

    PubMed

    Zeng, Lingwen; Xiao, Zhuo

    2017-01-01

    A lateral flow biosensor (LFB) is introduced for the detection of single nucleotide polymorphisms (SNPs). The assay is composed of two steps: circular strand displacement reaction and lateral flow biosensor detection. In step 1, the nucleotide at SNP site is recognized by T4 DNA ligase and the signal is amplified by strand displacement DNA polymerase, which can be accomplished at a constant temperature. In step 2, the reaction product of step 1 is detected by a lateral flow biosensor, which is a rapid and cost effective tool for nuclei acid detection. Comparing with conventional methods, it requires no complicated machines. It is suitable for the use of point of care diagnostics. Therefore, this simple, cost effective, robust, and promising LFB detection method of SNP has great potential for the detection of genetic diseases, personalized medicine, cancer related mutations, and drug-resistant mutations of infectious agents.

  14. Rapid, single-step most-probable-number method for enumerating fecal coliforms in effluents from sewage treatment plants

    NASA Technical Reports Server (NTRS)

    Munoz, E. F.; Silverman, M. P.

    1979-01-01

    A single-step most-probable-number method for determining the number of fecal coliform bacteria present in sewage treatment plant effluents is discussed. A single growth medium based on that of Reasoner et al. (1976) and consisting of 5.0 gr. proteose peptone, 3.0 gr. yeast extract, 10.0 gr. lactose, 7.5 gr. NaCl, 0.2 gr. sodium lauryl sulfate, and 0.1 gr. sodium desoxycholate per liter is used. The pH is adjusted to 6.5, and samples are incubated at 44.5 deg C. Bacterial growth is detected either by measuring the increase with time in the electrical impedance ratio between the innoculated sample vial and an uninnoculated reference vial or by visual examination for turbidity. Results obtained by the single-step method for chlorinated and unchlorinated effluent samples are in excellent agreement with those obtained by the standard method. It is suggested that in automated treatment plants impedance ratio data could be automatically matched by computer programs with the appropriate dilution factors and most probable number tables already in the computer memory, with the corresponding result displayed as fecal coliforms per 100 ml of effluent.

  15. Motion-induced error reduction by combining Fourier transform profilometry with phase-shifting profilometry.

    PubMed

    Li, Beiwen; Liu, Ziping; Zhang, Song

    2016-10-03

    We propose a hybrid computational framework to reduce motion-induced measurement error by combining the Fourier transform profilometry (FTP) and phase-shifting profilometry (PSP). The proposed method is composed of three major steps: Step 1 is to extract continuous relative phase maps for each isolated object with single-shot FTP method and spatial phase unwrapping; Step 2 is to obtain an absolute phase map of the entire scene using PSP method, albeit motion-induced errors exist on the extracted absolute phase map; and Step 3 is to shift the continuous relative phase maps from Step 1 to generate final absolute phase maps for each isolated object by referring to the absolute phase map with error from Step 2. Experiments demonstrate the success of the proposed computational framework for measuring multiple isolated rapidly moving objects.

  16. Development of a rapid and sensitive one-step reverse transcription-nested polymerase chain reaction in a single tube using the droplet-polymerase chain reaction machine.

    PubMed

    Yamaguchi, Akemi; Matsuda, Kazuyuki; Sueki, Akane; Taira, Chiaki; Uehara, Masayuki; Saito, Yasunori; Honda, Takayuki

    2015-08-25

    Reverse transcription (RT)-nested polymerase chain reaction (PCR) is a time-consuming procedure because it has several handling steps and is associated with the risk of cross-contamination during each step. Therefore, a rapid and sensitive one-step RT-nested PCR was developed that could be performed in a single tube using a droplet-PCR machine. The K562 BCR-ABL mRNA-positive cell line as well as bone marrow aspirates from 5 patients with chronic myelogenous leukemia (CML) and 5 controls without CML were used. We evaluated one-step RT-nested PCR using the droplet-PCR machine. One-step RT-nested PCR performed in a single tube using the droplet-PCR machine enabled the detection of BCR-ABL mRNA within 40min, which was 10(3)-fold superior to conventional RT nested PCR using three steps in separate tubes. The sensitivity of the one-step RT-nested PCR was 0.001%, with sample reactivity comparable to that of the conventional assay. One-step RT-nested PCR was developed using the droplet-PCR machine, which enabled all reactions to be performed in a single tube accurately and rapidly and with high sensitivity. This one-step RT-nested PCR may be applicable to a wide spectrum of genetic tests in clinical laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Macro-fingerprint analysis-through-separation of licorice based on FT-IR and 2DCOS-IR

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Wang, Ping; Xu, Changhua; Yang, Yan; Li, Jin; Chen, Tao; Li, Zheng; Cui, Weili; Zhou, Qun; Sun, Suqin; Li, Huifen

    2014-07-01

    In this paper, a step-by-step analysis-through-separation method under the navigation of multi-step IR macro-fingerprint (FT-IR integrated with second derivative IR (SD-IR) and 2DCOS-IR) was developed for comprehensively characterizing the hierarchical chemical fingerprints of licorice from entirety to single active components. Subsequently, the chemical profile variation rules of three parts (flavonoids, saponins and saccharides) in the separation process were holistically revealed and the number of matching peaks and correlation coefficients with standards of pure compounds was increasing along the extracting directions. The findings were supported by UPLC results and a verification experiment of aqueous separation process. It has been demonstrated that the developed multi-step IR macro-fingerprint analysis-through-separation approach could be a rapid, effective and integrated method not only for objectively providing comprehensive chemical characterization of licorice and all its separated parts, but also for rapidly revealing the global enrichment trend of the active components in licorice separation process.

  18. Single Day Construction of Multigene Circuits with 3G Assembly.

    PubMed

    Halleran, Andrew D; Swaminathan, Anandh; Murray, Richard M

    2018-05-18

    The ability to rapidly design, build, and test prototypes is of key importance to every engineering discipline. DNA assembly often serves as a rate limiting step of the prototyping cycle for synthetic biology. Recently developed DNA assembly methods such as isothermal assembly and type IIS restriction enzyme systems take different approaches to accelerate DNA construction. We introduce a hybrid method, Golden Gate-Gibson (3G), that takes advantage of modular part libraries introduced by type IIS restriction enzyme systems and isothermal assembly's ability to build large DNA constructs in single pot reactions. Our method is highly efficient and rapid, facilitating construction of entire multigene circuits in a single day. Additionally, 3G allows generation of variant libraries enabling efficient screening of different possible circuit constructions. We characterize the efficiency and accuracy of 3G assembly for various construct sizes, and demonstrate 3G by characterizing variants of an inducible cell-lysis circuit.

  19. Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method).

    PubMed

    He, M; Taussig, M J

    2001-08-01

    We describe a format for production of protein arrays termed 'protein in situ array' (PISA). A PISA is rapidly generated in one step directly from PCR-generated DNA fragments by cell-free protein expression and in situ immobilisation at a surface. The template for expression is DNA encoding individual proteins or domains, which is produced by PCR using primers designed from information in DNA databases. Coupled transcription and translation is carried out on a surface to which the tagged protein adheres as soon as it is synthesised. Because proteins generated by cell-free synthesis are usually soluble and functional, this method can overcome problems of insolubility or degradation associated with bacterial expression of recombinant proteins. Moreover, the use of PCR-generated DNA enables rapid production of proteins or domains based on genome information alone and will be particularly useful where cloned material is not available. Here we show that human single-chain antibody fragments (three domain, V(H)/K form) and an enzyme (luciferase) can be functionally arrayed by the PISA method.

  20. Single-step fabrication of electrodes with controlled nanostructured surface roughness using optically-induced electrodeposition

    NASA Astrophysics Data System (ADS)

    Liu, N.; Li, M.; Liu, L.; Yang, Y.; Mai, J.; Pu, H.; Sun, Y.; Li, W. J.

    2018-02-01

    The customized fabrication of microelectrodes from gold nanoparticles (AuNPs) has attracted much attention due to their numerous applications in chemistry and biomedical engineering, such as for surface-enhanced Raman spectroscopy (SERS) and as catalyst sites for electrochemistry. Herein, we present a novel optically-induced electrodeposition (OED) method for rapidly fabricating gold electrodes which are also surface-modified with nanoparticles in one single step. The electrodeposition mechanism, with respect to the applied AC voltage signal and the elapsed deposition time, on the resulting morphology and particle sizes was investigated. The results from SEM and AFM analysis demonstrated that 80-200 nm gold particles can be formed on the surface of the gold electrodes. Simultaneously, both the size of the nanoparticles and the roughness of the fabricated electrodes can be regulated by the deposition time. Compared to state-of-the-art methods for fabricating microelectrodes with AuNPs, such as nano-seed-mediated growth and conventional electrodeposition, this OED technique has several advantages including: (1) electrode fabrication and surface modification using nanoparticles are completed in a single step, eliminating the need for prefabricating micro electrodes; (2) the patterning of electrodes is defined using a digitally-customized, projected optical image rather than using fixed physical masks; and (3) both the fabrication and surface modification processes are rapid, and the entire fabrication process only requires less than 6 s.

  1. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways

    PubMed Central

    Shao, Zengyi; Zhao, Hua; Zhao, Huimin

    2009-01-01

    The assembly of large recombinant DNA encoding a whole biochemical pathway or genome represents a significant challenge. Here, we report a new method, DNA assembler, which allows the assembly of an entire biochemical pathway in a single step via in vivo homologous recombination in Saccharomyces cerevisiae. We show that DNA assembler can rapidly assemble a functional d-xylose utilization pathway (∼9 kb DNA consisting of three genes), a functional zeaxanthin biosynthesis pathway (∼11 kb DNA consisting of five genes) and a functional combined d-xylose utilization and zeaxanthin biosynthesis pathway (∼19 kb consisting of eight genes) with high efficiencies (70–100%) either on a plasmid or on a yeast chromosome. As this new method only requires simple DNA preparation and one-step yeast transformation, it represents a powerful tool in the construction of biochemical pathways for synthetic biology, metabolic engineering and functional genomics studies. PMID:19074487

  2. Single molecule targeted sequencing for cancer gene mutation detection.

    PubMed

    Gao, Yan; Deng, Liwei; Yan, Qin; Gao, Yongqian; Wu, Zengding; Cai, Jinsen; Ji, Daorui; Li, Gailing; Wu, Ping; Jin, Huan; Zhao, Luyang; Liu, Song; Ge, Liangjin; Deem, Michael W; He, Jiankui

    2016-05-19

    With the rapid decline in cost of sequencing, it is now affordable to examine multiple genes in a single disease-targeted clinical test using next generation sequencing. Current targeted sequencing methods require a separate step of targeted capture enrichment during sample preparation before sequencing. Although there are fast sample preparation methods available in market, the library preparation process is still relatively complicated for physicians to use routinely. Here, we introduced an amplification-free Single Molecule Targeted Sequencing (SMTS) technology, which combined targeted capture and sequencing in one step. We demonstrated that this technology can detect low-frequency mutations using artificially synthesized DNA sample. SMTS has several potential advantages, including simple sample preparation thus no biases and errors are introduced by PCR reaction. SMTS has the potential to be an easy and quick sequencing technology for clinical diagnosis such as cancer gene mutation detection, infectious disease detection, inherited condition screening and noninvasive prenatal diagnosis.

  3. Rapid habitability assessment of Mars samples by pyrolysis-FTIR

    NASA Astrophysics Data System (ADS)

    Gordon, Peter R.; Sephton, Mark A.

    2016-02-01

    Pyrolysis Fourier transform infrared spectroscopy (pyrolysis FTIR) is a potential sample selection method for Mars Sample Return missions. FTIR spectroscopy can be performed on solid and liquid samples but also on gases following preliminary thermal extraction, pyrolysis or gasification steps. The detection of hydrocarbon and non-hydrocarbon gases can reveal information on sample mineralogy and past habitability of the environment in which the sample was created. The absorption of IR radiation at specific wavenumbers by organic functional groups can indicate the presence and type of any organic matter present. Here we assess the utility of pyrolysis-FTIR to release water, carbon dioxide, sulfur dioxide and organic matter from Mars relevant materials to enable a rapid habitability assessment of target rocks for sample return. For our assessment a range of minerals were analyzed by attenuated total reflectance FTIR. Subsequently, the mineral samples were subjected to single step pyrolysis and multi step pyrolysis and the products characterised by gas phase FTIR. Data from both single step and multi step pyrolysis-FTIR provide the ability to identify minerals that reflect habitable environments through their water and carbon dioxide responses. Multi step pyrolysis-FTIR can be used to gain more detailed information on the sources of the liberated water and carbon dioxide owing to the characteristic decomposition temperatures of different mineral phases. Habitation can be suggested when pyrolysis-FTIR indicates the presence of organic matter within the sample. Pyrolysis-FTIR, therefore, represents an effective method to assess whether Mars Sample Return target rocks represent habitable conditions and potential records of habitation and can play an important role in sample triage operations.

  4. Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing.

    PubMed

    Knowlton, Stephanie; Yenilmez, Bekir; Tasoglu, Savas

    2016-09-01

    Organ-on-a-chip engineering employs microfabrication of living tissues within microscale fluid channels to create constructs that closely mimic human organs. With the advent of 3D printing, we predict that single-step fabrication of these devices will enable rapid design and cost-effective iterations in the development stage, facilitating rapid innovation in this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Measurement of intrahepatic pressure during radiofrequency ablation in porcine liver.

    PubMed

    Kawamoto, Chiaki; Yamauchi, Atsushi; Baba, Yoko; Kaneko, Keiko; Yakabi, Koji

    2010-04-01

    To identify the most effective procedures to avoid increased intrahepatic pressure during radiofrequency ablation, we evaluated different ablation methods. Laparotomy was performed in 19 pigs. Intrahepatic pressure was monitored using an invasive blood pressure monitor. Radiofrequency ablation was performed as follows: single-step standard ablation; single-step at 30 W; single-step at 70 W; 4-step at 30 W; 8-step at 30 W; 8-step at 70 W; and cooled-tip. The array was fully deployed in single-step methods. In the multi-step methods, the array was gradually deployed in four or eight steps. With the cooled-tip, ablation was performed by increasing output by 10 W/min, starting at 40 W. Intrahepatic pressure was as follows: single-step standard ablation, 154.5 +/- 30.9 mmHg; single-step at 30 W, 34.2 +/- 20.0 mmHg; single-step at 70 W, 46.7 +/- 24.3 mmHg; 4-step at 30 W, 42.3 +/- 17.9 mmHg; 8-step at 30 W, 24.1 +/- 18.2 mmHg; 8-step at 70 W, 47.5 +/- 31.5 mmHg; and cooled-tip, 114.5 +/- 16.6 mmHg. The radiofrequency ablation-induced area was spherical with single-step standard ablation, 4-step at 30 W, and 8-step at 30 W. Conversely, the ablated area was irregular with single-step at 30 W, single-step at 70 W, and 8-step at 70 W. The ablation time was significantly shorter for the multi-step method than for the single-step method. Increased intrahepatic pressure could be controlled using multi-step methods. From the shapes of the ablation area, 30-W 8-step expansions appear to be most suitable for radiofrequency ablation.

  6. Continuous-Flow Synthesis of N-Succinimidyl 4-[18F]fluorobenzoate Using a Single Microfluidic Chip

    PubMed Central

    Kimura, Hiroyuki; Tomatsu, Kenji; Saiki, Hidekazu; Arimitsu, Kenji; Ono, Masahiro; Kawashima, Hidekazu; Iwata, Ren; Nakanishi, Hiroaki; Ozeki, Eiichi; Kuge, Yuji; Saji, Hideo

    2016-01-01

    In the field of positron emission tomography (PET) radiochemistry, compact microreactors provide reliable and reproducible synthesis methods that reduce the use of expensive precursors for radiolabeling and make effective use of the limited space in a hot cell. To develop more compact microreactors for radiosynthesis of 18F-labeled compounds required for the multistep procedure, we attempted radiosynthesis of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) via a three-step procedure using a microreactor. We examined individual steps for [18F]SFB using a batch reactor and microreactor and developed a new continuous-flow synthetic method with a single microfluidic chip to achieve rapid and efficient radiosynthesis of [18F]SFB. In the synthesis of [18F]SFB using this continuous-flow method, the three-step reaction was successfully completed within 6.5 min and the radiochemical yield was 64 ± 2% (n = 5). In addition, it was shown that the quality of [18F]SFB synthesized on this method was equal to that synthesized by conventional methods using a batch reactor in the radiolabeling of bovine serum albumin with [18F]SFB. PMID:27410684

  7. Microfluidic Remote Loading for Rapid Single-Step Liposomal Drug Preparation

    PubMed Central

    Hood, R.R.; Vreeland, W. N.; DeVoe, D.L.

    2014-01-01

    Microfluidic-directed formation of liposomes is combined with in-line sample purification and remote drug loading for single step, continuous-flow synthesis of nanoscale vesicles containing high concentrations of stably loaded drug compounds. Using an on-chip microdialysis element, the system enables rapid formation of large transmembrane pH and ion gradients, followed by immediate introduction of amphipathic drug for real-time remote loading into the liposomes. The microfluidic process enables in-line formation of drug-laden liposomes with drug:lipid molar ratios of up to 1.3, and a total on-chip residence time of approximately 3 min, representing a significant improvement over conventional bulk-scale methods which require hours to days for combined liposome synthesis and remote drug loading. The microfluidic platform may be further optimized to support real-time generation of purified liposomal drug formulations with high concentrations of drugs and minimal reagent waste for effective liposomal drug preparation at or near the point of care. PMID:25003823

  8. Structural evolutions and hereditary characteristics of icosahedral nano-clusters formed in Mg70Zn30 alloys during rapid solidification processes

    NASA Astrophysics Data System (ADS)

    Liang, Yong-Chao; Liu, Rang-Su; Xie, Quan; Tian, Ze-An; Mo, Yun-Fei; Zhang, Hai-Tao; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Peng, Ping

    2017-02-01

    To investigate the structural evolution and hereditary mechanism of icosahedral nano-clusters formed during rapid solidification, a molecular dynamics (MD) simulation study has been performed for a system consisting of 107 atoms of liquid Mg70Zn30 alloy. Adopting Honeycutt-Anderson (HA) bond-type index method and cluster type index method (CTIM-3) to analyse the microstructures in the system it is found that for all the nano-clusters including 2~8 icosahedral clusters in the system, there are 62 kinds of geometrical structures, and those can be classified, by the configurations of the central atoms of basic clusters they contained, into four types: chain-like, triangle-tailed, quadrilateral-tailed and pyramidal-tailed. The evolution of icosahedral nano-clusters can be conducted by perfect heredity and replacement heredity, and the perfect heredity emerges when temperature is slightly less than Tm then increase rapidly and far exceeds the replacement heredity at Tg; while for the replacement heredity, there are three major modes: replaced by triangle (3-atoms), quadrangle (4-atoms) and pentagonal pyramid (6-atoms), rather than by single atom step by step during rapid solidification processes.

  9. Method for forming single phase, single crystalline 2122 BCSCO superconductor thin films by liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Pandey, Raghvendra K. (Inventor); Raina, Kanwal (Inventor); Solayappan, Narayanan (Inventor)

    1994-01-01

    A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83 K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.

  10. Development and evaluation of an in-house single step loop-mediated isothermal amplification (SS-LAMP) assay for the detection of Mycobacterium tuberculosis complex in sputum samples from Moroccan patients.

    PubMed

    Bentaleb, El Mehdi; Abid, Mohammed; El Messaoudi, My Driss; Lakssir, Brahim; Ressami, El Mostafa; Amzazi, Saaïd; Sefrioui, Hassan; Ait Benhassou, Hassan

    2016-09-27

    Tuberculosis (TB) is a major global health problem and remains the leading cause of morbidity and mortality in developing countries. Routinely used TB diagnostic methods, in most endemic areas, are time-consuming, often less-sensitive, expensive and inaccessible to most patients. Therefore, there is an urgent need for the development of early, easy to use and effective diagnosis tools of TB, which can be effectively integrated into resource limited settings, to anticipate the early treatment and limit further spread of the disease. Over the last decade, Loop-mediated isothermal amplification (LAMP) assays have become a powerful tool for rapid diagnosis of infectious diseases because of the simplicity of device requirements. Indeed, LAMP is a simple, quick and cost effective Isothermal Nucleic Acid Amplification diagnostic test (INAAT) that has the potential to be used in TB endemic settings of resource-poor countries. In the present study, we have developed a simple and rapid TB molecular diagnostic test using a Single-Step Loop-mediated isothermal DNA amplification (SS-LAMP) method for the detection of Mycobacterium tuberculosis complex (MTBC) strains, with a simplified sample preparation procedure, eliminating DNA extraction prior to LAMP amplification, DNA initial denaturation and enzymatic inactivation steps during the amplification process. To perform our in-house SS-LAMP assay, a set of six specific primers was specifically designed to recognize eight distinct regions on the MTBC species-specific repetitive insertion sequence 6110 (IS6110). The amplification of the targeted DNA was carried out under isothermal conditions at 65 °C within 1 h. Our protocol was firstly optimized using 60 of confirmed MTBC isolates and a recombinant pGEMeasy-IS6110 vector for sensitivity testing. Thereafter, the assay was evaluated on liquefied sputum specimens collected from 157 Moroccan patients suspected of having TB. Our SS-LAMP developed assay was able to detect MTBC DNA directly from liquefied sputum samples without any prior DNA extraction, denaturation nor the final enzymatic inactivation step. When compared to routinely used Löwenstein Jensen (LJ) Culture method, our SS-LAMP assay is rapid and showed specificity and sensitivity of 99.14 % and 82.93 % respectively which are within the international standards. In addition, the limit of detection of our assay was found to be as little as 10 copies of bacterial DNA. To our knowledge, this is the first study using a single step LAMP (SS-LAMP) procedure as a rapid, easy to perform and cost effective testing for TB early detection. This innovative assay could be suitable for low-income countries with restricted health equipment facilities.

  11. Holographic deep learning for rapid optical screening of anthrax spores

    PubMed Central

    Jo, YoungJu; Park, Sangjin; Jung, JaeHwang; Yoon, Jonghee; Joo, Hosung; Kim, Min-hyeok; Kang, Suk-Jo; Choi, Myung Chul; Lee, Sang Yup; Park, YongKeun

    2017-01-01

    Establishing early warning systems for anthrax attacks is crucial in biodefense. Despite numerous studies for decades, the limited sensitivity of conventional biochemical methods essentially requires preprocessing steps and thus has limitations to be used in realistic settings of biological warfare. We present an optical method for rapid and label-free screening of Bacillus anthracis spores through the synergistic application of holographic microscopy and deep learning. A deep convolutional neural network is designed to classify holographic images of unlabeled living cells. After training, the network outperforms previous techniques in all accuracy measures, achieving single-spore sensitivity and subgenus specificity. The unique “representation learning” capability of deep learning enables direct training from raw images instead of manually extracted features. The method automatically recognizes key biological traits encoded in the images and exploits them as fingerprints. This remarkable learning ability makes the proposed method readily applicable to classifying various single cells in addition to B. anthracis, as demonstrated for the diagnosis of Listeria monocytogenes, without any modification. We believe that our strategy will make holographic microscopy more accessible to medical doctors and biomedical scientists for easy, rapid, and accurate point-of-care diagnosis of pathogens. PMID:28798957

  12. Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic Holstein population

    PubMed Central

    2012-01-01

    Background A single-step blending approach allows genomic prediction using information of genotyped and non-genotyped animals simultaneously. However, the combined relationship matrix in a single-step method may need to be adjusted because marker-based and pedigree-based relationship matrices may not be on the same scale. The same may apply when a GBLUP model includes both genomic breeding values and residual polygenic effects. The objective of this study was to compare single-step blending methods and GBLUP methods with and without adjustment of the genomic relationship matrix for genomic prediction of 16 traits in the Nordic Holstein population. Methods The data consisted of de-regressed proofs (DRP) for 5 214 genotyped and 9 374 non-genotyped bulls. The bulls were divided into a training and a validation population by birth date, October 1, 2001. Five approaches for genomic prediction were used: 1) a simple GBLUP method, 2) a GBLUP method with a polygenic effect, 3) an adjusted GBLUP method with a polygenic effect, 4) a single-step blending method, and 5) an adjusted single-step blending method. In the adjusted GBLUP and single-step methods, the genomic relationship matrix was adjusted for the difference of scale between the genomic and the pedigree relationship matrices. A set of weights on the pedigree relationship matrix (ranging from 0.05 to 0.40) was used to build the combined relationship matrix in the single-step blending method and the GBLUP method with a polygenetic effect. Results Averaged over the 16 traits, reliabilities of genomic breeding values predicted using the GBLUP method with a polygenic effect (relative weight of 0.20) were 0.3% higher than reliabilities from the simple GBLUP method (without a polygenic effect). The adjusted single-step blending and original single-step blending methods (relative weight of 0.20) had average reliabilities that were 2.1% and 1.8% higher than the simple GBLUP method, respectively. In addition, the GBLUP method with a polygenic effect led to less bias of genomic predictions than the simple GBLUP method, and both single-step blending methods yielded less bias of predictions than all GBLUP methods. Conclusions The single-step blending method is an appealing approach for practical genomic prediction in dairy cattle. Genomic prediction from the single-step blending method can be improved by adjusting the scale of the genomic relationship matrix. PMID:22455934

  13. Aptamer Selection Express: A Novel Method for Rapid Single-Step Selection and Sensing of Aptamers

    PubMed Central

    Fan, Maomian; McBurnett, Shelly Roper; Andrews, Carrie J.; Allman, Amity M.; Bruno, John G.; Kiel, Johnathan L.

    2008-01-01

    Here we describe a new DNA capture element (DCE) sensing system, based on the quenching and dequenching of a double-stranded aptamer. This system shows very good sensitivity and thermal stability. While quenching, dequenching, and separating the DCE systems made from different aptamers (all selected by SELEX), an alternative method to rapidly select aptamers was developed—the Aptamer Selection Express (ASExp). This process has been used to select aptamers against different types of targets (Bacillus anthracis spores, Bacillus thuringiensis spores, MS-2 bacteriophage, ovalbumin, and botulinum neurotoxin). The DCE systems made from botulinum neurotoxin aptamers selected by ASExp have been investigated. The results of this investigation indicate that ASExp can be used to rapidly select aptamers for the DCE sensing system. PMID:19183794

  14. Rapid micro-scale proteolysis of proteins for MALDI-MS peptide mapping using immobilized trypsin

    NASA Astrophysics Data System (ADS)

    Gobom, Johan; Nordhoff, Eckhard; Ekman, Rolf; Roepstorff, Peter

    1997-12-01

    In this study we present a rapid method for tryptic digestion of proteins using micro-columns with enzyme immobilized on perfusion chromatography media. The performance of the method is exemplified with acyl-CoA-binding protein and reduced carbamidomethylated bovine serum albumin. The method proved to be significantly faster and yielded a better sequence coverage and an improved signal-to-noise ratio for the MALDI-MS peptide maps, compared to in-solution- and on-target digestion. Only a single sample transfer step is required, and therefore sample loss due to adsorption to surfaces is reduced, which is a critical issue when handling low picomole to femtomole amounts of proteins. An example is shown with on-column proteolytic digestion and subsequent elution of the digest into a reversed-phase micro-column. This is useful if the sample contains large amounts of salt or is too diluted for MALDI-MS analysis. Furthermore, by step-wise elution from the reversedphase column, a complex digest can be fractionated, which reduces signal suppression and facilitates data interpretation in the subsequent MS-analysis. The method also proved useful for consecutive digestions with enzymes of different cleavage specificity. This is exemplified with on-column tryptic digestion, followed by reversed-phase step-wise elution, and subsequent on-target V8 protease digestion.

  15. Rapid detection of fungal keratitis with DNA-stabilizing FTA filter paper.

    PubMed

    Menassa, Nardine; Bosshard, Philipp P; Kaufmann, Claude; Grimm, Christian; Auffarth, Gerd U; Thiel, Michael A

    2010-04-01

    Purpose. Polymerase chain reaction (PCR) is increasingly important for the rapid detection of fungal keratitis. However, techniques of specimen collection and DNA extraction before PCR may interfere with test sensitivity. The purpose of this study was to investigate the use of DNA-stabilizing FTA filter paper (Indicating FTA filter paper; Whatman International, Ltd., Maidstone, UK) for specimen collection without DNA extraction in a single-step, nonnested PCR for fungal keratitis. Methods. Specimens were collected from ocular surfaces with FTA filter discs, which automatically lyse collected cells and stabilize nucleic acids. Filter discs were directly used in single-step PCR reactions to detect fungal DNA. Test sensitivity was evaluated with serial dilutions of Candida albicans, Fusarium oxysporum, and Aspergillus fumigatus cultures. Test specificity was analyzed by comparing 196 and 155 healthy individuals from Switzerland and Egypt, respectively, with 15 patients with a diagnosis of microbial keratitis. Results. PCR with filter discs detected 3 C. albicans, 25 F. oxysporum, and 125 A. fumigatus organisms. In healthy volunteers, fungal PCR was positive in 1.0% and 8.4% of eyes from Switzerland and Egypt, respectively. Fungal PCR remained negative in 10 cases of culture-proven bacterial keratitis, became positive in 4 cases of fungal keratitis, but missed 1 case of culture-proven A. fumigatus keratitis. Conclusions. FTA filter paper for specimen collection together with direct PCR is a promising method of detecting fungal keratitis. The analytical sensitivity is high without the need for a semi-nested or nested second PCR, the clinical specificity is 91.7% to 99.0%, and the method is rapid and inexpensive.

  16. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    NASA Astrophysics Data System (ADS)

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.

    2015-07-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br- or I-) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.

  17. Virtual substitution scan via single-step free energy perturbation.

    PubMed

    Chiang, Ying-Chih; Wang, Yi

    2016-02-05

    With the rapid expansion of our computing power, molecular dynamics (MD) simulations ranging from hundreds of nanoseconds to microseconds or even milliseconds have become increasingly common. The majority of these long trajectories are obtained from plain (vanilla) MD simulations, where no enhanced sampling or free energy calculation method is employed. To promote the 'recycling' of these trajectories, we developed the Virtual Substitution Scan (VSS) toolkit as a plugin of the open-source visualization and analysis software VMD. Based on the single-step free energy perturbation (sFEP) method, VSS enables the user to post-process a vanilla MD trajectory for a fast free energy scan of substituting aryl hydrogens by small functional groups. Dihedrals of the functional groups are sampled explicitly in VSS, which improves the performance of the calculation and is found particularly important for certain groups. As a proof-of-concept demonstration, we employ VSS to compute the solvation free energy change upon substituting the hydrogen of a benzene molecule by 12 small functional groups frequently considered in lead optimization. Additionally, VSS is used to compute the relative binding free energy of four selected ligands of the T4 lysozyme. Overall, the computational cost of VSS is only a fraction of the corresponding multi-step FEP (mFEP) calculation, while its results agree reasonably well with those of mFEP, indicating that VSS offers a promising tool for rapid free energy scan of small functional group substitutions. This article is protected by copyright. All rights reserved. © 2016 Wiley Periodicals, Inc.

  18. One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs.

    PubMed

    Zuo, Erwei; Cai, Yi-Jun; Li, Kui; Wei, Yu; Wang, Bang-An; Sun, Yidi; Liu, Zhen; Liu, Jiwei; Hu, Xinde; Wei, Wei; Huo, Xiaona; Shi, Linyu; Tang, Cheng; Liang, Dan; Wang, Yan; Nie, Yan-Hong; Zhang, Chen-Chen; Yao, Xuan; Wang, Xing; Zhou, Changyang; Ying, Wenqin; Wang, Qifang; Chen, Ren-Chao; Shen, Qi; Xu, Guo-Liang; Li, Jinsong; Sun, Qiang; Xiong, Zhi-Qi; Yang, Hui

    2017-07-01

    The CRISPR/Cas9 system is an efficient gene-editing method, but the majority of gene-edited animals showed mosaicism, with editing occurring only in a portion of cells. Here we show that single gene or multiple genes can be completely knocked out in mouse and monkey embryos by zygotic injection of Cas9 mRNA and multiple adjacent single-guide RNAs (spaced 10-200 bp apart) that target only a single key exon of each gene. Phenotypic analysis of F0 mice following targeted deletion of eight genes on the Y chromosome individually demonstrated the robustness of this approach in generating knockout mice. Importantly, this approach delivers complete gene knockout at high efficiencies (100% on Arntl and 91% on Prrt2) in monkey embryos. Finally, we could generate a complete Prrt2 knockout monkey in a single step, demonstrating the usefulness of this approach in rapidly establishing gene-edited monkey models.

  19. Drop-on-Demand Single Cell Isolation and Total RNA Analysis

    PubMed Central

    Moon, Sangjun; Kim, Yun-Gon; Dong, Lingsheng; Lombardi, Michael; Haeggstrom, Edward; Jensen, Roderick V.; Hsiao, Li-Li; Demirci, Utkan

    2011-01-01

    Technologies that rapidly isolate viable single cells from heterogeneous solutions have significantly contributed to the field of medical genomics. Challenges remain both to enable efficient extraction, isolation and patterning of single cells from heterogeneous solutions as well as to keep them alive during the process due to a limited degree of control over single cell manipulation. Here, we present a microdroplet based method to isolate and pattern single cells from heterogeneous cell suspensions (10% target cell mixture), preserve viability of the extracted cells (97.0±0.8%), and obtain genomic information from isolated cells compared to the non-patterned controls. The cell encapsulation process is both experimentally and theoretically analyzed. Using the isolated cells, we identified 11 stem cell markers among 1000 genes and compare to the controls. This automated platform enabling high-throughput cell manipulation for subsequent genomic analysis employs fewer handling steps compared to existing methods. PMID:21412416

  20. One-Step Immunochromatography Assay Kit for Detecting Antibodies to Canine Parvovirus

    PubMed Central

    Oh, Jin-Sik; Ha, Gun-Woo; Cho, Young-Shik; Kim, Min-Jae; An, Dong-Jun; Hwang, Kyu-Kye; Lim, Yoon-Kyu; Park, Bong-Kyun; Kang, BoKyu; Song, Dae-Sub

    2006-01-01

    This study was performed to determine the feasibility of using whole serum to detect antibodies to canine parvovirus (CPV) under nonlaboratory conditions and to evaluate the performance characteristics of an immunochromatography assay kit. Precise detection of levels of antibody against CPV in puppies can be used to determine a vaccination schedule, because maternal antibodies frequently result in the failure of protective vaccination, and can also be used to determine the antibody levels of infected puppies. Several methods for the titration of CPV antibodies have been reported, including the hemagglutination inhibition (HI) assay, which is considered the “gold standard.” These methods, however, require intricate and time-consuming procedures. In this study, a total of 386 serum specimens were tested. Compared to the HI assay, the rapid assay had a 97.1% sensitivity and a 76.6% specificity (with a cutoff HI titer of 1:80). This single-step assay could be performed rapidly and easily without special equipment. The kit provides a reliable method for detection of anti-CPV antibody where laboratory support and personnel are limited. PMID:16603622

  1. One-step immunochromatography assay kit for detecting antibodies to canine parvovirus.

    PubMed

    Oh, Jin-Sik; Ha, Gun-Woo; Cho, Young-Shik; Kim, Min-Jae; An, Dong-Jun; Hwang, Kyu-Kye; Lim, Yoon-Kyu; Park, Bong-Kyun; Kang, BoKyu; Song, Dae-Sub

    2006-04-01

    This study was performed to determine the feasibility of using whole serum to detect antibodies to canine parvovirus (CPV) under nonlaboratory conditions and to evaluate the performance characteristics of an immunochromatography assay kit. Precise detection of levels of antibody against CPV in puppies can be used to determine a vaccination schedule, because maternal antibodies frequently result in the failure of protective vaccination, and can also be used to determine the antibody levels of infected puppies. Several methods for the titration of CPV antibodies have been reported, including the hemagglutination inhibition (HI) assay, which is considered the "gold standard." These methods, however, require intricate and time-consuming procedures. In this study, a total of 386 serum specimens were tested. Compared to the HI assay, the rapid assay had a 97.1% sensitivity and a 76.6% specificity (with a cutoff HI titer of 1:80). This single-step assay could be performed rapidly and easily without special equipment. The kit provides a reliable method for detection of anti-CPV antibody where laboratory support and personnel are limited.

  2. Development and Single-Laboratory Validation of a Liquid Chromatography Tandem Mass Spectrometry Method for Quantitation of Tetrodotoxin in Mussels and Oysters.

    PubMed

    Turner, Andrew D; Boundy, Michael J; Rapkova, Monika Dhanji

    2017-09-01

    In recent years, evidence has grown for the presence of tetrodotoxin (TTX) in bivalve mollusks, leading to the potential for consumers of contaminated products to be affected by Tetrodotoxin Shellfish Poisoning (TSP). A single-laboratory validation was conducted for the hydrophilic interaction LC (HILIC) tandem MS (MS/MS) analysis of TTX in common mussels and Pacific oysters-the bivalve species that have been found to contain TTXs in the United Kingdom in recent years. The method consists of a single-step dispersive extraction in 1% acetic acid, followed by a carbon SPE cleanup step before dilution and instrumental analysis. The full method was developed as a rapid tool for the quantitation of TTX, as well as for the associated analogs 4-epi-TTX; 5,6,11-trideoxy TTX; 11-nor TTX-6-ol; 5-deoxy TTX; and 4,9-anhydro TTX. The method can also be run as the acquisition of TTX together with paralytic shellfish toxins. Results demonstrated acceptable method performance characteristics for specificity, linearity, recovery, ruggedness, repeatability, matrix variability, and within-laboratory reproducibility for the analysis of TTX. The LOD and LOQ were fit-for-purpose in comparison to the current action limit for TTX enforced in The Netherlands. In addition, aspects of method performance (LOD, LOQ, and within-laboratory reproducibility) were found to be satisfactory for three other TTX analogs (11-nor TTX-6-ol, 5-deoxy TTX, and 4,9-anhydro TTX). The method was found to be practical and suitable for use in regulatory testing, providing rapid turnaround of sample analysis. Plans currently underway on a full collaborative study to validate a HILIC-MS/MS method for paralytic shellfish poisoning toxins will be extended to include TTX in order to generate international acceptance, ultimately for use as an alternative official control testing method should regulatory controls be adopted.

  3. Serum protein measurement using a tapered fluorescent fibre-optic evanescent wave-based biosensor

    NASA Astrophysics Data System (ADS)

    Preejith, P. V.; Lim, C. S.; Chia, T. F.

    2006-12-01

    A novel method to measure the total serum protein concentration is described in this paper. The method is based on the principles of fibre-optic evanescent wave spectroscopy. The biosensor applies a fluorescent dye-immobilized porous glass coating on a multi-mode optical fibre. The evanescent wave's intensity at the fibre-optic core-cladding interface is used to monitor the protein-induced changes in the sensor element. The sensor offers a rapid, single-step method for quantifying protein concentrations without destroying the sample. This unique sensing method presents a sensitive and accurate platform for the quantification of protein.

  4. Universal single level implicit algorithm for gasdynamics

    NASA Technical Reports Server (NTRS)

    Lombard, C. K.; Venkatapthy, E.

    1984-01-01

    A single level effectively explicit implicit algorithm for gasdynamics is presented. The method meets all the requirements for unconditionally stable global iteration over flows with mixed supersonic and supersonic zones including blunt body flow and boundary layer flows with strong interaction and streamwise separation. For hyperbolic (supersonic flow) regions the method is automatically equivalent to contemporary space marching methods. For elliptic (subsonic flow) regions, rapid convergence is facilitated by alternating direction solution sweeps which bring both sets of eigenvectors and the influence of both boundaries of a coordinate line equally into play. Point by point updating of the data with local iteration on the solution procedure at each spatial step as the sweeps progress not only renders the method single level in storage but, also, improves nonlinear accuracy to accelerate convergence by an order of magnitude over related two level linearized implicit methods. The method derives robust stability from the combination of an eigenvector split upwind difference method (CSCM) with diagonally dominant ADI(DDADI) approximate factorization and computed characteristic boundary approximations.

  5. A rapid and sensitive LC-MS/MS assay for the determination of saxagliptin and its active metabolite 5-hydroxy saxagliptin in human plasma and its application to a pharmacokinetic study.

    PubMed

    Batta, N; Pilli, N R; Derangula, V R; Vurimindi, H B; Damaramadugu, R; Yejella, R P

    2015-03-01

    The authors proposed a simple, rapid and sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) assay method for the simultaneous determination of saxagliptin and its active metabolite 5-hydroxy saxagliptin in human plasma. The developed method was fully validated as per the US FDA guidelines. The method utilized stable labeled isotopes saxagliptin-15 N d2 (IS1) and 5-hydroxy saxagliptin-15 N-d2 (IS2) as internal standards for the quantification of saxagliptin and 5-hydroxy saxagliptin, respectively. Analytes and the internal standards were extracted from human plasma by a single step solid-phase extraction technique without drying, evaporation and reconstitution steps. The optimized mobile phase was composed of 0.1% acetic acid in 5 mM ammonium acetate and acetonitrile (30:70, v/v) and delivered at a flow rate of 0.85 mL/min. The method exhibits the linear calibration range of 0.05-100 ng/mL for both the analytes. The precision and accuracy results for both the analytes were well within the acceptance limits. The different stability experiments conducted in aqueous samples and in matrix samples are meeting the acceptance criteria. The chromatographic run time was set at 1.8 min; hence more than 400 samples can be analyzed in a single day. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics.

    PubMed

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-07-21

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.

  7. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics

    PubMed Central

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-01-01

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format. PMID:23685876

  8. Comparison of methods for the detection of coliphages in recreational water at two California, United States beaches.

    PubMed

    Rodríguez, Roberto A; Love, David C; Stewart, Jill R; Tajuba, Julianne; Knee, Jacqueline; Dickerson, Jerold W; Webster, Laura F; Sobsey, Mark D

    2012-04-01

    Methods for detection of two fecal indicator viruses, F+ and somatic coliphages, were evaluated for application to recreational marine water. Marine water samples were collected during the summer of 2007 in Southern California, United States from transects along Avalon Beach (n=186 samples) and Doheny Beach (n=101 samples). Coliphage detection methods included EPA method 1601 - two-step enrichment (ENR), EPA method 1602 - single agar layer (SAL), and variations of ENR. Variations included comparison of two incubation times (overnight and 5-h incubation) and two final detection steps (lysis zone assay and a rapid latex agglutination assay). A greater number of samples were positive for somatic and F+ coliphages by ENR than by SAL (p<0.01). The standard ENR with overnight incubation and detection by lysis zone assay was the most sensitive method for the detection of F+ and somatic coliphages from marine water, although the method takes up to three days to obtain results. A rapid 5-h enrichment version of ENR also performed well, with more positive samples than SAL, and could be performed in roughly 24h. Latex agglutination-based detection methods require the least amount of time to perform, although the sensitivity was less than lysis zone-based detection methods. Rapid culture-based enrichment of coliphages in marine water may be possible by further optimizing culture-based methods for saline water conditions to generate higher viral titers than currently available, as well as increasing the sensitivity of latex agglutination detection methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Lectin-Array Blotting.

    PubMed

    Pazos, Raquel; Echevarria, Juan; Hernandez, Alvaro; Reichardt, Niels-Christian

    2017-09-01

    Aberrant protein glycosylation is a hallmark of cancer, infectious diseases, and autoimmune or neurodegenerative disorders. Unlocking the potential of glycans as disease markers will require rapid and unbiased glycoproteomics methods for glycan biomarker discovery. The present method is a facile and rapid protocol for qualitative analysis of protein glycosylation in complex biological mixtures. While traditional lectin arrays only provide an average signal for the glycans in the mixture, which is usually dominated by the most abundant proteins, our method provides individual lectin binding profiles for all proteins separated in the gel electrophoresis step. Proteins do not have to be excised from the gel for subsequent analysis via the lectin array but are transferred by contact diffusion from the gel to a glass slide presenting multiple copies of printed lectin arrays. Fluorescently marked glycoproteins are trapped by the printed lectins via specific carbohydrate-lectin interactions and after a washing step their binding profile with up to 20 lectin probes is analyzed with a fluorescent scanner. The method produces the equivalent of 20 lectin blots in a single experiment, giving detailed insight into the binding epitopes present in the fractionated proteins. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  10. Method and apparatus for single-stepping coherence events in a multiprocessor system under software control

    DOEpatents

    Blumrich, Matthias A.; Salapura, Valentina

    2010-11-02

    An apparatus and method are disclosed for single-stepping coherence events in a multiprocessor system under software control in order to monitor the behavior of a memory coherence mechanism. Single-stepping coherence events in a multiprocessor system is made possible by adding one or more step registers. By accessing these step registers, one or more coherence requests are processed by the multiprocessor system. The step registers determine if the snoop unit will operate by proceeding in a normal execution mode, or operate in a single-step mode.

  11. Rapid analysis of the essential oil components of dried Zanthoxylum bungeanum Maxim by Fe2O3-magnetic-microsphere-assisted microwave distillation and simultaneous headspace single-drop microextraction followed by GC-MS.

    PubMed

    Ye, Qing

    2013-06-01

    In this work, microwave distillation assisted by Fe2 O3 magnetic microspheres (FMMS) and headspace single-drop microextraction were combined, and developed for determination of essential oil compounds in dried Zanthoxylum bungeanum Maxim (ZBM). The FMMS were used as microwave absorption solid medium for dry distillation of dried ZBM. Using the proposed method, isolation, extraction, and concentration of essential oil compounds can be carried out in a single step. The experimental parameters including extraction solvent, solvent volume, microwave power, irradiation time, and the amount of added FMMS, were studied. The optimal analytical conditions were: 2.0 μL decane as the extraction solvent, microwave power of 300 W, irradiation time of 2 min, and the addition of 0.1 g FMMS to ZBM. The method precision was from 4 to 10%. A total of 52 compounds were identified by the proposed method. The conventional steam distillation method was also used for the analysis of essential oil in dried ZBM and only 31 compounds were identified by steam distillation method. It was found that the proposed method is a simple, rapid, reliable, and solvent-free technique for the determination of volatile compounds in Chinese herbs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Tools for probing local circuits: high-density silicon probes combined with optogenetics

    PubMed Central

    Buzsáki, György; Stark, Eran; Berényi, Antal; Khodagholy, Dion; Kipke, Daryl R.; Yoon, Euisik; Wise, Kensall

    2015-01-01

    To understand how function arises from the interactions between neurons, it is necessary to use methods that allow the monitoring of brain activity at the single-neuron, single-spike level and the targeted manipulation of the diverse neuron types selectively in a closed-loop manner. Large-scale recordings of neuronal spiking combined with optogenetic perturbation of identified individual neurons has emerged as a suitable method for such tasks in behaving animals. To fully exploit the potential power of these methods, multiple steps of technical innovation are needed. We highlight the current state-of-the-art in electrophysiological recording methods, combined with optogenetics, and discuss directions for progress. In addition, we point to areas where rapid development is in progress and discuss topics where near-term improvements are possible and needed. PMID:25856489

  13. Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites.

    PubMed Central

    He, M; Taussig, M J

    1997-01-01

    We describe a rapid, eukaryotic, in vitro method for selection and evolution of antibody combining sites using antibody-ribosome-mRNA (ARM) complexes as selection particles. ARMs carrying single-chain (VH/K) binding fragments specific for progesterone were selected using antigen-coupled magnetic beads; selection simultaneously captured the genetic information as mRNA, making it possible to generate and amplify cDNA by single-step RT-PCR on the ribosome-bound mRNA for further manipulation. Using mutant libraries, antigen-binding ARMs were enriched by a factor of 10(4)-10(5)-fold in a single cycle, with further enrichment in repeated cycles. While demonstrated here for antibodies, the method has the potential to be applied equally for selection of receptors or peptides from libraries. PMID:9396828

  14. Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites.

    PubMed

    He, M; Taussig, M J

    1997-12-15

    We describe a rapid, eukaryotic, in vitro method for selection and evolution of antibody combining sites using antibody-ribosome-mRNA (ARM) complexes as selection particles. ARMs carrying single-chain (VH/K) binding fragments specific for progesterone were selected using antigen-coupled magnetic beads; selection simultaneously captured the genetic information as mRNA, making it possible to generate and amplify cDNA by single-step RT-PCR on the ribosome-bound mRNA for further manipulation. Using mutant libraries, antigen-binding ARMs were enriched by a factor of 10(4)-10(5)-fold in a single cycle, with further enrichment in repeated cycles. While demonstrated here for antibodies, the method has the potential to be applied equally for selection of receptors or peptides from libraries.

  15. Single-layer MnO2 nanosheets for sensitive and selective detection of glutathione by a colorimetric method

    NASA Astrophysics Data System (ADS)

    Di, Weihua; Zhang, Xiang; Qin, Weiping

    2017-04-01

    The rapid, sensitive and selective detection of glutathione (GSH) is of great importance in the biological systems. In this work, a template-free and one-step method was used to synthesize the single-layer MnO2 nanosheets via a redox reaction. The resulting product was characterized by XRD, TEM, FTIR, XPS and UV-vis absorption. The addition of GSH results in the change of solution color depth owing to the occurrence of a redox reaction between MnO2 and GSH, enabling colorimetric detection of GSH. At a pH of 3.6, the proposed sensor gives a linear calibration over a GSH concentration range of 10-100 μM, with a rapid response of less than 2 min and a low detection limit of 0.5 μM. The relative standard deviation for seven repeated determinations of GSH is lower than 5.6%. Furthermore, the chemical response of the synthesized MnO2 nanosheets toward GSH is selective. Owing to the advantages with good water solubility, rapid response, high sensitivity, good biocompatibility and operation simplicity, this two-dimensional MnO2-based sensing material might be potential for detecting GSH in biological applications.

  16. Ecobody technology: rapid monoclonal antibody screening method from single B cells using cell-free protein synthesis for antigen-binding fragment formation.

    PubMed

    Ojima-Kato, Teruyo; Nagai, Satomi; Nakano, Hideo

    2017-10-25

    We report a rapid and cost-effective monoclonal antibody screening method from single animal B cells using reverse transcription (RT)-PCR and Escherichia coli cell-free protein synthesis (CFPS), which allows evaluation of antibodies within 2 working days. This process is named "Ecobody technology". The method includes strategies to isolate B cells that specifically bind an antigen from the peripheral blood of immunised animals, and single-cell RT-PCR to generate DNA fragments of the V H and V L genes, followed by CFPS for production of fragments of antigen binding (Fab). In the CFPS step, we employed our techniques: 1) 'Zipbody' as a method for producing Fab, in which the association of heavy and light chains is facilitated by adhesive leucine zipper peptides fused at the C-termini of the Fab; and 2) an N-terminal SKIK peptide tag that can increase protein expression levels. Using Ecobody technology, we obtained highly-specific monoclonal antibodies for the antigens Vibrio parahaemolyticus and E. coli O26. The anti-V. parahaemolyticus Zipbody mAb was further produced in E. coli strain SHuffle T7 Express in inclusion bodies and refolded by a conventional method, resulting in significant antigen-binding activity (K D  = 469 pM) and productivity of 8.5 mg purified antibody/L-culture.

  17. A colorimetric probe based on desensitized ionene-stabilized gold nanoparticles for single-step test for sulfate ions.

    PubMed

    Arkhipova, Viktoriya V; Apyari, Vladimir V; Dmitrienko, Stanislava G

    2015-03-15

    Desensitized ionene-stabilized gold nanoparticles have been prepared and applied as a colorimetric probe for the single-step test for sulfate ions at the relatively high concentration level. The approach is based on aggregation of the nanoparticles leading to the change in absorption spectra and color of the solution. These nanoparticles are characterized by the decreased sensitivity due to both electrostatic and steric stabilization, which allows for simple, and rapid direct single-step determination of sulfate at the relatively high concentration level in real water samples without sample pretreatment or dilution. Influence of different factors (the time of interaction, pH, the concentrations of sulfate ions and the nanoparticles) on the aggregation and analytical performance of the procedure was investigated. The method allows for the determination of sulfate ions in the mass range of 0.2-0.4 mg with RSD of 5% from the sample volume of less than 2 mL. It has a sharp dependence of the colorimetric response on the concentration of sulfate, which makes it prospective for indicating deviations of the sulfate concentration regarding some declared value chosen within the above range. The time of the analysis is 2 min. The method was applied to the analysis of mineral water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Ultrasonication followed by single-drop microextraction combined with GC/MS for rapid determination of organochlorine pesticides from fish.

    PubMed

    Shrivas, Kamlesh; Wu, Hui-Fen

    2008-02-01

    A novel, rapid and simple sample pretreatment technique termed ultrasonication followed by single-drop micro-extraction (U-SDME) has been developed and combined with GC/MS for the determination of organochlorine pesticides (OCPs) in fish. In the present work, the lengthy procedures generally used in the conventional methods like, Soxhlet extraction, supercritical fluid extraction, pressurized liquid extraction and microwave assisted solvent extraction for extraction of OCPs from fish tissues are minimized by the use of two simple extraction procedures. Firstly, OCPs from fish were extracted in organic solvent with ultrasonication and then subsequently preconcentrated by single-drop micro-extraction (SDME). Extraction parameters of ultrasonication and SDME were optimized in spiked sample solution in order to obtain efficient extraction of OCPs from fish tissues. The calibration curves for OCPs were found to be linear between 10-1000 ng/g with correlation of estimations in the range 0.990-0.994. The recoveries obtained in blank fish tissues were ranged from 82.1 to 95.3%. The LOD and RSD for determination of OCPs in fish were 0.5 ng/g and 9.4-10.0%, respectively. The proposed method was applied for the determination of bioconcentration factor in fish after exposure to different concentrations of OCPs in cultured water. The present method avoids the co-extraction of lipids, long extraction steps (>12 h) and large amount of organic solvent for the separation of OCPs. The main advantages of the present method are rapid, selective, sensitive and low cost for the determination of OCPs in fish.

  19. Ultrasensitive protein detection in blood serum using gold nanoparticle probes by single molecule spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jiji; Wang, Chungang; Irudayaraj, Joseph

    2009-07-01

    A one-step rapid and ultrasensitive immunoassay capable of detecting proteins in blood serum is developed using gold nanoprobes and fluorescence correlation spectroscopy (FCS). In this approach we take advantage of the inherent photoluminescence property of gold nanoparticles (GNPs) to develop a fluorophore-free assay to observe binding entities by monitoring the diffusion of bound versus unbound molecules in a limited confocal volume. 40-nm GNPs conjugated separately with rabbit anti-IgG (Fc) and goat anti-IgG (Fab) when incubated in blood serum containing IgG forms a sandwich structure constituting dimers and oligomers that can be differentiated by to detect IgG in blood serum at a limit of detection (LOD) of 5 pg/ml. The novelty of integrating GNPs with FCS to develop a sensitive blood immunoassay brings single molecule methods one step closer to the clinic.

  20. Reducing Time and Increasing Sensitivity in Sample Preparation for Adherent Mammalian Cell Metabolomics

    PubMed Central

    Lorenz, Matthew A.; Burant, Charles F.; Kennedy, Robert T.

    2011-01-01

    A simple, fast, and reproducible sample preparation procedure was developed for relative quantification of metabolites in adherent mammalian cells using the clonal β-cell line INS-1 as a model sample. The method was developed by evaluating the effect of different sample preparation procedures on high performance liquid chromatography- mass spectrometry quantification of 27 metabolites involved in glycolysis and the tricarboxylic acid cycle on a directed basis as well as for all detectable chromatographic features on an undirected basis. We demonstrate that a rapid water rinse step prior to quenching of metabolism reduces components that suppress electrospray ionization thereby increasing signal for 26 of 27 targeted metabolites and increasing total number of detected features from 237 to 452 with no detectable change of metabolite content. A novel quenching technique is employed which involves addition of liquid nitrogen directly to the culture dish and allows for samples to be stored at −80 °C for at least 7 d before extraction. Separation of quenching and extraction steps provides the benefit of increased experimental convenience and sample stability while maintaining metabolite content similar to techniques that employ simultaneous quenching and extraction with cold organic solvent. The extraction solvent 9:1 methanol: chloroform was found to provide superior performance over acetonitrile, ethanol, and methanol with respect to metabolite recovery and extract stability. Maximal recovery was achieved using a single rapid (~1 min) extraction step. The utility of this rapid preparation method (~5 min) was demonstrated through precise metabolite measurements (11% average relative standard deviation without internal standards) associated with step changes in glucose concentration that evoke insulin secretion in the clonal β-cell line INS-1. PMID:21456517

  1. Tetraethylene glycol promoted two-step, one-pot rapid synthesis of indole-3-[1- 11C]acetic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sojeong; Qu, Wenchao; Alexoff, David L.

    2014-12-12

    An operationally friendly, two-step, one-pot process has been developed for the rapid synthesis of carbon-11 labeled indole-3-acetic acid ([ 11]IAA or [ 11]auxin). By replacing an aprotic polar solvent with tetraethylene glycol, nucleophilic [ 11]cyanation and alkaline hydrolysis reactions were performed consecutively in a single pot without a time-consuming intermediate purification step. The entire production time for this updated procedure is 55 min, which dramatically simplifies the entire synthesis and reduces the starting radioactivity required for a whole plant imaging study.

  2. Epitaxial layers of 2122 BCSCO superconductor thin films having single crystalline structure

    NASA Technical Reports Server (NTRS)

    Pandey, Raghvendra K. (Inventor); Raina, Kanwal K. (Inventor); Solayappan, Narayanan (Inventor)

    1995-01-01

    A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.

  3. One step DNA assembly for combinatorial metabolic engineering.

    PubMed

    Coussement, Pieter; Maertens, Jo; Beauprez, Joeri; Van Bellegem, Wouter; De Mey, Marjan

    2014-05-01

    The rapid and efficient assembly of multi-step metabolic pathways for generating microbial strains with desirable phenotypes is a critical procedure for metabolic engineering, and remains a significant challenge in synthetic biology. Although several DNA assembly methods have been developed and applied for metabolic pathway engineering, many of them are limited by their suitability for combinatorial pathway assembly. The introduction of transcriptional (promoters), translational (ribosome binding site (RBS)) and enzyme (mutant genes) variability to modulate pathway expression levels is essential for generating balanced metabolic pathways and maximizing the productivity of a strain. We report a novel, highly reliable and rapid single strand assembly (SSA) method for pathway engineering. The method was successfully optimized and applied to create constructs containing promoter, RBS and/or mutant enzyme libraries. To demonstrate its efficiency and reliability, the method was applied to fine-tune multi-gene pathways. Two promoter libraries were simultaneously introduced in front of two target genes, enabling orthogonal expression as demonstrated by principal component analysis. This shows that SSA will increase our ability to tune multi-gene pathways at all control levels for the biotechnological production of complex metabolites, achievable through the combinatorial modulation of transcription, translation and enzyme activity. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. A simple and rapid method for high-resolution visualization of single-ion tracks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omichi, Masaaki; Center for Collaborative Research, Anan National College of Technology, Anan, Tokushima 774-0017; Choi, Wookjin

    2014-11-15

    Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA)-N, N’-methylene bisacrylamide (MBAAm) blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic forcemore » microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.« less

  5. Aptamer Selection Express: A Novel Method for Rapid Single-Step Selection and Sensing of Aptamers

    DTIC Science & Technology

    2008-12-01

    sample) was as follows: 5 µL buffer, 2 µL MgCl2, 2.5 µL DMSO, 1 µL betaine , 1 µL each dNTP, 2.5 µL F primer, 2.5 µL R primer, 0.54 µL taq polymerase...and 25.1 µL H2O. Betaine and increased DMSO were added to the master mix to eliminate polymerase jumping during PCR ampli- fication.10 Using the

  6. Rapid method to determine 226Ra in steel samples

    DOE PAGES

    Maxwell, Sherrod L.; Culligan, Brian; Hutchison, Jay B.; ...

    2017-09-22

    The rapid measurement of 226Ra in steel samples is very important in the event of a radiological emergency. 226Ra (T 1/2 = 1600 y) is a natural radionuclide present in the environment and a highly toxic alpha-emitter. Due to its long life and tendency to concentrate in bones, 226Ra ingestion or inhalation can lead to significant committed dose to individuals. A new method for the determination of 226Ra in steel samples has been developed at the Savannah River Environmental Laboratory. The new method employs a rugged acid digestion method that includes hydrofluoric acid, followed by a single precipitation step tomore » rapidly preconcentrate the radium and remove most of the dissolved steel sample matrix. Radium is then separated using a combination of cation exchange and extraction chromatography, and 226Ra is measured by alpha spectrometry. This approach has a sample preparation time of ~ 8 h for steel samples, has a very high tracer yield (> 88%), and removes interferences effectively. A 133Ba yield tracer is used so that samples can be counted immediately following the separation method, avoiding lengthy ingrowth times that are required in other methods.« less

  7. Rapid method to determine 226Ra in steel samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian; Hutchison, Jay B.

    The rapid measurement of 226Ra in steel samples is very important in the event of a radiological emergency. 226Ra (T 1/2 = 1600 y) is a natural radionuclide present in the environment and a highly toxic alpha-emitter. Due to its long life and tendency to concentrate in bones, 226Ra ingestion or inhalation can lead to significant committed dose to individuals. A new method for the determination of 226Ra in steel samples has been developed at the Savannah River Environmental Laboratory. The new method employs a rugged acid digestion method that includes hydrofluoric acid, followed by a single precipitation step tomore » rapidly preconcentrate the radium and remove most of the dissolved steel sample matrix. Radium is then separated using a combination of cation exchange and extraction chromatography, and 226Ra is measured by alpha spectrometry. This approach has a sample preparation time of ~ 8 h for steel samples, has a very high tracer yield (> 88%), and removes interferences effectively. A 133Ba yield tracer is used so that samples can be counted immediately following the separation method, avoiding lengthy ingrowth times that are required in other methods.« less

  8. Determination of pyrophosphate and sulfate using polyhexamethylene guanidine hydrochloride-stabilized silver nanoparticles.

    PubMed

    Terenteva, E A; Apyari, V V; Dmitrienko, S G; Garshev, A V; Volkov, P A; Zolotov, Yu A

    2018-04-01

    Positively charged polyhexamethylene guanidine hydrochloride-stabilized silver nanoparticles (PHMG-AgNPs) were prepared and applied as a colorimetric probe for single-step determination of pyrophosphate and sulfate. The approach is based on the nanoparticles aggregation leading to change in their absorption spectra and color of the solution. Due to both electrostatic and steric stabilization these nanoparticles show decreased sensitivity relatively to many common anions, which allows for simple and rapid direct single-step determination of pyrophosphate and sulfate. Effects of different factors (time of interaction, pH, concentrations of anions and the nanoparticles) on aggregation of PHMG-AgNPs and analytical performance of the procedure were investigated. The method allows for the determination of pyrophosphate and sulfate in the range of 0.16-2μgmL -1 and 20-80μgmL -1 with RSD of 2-5%, respectively. The analysis can be performed using either spectrophotometry or naked-eye detection. Practical application of the method was shown by the example of pyrophosphate determination in baking powder sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Method for implantation of high dopant concentrations in wide band gap materials

    DOEpatents

    Usov, Igor [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM

    2009-09-15

    A method that combines alternate low/medium ion dose implantation with rapid thermal annealing at relatively low temperatures. At least one dopant is implanted in one of a single crystal and an epitaxial film of the wide band gap compound by a plurality of implantation cycles. The number of implantation cycles is sufficient to implant a predetermined concentration of the dopant in one of the single crystal and the epitaxial film. Each of the implantation cycles includes the steps of: implanting a portion of the predetermined concentration of the one dopant in one of the single crystal and the epitaxial film; annealing one of the single crystal and the epitaxial film and implanted portion at a predetermined temperature for a predetermined time to repair damage to one of the single crystal and the epitaxial film caused by implantation and activates the implanted dopant; and cooling the annealed single crystal and implanted portion to a temperature of less than about 100.degree. C. This combination produces high concentrations of dopants, while minimizing the defect concentration.

  10. Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications

    PubMed Central

    O'Neill, P. F.; Ben Azouz, A.; Vázquez, M.; Liu, J.; Marczak, S.; Slouka, Z.; Chang, H. C.; Diamond, D.; Brabazon, D.

    2014-01-01

    The capability of 3D printing technologies for direct production of complex 3D structures in a single step has recently attracted an ever increasing interest within the field of microfluidics. Recently, ultrafast lasers have also allowed developing new methods for production of internal microfluidic channels within the bulk of glass and polymer materials by direct internal 3D laser writing. This review critically summarizes the latest advances in the production of microfluidic 3D structures by using 3D printing technologies and direct internal 3D laser writing fabrication methods. Current applications of these rapid prototyped microfluidic platforms in biology will be also discussed. These include imaging of cells and living organisms, electrochemical detection of viruses and neurotransmitters, and studies in drug transport and induced-release of adenosine triphosphate from erythrocytes. PMID:25538804

  11. Rapid and accurate identification of in vivo-induced haploid seeds based on oil content in maize

    PubMed Central

    Melchinger, Albrecht E.; Schipprack, Wolfgang; Würschum, Tobias; Chen, Shaojiang; Technow, Frank

    2013-01-01

    The needs of a growing human population require rapid and efficient development of improved cultivars by plant breeders. The doubled haploid (DH) technology enables generating completely homozygous lines in a single step and, thus, is central to modern genetics and breeding approaches. Rapid and reliable identification of seeds with a haploid embryo after in vivo haploid induction is elementary in the method utilized in maize but current systems have severe shortcomings preventing their use in many germplasm types. Here, we describe an alternative method for discrimination of haploid from diploid seeds based on differences in their oil content stemming from pollination with high oil inducers. After presenting some fundamental theory, we provide a proof-of-concept with experimental results, demonstrating acceptable error rates across different germplasm. Our approach represents a breakthrough in DH technology in maize, because it is amenable to automated high-throughput screening and applicable to any maize germplasm worldwide. PMID:23820577

  12. Rapid synthesis of DNA-cysteine conjugates for expressed protein ligation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovrinovic, Marina; Niemeyer, Christof M.

    2005-09-30

    We report a rapid method for the covalent modification of commercially available amino-modified DNA oligonucleotides with a cysteine moiety. The resulting DNA-cysteine conjugates are versatile reagents for the efficient preparation of covalent DNA-protein conjugates by means of expressed protein ligation (EPL). The EPL method allows for the site-specific coupling of cysteine-modified DNA oligomers with recombinant intein-fusion proteins, the latter of which contain a C-terminal thioester enabling the mild and highly specific reaction with N-terminal cysteine compounds. We prepared a cysteine-modifier reagent in a single-step reaction which allows for the rapid and near quantitative synthesis of cysteine-DNA conjugates. The latter weremore » ligated with the green fluorescent protein mutant EYFP, recombinantly expressed as an intein-fusion protein, allowing for the mild and selective formation of EYFP-DNA conjugates in high yields of about 60%. We anticipate many applications of our approach, ranging from protein microarrays to the arising field of nanobiotechnology.« less

  13. Rapid Genotyping of Single Nucleotide Polymorphisms Influencing Warfarin Drug Response by Surface-Enhanced Laser Desorption and Ionization Time-of-Flight (SELDI-TOF) Mass Spectrometry

    PubMed Central

    Yang, Shangbin; Xu, LiHui; Wu, Haifeng M.

    2010-01-01

    Warfarin exhibits significant interindividual variability in dosing requirements. Different drug responses are partly attributed to the single nucleotide polymorphisms (SNPs) that influence either drug action or drug metabolism. Rapid genotyping of these SNPs helps clinicians to choose appropriate initial doses to quickly achieve anticoagulation effects and to prevent complications. We report a novel application of surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF MS) in the rapid genotyping of SNPs that impact warfarin efficacy. The SNPs were first amplified by PCR and then underwent single base extension to generate the specific SNP product. Next, genetic variants displaying different masses were bound to Q10 anionic proteinChips and then genotyped by using SELDI-TOF MS in a multiplex fashion. SELDI-TOF MS offered unique properties of on-chip sample enrichment and clean-ups, which streamlined the testing procedures and eliminated many tedious experimental steps required by the conventional MS-based method. The turn-around time for genotyping three known warfarin-related SNPs, CYP2C9*2, CYP2C9*3, and VKORC1 3673G>A by SELDI-TOF MS was less than 5 hours. The analytical accuracy of this method was confirmed both by bidirectional DNA sequencing and by comparing the genotype results (n = 189) obtained by SELDI-TOF MS to reports from a clinical reference laboratory. This new multiplex genotyping method provides an excellent clinical laboratory platform to promote personalized medicine in warfarin therapy. PMID:20075209

  14. Rapid genotyping of single nucleotide polymorphisms influencing warfarin drug response by surface-enhanced laser desorption and ionization time-of-flight (SELDI-TOF) mass spectrometry.

    PubMed

    Yang, Shangbin; Xu, LiHui; Wu, Haifeng M

    2010-03-01

    Warfarin exhibits significant interindividual variability in dosing requirements. Different drug responses are partly attributed to the single nucleotide polymorphisms (SNPs) that influence either drug action or drug metabolism. Rapid genotyping of these SNPs helps clinicians to choose appropriate initial doses to quickly achieve anticoagulation effects and to prevent complications. We report a novel application of surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF MS) in the rapid genotyping of SNPs that impact warfarin efficacy. The SNPs were first amplified by PCR and then underwent single base extension to generate the specific SNP product. Next, genetic variants displaying different masses were bound to Q10 anionic proteinChips and then genotyped by using SELDI-TOF MS in a multiplex fashion. SELDI-TOF MS offered unique properties of on-chip sample enrichment and clean-ups, which streamlined the testing procedures and eliminated many tedious experimental steps required by the conventional MS-based method. The turn-around time for genotyping three known warfarin-related SNPs, CYP2C9*2, CYP2C9*3, and VKORC1 3673G>A by SELDI-TOF MS was less than 5 hours. The analytical accuracy of this method was confirmed both by bidirectional DNA sequencing and by comparing the genotype results (n = 189) obtained by SELDI-TOF MS to reports from a clinical reference laboratory. This new multiplex genotyping method provides an excellent clinical laboratory platform to promote personalized medicine in warfarin therapy.

  15. Facile and rapid DNA extraction and purification from food matrices using IFAST (immiscible filtration assisted by surface tension).

    PubMed

    Strotman, Lindsay N; Lin, Guangyun; Berry, Scott M; Johnson, Eric A; Beebe, David J

    2012-09-07

    Extraction and purification of DNA is a prerequisite to detection and analytical techniques. While DNA sample preparation methods have improved over the last few decades, current methods are still time consuming and labor intensive. Here we demonstrate a technology termed IFAST (Immiscible Filtration Assisted by Surface Tension), that relies on immiscible phase filtration to reduce the time and effort required to purify DNA. IFAST replaces the multiple wash and centrifugation steps required by traditional DNA sample preparation methods with a single step. To operate, DNA from lysed cells is bound to paramagnetic particles (PMPs) and drawn through an immiscible fluid phase barrier (i.e. oil) by an external handheld magnet. Purified DNA is then eluted from the PMPs. Here, detection of Clostridium botulinum type A (BoNT/A) in food matrices (milk, orange juice), a bioterrorism concern, was used as a model system to establish IFAST's utility in detection assays. Data validated that the DNA purified by IFAST was functional as a qPCR template to amplify the bont/A gene. The sensitivity limit of IFAST was comparable to the commercially available Invitrogen ChargeSwitch® method. Notably, pathogen detection via IFAST required only 8.5 μL of sample and was accomplished in five-fold less time. The simplicity, rapidity and portability of IFAST offer significant advantages when compared to existing DNA sample preparation methods.

  16. Single-step reinitialization and extending algorithms for level-set based multi-phase flow simulations

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-12-01

    We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.

  17. Single excitation-emission fluorescence spectrum (EEF) for determination of cetane improver in diesel fuel.

    PubMed

    Insausti, Matías; Fernández Band, Beatriz S

    2015-04-05

    A highly sensitive spectrofluorimetric method has been developed for the determination of 2-ethylhexyl nitrate in diesel fuel. Usually, this compound is used as an additive in order to improve cetane number. The analytical method consists in building the chemometric model as a first step. Then, it is possible to quantify the analyte with only recording a single excitation-emission fluorescence spectrum (EEF), whose data are introduced in the chemometric model above mentioned. Another important characteristic of this method is that the fuel sample was used without any pre-treatment for EEF. This work provides an interest improvement to fluorescence techniques using the rapid and easily applicable EEF approach to analyze such complex matrices. Exploding EEF was the key to a successful determination, obtaining a detection limit of 0.00434% (v/v) and a limit of quantification of 0.01446% (v/v). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Assessing the Benefits of Wetland Restoration: A Rapid ...

    EPA Pesticide Factsheets

    This guide presents the Rapid Benefits Indicators (RBI) Approach, a rapid process for assessing the social benefits of ecosystem restoration. Created for those who conduct, advocate for, or support restoration, the RBI approach consists of five steps: (1) Describe the decision context, (2) Select ecosystem services and describe benefits, (3) Compile benefit indicators, (4) Summarize the indicators, and (5) Use the results in decision making. The RBI Approach can be used for many types of assessments and ecosystems. In this guide, we focus on freshwater wetlands in urbanizing areas, and highlight their particular features and benefits through an example application in the Woonasquatucket River Watershed in Rhode Island, USA. The RBI Approach is a multidimensional and disaggregated method, which compiles information in a systematic way to inform decisions. It may be used as a first step towards monetary valuation or towards a single score, but can be used on its own in many contexts, including: prioritizing sites or projects, deciding which projects to fund, initial screening of projects, assessing who may benefit, or informing people about the benefits of restoration. The rapid benefits indicators (RBI) approach presented in this report is intended to be used by resource managers, watershed groups, or others interested in a rapid approach to assessing the benefits of restoration using non-monetary benefits indicators. The RBI approach provides a way to compile in

  19. A one-step strategy for ultra-fast and low-cost mass production of plastic membrane microfluidic chips.

    PubMed

    Hu, Chong; Lin, Sheng; Li, Wanbo; Sun, Han; Chen, Yangfan; Chan, Chiu-Wing; Leung, Chung-Hang; Ma, Dik-Lung; Wu, Hongkai; Ren, Kangning

    2016-10-05

    An ultra-fast, extremely cost-effective, and environmentally friendly method was developed for fabricating flexible microfluidic chips with plastic membranes. With this method, we could fabricate plastic microfluidic chips rapidly (within 12 seconds per piece) at an extremely low cost (less than $0.02 per piece). We used a heated perfluoropolymer perfluoroalkoxy (often called Teflon PFA) solid stamp to press a pile of two pieces of plastic membranes, low density polyethylene (LDPE) and polyethylene terephthalate (PET) coated with an ethylene-vinyl acetate copolymer (EVA). During the short period of contact with the heated PFA stamp, the pressed area of the membranes permanently bonded, while the LDPE membrane spontaneously rose up at the area not pressed, forming microchannels automatically. These two regions were clearly distinguishable even at the micrometer scale so we were able to fabricate microchannels with widths down to 50 microns. This method combines the two steps in the conventional strategy for microchannel fabrication, generating microchannels and sealing channels, into a single step. The production is a green process without using any solvent or generating any waste. Also, the chips showed good resistance against the absorption of Rhodamine 6G, oligonucleotides, and green fluorescent protein (GFP). We demonstrated some typical microfluidic manipulations with the flexible plastic membrane chips, including droplet formation, on-chip capillary electrophoresis, and peristaltic pumping for quantitative injection of samples and reagents. In addition, we demonstrated convenient on-chip detection of lead ions in water samples by a peristaltic-pumping design, as an example of the application of the plastic membrane chips in a resource-limited environment. Due to the high speed and low cost of the fabrication process, this single-step method will facilitate the mass production of microfluidic chips and commercialization of microfluidic technologies.

  20. Detecting bacteria and Determining Their Susceptibility to Antibiotics by Stochastic Confinement in Nanoliter Droplets using Plug-Based Microfluidics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boedicker, J.; Li, L; Kline, T

    2008-01-01

    This article describes plug-based microfluidic technology that enables rapid detection and drug susceptibility screening of bacteria in samples, including complex biological matrices, without pre-incubation. Unlike conventional bacterial culture and detection methods, which rely on incubation of a sample to increase the concentration of bacteria to detectable levels, this method confines individual bacteria into droplets nanoliters in volume. When single cells are confined into plugs of small volume such that the loading is less than one bacterium per plug, the detection time is proportional to plug volume. Confinement increases cell density and allows released molecules to accumulate around the cell, eliminatingmore » the pre-incubation step and reducing the time required to detect the bacteria. We refer to this approach as stochastic confinement. Using the microfluidic hybrid method, this technology was used to determine the antibiogram - or chart of antibiotic sensitivity - of methicillin-resistant Staphylococcus aureus (MRSA) to many antibiotics in a single experiment and to measure the minimal inhibitory concentration (MIC) of the drug cefoxitin (CFX) against this strain. In addition, this technology was used to distinguish between sensitive and resistant strains of S. aureus in samples of human blood plasma. High-throughput microfluidic techniques combined with single-cell measurements also enable multiple tests to be performed simultaneously on a single sample containing bacteria. This technology may provide a method of rapid and effective patient-specific treatment of bacterial infections and could be extended to a variety of applications that require multiple functional tests of bacterial samples on reduced timescales.« less

  1. Rapid prototyping of Fresnel zone plates via direct Ga(+) ion beam lithography for high-resolution X-ray imaging.

    PubMed

    Keskinbora, Kahraman; Grévent, Corinne; Eigenthaler, Ulrike; Weigand, Markus; Schütz, Gisela

    2013-11-26

    A significant challenge to the wide utilization of X-ray microscopy lies in the difficulty in fabricating adequate high-resolution optics. To date, electron beam lithography has been the dominant technique for the fabrication of diffractive focusing optics called Fresnel zone plates (FZP), even though this preparation method is usually very complicated and is composed of many fabrication steps. In this work, we demonstrate an alternative method that allows the direct, simple, and fast fabrication of FZPs using focused Ga(+) beam lithography practically, in a single step. This method enabled us to prepare a high-resolution FZP in less than 13 min. The performance of the FZP was evaluated in a scanning transmission soft X-ray microscope where nanostructures as small as sub-29 nm in width were clearly resolved, with an ultimate cutoff resolution of 24.25 nm, demonstrating the highest first-order resolution for any FZP fabricated by the ion beam lithography technique. This rapid and simple fabrication scheme illustrates the capabilities and the potential of direct ion beam lithography (IBL) and is expected to increase the accessibility of high-resolution optics to a wider community of researchers working on soft X-ray and extreme ultraviolet microscopy using synchrotron radiation and advanced laboratory sources.

  2. Application of a rapid and selective method for the simultaneous determination of carebastine and pseudoephedrine in human plasma by liquid chromatography-electrospray mass spectrometry for bioequivalence study in Korean subjects.

    PubMed

    Lee, Myung-Jae; Lee, Heon-Woo; Kang, Jong-Min; Seo, Ji-Hyung; Tak, Seong-Kun; Shim, Wangseob; Yim, Sung-Vin; Hong, Seung Jae; Lee, Kyung-Tae

    2010-10-01

    We describe a simple, rapid and sensitive high-performance liquid chromatography-electrospray ionization tandem mass spectrometric method that was developed for the simultaneous determination of carebastine and pseudoephedrine in human plasma using cisapride as an internal standard. Acquisition was performed in multiple-reaction monitoring mode by monitoring the transitions: m/z 500.43 > 167.09 for carebastine and m/z 166.04 > 147.88 for pseudoephedrine. The devised method involves a simple single-step liquid-liquid extraction with ethyl acetate. Chromatographic separation was performed on a C(18) reversed-phase chromatographic column at 0.2  mL/min by isocratic elution with 10  mM ammonium formate buffer-acetonitrile (30:70, v/v; adjusted to pH 3.3 with formic acid). The devised method was validated over 0.5-100  ng/mL of carebastine and 5-1000  ng/mL of pseudoephedrine with acceptable accuracy and precision, and was successfully applied to a bioequivalence study involving a single oral dose (10  mg of ebastine plus 120  mg of pseudoephedrine complex) to healthy Korean volunteers. Copyright © 2010 John Wiley & Sons, Ltd.

  3. Simple and sensitive method for quantification of fluorescent enzymatic mature and senescent crosslinks of collagen in bone hydrolysate using single-column high performance liquid chromatography.

    PubMed

    Viguet-Carrin, S; Gineyts, E; Bertholon, C; Delmas, P D

    2009-01-01

    A rapid high performance liquid chromatographic method was developed including an internal standard for the measurement of mature and senescent crosslinks concentration in non-demineralized bone hydrolysates. To avoid the demineralization which is a tedious step, we developed a method based on the use of a solid-phase extraction procedure to clean-up the samples. It resulted in sensitive and accurate measurements: the detection limits as low as 0.2 pmol for the pyridimium crosslinks and 0.02 pmol for the pentosidine. The inter- and intra-assay coefficients of variation were as low as 5% and 2%, respectively, for all crosslinks.

  4. A New Method for Rapid Screening of End-Point PCR Products: Application to Single Genome Amplified HIV and SIV Envelope Amplicons

    PubMed Central

    Houzet, Laurent; Deleage, Claire; Satie, Anne-Pascale; Merlande, Laetitia; Mahe, Dominique; Dejucq-Rainsford, Nathalie

    2015-01-01

    PCR is the most widely applied technique for large scale screening of bacterial clones, mouse genotypes, virus genomes etc. A drawback of large PCR screening is that amplicon analysis is usually performed using gel electrophoresis, a step that is very labor intensive, tedious and chemical waste generating. Single genome amplification (SGA) is used to characterize the diversity and evolutionary dynamics of virus populations within infected hosts. SGA is based on the isolation of single template molecule using limiting dilution followed by nested PCR amplification and requires the analysis of hundreds of reactions per sample, making large scale SGA studies very challenging. Here we present a novel approach entitled Long Amplicon Melt Profiling (LAMP) based on the analysis of the melting profile of the PCR reactions using SYBR Green and/or EvaGreen fluorescent dyes. The LAMP method represents an attractive alternative to gel electrophoresis and enables the quick discrimination of positive reactions. We validate LAMP for SIV and HIV env-SGA, in 96- and 384-well plate formats. Because the melt profiling allows the screening of several thousands of PCR reactions in a cost-effective, rapid and robust way, we believe it will greatly facilitate any large scale PCR screening. PMID:26053379

  5. Rapid detection of the CYP2A6*12 hybrid allele by Pyrosequencing technology.

    PubMed

    Koontz, Deborah A; Huckins, Jacqueline J; Spencer, Antonina; Gallagher, Margaret L

    2009-08-24

    Identification of CYP2A6 alleles associated with reduced enzyme activity is important in the study of inter-individual differences in drug metabolism. CYP2A6*12 is a hybrid allele that results from unequal crossover between CYP2A6 and CYP2A7 genes. The 5' regulatory region and exons 1-2 are derived from CYP2A7, and exons 3-9 are derived from CYP2A6. Conventional methods for detection of CYP2A6*12 consist of two-step PCR protocols that are laborious and unsuitable for high-throughput genotyping. We developed a rapid and accurate method to detect the CYP2A6*12 allele by Pyrosequencing technology. A single set of PCR primers was designed to specifically amplify both the CYP2A6*1 wild-type allele and the CYP2A6*12 hybrid allele. An internal Pyrosequencing primer was used to generate allele-specific sequence information, which detected homozygous wild-type, heterozygous hybrid, and homozygous hybrid alleles. We first validated the assay on 104 DNA samples that were also genotyped by conventional two-step PCR and by cycle sequencing. CYP2A6*12 allele frequencies were then determined using the Pyrosequencing assay on 181 multi-ethnic DNA samples from subjects of African American, European Caucasian, Pacific Rim, and Hispanic descent. Finally, we streamlined the Pyrosequencing assay by integrating liquid handling robotics into the workflow. Pyrosequencing results demonstrated 100% concordance with conventional two-step PCR and cycle sequencing methods. Allele frequency data showed slightly higher prevalence of the CYP2A6*12 allele in European Caucasians and Hispanics. This Pyrosequencing assay proved to be a simple, rapid, and accurate alternative to conventional methods, which can be easily adapted to the needs of higher-throughput studies.

  6. An improved method to unravel phosphoacceptors in Ser/Thr protein kinase-phosphorylated substrates.

    PubMed

    Molle, Virginie; Leiba, Jade; Zanella-Cléon, Isabelle; Becchi, Michel; Kremer, Laurent

    2010-11-01

    Identification of the phosphorylated residues of bacterial Ser/Thr protein kinase (STPK) substrates still represents a challenging task. Herein, we present a new strategy allowing the rapid determination of phosphoacceptors in kinase substrates, essentially based on the dual expression of the kinase with its substrate in the surrogate E. coli, followed by MS analysis in a single-step procedure. The performance of this strategy is illustrated using two distinct proteins from Mycobacterium tuberculosis as model substrates, the GroEL2 and HspX chaperones. A comparative analysis with a standard method that includes mass spectrometry analysis of in vitro phosphorylated substrates is also addressed.

  7. Optimal subinterval selection approach for power system transient stability simulation

    DOE PAGES

    Kim, Soobae; Overbye, Thomas J.

    2015-10-21

    Power system transient stability analysis requires an appropriate integration time step to avoid numerical instability as well as to reduce computational demands. For fast system dynamics, which vary more rapidly than what the time step covers, a fraction of the time step, called a subinterval, is used. However, the optimal value of this subinterval is not easily determined because the analysis of the system dynamics might be required. This selection is usually made from engineering experiences, and perhaps trial and error. This paper proposes an optimal subinterval selection approach for power system transient stability analysis, which is based on modalmore » analysis using a single machine infinite bus (SMIB) system. Fast system dynamics are identified with the modal analysis and the SMIB system is used focusing on fast local modes. An appropriate subinterval time step from the proposed approach can reduce computational burden and achieve accurate simulation responses as well. As a result, the performance of the proposed method is demonstrated with the GSO 37-bus system.« less

  8. Validation of a One-Step Method for Extracting Fatty Acids from Salmon, Chicken and Beef Samples.

    PubMed

    Zhang, Zhichao; Richardson, Christine E; Hennebelle, Marie; Taha, Ameer Y

    2017-10-01

    Fatty acid extraction methods are time-consuming and expensive because they involve multiple steps and copious amounts of extraction solvents. In an effort to streamline the fatty acid extraction process, this study compared the standard Folch lipid extraction method to a one-step method involving a column that selectively elutes the lipid phase. The methods were tested on raw beef, salmon, and chicken. Compared to the standard Folch method, the one-step extraction process generally yielded statistically insignificant differences in chicken and salmon fatty acid concentrations, percent composition and weight percent. Initial testing showed that beef stearic, oleic and total fatty acid concentrations were significantly lower by 9-11% with the one-step method as compared to the Folch method, but retesting on a different batch of samples showed a significant 4-8% increase in several omega-3 and omega-6 fatty acid concentrations with the one-step method relative to the Folch. Overall, the findings reflect the utility of a one-step extraction method for routine and rapid monitoring of fatty acids in chicken and salmon. Inconsistencies in beef concentrations, although minor (within 11%), may be due to matrix effects. A one-step fatty acid extraction method has broad applications for rapidly and routinely monitoring fatty acids in the food supply and formulating controlled dietary interventions. © 2017 Institute of Food Technologists®.

  9. Simple and rapid quantification of brominated vegetable oil in commercial soft drinks by LC–MS

    PubMed Central

    Chitranshi, Priyanka; da Costa, Gonçalo Gamboa

    2016-01-01

    We report here a simple and rapid method for the quantification of brominated vegetable oil (BVO) in soft drinks based upon liquid chromatography–electrospray ionization mass spectrometry. Unlike previously reported methods, this novel method does not require hydrolysis, extraction or derivatization steps, but rather a simple “dilute and shoot” sample preparation. The quantification is conducted by mass spectrometry in selected ion recording mode and a single point standard addition procedure. The method was validated in the range of 5–25 μg/mL BVO, encompassing the legal limit of 15 μg/mL established by the US FDA for fruit-flavored beverages in the US market. The method was characterized by excellent intra- and inter-assay accuracy (97.3–103.4%) and very low imprecision [0.5–3.6% (RSD)]. The direct nature of the quantification, simplicity, and excellent statistical performance of this methodology constitute clear advantages in relation to previously published methods for the analysis of BVO in soft drinks. PMID:27451219

  10. Efficient and simpler method to construct normalized cDNA libraries with improved representations of full-length cDNAs

    DOEpatents

    Soares, Marcelo Bento; Bonaldo, Maria de Fatima

    1998-01-01

    This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods.

  11. Efficient and simpler method to construct normalized cDNA libraries with improved representations of full-length cDNAs

    DOEpatents

    Soares, M.B.; Fatima Bonaldo, M. de

    1998-12-08

    This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods. 25 figs.

  12. Rapid Real-time Electrical Detection of Proteins Using Single Conducting Polymer Nanowire-Based Microfluidic Aptasensor

    PubMed Central

    Huang, Jiyong; Luo, Xiliang; Lee, Innam; Hu, Yushi; Cui, Xinyan Tracy; Yun, Minhee

    2011-01-01

    Single polypyrrole (PPy) nanowire-based microfluidic aptasensors were fabricated using a one-step electrochemical deposition method. The successful incorporation of the aptamers into the PPy nanowire was confirmed by fluorescence microscopy image. The microfluidic aptasensor showed responses to IgE protein solutions in the range from 0.01 nM to 100 nM, and demonstrated excellent specificity and sensitivity with faster response and rapid stabilization times (~20 s). At the lowest examined IgE concentration of 0.01nM, the microfluidic aptasensor still exhibited ~0.32% change in the conductance. The functionality of this aptasensor was able to be regenerated using an acid treatment with no major change in sensitivity. In addition, the detection of cancer biomarker MUC1 was performed using another microfluidic aptasensor, which showed a very low detection limit of 2.66 nM MUC1 compared to commercially available MUC1 diagnosis assay (800 nM). PMID:21937215

  13. A rapid low-cost high-density DNA-based multi-detection test for routine inspection of meat species.

    PubMed

    Lin, Chun Chi; Fung, Lai Ling; Chan, Po Kwok; Lee, Cheuk Man; Chow, Kwok Fai; Cheng, Shuk Han

    2014-02-01

    The increasing occurrence of food frauds suggests that species identification should be part of food authentication. Current molecular-based species identification methods have their own limitations or drawbacks, such as relatively time-consuming experimental steps, expensive equipment and, in particular, these methods cannot identify mixed species in a single experiment. This project proposes an improved method involving PCR amplification of the COI gene and detection of species-specific sequences by hybridisation. Major innovative breakthrough lies in the detection of multiple species, including pork, beef, lamb, horse, cat, dog and mouse, from a mixed sample within a single experiment. The probes used are species-specific either in sole or mixed species samples. As little as 5 pg of DNA template in the PCR is detectable in the proposed method. By designing species-specific probes and adopting reverse dot blot hybridisation and flow-through hybridisation, a low-cost high-density DNA-based multi-detection test suitable for routine inspection of meat species was developed. © 2013.

  14. Evaluation of a Rapid One-step Real-time PCR Method as a High-throughput Screening for Quantification of Hepatitis B Virus DNA in a Resource-limited Setting.

    PubMed

    Rashed-Ul Islam, S M; Jahan, Munira; Tabassum, Shahina

    2015-01-01

    Virological monitoring is the best predictor for the management of chronic hepatitis B virus (HBV) infections. Consequently, it is important to use the most efficient, rapid and cost-effective testing systems for HBV DNA quantification. The present study compared the performance characteristics of a one-step HBV polymerase chain reaction (PCR) vs the two-step HBV PCR method for quantification of HBV DNA from clinical samples. A total of 100 samples consisting of 85 randomly selected samples from patients with chronic hepatitis B (CHB) and 15 samples from apparently healthy individuals were enrolled in this study. Of the 85 CHB clinical samples tested, HBV DNA was detected from 81% samples by one-step PCR method with median HBV DNA viral load (VL) of 7.50 × 10 3 lU/ml. In contrast, 72% samples were detected by the two-step PCR system with median HBV DNA of 3.71 × 10 3 lU/ml. The one-step method showed strong linear correlation with two-step PCR method (r = 0.89; p < 0.0001). Both methods showed good agreement at Bland-Altman plot, with a mean difference of 0.61 log 10 IU/ml and limits of agreement of -1.82 to 3.03 log 10 IU/ml. The intra-assay and interassay coefficients of variation (CV%) of plasma samples (4-7 log 10 IU/ml) for the one-step PCR method ranged between 0.33 to 0.59 and 0.28 to 0.48 respectively, thus demonstrating a high level of concordance between the two methods. Moreover, elimination of the DNA extraction step in the one-step PCR kit allowed time-efficient and significant labor and cost savings for the quantification of HBV DNA in a resource limited setting. Rashed-Ul Islam SM, Jahan M, Tabassum S. Evaluation of a Rapid One-step Real-time PCR Method as a High-throughput Screening for Quantification of Hepatitis B Virus DNA in a Resource-limited Setting. Euroasian J Hepato-Gastroenterol 2015;5(1):11-15.

  15. Evaluation of a Rapid One-step Real-time PCR Method as a High-throughput Screening for Quantification of Hepatitis B Virus DNA in a Resource-limited Setting

    PubMed Central

    Jahan, Munira; Tabassum, Shahina

    2015-01-01

    Virological monitoring is the best predictor for the management of chronic hepatitis B virus (HBV) infections. Consequently, it is important to use the most efficient, rapid and cost-effective testing systems for HBV DNA quantification. The present study compared the performance characteristics of a one-step HBV polymerase chain reaction (PCR) vs the two-step HBV PCR method for quantification of HBV DNA from clinical samples. A total of 100 samples consisting of 85 randomly selected samples from patients with chronic hepatitis B (CHB) and 15 samples from apparently healthy individuals were enrolled in this study. Of the 85 CHB clinical samples tested, HBV DNA was detected from 81% samples by one-step PCR method with median HBV DNA viral load (VL) of 7.50 × 103 lU/ml. In contrast, 72% samples were detected by the two-step PCR system with median HBV DNA of 3.71 × 103 lU/ml. The one-step method showed strong linear correlation with two-step PCR method (r = 0.89; p < 0.0001). Both methods showed good agreement at Bland-Altman plot, with a mean difference of 0.61 log10 IU/ml and limits of agreement of -1.82 to 3.03 log10 IU/ml. The intra-assay and interassay coefficients of variation (CV%) of plasma samples (4-7 log10 IU/ml) for the one-step PCR method ranged between 0.33 to 0.59 and 0.28 to 0.48 respectively, thus demonstrating a high level of concordance between the two methods. Moreover, elimination of the DNA extraction step in the one-step PCR kit allowed time-efficient and significant labor and cost savings for the quantification of HBV DNA in a resource limited setting. How to cite this article Rashed-Ul Islam SM, Jahan M, Tabassum S. Evaluation of a Rapid One-step Real-time PCR Method as a High-throughput Screening for Quantification of Hepatitis B Virus DNA in a Resource-limited Setting. Euroasian J Hepato-Gastroenterol 2015;5(1):11-15. PMID:29201678

  16. A highly sensitive and accurate gene expression analysis by sequencing ("bead-seq") for a single cell.

    PubMed

    Matsunaga, Hiroko; Goto, Mari; Arikawa, Koji; Shirai, Masataka; Tsunoda, Hiroyuki; Huang, Huan; Kambara, Hideki

    2015-02-15

    Analyses of gene expressions in single cells are important for understanding detailed biological phenomena. Here, a highly sensitive and accurate method by sequencing (called "bead-seq") to obtain a whole gene expression profile for a single cell is proposed. A key feature of the method is to use a complementary DNA (cDNA) library on magnetic beads, which enables adding washing steps to remove residual reagents in a sample preparation process. By adding the washing steps, the next steps can be carried out under the optimal conditions without losing cDNAs. Error sources were carefully evaluated to conclude that the first several steps were the key steps. It is demonstrated that bead-seq is superior to the conventional methods for single-cell gene expression analyses in terms of reproducibility, quantitative accuracy, and biases caused during sample preparation and sequencing processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Rapid One-step Enzymatic Synthesis and All-aqueous Purification of Trehalose Analogues.

    PubMed

    Meints, Lisa M; Poston, Anne W; Piligian, Brent F; Olson, Claire D; Badger, Katherine S; Woodruff, Peter J; Swarts, Benjamin M

    2017-02-17

    Chemically modified versions of trehalose, or trehalose analogues, have applications in biology, biotechnology, and pharmaceutical science, among other fields. For instance, trehalose analogues bearing detectable tags have been used to detect Mycobacterium tuberculosis and may have applications as tuberculosis diagnostic imaging agents. Hydrolytically stable versions of trehalose are also being pursued due to their potential for use as non-caloric sweeteners and bioprotective agents. Despite the appeal of this class of compounds for various applications, their potential remains unfulfilled due to the lack of a robust route for their production. Here, we report a detailed protocol for the rapid and efficient one-step biocatalytic synthesis of trehalose analogues that bypasses the problems associated with chemical synthesis. By utilizing the thermostable trehalose synthase (TreT) enzyme from Thermoproteus tenax, trehalose analogues can be generated in a single step from glucose analogues and uridine diphosphate glucose in high yield (up to quantitative conversion) in 15-60 min. A simple and rapid non-chromatographic purification protocol, which consists of spin dialysis and ion exchange, can deliver many trehalose analogues of known concentration in aqueous solution in as little as 45 min. In cases where unreacted glucose analogue still remains, chromatographic purification of the trehalose analogue product can be performed. Overall, this method provides a "green" biocatalytic platform for the expedited synthesis and purification of trehalose analogues that is efficient and accessible to non-chemists. To exemplify the applicability of this method, we describe a protocol for the synthesis, all-aqueous purification, and administration of a trehalose-based click chemistry probe to mycobacteria, all of which took less than 1 hour and enabled fluorescence detection of mycobacteria. In the future, we envision that, among other applications, this protocol may be applied to the rapid synthesis of trehalose-based probes for tuberculosis diagnostics. For instance, short-lived radionuclide-modified trehalose analogues (e.g., 18 F-modified trehalose) could be used for advanced clinical imaging modalities such as positron emission tomography-computed tomography (PET-CT).

  18. A One-Step Immunostaining Method to Visualize Rodent Muscle Fiber Type within a Single Specimen

    PubMed Central

    Sawano, Shoko; Komiya, Yusuke; Ichitsubo, Riho; Ohkawa, Yasuyuki; Nakamura, Mako; Tatsumi, Ryuichi; Ikeuchi, Yoshihide; Mizunoya, Wataru

    2016-01-01

    In this study, we present a quadruple immunostaining method for rapid muscle fiber typing of mice and rats using antibodies specific to the adult myosin heavy chain (MyHC) isoforms MyHC1, 2A, 2X, and 2B, which are common marker proteins of distinct muscle fiber types. We developed rat monoclonal antibodies specific to each MyHC isoform and conjugated these four antibodies to fluorophores with distinct excitation and emission wavelengths. By mixing the four types of conjugated antibodies, MyHC1, 2A, 2X, and 2B could be distinguished within a single specimen allowing for facile delineation of skeletal muscle fiber types. Furthermore, we could observe hybrid fibers expressing MyHC2X and MyHC2B together in single longitudinal muscle sections from mice and rats, that was not attained in previous techniques. This staining method is expected to be applied to study muscle fiber type transition in response to environmental factors, and to ultimately develop techniques to regulate animal muscle fiber types. PMID:27814384

  19. Rapid synthesis of flower shaped Cu{sub 2}ZnSnS{sub 4} nanoparticles by microwave irradiation for solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansari, Mohd Zubair, E-mail: mhd.zubair1@gmail.com; Khare, Neeraj

    Single phase Cu{sub 2}ZnSnS{sub 4} (CZTS) nanoparticles have been synthesized by the microwave-assisted solution method in a one step process. Structural, morphological and optical characterizations of the CZTS nanoparticles have been carried out. X-ray diffraction confirms the single phase formation of CZTS nanoparticles with kesterite structure. SEM confirms the homogenous distribution of CZTS nanoparticles flower like assemblies. High resolution TEM image confirms the good crystallinity of the CZTS nanoparticles with the average grain size ~20 nm. The CZTS nanoparticles have strong optical absorption in the visible region with direct band gap as ~1.6 eV which is optimal for photovoltaic application.

  20. Single-step scanner-based digital image correlation (SB-DIC) method for large deformation mapping in rubber

    NASA Astrophysics Data System (ADS)

    Goh, C. P.; Ismail, H.; Yen, K. S.; Ratnam, M. M.

    2017-01-01

    The incremental digital image correlation (DIC) method has been applied in the past to determine strain in large deformation materials like rubber. This method is, however, prone to cumulative errors since the total displacement is determined by combining the displacements in numerous stages of the deformation. In this work, a method of mapping large strains in rubber using DIC in a single-step without the need for a series of deformation images is proposed. The reference subsets were deformed using deformation factors obtained from the fitted mean stress-axial stretch ratio curve obtained experimentally and the theoretical Poisson function. The deformed reference subsets were then correlated with the deformed image after loading. The recently developed scanner-based digital image correlation (SB-DIC) method was applied on dumbbell rubber specimens to obtain the in-plane displacement fields up to 350% axial strain. Comparison of the mean axial strains determined from the single-step SB-DIC method with those from the incremental SB-DIC method showed an average difference of 4.7%. Two rectangular rubber specimens containing circular and square holes were deformed and analysed using the proposed method. The resultant strain maps from the single-step SB-DIC method were compared with the results of finite element modeling (FEM). The comparison shows that the proposed single-step SB-DIC method can be used to map the strain distribution accurately in large deformation materials like rubber at much shorter time compared to the incremental DIC method.

  1. Rapid Generation of Human Genetic Loss-of-Function iPSC Lines by Simultaneous Reprogramming and Gene Editing.

    PubMed

    Tidball, Andrew M; Dang, Louis T; Glenn, Trevor W; Kilbane, Emma G; Klarr, Daniel J; Margolis, Joshua L; Uhler, Michael D; Parent, Jack M

    2017-09-12

    Specifically ablating genes in human induced pluripotent stem cells (iPSCs) allows for studies of gene function as well as disease mechanisms in disorders caused by loss-of-function (LOF) mutations. While techniques exist for engineering such lines, we have developed and rigorously validated a method of simultaneous iPSC reprogramming while generating CRISPR/Cas9-dependent insertions/deletions (indels). This approach allows for the efficient and rapid formation of genetic LOF human disease cell models with isogenic controls. The rate of mutagenized lines was strikingly consistent across experiments targeting four different human epileptic encephalopathy genes and a metabolic enzyme-encoding gene, and was more efficient and consistent than using CRISPR gene editing of established iPSC lines. The ability of our streamlined method to reproducibly generate heterozygous and homozygous LOF iPSC lines with passage-matched isogenic controls in a single step provides for the rapid development of LOF disease models with ideal control lines, even in the absence of patient tissue. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom

    ERIC Educational Resources Information Center

    Baseden, Kyle A.; Tye, Jesse W.

    2014-01-01

    Density functional theory (DFT) is a type of electronic structure calculation that has rapidly gained popularity. In this article, we provide a step-by-step demonstration of a DFT calculation by hand on the helium atom using Slater's X-Alpha exchange functional on a single Gaussian-type orbital to represent the atomic wave function. This DFT…

  3. An Accelerated Analytical Process for the Development of STR Profiles for Casework Samples.

    PubMed

    Laurin, Nancy; Frégeau, Chantal J

    2015-07-01

    Significant efforts are being devoted to the development of methods enabling rapid generation of short tandem repeat (STR) profiles in order to reduce turnaround times for the delivery of human identification results from biological evidence. Some of the proposed solutions are still costly and low throughput. This study describes the optimization of an analytical process enabling the generation of complete STR profiles (single-source or mixed profiles) for human identification in approximately 5 h. This accelerated process uses currently available reagents and standard laboratory equipment. It includes a 30-min lysis step, a 27-min DNA extraction using the Promega Maxwell(®) 16 System, DNA quantification in <1 h using the Qiagen Investigator(®) Quantiplex HYres kit, fast amplification (<26 min) of the loci included in AmpFℓSTR(®) Identifiler(®), and analysis of the profiles on the 3500-series Genetic Analyzer. This combination of fast individual steps produces high-quality profiling results and offers a cost-effective alternative approach to rapid DNA analysis. © 2015 American Academy of Forensic Sciences.

  4. Effect of rapid addition and dilution of dimethyl sulfoxide and 37 degrees C equilibration on viability of rabbit morulae thawed rapidly.

    PubMed

    Kojima, T; Soma, T; Oguri, N

    1987-06-01

    The aim of the present study was to examine the effects of various conditions of addition and dilution of dimethyl sulfoxide (Me2SO) and 37 degrees C equilibration, and also the effects of freezing in the solution which was prepared in advance and stored in plastic straws at -20 degrees C on the viability of rabbit morulae thawed rapidly. The embryos were cooled from room temperature to -30 degrees C at 1 degree C/min in the presence of 1.5 M Me2SO using a programmable liquid nitrogen vapor freezing machine with an automatic seeding device, then cooled rapidly, and stored in liquid nitrogen. The frozen straws were thawed rapidly (greater than 1000 degrees C/min). When Me2SO was added in a single step, equilibrated with embryos at 37 degrees C for 15 min and diluted out in a single step, a very high survival was obtained: transferable/recovered, 90%: developed/recovered, 96%. When embryos were pipetted into 1.5 M Me2SO that was prepared in advance, stocked in straws at -20 degrees C, and cooled, the proportions of transferable and developed embryos were equivalent to those of embryos frozen in the solution that was prepared immediately before use.

  5. Revealing Early Steps of α2β1 Integrin-mediated Adhesion to Collagen Type I by Using Single-Cell Force Spectroscopy

    PubMed Central

    Taubenberger, Anna; Cisneros, David A.; Friedrichs, Jens; Puech, Pierre-Henri; Muller, Daniel J.

    2007-01-01

    We have characterized early steps of α2β1 integrin-mediated cell adhesion to a collagen type I matrix by using single-cell force spectroscopy. In agreement with the role of α2β1 as a collagen type I receptor, α2β1-expressing Chinese hamster ovary (CHO)-A2 cells spread rapidly on the matrix, whereas α2β1-negative CHO wild-type cells adhered poorly. Probing CHO-A2 cell detachment forces over a contact time range of 600 s revealed a nonlinear adhesion response. During the first 60 s, cell adhesion increased slowly, and forces associated with the smallest rupture events were consistent with the breakage of individual integrin–collagen bonds. Above 60 s, a fraction of cells rapidly switched into an activated adhesion state marked by up to 10-fold increased detachment forces. Elevated overall cell adhesion coincided with a rise of the smallest rupture forces above the value required to break a single-integrin–collagen bond, suggesting a change from single to cooperative receptor binding. Transition into the activated adhesion mode and the increase of the smallest rupture forces were both blocked by inhibitors of actomyosin contractility. We therefore propose a two-step mechanism for the establishment of α2β1-mediated adhesion as weak initial, single-integrin–mediated binding events are superseded by strong adhesive interactions involving receptor cooperativity and actomyosin contractility. PMID:17314408

  6. Rapid and Sensitive Isothermal Detection of Nucleic-acid Sequence by Multiple Cross Displacement Amplification.

    PubMed

    Wang, Yi; Wang, Yan; Ma, Ai-Jing; Li, Dong-Xun; Luo, Li-Juan; Liu, Dong-Xin; Jin, Dong; Liu, Kai; Ye, Chang-Yun

    2015-07-08

    We have devised a novel amplification strategy based on isothermal strand-displacement polymerization reaction, which was termed multiple cross displacement amplification (MCDA). The approach employed a set of ten specially designed primers spanning ten distinct regions of target sequence and was preceded at a constant temperature (61-65 °C). At the assay temperature, the double-stranded DNAs were at dynamic reaction environment of primer-template hybrid, thus the high concentration of primers annealed to the template strands without a denaturing step to initiate the synthesis. For the subsequent isothermal amplification step, a series of primer binding and extension events yielded several single-stranded DNAs and single-stranded single stem-loop DNA structures. Then, these DNA products enabled the strand-displacement reaction to enter into the exponential amplification. Three mainstream methods, including colorimetric indicators, agarose gel electrophoresis and real-time turbidity, were selected for monitoring the MCDA reaction. Moreover, the practical application of the MCDA assay was successfully evaluated by detecting the target pathogen nucleic acid in pork samples, which offered advantages on quick results, modest equipment requirements, easiness in operation, and high specificity and sensitivity. Here we expounded the basic MCDA mechanism and also provided details on an alternative (Single-MCDA assay, S-MCDA) to MCDA technique.

  7. Development of a real-time PCR assay for rapid detection and quantification of Photobacterium damselae subsp. piscicida in fish tissues.

    PubMed

    Carraro, R; Dalla Rovere, G; Ferraresso, S; Carraro, L; Franch, R; Toffan, A; Pascoli, F; Patarnello, T; Bargelloni, L

    2018-02-01

    The availability of a rapid and accurate method for the diagnosis of Photobacterium damselae subsp. piscicida (Phdp), able to discriminate its strictly correlated subsp. damselae (Phdd), formally known as Vibrio damsela, is essential for managing fish pasteurellosis outbreaks in farmed fish. A single-step, high-sensitivity real-time PCR assay for simultaneous detection and quantification of P. damselae was designed targeting partial of the sequence of the bamB gene and tested for specificity and sensitivity on laboratory-generated samples as well as on experimentally infected seabream tissue samples. With a limit of detection (LOD) of one copy in pure bacterial DNA, the sensitivity was higher than all methods previously reported. Validation in target and non-target bacterial species proved the assay was able to discriminate Phdd-Phdp subspecies from diverse hosts/geographical origins and between non-target species. In addition, two SNPs in the target amplicon region determine two distinctive qPCR dissociation curves distinguishing between Phdp-Phdd. This is the first time that a molecular method for P. damselae diagnosis combines detection, quantification and subspecies identification in one step. The assay holds the potential to improve the knowledge of infection dynamics and the development of better strategies to control an important fish disease. © 2017 John Wiley & Sons Ltd.

  8. Arrays of probes for positional sequencing by hybridization

    DOEpatents

    Cantor, Charles R [Boston, MA; Prezetakiewiczr, Marek [East Boston, MA; Smith, Cassandra L [Boston, MA; Sano, Takeshi [Waltham, MA

    2008-01-15

    This invention is directed to methods and reagents useful for sequencing nucleic acid targets utilizing sequencing by hybridization technology comprising probes, arrays of probes and methods whereby sequence information is obtained rapidly and efficiently in discrete packages. That information can be used for the detection, identification, purification and complete or partial sequencing of a particular target nucleic acid. When coupled with a ligation step, these methods can be performed under a single set of hybridization conditions. The invention also relates to the replication of probe arrays and methods for making and replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5'- and/or 3'-overhangs.

  9. Direct Blood Dry LAMP: A Rapid, Stable, and Easy Diagnostic Tool for Human African Trypanosomiasis

    PubMed Central

    Hayashida, Kyoko; Kajino, Kiichi; Hachaambwa, Lottie; Namangala, Boniface; Sugimoto, Chihiro

    2015-01-01

    Loop-mediated isothermal amplification (LAMP) is a rapid and sensitive tool used for the diagnosis of a variety of infectious diseases. One of the advantages of this method over the polymerase chain reaction is that DNA amplification occurs at a constant temperature, usually between 60–65°C; therefore, expensive devices are unnecessary for this step. However, LAMP still requires complicated sample preparation steps and a well-equipped laboratory to produce reliable and reproducible results, which limits its use in resource-poor laboratories in most developing countries. In this study, we made several substantial modifications to the technique to carry out on-site diagnosis of Human African Trypanosomiasis (HAT) in remote areas using LAMP. The first essential improvement was that LAMP reagents were dried and stabilized in a single tube by incorporating trehalose as a cryoprotectant to prolong shelf life at ambient temperature. The second technical improvement was achieved by simplifying the sample preparation step so that DNA or RNA could be amplified directly from detergent-lysed blood samples. With these modifications, diagnosis of HAT in local clinics or villages in endemic areas becomes a reality, which could greatly impact on the application of diagnosis not only for HAT but also for other tropical diseases. PMID:25769046

  10. A rapid analysis of plasma/serum ethylene and propylene glycol by headspace gas chromatography.

    PubMed

    Ehlers, Alexandra; Morris, Cory; Krasowski, Matthew D

    2013-12-01

    A rapid headspace-gas chromatography (HS-GC) method was developed for the analysis of ethylene glycol and propylene glycol in plasma and serum specimens using 1,3-propanediol as the internal standard. The method employed a single-step derivitization using phenylboronic acid, was linear to 200 mg/dL and had a lower limit of quantitation of 1 mg/dL suitable for clinical analyses. The analytical method described allows for laboratories with HS-GC instrumentation to analyze ethanol, methanol, isopropanol, ethylene glycol, and propylene glycol on a single instrument with rapid switch-over from alcohols to glycols analysis. In addition to the novel HS-GC method, a retrospective analysis of patient specimens containing ethylene glycol and propylene glycol was also described. A total of 36 patients ingested ethylene glycol, including 3 patients who presented with two separate admissions for ethylene glycol toxicity. Laboratory studies on presentation to hospital for these patients showed both osmolal and anion gap in 13 patients, osmolal but not anion gap in 13 patients, anion but not osmolal gap in 8 patients, and 1 patient with neither an osmolal nor anion gap. Acidosis on arterial blood gas was present in 13 cases. Only one fatality was seen; this was a patient with initial serum ethylene glycol concentration of 1282 mg/dL who died on third day of hospitalization. Propylene glycol was common in patients being managed for toxic ingestions, and was often attributed to iatrogenic administration of propylene glycol-containing medications such as activated charcoal and intravenous lorazepam. In six patients, propylene glycol contributed to an abnormally high osmolal gap. The common presence of propylene glycol in hospitalized patients emphasizes the importance of being able to identify both ethylene glycol and propylene glycol by chromatographic methods.

  11. Four-channel asymmetric Real-Time PCR hybridization probe assay: a rapid pre-screening method for critical BCR-ABL kinase domain mutations.

    PubMed

    Martinez-Serra, Jordi; Gutiérrez, Antonio; Marcús, Toni F; Soverini, Simona; Amat, Juan Carlos; Navarro-Palou, María; Ros, Teresa; Bex, Teresa; Ballester, Carmen; Bauça, Josep Miquel; SanFelix, Sara; Novo, Andrés; Vidal, Carmen; Santos, Carmen; Besalduch, Joan

    2012-03-01

    Within the laboratory protocols, used for the study of BCR-ABL resistance mutations in chronic myeloid leukemia patients treated with Imatinib, direct sequencing remains the reference method. Since the incidence of patients with a mutation-related loss of response is not very high, it is very useful in the routine laboratory to perform a fast pre-screening method. With this in mind, we have designed a new technique, based on a single Real-Time FRET-based PCR, followed by a study of melting peaks. This new tool, developed in a LightCycler 2.0, combines four different fluorescence channels for the simultaneous detection, in a single close tube, of critical mutations within the ABL kinase domain. Assay evaluation performed on 33 samples, previously genotyped by sequentiation, resulted in full concordance of results. This new methodology detects in a few steps the presence of critical mutations associated to Imatinib resistance. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Rapid determination of 226Ra in emergency urine samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-02-27

    A new method has been developed at the Savannah River National Laboratory (SRNL) that can be used for the rapid determination of 226Ra in emergency urine samples following a radiological incident. If a radiological dispersive device event or a nuclear accident occurs, there will be an urgent need for rapid analyses of radionuclides in urine samples to ensure the safety of the public. Large numbers of urine samples will have to be analyzed very quickly. This new SRNL method was applied to 100 mL urine aliquots, however this method can be applied to smaller or larger sample aliquots as needed.more » The method was optimized for rapid turnaround times; urine samples may be prepared for counting in <3 h. A rapid calcium phosphate precipitation method was used to pre-concentrate 226Ra from the urine sample matrix, followed by removal of calcium by cation exchange separation. A stacked elution method using DGA Resin was used to purify the 226Ra during the cation exchange elution step. This approach combines the cation resin elution step with the simultaneous purification of 226Ra with DGA Resin, saving time. 133Ba was used instead of 225Ra as tracer to allow immediate counting; however, 225Ra can still be used as an option. The rapid purification of 226Ra to remove interferences using DGA Resin was compared with a slightly longer Ln Resin approach. A final barium sulfate micro-precipitation step was used with isopropanol present to reduce solubility; producing alpha spectrometry sources with peaks typically <40 keV FWHM (full width half max). This new rapid method is fast, has very high tracer yield (>90 %), and removes interferences effectively. The sample preparation method can also be adapted to ICP-MS measurement of 226Ra, with rapid removal of isobaric interferences.« less

  13. Predicting Long-term Temperature Increase for Time-Dependent SAR Levels with a Single Short-term Temperature Response

    PubMed Central

    Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M.

    2015-01-01

    Purpose Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). Methods After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and Impulse-Response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes’ bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. Results The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time, and can be adjusted to be more or less conservative than the corresponding finite difference simulation. Conclusion With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. (200/200 words) PMID:26096947

  14. An Improved Single-Step Cloning Strategy Simplifies the Agrobacterium tumefaciens-Mediated Transformation (ATMT)-Based Gene-Disruption Method for Verticillium dahliae.

    PubMed

    Wang, Sheng; Xing, Haiying; Hua, Chenlei; Guo, Hui-Shan; Zhang, Jie

    2016-06-01

    The soilborne fungal pathogen Verticillium dahliae infects a broad range of plant species to cause severe diseases. The availability of Verticillium genome sequences has provided opportunities for large-scale investigations of individual gene function in Verticillium strains using Agrobacterium tumefaciens-mediated transformation (ATMT)-based gene-disruption strategies. Traditional ATMT vectors require multiple cloning steps and elaborate characterization procedures to achieve successful gene replacement; thus, these vectors are not suitable for high-throughput ATMT-based gene deletion. Several advancements have been made that either involve simplification of the steps required for gene-deletion vector construction or increase the efficiency of the technique for rapid recombinant characterization. However, an ATMT binary vector that is both simple and efficient is still lacking. Here, we generated a USER-ATMT dual-selection (DS) binary vector, which combines both the advantages of the USER single-step cloning technique and the efficiency of the herpes simplex virus thymidine kinase negative-selection marker. Highly efficient deletion of three different genes in V. dahliae using the USER-ATMT-DS vector enabled verification that this newly-generated vector not only facilitates the cloning process but also simplifies the subsequent identification of fungal homologous recombinants. The results suggest that the USER-ATMT-DS vector is applicable for efficient gene deletion and suitable for large-scale gene deletion in V. dahliae.

  15. Magnetic Beads-Based Sensor with Tailored Sensitivity for Rapid and Single-Step Amperometric Determination of miRNAs.

    PubMed

    Vargas, Eva; Torrente-Rodríguez, Rebeca M; Ruiz-Valdepeñas Montiel, Víctor; Povedano, Eloy; Pedrero, María; Montoya, Juan J; Campuzano, Susana; Pingarrón, José M

    2017-11-09

    This work describes a sensitive amperometric magneto-biosensor for single-step and rapid determination of microRNAs (miRNAs). The developed strategy involves the use of direct hybridization of the target miRNA (miRNA-21) with a specific biotinylated DNA probe immobilized on streptavidin-modified magnetic beads (MBs), and labeling of the resulting heteroduplexes with a specific DNA-RNA antibody and the bacterial protein A (ProtA) conjugated with an horseradish peroxidase (HRP) homopolymer (Poly-HRP40) as an enzymatic label for signal amplification. Amperometric detection is performed upon magnetic capture of the modified MBs onto the working electrode surface of disposable screen-printed carbon electrodes (SPCEs) using the H₂O₂/hydroquinone (HQ) system. The magnitude of the cathodic signal obtained at -0.20 V (vs. the Ag pseudo-reference electrode) demonstrated linear dependence with the concentration of the synthetic target miRNA over the 1.0 to 100 pM range. The method provided a detection limit (LOD) of 10 attomoles (in a 25 μL sample) without any target miRNA amplification in just 30 min (once the DNA capture probe-MBs were prepared). This approach shows improved sensitivity compared with that of biosensors constructed with the same anti-DNA-RNA Ab as capture instead of a detector antibody and further labeling with a Strep-HRP conjugate instead of the Poly-HRP40 homopolymer. The developed strategy involves a single step working protocol, as well as the possibility to tailor the sensitivity by enlarging the length of the DNA/miRNA heteroduplexes using additional probes and/or performing the labelling with ProtA conjugated with homopolymers prepared with different numbers of HRP molecules. The practical usefulness was demonstrated by determination of the endogenous levels of the mature target miRNA in 250 ng raw total RNA (RNA t ) extracted from human mammary epithelial normal (MCF-10A) and cancer (MCF-7) cells and tumor tissues.

  16. Development of a novel single tube nested PCR for enhanced detection of cytomegalovirus DNA from dried blood spots.

    PubMed

    Atkinson, C; Emery, V C; Griffiths, P D

    2014-02-01

    Newborn screening for congenital cytomegalovirus (CCMV) using dried blood spots (DBS) has been proposed because many developed countries have DBS screening programmes in place for other diseases. The aim of this study was to develop a rapid, single tube nested polymerase chain reaction (PCR) method for enhanced detection of CMV from DBS compared to existing (single target) real time PCRs. The new method was compared with existing real time PCRs for sensitivity and specificity. Overall sensitivity of the single target PCR assays in both asymptomatic and symptomatic infants with laboratory confirmed congenital CMV was 69% (CMV PCR or culture positive before day 21 of life). In contrast, the single tube nested assay had an increased sensitivity of 81% with100% specificity. Overall the assay detected CMV from a DBS equivalent to an original blood sample which contained 500IU/ml. In conclusion this single tube nested methodology allows simultaneous amplification and detection of CMV DNA in 1.5h removing the associated contamination risk of a two step nested PCR. Owing to its increased sensitivity, it has the potential to be used as a screening assay and ultimately allow early identification and intervention for children with congenital CMV. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. A rapid and simple method for estimating sulfate reduction activity and quantifying inorganic sulfides

    USGS Publications Warehouse

    Ulrich, G.A.; Krumholz, L.R.; Suflita, J.M.

    1997-01-01

    A simplified passive extraction procedure for quantifying reduced inorganic sulfur compounds from sediments and water is presented. This method may also be used for the estimation of sulfate reduction rates. Efficient extraction of FeS, FeS(inf2), and S(sup2-) was obtained with this procedure; however, the efficiency for S(sup0) depended on the form that was tested. Passive extraction can be used with samples containing up to 20 mg of reduced sulfur. We demonstrated the utility of this technique in a determination of both sulfate reduction rates and reduced inorganic sulfur pools in marine and freshwater sediments. A side-by-side comparison of the passive extraction method with the established single-step distillation technique yielded comparable results with a fraction of the effort.

  18. Methods to approximate reliabilities in single-step genomic evaluation

    USDA-ARS?s Scientific Manuscript database

    Reliability of predictions from single-step genomic BLUP (ssGBLUP) can be calculated by inversion, but that is not feasible for large data sets. Two methods of approximating reliability were developed based on decomposition of a function of reliability into contributions from records, pedigrees, and...

  19. A new approach for bioassays based on frequency- and time-domain measurements of magnetic nanoparticles.

    PubMed

    Oisjöen, Fredrik; Schneiderman, Justin F; Astalan, Andrea Prieto; Kalabukhov, Alexey; Johansson, Christer; Winkler, Dag

    2010-01-15

    We demonstrate a one-step wash-free bioassay measurement system capable of tracking biochemical binding events. Our approach combines the high resolution of frequency- and high speed of time-domain measurements in a single device in combination with a fast one-step bioassay. The one-step nature of our magnetic nanoparticle (MNP) based assay reduces the time between sample extraction and quantitative results while mitigating the risks of contamination related to washing steps. Our method also enables tracking of binding events, providing the possibility of, for example, investigation of how chemical/biological environments affect the rate of a binding process or study of the action of certain drugs. We detect specific biological binding events occurring on the surfaces of fluid-suspended MNPs that modify their magnetic relaxation behavior. Herein, we extrapolate a modest sensitivity to analyte of 100 ng/ml with the present setup using our rapid one-step bioassay. More importantly, we determine the size-distributions of the MNP systems with theoretical fits to our data obtained from the two complementary measurement modalities and demonstrate quantitative agreement between them. Copyright 2009 Elsevier B.V. All rights reserved.

  20. One-Step and Stepwise Magnification of a BOBBED LETHAL Chromosome in DROSOPHILA MELANOGASTER

    PubMed Central

    Endow, Sharyn A.; Komma, Donald J.

    1986-01-01

    Bobbed lethal (bbl) chromosomes carry too few ribosomal genes for homozygous flies to be viable. Reversion of bbl chromosomes to bb or nearly bb + occurs under magnifying conditions at a low frequency in a single generation. These reversions occur too rapidly to be accounted for by single unequal sister chromatid exchanges and seem unlikely to be due to multiple sister strand exchanges within a given cell lineage. Analysis of several one-step revertants indicates that they are X-Y recombinant chromosomes which probably arise from X-Y recombination at bb. The addition of ribosomal genes from the Y chromosome to the bbl chromosome explains the more rapid reversion of the bbl chromosome than is permitted by single events of unequal sister chromatid exchange. Analysis of stepwise bbl magnified chromosomes, which were selected over a period of 4–9 magnifying generations, shows ribosomal gene patterns that are closely similar to each other. Similarity in rDNA pattern among stepwise magnified products of the same parental chromosome is consistent with reversion by a mechanism of unequal sister strand exchange. PMID:3095184

  1. Automated sample preparation using membrane microtiter extraction for bioanalytical mass spectrometry.

    PubMed

    Janiszewski, J; Schneider, P; Hoffmaster, K; Swyden, M; Wells, D; Fouda, H

    1997-01-01

    The development and application of membrane solid phase extraction (SPE) in 96-well microtiter plate format is described for the automated analysis of drugs in biological fluids. The small bed volume of the membrane allows elution of the analyte in a very small solvent volume, permitting direct HPLC injection and negating the need for the time consuming solvent evaporation step. A programmable liquid handling station (Quadra 96) was modified to automate all SPE steps. To avoid drying of the SPE bed and to enhance the analytical precision a novel protocol for performing the condition, load and wash steps in rapid succession was utilized. A block of 96 samples can now be extracted in 10 min., about 30 times faster than manual solvent extraction or single cartridge SPE methods. This processing speed complements the high-throughput speed of contemporary high performance liquid chromatography mass spectrometry (HPLC/MS) analysis. The quantitative analysis of a test analyte (Ziprasidone) in plasma demonstrates the utility and throughput of membrane SPE in combination with HPLC/MS. The results obtained with the current automated procedure compare favorably with those obtained using solvent and traditional solid phase extraction methods. The method has been used for the analysis of numerous drug prototypes in biological fluids to support drug discovery efforts.

  2. Theory and computation of optimal low- and medium-thrust transfers

    NASA Technical Reports Server (NTRS)

    Chuang, C.-H.

    1994-01-01

    This report describes the current state of development of methods for calculating optimal orbital transfers with large numbers of burns. Reported on first is the homotopy-motivated and so-called direction correction method. So far this method has been partially tested with one solver; the final step has yet to be implemented. Second is the patched transfer method. This method is rooted in some simplifying approximations made on the original optimal control problem. The transfer is broken up into single-burn segments, each single-burn solved as a predictor step and the whole problem then solved with a corrector step.

  3. Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system

    PubMed Central

    Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori; Fujii, Teruo; Laurell, Thomas

    2017-01-01

    The incidence of cancer is increasing worldwide and metastatic disease, through the spread of circulating tumor cells (CTCs), is responsible for the majority of the cancer deaths. Accurate monitoring of CTC levels in blood provides clinical information supporting therapeutic decision making, and improved methods for CTC enumeration are asked for. Microfluidics has been extensively used for this purpose but most methods require several post-separation processing steps including concentration of the sample before analysis. This induces a high risk of sample loss of the collected rare cells. Here, an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood concentration of the peripheral blood mononuclear cell (PBMC) fraction were efficiently separated and trapped at a recovery of 76.2 ± 5.9% of the cancer cells and a minute contamination of 0.12 ± 0.04% PBMCs while simultaneously enabling a 20x volumetric concentration. This constitutes a first step towards a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice. PMID:28425472

  4. Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system.

    PubMed

    Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori; Fujii, Teruo; Laurell, Thomas

    2017-04-20

    The incidence of cancer is increasing worldwide and metastatic disease, through the spread of circulating tumor cells (CTCs), is responsible for the majority of the cancer deaths. Accurate monitoring of CTC levels in blood provides clinical information supporting therapeutic decision making, and improved methods for CTC enumeration are asked for. Microfluidics has been extensively used for this purpose but most methods require several post-separation processing steps including concentration of the sample before analysis. This induces a high risk of sample loss of the collected rare cells. Here, an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood concentration of the peripheral blood mononuclear cell (PBMC) fraction were efficiently separated and trapped at a recovery of 76.2 ± 5.9% of the cancer cells and a minute contamination of 0.12 ± 0.04% PBMCs while simultaneously enabling a 20x volumetric concentration. This constitutes a first step towards a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice.

  5. A Single-Step Enrichment Medium for Nonchromogenic Isolation of Healthy and Cold-Injured Salmonella spp. from Fresh Vegetables.

    PubMed

    Kim, Hong-Seok; Choi, Dasom; Kang, Il-Byeong; Kim, Dong-Hyeon; Yim, Jin-Hyeok; Kim, Young-Ji; Chon, Jung-Whan; Oh, Deog-Hwan; Seo, Kun-Ho

    2017-02-01

    Culture-based detection of nontyphoidal Salmonella spp. in foods requires at least four working days; therefore, new detection methods that shorten the test time are needed. In this study, we developed a novel single-step Salmonella enrichment broth, SSE-1, and compared its detection capability with that of commercial single-step ONE broth-Salmonella (OBS) medium and a conventional two-step enrichment method using buffered peptone water and Rappaport-Vassiliadis soy broth (BPW-RVS). Minimally processed lettuce samples were artificially inoculated with low levels of healthy and cold-injured Salmonella Enteritidis (10 0 or 10 1 colony-forming unit/25 g), incubated in OBS, BPW-RVS, and SSE-1 broths, and streaked on xylose lysine deoxycholate (XLD) agar. Salmonella recoverability was significantly higher in BPW-RVS (79.2%) and SSE-1 (83.3%) compared to OBS (39.3%) (p < 0.05). Our data suggest that the SSE-1 single-step enrichment broth could completely replace two-step enrichment with reduced enrichment time from 48 to 24 h, performing better than commercial single-step enrichment medium in the conventional nonchromogenic Salmonella detection, thus saving time, labor, and cost.

  6. A two-step method for rapid characterization of electroosmotic flows in capillary electrophoresis.

    PubMed

    Zhang, Wenjing; He, Muyi; Yuan, Tao; Xu, Wei

    2017-12-01

    The measurement of electroosmotic flow (EOF) is important in a capillary electrophoresis (CE) experiment in terms of performance optimization and stability improvement. Although several methods exist, there are demanding needs to accurately characterize ultra-low electroosmotic flow rates (EOF rates), such as in coated capillaries used in protein separations. In this work, a new method, called the two-step method, was developed to accurately and rapidly measure EOF rates in a capillary, especially for measuring the ultra-low EOF rates in coated capillaries. In this two-step method, the EOF rates were calculated by measuring the migration time difference of a neutral marker in two consecutive experiments, in which a pressure driven was introduced to accelerate the migration and the DC voltage was reversed to switch the EOF direction. Uncoated capillaries were first characterized by both this two-step method and a conventional method to confirm the validity of this new method. Then this new method was applied in the study of coated capillaries. Results show that this new method is not only fast in speed, but also better in accuracy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Rapid screening of drugs of abuse and their metabolites by gas chromatography/mass spectrometry: application to urinalysis.

    PubMed

    Strano-Rossi, Sabina; Molaioni, Francesco; Rossi, Francesca; Botrè, Francesco

    2005-01-01

    This paper describes a rapid gas chromatographic/mass spectrometric (GC/MS) screening method for the detection of drugs of abuse and/or their metabolites in urine. Synthetic stimulants, opiates, cocaine metabolites, cannabinoids--and specifically the acid metabolite of tetrahydrocannabinol (THC-COOH)--can be simultaneously extracted by a single liquid/liquid separation step, at alkaline pH, and assayed as trimethylsilyl derivatives by GC/MS in SIM (selected ion monitoring) mode. All the analytes show a good linearity (R2 > 0.99 for most of the considered substances) in the range 25-1000 ng/mL, with a good reproducibility of both the retention times (CV% <0.7) and the relative abundances of the characteristic diagnostic ions (CV% <13). The limit of detection (LOD) of the method is 25 ng/mL of target compound in human urine for most of the substances investigated, 3 ng/mL for THC-COOH, and 10 ng/mL for norbuprenorphine. Validation of the method allows its application to different fields of forensic analytical toxicology, including antidoping analysis.

  8. Rapid measurement of plasma free fatty acid concentration and isotopic enrichment using LC/MS

    PubMed Central

    Persson, Xuan-Mai T.; Błachnio-Zabielska, Agnieszka Urszula; Jensen, Michael D.

    2010-01-01

    Measurements of plasma free fatty acids (FFA) concentration and isotopic enrichment are commonly used to evaluate FFA metabolism. Until now, gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) was the best method to measure isotopic enrichment in the methyl derivatives of 13C-labeled fatty acids. Although IRMS is excellent for analyzing enrichment, it requires time-consuming derivatization steps and is not optimal for measuring FFA concentrations. We developed a new, rapid, and reliable method for simultaneous quantification of 13C-labeled fatty acids in plasma using high-performance liquid chromatography-mass spectrometry (HPLC/MS). This method involves a very quick Dole extraction procedure and direct injection of the samples on the HPLC system. After chromatographic separation, the samples are directed to the mass spectrometer for electrospray ionization (ESI) and analysis in the negative mode using single ion monitoring. By employing equipment with two columns connected parallel to a mass spectrometer, we can double the throughput to the mass spectrometer, reducing the analysis time per sample to 5 min. Palmitate flux measured using this approach agreed well with the GC/C/IRMS method. This HPLC/MS method provides accurate and precise measures of FFA concentration and enrichment. PMID:20526002

  9. Temperature- and field-dependent characterization of a conductor on round core cable

    NASA Astrophysics Data System (ADS)

    Barth, C.; van der Laan, D. C.; Bagrets, N.; Bayer, C. M.; Weiss, K.-P.; Lange, C.

    2015-06-01

    The conductor on round core (CORC) cable is one of the major high temperature superconductor cable concepts combining scalability, flexibility, mechanical strength, ease of fabrication and high current density; making it a possible candidate as conductor for large, high field magnets. To simulate the boundary conditions of such magnets as well as the temperature dependence of CORC cables a 1.16 m long sample consisting of 15, 4 mm wide SuperPower REBCO tapes was characterized using the ‘FBI’ (force—field—current) superconductor test facility of the Institute for Technical Physics of the Karlsruhe Institute of Technology. In a five step investigation, the CORC cable’s performance was determined at different transverse mechanical loads, magnetic background fields and temperatures as well as its response to swift current changes. In the first step, the sample’s 77 K, self-field current was measured in a liquid nitrogen bath. In the second step, the temperature dependence was measured at self-field condition and compared with extrapolated single tape data. In the third step, the magnetic background field was repeatedly cycled while measuring the current carrying capabilities to determine the impact of transverse Lorentz forces on the CORC cable sample’s performance. In the fourth step, the sample’s current carrying capabilities were measured at different background fields (2-12 T) and surface temperatures (4.2-51.5 K). Through finite element method simulations, the surface temperatures are converted into average sample temperatures and the gained field- and temperature dependence is compared with extrapolated single tape data. In the fifth step, the response of the CORC cable sample to rapid current changes (8.3 kA s-1) was observed with a fast data acquisition system. During these tests, the sample performance remains constant, no degradation is observed. The sample’s measured current carrying capabilities correlate to those of single tapes assuming field- and temperature dependence as published by the manufacturer.

  10. Comparison of two PCR-based methods and automated DNA sequencing for prop-1 genotyping in Ames dwarf mice.

    PubMed

    Gerstner, Arpad; DeFord, James H; Papaconstantinou, John

    2003-07-25

    Ames dwarfism is caused by a homozygous single nucleotide mutation in the pituitary specific prop-1 gene, resulting in combined pituitary hormone deficiency, reduced growth and extended lifespan. Thus, these mice serve as an important model system for endocrinological, aging and longevity studies. Because the phenotype of wild type and heterozygous mice is undistinguishable, it is imperative for successful breeding to accurately genotype these animals. Here we report a novel, yet simple, approach for prop-1 genotyping using PCR-based allele-specific amplification (PCR-ASA). We also compare this method to other potential genotyping techniques, i.e. PCR-based restriction fragment length polymorphism analysis (PCR-RFLP) and fluorescence automated DNA sequencing. We demonstrate that the single-step PCR-ASA has several advantages over the classical PCR-RFLP because the procedure is simple, less expensive and rapid. To further increase the specificity and sensitivity of the PCR-ASA, we introduced a single-base mismatch at the 3' penultimate position of the mutant primer. Our results also reveal that the fluorescence automated DNA sequencing has limitations for detecting a single nucleotide polymorphism in the prop-1 gene, particularly in heterozygotes.

  11. Copy number variants calling for single cell sequencing data by multi-constrained optimization.

    PubMed

    Xu, Bo; Cai, Hongmin; Zhang, Changsheng; Yang, Xi; Han, Guoqiang

    2016-08-01

    Variations in DNA copy number carry important information on genome evolution and regulation of DNA replication in cancer cells. The rapid development of single-cell sequencing technology allows one to explore gene expression heterogeneity among single-cells, thus providing important cancer cell evolution information. Single-cell DNA/RNA sequencing data usually have low genome coverage, which requires an extra step of amplification to accumulate enough samples. However, such amplification will introduce large bias and makes bioinformatics analysis challenging. Accurately modeling the distribution of sequencing data and effectively suppressing the bias influence is the key to success variations analysis. Recent advances demonstrate the technical noises by amplification are more likely to follow negative binomial distribution, a special case of Poisson distribution. Thus, we tackle the problem CNV detection by formulating it into a quadratic optimization problem involving two constraints, in which the underling signals are corrupted by Poisson distributed noises. By imposing the constraints of sparsity and smoothness, the reconstructed read depth signals from single-cell sequencing data are anticipated to fit the CNVs patterns more accurately. An efficient numerical solution based on the classical alternating direction minimization method (ADMM) is tailored to solve the proposed model. We demonstrate the advantages of the proposed method using both synthetic and empirical single-cell sequencing data. Our experimental results demonstrate that the proposed method achieves excellent performance and high promise of success with single-cell sequencing data. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  12. Attachment of micro- and nano-particles on tipless cantilevers for colloidal probe microscopy.

    PubMed

    D'Sa, Dexter J; Chan, Hak-Kim; Chrzanowski, Wojciech

    2014-07-15

    Current colloidal probe preparation techniques face several challenges in the production of functional probes using particles ⩽5 μm. Challenges include: glue encapsulated particles, glue altered particle properties, improper particle or agglomerate attachment, and lengthy procedures. We present a method to rapidly and reproducibly produce functional micro and nano-colloidal probes. Using a six-step procedure, cantilevers mounted on a custom designed 45° holder were used to approach and obtain a minimal amount of epoxy resin (viscosity of ∼14,000 cP) followed by a single micron/nano particle on the apex of a tipless cantilever. The epoxy and particles were prepared on individual glass slides and subsequently affixed to a 10× or 40× optical microscope lens using another custom designed holder. Scanning electron microscopy and comparative glue-colloidal probe measurements were used to confirm colloidal probe functionality. The method presented allowed rapid and reproducible production of functional colloidal probes (80% success). Single nano-particles were prominently affixed to the apex of the cantilever, unaffected by the epoxy. Nano-colloidal probes were used to conduct topographical, instantaneous force, and adhesive force mapping measurements in dry and liquid media conveying their versatility and functionality in studying nano-colloidal systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Rapid step-gradient purification of mitochondrial DNA.

    PubMed

    Welter, C; Meese, E; Blin, N

    1988-01-01

    A convenient modification of the step gradient (CsCl/ethidium bomide) procedure is described. This rapid method allows isolation of covalently closed circular DNA separated from contaminating proteins, RNA and chromosomal DNA in ca. 5 h. Large scale preparations can be performed for circular DNA from eukaryotic organelles (mitochondria). The protocol uses organelle pelleting/NaCl-sarcosyl incubation steps for mitochondria followed by a CsCl step gradient and exhibits yields equal to the conventional procedures. It results in DNA sufficiently pure to be used for restriction endonuclease analysis, subcloning, 5'-end labeling, gel retention assays, and various types of hybridization.

  14. Feasibility of electrospray deposition for rapid screening of the cocrystal formation and single step, continuous production of pharmaceutical nanococrystals.

    PubMed

    Emami, Shahram; Siahi-Shadbad, Mohammadreza; Barzegar-Jalali, Mohammad; Adibkia, Khosro

    2018-06-01

    This study employed electrospray deposition (ESD) for simultaneous synthesis and particle engineering of cocrystals. Exploring new methods for the efficient production of cocrystals with desired particle properties is an essential demand. The possibility of cocrystal formation by ESD was examined for indomethacin-saccharin, indomethacin-nicotinamide, naproxen-nicotinamide, and naproxen-iso-nicotinamide cocrystals. Solutions of the drug and coformer at stoichiometric ratios were sprayed to a high electric field which caused rapid evaporation of the solvent and the formation of fine particles. The phase purity, size, and morphology of products were compared with reference cocrystals. Experiments were performed to evaluate the effects of stoichiometric ratio, concentration and solvent type on the cocrystal formation. Physical stability and dissolution properties of the electrosprayed cocrystals were also compared with reference cocrystals. ESD was found to be an efficient and rapid method to produce cocrystals for all studied systems other than indomethacin-nicotinamide. Pure cocrystals only formed at a specific drug:coformer ratio. The solvent type has a weak effect on the cocrystal formation and morphology. Electrosprayed cocrystals exhibited nano to micrometer sizes with distinct morphologies with comparable physical stability with reference cocrystals. Nanococrystals of indomethacin-saccharin with a mean size of 219 nm displayed a threefold higher dissolution rate than solvent evaporated cocrystal. ESD successfully was utilized to produce pure cocrystals of poorly soluble drugs with different morphologies and sizes ranging from nano to micrometer sizes in one step. This study highlighted the usefulness of ESD for simultaneous preparation and particle engineering of pharmaceutical cocrystals.

  15. Predicting long-term temperature increase for time-dependent SAR levels with a single short-term temperature response.

    PubMed

    Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M

    2016-05-01

    Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and impulse-response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes' bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time and can be adjusted to be more or less conservative than the corresponding finite difference simulation. With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. © 2015 Wiley Periodicals, Inc.

  16. The iso-response method: measuring neuronal stimulus integration with closed-loop experiments

    PubMed Central

    Gollisch, Tim; Herz, Andreas V. M.

    2012-01-01

    Throughout the nervous system, neurons integrate high-dimensional input streams and transform them into an output of their own. This integration of incoming signals involves filtering processes and complex non-linear operations. The shapes of these filters and non-linearities determine the computational features of single neurons and their functional roles within larger networks. A detailed characterization of signal integration is thus a central ingredient to understanding information processing in neural circuits. Conventional methods for measuring single-neuron response properties, such as reverse correlation, however, are often limited by the implicit assumption that stimulus integration occurs in a linear fashion. Here, we review a conceptual and experimental alternative that is based on exploring the space of those sensory stimuli that result in the same neural output. As demonstrated by recent results in the auditory and visual system, such iso-response stimuli can be used to identify the non-linearities relevant for stimulus integration, disentangle consecutive neural processing steps, and determine their characteristics with unprecedented precision. Automated closed-loop experiments are crucial for this advance, allowing rapid search strategies for identifying iso-response stimuli during experiments. Prime targets for the method are feed-forward neural signaling chains in sensory systems, but the method has also been successfully applied to feedback systems. Depending on the specific question, “iso-response” may refer to a predefined firing rate, single-spike probability, first-spike latency, or other output measures. Examples from different studies show that substantial progress in understanding neural dynamics and coding can be achieved once rapid online data analysis and stimulus generation, adaptive sampling, and computational modeling are tightly integrated into experiments. PMID:23267315

  17. Integrated system for the destruction of organics by hydrolysis and oxidation with peroxydisulfate

    DOEpatents

    Cooper, John F.; Balazs, G. Bryan; Hsu, Peter; Lewis, Patricia R.; Adamson, Martyn G.

    2000-01-01

    An integrated system for destruction of organic waste comprises a hydrolysis step at moderate temperature and pressure, followed by direct chemical oxidation using peroxydisulfate. This system can be used to quantitatively destroy volatile or water-insoluble halogenated organic solvents, contaminated soils and sludges, and the organic component of mixed waste. The hydrolysis step results in a substantially single phase of less volatile, more water soluble hydrolysis products, thus enabling the oxidation step to proceed rapidly and with minimal loss of organic substrate in the off-gas.

  18. Development of a Rapid Identification Method for a Variety of Antibody Candidates Using High-throughput Sequencing.

    PubMed

    Ito, Yuji

    2017-01-01

    As an alternative to hybridoma technology, the antibody phage library system can also be used for antibody selection. This method enables the isolation of antigen-specific binders through an in vitro selection process known as biopanning. While it has several advantages, such as an avoidance of animal immunization, the phage cloning and screening steps of biopanning are time-consuming and problematic. Here, we introduce a novel biopanning method combined with high-throughput sequencing (HTS) using a next-generation sequencer (NGS) to save time and effort in antibody selection, and to increase the diversity of acquired antibody sequences. Biopannings against a target antigen were performed using a human single chain Fv (scFv) antibody phage library. VH genes in pooled phages at each round of biopanning were analyzed by HTS on a NGS. The obtained data were trimmed, merged, and translated into amino acid sequences. The frequencies (%) of the respective VH sequences at each biopanning step were calculated, and the amplification factor (change of frequency through biopanning) was obtained to estimate the potential for antigen binding. A phylogenetic tree was drawn using the top 50 VH sequences with high amplification factors. Representative VH sequences forming the cluster were then picked up and used to reconstruct scFv genes harboring these VHs. Their derived scFv-Fc fusion proteins showed clear antigen binding activity. These results indicate that a combination of biopanning and HTS enables the rapid and comprehensive identification of specific binders from antibody phage libraries.

  19. Growth of group II-VI semiconductor quantum dots with strong quantum confinement and low size dispersion

    NASA Astrophysics Data System (ADS)

    Pandey, Praveen K.; Sharma, Kriti; Nagpal, Swati; Bhatnagar, P. K.; Mathur, P. C.

    2003-11-01

    CdTe quantum dots embedded in glass matrix are grown using two-step annealing method. The results for the optical transmission characterization are analysed and compared with the results obtained from CdTe quantum dots grown using conventional single-step annealing method. A theoretical model for the absorption spectra is used to quantitatively estimate the size dispersion in the two cases. In the present work, it is established that the quantum dots grown using two-step annealing method have stronger quantum confinement, reduced size dispersion and higher volume ratio as compared to the single-step annealed samples. (

  20. Rapid and effective processing of blood specimens for diagnostic PCR using filter paper and Chelex-100.

    PubMed Central

    Polski, J M; Kimzey, S; Percival, R W; Grosso, L E

    1998-01-01

    AIM: To provide a more efficient method for isolating DNA from peripheral blood for use in diagnostic DNA mutation analysis. METHODS: The use of blood impregnated filter paper and Chelex-100 in DNA isolation was evaluated and compared with standard DNA isolation techniques. RESULTS: In polymerase chain reaction (PCR) based assays of five point mutations, identical results were obtained with DNA isolated routinely from peripheral blood and isolated using the filter paper and Chelex-100 method. CONCLUSION: In the clinical setting, this method provides a useful alternative to conventional DNA isolation. It is easily implemented and inexpensive, and provides sufficient, stable DNA for multiple assays. The potential for specimen contamination is reduced because most of the steps are performed in a single microcentrifuge tube. In addition, this method provides for easy storage and transport of samples from the point of acquisition. PMID:9893748

  1. Rapid determination of fumonisins in corn-based products by liquid chromatography/tandem mass spectrometry.

    PubMed

    Li, Wei; Herrman, Timothy J; Dai, Susie Y

    2010-01-01

    A simple, fast, and robust method was developed for the determination of fumonisin B1 (FB1), fumonisin B2 (FB2), and fumonisin B3 (FB3) in corn-based human food and animal feed (cornmeal). The method involves a single extraction step followed by centrifugation and filtration before analysis by ultra-performance liquid chromatographylelectrospray ionization (UPLC/ESI)-MS/MS. The LC/MS/MS method developed here represents the fastest and simplest procedure (<30 min) among both conventional HPLC methods and other LC/MS methods using SPE cleanup. The potential for high throughput analysis makes the method particularly beneficial for regulatory agencies and analytical laboratories with a high sample volume. A single-laboratory validation was conducted by testing three different spiking levels (200, 500, and 1000 ng/g for FB1 and FB2; 100, 250, and 500 ng/g for FB3) for accuracy and precision. Recoveries of FB1 ranged from 93 to 98% with RSD values of 3-8%. Recoveries of FB2 ranged from 104 to 108%, with RSD values of 2-6%. Recoveries of FB3 ranged from 94 to 108%, with RSD values of 2-5%.

  2. What experimental experience affects dogs' comprehension of human communicative actions?

    PubMed

    Hauser, Marc D; Comins, Jordan A; Pytka, Lisa M; Cahill, Donal P; Velez-Calderon, Sofia

    2011-01-01

    Studies of dogs report that individuals reliably respond to the goal-directed communicative actions (e.g., pointing) of human experimenters. All of these studies use some version of a multi-trial approach, thereby allowing for the possibility of rapid learning within an experimental session. The experiments reported here ask whether dogs can respond correctly to a communicative action based on only a single presentation, thereby eliminating the possibility of learning within the experimental context. We tested 173 dogs. For each dog reaching our test criteria, we used a single presentation of six different goal-directed actions within a session, asking whether they correctly follow to a target goal (container with concealed food) a (1) distal hand point, (2) step toward one container, (3) hand point to one container followed by step toward the other, (4) step toward one container and point to the other, (5) distal foot point with the experimenter's hands free, and (6) distal foot point with the experimenter's hands occupied. Given only a single presentation, dogs selected the correct container when the experimenter hand pointed, foot pointed with hands occupied, or stepped closer to the target container, but failed on the other actions, despite using the same method. The fact that dogs correctly followed foot pointing with hands occupied, but not hands free, suggests that they are sensitive to environmental constraints, and use this information to infer rational, goal-directed action. We discuss these results in light of the role of experience in recognizing communicative gestures, as well as the significance of coding criteria for studies of canine competence. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Rapid separation and purification of uranium and plutonium from dilute-matrix samples

    DOE PAGES

    Armstrong, Christopher R.; Ticknor, Brian W.; Hall, Gregory; ...

    2014-03-11

    This work presents a streamlined separation and purification approach for trace uranium and plutonium from dilute (carrier-free) matrices. The method, effective for nanogram quantities of U and femtogram to picogram quantities of Pu, is ideally suited for environmental swipe samples that contain a small amount of collected bulk material. As such, it may be applicable for processing swipe samples such as those collected in IAEA inspection activities as well as swipes that are loaded with unknown analytes, such as those implemented in interlaboratory round-robin or proficiency tests. Additionally, the simplified actinide separation could find use in internal laboratory monitoring ofmore » clean room conditions prior to or following more extensive chemical processing. We describe key modifications to conventional techniques that result in a relatively rapid, cost-effective, and efficient U and Pu separation process. We demonstrate the efficacy of implementing anion exchange chromatography in a single column approach. We also show that hydrobromic acid is an effective substitute in lieu of hydroiodoic acid for eluting Pu. Lastly, we show that nitric acid is an effective digestion agent in lieu of perchloric acid and/or hydrofluoric acid. A step by step procedure of this process is detailed.« less

  4. Light-Field Imaging Toolkit

    NASA Astrophysics Data System (ADS)

    Bolan, Jeffrey; Hall, Elise; Clifford, Chris; Thurow, Brian

    The Light-Field Imaging Toolkit (LFIT) is a collection of MATLAB functions designed to facilitate the rapid processing of raw light field images captured by a plenoptic camera. An included graphical user interface streamlines the necessary post-processing steps associated with plenoptic images. The generation of perspective shifted views and computationally refocused images is supported, in both single image and animated formats. LFIT performs necessary calibration, interpolation, and structuring steps to enable future applications of this technology.

  5. Nanoswitch-linked immunosorbent assay (NLISA) for fast, sensitive, and specific protein detection.

    PubMed

    Hansen, Clinton H; Yang, Darren; Koussa, Mounir A; Wong, Wesley P

    2017-09-26

    Protein detection and quantification play critical roles in both basic research and clinical practice. Current detection platforms range from the widely used ELISA to more sophisticated, and more expensive, approaches such as digital ELISA. Despite advances, there remains a need for a method that combines the simplicity and cost-effectiveness of ELISA with the sensitivity and speed of modern approaches in a format suitable for both laboratory and rapid, point-of-care applications. Building on recent developments in DNA structural nanotechnology, we introduce the nanoswitch-linked immunosorbent assay (NLISA), a detection platform based on easily constructed DNA nanodevices that change conformation upon binding to a target protein with the results read out by gel electrophoresis. NLISA is surface-free and includes a kinetic-proofreading step for purification, enabling both enhanced sensitivity and reduced cross-reactivity. We demonstrate femtomolar-level detection of prostate-specific antigen in biological fluids, as well as reduced cross-reactivity between different serotypes of dengue and also between a single-mutation and wild-type protein. NLISA is less expensive, uses less sample volume, is more rapid, and, with no washes, includes fewer hands-on steps than ELISA, while also achieving superior sensitivity. Our approach also has the potential to enable rapid point-of-care assays, as we demonstrate by performing NLISA with an iPad/iPhone camera for imaging.

  6. Vesselness propagation: a fast interactive vessel segmentation method

    NASA Astrophysics Data System (ADS)

    Cai, Wenli; Dachille, Frank; Harris, Gordon J.; Yoshida, Hiroyuki

    2006-03-01

    With the rapid development of multi-detector computed tomography (MDCT), resulting in increasing temporal and spatial resolution of data sets, clinical use of computed tomographic angiography (CTA) is rapidly increasing. Analysis of vascular structures is much needed in CTA images; however, the basis of the analysis, vessel segmentation, can still be a challenging problem. In this paper, we present a fast interactive method for CTA vessel segmentation, called vesselness propagation. This method is a two-step procedure, with a pre-processing step and an interactive step. During the pre-processing step, a vesselness volume is computed by application of a CTA transfer function followed by a multi-scale Hessian filtering. At the interactive stage, the propagation is controlled interactively in terms of the priority of the vesselness. This method was used successfully in many CTA applications such as the carotid artery, coronary artery, and peripheral arteries. It takes less than one minute for a user to segment the entire vascular structure. Thus, the proposed method provides an effective way of obtaining an overview of vascular structures.

  7. Rapid Titration of Measles and Other Viruses: Optimization with Determination of Replication Cycle Length

    PubMed Central

    Grigorov, Boyan; Rabilloud, Jessica; Lawrence, Philip; Gerlier, Denis

    2011-01-01

    Background Measles virus (MV) is a member of the Paramyxoviridae family and an important human pathogen causing strong immunosuppression in affected individuals and a considerable number of deaths worldwide. Currently, measles is a re-emerging disease in developed countries. MV is usually quantified in infectious units as determined by limiting dilution and counting of plaque forming unit either directly (PFU method) or indirectly from random distribution in microwells (TCID50 method). Both methods are time-consuming (up to several days), cumbersome and, in the case of the PFU assay, possibly operator dependent. Methods/Findings A rapid, optimized, accurate, and reliable technique for titration of measles virus was developed based on the detection of virus infected cells by flow cytometry, single round of infection and titer calculation according to the Poisson's law. The kinetics follow up of the number of infected cells after infection with serial dilutions of a virus allowed estimation of the duration of the replication cycle, and consequently, the optimal infection time. The assay was set up to quantify measles virus, vesicular stomatitis virus (VSV), and human immunodeficiency virus type 1 (HIV-1) using antibody labeling of viral glycoprotein, virus encoded fluorescent reporter protein and an inducible fluorescent-reporter cell line, respectively. Conclusion Overall, performing the assay takes only 24–30 hours for MV strains, 12 hours for VSV, and 52 hours for HIV-1. The step-by-step procedure we have set up can be, in principle, applicable to accurately quantify any virus including lentiviral vectors, provided that a virus encoded gene product can be detected by flow cytometry. PMID:21915289

  8. Molecular Diagnostics in Transfusion Medicine: In Capillary, on a Chip, in Silico, or in Flight?

    PubMed Central

    Garritsen, Henk S.P.; Xiu-Cheng Fan, Alex; Lenz, Daniela; Hannig, Horst; Yan Zhong, Xiao; Geffers, Robert; Lindenmaier, Werner; Dittmar, Kurt E.J.; Wörmann, Bernhard

    2009-01-01

    Summary Serology, defined as antibody-based diagnostics, has been regarded as the diagnostic gold standard in transfusion medicine. Nowadays however the impact of molecular diagnostics in transfusion medicine is rapidly growing. Molecular diagnostics can improve tissue typing (HLA typing), increase safety of blood products (NAT testing of infectious diseases), and enable blood group typing in difficult situations (after transfusion of blood products or prenatal non-invasive RhD typing). Most of the molecular testing involves the determination of the presence of single nucleotide polymorphisms (SNPs). Antigens (e.g. blood group antigens) mostly result from single nucleotide differences in critical positions. However, most blood group systems cannot be determined by looking at a single SNP. To identify members of a blood group system a number of critical SNPs have to be taken into account. The platforms which are currently used to perform molecular diagnostics are mostly gel-based, requiring time-consuming multiple manual steps. To implement molecular methods in transfusion medicine in the future the development of higher-throughput SNP genotyping non-gel-based platforms which allow a rapid, cost-effective screening are essential. Because of its potential for automation, high throughput and cost effectiveness the special focus of this paper is a relative new technique: SNP genotyping by MALDI-TOF MS analysis. PMID:21113259

  9. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, Eddie G.; Elliott, Douglas C.

    1993-01-01

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  10. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, E.G.; Elliott, D.C.

    1993-01-19

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  11. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus.

    PubMed

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-10-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium , has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium . The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  12. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    PubMed Central

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-01-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products. PMID:27721691

  13. Reconstructing Cell Lineages from Single-Cell Gene Expression Data: A Pilot Study

    DTIC Science & Technology

    2016-08-30

    Reconstructing cell lineages from single- cell gene expression data: a pilot study The goal of this pilot study is to develop novel mathematical...methods, by leveraging tools developed in the bifurcation theory, to infer the underlying cell -state dynamics from single- cell gene expression data. Our...proposed method contains two steps. The first step is to reconstruct the temporal order of the cells from gene expression data, whereas the second

  14. Kinetic mechanism of nick sealing by T4 RNA ligase 2 and effects of 3′-OH base mispairs and damaged base lesions

    PubMed Central

    Chauleau, Mathieu; Shuman, Stewart

    2013-01-01

    T4 RNA ligase 2 (Rnl2) repairs 3′-OH/5′-PO4 nicks in duplex nucleic acids in which the broken 3′-OH strand is RNA. Ligation entails three chemical steps: reaction of Rnl2 with ATP to form a covalent Rnl2–(lysyl-Nζ)–AMP intermediate (step 1); transfer of AMP to the 5′-PO4 of the nick to form an activated AppN– intermediate (step 2); and attack by the nick 3′-OH on the AppN– strand to form a 3′–5′ phosphodiester (step 3). Here we used rapid mix-quench methods to analyze the kinetic mechanism and fidelity of single-turnover nick sealing by Rnl2–AMP. For substrates with correctly base-paired 3′-OH nick termini, kstep2 was fast (9.5 to 17.9 sec−1) and similar in magnitude to kstep3 (7.9 to 32 sec−1). Rnl2 fidelity was enforced mainly at the level of step 2 catalysis, whereby 3′-OH base mispairs and oxoguanine, oxoadenine, or abasic lesions opposite the nick 3′-OH elicited severe decrements in the rate of 5′-adenylylation and relatively modest slowing of the rate of phosphodiester synthesis. The exception was the noncanonical A:oxoG base pair, which Rnl2 accepted as a correctly paired end for rapid sealing. These results underscore (1) how Rnl2 requires proper positioning of the 3′-terminal ribonucleoside at the nick for optimal 5′-adenylylation and (2) the potential for nick-sealing ligases to embed mutations during the repair of oxidative damage. PMID:24158792

  15. Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract.

    PubMed

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2014-01-01

    Biomediated silver nanoparticles were synthesized with the aid of an eco-friendly biomaterial, namely, aqueous Tribulus terrestris extract. Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous T. terrestris leaf extracts as both the reducing and capping agent. Silver ions were rapidly reduced by aqueous T. terrestris leaf extracts, leading to the formation of highly crystalline silver nanoparticles. An attempt has been made and formation of the silver nanoparticles was verified by surface plasmon spectra using an UV-vis (Ultra violet), spectrophotometer. Morphology and crystalline structure of the prepared silver nanoparticles were characterized by TEM (Transmission Electron Microscope) and XRD (X-ray Diffraction), techniques, respectively. FT-IR (Fourier Transform Infrared), analysis suggests that the obtained silver nanoparticles might be stabilized through the interactions of carboxylic groups, carbonyl groups and the flavonoids present in the T. terrestris extract. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Rapid prototype extruded conductive pathways

    DOEpatents

    Bobbitt, III, John T.

    2016-06-21

    A process of producing electrically conductive pathways within additively manufactured parts and similar parts made by plastic extrusion nozzles. The process allows for a three-dimensional part having both conductive and non-conductive portions and allows for such parts to be manufactured in a single production step.

  17. Voluntary stepping behavior under single- and dual-task conditions in chronic stroke survivors: A comparison between the involved and uninvolved legs.

    PubMed

    Melzer, Itshak; Goldring, Melissa; Melzer, Yehudit; Green, Elad; Tzedek, Irit

    2010-12-01

    If balance is lost, quick step execution can prevent falls. Research has shown that speed of voluntary stepping was able to predict future falls in old adults. The aim of the study was to investigate voluntary stepping behavior, as well as to compare timing and leg push-off force-time relation parameters of involved and uninvolved legs in stroke survivors during single- and dual-task conditions. We also aimed to compare timing and leg push-off force-time relation parameters between stroke survivors and healthy individuals in both task conditions. Ten stroke survivors performed a voluntary step execution test with their involved and uninvolved legs under two conditions: while focusing only on the stepping task and while a separate attention-demanding task was performed simultaneously. Temporal parameters related to the step time were measured including the duration of the step initiation phase, the preparatory phase, the swing phase, and the total step time. In addition, force-time parameters representing the push-off power during stepping were calculated from ground reaction data and compared with 10 healthy controls. The involved legs of stroke survivors had a significantly slower stepping time than uninvolved legs due to increased swing phase duration during both single- and dual-task conditions. For dual compared to single task, the stepping time increased significantly due to a significant increase in the duration of step initiation. In general, the force time parameters were significantly different in both legs of stroke survivors as compared to healthy controls, with no significant effect of dual compared with single-task conditions in both groups. The inability of stroke survivors to swing the involved leg quickly may be the most significant factor contributing to the large number of falls to the paretic side. The results suggest that stroke survivors were unable to rapidly produce muscle force in fast actions. This may be the mechanism of delayed execution of a fast step when balance is lost, thus increasing the likelihood of falls in stroke survivors. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. PI and repetitive control for single phase inverter based on virtual rotating coordinate system

    NASA Astrophysics Data System (ADS)

    Li, Mengqi; Tong, Yibin; Jiang, Jiuchun; Liang, Jiangang

    2018-03-01

    Microgrid technology developed rapidly and nonlinear loads were connected increasingly. A new control strategy was proposed for single phase inverter when connected nonlinear loads under island condition. PI and repetitive compound controller was realized under synchronous rotating coordinate system and acquired high quality sinusoidal voltage output without voltage spike when loads step changed. Validity and correctness were verified by simulation using MATLAB/Simulink.

  19. Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.

    PubMed

    Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo

    2015-11-01

    Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Control of mediolateral stability during rapid step initiation with preferred and non-preferred leg: is it symmetrical?

    PubMed

    Yiou, E; Do, M C

    2010-05-01

    During voluntary stepping initiation, postural stability along the mediolateral direction is controlled via "anticipatory postural adjustment" (APA). This study tested the hypothesis that, in young healthy subjects, the biomechanical features of mediolateral APA depend on the leg that initiates stepping. Subjects (N=10) initiated a rapid single step with the preferred (P condition) and the non-preferred leg (NP condition) on a force-plate. Results showed that mediolateral APA duration (P=0.020) and amplitude were higher (as attested by the increase in maximal center-of-gravity velocity (P=0.003) and displacement (P<0.001) during APA), and that mediolateral stability was better (as attested by the attenuation in center-of-gravity velocity at time of swing-foot contact (P=0.007)) in P than in NP. These results support the view that stepping initiation in healthy subjects involves postural asymmetry. This statement may have relevant implications in clinical evaluation where postural asymmetry is generally considered as reflecting postural impairment. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Rapid-viability PCR method for detection of live, virulent Bacillus anthracis in environmental samples.

    PubMed

    Létant, Sonia E; Murphy, Gloria A; Alfaro, Teneile M; Avila, Julie R; Kane, Staci R; Raber, Ellen; Bunt, Thomas M; Shah, Sanjiv R

    2011-09-01

    In the event of a biothreat agent release, hundreds of samples would need to be rapidly processed to characterize the extent of contamination and determine the efficacy of remediation activities. Current biological agent identification and viability determination methods are both labor- and time-intensive such that turnaround time for confirmed results is typically several days. In order to alleviate this issue, automated, high-throughput sample processing methods were developed in which real-time PCR analysis is conducted on samples before and after incubation. The method, referred to as rapid-viability (RV)-PCR, uses the change in cycle threshold after incubation to detect the presence of live organisms. In this article, we report a novel RV-PCR method for detection of live, virulent Bacillus anthracis, in which the incubation time was reduced from 14 h to 9 h, bringing the total turnaround time for results below 15 h. The method incorporates a magnetic bead-based DNA extraction and purification step prior to PCR analysis, as well as specific real-time PCR assays for the B. anthracis chromosome and pXO1 and pXO2 plasmids. A single laboratory verification of the optimized method applied to the detection of virulent B. anthracis in environmental samples was conducted and showed a detection level of 10 to 99 CFU/sample with both manual and automated RV-PCR methods in the presence of various challenges. Experiments exploring the relationship between the incubation time and the limit of detection suggest that the method could be further shortened by an additional 2 to 3 h for relatively clean samples.

  2. Simultaneous detection and serotyping of dengue infection using single tube multiplex CDC Dengue Real-Time RT-PCR from India.

    PubMed

    Sharma, Shashi; Tandel, Kundan; Danwe, Surabhi; Bhatt, Puneet; Dash, P K; Ranjan, Praveer; Rathi, K R; Gupta, Rajiv Mohan; Parida, M M

    2018-03-01

    Four antigenically different dengue virus serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) are known to cause infections in humans. Some of these are known to cause more severe disease than the others. Chances for developing Dengue hemorrhagic fever-dengue shock syndrome (DHF-DSS) increases significantly with history of previous infection with one of the four serotypes. Therefore, early diagnosis, serotyping and providing early warning of dengue fever epidemics to concerned authorities becomes very important for better patient outcome and to curb the rapid spread in the community. During the 2014 outbreak, a total of 100 samples from suspected cases of dengue were collected. NS1 antigen based rapid test was used for serological diagnosis. Dengue complex one step reverse transcription-polymerase chain reaction was performed to look for presence of viral RNA. Single tube multiplex RT-PCR was also performed to look for infecting serotype. CDC Dengue Multiplex Real Time PCR assay was performed for rapid diagnosis and simultaneous serotyping of the dengue virus. Out of the 100 samples screened, 69 were found to be positive by NS1Ag Rapid test. 34 samples were found positive by dengue consensus RT-PCR assay. 22 samples were found to be positive by single tube Dengue multiplex RT-PCR assay. Serotype DEN-2 was present in maximum numbers followed by DEN-3. 44 samples were found positive by DENV CDC Multiplex Real time PCR assay. DEN-2 was found in maximum numbers followed by DEN-1. Dengue remains to be an important health problem in India and across the globe. Few serotypes of dengue are more dangerous than the others. Rapid diagnosis and serotyping remains the key for better patient management and prevention of disease spreading in the community. Highly sensitive, specific and rapid CDC real time RT-PCR assay was found to be most promising tool among all available molecular diagnostic methods. This will serve a rapid and reliable simultaneous dengue virus detection as well serotyping assay in near future for rapid identification of dengue suspected sample screening.

  3. Single Laboratory Validated Method for Determination of Cylindrospermopsin and Anatoxin-a in Ambient Water by Liquid Chromatography/ Tandem Mass Spectrometry (LC/MS/MS)

    EPA Science Inventory

    This product is an LC/MS/MS single laboratory validated method for the determination of cylindrospermopsin and anatoxin-a in ambient waters. The product contains step-by-step instructions for sample preparation, analyses, preservation, sample holding time and QC protocols to ensu...

  4. Estimation of relative free energies of binding using pre-computed ensembles based on the single-step free energy perturbation and the site-identification by Ligand competitive saturation approaches.

    PubMed

    Raman, E Prabhu; Lakkaraju, Sirish Kaushik; Denny, Rajiah Aldrin; MacKerell, Alexander D

    2017-06-05

    Accurate and rapid estimation of relative binding affinities of ligand-protein complexes is a requirement of computational methods for their effective use in rational ligand design. Of the approaches commonly used, free energy perturbation (FEP) methods are considered one of the most accurate, although they require significant computational resources. Accordingly, it is desirable to have alternative methods of similar accuracy but greater computational efficiency to facilitate ligand design. In the present study relative free energies of binding are estimated for one or two non-hydrogen atom changes in compounds targeting the proteins ACK1 and p38 MAP kinase using three methods. The methods include standard FEP, single-step free energy perturbation (SSFEP) and the site-identification by ligand competitive saturation (SILCS) ligand grid free energy (LGFE) approach. Results show the SSFEP and SILCS LGFE methods to be competitive with or better than the FEP results for the studied systems, with SILCS LGFE giving the best agreement with experimental results. This is supported by additional comparisons with published FEP data on p38 MAP kinase inhibitors. While both the SSFEP and SILCS LGFE approaches require a significant upfront computational investment, they offer a 1000-fold computational savings over FEP for calculating the relative affinities of ligand modifications once those pre-computations are complete. An illustrative example of the potential application of these methods in the context of screening large numbers of transformations is presented. Thus, the SSFEP and SILCS LGFE approaches represent viable alternatives for actively driving ligand design during drug discovery and development. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Rapid and effective processing of blood specimens for diagnostic PCR using filter paper and Chelex-100.

    PubMed

    Polski, J M; Kimzey, S; Percival, R W; Grosso, L E

    1998-08-01

    To provide a more efficient method for isolating DNA from peripheral blood for use in diagnostic DNA mutation analysis. The use of blood impregnated filter paper and Chelex-100 in DNA isolation was evaluated and compared with standard DNA isolation techniques. In polymerase chain reaction (PCR) based assays of five point mutations, identical results were obtained with DNA isolated routinely from peripheral blood and isolated using the filter paper and Chelex-100 method. In the clinical setting, this method provides a useful alternative to conventional DNA isolation. It is easily implemented and inexpensive, and provides sufficient, stable DNA for multiple assays. The potential for specimen contamination is reduced because most of the steps are performed in a single microcentrifuge tube. In addition, this method provides for easy storage and transport of samples from the point of acquisition.

  6. Dynamic sound localization in cats

    PubMed Central

    Ruhland, Janet L.; Jones, Amy E.

    2015-01-01

    Sound localization in cats and humans relies on head-centered acoustic cues. Studies have shown that humans are able to localize sounds during rapid head movements that are directed toward the target or other objects of interest. We studied whether cats are able to utilize similar dynamic acoustic cues to localize acoustic targets delivered during rapid eye-head gaze shifts. We trained cats with visual-auditory two-step tasks in which we presented a brief sound burst during saccadic eye-head gaze shifts toward a prior visual target. No consistent or significant differences in accuracy or precision were found between this dynamic task (2-step saccade) and the comparable static task (single saccade when the head is stable) in either horizontal or vertical direction. Cats appear to be able to process dynamic auditory cues and execute complex motor adjustments to accurately localize auditory targets during rapid eye-head gaze shifts. PMID:26063772

  7. Rapid Optimization of Engineered Metabolic Pathways with Serine Integrase Recombinational Assembly (SIRA).

    PubMed

    Merrick, C A; Wardrope, C; Paget, J E; Colloms, S D; Rosser, S J

    2016-01-01

    Metabolic pathway engineering in microbial hosts for heterologous biosynthesis of commodity compounds and fine chemicals offers a cheaper, greener, and more reliable method of production than does chemical synthesis. However, engineering metabolic pathways within a microbe is a complicated process: levels of gene expression, protein stability, enzyme activity, and metabolic flux must be balanced for high productivity without compromising host cell viability. A major rate-limiting step in engineering microbes for optimum biosynthesis of a target compound is DNA assembly, as current methods can be cumbersome and costly. Serine integrase recombinational assembly (SIRA) is a rapid DNA assembly method that utilizes serine integrases, and is particularly applicable to rapid optimization of engineered metabolic pathways. Using six pairs of orthogonal attP and attB sites with different central dinucleotide sequences that follow SIRA design principles, we have demonstrated that ΦC31 integrase can be used to (1) insert a single piece of DNA into a substrate plasmid; (2) assemble three, four, and five DNA parts encoding the enzymes for functional metabolic pathways in a one-pot reaction; (3) generate combinatorial libraries of metabolic pathway constructs with varied ribosome binding site strengths or gene orders in a one-pot reaction; and (4) replace and add DNA parts within a construct through targeted postassembly modification. We explain the mechanism of SIRA and the principles behind designing a SIRA reaction. We also provide protocols for making SIRA reaction components and practical methods for applying SIRA to rapid optimization of metabolic pathways. © 2016 Elsevier Inc. All rights reserved.

  8. Microwave-assisted routes for rapid and efficient modification of layered perovskites.

    PubMed

    Akbarian-Tefaghi, S; Wiley, J B

    2018-02-27

    Recent advances in exploiting microwave radiation in the topochemical modification of layered oxide perovskites are presented. Such methods work well for rapid bulk synthetic steps used in the production of novel inorganic-organic hybrids (protonation, grafting, intercalation, and in situ click reactions), exfoliation to produce dispersed nanosheets, and post-exfoliation processing to rapidly vary nanosheet surface groups. Compared to traditional methods that often take days, microwave methods can produce quality products in as little as 1-2 h.

  9. One-step sol-gel imprint lithography for guided-mode resonance structures.

    PubMed

    Huang, Yin; Liu, Longju; Johnson, Michael; C Hillier, Andrew; Lu, Meng

    2016-03-04

    Guided-mode resonance (GMR) structures consisting of sub-wavelength periodic gratings are capable of producing narrow-linewidth optical resonances. This paper describes a sol-gel-based imprint lithography method for the fabrication of submicron 1D and 2D GMR structures. This method utilizes a patterned polydimethylsiloxane (PDMS) mold to fabricate the grating coupler and waveguide for a GMR device using a sol-gel thin film in a single step. An organic-inorganic hybrid sol-gel film was selected as the imprint material because of its relatively high refractive index. The optical responses of several sol-gel GMR devices were characterized, and the experimental results were in good agreement with the results of electromagnetic simulations. The influence of processing parameters was investigated in order to determine how finely the spectral response and resonant wavelength of the GMR devices could be tuned. As an example potential application, refractometric sensing experiments were performed using a 1D sol-gel device. The results demonstrated a refractive index sensitivity of 50 nm/refractive index unit. This one-step fabrication process offers a simple, rapid, and low-cost means of fabricating GMR structures. We anticipate that this method can be valuable in the development of various GMR-based devices as it can readily enable the fabrication of complex shapes and allow the doping of optically active materials into sol-gel thin film.

  10. Designing and Validation of One-Step T-ARMS-PCR for Genotyping the eNOS rs1799983 SNP

    PubMed Central

    Heidar, Mohammad Mehdi; Khatami, Mehri

    2017-01-01

    Background: The transversion of G to T (G894T) in human endothelial nitric oxide synthase (eNOS) gene has profound effects such as male infertility, recurrent miscarriage, multiple sclerosis and cardiovascular diseases. Objectives: Development of a new Multiplex Tetra-Primer Amplification Refractory Mutation System - Polymerase Chain Reaction (T-ARMS-PCR) for detection of rs1799983 (G894T) in the human eNOS was sought. Materials and Methods: A T-ARMS-PCR for rs1799983 polymorphism in a single-step PCR was carried out, and the results were confirmed by PCR-RFLP technique in 82 infertile men with varicocele. Results: The results showed that GG (varicocele infertile men), GT and TT genotypes appear to be 53.65%, 34.14%, and 12.19%, respectively. Full accordance between PCR-RFLP and T-ARMS-PCR methods for genotyping of rs1799983 polymorphism was found. Conclusions: This is the first work that describes a rapid, relatively cheap, high throughput detection of G894T polymorphism in eNOS that can be used in large scale clinical studies. PMID:29845071

  11. Designing and Validation of One-Step T-ARMS-PCR for Genotyping the eNOS rs1799983 SNP.

    PubMed

    Heidar, Mohammad Mehdi; Khatami, Mehri

    2017-01-01

    Background: The transversion of G to T (G894T) in human endothelial nitric oxide synthase ( eNOS ) gene has profound effects such as male infertility, recurrent miscarriage, multiple sclerosis and cardiovascular diseases. Objectives: Development of a new Multiplex Tetra-Primer Amplification Refractory Mutation System - Polymerase Chain Reaction (T-ARMS-PCR) for detection of rs1799983 (G894T) in the human eNOS was sought. Materials and Methods: A T-ARMS-PCR for rs1799983 polymorphism in a single-step PCR was carried out, and the results were confirmed by PCR-RFLP technique in 82 infertile men with varicocele. Results: The results showed that GG (varicocele infertile men), GT and TT genotypes appear to be 53.65%, 34.14%, and 12.19%, respectively. Full accordance between PCR-RFLP and T-ARMS-PCR methods for genotyping of rs1799983 polymorphism was found. Conclusions: This is the first work that describes a rapid, relatively cheap, high throughput detection of G894T polymorphism in eNOS that can be used in large scale clinical studies.

  12. Fire-through Ag contact formation for crystalline Si solar cells using single-step inkjet printing.

    PubMed

    Kim, Hyun-Gang; Cho, Sung-Bin; Chung, Bo-Mook; Huh, Joo-Youl; Yoon, Sam S

    2012-04-01

    Inkjet-printed Ag metallization is a promising method of forming front-side contacts on Si solar cells due to its non-contact printing nature and fine grid resolution. However, conventional Ag inks are unable to punch through the SiN(x) anti-reflection coating (ARC) layer on emitter Si surfaces. In this study, a novel formulation of Ag ink is examined for the formation of fire-through contacts on a SiN(x)-coated Si substrate using the single-step printing of Ag ink, followed by rapid thermal annealing at 800 degrees C. In order to formulate Ag inks with fire-through contact formation capabilities, a liquid etching agent was first formulated by dissolving metal nitrates in an organic solvent and then mixing the resulting solution with a commercial Ag nanoparticle ink at various volume ratios. During the firing process, the dissolved metal nitrates decomposed into metal oxides and acted in a similar manner to the glass frit contained in Ag pastes for screen-printed Ag metallization. The newly formulated ink with a 1 wt% loading ratio of metal oxides to Ag formed finely distributed Ag crystallites on the Si substrate after firing at 800 degrees C for 1 min.

  13. Coherent cavity-enhanced dual-comb spectroscopy

    PubMed Central

    Fleisher, Adam J.; Long, David A.; Reed, Zachary D.; Hodges, Joseph T.; Plusquellic, David F.

    2016-01-01

    Dual-comb spectroscopy allows for the rapid, multiplexed acquisition of high-resolution spectra without the need for moving parts or low-resolution dispersive optics. This method of broadband spectroscopy is most often accomplished via tight phase locking of two mode-locked lasers or via sophisticated signal processing algorithms, and therefore, long integration times of phase coherent signals are difficult to achieve. Here we demonstrate an alternative approach to dual-comb spectroscopy using two phase modulator combs originating from a single continuous-wave laser capable of > 2 hours of coherent real-time averaging. The dual combs were generated by driving the phase modulators with step-recovery diodes where each comb consisted of > 250 teeth with 203 MHz spacing and spanned > 50 GHz region in the near-infrared. The step-recovery diodes are passive devices that provide low-phase-noise harmonics for efficient coupling into an enhancement cavity at picowatt optical powers. With this approach, we demonstrate the sensitivity to simultaneously monitor ambient levels of CO2, CO, HDO, and H2O in a single spectral region at a maximum acquisition rate of 150 kHz. Robust, compact, low-cost and widely tunable dual-comb systems could enable a network of distributed multiplexed optical sensors. PMID:27409866

  14. EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units

    PubMed Central

    Kam-Thong, Tony; Czamara, Darina; Tsuda, Koji; Borgwardt, Karsten; Lewis, Cathryn M; Erhardt-Lehmann, Angelika; Hemmer, Bernhard; Rieckmann, Peter; Daake, Markus; Weber, Frank; Wolf, Christiane; Ziegler, Andreas; Pütz, Benno; Holsboer, Florian; Schölkopf, Bernhard; Müller-Myhsok, Bertram

    2011-01-01

    Detection of epistatic interaction between loci has been postulated to provide a more in-depth understanding of the complex biological and biochemical pathways underlying human diseases. Studying the interaction between two loci is the natural progression following traditional and well-established single locus analysis. However, the added costs and time duration required for the computation involved have thus far deterred researchers from pursuing a genome-wide analysis of epistasis. In this paper, we propose a method allowing such analysis to be conducted very rapidly. The method, dubbed EPIBLASTER, is applicable to case–control studies and consists of a two-step process in which the difference in Pearson's correlation coefficients is computed between controls and cases across all possible SNP pairs as an indication of significant interaction warranting further analysis. For the subset of interactions deemed potentially significant, a second-stage analysis is performed using the likelihood ratio test from the logistic regression to obtain the P-value for the estimated coefficients of the individual effects and the interaction term. The algorithm is implemented using the parallel computational capability of commercially available graphical processing units to greatly reduce the computation time involved. In the current setup and example data sets (211 cases, 222 controls, 299468 SNPs; and 601 cases, 825 controls, 291095 SNPs), this coefficient evaluation stage can be completed in roughly 1 day. Our method allows for exhaustive and rapid detection of significant SNP pair interactions without imposing significant marginal effects of the single loci involved in the pair. PMID:21150885

  15. A Method for Preparing DNA Sequencing Templates Using a DNA-Binding Microplate

    PubMed Central

    Yang, Yu; Hebron, Haroun R.; Hang, Jun

    2009-01-01

    A DNA-binding matrix was immobilized on the surface of a 96-well microplate and used for plasmid DNA preparation for DNA sequencing. The same DNA-binding plate was used for bacterial growth, cell lysis, DNA purification, and storage. In a single step using one buffer, bacterial cells were lysed by enzymes, and released DNA was captured on the plate simultaneously. After two wash steps, DNA was eluted and stored in the same plate. Inclusion of phosphates in the culture medium was found to enhance the yield of plasmid significantly. Purified DNA samples were used successfully in DNA sequencing with high consistency and reproducibility. Eleven vectors and nine libraries were tested using this method. In 10 μl sequencing reactions using 3 μl sample and 0.25 μl BigDye Terminator v3.1, the results from a 3730xl sequencer gave a success rate of 90–95% and read-lengths of 700 bases or more. The method is fully automatable and convenient for manual operation as well. It enables reproducible, high-throughput, rapid production of DNA with purity and yields sufficient for high-quality DNA sequencing at a substantially reduced cost. PMID:19568455

  16. A COMPARISON OF SINGLE AND MULTIPLE HABITAT RAPID BIOASSESSMENT SAMPLING METHODS FOR MACROINVERTEBRATES IN PIEDMONT AND NORTHERN PIEDMONT STREAMS

    EPA Science Inventory

    Stream macroinvertebrate collection methods described in the Rapid Bioassessment Protocols (RBPs) have been used widely throughout the U.S. The first edition of the RBP manual in 1989 described a single habitat approach that focused on riffles and runs, where macroinvertebrate d...

  17. Rapid prototyping of compliant human aortic roots for assessment of valved stents.

    PubMed

    Kalejs, Martins; von Segesser, Ludwig Karl

    2009-02-01

    Adequate in-vitro training in valved stents deployment as well as testing of the latter devices requires compliant real-size models of the human aortic root. The casting methods utilized up to now are multi-step, time consuming and complicated. We pursued a goal of building a flexible 3D model in a single-step procedure. We created a precise 3D CAD model of a human aortic root using previously published anatomical and geometrical data and printed it using a novel rapid prototyping system developed by the Fab@Home project. As a material for 3D fabrication we used common house-hold silicone and afterwards dip-coated several models with dispersion silicone one or two times. To assess the production precision we compared the size of the final product with the CAD model. Compliance of the models was measured and compared with native porcine aortic root. Total fabrication time was 3 h and 20 min. Dip-coating one or two times with dispersion silicone if applied took one or two extra days, respectively. The error in dimensions of non-coated aortic root model compared to the CAD design was <3.0% along X, Y-axes and 4.1% along Z-axis. Compliance of a non-coated model as judged by the changes of radius values in the radial direction by 16.39% is significantly different (P<0.001) from native aortic tissue--23.54% at the pressure of 80-100 mmHg. Rapid prototyping of compliant, life-size anatomical models with the Fab@Home 3D printer is feasible--it is very quick compared to previous casting methods.

  18. Low specificity of 2 tetanus rapid tests in Cambodia.

    PubMed

    Schlumberger, M; Yvonnet, B; Lesage, G; Tep, B

    2015-01-01

    Rapid testing for tetanus on serum or blood allows for an immediate evaluation of individual protection against tetanus in developed countries, using a "single step" immunochromatographic technique using tetanus toxoid. The specificity of these tests, compared to the reference method for tetanus, mouse serum neutralization testing, has however never been assessed in these countries, due to the difficulty to perform serum neutralization titration in mice, because of animal testing bioethical regulations. A collection of sera from adult volunteers in Cambodia, living in rural environment, was tested for tetanus antibodies by ELISA in France, and by mouse serum neutralization in Vietnam. This allowed estimating the sensitivity and specificity of 2 rapid tetanus tests, available on the market: TQS™ and Tetanotop™. The sensitivity of these tests was adequate, compared to mice serum neutralization test, for a test threshold of 0.01 IU/mL, (100% for TQS™, 91% for Tetanotop™), but their specificity was very low (1% for TQS™ and 13% for Tetanotop™). The results prove that these rapid tests for the assessment of individual protection against tetanus should not be used in the adult rural Cambodian population. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Development and evaluation of probe based real time loop mediated isothermal amplification for Salmonella: A new tool for DNA quantification.

    PubMed

    Mashooq, Mohmad; Kumar, Deepak; Niranjan, Ankush Kiran; Agarwal, Rajesh Kumar; Rathore, Rajesh

    2016-07-01

    A one step, single tube, accelerated probe based real time loop mediated isothermal amplification (RT LAMP) assay was developed for detecting the invasion gene (InvA) of Salmonella. The probe based RT LAMP is a novel method of gene amplification that amplifies nucleic acid with high specificity and rapidity under isothermal conditions with a set of six primers. The whole procedure is very simple and rapid, and amplification can be obtained in 20min. Detection of gene amplification was accomplished by amplification curve, turbidity and addition of DNA binding dye at the end of the reaction results in colour difference and can be visualized under normal day light and in UV. The sensitivity of developed assay was found 10 fold higher than taqman based qPCR. The specificity of the RT LAMP assay was validated by the absence of any cross reaction with other members of enterobacteriaceae family and other gram negative bacteria. These results indicate that the probe based RT LAMP assay is extremely rapid, cost effective, highly specific and sensitivity and has potential usefulness for rapid Salmonella surveillance. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  20. Cancer cell classification with coherent diffraction imaging using an extreme ultraviolet radiation source

    PubMed Central

    Zürch, Michael; Foertsch, Stefan; Matzas, Mark; Pachmann, Katharina; Kuth, Rainer; Spielmann, Christian

    2014-01-01

    Abstract. In cancer treatment, it is highly desirable to classify single cancer cells in real time. The standard method is polymerase chain reaction requiring a substantial amount of resources and time. Here, we present an innovative approach for rapidly classifying different cell types: we measure the diffraction pattern of a single cell illuminated with coherent extreme ultraviolet (XUV) laser-generated radiation. These patterns allow distinguishing different breast cancer cell types in a subsequent step. Moreover, the morphology of the object can be retrieved from the diffraction pattern with submicron resolution. In a proof-of-principle experiment, we prepared single MCF7 and SKBR3 breast cancer cells on gold-coated silica slides. The output of a laser-driven XUV light source is focused onto a single unstained and unlabeled cancer cell. With the resulting diffraction pattern, we could clearly identify the different cell types. With an improved setup, it will not only be feasible to classify circulating tumor cells with a high throughput, but also to identify smaller objects such as bacteria or even viruses. PMID:26158049

  1. Cancer cell classification with coherent diffraction imaging using an extreme ultraviolet radiation source.

    PubMed

    Zürch, Michael; Foertsch, Stefan; Matzas, Mark; Pachmann, Katharina; Kuth, Rainer; Spielmann, Christian

    2014-10-01

    In cancer treatment, it is highly desirable to classify single cancer cells in real time. The standard method is polymerase chain reaction requiring a substantial amount of resources and time. Here, we present an innovative approach for rapidly classifying different cell types: we measure the diffraction pattern of a single cell illuminated with coherent extreme ultraviolet (XUV) laser-generated radiation. These patterns allow distinguishing different breast cancer cell types in a subsequent step. Moreover, the morphology of the object can be retrieved from the diffraction pattern with submicron resolution. In a proof-of-principle experiment, we prepared single MCF7 and SKBR3 breast cancer cells on gold-coated silica slides. The output of a laser-driven XUV light source is focused onto a single unstained and unlabeled cancer cell. With the resulting diffraction pattern, we could clearly identify the different cell types. With an improved setup, it will not only be feasible to classify circulating tumor cells with a high throughput, but also to identify smaller objects such as bacteria or even viruses.

  2. Determination of anthelmintic drug residues in milk using ultra high performance liquid chromatography-tandem mass spectrometry with rapid polarity switching.

    PubMed

    Whelan, Michelle; Kinsella, Brian; Furey, Ambrose; Moloney, Mary; Cantwell, Helen; Lehotay, Steven J; Danaher, Martin

    2010-07-02

    A new UHPLC-MS/MS (ultra high performance liquid chromatography coupled to tandem mass spectrometry) method was developed and validated to detect 38 anthelmintic drug residues, consisting of benzimidazoles, avermectins and flukicides. A modified QuEChERS-type extraction method was developed with an added concentration step to detect most of the analytes at <1 microg kg(-1) levels in milk. Anthelmintic residues were extracted into acetonitrile using magnesium sulphate and sodium chloride to induce liquid-liquid partitioning followed by dispersive solid phase extraction for cleanup. The extract was concentrated into dimethyl sulphoxide, which was used as a keeper to ensure analytes remain in solution. Using rapid polarity switching in electrospray ionisation, a single injection was capable of detecting both positively and negatively charged ions in a 13 min run time. The method was validated at two levels: the unapproved use level and at the maximum residue level (MRL) according to Commission Decision (CD) 2002/657/EC criteria. The decision limit (CCalpha) of the method was in the range of 0.14-1.9 and 11-123 microg kg(-1) for drugs validated at unapproved and MRL levels, respectively. The performance of the method was successfully verified for benzimidazoles and levamisole by participating in a proficiency study.

  3. A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei.

    PubMed

    Saroj, Dina B; Dengeti, Shrinivas N; Aher, Supriya; Gupta, Anil K

    2015-06-01

    Trichoderma species are widely used as production hosts for industrial enzymes. Identification of Trichoderma species requires a complex molecular biology based identification involving amplification and sequencing of multiple genes. Industrial laboratories are required to run identification tests repeatedly in cell banking procedures and also to prove absence of production host in the product. Such demands can be fulfilled by a brief method which enables confirmation of strain identity. This communication describes one step identification method for two common Trichoderma species; T. citrinoviride and T. reesei, based on identification of polymorphic region in the nucleotide sequence of translation elongation factor 1 alpha. A unique forward primer and common reverse primer resulted in 153 and 139 bp amplicon for T. citrinoviride and T. reesei, respectively. Simplification was further introduced by using mycelium as template for PCR amplification. Method described in this communication allows rapid, one step identification of two Trichoderma species.

  4. Controlling dental enamel-cavity ablation depth with optimized stepping parameters along the focal plane normal using a three axis, numerically controlled picosecond laser.

    PubMed

    Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Sun, Yuchun; Wang, Yong

    2015-02-01

    The purpose of this study was to establish a depth-control method in enamel-cavity ablation by optimizing the timing of the focal-plane-normal stepping and the single-step size of a three axis, numerically controlled picosecond laser. Although it has been proposed that picosecond lasers may be used to ablate dental hard tissue, the viability of such a depth-control method in enamel-cavity ablation remains uncertain. Forty-two enamel slices with approximately level surfaces were prepared and subjected to two-dimensional ablation by a picosecond laser. The additive-pulse layer, n, was set to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70. A three-dimensional microscope was then used to measure the ablation depth, d, to obtain a quantitative function relating n and d. Six enamel slices were then subjected to three dimensional ablation to produce 10 cavities, respectively, with additive-pulse layer and single-step size set to corresponding values. The difference between the theoretical and measured values was calculated for both the cavity depth and the ablation depth of a single step. These were used to determine minimum-difference values for both the additive-pulse layer (n) and single-step size (d). When the additive-pulse layer and the single-step size were set 5 and 45, respectively, the depth error had a minimum of 2.25 μm, and 450 μm deep enamel cavities were produced. When performing three-dimensional ablating of enamel with a picosecond laser, adjusting the timing of the focal-plane-normal stepping and the single-step size allows for the control of ablation-depth error to the order of micrometers.

  5. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface

    PubMed Central

    Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.; Ball, Kenneth R.; Lance, Brent J.

    2016-01-01

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG), which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system. PMID:27713685

  6. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface.

    PubMed

    Waytowich, Nicholas R; Lawhern, Vernon J; Bohannon, Addison W; Ball, Kenneth R; Lance, Brent J

    2016-01-01

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG), which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.

  7. Simple and rapid silver nanoparticles based antioxidant capacity assays: Reactivity study for phenolic compounds.

    PubMed

    Della Pelle, Flavio; Scroccarello, Annalisa; Sergi, Manuel; Mascini, Marcello; Del Carlo, Michele; Compagnone, Dario

    2018-08-01

    A single-step, rapid (10 min), sensitive silver nanoparticles (AgNPs) based spectrophotometric method for antioxidant capacity (AOC) assay has been developed. The assay is based on the ability of natural polyphenols to reduce Ag(I) and stabilize the produced AgNPs(0) at room temperature. Localized surface plasmon resonance (LSPR) of AgNPs at ≈420 nm is then measured. Using different conditions of pH (8.4) and temperature (45 °C) a further assay based on the production of AgNPs with selectivity for flavonols was also developed. The reactivity of the two AgNPs based assays vs. 15 polyphenols belonging to different chemical classes and 9 different samples has been studied and compared with ABTS, Folin and AuNPs based methods for AOC. The proposed assays had good reproducibility (RSD ≤ 13) and are simple, sensitive and cost effective. Moreover, used in conjunction with the classical AOC assays, can improve the information on the polyphenolic pool of food samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Electron microscopic visualization of complementary labeled DNA with platinum-containing guanine derivative.

    PubMed

    Loukanov, Alexandre; Filipov, Chavdar; Mladenova, Polina; Toshev, Svetlin; Emin, Saim

    2016-04-01

    The object of the present report is to provide a method for a visualization of DNA in TEM by complementary labeling of cytosine with guanine derivative, which contains platinum as contrast-enhanced heavy element. The stretched single-chain DNA was obtained by modifying double-stranded DNA. The labeling method comprises the following steps: (i) stretching and adsorption of DNA on the support film of an electron microscope grid (the hydrophobic carbon film holding negative charged DNA); (ii) complementary labeling of the cytosine bases from the stretched single-stranded DNA pieces on the support film with platinum containing guanine derivative to form base-specific hydrogen bond; and (iii) producing a magnified image of the base-specific labeled DNA. Stretched single-stranded DNA on a support film is obtained by a rapid elongation of DNA pieces on the surface between air and aqueous buffer solution. The attached platinum-containing guanine derivative serves as a high-dense marker and it can be discriminated from the surrounding background of support carbon film and visualized by use of conventional TEM observation at 100 kV accelerated voltage. This method allows examination of specific nucleic macromolecules through atom-by-atom analysis and it is promising way toward future DNA-sequencing or molecular diagnostics of nucleic acids by electron microscopic observation. © 2016 Wiley Periodicals, Inc.

  9. Predicting the optimal process window for the coating of single-crystalline organic films with mobilities exceeding 7 cm2/Vs.

    NASA Astrophysics Data System (ADS)

    Janneck, Robby; Vercesi, Federico; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2016-09-01

    Organic thin film transistors (OTFTs) based on single crystalline thin films of organic semiconductors have seen considerable development in the recent years. The most successful method for the fabrication of single crystalline films are solution-based meniscus guided coating techniques such as dip-coating, solution shearing or zone casting. These upscalable methods enable rapid and efficient film formation without additional processing steps. The single-crystalline film quality is strongly dependent on solvent choice, substrate temperature and coating speed. So far, however, process optimization has been conducted by trial and error methods, involving, for example, the variation of coating speeds over several orders of magnitude. Through a systematic study of solvent phase change dynamics in the meniscus region, we develop a theoretical framework that links the optimal coating speed to the solvent choice and the substrate temperature. In this way, we can accurately predict an optimal processing window, enabling fast process optimization. Our approach is verified through systematic OTFT fabrication based on films grown with different semiconductors, solvents and substrate temperatures. The use of best predicted coating speeds delivers state of the art devices. In the case of C8BTBT, OTFTs show well-behaved characteristics with mobilities up to 7 cm2/Vs and onset voltages close to 0 V. Our approach also explains well optimal recipes published in the literature. This route considerably accelerates parameter screening for all meniscus guided coating techniques and unveils the physics of single crystalline film formation.

  10. The stepping behavior analysis of pedestrians from different age groups via a single-file experiment

    NASA Astrophysics Data System (ADS)

    Cao, Shuchao; Zhang, Jun; Song, Weiguo; Shi, Chang'an; Zhang, Ruifang

    2018-03-01

    The stepping behavior of pedestrians with different age compositions in single-file experiment is investigated in this paper. The relation between step length, step width and stepping time are analyzed by using the step measurement method based on the calculation of curvature of the trajectory. The relations of velocity-step width, velocity-step length and velocity-stepping time for different age groups are discussed and compared with previous studies. Finally effects of pedestrian gender and height on stepping laws and fundamental diagrams are analyzed. The study is helpful for understanding pedestrian dynamics of movement. Meanwhile, it offers experimental data to develop a microscopic model of pedestrian movement by considering stepping behavior.

  11. Rapid and direct synthesis of complex perovskite oxides through a highly energetic planetary milling

    PubMed Central

    Lee, Gyoung-Ja; Park, Eun-Kwang; Yang, Sun-A; Park, Jin-Ju; Bu, Sang-Don; Lee, Min-Ku

    2017-01-01

    The search for a new and facile synthetic route that is simple, economical and environmentally safe is one of the most challenging issues related to the synthesis of functional complex oxides. Herein, we report the expeditious synthesis of single-phase perovskite oxides by a high-rate mechanochemical reaction, which is generally difficult through conventional milling methods. With the help of a highly energetic planetary ball mill, lead-free piezoelectric perovskite oxides of (Bi, Na)TiO3, (K, Na)NbO3 and their modified complex compositions were directly synthesized with low contamination. The reaction time necessary to fully convert the micron-sized reactant powder mixture into a single-phase perovskite structure was markedly short at only 30–40 min regardless of the chemical composition. The cumulative kinetic energy required to overtake the activation period necessary for predominant formation of perovskite products was ca. 387 kJ/g for (Bi, Na)TiO3 and ca. 580 kJ/g for (K, Na)NbO3. The mechanochemically derived powders, when sintered, showed piezoelectric performance capabilities comparable to those of powders obtained by conventional solid-state reaction processes. The observed mechanochemical synthetic route may lead to the realization of a rapid, one-step preparation method by which to create other promising functional oxides without time-consuming homogenization and high-temperature calcination powder procedures. PMID:28387324

  12. A simple rapid process for semi-automated brain extraction from magnetic resonance images of the whole mouse head.

    PubMed

    Delora, Adam; Gonzales, Aaron; Medina, Christopher S; Mitchell, Adam; Mohed, Abdul Faheem; Jacobs, Russell E; Bearer, Elaine L

    2016-01-15

    Magnetic resonance imaging (MRI) is a well-developed technique in neuroscience. Limitations in applying MRI to rodent models of neuropsychiatric disorders include the large number of animals required to achieve statistical significance, and the paucity of automation tools for the critical early step in processing, brain extraction, which prepares brain images for alignment and voxel-wise statistics. This novel timesaving automation of template-based brain extraction ("skull-stripping") is capable of quickly and reliably extracting the brain from large numbers of whole head images in a single step. The method is simple to install and requires minimal user interaction. This method is equally applicable to different types of MR images. Results were evaluated with Dice and Jacquard similarity indices and compared in 3D surface projections with other stripping approaches. Statistical comparisons demonstrate that individual variation of brain volumes are preserved. A downloadable software package not otherwise available for extraction of brains from whole head images is included here. This software tool increases speed, can be used with an atlas or a template from within the dataset, and produces masks that need little further refinement. Our new automation can be applied to any MR dataset, since the starting point is a template mask generated specifically for that dataset. The method reliably and rapidly extracts brain images from whole head images, rendering them useable for subsequent analytical processing. This software tool will accelerate the exploitation of mouse models for the investigation of human brain disorders by MRI. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A homogeneous biochemiluminescent assay for detection of influenza

    NASA Astrophysics Data System (ADS)

    Hui, Kwok Min; Li, Xiao Jing; Pan, Lu; Li, X. J.

    2015-05-01

    Current methods of rapid detection of influenza are based on detection of the nucleic acids or antigens of influenza viruses. Since influenza viruses constantly mutate leading to appearance of new strains or variants of viruses, these detection methods are susceptible to genetic changes in influenza viruses. Type A and B influenza viruses contain neuraminidase, an essential enzyme for virus replication which enables progeny influenza viruses leave the host cells to infect new cells. Here we describe an assay method, the homogeneous biochemiluminescent assay (HBA), for rapid detection of influenza by detecting viral neuraminidase activity. The assay mimics the light production process of a firefly: a viral neuraminidase specific substrate containing a luciferin moiety is cleaved in the presence of influenza virus to release luciferin, which becomes a substrate to firefly luciferase in a light production system. All reagents can be formulated in a single reaction mix so that the assay involves only one manual step, i.e., sample addition. Presence of Type A or B influenza virus in the sample leads to production of strong, stable and easily detectable light signal, which lasts for hours. Thus, this influenza virus assay is suitable for use in point-of-care settings.

  14. Electrochemical Detection in Stacked Paper Networks.

    PubMed

    Liu, Xiyuan; Lillehoj, Peter B

    2015-08-01

    Paper-based electrochemical biosensors are a promising technology that enables rapid, quantitative measurements on an inexpensive platform. However, the control of liquids in paper networks is generally limited to a single sample delivery step. Here, we propose a simple method to automate the loading and delivery of liquid samples to sensing electrodes on paper networks by stacking multiple layers of paper. Using these stacked paper devices (SPDs), we demonstrate a unique strategy to fully immerse planar electrodes by aqueous liquids via capillary flow. Amperometric measurements of xanthine oxidase revealed that electrochemical sensors on four-layer SPDs generated detection signals up to 75% higher compared with those on single-layer paper devices. Furthermore, measurements could be performed with minimal user involvement and completed within 30 min. Due to its simplicity, enhanced automation, and capability for quantitative measurements, stacked paper electrochemical biosensors can be useful tools for point-of-care testing in resource-limited settings. © 2015 Society for Laboratory Automation and Screening.

  15. Compatibility of pedigree-based and marker-based relationship matrices for single-step genetic evaluation.

    PubMed

    Christensen, Ole F

    2012-12-03

    Single-step methods provide a coherent and conceptually simple approach to incorporate genomic information into genetic evaluations. An issue with single-step methods is compatibility between the marker-based relationship matrix for genotyped animals and the pedigree-based relationship matrix. Therefore, it is necessary to adjust the marker-based relationship matrix to the pedigree-based relationship matrix. Moreover, with data from routine evaluations, this adjustment should in principle be based on both observed marker genotypes and observed phenotypes, but until now this has been overlooked. In this paper, I propose a new method to address this issue by 1) adjusting the pedigree-based relationship matrix to be compatible with the marker-based relationship matrix instead of the reverse and 2) extending the single-step genetic evaluation using a joint likelihood of observed phenotypes and observed marker genotypes. The performance of this method is then evaluated using two simulated datasets. The method derived here is a single-step method in which the marker-based relationship matrix is constructed assuming all allele frequencies equal to 0.5 and the pedigree-based relationship matrix is constructed using the unusual assumption that animals in the base population are related and inbred with a relationship coefficient γ and an inbreeding coefficient γ / 2. Taken together, this γ parameter and a parameter that scales the marker-based relationship matrix can handle the issue of compatibility between marker-based and pedigree-based relationship matrices. The full log-likelihood function used for parameter inference contains two terms. The first term is the REML-log-likelihood for the phenotypes conditional on the observed marker genotypes, whereas the second term is the log-likelihood for the observed marker genotypes. Analyses of the two simulated datasets with this new method showed that 1) the parameters involved in adjusting marker-based and pedigree-based relationship matrices can depend on both observed phenotypes and observed marker genotypes and 2) a strong association between these two parameters exists. Finally, this method performed at least as well as a method based on adjusting the marker-based relationship matrix. Using the full log-likelihood and adjusting the pedigree-based relationship matrix to be compatible with the marker-based relationship matrix provides a new and interesting approach to handle the issue of compatibility between the two matrices in single-step genetic evaluation.

  16. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation

    PubMed Central

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method. PMID:24899871

  17. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation.

    PubMed

    Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.

  18. Development of a multiple immunoaffinity column for simultaneous determination of multiple mycotoxins in feeds using UPLC-MS/MS.

    PubMed

    Hu, Xiaofeng; Hu, Rui; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Wang, Min

    2016-09-01

    A sensitive and specific immunoaffinity column to clean up and isolate multiple mycotoxins was developed along with a rapid one-step sample preparation procedure for ultra-performance liquid chromatography-tandem mass spectrometry analysis. Monoclonal antibodies against aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, zearalenone, ochratoxin A, sterigmatocystin, and T-2 toxin were coupled to microbeads for mycotoxin purification. We optimized a homogenization and extraction procedure as well as column loading and elution conditions to maximize recoveries from complex feed matrices. This method allowed rapid, simple, and simultaneous determination of mycotoxins in feeds with a single chromatographic run. Detection limits for these toxins ranged from 0.006 to 0.12 ng mL(-1), and quantitation limits ranged from 0.06 to 0.75 ng mL(-1). Concentration curves were linear from 0.12 to 40 μg kg(-1) with correlation coefficients of R (2) > 0.99. Intra-assay and inter-assay comparisons indicated excellent repeatability and reproducibility of the multiple immunoaffinity columns. As a proof of principle, 80 feed samples were tested and several contained multiple mycotoxins. This method is sensitive, rapid, and durable enough for multiple mycotoxin determinations that fulfill European Union and Chinese testing criteria.

  19. Bilateral step length estimation using a single inertial measurement unit attached to the pelvis

    PubMed Central

    2012-01-01

    Background The estimation of the spatio-temporal gait parameters is of primary importance in both physical activity monitoring and clinical contexts. A method for estimating step length bilaterally, during level walking, using a single inertial measurement unit (IMU) attached to the pelvis is proposed. In contrast to previous studies, based either on a simplified representation of the human gait mechanics or on a general linear regressive model, the proposed method estimates the step length directly from the integration of the acceleration along the direction of progression. Methods The IMU was placed at pelvis level fixed to the subject's belt on the right side. The method was validated using measurements from a stereo-photogrammetric system as a gold standard on nine subjects walking ten laps along a closed loop track of about 25 m, varying their speed. For each loop, only the IMU data recorded in a 4 m long portion of the track included in the calibrated volume of the SP system, were used for the analysis. The method takes advantage of the cyclic nature of gait and it requires an accurate determination of the foot contact instances. A combination of a Kalman filter and of an optimally filtered direct and reverse integration applied to the IMU signals formed a single novel method (Kalman and Optimally filtered Step length Estimation - KOSE method). A correction of the IMU displacement due to the pelvic rotation occurring in gait was implemented to estimate the step length and the traversed distance. Results The step length was estimated for all subjects with less than 3% error. Traversed distance was assessed with less than 2% error. Conclusions The proposed method provided estimates of step length and traversed distance more accurate than any other method applied to measurements obtained from a single IMU that can be found in the literature. In healthy subjects, it is reasonable to expect that, errors in traversed distance estimation during daily monitoring activity would be of the same order of magnitude of those presented. PMID:22316235

  20. The Kinetic Mechanism of Phenylalanine Hydroxylase: Intrinsic Binding and Rate Constants from Single Turnover Experiments†

    PubMed Central

    Roberts, Kenneth M.; Pavon, Jorge Alex; Fitzpatrick, Paul F.

    2013-01-01

    Phenylalanine hydroxylase (PheH) catalyzes the key step in the catabolism of dietary phenylalanine, its hydroxylation to tyrosine using tetrahydrobiopterin (BH4) and O2. A complete kinetic mechanism for PheH was determined by global analysis of single turnover data in the reaction of PheHΔ117, a truncated form of the enzyme lacking the N-terminal regulatory domain. Formation of the productive PheHΔ117-BH4-phenylalanine complex begins with the rapid binding of BH4 (Kd = 65 µM). Subsequent addition of phenylalanine to the binary complex to form the productive ternary complex (Kd = 130 µM) is approximately ten-fold slower. Both substrates can also bind to the free enzyme to form inhibitory binary complexes. O2 rapidly binds to the productive ternary complex; this is followed by formation of an unidentified intermediate, detectable as a decrease in absorbance at 340 nm, with a rate constant of 140 s−1. Formation of the 4a-hydroxypterin and Fe(IV)O intermediates is ten-fold slower and is followed by the rapid hydroxylation of the amino acid. Product release is the rate-determining step and largely determines kcat. Similar reactions using 6-methyltetrahydropterin indicate a preference for the physiological pterin during hydroxylation. PMID:23327364

  1. Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors.

    PubMed

    Heath, Robert M; Tanner, Michael G; Drysdale, Timothy D; Miki, Shigehito; Giannini, Vincenzo; Maier, Stefan A; Hadfield, Robert H

    2015-02-11

    Superconducting nanowire single photon detectors are rapidly emerging as a key infrared photon-counting technology. Two front-side-coupled silver dipole nanoantennas, simulated to have resonances at 1480 and 1525 nm, were fabricated in a two-step process. An enhancement of 50 to 130% in the system detection efficiency was observed when illuminating the antennas. This offers a pathway to increasing absorption into superconducting nanowires, creating larger active areas, and achieving more efficient detection at longer wavelengths.

  2. Rapid-Viability PCR Method for Detection of Live, Virulent Bacillus anthracis in Environmental Samples ▿

    PubMed Central

    Létant, Sonia E.; Murphy, Gloria A.; Alfaro, Teneile M.; Avila, Julie R.; Kane, Staci R.; Raber, Ellen; Bunt, Thomas M.; Shah, Sanjiv R.

    2011-01-01

    In the event of a biothreat agent release, hundreds of samples would need to be rapidly processed to characterize the extent of contamination and determine the efficacy of remediation activities. Current biological agent identification and viability determination methods are both labor- and time-intensive such that turnaround time for confirmed results is typically several days. In order to alleviate this issue, automated, high-throughput sample processing methods were developed in which real-time PCR analysis is conducted on samples before and after incubation. The method, referred to as rapid-viability (RV)-PCR, uses the change in cycle threshold after incubation to detect the presence of live organisms. In this article, we report a novel RV-PCR method for detection of live, virulent Bacillus anthracis, in which the incubation time was reduced from 14 h to 9 h, bringing the total turnaround time for results below 15 h. The method incorporates a magnetic bead-based DNA extraction and purification step prior to PCR analysis, as well as specific real-time PCR assays for the B. anthracis chromosome and pXO1 and pXO2 plasmids. A single laboratory verification of the optimized method applied to the detection of virulent B. anthracis in environmental samples was conducted and showed a detection level of 10 to 99 CFU/sample with both manual and automated RV-PCR methods in the presence of various challenges. Experiments exploring the relationship between the incubation time and the limit of detection suggest that the method could be further shortened by an additional 2 to 3 h for relatively clean samples. PMID:21764960

  3. Back to basics: an evaluation of NaOH and alternative rapid DNA extraction protocols for DNA barcoding, genotyping, and disease diagnostics from fungal and oomycete samples.

    PubMed

    Osmundson, Todd W; Eyre, Catherine A; Hayden, Katherine M; Dhillon, Jaskirn; Garbelotto, Matteo M

    2013-01-01

    The ubiquity, high diversity and often-cryptic manifestations of fungi and oomycetes frequently necessitate molecular tools for detecting and identifying them in the environment. In applications including DNA barcoding, pathogen detection from plant samples, and genotyping for population genetics and epidemiology, rapid and dependable DNA extraction methods scalable from one to hundreds of samples are desirable. We evaluated several rapid extraction methods (NaOH, Rapid one-step extraction (ROSE), Chelex 100, proteinase K) for their ability to obtain DNA of quantity and quality suitable for the following applications: PCR amplification of the multicopy barcoding locus ITS1/5.8S/ITS2 from various fungal cultures and sporocarps; single-copy microsatellite amplification from cultures of the phytopathogenic oomycete Phytophthora ramorum; probe-based P. ramorum detection from leaves. Several methods were effective for most of the applications, with NaOH extraction favored in terms of success rate, cost, speed and simplicity. Frozen dilutions of ROSE and NaOH extracts maintained PCR viability for over 32 months. DNA from rapid extractions performed poorly compared to CTAB/phenol-chloroform extracts for TaqMan diagnostics from tanoak leaves, suggesting that incomplete removal of PCR inhibitors is an issue for sensitive diagnostic procedures, especially from plants with recalcitrant leaf chemistry. NaOH extracts exhibited lower yield and size than CTAB/phenol-chloroform extracts; however, NaOH extraction facilitated obtaining clean sequence data from sporocarps contaminated by other fungi, perhaps due to dilution resulting from low DNA yield. We conclude that conventional extractions are often unnecessary for routine DNA sequencing or genotyping of fungi and oomycetes, and recommend simpler strategies where source materials and intended applications warrant such use. © 2012 Blackwell Publishing Ltd.

  4. Rapid Differentiation and In Situ Detection of 16 Sourdough Lactobacillus Species by Multiplex PCR

    PubMed Central

    Settanni, Luca; van Sinderen, Douwe; Rossi, Jone; Corsetti, Aldo

    2005-01-01

    A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies. PMID:15933001

  5. Requirements for rapid plasmid ColE1 copy number adjustments: a mathematical model of inhibition modes and RNA turnover rates.

    PubMed

    Paulsson, J; Nordström, K; Ehrenberg, M

    1998-01-01

    The random distribution of ColE1 plasmids between the daughter cells at cell division introduces large copy number variations. Statistic variation associated with limited copy number in single cells also causes fluctuations to emerge spontaneously during the cell cycle. Efficient replication control out of steady state is therefore important to tame such stochastic effects of small numbers. In the present model, the dynamic features of copy number control are divided into two parts: first, how sharply the replication frequency per plasmid responds to changes in the concentration of the plasmid-coded inhibitor, RNA I, and second, how tightly RNA I and plasmid concentrations are coupled. Single (hyperbolic)- and multiple (exponential)-step inhibition mechanisms are compared out of steady state and it is shown how the response in replication frequency depends on the mode of inhibition. For both mechanisms, sensitivity of inhibition is "bought" at the expense of a rapid turnover of a replication preprimer, RNA II. Conventional, single-step, inhibition kinetics gives a sloppy replication control even at high RNA II turnover rates, whereas multiple-step inhibition has the potential of working with unlimited precision. When plasmid concentration changes rapidly, RNA I must be degraded rapidly to be "up to date" with the change. Adjustment to steady state is drastically impaired when the turnover rate constants of RNA I decrease below certain thresholds, but is basically unaffected for a corresponding increase. Several features of copy number control that are shown to be crucial for the understanding of ColE1-type plasmids still remain to be experimentally characterized. It is shown how steady-state properties reflect dynamics at the heart of regulation and therefore can be used to discriminate between fundamentally different copy number control mechanisms. The experimental tests of the predictions made require carefully planned assays, and some suggestions for suitable experiments arise naturally from the present work. It is also discussed how the presence of the Rom protein may affect dynamic qualities of copy number control. Copyright 1998 Academic Press.

  6. Development and validation of a 48-target analytical method for high-throughput monitoring of genetically modified organisms.

    PubMed

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-05

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection.

  7. Development and Validation of A 48-Target Analytical Method for High-throughput Monitoring of Genetically Modified Organisms

    PubMed Central

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-01

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection. PMID:25556930

  8. A rapid method for the extraction and analysis of carotenoids and other hydrophobic substances suitable for systems biology studies with photosynthetic bacteria.

    PubMed

    Bóna-Lovász, Judit; Bóna, Aron; Ederer, Michael; Sawodny, Oliver; Ghosh, Robin

    2013-10-11

    A simple, rapid, and inexpensive extraction method for carotenoids and other non-polar compounds present in phototrophic bacteria has been developed. The method, which has been extensively tested on the phototrophic purple non-sulphur bacterium Rhodospirillum rubrum, is suitable for extracting large numbers of samples, which is common in systems biology studies, and yields material suitable for subsequent analysis using HPLC and mass spectroscopy. The procedure is particularly suitable for carotenoids and other terpenoids, including quinones, bacteriochlorophyll a and bacteriopheophytin a, and is also useful for the analysis of polar phospholipids. The extraction procedure requires only a single step extraction with a hexane/methanol/water mixture, followed by HPLC using a Spherisorb C18 column, with a mobile phase consisting of acetone-water and a non-linear gradient of 50%-100% acetone. The method was employed for examining the carotenoid composition observed during microaerophilic growth of R. rubrum strains, and was able to determine 18 carotenoids, 4 isoprenoid-quinones, bacteriochlorophyll a and bacteriopheophytin a as well as four different phosphatidylglycerol species of different acyl chain compositions. The analytical procedure was used to examine the dynamics of carotenoid biosynthesis in the major and minor pathways operating simultaneously in a carotenoid biosynthesis mutant of R. rubrum.

  9. Rapid all-in-one three-step immunoassay for non-instrumental detection of ochratoxin A in high-coloured herbs and spices.

    PubMed

    Goryacheva, Irina Yu; De Saeger, Sarah; Nesterenko, Irina S; Eremin, Sergei A; Van Peteghem, Carlos

    2007-05-15

    A feasible three-step method for ochratoxin A (OTA) rapid detection was developed and applied for OTA screening in high-coloured matrices such as liquorice, ginger, nutmeg, black pepper, white pepper and Capsicum spp. spices at a control level of 10mugkg(-1). The method was based on the clean-up tandem immunoassay column and involved three steps: extract application, washing step and application of chromogenic substrate. A significant simplification of the assay was reached by using an additional frit with conjugate inside the clean-up tandem immunoassay column. The time for analysis was less than 10min, including 5min for colour development. Results were visually evaluated as colour development for negative result or no colour development for positive result. The method was coupled with a simple methanol-based extraction. A total of 27 samples were screened for OTA with the proposed method. It was shown that two samples of red pepper and one sample of liquorice, pili-pili, chilli and cayenne were contaminated with OTA above the control level at 10mugkg(-1), but none of tested ginger, nutmeg, black pepper and white pepper.

  10. A high precision method for length-based separation of carbon nanotubes using bio-conjugation, SDS-PAGE and silver staining.

    PubMed

    Borzooeian, Zahra; Taslim, Mohammad E; Ghasemi, Omid; Rezvani, Saina; Borzooeian, Giti; Nourbakhsh, Amirhasan

    2018-01-01

    Parametric separation of carbon nanotubes, especially based on their length is a challenge for a number of nano-tech researchers. We demonstrate a method to combine bio-conjugation, SDS-PAGE, and silver staining in order to separate carbon nanotubes on the basis of length. Egg-white lysozyme, conjugated covalently onto the single-walled carbon nanotubes surfaces using carbodiimide method. The proposed conjugation of a biomolecule onto the carbon nanotubes surfaces is a novel idea and a significant step forward for creating an indicator for length-based carbon nanotubes separation. The conjugation step was followed by SDS-PAGE and the nanotube fragments were precisely visualized using silver staining. This high precision, inexpensive, rapid and simple separation method obviates the need for centrifugation, additional chemical analyses, and expensive spectroscopic techniques such as Raman spectroscopy to visualize carbon nanotube bands. In this method, we measured the length of nanotubes using different image analysis techniques which is based on a simplified hydrodynamic model. The method has high precision and resolution and is effective in separating the nanotubes by length which would be a valuable quality control tool for the manufacture of carbon nanotubes of specific lengths in bulk quantities. To this end, we were also able to measure the carbon nanotubes of different length, produced from different sonication time intervals.

  11. Single-step preparation of selected biological fluids for the high performance liquid chromatographic analysis of fat-soluble vitamins and antioxidants.

    PubMed

    Lazzarino, Giacomo; Longo, Salvatore; Amorini, Angela Maria; Di Pietro, Valentina; D'Urso, Serafina; Lazzarino, Giuseppe; Belli, Antonio; Tavazzi, Barbara

    2017-12-08

    Fat-soluble vitamins and antioxidants are of relevance in health and disease. Current methods to extract these compounds from biological fluids mainly need use of multi-steps and multi organic solvents. They are time-consuming and difficult to apply to treat simultaneously large sample number. We here describe a single-step, one solvent extraction of fat-soluble vitamins and antioxidants from biological fluids, and the chromatographic separation of all-trans-retinoic acid, 25-hydroxycholecalciferol, all-trans-retinol, astaxanthin, lutein, zeaxanthin, trans-β-apo-8'-carotenal, γ-tocopherol, β-cryptoxanthin, α-tocopherol, phylloquinone, lycopene, α-carotene, β-carotene and coenzyme Q 10 . Extraction is obtained by adding one volume of biological fluid to two acetonitrile volumes, vortexing for 60s and incubating for 60min at 37°C under agitation. HPLC separation occurs in 30min using Hypersil C18, 100×4.6mm, 5μm particle size column, gradient from 70% methanol+30% H 2 O to 100% acetonitrile, flow rate of 1.0ml/min and 37°C column temperature. Compounds are revealed using highly sensitive UV-VIS diode array detector. The HPLC method suitability was assessed in terms of sensitivity, reproducibility and recovery. Using the present extraction and chromatographic conditions we obtained values of the fat-soluble vitamins and antioxidants in serum from 50 healthy controls similar to those found in literature. Additionally, the profile of these compounds was also measured in seminal plasma from 20 healthy fertile donors. Results indicate that this simple, rapid and low cost sample processing is suitable to extract fat-soluble vitamins and antioxidants from biological fluids and can be applied in clinical and nutritional studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Two-step fabrication of single-layer rectangular SnSe flakes

    NASA Astrophysics Data System (ADS)

    Jiang, Jizhou; Wong, Calvin Pei Yu; Zou, Jing; Li, Shisheng; Wang, Qixing; Chen, Jianyi; Qi, Dianyu; Wang, Hongyu; Eda, Goki; Chua, Daniel H. C.; Shi, Yumeng; Zhang, Wenjing; Thye Shen Wee, Andrew

    2017-06-01

    Recent findings about ultrahigh thermoelectric performances in SnSe single crystals have stimulated research on this binary semiconductor material. Furthermore, single-layer SnSe is an interesting analogue of phosphorene, with potential applications in two-dimensional (2D) nanoelectronics. Although significant advances in the synthesis of SnSe nanocrystals have been made, fabrication of well-defined large-sized single-layer SnSe flakes in a facile way still remains a challenge. The growth of single-layer rectangular SnSe flakes with a thickness of ~6.8 Å and lateral dimensions of about 30 µm  ×  50 µm is demonstrated by a two-step synthesis method, where bulk rectangular SnSe flakes were synthesized first by a vapor transport deposition method followed by a nitrogen etching technique to fabricate single-layer rectangular SnSe flakes in an atmospheric pressure system. The as-obtained rectangular SnSe flakes exhibited a pure crystalline phase oriented along the a-axis direction. Field-effect transistor devices fabricated on individual single-layer rectangular SnSe flakes using gold electrodes exhibited p-doped ambipolar behavior and a hole mobility of about 0.16 cm2 V-1 s-1. This two-step fabrication method can be helpful for growing other similar 2D large-sized single-layer materials.

  13. Single-step affinity purification for fungal proteomics.

    PubMed

    Liu, Hui-Lin; Osmani, Aysha H; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B; De Souza, Colin P; Osmani, Stephen A

    2010-05-01

    A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.

  14. High-throughput amplification of mature microRNAs in uncharacterized animal models using polyadenylated RNA and stem-loop reverse transcription polymerase chain reaction.

    PubMed

    Biggar, Kyle K; Wu, Cheng-Wei; Storey, Kenneth B

    2014-10-01

    This study makes a significant advancement on a microRNA amplification technique previously used for expression analysis and sequencing in animal models without annotated mature microRNA sequences. As research progresses into the post-genomic era of microRNA prediction and analysis, the need for a rapid and cost-effective method for microRNA amplification is critical to facilitate wide-scale analysis of microRNA expression. To facilitate this requirement, we have reoptimized the design of amplification primers and introduced a polyadenylation step to allow amplification of all mature microRNAs from a single RNA sample. Importantly, this method retains the ability to sequence reverse transcription polymerase chain reaction (RT-PCR) products, validating microRNA-specific amplification. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Development of a two-step high-resolution melting (HRM) analysis for screening sequence variants associated with resistance to the QoIs, benzimidazoles and dicarboximides in airborne inoculum of Botrytis cinerea.

    PubMed

    Chatzidimopoulos, Michael; Ganopoulos, Ioannis; Vellios, Evangelos; Madesis, Panagiotis; Tsaftaris, Athanasios; Pappas, Athanassios C

    2014-11-01

    A rapid, high-resolution melting (HRM) analysis protocol was developed to detect sequence variations associated with resistance to the QoIs, benzimidazoles and dicarboximides in Botrytis cinerea airborne inoculum. HRM analysis was applied directly in fungal DNA collected from air samplers with selective medium. Three and five different genotypes were detected and classified according to their melting profiles in BenA and bos1 genes associated with resistance to benzimidazoles and dicarboximides, respectively. The sensitivity of the methodology was evident in the case of the QoIs, where genotypes varying either by a single nucleotide polymorphism or an additional 1205-bp intron were separated accurately with a single pair of primers. The developed two-step protocol was completed in 82 min and showed reduced variation in the melting curves' formation. HRM analysis rapidly detected the major mutations found in greenhouse strains providing accurate data for successfully controlling grey mould. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Rapid determination of actinides in asphalt samples

    DOE PAGES

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organicsmore » present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.« less

  17. Development and Evaluation of a Novel Loop-Mediated Isothermal Amplification Method for Rapid Detection of Severe Acute Respiratory Syndrome Coronavirus

    PubMed Central

    Thai, Hong Thi Cam; Le, Mai Quynh; Vuong, Cuong Duc; Parida, Manmohan; Minekawa, Harumi; Notomi, Tsugunori; Hasebe, Futoshi; Morita, Kouichi

    2004-01-01

    The development and evaluation of a one-step single-tube accelerated real-time quantitative reverse transcription (RT) loop-mediated isothermal amplification (LAMP) assay is reported for rapid detection of the severe acute respiratory syndrome coronavirus (SARS-CoV) replicase gene. A total of 49 samples (15 throat washes, 13 throat swabs, and 21 combined throat and nasal swabs) collected from patients admitted to the Hanoi-French and Ninhbinh hospitals in Vietnam during the SARS epidemic were evaluated and compared to conventional RT-PCR. The RT-LAMP assay demonstrated 100-fold-greater sensitivity, with a detection limit of 0.01 PFU. The sensitivity and specificity of RT-LAMP assay for detecting viral RNA in clinical specimens with regard to RT-PCR were 100 and 87%, respectively. The specificity of the RT-LAMP assay was further validated by restriction analysis as well as nucleotide sequencing of the amplified product. The concentration of virus in most of the clinical samples was 0.1 PFU (0.1 to 102 PFU), as determined from the standard curve of SARS RT-LAMP and based on the time of positivity. The assay procedure is quite simple, wherein the amplification is carried out in a single tube under isothermal conditions at 63°C, and the result can be obtained in less than 1 h (as early as 11 min). Thus, the RT-LAMP assay reported here has the advantages of rapid amplification, simple operation, and easy detection and will be useful for rapid and reliable clinical diagnosis of SARS-CoV in developing countries. PMID:15131154

  18. Applied Genomics: Data Mining Reveals Species-Specific Malaria Diagnostic Targets More Sensitive than 18S rRNA▿†‡

    PubMed Central

    Demas, Allison; Oberstaller, Jenna; DeBarry, Jeremy; Lucchi, Naomi W.; Srinivasamoorthy, Ganesh; Sumari, Deborah; Kabanywanyi, Abdunoor M.; Villegas, Leopoldo; Escalante, Ananias A.; Kachur, S. Patrick; Barnwell, John W.; Peterson, David S.; Udhayakumar, Venkatachalam; Kissinger, Jessica C.

    2011-01-01

    Accurate and rapid diagnosis of malaria infections is crucial for implementing species-appropriate treatment and saving lives. Molecular diagnostic tools are the most accurate and sensitive method of detecting Plasmodium, differentiating between Plasmodium species, and detecting subclinical infections. Despite available whole-genome sequence data for Plasmodium falciparum and P. vivax, the majority of PCR-based methods still rely on the 18S rRNA gene targets. Historically, this gene has served as the best target for diagnostic assays. However, it is limited in its ability to detect mixed infections in multiplex assay platforms without the use of nested PCR. New diagnostic targets are needed. Ideal targets will be species specific, highly sensitive, and amenable to both single-step and multiplex PCRs. We have mined the genomes of P. falciparum and P. vivax to identify species-specific, repetitive sequences that serve as new PCR targets for the detection of malaria. We show that these targets (Pvr47 and Pfr364) exist in 14 to 41 copies and are more sensitive than 18S rRNA when utilized in a single-step PCR. Parasites are routinely detected at levels of 1 to 10 parasites/μl. The reaction can be multiplexed to detect both species in a single reaction. We have examined 7 P. falciparum strains and 91 P. falciparum clinical isolates from Tanzania and 10 P. vivax strains and 96 P. vivax clinical isolates from Venezuela, and we have verified a sensitivity and specificity of ∼100% for both targets compared with a nested 18S rRNA approach. We show that bioinformatics approaches can be successfully applied to identify novel diagnostic targets and improve molecular methods for pathogen detection. These novel targets provide a powerful alternative molecular diagnostic method for the detection of P. falciparum and P. vivax in conventional or multiplex PCR platforms. PMID:21525225

  19. Solubilization of phosphorus from phosphate rocks with Acidithiobacillus thiooxidans following a growing-then-recovery process.

    PubMed

    Calle-Castañeda, Susana M; Márquez-Godoy, Marco A; Hernández-Ortiz, Juan P

    2017-12-29

    Phosphorus is an essential nutrient for the synthesis of biomolecules and is particularly important in agriculture, as soils must be constantly supplemented with its inorganic form to ensure high yields and productivity. In this paper, we propose a process to solubilize phosphorus from phosphate rocks, where Acidithiobacillus thiooxidans cultures are pre-cultivated to foster the acidic conditions for bioleaching-two-step "growing-then-recovery"-. Our method solubilizes 100% of phosphorus, whereas the traditional process without pre-cultivation-single-step "growing-and-recovery"-results in a maximum of 56% solubilization. As a proof of principle, we demonstrate that even at low concentrations of the phosphate rock, 1% w/v, the bacterial culture is unviable and biological activity is not observed during the single-step process. On the other hand, in our method, the bacteria are grown without the rock, ensuring high acid production. Once pH levels are below 0.7, the mineral is added to the culture, resulting in high yields of biological solubilization. According to the Fourier Transform Infrared Spectroscopy spectrums, gypsum is the dominant phosphate phase after both the single- and two-step methods. However, calcite and fluorapatite, dominant in the un-treated rock, are still present after the single-step, highlighting the differences between the chemical and the biological methods. Our process opens new avenues for biotechnologies to recover phosphorus in tropical soils and in low-grade phosphate rock reservoirs.

  20. Fuel cell system logic for differentiating between rapid and normal shutdown commands

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2000-01-01

    A method of controlling the operation of a fuel cell system wherein each shutdown command for the system is subjected to decision logic which determines whether the command should be a normal shutdown command or rapid shutdown command. If the logic determines that the shutdown command should be a normal shutdown command, then the system is shutdown in a normal step-by-step process in which the hydrogen stream is consumed within the system. If the logic determines that the shutdown command should be a rapid shutdown command, the hydrogen stream is removed from the system either by dumping to atmosphere or routing to storage.

  1. Two-step purification method of vitellogenin from three teleost fish species: rainbow trout (Oncorhynchus mykiss), gudgeon (Gobio gobio) and chub (Leuciscus cephalus).

    PubMed

    Brion, F; Rogerieux, F; Noury, P; Migeon, B; Flammarion, P; Thybaud, E; Porcher, J M

    2000-01-14

    A two-step purification protocol was developed to purify rainbow trout (Oncorhynchus mykiss) vitellogenin (Vtg) and was successfully applied to Vtg of chub (Leuciscus cephalus) and gudgeon (Gobio gobio). Capture and intermediate purification were performed by anion-exchange chromatography on a Resource Q column and a polishing step was performed by gel permeation chromatography on Superdex 200 column. This method is a rapid two-step purification procedure that gave a pure solution of Vtg as assessed by silver staining electrophoresis and immunochemical characterisation.

  2. Use of causative variants and SNP weighting in a single-step GBLUP context

    USDA-ARS?s Scientific Manuscript database

    Much effort has been recently put into identifying causative quantitative trait nucleotides (QTN) in animal breeding, aiming genomic prediction. Among the genomic methods available, single-step GBLUP (ssGBLUP) became the choice because of its simplicity and potentially higher accuracy. When QTN are ...

  3. Research on Knowledge-Based Optimization Method of Indoor Location Based on Low Energy Bluetooth

    NASA Astrophysics Data System (ADS)

    Li, C.; Li, G.; Deng, Y.; Wang, T.; Kang, Z.

    2017-09-01

    With the rapid development of LBS (Location-based Service), the demand for commercialization of indoor location has been increasing, but its technology is not perfect. Currently, the accuracy of indoor location, the complexity of the algorithm, and the cost of positioning are hard to be simultaneously considered and it is still restricting the determination and application of mainstream positioning technology. Therefore, this paper proposes a method of knowledge-based optimization of indoor location based on low energy Bluetooth. The main steps include: 1) The establishment and application of a priori and posterior knowledge base. 2) Primary selection of signal source. 3) Elimination of positioning gross error. 4) Accumulation of positioning knowledge. The experimental results show that the proposed algorithm can eliminate the signal source of outliers and improve the accuracy of single point positioning in the simulation data. The proposed scheme is a dynamic knowledge accumulation rather than a single positioning process. The scheme adopts cheap equipment and provides a new idea for the theory and method of indoor positioning. Moreover, the performance of the high accuracy positioning results in the simulation data shows that the scheme has a certain application value in the commercial promotion.

  4. Maximum step length: relationships to age and knee and hip extensor capacities.

    PubMed

    Schulz, Brian W; Ashton-Miller, James A; Alexander, Neil B

    2007-07-01

    Maximum Step Length may be used to identify older adults at increased risk for falls. Since leg muscle weakness is a risk factor for falls, we tested the hypotheses that maximum knee and hip extension speed, strength, and power capacities would significantly correlate with Maximum Step Length and also that the "step out and back" Maximum Step Length [Medell, J.L., Alexander, N.B., 2000. A clinical measure of maximal and rapid stepping in older women. J. Gerontol. A Biol. Sci. Med. Sci. 55, M429-M433.] would also correlate with the Maximum Step Length of its two sub-tasks: stepping "out only" and stepping "back only". These sub-tasks will be referred to as versions of Maximum Step Length. Unimpaired younger (N=11, age=24[3]years) and older (N=10, age=73[5]years) women performed the above three versions of Maximum Step Length. Knee and hip extension speed, strength, and power capacities were determined on a separate day and regressed on Maximum Step Length and age group. Version and practice effects were quantified and subjective impressions of test difficulty recorded. Hypotheses were tested using linear regressions, analysis of variance, and Fisher's exact test. Maximum Step Length explained 6-22% additional variance in knee and hip extension speed, strength, and power capacities after controlling for age group. Within- and between-block and test-retest correlation values were high (>0.9) for all test versions. Shorter Maximum Step Lengths are associated with reduced knee and hip extension speed, strength, and power capacities after controlling for age. A single out-and-back step of maximal length is a feasible, rapid screening measure that may provide insight into underlying functional impairment, regardless of age.

  5. Amplification of ST50 gene using dry-reagent-based polymerase chain reaction for the detection of Salmonella typhi.

    PubMed

    Aziah, Ismail; Ravichandran, Manickam; Ismail, Asma

    2007-12-01

    Conventional polymerase chain reaction (PCR) testing requires many pipetting steps and has to be transported and stored in cold chain. To overcome these limitations, we designed a ready-to-use PCR test for Salmonella typhi using PCR reagents, primers against the ST50 gene of S. typhi, a built-in internal amplification control (IAC), and gel loading dye mixed and freeze-dried in a single tube. The 2-step dry-reagent-based assay was used to amplify a 1238-bp target gene and an 810-bp IAC gene from 73 BACTEC blood culture broths (33 true positives for S. typhi and 40 true negatives for non-S. typhi). The sensitivity, specificity, positive predictive value, and negative predictive value of the PCR assay were 87.9%, 100%, 100%, and 90.9%, respectively. We suggest that this rapid 2-step PCR test could be used for the rapid diagnosis of typhoid fever.

  6. Rapid Identification of Mycobacteria and Drug-Resistant Mycobacterium tuberculosis by Use of a Single Multiplex PCR and DNA Sequencing

    PubMed Central

    Pérez-Osorio, Ailyn C.; Boyle, David S.; Ingham, Zachary K.; Ostash, Alla; Gautom, Romesh K.; Colombel, Craig; Houze, Yolanda

    2012-01-01

    Tuberculosis (TB) remains a significant global health problem for which rapid diagnosis is critical to both treatment and control. This report describes a multiplex PCR method, the Mycobacterial IDentification and Drug Resistance Screen (MID-DRS) assay, which allows identification of members of the Mycobacterium tuberculosis complex (MTBC) and the simultaneous amplification of targets for sequencing-based drug resistance screening of rifampin-resistant (rifampinr), isoniazidr, and pyrazinamider TB. Additionally, the same multiplex reaction amplifies a specific 16S rRNA gene target for rapid identification of M. avium complex (MAC) and a region of the heat shock protein 65 gene (hsp65) for further DNA sequencing-based confirmation or identification of other mycobacterial species. Comparison of preliminary results generated with MID-DRS versus culture-based methods for a total of 188 bacterial isolates demonstrated MID-DRS sensitivity and specificity as 100% and 96.8% for MTBC identification; 100% and 98.3% for MAC identification; 97.4% and 98.7% for rifampinr TB identification; 60.6% and 100% for isoniazidr TB identification; and 75.0% and 98.1% for pyrazinamider TB identification. The performance of the MID-DRS was also tested on acid-fast-bacterium (AFB)-positive clinical specimens, resulting in sensitivity and specificity of 100% and 78.6% for detection of MTBC and 100% and 97.8% for detection of MAC. In conclusion, use of the MID-DRS reduces the time necessary for initial identification and drug resistance screening of TB specimens to as little as 2 days. Since all targets needed for completing the assay are included in a single PCR amplification step, assay costs, preparation time, and risks due to user errors are also reduced. PMID:22162548

  7. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences.

    PubMed

    Xiong, Ai-Sheng; Yao, Quan-Hong; Peng, Ri-He; Li, Xian; Fan, Hui-Qin; Cheng, Zong-Ming; Li, Yi

    2004-07-07

    Chemical synthesis of DNA sequences provides a powerful tool for modifying genes and for studying gene function, structure and expression. Here, we report a simple, high-fidelity and cost-effective PCR-based two-step DNA synthesis (PTDS) method for synthesis of long segments of DNA. The method involves two steps. (i) Synthesis of individual fragments of the DNA of interest: ten to twelve 60mer oligonucleotides with 20 bp overlap are mixed and a PCR reaction is carried out with high-fidelity DNA polymerase Pfu to produce DNA fragments that are approximately 500 bp in length. (ii) Synthesis of the entire sequence of the DNA of interest: five to ten PCR products from the first step are combined and used as the template for a second PCR reaction using high-fidelity DNA polymerase pyrobest, with the two outermost oligonucleotides as primers. Compared with the previously published methods, the PTDS method is rapid (5-7 days) and suitable for synthesizing long segments of DNA (5-6 kb) with high G + C contents, repetitive sequences or complex secondary structures. Thus, the PTDS method provides an alternative tool for synthesizing and assembling long genes with complex structures. Using the newly developed PTDS method, we have successfully obtained several genes of interest with sizes ranging from 1.0 to 5.4 kb.

  8. Inferring subunit stoichiometry from single molecule photobleaching

    PubMed Central

    2013-01-01

    Single molecule photobleaching is a powerful tool for determining the stoichiometry of protein complexes. By attaching fluorophores to proteins of interest, the number of associated subunits in a complex can be deduced by imaging single molecules and counting fluorophore photobleaching steps. Because some bleaching steps might be unobserved, the ensemble of steps will be binomially distributed. In this work, it is shown that inferring the true composition of a complex from such data is nontrivial because binomially distributed observations present an ill-posed inference problem. That is, a unique and optimal estimate of the relevant parameters cannot be extracted from the observations. Because of this, a method has not been firmly established to quantify confidence when using this technique. This paper presents a general inference model for interpreting such data and provides methods for accurately estimating parameter confidence. The formalization and methods presented here provide a rigorous analytical basis for this pervasive experimental tool. PMID:23712552

  9. The Use of Rapid Review Methods for the U.S. Preventive Services Task Force.

    PubMed

    Patnode, Carrie D; Eder, Michelle L; Walsh, Emily S; Viswanathan, Meera; Lin, Jennifer S

    2018-01-01

    Rapid review products are intended to synthesize available evidence in a timely fashion while still meeting the needs of healthcare decision makers. Various methods and products have been applied for rapid evidence syntheses, but no single approach has been uniformly adopted. Methods to gain efficiency and compress the review time period include focusing on a narrow clinical topic and key questions; limiting the literature search; performing single (versus dual) screening of abstracts and full-text articles for relevance; and limiting the analysis and synthesis. In order to maintain the scientific integrity, including transparency, of rapid evidence syntheses, it is imperative that procedures used to streamline standard systematic review methods are prespecified, based on sound review principles and empiric evidence when possible, and provide the end user with an accurate and comprehensive synthesis. The collection of clinical preventive service recommendations maintained by the U.S. Preventive Services Task Force, along with its commitment to rigorous methods development, provide a unique opportunity to refine, implement, and evaluate rapid evidence synthesis methods and add to an emerging evidence base on rapid review methods. This paper summarizes the U.S. Preventive Services Task Force's use of rapid review methodology, its criteria for selecting topics for rapid evidence syntheses, and proposed methods to streamline the review process. Copyright © 2018 American Journal of Preventive Medicine. All rights reserved.

  10. RAPID DETERMINATION OF RA-226 IN ENVIRONMENTAL SAMPLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, S.

    2012-01-03

    A new rapid method for the determination of {sup 226}Ra in environmental samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for emergency response or routine sample analyses. The need for rapid analyses in the event of a Radiological Dispersive Device or Improvised Nuclear Device event is well-known. In addition, the recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid analyses for radionuclides in environmental samples in the event of a nuclear accident. {sup 226}Ra (T1/2 = 1,620 years) is one of the mostmore » toxic of the long-lived alpha-emitters present in the environment due to its long life and its tendency to concentrate in bones, which increases the internal radiation dose of individuals. The new method to determine {sup 226}Ra in environmental samples utilizes a rapid sodium hydroxide fusion method for solid samples, calcium carbonate precipitation to preconcentrate Ra, and rapid column separation steps to remove interferences. The column separation process uses cation exchange resin to remove large amounts of calcium, Sr Resin to remove barium and Ln Resin as a final purification step to remove {sup 225}Ac and potential interferences. The purified {sup 226}Ra sample test sources are prepared using barium sulfate microprecipitation in the presence of isopropanol for counting by alpha spectrometry. The method showed good chemical recoveries and effective removal of interferences. The determination of {sup 226}Ra in environmental samples can be performed in less than 16 h for vegetation, concrete, brick, soil, and air filter samples with excellent quality for emergency or routine analyses. The sample preparation work takes less than 6 h. {sup 225}Ra (T1/2 = 14.9 day) tracer is used and the {sup 225}Ra progeny {sup 217}At is used to determine chemical yield via alpha spectrometry. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory radium particles are effectively digested. The preconcentration and column separation steps can also be applied to aqueous samples with good results.« less

  11. A semi-automated method for rapid detection of ripple events on interictal voltage discharges in the scalp electroencephalogram

    PubMed Central

    Chu, Catherine. J.; Chan, Arthur; Song, Dan; Staley, Kevin J.; Stufflebeam, Steven M.; Kramer, Mark A.

    2017-01-01

    Summary Background High frequency oscillations are emerging as a clinically important indicator of epileptic networks. However, manual detection of these high frequency oscillations is difficult, time consuming, and subjective, especially in the scalp EEG, thus hindering further clinical exploration and application. Semi-automated detection methods augment manual detection by reducing inspection to a subset of time intervals. We propose a new method to detect high frequency oscillations that co-occur with interictal epileptiform discharges. New Method The new method proceeds in two steps. The first step identifies candidate time intervals during which high frequency activity is increased. The second step computes a set of seven features for each candidate interval. These features require that the candidate event contain a high frequency oscillation approximately sinusoidal in shape, with at least three cycles, that co-occurs with a large amplitude discharge. Candidate events that satisfy these features are stored for validation through visual analysis. Results We evaluate the detector performance in simulation and on ten examples of scalp EEG data, and show that the proposed method successfully detects spike-ripple events, with high positive predictive value, low false positive rate, and high intra-rater reliability. Comparison with Existing Method The proposed method is less sensitive than the existing method of visual inspection, but much faster and much more reliable. Conclusions Accurate and rapid detection of high frequency activity increases the clinical viability of this rhythmic biomarker of epilepsy. The proposed spike-ripple detector rapidly identifies candidate spike-ripple events, thus making clinical analysis of prolonged, multielectrode scalp EEG recordings tractable. PMID:27988323

  12. A Concise Synthesis of the Erythrina Alkaloid 3–Demethoxyerythratidinone via Combined Rhodium Catalysis

    PubMed Central

    Joo, Jung Min; David, Ramoncito A.; Yuan, Yu; Lee, Chulbom

    2010-01-01

    The total synthesis of the erythrina alkaloid 3–demethoxyerythratidinone has been achieved via a strategy based on combined rhodium catalysis. The catalytic tandem cyclization effected by the interplay of alkynyl and vinylidene rhodium species allows for efficient access to the A and B rings of the tetracyclic erythrinane skeleton in a single step. The synthesis also features rapid preparation of the requisite precursor for the double ring closure and thus has been completed in only 7 total steps in 41% overall yield. PMID:21090648

  13. Rapid Ovary Mass-Isolation (ROMi) to Obtain Large Quantities of Drosophila Egg Chambers for Fluorescent In Situ Hybridization.

    PubMed

    Jambor, Helena; Mejstrik, Pavel; Tomancak, Pavel

    2016-01-01

    Isolation of large quantities of tissue from organisms is essential for many techniques such as genome-wide screens and biochemistry. However, obtaining large quantities of tissues or cells is often the rate-limiting step when working in vivo. Here, we present a rapid method that allows the isolation of intact, single egg chambers at various developmental stages from ovaries of adult female Drosophila flies. The isolated egg chambers are amenable for a variety of procedures such as fluorescent in situ hybridization, RNA isolation, extract preparation, or immunostaining. Isolation of egg chambers from adult flies can be completed in 5 min and results, depending on the input amount of flies, in several milliliters of material. The isolated egg chambers are then further processed depending on the exact requirements of the subsequent application. We describe high-throughput in situ hybridization in 96-well plates as example application for the mass-isolated egg chambers.

  14. Rapid wasted-free microfluidic fabrication based on ink-jet approach for microfluidic sensing applications

    NASA Astrophysics Data System (ADS)

    Jarujareet, Ungkarn; Amarit, Rattasart; Sumriddetchkajorn, Sarun

    2016-11-01

    Realizing that current microfluidic chip fabrication techniques are time consuming and labor intensive as well as always have material leftover after chip fabrication, this research work proposes an innovative approach for rapid microfluidic chip production. The key idea relies on a combination of a widely-used inkjet printing method and a heat-based polymer curing technique with an electronic-mechanical control, thus eliminating the need of masking and molds compared to typical microfluidic fabrication processes. In addition, as the appropriate amount of polymer is utilized during printing, there is much less amount of material wasted. Our inkjet-based microfluidic printer can print out the desired microfluidic chip pattern directly onto a heated glass surface, where the printed polymer is suddenly cured. Our proof-of-concept demonstration for widely-used single-flow channel, Y-junction, and T-junction microfluidic chips shows that the whole microfluidic chip fabrication process requires only 3 steps with a fabrication time of 6 minutes.

  15. Microfluidic devices with permeable polymer barriers for capture and transport of biomolecules and cells.

    PubMed

    Lee, Ho Suk; Chu, Wai Keung; Zhang, Kun; Huang, Xiaohua

    2013-09-07

    We report a method for fabricating permeable polymer microstructure barriers in polydimethylsiloxane (PDMS) microfluidic devices and the use of the devices to capture and transport DNA and cells. The polymer microstructure in a desired location in a fluidic channel is formed in situ by the polymerization of acrylamide and polyethylene diacrylate cross-linker (PEG-DA) monomer in a solution which is trapped in the location using a pair of PDMS valves. The porous polymer microstructure provides a mechanical barrier to convective fluid flow in the channel or between two microfluidic chambers while it still conducts ions or small charged species under an electric field, allowing for the rapid capture and transport of biomolecules and cells by electrophoresis. We have demonstrated the application of the devices for the rapid capture and efficient release of bacteriophage λ genomic DNA, solution exchange and for the transport and capture of HeLa cells. Our devices will enable the multi-step processing of biomolecules and cells or individual cells within a single microfluidic chamber.

  16. Procedure for normalization of cDNA libraries

    DOEpatents

    Bonaldo, Maria DeFatima; Soares, Marcelo Bento

    1997-01-01

    This invention provides a method to normalize a cDNA library constructed in a vector capable of being converted to single-stranded circles and capable of producing complementary nucleic acid molecules to the single-stranded circles comprising: (a) converting the cDNA library in single-stranded circles; (b) generating complementary nucleic acid molecules to the single-stranded circles; (c) hybridizing the single-stranded circles converted in step (a) with complementary nucleic acid molecules of step (b) to produce partial duplexes to an appropriate Cot; (e) separating the unhybridized single-stranded circles from the hybridized single-stranded circles, thereby generating a normalized cDNA library.

  17. A temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    NASA Astrophysics Data System (ADS)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Sørensen, Karen S.; Skov, Julia; Sun, Yi; Duong Bang, Dang; Pedersen, Michael E.; Hansen, Mikkel F.; Wolff, Anders

    2013-07-01

    We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature-dependent fluorescence signal from Rhodamine B. The method was validated with the PCR amplification of mecA gene (162 bp) from methicillin-resistant Staphylococcus aureus bacterium (MRSA), where the time for 30 cycles was reduced from 50 min (without over- and undershooting) to 20 min.

  18. Single-step affinity and cost-effective purification of recombinant proteins using the Sepharose-binding lectin-tag from the mushroom Laetiporus sulphureus as fusion partner.

    PubMed

    Li, Xiao-Jing; Liu, Jin-Ling; Gao, Dong-Sheng; Wan, Wen-Yan; Yang, Xia; Li, Yong-Tao; Chang, Hong-Tao; Chen, Lu; Wang, Chuan-Qing; Zhao, Jun

    2016-03-01

    Previous research showed that a lectin from the mushroom Laetiporus sulphureus, designed LSL, bound to Sepharose and could be eluted by lactose. In this study, by taking advantage of the strong affinity of LSL-tag for Sepharose, we developed a single-step purification method for LSL-tagged fusion proteins. We utilized unmodified Sepharose-4B as a specific adsorbent and 0.2 M lactose solution as an elution buffer. Fusion proteins of LSL-tag and porcine circovirus capsid protein, designated LSL-Cap was recovered with purity of 90 ± 4%, and yield of 87 ± 3% from crude extract of recombinant Escherichia coli. To enable the remove of LSL-tag, tobacco etch virus (TEV) protease recognition sequence was placed downstream of LSL-tag in the expression vector, and LSL-tagged TEV protease, designated LSL-TEV, was also expressed in E. coli., and was recovered with purity of 82 ± 5%, and yield of 85 ± 2% from crude extract of recombinant E. coli. After digestion of LSL-tagged recombinant proteins with LSL-TEV, the LSL tag and LSL-TEV can be easily removed by passing the digested products through the Sepharose column. It is of worthy noting that the Sepharose can be reused after washing with PBS. The LSL affinity purification method enables rapid and inexpensive purification of LSL-tagged fusion proteins and scale-up production of native proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Microwave-Accelerated Method for Ultra-Rapid Extraction of Neisseria gonorrhoeae DNA for Downstream Detection

    PubMed Central

    Melendez, Johan H.; Santaus, Tonya M.; Brinsley, Gregory; Kiang, Daniel; Mali, Buddha; Hardick, Justin; Gaydos, Charlotte A.; Geddes, Chris D.

    2016-01-01

    Nucleic acid-based detection of gonorrhea infections typically require a two-step process involving isolation of the nucleic acid, followed by the detection of the genomic target often involving PCR-based approaches. In an effort to improve on current detection approaches, we have developed a unique two-step microwave-accelerated approach for rapid extraction and detection of Neisseria gonorrhoeae (GC) DNA. Our approach is based on the use of highly-focused microwave radiation to rapidly lyse bacterial cells, release, and subsequently fragment microbial DNA. The DNA target is then detected by a process known as microwave-accelerated metal-enhanced fluorescence (MAMEF), an ultra-sensitive direct DNA detection analytical technique. In the present study, we show that highly focused microwaves at 2.45 GHz, using 12.3 mm gold film equilateral triangles, are able to rapidly lyse both bacteria cells and fragment DNA in a time- and microwave power-dependent manner. Detection of the extracted DNA can be performed by MAMEF, without the need for DNA amplification in less than 10 minutes total time or by other PCR-based approaches. Collectively, the use of a microwave-accelerated method for the release and detection of DNA represents a significant step forward towards the development of a point-of-care (POC) platform for detection of gonorrhea infections. PMID:27325503

  20. Plasmonic SERS nanochips and nanoprobes for medical diagnostics and bio-energy applications

    NASA Astrophysics Data System (ADS)

    Ngo, Hoan T.; Wang, Hsin-Neng; Crawford, Bridget M.; Fales, Andrew M.; Vo-Dinh, Tuan

    2017-02-01

    The development of rapid, easy-to-use, cost-effective, high accuracy, and high sensitive DNA detection methods for molecular diagnostics has been receiving increasing interest. Over the last five years, our laboratory has developed several chip-based DNA detection techniques including the molecular sentinel-on-chip (MSC), the multiplex MSC, and the inverse molecular sentinel-on-chip (iMS-on-Chip). In these techniques, plasmonic surface-enhanced Raman scattering (SERS) Nanowave chips were functionalized with DNA probes for single-step DNA detection. Sensing mechanisms were based on hybridization of target sequences and DNA probes, resulting in a distance change between SERS reporters and the Nanowave chip's gold surface. This distance change resulted in change in SERS intensity, thus indicating the presence and capture of the target sequences. Our techniques were single-step DNA detection techniques. Target sequences were detected by simple delivery of sample solutions onto DNA probe-functionalized Nanowave chips and SERS signals were measured after 1h - 2h incubation. Target sequence labeling or washing to remove unreacted components was not required, making the techniques simple, easy-to-use, and cost effective. The usefulness of the techniques for medical diagnostics was illustrated by the detection of genetic biomarkers for respiratory viral infection and of dengue virus 4 DNA.

  1. Coherent cavity-enhanced dual-comb spectroscopy.

    PubMed

    Fleisher, Adam J; Long, David A; Reed, Zachary D; Hodges, Joseph T; Plusquellic, David F

    2016-05-16

    Dual-comb spectroscopy allows for the rapid, multiplexed acquisition of high-resolution spectra without the need for moving parts or low-resolution dispersive optics. This method of broadband spectroscopy is most often accomplished via tight phase locking of two mode-locked lasers or via sophisticated signal processing algorithms, and therefore, long integration times of phase coherent signals are difficult to achieve. Here we demonstrate an alternative approach to dual-comb spectroscopy using two phase modulator combs originating from a single continuous-wave laser capable of > 2 hours of coherent real-time averaging. The dual combs were generated by driving the phase modulators with step-recovery diodes where each comb consisted of > 250 teeth with 203 MHz spacing and spanned > 50 GHz region in the near-infrared. The step-recovery diodes are passive devices that provide low-phase-noise harmonics for efficient coupling into an enhancement cavity at picowatt optical powers. With this approach, we demonstrate the sensitivity to simultaneously monitor ambient levels of CO2, CO, HDO, and H2O in a single spectral region at a maximum acquisition rate of 150 kHz. Robust, compact, low-cost and widely tunable dual-comb systems could enable a network of distributed multiplexed optical sensors.

  2. An optimized rapid bisulfite conversion method with high recovery of cell-free DNA.

    PubMed

    Yi, Shaohua; Long, Fei; Cheng, Juanbo; Huang, Daixin

    2017-12-19

    Methylation analysis of cell-free DNA is a encouraging tool for tumor diagnosis, monitoring and prognosis. Sensitivity of methylation analysis is a very important matter due to the tiny amounts of cell-free DNA available in plasma. Most current methods of DNA methylation analysis are based on the difference of bisulfite-mediated deamination of cytosine between cytosine and 5-methylcytosine. However, the recovery of bisulfite-converted DNA based on current methods is very poor for the methylation analysis of cell-free DNA. We optimized a rapid method for the crucial steps of bisulfite conversion with high recovery of cell-free DNA. A rapid deamination step and alkaline desulfonation was combined with the purification of DNA on a silica column. The conversion efficiency and recovery of bisulfite-treated DNA was investigated by the droplet digital PCR. The optimization of the reaction results in complete cytosine conversion in 30 min at 70 °C and about 65% of recovery of bisulfite-treated cell-free DNA, which is higher than current methods. The method allows high recovery from low levels of bisulfite-treated cell-free DNA, enhancing the analysis sensitivity of methylation detection from cell-free DNA.

  3. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface

    DOE PAGES

    Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.; ...

    2016-09-22

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry,STIG),which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIGmore » method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as out perform traditional within-subject calibration techniques when limited data is available. Here, this method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.« less

  4. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry,STIG),which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIGmore » method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as out perform traditional within-subject calibration techniques when limited data is available. Here, this method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.« less

  5. A novel two-step method for screening shade tolerant mutant plants via dwarfism

    USDA-ARS?s Scientific Manuscript database

    When subjected to shade, plants undergo rapid shoot elongation, which often makes them more prone to disease and mechanical damage. It has been reported that, in turfgrass, induced dwarfism can enhance shade tolerance. Here, we describe a two-step procedure for isolating shade tolerant mutants of ...

  6. [Application of rapid PCR to authenticate medicinal snakes].

    PubMed

    Chen, Kang; Jiang, Chao; Yuan, Yuan; Huang, Lu-Qi; Li, Man

    2014-10-01

    To obtained an accurate, rapid and efficient method for authenticate medicinal snakes listed in Chinese Pharmacopoeia (Zaocysd humnades, Bungarus multicinctus, Agkistrodon acutus), a rapid PCR method for authenticate snakes and its adulterants was established based on the classic molecular authentication methods. DNA was extracted by alkaline lysis and the specific primers were amplified by two-steps PCR amplification method. The denatured and annealing temperature and cycle numbers were optimized. When 100 x SYBR Green I was added in the PCR product, strong green fluorescence was visualized under 365 nm UV whereas adulterants without. The whole process can complete in 30-45 minutes. The established method provides the technical support for authentication of the snakes on field.

  7. Direct typing of Canine parvovirus (CPV) from infected dog faeces by rapid mini sequencing technique.

    PubMed

    V, Pavana Jyothi; S, Akila; Selvan, Malini K; Naidu, Hariprasad; Raghunathan, Shwethaa; Kota, Sathish; Sundaram, R C Raja; Rana, Samir Kumar; Raj, G Dhinakar; Srinivasan, V A; Mohana Subramanian, B

    2016-12-01

    Canine parvovirus (CPV) is a non-enveloped single stranded DNA virus with an icosahedral capsid. Mini-sequencing based CPV typing was developed earlier to detect and differentiate all the CPV types and FPV in a single reaction. This technique was further evaluated in the present study by performing the mini-sequencing directly from fecal samples which avoided tedious virus isolation steps by cell culture system. Fecal swab samples were collected from 84 dogs with enteritis symptoms, suggestive of parvoviral infection from different locations across India. Seventy six of these samples were positive by PCR; the subsequent mini-sequencing reaction typed 74 of them as type 2a virus, and 2 samples as type 2b. Additionally, 25 of the positive samples were typed by cycle sequencing of PCR products. Direct CPV typing from fecal samples using mini-sequencing showed 100% correlation with CPV typing by cycle sequencing. Moreover, CPV typing was achieved by mini-sequencing even with faintly positive PCR amplicons which was not possible by cycle sequencing. Therefore, the mini-sequencing technique is recommended for regular epidemiological follow up of CPV types, since the technique is rapid, highly sensitive and high capacity method for CPV typing. Copyright © 2016. Published by Elsevier B.V.

  8. Rapid high-throughput cloning and stable expression of antibodies in HEK293 cells.

    PubMed

    Spidel, Jared L; Vaessen, Benjamin; Chan, Yin Yin; Grasso, Luigi; Kline, J Bradford

    2016-12-01

    Single-cell based amplification of immunoglobulin variable regions is a rapid and powerful technique for cloning antigen-specific monoclonal antibodies (mAbs) for purposes ranging from general laboratory reagents to therapeutic drugs. From the initial screening process involving small quantities of hundreds or thousands of mAbs through in vitro characterization and subsequent in vivo experiments requiring large quantities of only a few, having a robust system for generating mAbs from cloning through stable cell line generation is essential. A protocol was developed to decrease the time, cost, and effort required by traditional cloning and expression methods by eliminating bottlenecks in these processes. Removing the clonal selection steps from the cloning process using a highly efficient ligation-independent protocol and from the stable cell line process by utilizing bicistronic plasmids to generate stable semi-clonal cell pools facilitated an increased throughput of the entire process from plasmid assembly through transient transfections and selection of stable semi-clonal cell pools. Furthermore, the time required by a single individual to clone, express, and select stable cell pools in a high-throughput format was reduced from 4 to 6months to only 4 to 6weeks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Simultaneous dispersive liquid-liquid microextraction derivatisation and gas chromatography mass spectrometry analysis of subcritical water extracts of sweet and sour cherry stems.

    PubMed

    Švarc-Gajić, Jaroslava; Clavijo, Sabrina; Suárez, Ruth; Cvetanović, Aleksandra; Cerdà, Víctor

    2018-03-01

    Cherry stems have been used in traditional medicine mostly for the treatment of urinary tract infections. Extraction with subcritical water, according to its selectivity, efficiency and other aspects, differs substantially from conventional extraction techniques. The complexity of plant subcritical water extracts is due to the ability of subcritical water to extract different chemical classes of different physico-chemical properties and polarities in a single run. In this paper, dispersive liquid-liquid microextraction (DLLME) with simultaneous derivatisation was optimised for the analysis of complex subcritical water extracts of cherry stems to allow simple and rapid preparation prior to gas chromatography-mass spectrometry (GC-MS). After defining optimal extracting and dispersive solvents, the optimised method was used for the identification of compounds belonging to different chemical classes in a single analytical run. The developed sample preparation protocol enabled simultaneous extraction and derivatisation, as well as convenient coupling with GC-MS analysis, reducing the analysis time and number of steps. The applied analytical protocol allowed simple and rapid chemical screening of subcritical water extracts and was used for the comparison of subcritical water extracts of sweet and sour cherry stems. Graphical abstract DLLME GC MS analysis of cherry stem extracts obtained by subcritical water.

  10. Rapid Column-Free Enrichment of Mononuclear Cells from Solid Tissues

    PubMed Central

    Scoville, Steven D.; Keller, Karen A.; Cheng, Stephanie; Zhang, Michael; Zhang, Xiaoli; Caligiuri, Michael A.; Freud, Aharon G.

    2015-01-01

    We have developed a rapid negative selection method to enrich rare mononuclear cells from human tissues. Unwanted and antibody-tethered cells are selectively depleted during a Ficoll separation step, and there is no need for magnetic-based reagents and equipment. The new method is fast, customizable, inexpensive, remarkably efficient, and easy to perform, and per sample the overall cost is less than one-tenth the cost associated with a magnetic column-based method. PMID:26223896

  11. Rapid determination of actinides in seawater samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-03-09

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti +3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were usedmore » to separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1–2 weeks and provide chemical yields of ~30–60 %. This new sample preparation method can be performed in 4–8 h with tracer yields of ~85–95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.« less

  12. Rapid and label-free microfluidic neutrophil purification and phenotyping in diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Hou, Han Wei; Petchakup, Chayakorn; Tay, Hui Min; Tam, Zhi Yang; Dalan, Rinkoo; Chew, Daniel Ek Kwang; Li, King Ho Holden; Boehm, Bernhard O.

    2016-07-01

    Advanced management of dysmetabolic syndromes such as diabetes will benefit from a timely mechanistic insight enabling personalized medicine approaches. Herein, we present a rapid microfluidic neutrophil sorting and functional phenotyping strategy for type 2 diabetes mellitus (T2DM) patients using small blood volumes (fingerprick ~100 μL). The developed inertial microfluidics technology enables single-step neutrophil isolation (>90% purity) without immuno-labeling and sorted neutrophils are used to characterize their rolling behavior on E-selectin, a critical step in leukocyte recruitment during inflammation. The integrated microfluidics testing methodology facilitates high throughput single-cell quantification of neutrophil rolling to detect subtle differences in speed distribution. Higher rolling speed was observed in T2DM patients (P < 0.01) which strongly correlated with neutrophil activation, rolling ligand P-selectin glycoprotein ligand 1 (PSGL-1) expression, as well as established cardiovascular risk factors (cholesterol, high-sensitive C-reactive protein (CRP) and HbA1c). Rolling phenotype can be modulated by common disease risk modifiers (metformin and pravastatin). Receiver operating characteristics (ROC) and principal component analysis (PCA) revealed neutrophil rolling as an important functional phenotype in T2DM diagnostics. These results suggest a new point-of-care testing methodology, and neutrophil rolling speed as a functional biomarker for rapid profiling of dysmetabolic subjects in clinical and patient-oriented settings.

  13. A New Method Using Single-Particle Mass Spectrometry Data to Distinguish Mineral Dust and Biological Aerosols

    NASA Astrophysics Data System (ADS)

    Al-Mashat, H.; Kristensen, L.; Sultana, C. M.; Prather, K. A.

    2016-12-01

    The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds. The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds.

  14. Avalanche for shape and feature-based virtual screening with 3D alignment

    NASA Astrophysics Data System (ADS)

    Diller, David J.; Connell, Nancy D.; Welsh, William J.

    2015-11-01

    This report introduces a new ligand-based virtual screening tool called Avalanche that incorporates both shape- and feature-based comparison with three-dimensional (3D) alignment between the query molecule and test compounds residing in a chemical database. Avalanche proceeds in two steps. The first step is an extremely rapid shape/feature based comparison which is used to narrow the focus from potentially millions or billions of candidate molecules and conformations to a more manageable number that are then passed to the second step. The second step is a detailed yet still rapid 3D alignment of the remaining candidate conformations to the query conformation. Using the 3D alignment, these remaining candidate conformations are scored, re-ranked and presented to the user as the top hits for further visualization and evaluation. To provide further insight into the method, the results from two prospective virtual screens are presented which show the ability of Avalanche to identify hits from chemical databases that would likely be missed by common substructure-based or fingerprint-based search methods. The Avalanche method is extended to enable patent landscaping, i.e., structural refinements to improve the patentability of hits for deployment in drug discovery campaigns.

  15. A simple and rapid ultra-high-performance liquid chromatography-tandem mass spectrometry method to determine plasma biotin in hemodialysis patients.

    PubMed

    Yagi, Shigeaki; Nishizawa, Manabu; Ando, Itiro; Oguma, Shiro; Sato, Emiko; Imai, Yutaka; Fujiwara, Masako

    2016-08-01

    A simple, rapid, and selective method for determination of plasma biotin was developed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). After single-step protein precipitation with methanol, biotin and stable isotope-labeled biotin as an internal standard (IS) were chromatographed on a pentafluorophenyl stationary-phase column (2.1 × 100 mm, 2.7 μm) under isocratic conditions using 10 mm ammonium formate-acetonitrile (93:7, v/v) at a flow rate of 0.6 mL/min. The total chromatographic runtime was 5 min for each injection. Detection was performed in a positive electrospray ionization mode by monitoring selected ion transitions at m/z 245.1/227.0 and 249.1/231.0 for biotin and the IS, respectively. The calibration curve was linear in the range of 0.05-2 ng/mL using 300 μL of plasma. The intra- and inter-day precisions were all <7.1%. The accuracy varied from -0.7 to 8.2%. The developed UHPLC-MS/MS method was successfully applied to determine plasma biotin concentrations in hemodialysis patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Methods for the continuous production of plastic scintillator materials

    DOEpatents

    Bross, Alan; Pla-Dalmau, Anna; Mellott, Kerry

    1999-10-19

    Methods for producing plastic scintillating material employing either two major steps (tumble-mix) or a single major step (inline-coloring or inline-doping). Using the two step method, the polymer pellets are mixed with silicone oil, and the mixture is then tumble mixed with the dopants necessary to yield the proper response from the scintillator material. The mixture is then placed in a compounder and compounded in an inert gas atmosphere. The resultant scintillator material is then extruded and pelletized or formed. When only a single step is employed, the polymer pellets and dopants are metered into an inline-coloring extruding system. The mixture is then processed under a inert gas atmosphere, usually argon or nitrogen, to form plastic scintillator material in the form of either scintillator pellets, for subsequent processing, or as material in the direct formation of the final scintillator shape or form.

  17. Single-step affinity purification of enzyme biotherapeutics: a platform methodology for accelerated process development.

    PubMed

    Brower, Kevin P; Ryakala, Venkat K; Bird, Ryan; Godawat, Rahul; Riske, Frank J; Konstantinov, Konstantin; Warikoo, Veena; Gamble, Jean

    2014-01-01

    Downstream sample purification for quality attribute analysis is a significant bottleneck in process development for non-antibody biologics. Multi-step chromatography process train purifications are typically required prior to many critical analytical tests. This prerequisite leads to limited throughput, long lead times to obtain purified product, and significant resource requirements. In this work, immunoaffinity purification technology has been leveraged to achieve single-step affinity purification of two different enzyme biotherapeutics (Fabrazyme® [agalsidase beta] and Enzyme 2) with polyclonal and monoclonal antibodies, respectively, as ligands. Target molecules were rapidly isolated from cell culture harvest in sufficient purity to enable analysis of critical quality attributes (CQAs). Most importantly, this is the first study that demonstrates the application of predictive analytics techniques to predict critical quality attributes of a commercial biologic. The data obtained using the affinity columns were used to generate appropriate models to predict quality attributes that would be obtained after traditional multi-step purification trains. These models empower process development decision-making with drug substance-equivalent product quality information without generation of actual drug substance. Optimization was performed to ensure maximum target recovery and minimal target protein degradation. The methodologies developed for Fabrazyme were successfully reapplied for Enzyme 2, indicating platform opportunities. The impact of the technology is significant, including reductions in time and personnel requirements, rapid product purification, and substantially increased throughput. Applications are discussed, including upstream and downstream process development support to achieve the principles of Quality by Design (QbD) as well as integration with bioprocesses as a process analytical technology (PAT). © 2014 American Institute of Chemical Engineers.

  18. A semi-automated method for rapid detection of ripple events on interictal voltage discharges in the scalp electroencephalogram.

    PubMed

    Chu, Catherine J; Chan, Arthur; Song, Dan; Staley, Kevin J; Stufflebeam, Steven M; Kramer, Mark A

    2017-02-01

    High frequency oscillations are emerging as a clinically important indicator of epileptic networks. However, manual detection of these high frequency oscillations is difficult, time consuming, and subjective, especially in the scalp EEG, thus hindering further clinical exploration and application. Semi-automated detection methods augment manual detection by reducing inspection to a subset of time intervals. We propose a new method to detect high frequency oscillations that co-occur with interictal epileptiform discharges. The new method proceeds in two steps. The first step identifies candidate time intervals during which high frequency activity is increased. The second step computes a set of seven features for each candidate interval. These features require that the candidate event contain a high frequency oscillation approximately sinusoidal in shape, with at least three cycles, that co-occurs with a large amplitude discharge. Candidate events that satisfy these features are stored for validation through visual analysis. We evaluate the detector performance in simulation and on ten examples of scalp EEG data, and show that the proposed method successfully detects spike-ripple events, with high positive predictive value, low false positive rate, and high intra-rater reliability. The proposed method is less sensitive than the existing method of visual inspection, but much faster and much more reliable. Accurate and rapid detection of high frequency activity increases the clinical viability of this rhythmic biomarker of epilepsy. The proposed spike-ripple detector rapidly identifies candidate spike-ripple events, thus making clinical analysis of prolonged, multielectrode scalp EEG recordings tractable. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Mapping sea ice leads with a coupled numeric/symbolic system

    NASA Technical Reports Server (NTRS)

    Key, J.; Schweiger, A. J.; Maslanik, J. A.

    1990-01-01

    A method is presented which facilitates the detection and delineation of leads with single-channel Landsat data by coupling numeric and symbolic procedures. The procedure consists of three steps: (1) using the dynamic threshold method, an image is mapped to a lead/no lead binary image; (2) the likelihood of fragments to be real leads is examined with a set of numeric rules; and (3) pairs of objects are examined geometrically and merged where possible. The processing ends when all fragments are merged and statistical characteristics are determined, and a map of valid lead objects are left which summarizes useful physical in the lead complexes. Direct implementation of domain knowledge and rapid prototyping are two benefits of the rule-based system. The approach is found to be more successfully applied to mid- and high-level processing, and the system can retrieve statistics about sea-ice leads as well as detect the leads.

  20. Feasibility of FT–Raman spectroscopy for rapid screening for DON toxin in ground wheat and barley.

    PubMed

    Liu, Y; Delwiche, S R; Dong, Y

    2009-10-01

    Rapid detection of deoxynivalenol (DON) in cereal-based food and feed has long been the goal of regulators and manufacturers. As non-destructive approaches, infrared (IR) and near-infrared (NIR) spectroscopic techniques have been used for the prediction and classification of contaminated single-kernel and ground grain without any DON extraction steps. These methods, however, are hindered by the intense and broad spectral bands attributed to naturally occurring moisture. Raman spectroscopy could be an alternative to IR and NIR due to its insensitivity to water and fewer overlapped bands. This study explored the feasibility of the Raman technique for rapid and non-destructive screening of DON-contaminated wheat and barley meal. The advantages of this technique include the use of a 1064-nm NIR excitation laser that reduces interference from fluorescence of biological compounds in wheat and barley, the use of a simple intensity-intensity algorithm at two unique frequencies, plus the technique's ease of sample preparation. The results indicate that the simple algorithm, as well as principal component analysis applied to the Raman spectra, can be used to classify low from high DON grain.

  1. Novel One-Tube-One-Step Real-Time Methodology for Rapid Transcriptomic Biomarker Detection: Signal Amplification by Ternary Initiation Complexes.

    PubMed

    Fujita, Hiroto; Kataoka, Yuka; Tobita, Seiji; Kuwahara, Masayasu; Sugimoto, Naoki

    2016-07-19

    We have developed a novel RNA detection method, termed signal amplification by ternary initiation complexes (SATIC), in which an analyte sample is simply mixed with the relevant reagents and allowed to stand for a short time under isothermal conditions (37 °C). The advantage of the technique is that there is no requirement for (i) heat annealing, (ii) thermal cycling during the reaction, (iii) a reverse transcription step, or (iv) enzymatic or mechanical fragmentation of the target RNA. SATIC involves the formation of a ternary initiation complex between the target RNA, a circular DNA template, and a DNA primer, followed by rolling circle amplification (RCA) to generate multiple copies of G-quadruplex (G4) on a long DNA strand like beads on a string. The G4s can be specifically fluorescence-stained with N(3)-hydroxyethyl thioflavin T (ThT-HE), which emits weakly with single- and double-stranded RNA/DNA but strongly with parallel G4s. An improved dual SATIC system, which involves the formation of two different ternary initiation complexes in the RCA process, exhibited a wide quantitative detection range of 1-5000 pM. Furthermore, this enabled visual observation-based RNA detection, which is more rapid and convenient than conventional isothermal methods, such as reverse transcription-loop-mediated isothermal amplification, signal mediated amplification of RNA technology, and RNA-primed rolling circle amplification. Thus, SATIC methodology may serve as an on-site and real-time measurement technique for transcriptomic biomarkers for various diseases.

  2. Simultaneous Genotyping of the rs4762 and rs699 Polymorphisms in Angiotensinogen Gene and Correlation with Iranian CAD Patients with Novel Hexa-primer ARMS-PCR

    PubMed Central

    KHATAMI, Mehri; HEIDARI, Mohammad Mehdi; HADADZADEH, Mehdi; SCHEIBER-MOJDEHKAR, Barbara; BITARAF SANI, Morteza; HOUSHMAND, Massoud

    2017-01-01

    Background: A significant role of Renin-angiotensin system (RAS) genetic variants in the pathogenesis of essential hypertension and cardiovascular diseases has been proved. This study aimed to develop a new, fast and cheap method for the simultaneous detection of two missense single nucleotide polymorphisms (T207M or rs4762 and M268T orrs699) of angiotensinogen (AGT) in single-step Multiplex Hexa-Primer Amplification Refractory Mutation System - polymerase chain reaction (H-ARMS-PCR). Methods: In this case-control study, 148 patients with coronary artery disease (CAD) and 135 controls were included. The patients were referred to cardiac centers in Afshar Hospital (Yazd, Iran) from 2012 to 2015. Two sets of inner primer (for each SNP) and one set outer primer pairs were designed for genotyping of rs4762 and rs699 in single tube H-ARMS-PCR. Direct sequencing of all samples was also performed to assess the accuracy of this method. DNA sequencing method validated the results of single tube H-ARMS-PCR. Results: We found full accordance for genotype adscription by sequencing method. The frequency of the AGT T521 and C702 alleles was significantly higher in CAD patients than in the control group (OR: 0.551, 95% CI: 0.359–0.846, P=0.008 and OR: 0.629, 95% CI: 0.422–0.936, P=0.028, respectively). Conclusion: This is the first work describing a rapid, low-cost, high-throughput simultaneous detection of rs4762 and rs699 polymorphisms in AGT gene, used in large clinical studies. PMID:28828324

  3. Single crystal micromechanical resonator and fabrication methods thereof

    DOEpatents

    Olsson, Roy H.; Friedmann, Thomas A.; Homeijer, Sara Jensen; Wiwi, Michael; Hattar, Khalid Mikhiel; Clark, Blythe; Bauer, Todd; Van Deusen, Stuart B.

    2016-12-20

    The present invention relates to a single crystal micromechanical resonator. In particular, the resonator includes a lithium niobate or lithium tantalate suspended plate. Also provided are improved microfabrication methods of making resonators, which does not rely on complicated wafer bonding, layer fracturing, and mechanical polishing steps. Rather, the methods allow the resonator and its components to be formed from a single crystal.

  4. Rapid method to determine actinides and 89/90Sr in limestone and marble samples

    DOE PAGES

    Maxwell, Sherrod L.; Culligan, Brian; Hutchison, Jay B.; ...

    2016-04-12

    A new method for the determination of actinides and radiostrontium in limestone and marble samples has been developed that utilizes a rapid sodium hydroxide fusion to digest the sample. Following rapid pre-concentration steps to remove sample matrix interferences, the actinides and 89/90Sr are separated using extraction chromatographic resins and measured radiometrically. The advantages of sodium hydroxide fusion versus other fusion techniques will be discussed. Lastly, this approach has a sample preparation time for limestone and marble samples of <4 hours.

  5. Deferred discrimination algorithm (nibbling) for target filter management

    NASA Astrophysics Data System (ADS)

    Caulfield, H. John; Johnson, John L.

    1999-07-01

    A new method of classifying objects is presented. Rather than trying to form the classifier in one step or in one training algorithm, it is done in a series of small steps, or nibbles. This leads to an efficient and versatile system that is trained in series with single one-shot examples but applied in parallel, is implemented with single layer perceptrons, yet maintains its fully sequential hierarchical structure. Based on the nibbling algorithm, a basic new method of target reference filter management is described.

  6. Procedure for normalization of cDNA libraries

    DOEpatents

    Bonaldo, M.D.; Soares, M.B.

    1997-12-30

    This invention provides a method to normalize a cDNA library constructed in a vector capable of being converted to single-stranded circles and capable of producing complementary nucleic acid molecules to the single-stranded circles comprising: (a) converting the cDNA library in single-stranded circles; (b) generating complementary nucleic acid molecules to the single-stranded circles; (c) hybridizing the single-stranded circles converted in step (a) with complementary nucleic acid molecules of step (b) to produce partial duplexes to an appropriate Cot; (e) separating the unhybridized single-stranded circles from the hybridized single-stranded circles, thereby generating a normalized cDNA library. 1 fig.

  7. Single step signal group-imidazole labeling of organic phosphate groups under aqueous conditions

    DOEpatents

    Giese, Roger W.; Wang, Poguang

    1996-01-01

    Compounds and methods for single step, covalent labeling of the phosphate group of an organic substance under aqueous conditions are described. The labeling compound includes any kind of detectable signal group covalently bound to an imidazole moiety, which can be imidazole or a substituted imidazole. A preferred labeling compound has the formula ##STR1##

  8. A Systems Approach towards an Intelligent and Self-Controlling Platform for Integrated Continuous Reaction Sequences**

    PubMed Central

    Ingham, Richard J; Battilocchio, Claudio; Fitzpatrick, Daniel E; Sliwinski, Eric; Hawkins, Joel M; Ley, Steven V

    2015-01-01

    Performing reactions in flow can offer major advantages over batch methods. However, laboratory flow chemistry processes are currently often limited to single steps or short sequences due to the complexity involved with operating a multi-step process. Using new modular components for downstream processing, coupled with control technologies, more advanced multi-step flow sequences can be realized. These tools are applied to the synthesis of 2-aminoadamantane-2-carboxylic acid. A system comprising three chemistry steps and three workup steps was developed, having sufficient autonomy and self-regulation to be managed by a single operator. PMID:25377747

  9. Rapid and Sensitive Detection of Cardiac Troponin I for Point-of-Care Tests Based on Red Fluorescent Microspheres.

    PubMed

    Cai, Yanxue; Kang, Keren; Li, Qianru; Wang, Yu; He, Xiaowei

    2018-05-07

    A reliable lateral flow immunoassay (LFIA) based on a facile one-step synthesis of single microspheres in combining with immunochromatography technique was developed to establish a new point-of-care test (POCT) for the rapid and early detection of cardiac troponin I (cTnI), a kind of cardiac specific biomarker for acute myocardial infarction (AMI). The double layered microspheres with clear core-shell structures were produced using soap-free emulsion polymerization method with inexpensive compounds (styrene and acrylic acid). The synthetic process was simple, rapid and easy to control due to one-step synthesis without any complicated procedures. The microspheres are nanostructure with high surface area, which have numerous carboxyl groups on the out layer, resulting in high-efficiency coupling between the carrier and antibody via amide bond. Meanwhile, the red fluorescent dye, Nile-red (NR), was wrapped inside the microspheres to improve its stability, as well to reduce the background noise, because of its higher emission wavelength than interference from real plasma samples. The core-shell structures provided different functional areas to separate antibody and dyes, so the immunoassay has highly sensitive, wide working curves in the range of 0⁻40 ng/mL, low limits of detection (LOD) at 0.016 ng/mL, and limits of quantification (LOQ) at 0.087 ng/mL with coefficient of variations (CV) of 10%. This strategy suggested an outstanding platform for LFIA, with good reproducibility and stability to straightforwardly analyze the plasma samples without washing steps, thereby reducing the operating procedures for non-professionals and promoting detection efficiency. The whole detection process can be completed in less than 15 min. This novel immunoassay offers a reliable and favorable analytical result by detecting the real samples, indicating that it holds great potential as a new alternative for biomolecule detection in complex samples, for the early detection of cardiac specific biomarkers.

  10. Development of single-step multiplex real-time RT-PCR assays for rapid diagnosis of enterovirus 71, coxsackievirus A6, and A16 in patients with hand, foot, and mouth disease.

    PubMed

    Puenpa, Jiratchaya; Suwannakarn, Kamol; Chansaenroj, Jira; Vongpunsawad, Sompong; Poovorawan, Yong

    2017-10-01

    Real-time reverse-transcription polymerase chain reaction (rRT-PCR) to detect enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) has facilitated the rapid and accurate identification of the two most common etiological agents underlying hand, foot, and mouth disease (HFMD). However, the worldwide emergence of CV-A6 infection in HFMD necessitates development of an improved multiplex rRT-PCR method. To rapidly determine the etiology of HFMD, two rRT-PCR assays using TaqMan probes were developed to differentiate among three selected common enteroviruses (EV-A71, CV-A16 and CV-A6) and to enable broad detection of enteroviruses (pan-enterovirus assay). No cross-reactions were observed with other RNA viruses examined. The detection limits of both assays were 10 copies per microliter for EV-A71, CV-A6 and CV-A16, and pan-enterovirus. The methods showed high accuracy (EV-A71, 90.6%; CV-A6, 92.0%; CV-A16, 100%), sensitivity (EV-A71, 96.5%; CV-A6, 95.8%; CV-A16, 99.0%), and specificity (EV-A71, 100%; CV-A6, 99.9%; CV-A16, 99.9%) in testing clinical specimens (n=1049) during 2014-2016, superior to those of conventional RT-PCR. Overall, the multiplex rRT-PCR assays enabled highly sensitive detection and rapid simultaneous typing of EV-A71, CV-A6 and CV-A16, and enteroviruses, rendering them feasible and attractive methods for large-scale surveillance of enteroviruses associated with HFMD outbreaks. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. SU-E-T-367: Optimization of DLG Using TG-119 Test Cases and a Weighted Mean Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sintay, B; Vanderstraeten, C; Terrell, J

    2014-06-01

    Purpose: Optimization of the dosimetric leaf gap (DLG) is an important step in commissioning the Eclipse treatment planning system for sliding window intensity-modulated radiation therapy (SW-IMRT) and RapidArc. Often the values needed for optimal dose delivery differ markedly from those measured at commissioning. We present a method to optimize this value using the AAPM TG-119 test cases. Methods: For SW-IMRT and RapidArc, TG-119 based test plans were created using a water-equivalent phantom. Dose distributions measured on film and ion chamber (IC) readings taken in low-gradient regions within the targets were analyzed separately. Since DLG is a single value per energy,more » SW-IMRT and RapidArc must be considered simultaneously. Plans were recalculated using a linear sweep from 0.02cm (the minimum DLG) to 0.3 cm. The calculated point doses were compared to the measured doses for each plan, and based on these comparisons an optimal DLG value was computed for each plan. TG-119 cases are designed to push the system in various ways, thus, a weighted mean of the DLG was computed where the relative importance of each type of plan was given a score from 0.0 to 1.0. Finally, SW-IMRT and RapidArc are assigned an overall weight based on clinical utilization. Our routine patient-QA (PQA) process was performed as independent validation. Results: For a Varian TrueBeam, the optimized DLG varied with σ = 0.044cm for SW-IMRT and σ = 0.035cm for RapidArc. The difference between the weighted mean SW-IMRT and RapidArc value was 0.038cm. We predicted utilization of 25% SW-IMRT and 75% RapidArc. The resulting DLG was ~1mm different than that found by commissioning and produced an average error of <1% for SW-IMRT and RapidArc PQA test cases separately. Conclusion: The weighted mean method presented is a useful tool for determining an optimal DLG value for commissioning Eclipse.« less

  12. Genomic Insights into Geothermal Spring Community Members using a 16S Agnostic Single-Cell Approach

    NASA Astrophysics Data System (ADS)

    Bowers, R. M.

    2016-12-01

    INSTUTIONS (ALL): DOE Joint Genome Institute, Walnut Creek, CA USA. Bigelow Laboratory for Ocean Sciences, East Boothbay, ME USA. Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada. ABSTRACT BODY: With recent advances in DNA sequencing, rapid and affordable screening of single-cell genomes has become a reality. Single-cell sequencing is a multi-step process that takes advantage of any number of single-cell sorting techniques, whole genome amplification (WGA), and 16S rRNA gene based PCR screening to identify the microbes of interest prior to shotgun sequencing. However, the 16S PCR based screening step is costly and may lead to unanticipated losses of microbial diversity, as cells that do not produce a clean 16S amplicon are typically omitted from downstream shotgun sequencing. While many of the sorted cells that fail the 16S PCR step likely originate from poor quality amplified DNA, some of the cells with good WGA kinetics may instead represent bacteria or archaea with 16S genes that fail to amplify due to primer mis-matches or the presence of intervening sequences. Using cell material from Dewar Creek, a hot spring in British Columbia, we sequenced all sorted cells with good WGA kinetics irrespective of their 16S amplification success. We show that this high-throughput approach to single-cell sequencing (i) can reduce the overall cost of single-cell genome production, and (ii). may lead to the discovery of previously unknown branches on the microbial tree of life.

  13. Single-step methods for predicting orbital motion considering its periodic components

    NASA Astrophysics Data System (ADS)

    Lavrov, K. N.

    1989-01-01

    Modern numerical methods for integration of ordinary differential equations can provide accurate and universal solutions to celestial mechanics problems. The implicit single sequence algorithms of Everhart and multiple step computational schemes using a priori information on periodic components can be combined to construct implicit single sequence algorithms which combine their advantages. The construction and analysis of the properties of such algorithms are studied, utilizing trigonometric approximation of the solutions of differential equations containing periodic components. The algorithms require 10 percent more machine memory than the Everhart algorithms, but are twice as fast, and yield short term predictions valid for five to ten orbits with good accuracy and five to six times faster than algorithms using other methods.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    A new rapid fusion method for the determination of plutonium in large rice samples has been developed at the Savannah River National Laboratory (Aiken, SC, USA) that can be used to determine very low levels of plutonium isotopes in rice. The recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid, reliable radiochemical analyses for radionuclides in environmental and food samples. Public concern regarding foods, particularly foods such as rice in Japan, highlights the need for analytical techniques that will allow very large sample aliquots of rice to be used for analysis so thatmore » very low levels of plutonium isotopes may be detected. The new method to determine plutonium isotopes in large rice samples utilizes a furnace ashing step, a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a column separation process with TEVA Resin cartridges. The method can be applied to rice sample aliquots as large as 5 kg. Plutonium isotopes can be determined using alpha spectrometry or inductively-coupled plasma mass spectrometry (ICP-MS). The method showed high chemical recoveries and effective removal of interferences. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory plutonium particles are effectively digested. The MDA for a 5 kg rice sample using alpha spectrometry is 7E-5 mBq g{sup -1}. The method can easily be adapted for use by ICP-MS to allow detection of plutonium isotopic ratios.« less

  15. Determination of glomerular filtration rate (GFR) from fractional renal accumulation of iodinated contrast material: a convenient and rapid single-kidney CT-GFR technique.

    PubMed

    Yuan, XiaoDong; Tang, Wei; Shi, WenWei; Yu, Libao; Zhang, Jing; Yuan, Qing; You, Shan; Wu, Ning; Ao, Guokun; Ma, Tingting

    2018-07-01

    To develop a convenient and rapid single-kidney CT-GFR technique. One hundred and twelve patients referred for multiphasic renal CT and 99mTc-DTPA renal dynamic imaging Gates-GFR measurement were prospectively included and randomly divided into two groups of 56 patients each: the training group and the validation group. On the basis of the nephrographic phase images, the fractional renal accumulation (FRA) was calculated and correlated with the Gates-GFR in the training group. From this correlation a formula was derived for single-kidney CT-GFR calculation, which was validated by a paired t test and linear regression analysis with the single-kidney Gates-GFR in the validation group. In the training group, the FRA (x-axis) correlated well (r = 0.95, p < 0.001) with single-kidney Gates-GFR (y-axis), producing a regression equation of y = 1665x + 1.5 for single-kidney CT-GFR calculation. In the validation group, the difference between the methods of single-kidney GFR measurements was 0.38 ± 5.57 mL/min (p = 0.471); the regression line is identical to the diagonal (intercept = 0 and slope = 1) (p = 0.727 and p = 0.473, respectively), with a standard deviation of residuals of 5.56 mL/min. A convenient and rapid single-kidney CT-GFR technique was presented and validated in this investigation. • The new CT-GFR method takes about 2.5 min of patient time. • The CT-GFR method demonstrated identical results to the Gates-GFR method. • The CT-GFR method is based on the fractional renal accumulation of iodinated CM. • The CT-GFR method is achieved without additional radiation dose to the patient.

  16. A facile and efficient method of enzyme immobilization on silica particles via Michael acceptor film coatings: immobilized catalase in a plug flow reactor.

    PubMed

    Bayramoglu, Gulay; Arica, M Yakup; Genc, Aysenur; Ozalp, V Cengiz; Ince, Ahmet; Bicak, Niyazi

    2016-06-01

    A novel method was developed for facile immobilization of enzymes on silica surfaces. Herein, we describe a single-step strategy for generating of reactive double bonds capable of Michael addition on the surfaces of silica particles. This method was based on reactive thin film generation on the surfaces by heating of impregnated self-curable polymer, alpha-morpholine substituted poly(vinyl methyl ketone) p(VMK). The generated double bonds were demonstrated to be an efficient way for rapid incorporation of enzymes via Michael addition. Catalase was used as model enzyme in order to test the effect of immobilization methodology by the reactive film surface through Michael addition reaction. Finally, a plug flow type immobilized enzyme reactor was employed to estimate decomposition rate of hydrogen peroxide. The highly stable enzyme reactor could operate continuously for 120 h at 30 °C with only a loss of about 36 % of its initial activity.

  17. Fast-tracking determination of homozygous transgenic lines and transgene stacking using a reliable quantitative real-time PCR assay.

    PubMed

    Wang, Xianghong; Jiang, Daiming; Yang, Daichang

    2015-01-01

    The selection of homozygous lines is a crucial step in the characterization of newly generated transgenic plants. This is particularly time- and labor-consuming when transgenic stacking is required. Here, we report a fast and accurate method based on quantitative real-time PCR with a rice gene RBE4 as a reference gene for selection of homozygous lines when using multiple transgenic stacking in rice. Use of this method allowed can be used to determine the stacking of up to three transgenes within four generations. Selection accuracy reached 100 % for a single locus and 92.3 % for two loci. This method confers distinct advantages over current transgenic research methodologies, as it is more accurate, rapid, and reliable. Therefore, this protocol could be used to efficiently select homozygous plants and to expedite time- and labor-consuming processes normally required for multiple transgene stacking. This protocol was standardized for determination of multiple gene stacking in molecular breeding via marker-assisted selection.

  18. Gas chromatography with flame photometric detection of 31 organophosphorus pesticide residues in Alpinia oxyphylla dried fruits.

    PubMed

    Zhao, Xiangsheng; Kong, Weijun; Wei, Jianhe; Yang, Meihua

    2014-11-01

    A simple, rapid and effective gas chromatography-flame photometric detection method was established for simultaneous multi-component determination of 31 organophosphorus pesticides (OPPs) residues in Alpinia oxyphylla, which is widely consumed as a traditional medicine and food in China. Sample preparation was completed in a single step without any clean-up procedure. All pesticides expressed good linear relationships between 0.004 and 1.0 μg/mL with correlation coefficients higher than 0.9973. The method gave satisfactory recoveries for most pesticides. The limits of detection varied from 1 to 10 ng/mL, and the limits of quantification (LOQs) were between 4 and 30 ng/mL. The proposed method was successfully applied to 55 commercial samples purchased from five different areas. Five pesticide residues were detected in four (7.27%) samples. The positive samples were confirmed by gas chromatography with tandem mass spectrometry (GC-MS/MS). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Molecular detection assay of five Salmonella serotypes of public interest: Typhimurium, Enteritidis, Newport, Heidelberg, and Hadar.

    PubMed

    Bugarel, M; Tudor, A; Loneragan, G H; Nightingale, K K

    2017-03-01

    Foodborne illnesses due to Salmonella represent an important public-health concern worldwide. In the United States, a majority of Salmonella infections are associated with a small number of serotypes. Furthermore, some serotypes that are overrepresented among human disease are also associated with multi-drug resistance phenotypes. Rapid detection of serotypes of public-health concern might help reduce the burden of salmonellosis cases and limit exposure to multi-drug resistant Salmonella. We developed a two-step real-time PCR-based rapid method for the identification and detection of five Salmonella serotypes that are either overrepresented in human disease or frequently associated with multi-drug resistance, including serotypes Enteritidis, Typhimurium, Newport, Hadar, and Heidelberg. Two sets of four markers were developed to detect and differentiate the five serotypes. The first set of markers was developed as a screening step to detect the five serotypes; whereas, the second set was used to further distinguish serotypes Heidelberg, Newport and Hadar. The utilization of these markers on a two-step investigation strategy provides a diagnostic specificity of 97% for the detection of Typhimurium, Enteritidis, Heidelberg, Infantis, Newport and Hadar. The diagnostic sensitivity of the detection makers is >96%. The availability of this two-step rapid method will facilitate specific detection of Salmonella serotypes that contribute to a significant proportion of human disease and carry antimicrobial resistance. Published by Elsevier B.V.

  20. A two-step ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry with mass defect filtering method for rapid identification of analogues from known components of different chemical structure types in Fructus Gardeniae-Fructus Forsythiae herb pair extract and in rat's blood.

    PubMed

    Zhou, Wei; Shan, Jinjun; Meng, Minxin

    2018-08-17

    Fructus Gardeniae-Fructus Forsythiae herb pair is an herbal formula used extensively to treat inflammation and fever, but few systematic identification studies of the bioactive components have been reported. Herein, the unknown analogues in the first-step screening were rapidly identified from representative compounds in different structure types (geniposide as iridoid type, crocetin as crocetin type, jasminoside B as monocyclic monoterpene type, oleanolic acid as saponin type, 3-caffeoylquinic acid as organic acid type, forsythoside A as phenylethanoid type, phillyrin as lignan type and quercetin 3-rutinoside as flavonoid type) by UPLC-Q-Tof/MS combined with mass defect filtering (MDF), and further confirmed with reference standards and published literatures. Similarly, in the second step, other unknown components were rapidly discovered from the compounds identified in the first step by MDF. Using the two-step screening method, a total of 58 components were characterized in Fructus Gardeniae-Fructus Forsythiae (FG-FF) decoction. In rat's blood, 36 compounds in extract and 16 metabolites were unambiguously or tentatively identified. Besides, we found the principal metabolites were glucuronide conjugates, with the glucuronide conjugates of caffeic acid, quercetin and kaempferol confirmed as caffeic acid 3-glucuronide, quercetin 3-glucuronide and kaempferol 3-glucuronide by reference standards, respectively. Additionally, most of them bound more strongly to human serum albumin than their respective prototypes, predicted by Molecular Docking and Simulation, indicating that they had lower blood clearance in vivo and possibly more contribution to pharmacological effects. This study developed a novel two-step screening method in addressing how to comprehensively screen components in herbal medicine by UPLC-Q-Tof/MS with MDF. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. One-step microwave plasma enhanced chemical vapor deposition (MW-PECVD) for transparent superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Thongrom, Sukrit; Tirawanichakul, Yutthana; Munsit, Nantakan; Deangngam, Chalongrat

    2018-02-01

    We demonstrate a rapid and environmental friendly fabrication technique to produce optically clear superhydrophobic surfaces using poly (dimethylsiloxane) (PDMS) as a sole coating material. The inert PDMS chain is transformed into a 3-D irregular solid network through microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. Thanks to high electron density in the microwave-activated plasma, coating can be done in just a single step with rapid deposition rate, typically much shorter than 10 s. Deposited layers show excellent superhydrophobic properties with water contact angles of ∼170° and roll-off angles as small as ∼3°. The plasma-deposited films can be ultrathin with thicknesses under 400 nm, greatly diminishing the optical loss. Moreover, with appropriate coating conditions, the coating layer can even enhance the transmission over the entire visible spectrum due to a partial anti-reflection effect.

  2. Microwave-accelerated method for ultra-rapid extraction of Neisseria gonorrhoeae DNA for downstream detection.

    PubMed

    Melendez, Johan H; Santaus, Tonya M; Brinsley, Gregory; Kiang, Daniel; Mali, Buddha; Hardick, Justin; Gaydos, Charlotte A; Geddes, Chris D

    2016-10-01

    Nucleic acid-based detection of gonorrhea infections typically require a two-step process involving isolation of the nucleic acid, followed by detection of the genomic target often involving polymerase chain reaction (PCR)-based approaches. In an effort to improve on current detection approaches, we have developed a unique two-step microwave-accelerated approach for rapid extraction and detection of Neisseria gonorrhoeae (gonorrhea, GC) DNA. Our approach is based on the use of highly focused microwave radiation to rapidly lyse bacterial cells, release, and subsequently fragment microbial DNA. The DNA target is then detected by a process known as microwave-accelerated metal-enhanced fluorescence (MAMEF), an ultra-sensitive direct DNA detection analytical technique. In the current study, we show that highly focused microwaves at 2.45 GHz, using 12.3-mm gold film equilateral triangles, are able to rapidly lyse both bacteria cells and fragment DNA in a time- and microwave power-dependent manner. Detection of the extracted DNA can be performed by MAMEF, without the need for DNA amplification, in less than 10 min total time or by other PCR-based approaches. Collectively, the use of a microwave-accelerated method for the release and detection of DNA represents a significant step forward toward the development of a point-of-care (POC) platform for detection of gonorrhea infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A Particle Smoother with Sequential Importance Resampling for soil hydraulic parameter estimation: A lysimeter experiment

    NASA Astrophysics Data System (ADS)

    Montzka, Carsten; Hendricks Franssen, Harrie-Jan; Moradkhani, Hamid; Pütz, Thomas; Han, Xujun; Vereecken, Harry

    2013-04-01

    An adequate description of soil hydraulic properties is essential for a good performance of hydrological forecasts. So far, several studies showed that data assimilation could reduce the parameter uncertainty by considering soil moisture observations. However, these observations and also the model forcings were recorded with a specific measurement error. It seems a logical step to base state updating and parameter estimation on observations made at multiple time steps, in order to reduce the influence of outliers at single time steps given measurement errors and unknown model forcings. Such outliers could result in erroneous state estimation as well as inadequate parameters. This has been one of the reasons to use a smoothing technique as implemented for Bayesian data assimilation methods such as the Ensemble Kalman Filter (i.e. Ensemble Kalman Smoother). Recently, an ensemble-based smoother has been developed for state update with a SIR particle filter. However, this method has not been used for dual state-parameter estimation. In this contribution we present a Particle Smoother with sequentially smoothing of particle weights for state and parameter resampling within a time window as opposed to the single time step data assimilation used in filtering techniques. This can be seen as an intermediate variant between a parameter estimation technique using global optimization with estimation of single parameter sets valid for the whole period, and sequential Monte Carlo techniques with estimation of parameter sets evolving from one time step to another. The aims are i) to improve the forecast of evaporation and groundwater recharge by estimating hydraulic parameters, and ii) to reduce the impact of single erroneous model inputs/observations by a smoothing method. In order to validate the performance of the proposed method in a real world application, the experiment is conducted in a lysimeter environment.

  4. Single-Event Rapid Word Collection Workshops: Efficient, Effective, Empowering

    ERIC Educational Resources Information Center

    Boerger, Brenda H.; Stutzman, Verna

    2018-01-01

    In this paper we describe single-event Rapid Word Collection (RWC) workshop results in 12 languages, and compare these results to fieldwork lexicons collected by other means. We show that this methodology of collecting words by semantic domain by community engagement leads to obtaining more words in less time than conventional collection methods.…

  5. Rapid Sequencing of Complete env Genes from Primary HIV-1 Samples.

    PubMed

    Laird Smith, Melissa; Murrell, Ben; Eren, Kemal; Ignacio, Caroline; Landais, Elise; Weaver, Steven; Phung, Pham; Ludka, Colleen; Hepler, Lance; Caballero, Gemma; Pollner, Tristan; Guo, Yan; Richman, Douglas; Poignard, Pascal; Paxinos, Ellen E; Kosakovsky Pond, Sergei L; Smith, Davey M

    2016-07-01

    The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences' Single Molecule, Real-Time (SMRT®) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data.

  6. Mycotoxin analysis: an update.

    PubMed

    Krska, Rudolf; Schubert-Ullrich, Patricia; Molinelli, Alexandra; Sulyok, Michael; MacDonald, Susan; Crews, Colin

    2008-02-01

    Mycotoxin contamination of cereals and related products used for feed can cause intoxication, especially in farm animals. Therefore, efficient analytical tools for the qualitative and quantitative analysis of toxic fungal metabolites in feed are required. Current methods usually include an extraction step, a clean-up step to reduce or eliminate unwanted co-extracted matrix components and a separation step with suitably specific detection ability. Quantitative methods of analysis for most mycotoxins use immunoaffinity clean-up with high-performance liquid chromatography (HPLC) separation in combination with UV and/or fluorescence detection. Screening of samples contaminated with mycotoxins is frequently performed by thin layer chromatography (TLC), which yields qualitative or semi-quantitative results. Nowadays, enzyme-linked immunosorbent assays (ELISA) are often used for rapid screening. A number of promising methods, such as fluorescence polarization immunoassays, dipsticks, and even newer methods such as biosensors and non-invasive techniques based on infrared spectroscopy, have shown great potential for mycotoxin analysis. Currently, there is a strong trend towards the use of multi-mycotoxin methods for the simultaneous analysis of several of the important Fusarium mycotoxins, which is best achieved by LC-MS/MS (liquid chromatography with tandem mass spectrometry). This review focuses on recent developments in the determination of mycotoxins with a special emphasis on LC-MS/MS and emerging rapid methods.

  7. Single-Camera-Based Method for Step Length Symmetry Measurement in Unconstrained Elderly Home Monitoring.

    PubMed

    Cai, Xi; Han, Guang; Song, Xin; Wang, Jinkuan

    2017-11-01

    single-camera-based gait monitoring is unobtrusive, inexpensive, and easy-to-use to monitor daily gait of seniors in their homes. However, most studies require subjects to walk perpendicularly to camera's optical axis or along some specified routes, which limits its application in elderly home monitoring. To build unconstrained monitoring environments, we propose a method to measure step length symmetry ratio (a useful gait parameter representing gait symmetry without significant relationship with age) from unconstrained straight walking using a single camera, without strict restrictions on walking directions or routes. according to projective geometry theory, we first develop a calculation formula of step length ratio for the case of unconstrained straight-line walking. Then, to adapt to general cases, we propose to modify noncollinear footprints, and accordingly provide general procedure for step length ratio extraction from unconstrained straight walking. Our method achieves a mean absolute percentage error (MAPE) of 1.9547% for 15 subjects' normal and abnormal side-view gaits, and also obtains satisfactory MAPEs for non-side-view gaits (2.4026% for 45°-view gaits and 3.9721% for 30°-view gaits). The performance is much better than a well-established monocular gait measurement system suitable only for side-view gaits with a MAPE of 3.5538%. Independently of walking directions, our method can accurately estimate step length ratios from unconstrained straight walking. This demonstrates our method is applicable for elders' daily gait monitoring to provide valuable information for elderly health care, such as abnormal gait recognition, fall risk assessment, etc. single-camera-based gait monitoring is unobtrusive, inexpensive, and easy-to-use to monitor daily gait of seniors in their homes. However, most studies require subjects to walk perpendicularly to camera's optical axis or along some specified routes, which limits its application in elderly home monitoring. To build unconstrained monitoring environments, we propose a method to measure step length symmetry ratio (a useful gait parameter representing gait symmetry without significant relationship with age) from unconstrained straight walking using a single camera, without strict restrictions on walking directions or routes. according to projective geometry theory, we first develop a calculation formula of step length ratio for the case of unconstrained straight-line walking. Then, to adapt to general cases, we propose to modify noncollinear footprints, and accordingly provide general procedure for step length ratio extraction from unconstrained straight walking. Our method achieves a mean absolute percentage error (MAPE) of 1.9547% for 15 subjects' normal and abnormal side-view gaits, and also obtains satisfactory MAPEs for non-side-view gaits (2.4026% for 45°-view gaits and 3.9721% for 30°-view gaits). The performance is much better than a well-established monocular gait measurement system suitable only for side-view gaits with a MAPE of 3.5538%. Independently of walking directions, our method can accurately estimate step length ratios from unconstrained straight walking. This demonstrates our method is applicable for elders' daily gait monitoring to provide valuable information for elderly health care, such as abnormal gait recognition, fall risk assessment, etc.

  8. One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX

    PubMed Central

    Nitsche, Andreas; Kurth, Andreas; Dunkhorst, Anna; Pänke, Oliver; Sielaff, Hendrik; Junge, Wolfgang; Muth, Doreen; Scheller, Frieder; Stöcklein, Walter; Dahmen, Claudia; Pauli, Georg; Kage, Andreas

    2007-01-01

    Background As a new class of therapeutic and diagnostic reagents, more than fifteen years ago RNA and DNA aptamers were identified as binding molecules to numerous small compounds, proteins and rarely even to complete pathogen particles. Most aptamers were isolated from complex libraries of synthetic nucleic acids by a process termed SELEX based on several selection and amplification steps. Here we report the application of a new one-step selection method (MonoLEX) to acquire high-affinity DNA aptamers binding Vaccinia virus used as a model organism for complex target structures. Results The selection against complete Vaccinia virus particles resulted in a 64-base DNA aptamer specifically binding to orthopoxviruses as validated by dot blot analysis, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy and real-time PCR, following an aptamer blotting assay. The same oligonucleotide showed the ability to inhibit in vitro infection of Vaccinia virus and other orthopoxviruses in a concentration-dependent manner. Conclusion The MonoLEX method is a straightforward procedure as demonstrated here for the identification of a high-affinity DNA aptamer binding Vaccinia virus. MonoLEX comprises a single affinity chromatography step, followed by subsequent physical segmentation of the affinity resin and a single final PCR amplification step of bound aptamers. Therefore, this procedure improves the selection of high affinity aptamers by reducing the competition between aptamers of different affinities during the PCR step, indicating an advantage for the single-round MonoLEX method. PMID:17697378

  9. A two-step leaching method designed based on chemical fraction distribution of the heavy metals for selective leaching of Cd, Zn, Cu, and Pb from metallurgical sludge.

    PubMed

    Wang, Fen; Yu, Junxia; Xiong, Wanli; Xu, Yuanlai; Chi, Ru-An

    2018-01-01

    For selective leaching and highly effective recovery of heavy metals from a metallurgical sludge, a two-step leaching method was designed based on the distribution analysis of the chemical fractions of the loaded heavy metal. Hydrochloric acid (HCl) was used as a leaching agent in the first step to leach the relatively labile heavy metals and then ethylenediamine tetraacetic acid (EDTA) was applied to leach the residual metals according to their different fractional distribution. Using the two-step leaching method, 82.89% of Cd, 55.73% of Zn, 10.85% of Cu, and 0.25% of Pb were leached in the first step by 0.7 M HCl at a contact time of 240 min, and the leaching efficiencies for Cd, Zn, Cu, and Pb were elevated up to 99.76, 91.41, 71.85, and 94.06%, by subsequent treatment with 0.2 M EDTA at 480 min, respectively. Furthermore, HCl leaching induced fractional redistribution, which might increase the mobility of the remaining metals and then facilitate the following metal removal by EDTA. The facilitation was further confirmed by the comparison to the one-step leaching method with single HCl or single EDTA, respectively. These results suggested that the designed two-step leaching method by HCl and EDTA could be used for selective leaching and effective recovery of heavy metals from the metallurgical sludge or heavy metal-contaminated solid media.

  10. Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection

    PubMed Central

    Kang, Dong-Ku; Ali, M. Monsur; Zhang, Kaixiang; Huang, Susan S.; Peterson, Ellena; Digman, Michelle A.; Gratton, Enrico; Zhao, Weian

    2014-01-01

    Blood stream infection or sepsis is a major health problem worldwide, with extremely high mortality, which is partly due to the inability to rapidly detect and identify bacteria in the early stages of infection. Here we present a new technology termed ‘Integrated Comprehensive Droplet Digital Detection’ (IC 3D) that can selectively detect bacteria directly from milliliters of diluted blood at single-cell sensitivity in a one-step, culture- and amplification-free process within 1.5–4 h. The IC 3D integrates real-time, DNAzyme-based sensors, droplet microencapsulation and a high-throughput 3D particle counter system. Using Escherichia coli as a target, we demonstrate that the IC 3D can provide absolute quantification of both stock and clinical isolates of E. coli in spiked blood within a broad range of extremely low concentration from 1 to 10,000 bacteria per ml with exceptional robustness and limit of detection in the single digit regime. PMID:25391809

  11. Development of a rapid DNA extraction method and one-step nested PCR for the detection of Naegleria fowleri from the environment.

    PubMed

    Ahmad, Arine Fadzlun; Lonnen, James; Andrew, Peter W; Kilvington, Simon

    2011-10-15

    Naegleria fowleri is a small free-living amoebo-flagellate found in natural and manmade thermal aquatic habitats worldwide. The organism is pathogenic to man causing fatal primary amoebic meningoencephalitis (PAM). Infection typically results from bathing in contaminated water and is usually fatal. It is, therefore, important to identify sites containing N. fowleri in the interests of preventive public health microbiology. Culture of environmental material is the conventional method for the isolation of N. fowleri but requires several days incubation and subsequent biochemical or molecular tests to confirm identification. Here, a nested one-step PCR test, in conjunction with a direct DNA extraction from water or sediment material, was developed for the rapid and reliable detection of N. fowleri from the environment. Here, the assay detected N, fowleri in 18/109 river water samples associated with a nuclear power plant in South West France and 0/10 from a similar site in the UK. Although culture of samples yielded numerous thermophilic free-living amoebae, none were N. fowleri or other thermophilic Naegleria spp. The availability of a rapid, reliable and sensitive one-step nested PCR method for the direct detection of N. fowleri from the environment may aid ecological studies and enable intervention to prevent PAM cases. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  12. A modified interval symmetric single step procedure ISS-5D for simultaneous inclusion of polynomial zeros

    NASA Astrophysics Data System (ADS)

    Sham, Atiyah W. M.; Monsi, Mansor; Hassan, Nasruddin; Suleiman, Mohamed

    2013-04-01

    The aim of this paper is to present a new modified interval symmetric single-step procedure ISS-5D which is the extension from the previous procedure, ISS1. The ISS-5D method will produce successively smaller intervals that are guaranteed to still contain the zeros. The efficiency of this method is measured on the CPU times and the number of iteration. The procedure is run on five test polynomials and the results obtained are shown in this paper.

  13. Prevalence of gestational diabetes mellitus according to the different criterias

    PubMed Central

    Akgöl, Evren; Abuşoğlu, Sedat; Gün, Faik Deniz; Ünlü, Ali

    2017-01-01

    Objective: The two-step approach recommended by the National Diabetes Data Group (NDDG), Carpenter and Coustan (C&C), and O’Sullivan, and the single-step approach recommended by the International Association of Diabetes and Pregnancy Study Group (IADPSG) are used to diagnose gestational diabetes mellitus (GDM). We aimed to determine GDM prevalence and to compare the two-step and single-step approaches used in the southeastern region of Turkey. Materials and Methods: In total, 3048 records of pregnant women screened for GDM between 2008 and 2014 were retrospectively extracted from our laboratory information system. GDM was defined according to the criteria of NDDG, C&C, and O’Sullivan between in 2008 and 2011, and according to those of the IADPSG between 2012 and 2014. Demographic variables were compared using student’s t-test. The linear trends in GDM prevalence with age were calculated using logistic regression. Results: GDM prevalence was found as 4.8%, 8%, and 13.4% using the NDDG, C&C, and O’Sullivan two-step approach, respectively, and 22.3% with the IADPSG single-step approach. GDM prevalence increased with increasing age in both approaches. Conclusion: GDM prevalence was higher using the single-step approach than with the two-step approach. There was a significant increase in GDM prevalence using the IADPSG criteria. PMID:28913130

  14. Influence of cyclic annealing on the hardness and structure of high-speed steels

    NASA Astrophysics Data System (ADS)

    Smol'nikov, E. A.; Orestova, L. M.

    1982-08-01

    In individual cases with the necessity of rapid annealing of high-speed steel together with stepless annealing at 885-675°C, which is done in a single salt bath, cyclic stepped annealing in two salt baths with temperatures of 850 and 700°C and holds in each of them at from 10 to 30 min may be used.

  15. Stereodivergent Synthesis of Chromanones and Flavanones via Intramolecular Benzoin Reaction.

    PubMed

    Wen, Genfa; Su, Yingpeng; Zhang, Guoxiang; Lin, Qiqiao; Zhu, Yujin; Zhang, Qianqian; Fang, Xinqiang

    2016-08-19

    The strategy of stereodivergent reactions on racemic mixtures (stereodivergent RRM) was employed for the first time in intramolecular benzoin reactions and led to the rapid access of chromanones/flavanones with two consecutive stereocenters. The easily separable stereoisomers of the products were obtained with moderate to excellent enantioselectivities in a single step. Catechol type additives proved crucial in achieving the desired diastereo- and enantioselectivities.

  16. Improved HPLC method for determination of four PPIs, omeprazole, pantoprazole, lansoprazole and rabeprazole in human plasma.

    PubMed

    Noubarani, Maryam; Keyhanfar, Fariborz; Motevalian, Manijeh; Mahmoudian, Masoud

    2010-01-01

    To develop a simple and rapid HPLC method for measuring of four proton-pump inhibitors (PPIs), omeprazole (OPZ), pantoprazole (PPZ), lansoprazole (LPZ) and rabeprazole (RPZ) concentrations in human plasma. Following a single step liquid-liquid extraction analytes along with an internal standard (IS) were separated using an isocratic mobile phase of phosphate buffer (10 mM)/acetonitrile (53/47, v/v adjusted pH to 7.3 with triethylamine) at flow rate of 1 mL/min on reverse phase TRACER EXCEL 120 ODS-A column at room temperature. Total analytical run time for selected PPIs was 10 min. The assays exhibited good linearity (r(2)>0.99) over the studied range of 20 to 2500 ng/mL for OPZ, 20 to 4000 ng/mL for PPZ, 20 to 3000 ng/mL for LPZ and 20 to 1500 ng/mL for RPZ. The recovery of method was equal or greater than 80% and lower limit of quantification (LLOQ) was 20 ng/mL for four PPIs. Coefficient of variation and error at all of the intra-day and inter-day assessment were less than 9.2% for all compounds. The results indicated that this method is a simple, rapid, precise and accurate assay for determination of four PPIs concentrations in human plasma. This validated method is sensitive and reproducible enough to be used in pharmacokinetic studies and also is time- and cost-benefit when selected PPIs are desired to be analyzed.

  17. Masked Selection: A Straightforward and Flexible Approach for the Selection of Binders Against Specific Epitopes and Differentially Expressed Proteins by Phage Display*

    PubMed Central

    Even-Desrumeaux, Klervi; Nevoltris, Damien; Lavaut, Marie Noelle; Alim, Karima; Borg, Jean-Paul; Audebert, Stéphane; Kerfelec, Brigitte; Baty, Daniel; Chames, Patrick

    2014-01-01

    Phage display is a well-established procedure to isolate binders against a wide variety of antigens that can be performed on purified antigens, but also on intact cells. As selection steps are performed in vitro, it is possible to focus the outcome of the selection on relevant epitopes by performing some additional steps, such as depletion or competitive elutions. However in practice, the efficiency of these steps is often limited and can lead to inconsistent results. We have designed a new selection method named masked selection, based on the blockade of unwanted epitopes to favor the targeting of relevant ones. We demonstrate the efficiency and flexibility of this method by selecting single-domain antibodies against a specific portion of a fusion protein, by selecting binders against several members of the seven transmembrane receptor family using transfected HEK cells, or by selecting binders against unknown breast cancer markers not expressed on normal samples. The relevance of this approach for antibody-based therapies was further validated by the identification of four of these markers, Epithelial cell adhesion molecule, Transferrin receptor 1, Metastasis cell adhesion molecule, and Sushi containing domain 2, using immunoprecipitation and mass spectrometry. This new phage display strategy can be applied to any type of antibody fragments or alternative scaffolds, and is especially suited for the rapid discovery and identification of cell surface markers. PMID:24361863

  18. Kinetic mechanism and fidelity of nick sealing by Escherichia coli NAD+-dependent DNA ligase (LigA)

    PubMed Central

    Chauleau, Mathieu; Shuman, Stewart

    2016-01-01

    Escherichia coli DNA ligase (EcoLigA) repairs 3′-OH/5′-PO4 nicks in duplex DNA via reaction of LigA with NAD+ to form a covalent LigA-(lysyl-Nζ)–AMP intermediate (step 1); transfer of AMP to the nick 5′-PO4 to form an AppDNA intermediate (step 2); and attack of the nick 3′-OH on AppDNA to form a 3′-5′ phosphodiester (step 3). A distinctive feature of EcoLigA is its stimulation by ammonium ion. Here we used rapid mix-quench methods to analyze the kinetic mechanism of single-turnover nick sealing by EcoLigA–AMP. For substrates with correctly base-paired 3′-OH/5′-PO4 nicks, kstep2 was fast (6.8–27 s−1) and similar to kstep3 (8.3–42 s−1). Absent ammonium, kstep2 and kstep3 were 48-fold and 16-fold slower, respectively. EcoLigA was exquisitely sensitive to 3′-OH base mispairs and 3′ N:abasic lesions, which elicited 1000- to >20000-fold decrements in kstep2. The exception was the non-canonical 3′ A:oxoG configuration, which EcoLigA accepted as correctly paired for rapid sealing. These results underscore: (i) how EcoLigA requires proper positioning of the nick 3′ nucleoside for catalysis of 5′ adenylylation; and (ii) EcoLigA's potential to embed mutations during the repair of oxidative damage. EcoLigA was relatively tolerant of 5′-phosphate base mispairs and 5′ N:abasic lesions. PMID:26857547

  19. Method for rapid base sequencing in DNA and RNA with two base labeling

    DOEpatents

    Jett, J.H.; Keller, R.A.; Martin, J.C.; Posner, R.G.; Marrone, B.L.; Hammond, M.L.; Simpson, D.J.

    1995-04-11

    A method is described for rapid-base sequencing in DNA and RNA with two-base labeling and employing fluorescent detection of single molecules at two wavelengths. Bases modified to accept fluorescent labels are used to replicate a single DNA or RNA strand to be sequenced. The bases are then sequentially cleaved from the replicated strand, excited with a chosen spectrum of electromagnetic radiation, and the fluorescence from individual, tagged bases detected in the order of cleavage from the strand. 4 figures.

  20. Method for rapid base sequencing in DNA and RNA with two base labeling

    DOEpatents

    Jett, James H.; Keller, Richard A.; Martin, John C.; Posner, Richard G.; Marrone, Babetta L.; Hammond, Mark L.; Simpson, Daniel J.

    1995-01-01

    Method for rapid-base sequencing in DNA and RNA with two-base labeling and employing fluorescent detection of single molecules at two wavelengths. Bases modified to accept fluorescent labels are used to replicate a single DNA or RNA strand to be sequenced. The bases are then sequentially cleaved from the replicated strand, excited with a chosen spectrum of electromagnetic radiation, and the fluorescence from individual, tagged bases detected in the order of cleavage from the strand.

  1. Rapid Sequencing of Complete env Genes from Primary HIV-1 Samples

    PubMed Central

    Eren, Kemal; Ignacio, Caroline; Landais, Elise; Weaver, Steven; Phung, Pham; Ludka, Colleen; Hepler, Lance; Caballero, Gemma; Pollner, Tristan; Guo, Yan; Richman, Douglas; Poignard, Pascal; Paxinos, Ellen E.; Kosakovsky Pond, Sergei L.

    2016-01-01

    Abstract The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences’ Single Molecule, Real-Time (SMRT®) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data. PMID:29492273

  2. Rapid Antibiotic Susceptibility Testing of Uropathogenic E. coli by Tracking Submicron Scale Motion of Single Bacterial Cells.

    PubMed

    Syal, Karan; Shen, Simon; Yang, Yunze; Wang, Shaopeng; Haydel, Shelley E; Tao, Nongjian

    2017-08-25

    To combat antibiotic resistance, a rapid antibiotic susceptibility testing (AST) technology that can identify resistant infections at disease onset is required. Current clinical AST technologies take 1-3 days, which is often too slow for accurate treatment. Here we demonstrate a rapid AST method by tracking sub-μm scale bacterial motion with an optical imaging and tracking technique. We apply the method to clinically relevant bacterial pathogens, Escherichia coli O157: H7 and uropathogenic E. coli (UPEC) loosely tethered to a glass surface. By analyzing dose-dependent sub-μm motion changes in a population of bacterial cells, we obtain the minimum bactericidal concentration within 2 h using human urine samples spiked with UPEC. We validate the AST method using the standard culture-based AST methods. In addition to population studies, the method allows single cell analysis, which can identify subpopulations of resistance strains within a sample.

  3. Single step signal group-imidazole labeling of organic phosphate groups under aqueous conditions

    DOEpatents

    Giese, R.W.; Wang, P.

    1996-04-30

    Compounds and methods for single step, covalent labeling of the phosphate group of an organic substance under aqueous conditions are described. The labeling compound includes any kind of detectable signal group covalently bound to an imidazole moiety, which can be imidazole or a substituted imidazole. A preferred labeling compound has the formula shown in the accompanying diagram. 4 figs.

  4. Spectroelectrochemical detection of microRNA-155 based on functional RNA immobilization onto ITO/GNP nanopattern.

    PubMed

    Mohammadniaei, Mohsen; Yoon, Jinho; Lee, Taek; Choi, Jeong-Woo

    2018-05-20

    We fabricated a microRNA biosensor using the combination of surface enhanced Raman spectroscopy (SERS) and electrochemical (EC) techniques. For the first time, the weaknesses of each techniques for microRNA detection was compensated by the other ones to give rise to the specific and wide-range detection of miR-155. A single stranded 3' methylene blue (MB) and 5' thiol-modified RNA (MB-ssRNA-SH) was designed to detect the target miR-155 and immobilized onto the gold nanoparticle-modified ITO (ITO/GNP). Upon the invasion of target strand, the double-stranded RNA transformed rapidly to an upright structure resulting in a notable decrease in SERS and redox signals of the MB. For the first time, by combination of SERS and EC techniques in a single platform we extended the dynamic range of both techniques from 10 pM to 450 nM (SERS: 10 pM-5 nM and EC: 5 nM-450 nM). As well, the SERS technique improved the detection limit of the EC method from 100 pM to 100 fM, while the EC method covered single-mismatch detection which was the SERS deficiency. The fabricated single-step biosensor possessing a good capability of miRNA detection in human serum, could be employed throughout the broad ranges of biomedical and bioelectronics applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Rapid Detection of Pathogenic Bacteria from Fresh Produce by Filtration and Surface-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xiaomeng; Han, Caiqin; Chen, Jing; Huang, Yao-Wen; Zhao, Yiping

    2016-04-01

    The detection of Salmonella Poona from cantaloupe cubes and E. coli O157:H7 from lettuce has been explored by using a filtration method and surface-enhanced Raman spectroscopy (SERS) based on vancomycin-functionalized silver nanorod array substrates. It is found that with a two-step filtration process, the limit of detection (LOD) of Salmonella Poona from cantaloupe cubes can be as low as 100 CFU/mL in less than 4 h, whereas the chlorophyll in the lettuce causes severe SERS spectral interference. To improve the LOD of lettuce, a three-step filtration method with a hydrophobic filter is proposed. The hydrophobic filter can effectively eliminate the interferences from chlorophyll and achieve a LOD of 1000 CFU/mL detection of E. coli O157:H7 from lettuce samples within 5 h. With the low LODs and rapid detection time, the SERS biosensing platform has demonstrated its potential as a rapid, simple, and inexpensive means for pathogenic bacteria detection from fresh produce.

  6. Stepwise identification of HLA-A*0201-restricted CD8+ T-cell epitope peptides from herpes simplex virus type 1 genome boosted by a StepRank scheme.

    PubMed

    Bi, Jianjun; Song, Rengang; Yang, Huilan; Li, Bingling; Fan, Jianyong; Liu, Zhongrong; Long, Chaoqin

    2011-01-01

    Identification of immunodominant epitopes is the first step in the rational design of peptide vaccines aimed at T-cell immunity. To date, however, it is yet a great challenge for accurately predicting the potent epitope peptides from a pool of large-scale candidates with an efficient manner. In this study, a method that we named StepRank has been developed for the reliable and rapid prediction of binding capabilities/affinities between proteins and genome-wide peptides. In this procedure, instead of single strategy used in most traditional epitope identification algorithms, four steps with different purposes and thus different computational demands are employed in turn to screen the large-scale peptide candidates that are normally generated from, for example, pathogenic genome. The steps 1 and 2 aim at qualitative exclusion of typical nonbinders by using empirical rule and linear statistical approach, while the steps 3 and 4 focus on quantitative examination and prediction of the interaction energy profile and binding affinity of peptide to target protein via quantitative structure-activity relationship (QSAR) and structure-based free energy analysis. We exemplify this method through its application to binding predictions of the peptide segments derived from the 76 known open-reading frames (ORFs) of herpes simplex virus type 1 (HSV-1) genome with or without affinity to human major histocompatibility complex class I (MHC I) molecule HLA-A*0201, and find that the predictive results are well compatible with the classical anchor residue theory and perfectly match for the extended motif pattern of MHC I-binding peptides. The putative epitopes are further confirmed by comparisons with 11 experimentally measured HLA-A*0201-restrcited peptides from the HSV-1 glycoproteins D and K. We expect that this well-designed scheme can be applied in the computational screening of other viral genomes as well.

  7. SPIRAL-SPRITE: a rapid single point MRI technique for application to porous media.

    PubMed

    Szomolanyi, P; Goodyear, D; Balcom, B; Matheson, D

    2001-01-01

    This study presents the application of a new, rapid, single point MRI technique which samples k space with spiral trajectories. The general principles of the technique are outlined along with application to porous concrete samples, solid pharmaceutical tablets and gas phase imaging. Each sample was chosen to highlight specific features of the method.

  8. Single-step enantioselective amino acid flux analysis by capillary electrophoresis using on-line sample preconcentration with chemical derivatization.

    PubMed

    Ptolemy, Adam S; Tran, Lara; Britz-McKibbin, Philip

    2006-07-15

    Capillary electrophoresis (CE) represents a versatile platform for integrating sample pretreatment with chemical analysis because of its ability to tune analyte electromigration and band dispersion properties in discontinuous electrolyte systems. In this article, a single-step method that combines on-line sample preconcentration with in-capillary chemical derivatization is developed for rapid, sensitive, and enantioselective analysis of micromolar levels of amino acids that lack intrinsic chromophores by CE with UV detection. Time-resolved electrophoretic studies revealed two distinct stages of amino acid band narrowing within the original long sample injection plug occurring both prior to and after in-capillary labeling via zone passing by ortho-phthalaldehyde/N-acetyl l-cysteine (OPA/NAC). This technique enabled direct analysis of d-amino acids in a 95% enantiomeric excess mixture with sub-micromolar detection limits and minimal sample handling, where the capillary functions as a preconcentrator, microreactor, and chiral selector. On-line sample preconcentration with chemical derivatization CE (SPCD-CE) was applied to study the enantioselective amino acid flux in Escherichia coli bacteria cultures, which demonstrated a unique l-Ala efflux into the extracellular medium. New strategies for high-throughput analyses of low-abundance metabolites are important for understanding fundamental physiological processes in bacteria required for screening the efficacy of new classes of antibiotics as well as altered metabolism in genetically modified mutant strains.

  9. A novel label-free fluorescence assay for one-step sensitive detection of Hg2+ in environmental drinking water samples

    NASA Astrophysics Data System (ADS)

    Li, Ya; Liu, Nan; Liu, Hui; Wang, Yu; Hao, Yuwei; Ma, Xinhua; Li, Xiaoli; Huo, Yapeng; Lu, Jiahai; Tang, Shuge; Wang, Caiqin; Zhang, Yinhong; Gao, Zhixian

    2017-04-01

    A novel label-free fluorescence assay for detection of Hg2+ was developed based on the Hg2+-binding single-stranded DNA (ssDNA) and SYBR Green I (SG I). Differences from other assays, the designed rich-thymine (T) ssDNA probe without fluorescent labelling can be rapidly formed a T-Hg2+-T complex and folded into a stable hairpin structure in the presence of Hg2+ in environmental drinking water samples by facilitating fluorescence increase through intercalating with SG I in one-step. In the assay, the fluorescence signal can be directly obtained without additional incubation within 1 min. The dynamic quantitative working ranges was 5-1000 nM, the determination coefficients were satisfied by optimization of the reaction conditions. The lowest detection limit of Hg2+ was 3 nM which is well below the standard of U.S. Environmental Protection Agency. This method was highly specific for detecting of Hg2+ without being affected by other possible interfering ions from different background compositions of water samples. The recoveries of Hg2+ spiked in these samples were 95.05-103.51%. The proposed method is more viable, low-costing and simple for operation in field detection than the other methods with great potentials, such as emergency disposal, environmental monitoring, surveillance and supporting of ecological risk assessment and management.

  10. Purification of an IgA Monoclonal Antibody Specific for the Acr Protein of Mycobacterium tuberculosis by Immunoaffinity Chromatography

    PubMed Central

    REYES, Fátima; OTERO, Oscar; CAMACHO, Frank; SARMIENTO, María Elena; ACOSTA, Armando

    2013-01-01

    Background: A monoclonal antibody (mAb) of the IgA isotype, designated TBA61, is specific for the Acr protein of Mycobacterium tuberculosis (MTB). TBA61 has been used in studies exploring protection against tuberculosis (TB), and its efficacy has been proven using different challenge models. To purify the mouse IgA isotype, a combination of methods, such as globulin precipitation, ion exchange, and gel filtration, is usually required to achieve a satisfactory degree of purity. Methods: To minimise the number of chromatographic steps, we proposed to employ immunoaffinity chromatography using the Acr protein of MTB as a specific ligand for this mAb. For this purpose, the HspX gene was cloned and expressed in Escherichia coli, and recombinant Acr (rAcr) was coupled to a cyanogen bromide-activated Sepharose 4B matrix, which was used to purify TBA61 mAb from ascites produced in mice in a single step. Results: The recovery from the purification procedure was 1.46 mg per mL of ascites. Analysis by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot showed a high purity. The purified mAb retained its reactivity against the Acr protein based on enzyme-linked immunosorbent assay (ELISA) and western blot. Conclusion: The purification method used is rapid, simple, and specific and can be easily scaled up. PMID:24643305

  11. Measuring molecular motions inside single cells with improved analysis of single-particle trajectories

    NASA Astrophysics Data System (ADS)

    Rowland, David J.; Biteen, Julie S.

    2017-04-01

    Single-molecule super-resolution imaging and tracking can measure molecular motions inside living cells on the scale of the molecules themselves. Diffusion in biological systems commonly exhibits multiple modes of motion, which can be effectively quantified by fitting the cumulative probability distribution of the squared step sizes in a two-step fitting process. Here we combine this two-step fit into a single least-squares minimization; this new method vastly reduces the total number of fitting parameters and increases the precision with which diffusion may be measured. We demonstrate this Global Fit approach on a simulated two-component system as well as on a mixture of diffusing 80 nm and 200 nm gold spheres to show improvements in fitting robustness and localization precision compared to the traditional Local Fit algorithm.

  12. Highly Sensitive Bacteriophage-Based Detection of Brucella abortus in Mixed Culture and Spiked Blood

    PubMed Central

    Sergueev, Kirill V.; Filippov, Andrey A.; Nikolich, Mikeljon P.

    2017-01-01

    For decades, bacteriophages (phages) have been used for Brucella species identification in the diagnosis and epidemiology of brucellosis. Traditional Brucella phage typing is a multi-day procedure including the isolation of a pure culture, a step that can take up to three weeks. In this study, we focused on the use of brucellaphages for sensitive detection of the pathogen in clinical and other complex samples, and developed an indirect method of Brucella detection using real-time quantitative PCR monitoring of brucellaphage DNA amplification via replication on live Brucella cells. This assay allowed the detection of single bacteria (down to 1 colony-forming unit per milliliter) within 72 h without DNA extraction and purification steps. The technique was equally efficient with Brucella abortus pure culture and with mixed cultures of B. abortus and α-proteobacterial near neighbors that can be misidentified as Brucella spp., Ochrobactrum anthropi and Afipia felis. The addition of a simple short sample preparation step enabled the indirect phage-based detection of B. abortus in spiked blood, with the same high sensitivity. This indirect phage-based detection assay enables the rapid and sensitive detection of live B. abortus in mixed cultures and in blood samples, and can potentially be applied for detection in other clinical samples and other complex sample types. PMID:28604602

  13. Rapid computation of the amplitude and phase of tightly focused optical fields distorted by scattering particles

    PubMed Central

    Ranasinghesagara, Janaka C.; Hayakawa, Carole K.; Davis, Mitchell A.; Dunn, Andrew K.; Potma, Eric O.; Venugopalan, Vasan

    2014-01-01

    We develop an efficient method for accurately calculating the electric field of tightly focused laser beams in the presence of specific configurations of microscopic scatterers. This Huygens–Fresnel wave-based electric field superposition (HF-WEFS) method computes the amplitude and phase of the scattered electric field in excellent agreement with finite difference time-domain (FDTD) solutions of Maxwell’s equations. Our HF-WEFS implementation is 2–4 orders of magnitude faster than the FDTD method and enables systematic investigations of the effects of scatterer size and configuration on the focal field. We demonstrate the power of the new HF-WEFS approach by mapping several metrics of focal field distortion as a function of scatterer position. This analysis shows that the maximum focal field distortion occurs for single scatterers placed below the focal plane with an offset from the optical axis. The HF-WEFS method represents an important first step toward the development of a computational model of laser-scanning microscopy of thick cellular/tissue specimens. PMID:25121440

  14. Rapid gas chromatography with flame photometric detection of multiple organophosphorus pesticides in Salvia miltiorrhizae after ultrasonication assisted one-step extraction.

    PubMed

    Zhang, Shanshan; Liu, Xiaofei; Qin, Jia'an; Yang, Meihua; Zhao, Hongzheng; Wang, Yong; Guo, Weiying; Ma, Zhijie; Kong, Weijun

    2017-11-15

    A simple and rapid gas chromatography-flame photometric detection (GC-FPD) method was developed for the determination of 12 organophosphorus pesticides (OPPs) in Salvia miltiorrhizae by using ultrasonication assisted one-step extraction (USAE) without any clean-up steps. Some crucial parameters such as type of extraction solvent were optimized to improve the method performance for trace analysis. Any clean-up steps were negligent as no interferences were detected in the GC-FPD chromatograms for sensitive detection. Under the optimized conditions, limits of detection (LODs) and quantitation (LOQs) for all pesticides were in the range of 0.001-0.002mg/kg and 0.002-0.01mg/kg and 0.002-0.01mg/kg, respectively, which were all below the regulatory maximum residue limits suggested. RSDs for method precision (intra- and inter-day variations) were lower than 6.8% in approval with international regulations. Average recovery rates for all pesticides at three fortification levels (0.5, 1.0 and 5.0mg/kg) were in the range of 71.2-101.0% with relative standard deviations (RSDs) <13%. The developed method was evaluated for its feasibility in the simultaneous pre-concentration and determination of 12 OPPs in 32 batches of real S. miltiorrhizae samples. Only one pesticide (dimethoate) out of the 12 targets was simultaneously detected in four samples at concentrations of 0.016-0.02mg/kg. Dichlorvos and omethoate were found in the same sample from Sichuan province at 0.004 and 0.027mg/kg, respectively. Malathion and monocrotophos were determined in the other two samples at 0.014 and 0.028mg/kg, respectively. All the positive samples were confirmed by LC-MS/MS. The simple, reliable and rapid USAE-GC-FPD method with many advantages over traditional techniques would be preferred for trace analysis of multiple pesticides in more complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Application of single-step genomic evaluation for crossbred performance in pig.

    PubMed

    Xiang, T; Nielsen, B; Su, G; Legarra, A; Christensen, O F

    2016-03-01

    Crossbreding is predominant and intensively used in commercial meat production systems, especially in poultry and swine. Genomic evaluation has been successfully applied for breeding within purebreds but also offers opportunities of selecting purebreds for crossbred performance by combining information from purebreds with information from crossbreds. However, it generally requires that all relevant animals are genotyped, which is costly and presently does not seem to be feasible in practice. Recently, a novel single-step BLUP method for genomic evaluation of both purebred and crossbred performance has been developed that can incorporate marker genotypes into a traditional animal model. This new method has not been validated in real data sets. In this study, we applied this single-step method to analyze data for the maternal trait of total number of piglets born in Danish Landrace, Yorkshire, and two-way crossbred pigs in different scenarios. The genetic correlation between purebred and crossbred performances was investigated first, and then the impact of (crossbred) genomic information on prediction reliability for crossbred performance was explored. The results confirm the existence of a moderate genetic correlation, and it was seen that the standard errors on the estimates were reduced when including genomic information. Models with marker information, especially crossbred genomic information, improved model-based reliabilities for crossbred performance of purebred boars and also improved the predictive ability for crossbred animals and, to some extent, reduced the bias of prediction. We conclude that the new single-step BLUP method is a good tool in the genetic evaluation for crossbred performance in purebred animals.

  16. Simultaneous Measurement of Thermal Conductivity and Specific Heat in a Single TDTR Experiment

    NASA Astrophysics Data System (ADS)

    Sun, Fangyuan; Wang, Xinwei; Yang, Ming; Chen, Zhe; Zhang, Hang; Tang, Dawei

    2018-01-01

    Time-domain thermoreflectance (TDTR) technique is a powerful thermal property measurement method, especially for nano-structures and material interfaces. Thermal properties can be obtained by fitting TDTR experimental data with a proper thermal transport model. In a single TDTR experiment, thermal properties with different sensitivity trends can be extracted simultaneously. However, thermal conductivity and volumetric heat capacity usually have similar trends in sensitivity for most materials; it is difficult to measure them simultaneously. In this work, we present a two-step data fitting method to measure the thermal conductivity and volumetric heat capacity simultaneously from a set of TDTR experimental data at single modulation frequency. This method takes full advantage of the information carried by both amplitude and phase signals; it is a more convenient and effective solution compared with the frequency-domain thermoreflectance method. The relative error is lower than 5 % for most cases. A silicon wafer sample was measured by TDTR method to verify the two-step fitting method.

  17. Low-energy transmission electron diffraction and imaging of large-area graphene

    PubMed Central

    Zhao, Wei; Xia, Bingyu; Lin, Li; Xiao, Xiaoyang; Liu, Peng; Lin, Xiaoyang; Peng, Hailin; Zhu, Yuanmin; Yu, Rong; Lei, Peng; Wang, Jiangtao; Zhang, Lina; Xu, Yong; Zhao, Mingwen; Peng, Lianmao; Li, Qunqing; Duan, Wenhui; Liu, Zhongfan; Fan, Shoushan; Jiang, Kaili

    2017-01-01

    Two-dimensional (2D) materials have attracted interest because of their excellent properties and potential applications. A key step in realizing industrial applications is to synthesize wafer-scale single-crystal samples. Until now, single-crystal samples, such as graphene domains up to the centimeter scale, have been synthesized. However, a new challenge is to efficiently characterize large-area samples. Currently, the crystalline characterization of these samples still relies on selected-area electron diffraction (SAED) or low-energy electron diffraction (LEED), which is more suitable for characterizing very small local regions. This paper presents a highly efficient characterization technique that adopts a low-energy electrostatically focused electron gun and a super-aligned carbon nanotube (SACNT) film sample support. It allows rapid crystalline characterization of large-area graphene through a single photograph of a transmission-diffracted image at a large beam size. Additionally, the low-energy electron beam enables the observation of a unique diffraction pattern of adsorbates on the suspended graphene at room temperature. This work presents a simple and convenient method for characterizing the macroscopic structures of 2D materials, and the instrument we constructed allows the study of the weak interaction with 2D materials. PMID:28879233

  18. Low-energy transmission electron diffraction and imaging of large-area graphene.

    PubMed

    Zhao, Wei; Xia, Bingyu; Lin, Li; Xiao, Xiaoyang; Liu, Peng; Lin, Xiaoyang; Peng, Hailin; Zhu, Yuanmin; Yu, Rong; Lei, Peng; Wang, Jiangtao; Zhang, Lina; Xu, Yong; Zhao, Mingwen; Peng, Lianmao; Li, Qunqing; Duan, Wenhui; Liu, Zhongfan; Fan, Shoushan; Jiang, Kaili

    2017-09-01

    Two-dimensional (2D) materials have attracted interest because of their excellent properties and potential applications. A key step in realizing industrial applications is to synthesize wafer-scale single-crystal samples. Until now, single-crystal samples, such as graphene domains up to the centimeter scale, have been synthesized. However, a new challenge is to efficiently characterize large-area samples. Currently, the crystalline characterization of these samples still relies on selected-area electron diffraction (SAED) or low-energy electron diffraction (LEED), which is more suitable for characterizing very small local regions. This paper presents a highly efficient characterization technique that adopts a low-energy electrostatically focused electron gun and a super-aligned carbon nanotube (SACNT) film sample support. It allows rapid crystalline characterization of large-area graphene through a single photograph of a transmission-diffracted image at a large beam size. Additionally, the low-energy electron beam enables the observation of a unique diffraction pattern of adsorbates on the suspended graphene at room temperature. This work presents a simple and convenient method for characterizing the macroscopic structures of 2D materials, and the instrument we constructed allows the study of the weak interaction with 2D materials.

  19. A rapid method for direct detection of metabolic conversion and magnetization exchange with application to hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Larson, Peder E. Z.; Kerr, Adam B.; Leon Swisher, Christine; Pauly, John M.; Vigneron, Daniel B.

    2012-12-01

    In this work, we present a new MR spectroscopy approach for directly observing nuclear spins that undergo exchange, metabolic conversion, or, generally, any frequency shift during a mixing time. Unlike conventional approaches to observe these processes, such as exchange spectroscopy (EXSY), this rapid approach requires only a single encoding step and thus is readily applicable to hyperpolarized MR in which the magnetization is not replenished after T1 decay and RF excitations. This method is based on stimulated-echoes and uses phase-sensitive detection in conjunction with precisely chosen echo times in order to separate spins generated during the mixing time from those present prior to mixing. We are calling the method Metabolic Activity Decomposition Stimulated-echo Acquisition Mode or MAD-STEAM. We have validated this approach as well as applied it in vivo to normal mice and a transgenic prostate cancer mouse model for observing pyruvate-lactate conversion, which has been shown to be elevated in numerous tumor types. In this application, it provides an improved measure of cellular metabolism by separating [1-13C]-lactate produced in tissue by metabolic conversion from [1-13C]-lactate that has flowed into the tissue or is in the blood. Generally, MAD-STEAM can be applied to any system in which spins undergo a frequency shift.

  20. A rapid method for direct detection of metabolic conversion and magnetization exchange with application to hyperpolarized substrates.

    PubMed

    Larson, Peder E Z; Kerr, Adam B; Swisher, Christine Leon; Pauly, John M; Vigneron, Daniel B

    2012-12-01

    In this work, we present a new MR spectroscopy approach for directly observing nuclear spins that undergo exchange, metabolic conversion, or, generally, any frequency shift during a mixing time. Unlike conventional approaches to observe these processes, such as exchange spectroscopy (EXSY), this rapid approach requires only a single encoding step and thus is readily applicable to hyperpolarized MR in which the magnetization is not replenished after T(1) decay and RF excitations. This method is based on stimulated-echoes and uses phase-sensitive detection in conjunction with precisely chosen echo times in order to separate spins generated during the mixing time from those present prior to mixing. We are calling the method Metabolic Activity Decomposition Stimulated-echo Acquisition Mode or MAD-STEAM. We have validated this approach as well as applied it in vivo to normal mice and a transgenic prostate cancer mouse model for observing pyruvate-lactate conversion, which has been shown to be elevated in numerous tumor types. In this application, it provides an improved measure of cellular metabolism by separating [1-(13)C]-lactate produced in tissue by metabolic conversion from [1-(13)C]-lactate that has flowed into the tissue or is in the blood. Generally, MAD-STEAM can be applied to any system in which spins undergo a frequency shift. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Investigation of correlation classification techniques

    NASA Technical Reports Server (NTRS)

    Haskell, R. E.

    1975-01-01

    A two-step classification algorithm for processing multispectral scanner data was developed and tested. The first step is a single pass clustering algorithm that assigns each pixel, based on its spectral signature, to a particular cluster. The output of that step is a cluster tape in which a single integer is associated with each pixel. The cluster tape is used as the input to the second step, where ground truth information is used to classify each cluster using an iterative method of potentials. Once the clusters have been assigned to classes the cluster tape is read pixel-by-pixel and an output tape is produced in which each pixel is assigned to its proper class. In addition to the digital classification programs, a method of using correlation clustering to process multispectral scanner data in real time by means of an interactive color video display is also described.

  2. A novel facile method of labeling octreotide with (18)F-fluorine.

    PubMed

    Laverman, Peter; McBride, William J; Sharkey, Robert M; Eek, Annemarie; Joosten, Lieke; Oyen, Wim J G; Goldenberg, David M; Boerman, Otto C

    2010-03-01

    Several methods have been developed to label peptides with (18)F. However, in general these are laborious and require a multistep synthesis. We present a facile method based on the chelation of (18)F-aluminum fluoride (Al(18)F) by 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). The method is characterized by the labeling of NOTA-octreotide (NOTA-d-Phe-cyclo[Cys-Phe-d-Trp-Lys-Thr-Cys]-Throl (MH(+) 1305) [IMP466]) with (18)F. Octreotide was conjugated with the NOTA chelate and labeled with (18)F in a 2-step, 1-pot method. The labeling procedure was optimized with regard to the labeling buffer, peptide, and aluminum concentration. Radiochemical yield, specific activity, in vitro stability, and receptor affinity were determined. Biodistribution of (18)F-IMP466 was studied in AR42J tumor-bearing mice and compared with that of (68)Ga-labeled IMP466. In addition, small-animal PET/CT images were acquired. IMP466 was labeled with Al(18)F in a single step with 50% yield. The labeled product was purified by high-performance liquid chromatography to remove unbound Al(18)F and unlabeled peptide. The radiolabeling, including purification, was performed in 45 min. The specific activity was 45,000 GBq/mmol, and the peptide was stable in serum for 4 h at 37 degrees C. Labeling was performed at pH 4.1 in sodium citrate, sodium acetate, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, and 2-(N-morpholino)ethanesulfonic acid buffer and was optimal in sodium acetate buffer. The apparent 50% inhibitory concentration of the (19)F-labeled IMP466 determined on AR42J cells was 3.6 nM. Biodistribution studies at 2 h after injection showed a high tumor uptake of (18)F-IMP466 (28.3 +/- 5.2 percentage injected dose per gram [%ID/g]; tumor-to-blood ratio, 300 +/- 90), which could be blocked by an excess of unlabeled peptide (8.6 +/- 0.7 %ID/g), indicating that the accumulation in the tumor was receptor-mediated. Biodistribution of (68)Ga-IMP466 was similar to that of (18)F-IMP466. (18)F-IMP466 was stable in vivo, because bone uptake was only 0.4 +/- 0.2 %ID/g, whereas free Al(18)F accumulated rapidly in the bone (36.9 +/- 5.0 %ID/g at 2 h after injection). Small-animal PET/CT scans showed excellent tumor delineation and high preferential accumulation in the tumor. NOTA-octreotide could be labeled rapidly and efficiently with (18)F using a 2-step, 1-pot method. The compound was stable in vivo and showed rapid accretion in somatostatin receptor subtype 2-expressing AR42J tumors in nude mice. This method can be used to label other NOTA-conjugated compounds with (18)F.

  3. Long range personalized cancer treatment strategies incorporating evolutionary dynamics.

    PubMed

    Yeang, Chen-Hsiang; Beckman, Robert A

    2016-10-22

    Current cancer precision medicine strategies match therapies to static consensus molecular properties of an individual's cancer, thus determining the next therapeutic maneuver. These strategies typically maintain a constant treatment while the cancer is not worsening. However, cancers feature complicated sub-clonal structure and dynamic evolution. We have recently shown, in a comprehensive simulation of two non-cross resistant therapies across a broad parameter space representing realistic tumors, that substantial improvement in cure rates and median survival can be obtained utilizing dynamic precision medicine strategies. These dynamic strategies explicitly consider intratumoral heterogeneity and evolutionary dynamics, including predicted future drug resistance states, and reevaluate optimal therapy every 45 days. However, the optimization is performed in single 45 day steps ("single-step optimization"). Herein we evaluate analogous strategies that think multiple therapeutic maneuvers ahead, considering potential outcomes at 5 steps ahead ("multi-step optimization") or 40 steps ahead ("adaptive long term optimization (ALTO)") when recommending the optimal therapy in each 45 day block, in simulations involving both 2 and 3 non-cross resistant therapies. We also evaluate an ALTO approach for situations where simultaneous combination therapy is not feasible ("Adaptive long term optimization: serial monotherapy only (ALTO-SMO)"). Simulations utilize populations of 764,000 and 1,700,000 virtual patients for 2 and 3 drug cases, respectively. Each virtual patient represents a unique clinical presentation including sizes of major and minor tumor subclones, growth rates, evolution rates, and drug sensitivities. While multi-step optimization and ALTO provide no significant average survival benefit, cure rates are significantly increased by ALTO. Furthermore, in the subset of individual virtual patients demonstrating clinically significant difference in outcome between approaches, by far the majority show an advantage of multi-step or ALTO over single-step optimization. ALTO-SMO delivers cure rates superior or equal to those of single- or multi-step optimization, in 2 and 3 drug cases respectively. In selected virtual patients incurable by dynamic precision medicine using single-step optimization, analogous strategies that "think ahead" can deliver long-term survival and cure without any disadvantage for non-responders. When therapies require dose reduction in combination (due to toxicity), optimal strategies feature complex patterns involving rapidly interleaved pulses of combinations and high dose monotherapy. This article was reviewed by Wendy Cornell, Marek Kimmel, and Andrzej Swierniak. Wendy Cornell and Andrzej Swierniak are external reviewers (not members of the Biology Direct editorial board). Andrzej Swierniak was nominated by Marek Kimmel.

  4. Probing fast ribozyme reactions under biological conditions with rapid quench-flow kinetics.

    PubMed

    Bingaman, Jamie L; Messina, Kyle J; Bevilacqua, Philip C

    2017-05-01

    Reaction kinetics on the millisecond timescale pervade the protein and RNA fields. To study such reactions, investigators often perturb the system with abiological solution conditions or substrates in order to slow the rate to timescales accessible by hand mixing; however, such perturbations can change the rate-limiting step and obscure key folding and chemical steps that are found under biological conditions. Mechanical methods for collecting data on the millisecond timescale, which allow these perturbations to be avoided, have been developed over the last few decades. These methods are relatively simple and can be conducted on affordable and commercially available instruments. Here, we focus on using the rapid quench-flow technique to study the fast reaction kinetics of RNA enzymes, or ribozymes, which often react on the millisecond timescale under biological conditions. Rapid quench of ribozymes is completely parallel to the familiar hand-mixing approach, including the use of radiolabeled RNAs and fractionation of reactions on polyacrylamide gels. We provide tips on addressing and preventing common problems that can arise with the rapid-quench technique. Guidance is also offered on ensuring the ribozyme is properly folded and fast-reacting. We hope that this article will facilitate the broader use of rapid-quench instrumentation to study fast-reacting ribozymes under biological reaction conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Probing fast ribozyme reactions under biological conditions with rapid quench-flow kinetics

    PubMed Central

    Bingaman, Jamie L.; Messina, Kyle J.; Bevilacqua, Philip C.

    2017-01-01

    Reaction kinetics on the millisecond timescale pervade the protein and RNA fields. To study such reactions, investigators often perturb the system with abiological solution conditions or substrates in order to slow the rate to timescales accessible by hand-mixing; however, such perturbations can change the rate-limiting step and obscure key folding and chemical steps that are found under biological conditions. Mechanical methods for collecting data on the millisecond timescale, which allow these perturbations to be avoided, have been developed over the last few decades. These methods are relatively simple and can be conducted on affordable and commercially available instruments. Here, we focus on using the rapid quench-flow technique to study the fast reaction kinetics of RNA enzymes, or ribozymes, which often react on the millisecond timescale under biological conditions. Rapid quench of ribozymes is completely parallel to the familiar hand-mixing approach, including the use of radiolabeled RNAs and fractionation of reactions on polyacrylamide gels. We provide tips on addressing and preventing common problems that can arise with the rapid-quench technique. Guidance is also offered on ensuring the ribozyme is properly folded and fast-reacting. We hope that this article will facilitate the broader use of rapid-quench instrumentation to study fast-reacting ribozymes under biological reaction conditions. PMID:28315484

  6. A two-step electrodialysis method for DNA purification from polluted metallic environmental samples.

    PubMed

    Rodríguez-Mejía, José Luis; Martínez-Anaya, Claudia; Folch-Mallol, Jorge Luis; Dantán-González, Edgar

    2008-08-01

    Extracting DNA from samples of polluted environments using standard methods often results in low yields of poor-quality material unsuited to subsequent manipulation and analysis by molecular biological techniques. Here, we report a novel two-step electrodialysis-based method for the extraction of DNA from environmental samples. This technique permits the rapid and efficient isolation of high-quality DNA based on its acidic nature, and without the requirement for phenol-chloroform-isoamyl alcohol cleanup and ethanol precipitation steps. Subsequent PCR, endonuclease restriction, and cloning reactions were successfully performed utilizing DNA obtained by electrodialysis, whereas some or all of these techniques failed using DNA extracted with two alternative methods. We also show that his technique is applicable to purify DNA from a range of polluted and nonpolluted samples.

  7. DAPNe with micro-capillary separatory chemistry-coupled to MALDI-MS for the analysis of polar and non-polar lipid metabolism in one cell

    NASA Astrophysics Data System (ADS)

    Hamilton, Jason S.; Aguilar, Roberto; Petros, Robby A.; Verbeck, Guido F.

    2017-05-01

    The cellular metabolome is considered to be a representation of cellular phenotype and cellular response to changes to internal or external events. Methods to expand the coverage of the expansive physiochemical properties that makeup the metabolome currently utilize multi-step extractions and chromatographic separations prior to chemical detection, leading to lengthy analysis times. In this study, a single-step procedure for the extraction and separation of a sample using a micro-capillary as a separatory funnel to achieve analyte partitioning within an organic/aqueous immiscible solvent system is described. The separated analytes are then spotted for MALDI-MS imaging and distribution ratios are calculated. Initially, the method is applied to standard mixtures for proof of partitioning. The extraction of an individual cell is non-reproducible; therefore, a broad chemical analysis of metabolites is necessary and will be illustrated with the one-cell analysis of a single Snu-5 gastric cancer cell taken from a cellular suspension. The method presented here shows a broad partitioning dynamic range as a single-step method for lipid analysis demonstrating a decrease in ion suppression often present in MALDI analysis of lipids.

  8. Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. II: Confirmatory analysis.

    PubMed

    Badoud, F; Grata, E; Perrenoud, L; Saugy, M; Rudaz, S; Veuthey, J-L

    2010-06-18

    For doping control, analyses of samples are generally achieved in two steps: a rapid screening and, in the case of a positive result, a confirmatory analysis. A two-step methodology based on ultra-high-pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was developed to screen and confirm 103 doping agents from various classes (e.g., beta-blockers, stimulants, diuretics, and narcotics). The screening method was presented in a previous article as part I (i.e., Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. Part I: screening analysis). For the confirmatory method, basic, neutral and acidic compounds were extracted by a dedicated solid-phase extraction (SPE) in a 96-well plate format and detected by MS in the tandem mode to obtain precursor and characteristic product ions. The mass accuracy and the elemental composition of precursor and product ions were used for compound identification. After validation including matrix effect determination, the method was considered reliable to confirm suspect results without ambiguity according to the positivity criteria established by the World Anti-Doping Agency (WADA). Moreover, an isocratic method was developed to separate ephedrine from its isomer pseudoephedrine and cathine from phenylpropanolamine in a single run, what allowed their direct quantification in urine. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Selection of a novel peptide aptamer with high affinity for TiO2-nanoparticle through a direct electroporation with TiO2-binding phage complexes.

    PubMed

    Inoue, Ippei; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro; Yasueda, Hisashi

    2016-11-01

    We have developed an easy and rapid screening method of peptide aptamers with high affinity for a target material TiO 2 using M13 phage-display and panning procedure. In a selection step, the phage-substrate complexes and Escherichia coli cells were directly applied by electric pulse for electroporation, without separating the objective phages from the TiO 2 nanoparticles. Using this simple and rapid method, we obtained a novel peptide aptamer (named ST-1 with the sequence AYPQKFNNNFMS) with highly strong binding activity for TiO 2 . A cage-shaped protein fused with both ST-1 and an available carbon nanotube-affinity peptide was designed and produced in E. coli. The multi-functional supraprotein could efficiently mineralize a titanium-compound around the surface of single-wall carbon nanotubes (SWNTs), indicating that the ST-1 is valuable in the fabrication of nano-composite materials with titanium-compounds. The structural analysis of ST-1 variants indicated the importance of the N-terminal region (as a motif of AXPQKX 6 S) of the aptamer in the TiO 2 -binding activity. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Russian Snap Military Exercise in March of 2015; What Implications did this Exercise Have

    DTIC Science & Technology

    2017-06-09

    Russia can mobilize rapidly the nation for war, shift substantial forces in its interior to meet any threat, and that Russia is willing to use military...Further, it demonstrates to any observer that Russia can mobilize rapidly the nation for war, shift substantial forces in its interior to meet any...the steps of qualitative research method in a class on Advanced Research Methods, September 12, 2016. 65 Robert K. Yin, Case Study Research: Design

  11. Analysis of psilocybin and psilocin in Psilocybe subcubensis Guzmán by ion mobility spectrometry and gas chromatography-mass spectrometry.

    PubMed

    Keller, T; Schneider, A; Regenscheit, P; Dirnhofer, R; Rücker, T; Jaspers, J; Kisser, W

    1999-01-11

    A new method has been developed for the rapid analysis of psilocybin and/or psilocin in fungus material using ion mobility spectrometry. Quantitative analysis was performed by gas chromatography-mass spectrometry after a simple one-step extraction involving homogenization of the dried fruit bodies of fungi in chloroform and derivatization with MSTFA. The proposed methods resulted in rapid procedures useful in analyzing psychotropic fungi for psilocybin and psilocin.

  12. RAPIDLY MEASURED INDICATORS OF RECREATIONAL WATER QUALITY ARE PREDICTIVE OF SWIMMING ASSOCIATED GASTROINTESTINAL ILLNESS

    EPA Science Inventory

    Standard methods to measure recreational water quality require at least 24 hours to obtain results making it impossible to assess the quality of water within a single day. Methods to measure recreational water quality in two hours or less have been developed. Application of rapid...

  13. CAN RAPID MEASURES OF RECREATIONAL WATER QUALITY PREDICT SWIMMING ASSOCIATED GASTROINTESTINAL ILLNESS?

    EPA Science Inventory

    Standard methods to measure recreational water quality require at least 24 hours to obtain results making it impossible to assess the quality of water within a single day. Methods to measure recreational water quality in two hours or less have been developed. Application of rapid...

  14. A 15-Step Synthesis of (+)-Ryanodol

    PubMed Central

    Chuang, Kangway V.; Xu, Chen; Reisman, Sarah E.

    2017-01-01

    (+)-Ryanodine and (+)-ryanodol are complex diterpenoids that modulate intracellular Ca2+ release at ryanodine receptors, ion channels critical for skeletal and cardiac muscle excitation–contraction coupling and synaptic transmission. Chemical derivatization of these diterpenoids has demonstrated that certain peripheral structural modifications can alter binding affinity and selectivity among ryanodine receptor isoforms. Here we report a short chemical synthesis of (+)-ryanodol that proceeds in only 15 steps from the commercially available terpene (S)-pulegone. The efficiency of the synthesis derives from the use of a Pauson-Khand reaction to rapidly build the carbon framework, and a remarkable SeO2-mediated oxidation to install three oxygen atoms in single step. This work highlights how strategic C–O bond constructions can streamline the synthesis of poly-hydroxylated terpenes by minimizing protecting group and redox adjustments. PMID:27563092

  15. Mechanical, thermal and morphological characterization of polycarbonate/oxidized carbon nanofiber composites produced with a lean 2-step manufacturing process.

    PubMed

    Lively, Brooks; Kumar, Sandeep; Tian, Liu; Li, Bin; Zhong, Wei-Hong

    2011-05-01

    In this study we report the advantages of a 2-step method that incorporates an additional process pre-conditioning step for rapid and precise blending of the constituents prior to the commonly used melt compounding method for preparing polycarbonate/oxidized carbon nanofiber composites. This additional step (equivalent to a manufacturing cell) involves the formation of a highly concentrated solid nano-nectar of polycarbonate/carbon nanofiber composite using a solution mixing process followed by melt mixing with pure polycarbonate. This combined method yields excellent dispersion and improved mechanical and thermal properties as compared to the 1-step melt mixing method. The test results indicated that inclusion of carbon nanofibers into composites via the 2-step method resulted in dramatically reduced ( 48% lower) coefficient of thermal expansion compared to that of pure polycarbonate and 30% lower than that from the 1-step processing, at the same loading of 1.0 wt%. Improvements were also found in dynamic mechanical analysis and flexural mechanical properties. The 2-step approach is more precise and leads to better dispersion, higher quality, consistency, and improved performance in critical application areas. It is also consistent with Lean Manufacturing principles in which manufacturing cells are linked together using less of the key resources and creates a smoother production flow. Therefore, this 2-step process can be more attractive for industry.

  16. Manipulation of surface morphology of flower-like Ag/ZnO nanorods to enhance photocatalytic performance

    NASA Astrophysics Data System (ADS)

    U-thaipan, Kasira; Tedsree, Karaked

    2018-06-01

    The surface morphology of flower-like Ag/ZnO nanorod can be manipulated by adopting different synthetic routes and also loading different levels of Ag in order to alter their surface structures to achieve the maximum photocatalytic efficiency. In a single-step preparation method Ag/ZnO was prepared by heating directly a mixture of Zn2+ and Ag+ precursors in an aqueous NaOH-ethylene glycol solution, while in the two-step preparation method an intermediate of flower-shaped ZnO nanorod was obtained by a hydrothermal process before depositing Ag particles on the ZnO surfaces by chemical reduction. The structure, morphology and optical properties of the synthesized samples were characterized using TEM, SEM, XRD, DRS and PL techniques. The sample prepared by single-step method are characterized with agglomeration of Ag atoms as clusters on the surface of ZnO, whereas in the sample prepared by two-step method Ag atoms are found uniformly dispersed and deposited as discrete Ag nanoparticles on the surface of ZnO. A significant enhancement in the adsorption of visible light was evident for Ag/ZnO samples prepared by two-step method especially with low Ag content (0.5 mol%). The flower-like Ag/ZnO nanorod prepared with 0.5 mol% Ag by two-step process was found to be the most efficient photocatalyst for the degradation of phenol, which can decompose 90% of phenol within 120 min.

  17. Rapid comprehensive characterization of crude oils by thermogravimetry coupled to fast modulated gas chromatography-single photon ionization time-of-flight mass spectrometry.

    PubMed

    Wohlfahrt, S; Fischer, M; Saraji-Bozorgzad, M; Matuschek, G; Streibel, T; Post, E; Denner, T; Zimmermann, R

    2013-09-01

    Comprehensive multi-dimensional hyphenation of a thermogravimetry device (i.e. a thermobalance) to gas chromatography and single photon ionization-time-of-flight mass spectrometry (TG-GC×SPI-MS) has been used to investigate two crude oil samples of different geographical origin. The source of the applied vacuum ultraviolet radiation is an electron beam pumped rare gas excimer lamp (EBEL). The soft photoionization favors the formation of molecular ions. Introduction of a fast, rapidly modulated gas chromatographic separation step in comparison with solely TG-SPI-MS enables strongly enhanced detection especially with such highly complex organic matrices as crude oil. In contrast with former TG-SPI-MS measurements, separation and identification of overlying substances is possible because of different GC retention times. The specific contribution of isobaric compounds to one mass signal is determined for alkanes, naphthalenes, alkylated benzenes, and other compounds.

  18. Cryo-EM image alignment based on nonuniform fast Fourier transform.

    PubMed

    Yang, Zhengfan; Penczek, Pawel A

    2008-08-01

    In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform fast Fourier transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis.

  19. Cryo-EM Image Alignment Based on Nonuniform Fast Fourier Transform

    PubMed Central

    Yang, Zhengfan; Penczek, Pawel A.

    2008-01-01

    In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform Fast Fourier Transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis. PMID:18499351

  20. Rapid quantification of viable Legionella in nuclear cooling tower waters using filter cultivation, fluorescent in situ hybridization and solid-phase cytometry.

    PubMed

    Baudart, J; Guillaume, C; Mercier, A; Lebaron, P; Binet, M

    2015-05-01

    To develop a rapid and sensitive method to quantify viable Legionella spp. in cooling tower water samples. A rapid, culture-based method capable of quantifying as few as 600 Legionella microcolonies per litre within 2 days in industrial waters was developed. The method combines a short cultivation step of microcolonies on GVPC agar plate, specific detection of Legionella cells by a fluorescent in situ hybridization (FISH) approach, and a sensitive enumeration using a solid-phase cytometer. Following optimization of the cultivation conditions, the qualitative and quantitative performance of the method was assessed and the method was applied to 262 nuclear power plant cooling water samples. The performance of this method was in accordance with the culture method (NF-T 90-431) for Legionella enumeration. The rapid detection of viable Legionella in water is a major concern to the effective monitoring of this pathogenic bacterium in the main water sources involved in the transmission of legionellosis infection (Legionnaires' disease). The new method proposed here appears to be a robust, efficient and innovative means for rapidly quantifying cultivable Legionella in cooling tower water samples within 48 h. © 2015 The Society for Applied Microbiology.

  1. General methods for analysis of sequential "n-step" kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding.

    PubMed

    Lucius, Aaron L; Maluf, Nasib K; Fischer, Christopher J; Lohman, Timothy M

    2003-10-01

    Helicase-catalyzed DNA unwinding is often studied using "all or none" assays that detect only the final product of fully unwound DNA. Even using these assays, quantitative analysis of DNA unwinding time courses for DNA duplexes of different lengths, L, using "n-step" sequential mechanisms, can reveal information about the number of intermediates in the unwinding reaction and the "kinetic step size", m, defined as the average number of basepairs unwound between two successive rate limiting steps in the unwinding cycle. Simultaneous nonlinear least-squares analysis using "n-step" sequential mechanisms has previously been limited by an inability to float the number of "unwinding steps", n, and m, in the fitting algorithm. Here we discuss the behavior of single turnover DNA unwinding time courses and describe novel methods for nonlinear least-squares analysis that overcome these problems. Analytic expressions for the time courses, f(ss)(t), when obtainable, can be written using gamma and incomplete gamma functions. When analytic expressions are not obtainable, the numerical solution of the inverse Laplace transform can be used to obtain f(ss)(t). Both methods allow n and m to be continuous fitting parameters. These approaches are generally applicable to enzymes that translocate along a lattice or require repetition of a series of steps before product formation.

  2. A simple and novel method for RNA-seq library preparation of single cell cDNA analysis by hyperactive Tn5 transposase.

    PubMed

    Brouilette, Scott; Kuersten, Scott; Mein, Charles; Bozek, Monika; Terry, Anna; Dias, Kerith-Rae; Bhaw-Rosun, Leena; Shintani, Yasunori; Coppen, Steven; Ikebe, Chiho; Sawhney, Vinit; Campbell, Niall; Kaneko, Masahiro; Tano, Nobuko; Ishida, Hidekazu; Suzuki, Ken; Yashiro, Kenta

    2012-10-01

    Deep sequencing of single cell-derived cDNAs offers novel insights into oncogenesis and embryogenesis. However, traditional library preparation for RNA-seq analysis requires multiple steps with consequent sample loss and stochastic variation at each step significantly affecting output. Thus, a simpler and better protocol is desirable. The recently developed hyperactive Tn5-mediated library preparation, which brings high quality libraries, is likely one of the solutions. Here, we tested the applicability of hyperactive Tn5-mediated library preparation to deep sequencing of single cell cDNA, optimized the protocol, and compared it with the conventional method based on sonication. This new technique does not require any expensive or special equipment, which secures wider availability. A library was constructed from only 100 ng of cDNA, which enables the saving of precious specimens. Only a few steps of robust enzymatic reaction resulted in saved time, enabling more specimens to be prepared at once, and with a more reproducible size distribution among the different specimens. The obtained RNA-seq results were comparable to the conventional method. Thus, this Tn5-mediated preparation is applicable for anyone who aims to carry out deep sequencing for single cell cDNAs. Copyright © 2012 Wiley Periodicals, Inc.

  3. The ATP hydrolysis and phosphate release steps control the time course of force development in rabbit skeletal muscle.

    PubMed

    Sleep, John; Irving, Malcolm; Burton, Kevin

    2005-03-15

    The time course of isometric force development following photolytic release of ATP in the presence of Ca(2+) was characterized in single skinned fibres from rabbit psoas muscle. Pre-photolysis force was minimized using apyrase to remove contaminating ATP and ADP. After the initial force rise induced by ATP release, a rapid shortening ramp terminated by a step stretch to the original length was imposed, and the time course of the subsequent force redevelopment was again characterized. Force development after ATP release was accurately described by a lag phase followed by one or two exponential components. At 20 degrees C, the lag was 5.6 +/- 0.4 ms (s.e.m., n = 11), and the force rise was well fitted by a single exponential with rate constant 71 +/- 4 s(-1). Force redevelopment after shortening-restretch began from about half the plateau force level, and its single-exponential rate constant was 68 +/- 3 s(-1), very similar to that following ATP release. When fibres were activated by the addition of Ca(2+) in ATP-containing solution, force developed more slowly, and the rate constant for force redevelopment following shortening-restretch reached a maximum value of 38 +/- 4 s(-1) (n = 6) after about 6 s of activation. This lower value may be associated with progressive sarcomere disorder at elevated temperature. Force development following ATP release was much slower at 5 degrees C than at 20 degrees C. The rate constant of a single-exponential fit to the force rise was 4.3 +/- 0.4 s(-1) (n = 22), and this was again similar to that after shortening-restretch in the same activation at this temperature, 3.8 +/- 0.2 s(-1). We conclude that force development after ATP release and shortening-restretch are controlled by the same steps in the actin-myosin ATPase cycle. The present results and much previous work on mechanical-chemical coupling in muscle can be explained by a kinetic scheme in which force is generated by a rapid conformational change bracketed by two biochemical steps with similar rate constants -- ATP hydrolysis and the release of inorganic phosphate -- both of which combine to control the rate of force development.

  4. A method for vreating a three dimensional model from published geologic maps and cross sections

    USGS Publications Warehouse

    Walsh, Gregory J.

    2009-01-01

    This brief report presents a relatively inexpensive and rapid method for creating a 3D model of geology from published quadrangle-scale maps and cross sections using Google Earth and Google SketchUp software. An example from the Green Mountains of Vermont, USA, is used to illustrate the step by step methods used to create such a model. A second example is provided from the Jebel Saghro region of the Anti-Atlas Mountains of Morocco. The report was published to help enhance the public?s ability to use and visualize geologic map data.

  5. A single-step simultaneous protein staining procedure for polyacrylamide gels and nitrocellulose membranes by Alta during western blot analysis.

    PubMed

    Pal, Jayanta K; Berwal, Sunil K; Soni, Rupali N

    2012-01-01

    A simple method for staining of proteins simultaneously on sodium dodecyl sulfate (SDS) polyacrylamide gels and nitrocellulose membranes by Alta during western blot analysis is described. A 5% solution of Alta, a commercially available cosmetic preparation, is added in the upper tank buffer during electrophoresis. On completion of electrophoresis, the gel is washed in distilled water and viewed on a white light plate and a transilluminator to photograph the protein profiles. The gel is processed for western blot transfer of proteins onto a nitrocellulose membrane, and upon completion, the protein profiles on the membrane are viewed and photographed as stated above. The membrane can then be processed for immunostaining as per the standard procedure. Thus, the staining procedure using Alta is simple, rapid (without any need of destaining), and cost-effective.

  6. Self-Cleaning Anticondensing Glass via Supersonic Spraying of Silver Nanowires, Silica, and Polystyrene Nanoparticles.

    PubMed

    Lee, Jong-Gun; An, Seongpil; Kim, Tae-Gun; Kim, Min-Woo; Jo, Hong-Seok; Swihart, Mark T; Yarin, Alexander L; Yoon, Sam S

    2017-10-11

    We have sequentially deposited layers of silver nanowires (AgNWs), silicon dioxide (SiO 2 ) nanoparticles, and polystyrene (PS) nanoparticles on uncoated glass by a rapid low-cost supersonic spraying method to create antifrosting, anticondensation, and self-cleaning glass. The conductive silver nanowire network embedded in the coating allows electrical heating of the glass surface. Supersonic spraying is a single-step coating technique that does not require vacuum. The fabricated multifunctional glass was characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), ultraviolet-visible spectroscopy, and transmission electron microscopy (TEM). The thermal insulation and antifrosting performance were demonstrated using infrared thermal imaging. The reliability of the electrical heating function was tested through extensive cycling. This transparent multifunctional coating holds great promise for use in various smart window designs.

  7. CRISPR-Cas9D10A Nickase-Assisted Genome Editing in Lactobacillus casei

    PubMed Central

    Song, Xin; Huang, He; Xiong, Zhiqiang

    2017-01-01

    ABSTRACT Lactobacillus casei has drawn increasing attention as a health-promoting probiotic, while effective genetic manipulation tools are often not available, e.g., the single-gene knockout in L. casei still depends on the classic homologous recombination-dependent double-crossover strategy, which is quite labor-intensive and time-consuming. In the present study, a rapid and precise genome editing plasmid, pLCNICK, was established for L. casei genome engineering based on CRISPR-Cas9D10A. In addition to the P23-Cas9D10A and Pldh-sgRNA (single guide RNA) expression cassettes, pLCNICK includes the homologous arms of the target gene as repair templates. The ability and efficiency of chromosomal engineering using pLCNICK were evaluated by in-frame deletions of four independent genes and chromosomal insertion of an enhanced green fluorescent protein (eGFP) expression cassette at the LC2W_1628 locus. The efficiencies associated with in-frame deletions and chromosomal insertion is 25 to 62%. pLCNICK has been proved to be an effective, rapid, and precise tool for genome editing in L. casei, and its potential application in other lactic acid bacteria (LAB) is also discussed in this study. IMPORTANCE The lack of efficient genetic tools has limited the investigation and biotechnological application of many LAB. The CRISPR-Cas9D10A nickase-based genome editing in Lactobacillus casei, an important food industrial microorganism, was demonstrated in this study. This genetic tool allows efficient single-gene deletion and insertion to be accomplished by one-step transformation, and the cycle time is reduced to 9 days. It facilitates a rapid and precise chromosomal manipulation in L. casei and overcomes some limitations of previous methods. This editing system can serve as a basic technological platform and offers the possibility to start a comprehensive investigation on L. casei. As a broad-host-range plasmid, pLCNICK has the potential to be adapted to other Lactobacillus species for genome editing. PMID:28864652

  8. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    PubMed Central

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185

  9. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  10. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S.

    2010-06-01

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  11. An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species

    PubMed Central

    Sitepu, I.R.; Ignatia, L.; Franz, A. K.; Wong, D. M.; Faulina, S.A.; Tsui, M.; Kanti, A.; Boundy-Mills, K.

    2012-01-01

    A rapid and inexpensive method for estimating lipid content of yeasts is needed for screening large numbers of yeasts samples. Nile red is a fluorescent lipophilic dye used for detection and quantification of intracellular lipid droplets in various biological system including algae, yeasts and filamentous fungi. However, a published assay for yeast is affected by variable diffusion across the cell membrane, and variation in the time required to reach maximal fluorescence emission. In this study, parameters that may influence the emission were varied to determine optimal assay conditions. An improved assay with a high-throughput capability was developed that includes the addition of dimethyl sulfoxide (DMSO) solvent to improve cell permeability, elimination of the washing step, the reduction of Nile red concentration, kinetic readings rather than single time-point reading, and utilization of a black 96-well microplate. The improved method was validated by comparison to gravimetric determination of lipid content of a broad variety of ascomycete and basidiomycete yeast species. PMID:22985718

  12. Nucleic acid sequence detection using multiplexed oligonucleotide PCR

    DOEpatents

    Nolan, John P [Santa Fe, NM; White, P Scott [Los Alamos, NM

    2006-12-26

    Methods for rapidly detecting single or multiple sequence alleles in a sample nucleic acid are described. Provided are all of the oligonucleotide pairs capable of annealing specifically to a target allele and discriminating among possible sequences thereof, and ligating to each other to form an oligonucleotide complex when a particular sequence feature is present (or, alternatively, absent) in the sample nucleic acid. The design of each oligonucleotide pair permits the subsequent high-level PCR amplification of a specific amplicon when the oligonucleotide complex is formed, but not when the oligonucleotide complex is not formed. The presence or absence of the specific amplicon is used to detect the allele. Detection of the specific amplicon may be achieved using a variety of methods well known in the art, including without limitation, oligonucleotide capture onto DNA chips or microarrays, oligonucleotide capture onto beads or microspheres, electrophoresis, and mass spectrometry. Various labels and address-capture tags may be employed in the amplicon detection step of multiplexed assays, as further described herein.

  13. Estimating Measures of Pass-Fail Reliability from Parallel Half-Tests.

    ERIC Educational Resources Information Center

    Woodruff, David J.; Sawyer, Richard L.

    Two methods for estimating measures of pass-fail reliability are derived, by which both theta and kappa may be estimated from a single test administration. The methods require only a single test administration and are computationally simple. Both are based on the Spearman-Brown formula for estimating stepped-up reliability. The non-distributional…

  14. Rapid Multistep Synthesis of 1,2,4-Oxadiazoles in a Single Continuous Microreactor Sequence

    PubMed Central

    Grant, Daniel; Dahl, Russell; Cosford, Nicholas D. P.

    2009-01-01

    A general method for the synthesis of bis-substituted 1,2,4-oxadiazoles from readily available arylnitriles and activated carbonyls in a single continuous microreactor sequence is described. The synthesis incorporates three sequential microreactors to produce 1,2,4-oxadiazoles in ~30 min in quantities (40–80 mg) sufficient for full characterization and rapid library supply. PMID:18687005

  15. A WENO-Limited, ADER-DT, Finite-Volume Scheme for Efficient, Robust, and Communication-Avoiding Multi-Dimensional Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, Matthew R

    2014-01-01

    The novel ADER-DT time discretization is applied to two-dimensional transport in a quadrature-free, WENO- and FCT-limited, Finite-Volume context. Emphasis is placed on (1) the serial and parallel computational properties of ADER-DT and this framework and (2) the flexibility of ADER-DT and this framework in efficiently balancing accuracy with other constraints important to transport applications. This study demonstrates a range of choices for the user when approaching their specific application while maintaining good parallel properties. In this method, genuine multi-dimensionality, single-step and single-stage time stepping, strict positivity, and a flexible range of limiting are all achieved with only one parallel synchronizationmore » and data exchange per time step. In terms of parallel data transfers per simulated time interval, this improves upon multi-stage time stepping and post-hoc filtering techniques such as hyperdiffusion. This method is evaluated with standard transport test cases over a range of limiting options to demonstrate quantitatively and qualitatively what a user should expect when employing this method in their application.« less

  16. A RAPID DNA EXTRACTION METHOD IS SUCCESSFULLY APPLIED TO ITS-RFLP ANALYSIS OF MYCORRHIZAL ROOT TIPS

    EPA Science Inventory

    A rapid method for extracting DNA from intact, single root tips using a Xanthine solution was developed to handle very large numbers of analyses of ectomycorrhizas. By using an extraction without grinding we have attempted to bias the extraction towards the fungal DNA in the man...

  17. Improvement of Dimensional Accuracy of 3-D Printed Parts using an Additive/Subtractive Based Hybrid Prototyping Approach

    NASA Astrophysics Data System (ADS)

    Amanullah Tomal, A. N. M.; Saleh, Tanveer; Raisuddin Khan, Md.

    2017-11-01

    At present, two important processes, namely CNC machining and rapid prototyping (RP) are being used to create prototypes and functional products. Combining both additive and subtractive processes into a single platform would be advantageous. However, there are two important aspects need to be taken into consideration for this process hybridization. First is the integration of two different control systems for two processes and secondly maximizing workpiece alignment accuracy during the changeover step. Recently we have developed a new hybrid system which incorporates Fused Deposition Modelling (FDM) as RP Process and CNC grinding operation as subtractive manufacturing process into a single setup. Several objects were produced with different layer thickness for example 0.1 mm, 0.15 mm and 0.2 mm. It was observed that pure FDM method is unable to attain desired dimensional accuracy and can be improved by a considerable margin about 66% to 80%, if finishing operation by grinding is carried out. It was also observed layer thickness plays a role on the dimensional accuracy and best accuracy is achieved with the minimum layer thickness (0.1 mm).

  18. Rapid bacteriological screening of cosmetic raw materials by using bioluminescence.

    PubMed

    Nielsen, P; Van Dellen, E

    1989-01-01

    Incoming cosmetic raw materials are routinely tested for microbial content. Standard plate count methods require up to 72 h. A rapid, sensitive, and inexpensive raw material screening method was developed that detects the presence of bacteria by means of ATP (bioluminescence). With a 24-h broth enrichment, the minimum bacterial ATP detection threshold of 1 cfu/g sample can be achieved using purified firefly luciferin-luciferase and an ATP releasing reagent. By using this rapid screen, microbiologically free material may be released for production within 24 h, while contaminated material undergoes further quantitative and identification testing. In order for a raw material to be validated for this method it must be evaluated for (1) a potential nonmicrobial light-contributing reaction resulting in a false positive or, (2) degradation of the ATP giving a false negative, and (3) confirmation that the raw material has not overwhelmed the buffering capacity of the enrichment broth. The key criteria for a rapid screen was the sensitivity to detect less than one colony forming unit per g product, the speed to do this within 24 h, and cost efficiency. Bioluminescence meets these criteria. With an enrichment step, it can detect less than one cfu/g sample. After the enrichment step, analysis time per sample is approximately 2 min and the cost for material and reagents is less than one dollar per sample.

  19. Simulation and experimental design of a new advanced variable step size Incremental Conductance MPPT algorithm for PV systems.

    PubMed

    Loukriz, Abdelhamid; Haddadi, Mourad; Messalti, Sabir

    2016-05-01

    Improvement of the efficiency of photovoltaic system based on new maximum power point tracking (MPPT) algorithms is the most promising solution due to its low cost and its easy implementation without equipment updating. Many MPPT methods with fixed step size have been developed. However, when atmospheric conditions change rapidly , the performance of conventional algorithms is reduced. In this paper, a new variable step size Incremental Conductance IC MPPT algorithm has been proposed. Modeling and simulation of different operational conditions of conventional Incremental Conductance IC and proposed methods are presented. The proposed method was developed and tested successfully on a photovoltaic system based on Flyback converter and control circuit using dsPIC30F4011. Both, simulation and experimental design are provided in several aspects. A comparative study between the proposed variable step size and fixed step size IC MPPT method under similar operating conditions is presented. The obtained results demonstrate the efficiency of the proposed MPPT algorithm in terms of speed in MPP tracking and accuracy. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Validation of a Rapid and Sensitive UPLC–MS-MS Method Coupled with Protein Precipitation for the Simultaneous Determination of Seven Pyrethroids in 100 µL of Rat Plasma by Using Ammonium Adduct as Precursor Ion

    PubMed Central

    Singh, Sheelendra Pratap; Dwivedi, Nistha; Raju, Kanumuri Siva Rama; Taneja, Isha; Wahajuddin, Mohammad

    2016-01-01

    United States Environmental Protection Agency has recommended estimating pyrethroids’ risk using cumulative exposure. For cumulative risk assessment, it would be useful to have a bioanalytical method for quantification of one or several pyrethroids simultaneously in a small sample volume to support toxicokinetic studies. Therefore, in the present study, a simple, sensitive and high-throughput ultraperformance liquid chromatography–tandem mass spectrometry method was developed and validated for simultaneous analysis of seven pyrethroids (fenvalerate, fenpropathrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, cypermethrin and deltamethrin) in 100 µL of rat plasma. A simple single-step protein precipitation method was used for the extraction of target compounds. The total chromatographic run time of the method was 5 min. The chromatographic system used a Supelco C18 column and isocratic elution with a mobile phase consisting of methanol and 5 mM ammonium formate in the ratio of 90 : 10 (v/v). Mass spectrometer (API 4000) was operated in multiple reaction monitoring positive-ion mode using the electrospray ionization technique. The calibration curves were linear in the range of 7.8–2,000 ng/mL with correlation coefficients of ≥0.99. All validation parameters such as precision, accuracy, recovery, matrix effect and stability met the acceptance criteria according to the regulatory guidelines. The method was successfully applied to the toxicokinetic study of cypermethrin in rats. To the best of our knowledge, this is the first LC–MS-MS method for the simultaneous analysis of pyrethroids in rat plasma. This validated method with minimal modification can also be utilized for forensic and clinical toxicological applications due to its simplicity, sensitivity and rapidity. PMID:26801239

  1. Powder-in-tube and thick-film methods of fabricating high temperature superconductors having enhanced biaxial texture

    DOEpatents

    Goyal, Amit; Kroeger, Donald M.

    2003-11-11

    A method for forming an electronically active biaxially textured article includes the steps of providing a substrate having a single crystal metal or metal alloy surface, deforming the substrate to form an elongated substrate surface having biaxial texture and depositing an epitaxial electronically active layer on the biaxially textured surface. The method can include at least one annealing step after the deforming step to produce the biaxially textured substrate surface. The invention can be used to form improved biaxially textured articles, such as superconducting wire and tape articles having improved J.sub.c values.

  2. An Efficient, Rapid, and Recyclable System for CRISPR-Mediated Genome Editing in Candida albicans.

    PubMed

    Nguyen, Namkha; Quail, Morgan M F; Hernday, Aaron D

    2017-01-01

    Candida albicans is the most common fungal pathogen of humans. Historically, molecular genetic analysis of this important pathogen has been hampered by the lack of stable plasmids or meiotic cell division, limited selectable markers, and inefficient methods for generating gene knockouts. The recent development of clustered regularly interspaced short palindromic repeat(s) (CRISPR)-based tools for use with C. albicans has opened the door to more efficient genome editing; however, previously reported systems have specific limitations. We report the development of an optimized CRISPR-based genome editing system for use with C. albicans . Our system is highly efficient, does not require molecular cloning, does not leave permanent markers in the genome, and supports rapid, precise genome editing in C. albicans . We also demonstrate the utility of our system for generating two independent homozygous gene knockouts in a single transformation and present a method for generating homozygous wild-type gene addbacks at the native locus. Furthermore, each step of our protocol is compatible with high-throughput strain engineering approaches, thus opening the door to the generation of a complete C. albicans gene knockout library. IMPORTANCE Candida albicans is the major fungal pathogen of humans and is the subject of intense biomedical and discovery research. Until recently, the pace of research in this field has been hampered by the lack of efficient methods for genome editing. We report the development of a highly efficient and flexible genome editing system for use with C. albicans . This system improves upon previously published C. albicans CRISPR systems and enables rapid, precise genome editing without the use of permanent markers. This new tool kit promises to expedite the pace of research on this important fungal pathogen.

  3. Determination of supplemental feeding needs for astaxanthin and canthaxanthin in salmonids by supramolecular solvent-based microextraction and liquid chromatography-UV/VIS spectroscopy.

    PubMed

    Caballo, Carmen; Costi, Esther María; Sicilia, María Dolores; Rubio, Soledad

    2012-09-15

    Development of simple and rapid analytical methods for predicting supplemental feeding requirements in aquaculture is a need to reduce production costs. In this article, a supramolecular solvent (SUPRAS) made up of decanoic acid (DeA) assemblies was proposed to simplify sample treatment in the total and individual determination of carotenoids (red-pink pigments) in farmed salmonids. The analytes were quantitatively extracted in a single step that spends a few minutes using a small volume of SUPRAS (i.e. 800 μL) and directly determined in extracts without the interference from fats or other matrix components. The methods based on the combination of microextraction with SUPRAS and photometry or HPLC-UV/VIS spectroscopy were developed for the determination of total and individual carotenoids, respectively. The applicability of the methods was demonstrated by analysing non-fortified and fortified samples of farmed Atlantic salmons and rainbow trouts. Recoveries obtained by photometry and HPLC-UV/VIS spectroscopy were within the intervals 98-104% and 94-106%, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Rapid calculation of acoustic fields from arbitrary continuous-wave sources.

    PubMed

    Treeby, Bradley E; Budisky, Jakub; Wise, Elliott S; Jaros, Jiri; Cox, B T

    2018-01-01

    A Green's function solution is derived for calculating the acoustic field generated by phased array transducers of arbitrary shape when driven by a single frequency continuous wave excitation with spatially varying amplitude and phase. The solution is based on the Green's function for the homogeneous wave equation expressed in the spatial frequency domain or k-space. The temporal convolution integral is solved analytically, and the remaining integrals are expressed in the form of the spatial Fourier transform. This allows the acoustic pressure for all spatial positions to be calculated in a single step using two fast Fourier transforms. The model is demonstrated through several numerical examples, including single element rectangular and spherically focused bowl transducers, and multi-element linear and hemispherical arrays.

  5. Aptamer Selection Express: A Rapid Single-Step Selection of Double-stranded DNA Capture Elements

    DTIC Science & Technology

    2009-08-21

    Guadeloupe • Marie Galante • Perhaps Cuba • Viper Plague, a mimic of heartwater, and associated ticks entered the USA in 2002 • VP rickettsia was...Martinez, D., Vacheiry, N., LeFrancois, T. Viral association with the elusive rickettsia of viper plague from Ghana, West Africa. Annals of the...Showing Rickettsia (requires many large culture flasks to accumulate this number of rickettsia ) Approved for public release; distribution unlimited

  6. Development and validation of a rapid and simple LC-MS/MS method for quantification of vemurafenib in human plasma: application to a human pharmacokinetic study.

    PubMed

    Bihan, Kevin; Sauzay, Chloé; Goldwirt, Lauriane; Charbonnier-Beaupel, Fanny; Hulot, Jean-Sebastien; Funck-Brentano, Christian; Zahr, Noël

    2015-02-01

    Vemurafenib (Zelboraf) is a new tyrosine kinase inhibitor that selectively targets activated BRAF V600E gene and is indicated for the treatment of advanced BRAF mutation-positive melanoma. We developed a simple method for vemurafenib quantification using liquid chromatography-tandem mass spectrometry. A stability study of vemurafenib in human plasma was also performed. (13)C(6)-vemurafenib was used as the internal standard. A single-step protein precipitation was used for plasma sample preparation. Chromatography was performed on an Acquity UPLC system (Waters) with chromatographic separation by the use of an Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7-mm particle size; Waters). Quantification was performed using the monitoring of multiple reactions of following transitions: m/z 488.2 → 381.0 for vemurafenib and m/z 494.2 → 387.0 for internal standard. This method was linear over the range from 1.0 to 100.0 mcg/mL. The lower limit of quantification was 0.1 mcg/mL for vemurafenib in plasma. Vemurafenib remained stable for 1 month at all levels tested, when stored indifferently at room temperature (20 °C), at +4 °C, or at -20 °C. This method was used successfully to perform a plasma pharmacokinetic study of vemurafenib in a patient after oral administration at a steady state. This liquid chromatography-tandem mass spectrometry method for vemurafenib quantification in human plasma is simple, rapid, specific, sensitive, accurate, precise, and reliable.

  7. Rapid analysis of charge variants of monoclonal antibodies using non-linear salt gradient in cation-exchange high performance liquid chromatography.

    PubMed

    Joshi, Varsha; Kumar, Vijesh; Rathore, Anurag S

    2015-08-07

    A method is proposed for rapid development of a short, analytical cation exchange high performance liquid chromatography method for analysis of charge heterogeneity in monoclonal antibody products. The parameters investigated and optimized include pH, shape of elution gradient and length of the column. It is found that the most important parameter for development of a shorter method is the choice of the shape of elution gradient. In this paper, we propose a step by step approach to develop a non-linear sigmoidal shape gradient for analysis of charge heterogeneity for two different monoclonal antibody products. The use of this gradient not only decreases the run time of the method to 4min against the conventional method that takes more than 40min but also the resolution is retained. Superiority of the phosphate gradient over sodium chloride gradient for elution of mAbs is also observed. The method has been successfully evaluated for specificity, sensitivity, linearity, limit of detection, and limit of quantification. Application of this method as a potential at-line process analytical technology tool has been suggested. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Mapping land cover through time with the Rapid Land Cover Mapper—Documentation and user manual

    USGS Publications Warehouse

    Cotillon, Suzanne E.; Mathis, Melissa L.

    2017-02-15

    The Rapid Land Cover Mapper is an Esri ArcGIS® Desktop add-in, which was created as an alternative to automated or semiautomated mapping methods. Based on a manual photo interpretation technique, the tool facilitates mapping over large areas and through time, and produces time-series raster maps and associated statistics that characterize the changing landscapes. The Rapid Land Cover Mapper add-in can be used with any imagery source to map various themes (for instance, land cover, soils, or forest) at any chosen mapping resolution. The user manual contains all essential information for the user to make full use of the Rapid Land Cover Mapper add-in. This manual includes a description of the add-in functions and capabilities, and step-by-step procedures for using the add-in. The Rapid Land Cover Mapper add-in was successfully used by the U.S. Geological Survey West Africa Land Use Dynamics team to accurately map land use and land cover in 17 West African countries through time (1975, 2000, and 2013).

  9. One Small Step for a Man: Estimation of Gender, Age and Height from Recordings of One Step by a Single Inertial Sensor

    PubMed Central

    Riaz, Qaiser; Vögele, Anna; Krüger, Björn; Weber, Andreas

    2015-01-01

    A number of previous works have shown that information about a subject is encoded in sparse kinematic information, such as the one revealed by so-called point light walkers. With the work at hand, we extend these results to classifications of soft biometrics from inertial sensor recordings at a single body location from a single step. We recorded accelerations and angular velocities of 26 subjects using integrated measurement units (IMUs) attached at four locations (chest, lower back, right wrist and left ankle) when performing standardized gait tasks. The collected data were segmented into individual walking steps. We trained random forest classifiers in order to estimate soft biometrics (gender, age and height). We applied two different validation methods to the process, 10-fold cross-validation and subject-wise cross-validation. For all three classification tasks, we achieve high accuracy values for all four sensor locations. From these results, we can conclude that the data of a single walking step (6D: accelerations and angular velocities) allow for a robust estimation of the gender, height and age of a person. PMID:26703601

  10. On Everhart Method

    NASA Astrophysics Data System (ADS)

    Pârv, Bazil

    This paper deals with the Everhart numerical integration method, a well-known method in astronomical research. This method, a single-step one, is widely used for numerical integration of motion equation of celestial bodies. For an integration step, this method uses unequally-spaced substeps, defined by the roots of the so-called generating polynomial of Everhart's method. For this polynomial, this paper proposes and proves new recurrence formulae. The Maple computer algebra system was used to find and prove these formulae. Again, Maple seems to be well suited and easy to use in mathematical research.

  11. Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq).

    PubMed

    Clark, Stephen J; Smallwood, Sébastien A; Lee, Heather J; Krueger, Felix; Reik, Wolf; Kelsey, Gavin

    2017-03-01

    DNA methylation (DNAme) is an important epigenetic mark in diverse species. Our current understanding of DNAme is based on measurements from bulk cell samples, which obscures intercellular differences and prevents analyses of rare cell types. Thus, the ability to measure DNAme in single cells has the potential to make important contributions to the understanding of several key biological processes, such as embryonic development, disease progression and aging. We have recently reported a method for generating genome-wide DNAme maps from single cells, using single-cell bisulfite sequencing (scBS-seq), allowing the quantitative measurement of DNAme at up to 50% of CpG dinucleotides throughout the mouse genome. Here we present a detailed protocol for scBS-seq that includes our most recent developments to optimize recovery of CpGs, mapping efficiency and success rate; reduce hands-on time; and increase sample throughput with the option of using an automated liquid handler. We provide step-by-step instructions for each stage of the method, comprising cell lysis and bisulfite (BS) conversion, preamplification and adaptor tagging, library amplification, sequencing and, lastly, alignment and methylation calling. An individual with relevant molecular biology expertise can complete library preparation within 3 d. Subsequent computational steps require 1-3 d for someone with bioinformatics expertise.

  12. Constructing MnO{sub 2}/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Weiwei; Liu, Tiangui, E-mail: tianguiliu@gmail.com; Cao, Shiyi

    In order to improve the photocatalytic and antibacterial activity of ZnO nanorods, ZnO nanorods decorated with MnO{sub 2} nanoparticles (MnO{sub 2}/ZnO nanorod hybrids) were prepared by using microwave assisted coprecipitation method under the influence of hydrogen peroxide, and the structure, photocatalytic activity and antibacterial property of the products were studied. Experimental results indicated that MnO{sub 2} nanoparticles are decorated on the surface of single crystalline ZnO nanorods. Moreover, the resultant MnO{sub 2}/ZnO nanorod hybrids have been proven to possess good photocatalytic and antibacterial activity, which their degradated efficiency for Rhodamin B (RhB) is twice as the pure ZnO nanorods. Enhancementmore » for photocatalytic and antibacterial activity is mainly attributed to the low band gap energy and excellent electrochemical properties of MnO{sub 2} nanoparticles. - Graphical abstract: The MnO{sub 2}/single crystalline ZnO nanorods hybrids, which MnO{sub 2} nanoparticles are loaded on the surface of ZnO nanorods, were prepared by the step-by-step precipitation method under the assistance of ammonia and hydrogen peroxide. Display Omitted - Highlights: • MnO{sub 2}/ZnO nanorod hybrids were prepared by the step-by-step assembly method. • Single crystalline ZnO nanorods can be decorated by MnO{sub 2} nanoparticles. • MnO{sub 2}/ZnO nanorod hybrids possess good photocatalytic and antibacterial activity. • MnO{sub 2} can improve the photocatalytic activity of ZnO nanorods under visible light.« less

  13. Appraisal and standardization of curvilinear velocity (VCL) cut-off values for CASA analysis of Japanese quail (Coturnix japonica) sperm.

    PubMed

    Farooq, U; Malecki, I A; Mahmood, M; Martin, G B

    2017-06-01

    One of the basic steps in objective analysis of sperm motility is the subdivision of a motile sperm population into slow, medium and rapid categories based on their velocity. However, for CASA analysis of quail sperm, the velocity values for categorization of slow, medium and rapid sperm have not yet been standardized. To identify the cut-off values of "velocity curvilinear" (VCL) for quail sperm categorization, we captured and analysed 22,300 tracks of quail sperm using SCA ® -CASA. The median and mean VCL values were 85 and 97 μm/s. To define the VCL cut-off values, we used two methods. In the first, we identified the upper (rapid sperm) and lower (slow sperm) cut-off values using: (i) median VCL ± 25% or ± 50% or ± 75% of median VCL value; (ii) first and third quartile values of VCL data (i.e. 25% cut-off setting); and (iii) 33% and 66% of VCL data. Among these settings, sperm categories and their corresponding motility characteristics recorded using the "25%" setting (i.e. slow ≤36 ≤ medium ≤154 ≤ rapid) were found the most realistic and coherent with male ranking by fertility. In the second method, we calculated heteroscedasticity in the total VCL data using PCA and the two-step clustering method. With this approach, the mean of the high and low clusters was 165 and 51 μm/s, respectively. Together, the mean from two methods suggested that, for SCA ® -CASA categorization of quail sperm, sperm should be classed as "rapid" at VCL ≥160 μm/s and "slow" at VCL ≤45 μm/s. © 2017 Blackwell Verlag GmbH.

  14. Genomic prediction in a nuclear population of layers using single-step models.

    PubMed

    Yan, Yiyuan; Wu, Guiqin; Liu, Aiqiao; Sun, Congjiao; Han, Wenpeng; Li, Guangqi; Yang, Ning

    2018-02-01

    Single-step genomic prediction method has been proposed to improve the accuracy of genomic prediction by incorporating information of both genotyped and ungenotyped animals. The objective of this study is to compare the prediction performance of single-step model with a 2-step models and the pedigree-based models in a nuclear population of layers. A total of 1,344 chickens across 4 generations were genotyped by a 600 K SNP chip. Four traits were analyzed, i.e., body weight at 28 wk (BW28), egg weight at 28 wk (EW28), laying rate at 38 wk (LR38), and Haugh unit at 36 wk (HU36). In predicting offsprings, individuals from generation 1 to 3 were used as training data and females from generation 4 were used as validation set. The accuracies of predicted breeding values by pedigree BLUP (PBLUP), genomic BLUP (GBLUP), SSGBLUP and single-step blending (SSBlending) were compared for both genotyped and ungenotyped individuals. For genotyped females, GBLUP performed no better than PBLUP because of the small size of training data, while the 2 single-step models predicted more accurately than the PBLUP model. The average predictive ability of SSGBLUP and SSBlending were 16.0% and 10.8% higher than the PBLUP model across traits, respectively. Furthermore, the predictive abilities for ungenotyped individuals were also enhanced. The average improvements of prediction abilities were 5.9% and 1.5% for SSGBLUP and SSBlending model, respectively. It was concluded that single-step models, especially the SSGBLUP model, can yield more accurate prediction of genetic merits and are preferable for practical implementation of genomic selection in layers. © 2017 Poultry Science Association Inc.

  15. Production of genome-edited pluripotent stem cells and mice by CRISPR/Cas.

    PubMed

    Horii, Takuro; Hatada, Izuho

    2016-01-01

    Clustered regularly at interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) nucleases, so-called CRISPR/Cas, was recently developed as an epoch-making genome engineering technology. This system only requires Cas9 nuclease and single-guide RNA complementary to a target locus. CRISPR/Cas enables the generation of knockout cells and animals in a single step. This system can also be used to generate multiple mutations and knockin in a single step, which is not possible using other methods. In this review, we provide an overview of genome editing by CRISPR/Cas in pluripotent stem cells and mice.

  16. Construction of a system for single-cell transgene induction in Caenorhabditis elegans using a pulsed infrared laser

    PubMed Central

    Churgin, Matthew A.; He, Liping; Murray, John I.; Fang-Yen, Christopher

    2014-01-01

    The spatial and temporal control of transgene expression is an important tool in C. elegans biology. We previously described a method for evoking gene expression in arbitrary cells by using a focused pulsed infrared laser to induce a heat shock response (Churgin et al 2013). Here we describe detailed methods for building and testing a system for performing single-cell heat shock. Steps include setting up the laser and associated components, coupling the laser beam to a microscope, and testing heat shock protocols. All steps can be carried out using readily available off-the-shelf components. PMID:24835576

  17. Applications of singular value analysis and partial-step algorithm for nonlinear orbit determination

    NASA Technical Reports Server (NTRS)

    Ryne, Mark S.; Wang, Tseng-Chan

    1991-01-01

    An adaptive method in which cruise and nonlinear orbit determination problems can be solved using a single program is presented. It involves singular value decomposition augmented with an extended partial step algorithm. The extended partial step algorithm constrains the size of the correction to the spacecraft state and other solve-for parameters. The correction is controlled by an a priori covariance and a user-supplied bounds parameter. The extended partial step method is an extension of the update portion of the singular value decomposition algorithm. It thus preserves the numerical stability of the singular value decomposition method, while extending the region over which it converges. In linear cases, this method reduces to the singular value decomposition algorithm with the full rank solution. Two examples are presented to illustrate the method's utility.

  18. The Data-to-Action Framework: A Rapid Program Improvement Process.

    PubMed

    Zakocs, Ronda; Hill, Jessica A; Brown, Pamela; Wheaton, Jocelyn; Freire, Kimberley E

    2015-08-01

    Although health education programs may benefit from quality improvement methods, scant resources exist to help practitioners apply these methods for program improvement. The purpose of this article is to describe the Data-to-Action framework, a process that guides practitioners through rapid-feedback cycles in order to generate actionable data to improve implementation of ongoing programs. The framework was designed while implementing DELTA PREP, a 3-year project aimed at building the primary prevention capacities of statewide domestic violence coalitions. The authors describe the framework's main steps and provide a case example of a rapid-feedback cycle and several examples of rapid-feedback memos produced during the project period. The authors also discuss implications for health education evaluation and practice. © 2015 Society for Public Health Education.

  19. Step-height standards based on the rapid formation of monolayer steps on the surface of layered crystals

    NASA Astrophysics Data System (ADS)

    Komonov, A. I.; Prinz, V. Ya.; Seleznev, V. A.; Kokh, K. A.; Shlegel, V. N.

    2017-07-01

    Metrology is essential for nanotechnology, especially for structures and devices with feature sizes going down to nm. Scanning probe microscopes (SPMs) permits measurement of nanometer- and subnanometer-scale objects. Accuracy of size measurements performed using SPMs is largely defined by the accuracy of used calibration measures. In the present publication, we demonstrate that height standards of monolayer step (∼1 and ∼0.6 nm) can be easily prepared by cleaving Bi2Se3 and ZnWO4 layered single crystals. It was shown that the conducting surface of Bi2Se3 crystals offers height standard appropriate for calibrating STMs and for testing conductive SPM probes. Our AFM study of the morphology of freshly cleaved (0001) Bi2Se3 surfaces proved that such surfaces remained atomically smooth during a period of at least half a year. The (010) surfaces of ZnWO4 crystals remained atomically smooth during one day, but already two days later an additional nanorelief of amplitude ∼0.3 nm appeared on those surfaces. This relief, however, did not further grow in height, and it did not hamper the calibration. Simplicity and the possibility of rapid fabrication of the step-height standards, as well as their high stability, make these standards available for a great, permanently growing number of users involved in 3D printing activities.

  20. Mammalian DNA single-strand break repair: an X-ra(y)ted affair.

    PubMed

    Caldecott, K W

    2001-05-01

    The genetic stability of living cells is continuously threatened by the presence of endogenous reactive oxygen species and other genotoxic molecules. Of particular threat are the thousands of DNA single-strand breaks that arise in each cell, each day, both directly from disintegration of damaged sugars and indirectly from the excision repair of damaged bases. If un-repaired, single-strand breaks can be converted into double-strand breaks during DNA replication, potentially resulting in chromosomal rearrangement and genetic deletion. Consequently, cells have adopted multiple pathways to ensure the rapid and efficient removal of single-strand breaks. A general feature of these pathways appears to be the extensive employment of protein-protein interactions to stimulate both the individual component steps and the overall repair reaction. Our current understanding of DNA single-strand break repair is discussed, and testable models for the architectural coordination of this important process are presented. Copyright 2001 John Wiley & Sons, Inc.

  1. Total chemical synthesis of proteins without HPLC purification† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc01883a Click here for additional data file.

    PubMed Central

    Loibl, S. F.; Harpaz, Z.; Zitterbart, R.

    2016-01-01

    The total chemical synthesis of proteins is a tedious and time-consuming endeavour. The typical steps involve solid phase synthesis of peptide thioesters and cysteinyl peptides, native chemical ligation (NCL) in solution, desulfurization or removal of ligation auxiliaries in the case of extended NCL as well as many intermediary and final HPLC purification steps. With an aim to facilitate and improve the throughput of protein synthesis we developed the first method for the rapid chemical total on-resin synthesis of proteins that proceeds without a single HPLC-purification step. The method relies on the combination of three orthogonal protein tags that allow sequential immobilization (via the N-terminal and C-terminal ends), extended native chemical ligation and release reactions. The peptide fragments to be ligated are prepared by conventional solid phase synthesis and used as crude materials in the subsequent steps. An N-terminal His6 unit permits selective immobilization of the full length peptide thioester onto Ni-NTA agarose beads. The C-terminal peptide fragment carries a C-terminal peptide hydrazide and an N-terminal 2-mercapto-2-phenyl-ethyl ligation auxiliary, which serves as a reactivity tag for the full length peptide. As a result, only full length peptides, not truncation products, react in the subsequent on-bead extended NCL. After auxiliary removal the ligation product is liberated into solution upon treatment with mild acid, and is concomitantly captured by an aldehyde-modified resin. This step allows the removal of the most frequently observed by-product in NCL chemistry, i.e. the hydrolysed peptide thioester (which does not contain a C-terminal peptide hydrazide). Finally, the target protein is released with diluted hydrazine or acid. We applied the method in the synthesis of 46 to 126 amino acid long MUC1 proteins comprising 2–6 copies of a 20mer tandem repeat sequence. Only three days were required for the parallel synthesis of 9 MUC1 proteins which were obtained in 8–33% overall yield with 90–98% purity despite the omission of HPLC purification. PMID:28451120

  2. Single-step method for β-galactosidase assays in Escherichia coli using a 96-well microplate reader.

    PubMed

    Schaefer, Jorrit; Jovanovic, Goran; Kotta-Loizou, Ioly; Buck, Martin

    2016-06-15

    Historically, the lacZ gene is one of the most universally used reporters of gene expression in molecular biology. Its activity can be quantified using an artificial substrate, o-nitrophenyl-ß-d-galactopyranoside (ONPG). However, the traditional method for measuring LacZ activity (first described by J. H. Miller in 1972) can be challenging for a large number of samples, is prone to variability, and involves hazardous compounds for lysis (e.g., chloroform, toluene). Here we describe a single-step assay using a 96-well microplate reader with a proven alternative cell permeabilization method. This modified protocol reduces handling time by 90%. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Improved Reproducibility for Perovskite Solar Cells with 1 cm2 Active Area by a Modified Two-Step Process.

    PubMed

    Shen, Heping; Wu, Yiliang; Peng, Jun; Duong, The; Fu, Xiao; Barugkin, Chog; White, Thomas P; Weber, Klaus; Catchpole, Kylie R

    2017-02-22

    With rapid progress in recent years, organohalide perovskite solar cells (PSC) are promising candidates for a new generation of highly efficient thin-film photovoltaic technologies, for which up-scaling is an essential step toward commercialization. In this work, we propose a modified two-step method to deposit the CH 3 NH 3 PbI 3 (MAPbI 3 ) perovskite film that improves the uniformity, photovoltaic performance, and repeatability of large-area perovskite solar cells. This method is based on the commonly used two-step method, with one additional process involving treating the perovskite film with concentrated methylammonium iodide (MAI) solution. This additional treatment is proved to be helpful for tailoring the residual PbI 2 level to an optimal range that is favorable for both optical absorption and inhibition of recombination. Scanning electron microscopy and photoluminescence image analysis further reveal that, compared to the standard two-step and one-step methods, this method is very robust for achieving uniform and pinhole-free large-area films. This is validated by the photovoltaic performance of the prototype devices with an active area of 1 cm 2 , where we achieved the champion efficiency of ∼14.5% and an average efficiency of ∼13.5%, with excellent reproducibility.

  4. A single-step purification and molecular characterization of functional Shiga toxin 2 variants from pathogenic Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin (Stx) 2 variants, Stx2a, Stx2c, Stx2d and Stx2g were purified to homogeneity from bacterial culture supernatants by a one-step monoclonal anti-Stx affinity chromatography method. The method was based on the binding affinity of these Stxs for a monoclonal antibody against the Stx2 A-subun...

  5. Rapid Radiochemical Analyses in Support of Fukushima Nuclear Accident - 13196

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples [1, 2]. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and datamore » assessment teams were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90}Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation [3, 4]. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride precipitations, followed by Sr-Resin separation and gas flow proportional counting. To achieve a lower detection limit for analysis of some of the Japanese soil samples, a 10 gram aliquot of soil was taken, acid-leached and processed with similar preconcentration chemistry. The MDA using this approach was ∼0.03 pCi/g (1.1 mBq/g)/, which is less than the 0.05-0.10 pCi/g {sup 90}Sr levels found in soil as a result of global fallout. The chemical yields observed for the Japanese soil samples was typically 75-80% and the laboratory control sample (LCS) and matrix spike (MS) results looked very good for this work Individual QC results were well within the ± 25% acceptable range and the average of these results does not show significant bias. Additional data for a radiostrontium in soil method for 50 gram samples will also be presented, which appears to be a significant step forward based on looking at the current literature, with higher chemical yields for even larger sample aliquots and lower MDA [5, 6, 7] Hou et al surveyed a wide range of separation methods for Pu in waters and environmental solid samples [8]. While there are many actinide methods in the scientific literature, few would be considered rapid due to the tedious and time-consuming steps involved. For actinide analyses in soil, a new rapid method for the determination of actinide isotopes in soil samples using both alpha spectrometry and inductively-coupled plasma mass spectrometry was employed. The new rapid soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using these two simple precipitations with high chemical recoveries and effective removal of interferences. [9, 10] Vacuum box technology and rapid flow rates were used to reduce analytical time. Challenges associated with the mineral content in the volcanic soil will be discussed. Air filter samples were reported within twenty-four (24) hours of receipt using rapid techniques published previously. [11] The rapid reporting of high quality analytical data arranged through the U.S. Department of Energy Consequence Management Home Team was critical to allow the government of Japan to readily evaluate radiological impacts from the nuclear reactor incident to both personnel and the environment. SRNL employed unique rapid methods capability for radionuclides to support Japan that can also be applied to environmental, bioassay and waste management samples. New rapid radiochemical techniques for radionuclides in soil and other environmental matrices as well as some of the unique challenges associated with this work will be presented that can be used for application to environmental monitoring, environmental remediation, decommissioning and decontamination activities. (authors)« less

  6. RAPID RADIOCHEMICAL ANALYSES IN SUPPORT OF FUKUSHIMA NUCLEAR ACCIDENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, S.

    2012-11-07

    There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and data assessment teamsmore » were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90} Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride precipitations, followed by Sr-Resin separation and gas flow proportional counting. To achieve a lower detection limit for analysis of some of the Japanese soil samples, a 10 gram aliquot of soil was taken, acid-leached and processed with similar preconcentration chemistry. The MDA using this approach was ~0.03 pCi/g (1.1 mBq/g)/, which is less than the 0.05-0.10 pCi/g {sup 90}Sr levels found in soil as a result of global fallout. The chemical yields observed for the Japanese soil samples was typically 75-80% and the laboratory control sample (LCS) and matrix spike (MS) results looked very good for this work Individual QC results were well within the ± 25% acceptable range and the average of these results does not show significant bias. Additional data for a radiostrontium in soil method for 50 gram samples will also be presented, which appears to be a significant step forward based on looking at the current literature, with higher chemical yields for even larger sample aliquots and lower MDA. Hou et al surveyed a wide range of separation methods for Pu in waters and environmental solid samples. While there are many actinide methods in the scientific literature, few would be considered rapid due to the tedious and time-consuming steps involved. For actinide analyses in soil, a new rapid method for the determination of actinide isotopes in soil samples using both alpha spectrometry and inductively-coupled plasma mass spectrometry was employed. The new rapid soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using these two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates were used to reduce analytical time. Challenges associated with the mineral content in the volcanic soil will be discussed. Air filter samples were reported within twenty-four (24) hours of receipt using rapid techniques published previously. The rapid reporting of high quality analytical data arranged through the U.S. Department of Energy Consequence Management Home Team was critical to allow the government of Japan to readily evaluate radiological impacts from the nuclear reactor incident to both personnel and the environment. SRNL employed unique rapid methods capability for radionuclides to support Japan that can also be applied to environmental, bioassay and waste management samples. New rapid radiochemical techniques for radionuclides in soil and other environmental matrices as well as some of the unique challenges associated with this work will be presented that can be used for application to environmental monitoring, environmental remediation, decommissioning and decontamination activities.« less

  7. Rapid authentication and identification of different types of A. roxburghii by Tri-step FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Huang, Jinfang; Yeap, Zhao Qin; Zhang, Xue; Wu, Shuisheng; Ng, Chiew Hoong; Yam, Mun Fei

    2018-06-01

    Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae) is a precious traditional Chinese medicinal herb and has been perennially used to treat various illness. However, there were unethical sellers who adulterated wild A. roxburghii with tissue cultured and cultivated ones. Therefore, there is an urgent need for an effective authentication method to differentiate between these different types of A. roxburghii. In this research, the infrared spectroscopic tri-step identification approach including Fourier transform infrared spectroscopy (FT-IR), Second derivative infrared spectra (SD-IR) and two-dimensional correlation infrared spectra (2D-IR) was used to develop a simple and rapid method to discriminate between wild, cultivated and tissue cultivated A. roxburghii plant. Through this study, all three types of A. roxburghii plant were successfully identified and discriminated through the infrared spectroscopic tri-step identification method. Besides that, all the samples of wild, cultivated and tissue cultivated A. roxburghii plant were analysed with the Soft Independent Modelling of Class Analogy (SIMCA) pattern recognition technique to test and verify the experimental results. The results showed that the three types of A. roxburghii can be discriminated clearly as the recognition rate was 100% for all three types and the rejection rate was more than 60%. 70% of the validated samples were also identified correctly by the SIMCA model. The SIMCA model was also validated by comparing 70 standard herbs to the model. As a result, it was demonstrated that the macroscopic IR fingerprint method and the classification analysis could discriminate not only between the A. roxburghi samples and the standard herbs, it could also distinguish between the three different types of A. roxburghi plant in a direct, rapid and holistic manner.

  8. Rapid authentication and identification of different types of A. roxburghii by Tri-step FT-IR spectroscopy.

    PubMed

    Chen, Ying; Huang, Jinfang; Yeap, Zhao Qin; Zhang, Xue; Wu, Shuisheng; Ng, Chiew Hoong; Yam, Mun Fei

    2018-06-15

    Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae) is a precious traditional Chinese medicinal herb and has been perennially used to treat various illness. However, there were unethical sellers who adulterated wild A. roxburghii with tissue cultured and cultivated ones. Therefore, there is an urgent need for an effective authentication method to differentiate between these different types of A. roxburghii. In this research, the infrared spectroscopic tri-step identification approach including Fourier transform infrared spectroscopy (FT-IR), Second derivative infrared spectra (SD-IR) and two-dimensional correlation infrared spectra (2D-IR) was used to develop a simple and rapid method to discriminate between wild, cultivated and tissue cultivated A. roxburghii plant. Through this study, all three types of A. roxburghii plant were successfully identified and discriminated through the infrared spectroscopic tri-step identification method. Besides that, all the samples of wild, cultivated and tissue cultivated A. roxburghii plant were analysed with the Soft Independent Modelling of Class Analogy (SIMCA) pattern recognition technique to test and verify the experimental results. The results showed that the three types of A. roxburghii can be discriminated clearly as the recognition rate was 100% for all three types and the rejection rate was more than 60%. 70% of the validated samples were also identified correctly by the SIMCA model. The SIMCA model was also validated by comparing 70 standard herbs to the model. As a result, it was demonstrated that the macroscopic IR fingerprint method and the classification analysis could discriminate not only between the A. roxburghi samples and the standard herbs, it could also distinguish between the three different types of A. roxburghi plant in a direct, rapid and holistic manner. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Mouse Embryo Cryopreservation by Rapid Cooling.

    PubMed

    Shaw, Jillian

    2018-05-01

    Embryo cryopreservation has been used to archive mouse strains. Protocols have evolved over this time and now vary considerably in terms of cryoprotectant solution, cooling and warming rates, methods to add and remove cryoprotectant, container or carrier type, volume of cryoprotectant, the stage of preimplantation development, and the use of additional treatments such as blastocyst puncture and microinjection. The rapid cooling methods use concentrated solutions of cryoprotectants to reduce the water content of the cell before cooling commences, thus preventing the formation of ice crystals. Embryos are equilibrated with the cryoprotectants, loaded into a carrier, and then rapidly cooled (e.g., by being plunged directly into LN 2 or onto a surface cooled in LN 2 ). The rapid cooling methods eliminate the need for controlled-rate freezers and seeding procedures. However, they are much more sensitive to minor variations when performing the steps. The rapid-cooling protocol described here is suitable for use with plastic insemination straws. Because it uses relatively large volumes, it is less technically demanding than some other methods that use minivolume devices. © 2018 Cold Spring Harbor Laboratory Press.

  10. A reassessment of mercury in silastic strain gauge plethysmography for microvascular permeability assessment in man.

    PubMed Central

    Gamble, J; Gartside, I B; Christ, F

    1993-01-01

    1. We have used non-invasive mercury in a silastic strain gauge system to assess the effect of pressure step size, on the time course of the rapid volume response (RVR) to occlusion pressure. We also obtained values for hydraulic conductance (Kf), isovolumetric venous pressure (Pvi) and venous pressure (Pv) in thirty-five studies on the legs of twenty-three supine control subjects. 2. The initial rapid volume response to small (9.53 +/- 0.45 mmHg, mean +/- S.E.M.) stepped increases in venous pressure, the rapid volume response, could be described by a single exponential of time constant 15.54 +/- 1.14 s. 3. Increasing the size of the pressure step, to 49.8 +/- 1.1 mmHg, gave a larger value for the RVR time constant (mean 77.3 +/- 11.6 s). 4. We propose that the pressure-dependent difference in the duration of the rapid volume response, in these two situations, might be due to a vascular smooth muscle-based mechanism, e.g. the veni-arteriolar reflex. 5. The mean (+/- S.E.M.) values for Kf, Pvi and Pv were 4.27 +/- 0.18 (units, ml min-1 (100 g)-1 mmHg-1 x 10(-3), 21.50 +/- 0.81 (units, mmHg) and 9.11 +/- 0.94 (units, mmHg), respectively. 6. During simultaneous assessment of these parameters in arms and legs, it was found that they did not differ significantly from one another. 7. We propose that the mercury strain gauge system offers a useful, non-invasive means of studying the mechanisms governing fluid filtration in human limbs. Images Fig. 1 PMID:8229810

  11. Location Prediction Based on Transition Probability Matrices Constructing from Sequential Rules for Spatial-Temporal K-Anonymity Dataset

    PubMed Central

    Liu, Zhao; Zhu, Yunhong; Wu, Chenxue

    2016-01-01

    Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users’ privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502

  12. Effects of some cryopreservation procedures on recalcitrant zygotic embryos of Ammocharis coranica.

    PubMed

    Nomali, Z; Ngobese; Sershen; Berjak, P; Pammenter, N W

    2014-01-01

    Cryopreservation, the most promising method for the long-term conservation of recalcitrant (desiccation-sensitive) seed germplasm, is often associated with high viability losses. Cryo-procedures involve a sequence of steps which must be optimised to reduce the impact of the stresses. This study reports on the effects of some of the steps of cryopreservation on the recalcitrant zygotic embryos of the amaryllid, Ammocharis coranica. Embryos were subjected to cryoprotection with glycerol and/or DMSO, rapid (flash) drying, and rapid (>100 degree C s(-1)) or slow (1 degree C s(-1)) cooling. Rapid dehydration (from c. 2.7 to 0.9 g g(-1) over 60 min) and cooling had a detrimental effect on the viability of the embryos, which was exacerbated when these steps were applied sequentially. After cooling, seedling production (30%) was obtained only from embryos that had been cryoprotected with glycerol prior to drying and rapid cooling, while 30% of non-treated embryos and 70% of those that had undergone cathodic protection during flash drying produced callus. Noting that no post-cryo survival of A. coranica embryos had previously been obtained, this study identified cryoprotection with glycerol and the incorporation of cathodic protection during flash drying as promising intervention points for future studies.

  13. Simultaneous determination of PPCPs, EDCs, and artificial sweeteners in environmental water samples using a single-step SPE coupled with HPLC-MS/MS and isotope dilution.

    PubMed

    Tran, Ngoc Han; Hu, Jiangyong; Ong, Say Leong

    2013-09-15

    A high-throughput method for the simultaneous determination of 24 pharmaceuticals and personal care products (PPCPs), endocrine disrupting chemicals (EDCs) and artificial sweeteners (ASs) was developed. The method was based on a single-step solid phase extraction (SPE) coupled with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and isotope dilution. In this study, a single-step SPE procedure was optimized for simultaneous extraction of all target analytes. Good recoveries (≥ 70%) were observed for all target analytes when extraction was performed using Chromabond(®) HR-X (500 mg, 6 mL) cartridges under acidic condition (pH 2). HPLC-MS/MS parameters were optimized for the simultaneous analysis of 24 PPCPs, EDCs and ASs in a single injection. Quantification was performed by using 13 isotopically labeled internal standards (ILIS), which allows correcting efficiently the loss of the analytes during SPE procedure, matrix effects during HPLC-MS/MS and fluctuation in MS/MS signal intensity due to instrument. Method quantification limit (MQL) for most of the target analytes was below 10 ng/L in all water samples. The method was successfully applied for the simultaneous determination of PPCPs, EDCs and ASs in raw wastewater, surface water and groundwater samples collected in a local catchment area in Singapore. In conclusion, the developed method provided a valuable tool for investigating the occurrence, behavior, transport, and the fate of PPCPs, EDCs and ASs in the aquatic environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. A two-step FEM-SEM approach for wave propagation analysis in cable structures

    NASA Astrophysics Data System (ADS)

    Zhang, Songhan; Shen, Ruili; Wang, Tao; De Roeck, Guido; Lombaert, Geert

    2018-02-01

    Vibration-based methods are among the most widely studied in structural health monitoring (SHM). It is well known, however, that the low-order modes, characterizing the global dynamic behaviour of structures, are relatively insensitive to local damage. Such local damage may be easier to detect by methods based on wave propagation which involve local high frequency behaviour. The present work considers the numerical analysis of wave propagation in cables. A two-step approach is proposed which allows taking into account the cable sag and the distribution of the axial forces in the wave propagation analysis. In the first step, the static deformation and internal forces are obtained by the finite element method (FEM), taking into account geometric nonlinear effects. In the second step, the results from the static analysis are used to define the initial state of the dynamic analysis which is performed by means of the spectral element method (SEM). The use of the SEM in the second step of the analysis allows for a significant reduction in computational costs as compared to a FE analysis. This methodology is first verified by means of a full FE analysis for a single stretched cable. Next, simulations are made to study the effects of damage in a single stretched cable and a cable-supported truss. The results of the simulations show how damage significantly affects the high frequency response, confirming the potential of wave propagation based methods for SHM.

  15. Finite element analysis (FEA) of dental implant fixture for mechanical stability and rapid osseointegration

    NASA Astrophysics Data System (ADS)

    Tabassum, Shafia; Murtaza, Ahmar; Ali, Hasan; Uddin, Zia Mohy; Zehra, Syedah Sadaf

    2017-10-01

    For rapid osseointegration of dental implant fixtures, various surface treatments including plasma spraying, hydroxyapatite coating, acid-etching, and surface grooving are used. However undesirable effects such as chemical modifications, loss of mechanical properties, prolonged processing times and post production treatment steps are often associated with these techniques. The osseointegration rate of the dental implants can be promoted by increasing the surface area of the dental implant, thus increasing the bone cells - implant material contact and allow bone tissues to grow rapidly. Additive Manufacturing (AM) techniques can be used to fabricate dental implant fixtures with desirable surface area in a single step manufacturing process. AM allows the use of Computer Aided Designing (CAD) for customised rapid prototyping of components with precise control over geometry. In this study, the dental implant fixture that replaces the tooth root was designed on commercially available software COMSOL. Nickel - titanium alloy was selected as build materials for dental implant. The geometry of the dental fixture was varied by changing the interspacing distance (thread pitch) and number of threads to increase the total surface area. Three different microstructures were introduced on the surface of dental implant. The designed models were used to examine the effect of changing geometries on the total surface area. Finite Element Analysis (FEA) was performed to investigate the effect of changing geometries on the mechanical properties of the dental implant fixtures using stress analysis.

  16. Acoustic resonator and method of making same

    DOEpatents

    Kline, Gerald R.; Lakin, Kenneth M.

    1985-03-05

    A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.

  17. Acoustic resonator and method of making same

    DOEpatents

    Kline, G.R.; Lakin, K.M.

    1983-10-13

    A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.

  18. Patient and tissue identification in the assisted reproductive technology laboratory.

    PubMed

    Pomeroy, Kimball O; Racowsky, Catherine

    2012-06-01

    Several high-profile cases involving in vitro fertilization have recently received considerable media attention and highlight the importance of assuring patient and tissue identification. Within the assisted reproductive technology (ART) laboratory, there are many steps where wrong patient or tissue identity could have drastic results. Erroneous identity can result in tragic consequences for the patient, the laboratory, and for those working in the program as a whole. Such errors can result in enormous psychological and financial costs, as well as a loss in confidence. There are several critical steps that should be taken every single time and for each specific procedure performed in the ART laboratory to ensure the correct identification of patients and their tissue. These steps should be detailed in protocols that include the method of identification, the two unique identifiers that will be used, the sources of these identifiers, and often a system in which more than one person is involved in the identification. Each protocol should ideally include a checklist that is actively used for the implementation of each procedure. The protocol should also indicate what to do if the identification does not match up, including rapid handling and notification of the patient involved in the error. All ART laboratories should instill in their employees an atmosphere of full and open disclosure for cases where mistakes are made. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Flow cytomeric measurement of DNA and incorporated nucleoside analogs

    DOEpatents

    Dolbeare, Frank A.; Gray, Joe W.

    1989-01-01

    A method is provided for simultaneously measuring total cellular DNA and incorporated nucleoside analog. The method entails altering the cellular DNA of cells grown in the presence of a nucleoside analog so that single stranded and double stranded portions are present. Separate stains are used against the two portions. An immunochemical stain is used against the single stranded portion to provide a measure of incorporated nucleoside analog, and a double strand DNA-specific stain is used against the double stranded portion to simultaneously provide a measure of total cellular DNA. The method permits rapid flow cytometric analysis of cell populations, rapid identification of cycling and noncycling subpopulations, and determination of the efficacy of S phase cytotoxic anticancer agents.

  20. Method for distributed agent-based non-expert simulation of manufacturing process behavior

    DOEpatents

    Ivezic, Nenad; Potok, Thomas E.

    2004-11-30

    A method for distributed agent based non-expert simulation of manufacturing process behavior on a single-processor computer comprises the steps of: object modeling a manufacturing technique having a plurality of processes; associating a distributed agent with each the process; and, programming each the agent to respond to discrete events corresponding to the manufacturing technique, wherein each discrete event triggers a programmed response. The method can further comprise the step of transmitting the discrete events to each agent in a message loop. In addition, the programming step comprises the step of conditioning each agent to respond to a discrete event selected from the group consisting of a clock tick message, a resources received message, and a request for output production message.

  1. Epidermal segmentation in high-definition optical coherence tomography.

    PubMed

    Li, Annan; Cheng, Jun; Yow, Ai Ping; Wall, Carolin; Wong, Damon Wing Kee; Tey, Hong Liang; Liu, Jiang

    2015-01-01

    Epidermis segmentation is a crucial step in many dermatological applications. Recently, high-definition optical coherence tomography (HD-OCT) has been developed and applied to imaging subsurface skin tissues. In this paper, a novel epidermis segmentation method using HD-OCT is proposed in which the epidermis is segmented by 3 steps: the weighted least square-based pre-processing, the graph-based skin surface detection and the local integral projection-based dermal-epidermal junction detection respectively. Using a dataset of five 3D volumes, we found that this method correlates well with the conventional method of manually marking out the epidermis. This method can therefore serve to effectively and rapidly delineate the epidermis for study and clinical management of skin diseases.

  2. One-step random mutagenesis by error-prone rolling circle amplification

    PubMed Central

    Fujii, Ryota; Kitaoka, Motomitsu; Hayashi, Kiyoshi

    2004-01-01

    In vitro random mutagenesis is a powerful tool for altering properties of enzymes. We describe here a novel random mutagenesis method using rolling circle amplification, named error-prone RCA. This method consists of only one DNA amplification step followed by transformation of the host strain, without treatment with any restriction enzymes or DNA ligases, and results in a randomly mutated plasmid library with 3–4 mutations per kilobase. Specific primers or special equipment, such as a thermal-cycler, are not required. This method permits rapid preparation of randomly mutated plasmid libraries, enabling random mutagenesis to become a more commonly used technique. PMID:15507684

  3. Rapid Solid-State Metathesis Routes to Nanostructured Silicon-Germainum

    NASA Technical Reports Server (NTRS)

    Rodriguez, Marc (Inventor); Kaner, Richard B. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor)

    2014-01-01

    Methods for producing nanostructured silicon and silicon-germanium via solid state metathesis (SSM). The method of forming nanostructured silicon comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and an alkaline earth metal silicide into a homogeneous powder, and initating the reaction between the silicon tetraiodide (SiI4) with the alkaline earth metal silicide. The method of forming nanostructured silicon-germanium comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and a germanium based precursor into a homogeneous powder, and initiating the reaction between the silicon tetraiodide (SiI4) with the germanium based precursors.

  4. A novel method for single bacteria identification by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Schultz, Emmanuelle; Simon, Anne-Catherine; Strola, Samy Andrea; Perenon, Rémi; Espagnon, Isabelle; Allier, Cédric; Claustre, Patricia; Jary, Dorothée.; Dinten, Jean-Marc

    2014-03-01

    In this paper we present results on single bacteria rapid identification obtained with a low-cost and compact Raman spectrometer. At present, we demonstrate that a 1 minute procedure, including the localization of single bacterium, is sufficient to acquire comprehensive Raman spectrum in the range of 600 to 3300 cm-1. Localization and detection of single bacteria is performed by means of lensfree imaging over a large field of view of 24 mm2. An excitation source of 532 nm and 30 mW illuminates single bacteria to collect Raman signal into a Tornado Spectral Systems prototype spectrometer (HTVS technology). The acquisition time to record a single bacterium spectrum is as low as 10 s owing to the high light throughput of this spectrometer. The spectra processing features different steps for cosmic spikes removal, background subtraction, and gain normalization to correct the residual inducted fluorescence and substrate fluctuations. This allows obtaining a fine chemical fingerprint analysis. We have recorded a total of 1200 spectra over 7 bacterial species (E. coli, Bacillus species, S. epidermis, M. luteus, S. marcescens). The analysis of this database results in a high classification score of almost 90 %. Hence we can conclude that our setup enables automatic recognition of bacteria species among 7 different species. The speed and the sensitivity (<30 minutes for localization and spectra collection of 30 single bacteria) of our Raman spectrometer pave the way for high-throughput and non-destructive real-time bacteria identification assays. This compact and low-cost technology can benefit biomedical, clinical diagnostic and environmental applications.

  5. Purification and Kinetics of Higher Plant NADH:Nitrate Reductase.

    PubMed

    Campbell, W H; Smarrelli, J

    1978-04-01

    Squash cotyledon (Cucurbita pepo L.) NADH:nitrate reductase (NR) was purified 150-fold with 50% recovery by a single step procedure based on the affinity of the NR for blue-Sepharose. Blue-Sepharose, which is prepared by direct coupling of Cibacron blue to Sepharose, appears to bind squash NR at the NADH site. The NR can be purified in 2 to 3 hours to a specific activity of 2 mumol of NADH oxidized/minute * milligram of protein. Corn (Zea mays L.) leaf NR was also purified to a specific activity of 6.9 mumol of NADH oxidized/minute * milligram of protein using a blue-Sepharose affinity step. The blue-Sepharose method offers the advantages of a rapid purification of plant NR to a high specific activity with reasonable recovery of total activity.The kinetic mechanism of higher plant NR was investigated using these highly purified squash and corn NR preparations. Based on initial velocity and product inhibition studies utilizing both enzymes, a two-site ping-pong mechanism is proposed for NR. This kinetic mechanism incorporates the concept of the reduced NR transferring electrons from the NADH site to a physically separated nitrate site.

  6. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.

    PubMed

    Knowlton, Stephanie; Yu, Chu Hsiang; Ersoy, Fulya; Emadi, Sharareh; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-based desktop 3D printer and a two-step fabrication using an industrial 3D printer based on polyjet technology. This method, compared to conventional fabrication using relatively expensive materials and labor-intensive processes, presents a low-cost, rapid prototyping technique to print functional 3D microfluidic chips. We enhance the capabilities of 3D-printed microfluidic devices by coupling 3D cell encapsulation and spatial patterning within photocrosslinkable gelatin methacryloyl (GelMA). The platform presented here serves as a 3D culture environment for long-term cell culture and growth. Furthermore, we have demonstrated the ability to print complex 3D microfluidic channels to create predictable and controllable fluid flow regimes. Here, we demonstrate the novel use of 3D-printed microfluidic chips as controllable 3D cell culture environments, advancing the applicability of 3D printing to engineering physiological systems for future applications in bioengineering.

  7. M13 bacteriophage purification using poly(ionic liquids) as alternative separation matrices.

    PubMed

    Jacinto, Maria João; Patinha, David J S; Marrucho, Isabel M; Gonçalves, João; Willson, Richard C; Azevedo, Ana M; Aires-Barros, M Raquel

    2018-01-12

    M13 is a filamentous, non-lytic bacteriophage that infects Escherichia coli via the F pilus. Currently, phage M13 is widely used in phage display technology and bio-nanotechnology, and is considered a possible antibacterial therapeutic agent, among other applications. Conventional phage purification involves 5-7 operational steps, with high operational costs and significant product loss (approximately 60%). In this work, we propose a scalable purification process for M13 bacteriophage using a novel stationary phase based on a polymeric ionic liquid (PIL) with a positively charged backbone structure. Poly (1-vinyl-3-ethyl imidazolium bis(trifluoromethylsulfonyl) imide) - poly(VEIM-TFSI) predominantly acted as an anion exchanger under binding-elution mode. This revealed to be a rapid and simple method for the recovery of phage M13 with an overall separation yield of over 70% after a single downstream step. To the best of our knowledge, PILs have never been used as separation matrices for biological products and the results obtained, together with the large number of cations and anions available to prepare PILs, illustrate well the large potential of the proposed methodology. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fate of Fusarium Toxins during Brewing.

    PubMed

    Habler, Katharina; Geissinger, Cajetan; Hofer, Katharina; Schüler, Jan; Moghari, Sarah; Hess, Michael; Gastl, Martina; Rychlik, Michael

    2017-01-11

    Some information is available about the fate of Fusarium toxins during the brewing process, but only little is known about the single processing steps in detail. In our study we produced beer from two different barley cultivars inoculated with three different Fusarium species, namely, Fusarium culmorum, Fusarium sporotrichioides, and Fusarium avenaceum, producing a wide range of mycotoxins such as type B trichothecenes, type A trichothecenes, and enniatins. By the use of multi-mycotoxin LC-MS/MS stable isotope dilution methods we were able to follow the fate of Fusarium toxins during the entire brewing process. In particular, the type B trichothecenes deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol showed similar behaviors. Between 35 and 52% of those toxins remained in the beer after filtration. The contents of the potentially hazardous deoxynivalenol-3-glucoside and the type A trichothecenes increased during mashing, but a rapid decrease of deoxynivalenol-3-glucoside content was found during the following steps of lautering and wort boiling. The concentration of enniatins greatly decreased with the discarding of spent grains or finally with the hot break. The results of our study show the retention of diverse Fusarium toxins during the brewing process and allow for assessing the food safety of beer regarding the monitored Fusarium mycotoxins.

  9. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles

    PubMed Central

    Chang, Yi-Chung; Yang, Chia-Ying; Sun, Ruei-Lin; Cheng, Yi-Feng; Kao, Wei-Chen; Yang, Pan-Chyr

    2013-01-01

    Staphylococcus aureus is one of the most important human pathogens, causing more than 500,000 infections in the United States each year. Traditional methods for bacterial culture and identification take several days, wasting precious time for patients who are suffering severe bacterial infections. Numerous nucleic acid-based detection methods have been introduced to address this deficiency; however, the costs and requirement for expensive equipment may limit the widespread use of such technologies. Thus, there is an unmet demand of new platform technology to improve the bacterial detection and identification in clinical practice. In this study, we developed a rapid, ultra-sensitive, low cost, and non-polymerase chain reaction (PCR)-based method for bacterial identification. Using this method, which measures the resonance light-scattering signal of aptamer-conjugated gold nanoparticles, we successfully detected single S. aureus cell within 1.5 hours. This new platform technology may have potential to develop a rapid and sensitive bacterial testing at point-of-care. PMID:23689505

  10. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles.

    PubMed

    Chang, Yi-Chung; Yang, Chia-Ying; Sun, Ruei-Lin; Cheng, Yi-Feng; Kao, Wei-Chen; Yang, Pan-Chyr

    2013-01-01

    Staphylococcus aureus is one of the most important human pathogens, causing more than 500,000 infections in the United States each year. Traditional methods for bacterial culture and identification take several days, wasting precious time for patients who are suffering severe bacterial infections. Numerous nucleic acid-based detection methods have been introduced to address this deficiency; however, the costs and requirement for expensive equipment may limit the widespread use of such technologies. Thus, there is an unmet demand of new platform technology to improve the bacterial detection and identification in clinical practice. In this study, we developed a rapid, ultra-sensitive, low cost, and non-polymerase chain reaction (PCR)-based method for bacterial identification. Using this method, which measures the resonance light-scattering signal of aptamer-conjugated gold nanoparticles, we successfully detected single S. aureus cell within 1.5 hours. This new platform technology may have potential to develop a rapid and sensitive bacterial testing at point-of-care.

  11. Development and evaluation of hexaplex PCR for rapid detection of methicillin, cadmium/zinc and antiseptic-resistant staphylococci, with simultaneous identification of PVL-positive and -negative Staphylococcus aureus and coagulase negative staphylococci.

    PubMed

    Panda, Sasmita; Kar, Sarita; Choudhury, Ranginee; Sharma, Savitri; Singh, Durg V

    2014-03-01

    We developed a multiplex PCR to detect the presence of methicillin- (mecA), cadmium/zinc-(czrC) and antiseptic-resistant (qacA/B) staphylococci and to identify Panton-Valentine leukocidin (PVL)-positive and -negative Staphylococcus aureus and coagulase-negative staphylococci (CoNS) from infected and healthy eyes. The assay was validated on 177 staphylococci comprising of 55 each of S. aureus and CoNS isolated from infected eyes and five S. aureus and 62 CoNS isolated from healthy eyes and nine direct ocular samples. Nine direct ocular samples for in situ testing consisted of corneal scrapings (4), conjunctiva swabs (2) and others (3). Multiplex PCR result was correlated with genotype data obtained with single PCR and dot-blot assay. The control strains that were positive in multiplex PCR for 16S rRNA, nuc, mecA, pvl, czrC and qacA/B genes were also positive in the dot-blot assay. The specificity of amplified genes obtained with reference strains was further confirmed by DNA sequencing. The single step-hexaplex PCR method can be used for rapid detection of mecA, nuc, pvl, czrC and qacA/B genes in staphylococci with simultaneous identification of PVL-positive and -negative S. aureus and CoNS from a variety of ocular samples. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Single-Step qPCR and dPCR Detection of Diverse CRISPR-Cas9 Gene Editing Events In Vivo.

    PubMed

    Falabella, Micol; Sun, Linqing; Barr, Justin; Pena, Andressa Z; Kershaw, Erin E; Gingras, Sebastien; Goncharova, Elena A; Kaufman, Brett A

    2017-10-05

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based technology is currently the most flexible means to create targeted mutations by recombination or indel mutations by nonhomologous end joining. During mouse transgenesis, recombinant and indel alleles are often pursued simultaneously. Multiple alleles can be formed in each animal to create significant genetic complexity that complicates the CRISPR-Cas9 approach and analysis. Currently, there are no rapid methods to measure the extent of on-site editing with broad mutation sensitivity. In this study, we demonstrate the allelic diversity arising from targeted CRISPR editing in founder mice. Using this DNA sample collection, we validated specific quantitative and digital PCR methods (qPCR and dPCR, respectively) for measuring the frequency of on-target editing in founder mice. We found that locked nucleic acid (LNA) probes combined with an internal reference probe (Drop-Off Assay) provide accurate measurements of editing rates. The Drop-Off LNA Assay also detected on-target CRISPR-Cas9 gene editing in blastocysts with a sensitivity comparable to PCR-clone sequencing. Lastly, we demonstrate that the allele-specific LNA probes used in qPCR competitor assays can accurately detect recombinant mutations in founder mice. In summary, we show that LNA-based qPCR and dPCR assays provide a rapid method for quantifying the extent of on-target genome editing in vivo , testing RNA guides, and detecting recombinant mutations. Copyright © 2017 Falabella et al.

  13. Rapid and simple micromethod for the simultaneous determination of 3-MCPD and 3-MCPD esters in different foodstuffs.

    PubMed

    Küsters, Markus; Bimber, Ute; Ossenbrüggen, Alexandra; Reeser, Sebastian; Gallitzendörfer, Rainer; Gerhartz, Michael

    2010-06-09

    This paper describes for the first time a micromethod for the simultaneous determination of 3-monochloropropane-1,2-diol (3-MCPD) and fatty acid esters of 3-MCPD (3-MCPD esters) in different foodstuffs. 3-MCPD and 3-MCPD esters were isolated from food products using a single extraction step separating hydrophilic and lipophilic compounds. An aliquot of the aqueous layer was analyzed for the content of 3-MCPD while a part of the organic layer was analyzed for 3-MCPD esters after cleavage with sodium methoxide. After a simple derivatization procedure with phenylboronic acid (PBA), the determination was achieved by isotope dilution GC-MS using isotope-labeled 3-MCPD and 3-MCPD ester as internal standards. The method was validated for various foodstuffs like bakery products, meat and fish products, and soups as well as seasonings with LOD of 1-2 microg/kg (3-MCPD) and 6 microg/kg (3-MCPD esters), respectively. Recoveries ranged within 95 +/- 9% and 96 +/- 10% at spiking levels of 15 and 25 microg/kg in all matrices for 3-MCPD and 84 +/- 9% and 85 +/- 7% at spiking levels of 0.05 mg/kg and 2 mg/kg for 3-MCPD esters. The method avoids tedious and laborious sample preparation and was successfully applied to the rapid screening of samples conforming to the EU performance criteria for methods of analysis for 3-MCPD.

  14. A Rapid Method for Optimizing Running Temperature of Electrophoresis through Repetitive On-Chip CE Operations

    PubMed Central

    Kaneda, Shohei; Ono, Koichi; Fukuba, Tatsuhiro; Nojima, Takahiko; Yamamoto, Takatoki; Fujii, Teruo

    2011-01-01

    In this paper, a rapid and simple method to determine the optimal temperature conditions for denaturant electrophoresis using a temperature-controlled on-chip capillary electrophoresis (CE) device is presented. Since on-chip CE operations including sample loading, injection and separation are carried out just by switching the electric field, we can repeat consecutive run-to-run CE operations on a single on-chip CE device by programming the voltage sequences. By utilizing the high-speed separation and the repeatability of the on-chip CE, a series of electrophoretic operations with different running temperatures can be implemented. Using separations of reaction products of single-stranded DNA (ssDNA) with a peptide nucleic acid (PNA) oligomer, the effectiveness of the presented method to determine the optimal temperature conditions required to discriminate a single-base substitution (SBS) between two different ssDNAs is demonstrated. It is shown that a single run for one temperature condition can be executed within 4 min, and the optimal temperature to discriminate the SBS could be successfully found using the present method. PMID:21845077

  15. A split-step method to include electron–electron collisions via Monte Carlo in multiple rate equation simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huthmacher, Klaus; Molberg, Andreas K.; Rethfeld, Bärbel

    2016-10-01

    A split-step numerical method for calculating ultrafast free-electron dynamics in dielectrics is introduced. The two split steps, independently programmed in C++11 and FORTRAN 2003, are interfaced via the presented open source wrapper. The first step solves a deterministic extended multi-rate equation for the ionization, electron–phonon collisions, and single photon absorption by free-carriers. The second step is stochastic and models electron–electron collisions using Monte-Carlo techniques. This combination of deterministic and stochastic approaches is a unique and efficient method of calculating the nonlinear dynamics of 3D materials exposed to high intensity ultrashort pulses. Results from simulations solving the proposed model demonstrate howmore » electron–electron scattering relaxes the non-equilibrium electron distribution on the femtosecond time scale.« less

  16. Mg(OH)2 nanoparticles produced at room temperature by an innovative, facile, and scalable synthesis route

    NASA Astrophysics Data System (ADS)

    Taglieri, Giuliana; Felice, Benito; Daniele, Valeria; Ferrante, Fabiola

    2015-10-01

    Nanoparticles form the fundamental building blocks for many exciting applications in various scientific disciplines. However, the problem of the large-scale synthesis of nanoparticles remains challenging. An original, eco-friendly, single step, and scalable method to produce magnesium hydroxide nanoparticles in aqueous suspensions is here presented. The method, based on an exchange ion process, is extremely simple and rapid (few minutes). It employs cheap or renewable reactants, operates at room temperature and does not require intermediate steps (washings/purifications) to eliminate undesired compounds. Moreover, it is possible to regenerate the exchange material and to reuse it for new operation of synthesis, according to a cyclic procedure, providing potential aptitudes of scalability of nanoparticles production. Some of the synthesis parameters are varied, and structural and morphological features of the produced nanoparticles, after few seconds from the beginning of the synthesis up to the ending time, are investigated by means of several techniques, such as X-ray diffraction (profile fitting and Rietveld refinement), transmission electron microscopy, infrared spectroscopy, thermal analyses, and surface area measurements. In any case, pure and stable suspensions are produced, characterized by crystalline and mesoporous Mg(OH)2 nanoparticles, with lamellar morphology. In particular, the nanolamellas appeared constituted by a superimposition of hexagonally plated and crystalline nanosized precursors (2-3 nm in dimensions), crystallographically oriented.

  17. Reducing workpieces to their base geometry for multi-step incremental forming using manifold harmonics

    NASA Astrophysics Data System (ADS)

    Carette, Yannick; Vanhove, Hans; Duflou, Joost

    2018-05-01

    Single Point Incremental Forming is a flexible process that is well-suited for small batch production and rapid prototyping of complex sheet metal parts. The distributed nature of the deformation process and the unsupported sheet imply that controlling the final accuracy of the workpiece is challenging. To improve the process limits and the accuracy of SPIF, the use of multiple forming passes has been proposed and discussed by a number of authors. Most methods use multiple intermediate models, where the previous one is strictly smaller than the next one, while gradually increasing the workpieces' wall angles. Another method that can be used is the manufacture of a smoothed-out "base geometry" in the first pass, after which more detailed features can be added in subsequent passes. In both methods, the selection of these intermediate shapes is freely decided by the user. However, their practical implementation in the production of complex freeform parts is not straightforward. The original CAD model can be manually adjusted or completely new CAD models can be created. This paper discusses an automatic method that is able to extract the base geometry from a full STL-based CAD model in an analytical way. Harmonic decomposition is used to express the final geometry as the sum of individual surface harmonics. It is then possible to filter these harmonic contributions to obtain a new CAD model with a desired level of geometric detail. This paper explains the technique and its implementation, as well as its use in the automatic generation of multi-step geometries.

  18. Comparative Analysis of Various Single-tone Frequency Estimation Techniques in High-order Instantaneous Moments Based Phase Estimation Method

    NASA Astrophysics Data System (ADS)

    Rajshekhar, G.; Gorthi, Sai Siva; Rastogi, Pramod

    2010-04-01

    For phase estimation in digital holographic interferometry, a high-order instantaneous moments (HIM) based method was recently developed which relies on piecewise polynomial approximation of phase and subsequent evaluation of the polynomial coefficients using the HIM operator. A crucial step in the method is mapping the polynomial coefficient estimation to single-tone frequency determination for which various techniques exist. The paper presents a comparative analysis of the performance of the HIM operator based method in using different single-tone frequency estimation techniques for phase estimation. The analysis is supplemented by simulation results.

  19. Is a multivariate consensus representation of genetic relationships among populations always meaningful?

    PubMed Central

    Moazami-Goudarzi, K; Laloë, D

    2002-01-01

    To determine the relationships among closely related populations or species, two methods are commonly used in the literature: phylogenetic reconstruction or multivariate analysis. The aim of this article is to assess the reliability of multivariate analysis. We describe a method that is based on principal component analysis and Mantel correlations, using a two-step process: The first step consists of a single-marker analysis and the second step tests if each marker reveals the same typology concerning population differentiation. We conclude that if single markers are not congruent, the compromise structure is not meaningful. Our model is not based on any particular mutation process and it can be applied to most of the commonly used genetic markers. This method is also useful to determine the contribution of each marker to the typology of populations. We test whether our method is efficient with two real data sets based on microsatellite markers. Our analysis suggests that for closely related populations, it is not always possible to accept the hypothesis that an increase in the number of markers will increase the reliability of the typology analysis. PMID:12242255

  20. Survey of Alternaria toxin contamination in food from the German market, using a rapid HPLC-MS/MS approach.

    PubMed

    Hickert, Sebastian; Bergmann, Marian; Ersen, Seyma; Cramer, Benedikt; Humpf, Hans-Ulrich

    2016-02-01

    A HPLC-MS/MS-based method for the quantification of nine mycotoxins produced by fungi of the genus Alternaria in various food matrices was developed. The method relies on a single-step extraction, followed by dilution of the raw extract and direct analysis. In combination with an analysis time per sample of 12 min, the sample preparation is cost-effective and easy to handle. The method covers alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), altenuene (ALT), iso-altenuene (isoALT), tentoxin (TEN), altertoxin-I (ATX-I), and the AAL toxins TA1 and TA2. Some Alternaria toxins which are either not commercially available or very expensive, namely AOH, AME, ALT, isoALT, and ATX-I, were isolated as reference compounds from fungal cultures. The method was extensively validated for tomato products, bakery products, sunflower seeds, fruit juices, and vegetable oils. AOH, AME, TeA, and TEN were found in quantifiable amounts and 92.1% of all analyzed samples (n = 96) showed low level contamination with one or more Alternaria toxins. Based on the obtained results, the average daily exposure to Alternaria toxins in Germany was calculated.

  1. Preparation of the egg membrane bandage contained the antibacterial Ag nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jin; Duan, Guangwen; Fu, Yunzhi, E-mail: yzhfu@hainu.edu.cn

    Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous aloe leaf extracts as both the reducing and capping agent. Transmission electron microscopy analysis revealed the average size of silver nanoparticles approximately 18.05 nm. Fourier transform infrared spectroscopy observation showed the estimation of two kinds of binding sites between aqueous aloe leaf and aqueous aloe leaf with silver nanoparticles. In addition, the critical roles of the concentration of silver nitrate, temperature, and reaction time in the formation of silver nanoparticles had been illustrated. Furthermore, silver nanoparticles were deposited on egg membrane bandage, forming amore » new egg membrane bandage that contained silver nanoparticles that exhibiting excellent antibacterial effects against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, which was 2.5 times stronger than the commercially available bandage. - Graphical Abstract: Display Omitted.« less

  2. Mechanism of Rifampicin Inactivation in Nocardia farcinica

    PubMed Central

    Abdelwahab, Heba; Martin Del Campo, Julia S.; Dai, Yumin; Adly, Camelia; El-Sohaimy, Sohby; Sobrado, Pablo

    2016-01-01

    A novel mechanism of rifampicin (Rif) resistance has recently been reported in Nocardia farcinica. This new mechanism involves the activity of rifampicin monooxygenase (RifMO), a flavin-dependent monooxygenase that catalyzes the hydroxylation of Rif, which is the first step in the degradation pathway. Recombinant RifMO was overexpressed and purified for biochemical analysis. Kinetic characterization revealed that Rif binding is necessary for effective FAD reduction. RifMO exhibits only a 3-fold coenzyme preference for NADPH over NADH. RifMO catalyzes the incorporation of a single oxygen atom forming an unstable intermediate that eventually is converted to 2′-N-hydroxy-4-oxo-Rif. Stable C4a-hydroperoxyflavin was not detected by rapid kinetics methods, which is consistent with only 30% of the activated oxygen leading to product formation. These findings represent the first reported detailed biochemical characterization of a flavin-monooxygenase involved in antibiotic resistance. PMID:27706151

  3. CRISPR Typing and Subtyping for Improved Laboratory Surveillance of Salmonella Infections

    PubMed Central

    Fabre, Laëtitia; Zhang, Jian; Guigon, Ghislaine; Le Hello, Simon; Guibert, Véronique; Accou-Demartin, Marie; de Romans, Saïana; Lim, Catherine; Roux, Chrystelle; Passet, Virginie; Diancourt, Laure; Guibourdenche, Martine; Issenhuth-Jeanjean, Sylvie; Achtman, Mark; Brisse, Sylvain; Sola, Christophe; Weill, François-Xavier

    2012-01-01

    Laboratory surveillance systems for salmonellosis should ideally be based on the rapid serotyping and subtyping of isolates. However, current typing methods are limited in both speed and precision. Using 783 strains and isolates belonging to 130 serotypes, we show here that a new family of DNA repeats named CRISPR (clustered regularly interspaced short palindromic repeats) is highly polymorphic in Salmonella. We found that CRISPR polymorphism was strongly correlated with both serotype and multilocus sequence type. Furthermore, spacer microevolution discriminated between subtypes within prevalent serotypes, making it possible to carry out typing and subtyping in a single step. We developed a high-throughput subtyping assay for the most prevalent serotype, Typhimurium. An open web-accessible database was set up, providing a serotype/spacer dictionary and an international tool for strain tracking based on this innovative, powerful typing and subtyping tool. PMID:22623967

  4. Divergent unprotected peptide macrocyclisation by palladium-mediated cysteine arylation.

    PubMed

    Rojas, Anthony J; Zhang, Chi; Vinogradova, Ekaterina V; Buchwald, Nathan H; Reilly, John; Pentelute, Bradley L; Buchwald, Stephen L

    2017-06-01

    Macrocyclic peptides are important therapeutic candidates due to their improved physicochemical properties in comparison to their linear counterparts. Here we detail a method for a divergent macrocyclisation of unprotected peptides by crosslinking two cysteine residues with bis-palladium organometallic reagents. These synthetic intermediates are prepared in a single step from commercially available aryl bis-halides. Two bioactive linear peptides with cysteine residues at i , i + 4 and i , i + 7 positions, respectively, were cyclised to introduce a diverse array of aryl and bi-aryl linkers. These two series of macrocyclic peptides displayed similar linker-dependent lipophilicity, phospholipid affinity, and unique volume of distributions. Additionally, one of the bioactive peptides showed target binding affinity that was predominantly affected by the length of the linker. Collectively, this divergent strategy allowed rapid and convenient access to various aryl linkers, enabling the systematic evaluation of the effect of appending unit on the medicinal properties of macrocyclic peptides.

  5. Strategic planning as a tool for achieving alignment in academic health centers.

    PubMed

    Higginbotham, Eve J; Church, Kathryn C

    2012-01-01

    After the passage of the Patient Protection and Affordable Care Act in March 2010, there is an urgent need for medical schools, teaching hospitals, and practice plans to work together seamlessly across a common mission. Although there is agreement that there should be greater coordination of initiatives and resources, there is little guidance in the literature to address the method to achieve the necessary transformation. Traditional approaches to strategic planning often engage a few leaders and produce a set of immeasurable initiatives. A nontraditional approach, consisting of a Whole-Scale (Dannemiller Tyson Associates, Ann Arbor, MI) engagement, appreciative inquiry, and a balanced scorecard can, more rapidly transform an academic health center. Using this nontraditional approach to strategic planning, increased organizational awareness was achieved in a single academic health center. Strategic planning can be an effective tool to achieve alignment, enhance accountability, and a first step in meeting the demands of the new landscape of healthcare.

  6. Activating "Invisible" Glue: Using Electron Beam for Enhancement of Interfacial Properties of Graphene-Metal Contact.

    PubMed

    Kim, Songkil; Russell, Michael; Kulkarni, Dhaval D; Henry, Mathias; Kim, Steve; Naik, Rajesh R; Voevodin, Andrey A; Jang, Seung Soon; Tsukruk, Vladimir V; Fedorov, Andrei G

    2016-01-26

    Interfacial contact of two-dimensional graphene with three-dimensional metal electrodes is crucial to engineering high-performance graphene-based nanodevices with superior performance. Here, we report on the development of a rapid "nanowelding" method for enhancing properties of interface to graphene buried under metal electrodes using a focused electron beam induced deposition (FEBID). High energy electron irradiation activates two-dimensional graphene structure by generation of structural defects at the interface to metal contacts with subsequent strong bonding via FEBID of an atomically thin graphitic interlayer formed by low energy secondary electron-assisted dissociation of entrapped hydrocarbon contaminants. Comprehensive investigation is conducted to demonstrate formation of the FEBID graphitic interlayer and its impact on contact properties of graphene devices achieved via strong electromechanical coupling at graphene-metal interfaces. Reduction of the device electrical resistance by ∼50% at a Dirac point and by ∼30% at the gate voltage far from the Dirac point is obtained with concurrent improvement in thermomechanical reliability of the contact interface. Importantly, the process is rapid and has an excellent insertion potential into a conventional fabrication workflow of graphene-based nanodevices through single-step postprocessing modification of interfacial properties at the buried heterogeneous contact.

  7. Development of a Flow Cytometry-Based Method for Rapid Detection of Escherichia coli and Shigella Spp. Using an Oligonucleotide Probe

    PubMed Central

    Xue, Yong; Wilkes, Jon G.; Moskal, Ted J.; Williams, Anna J.; Cooper, Willie M.; Nayak, Rajesh; Rafii, Fatemeh; Buzatu, Dan A.

    2016-01-01

    Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR) and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC) assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts. PMID:26913737

  8. Development of a Flow Cytometry-Based Method for Rapid Detection of Escherichia coli and Shigella Spp. Using an Oligonucleotide Probe.

    PubMed

    Xue, Yong; Wilkes, Jon G; Moskal, Ted J; Williams, Anna J; Cooper, Willie M; Nayak, Rajesh; Rafii, Fatemeh; Buzatu, Dan A

    2016-01-01

    Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR) and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC) assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isotalo, Aarno

    A method referred to as tally nuclides is presented for accurately and efficiently calculating the time-step averages and integrals of any quantities that are weighted sums of atomic densities with constant weights during the step. The method allows all such quantities to be calculated simultaneously as a part of a single depletion solution with existing depletion algorithms. Some examples of the results that can be extracted include step-average atomic densities and macroscopic reaction rates, the total number of fissions during the step, and the amount of energy released during the step. Furthermore, the method should be applicable with several depletionmore » algorithms, and the integrals or averages should be calculated with an accuracy comparable to that reached by the selected algorithm for end-of-step atomic densities. The accuracy of the method is demonstrated in depletion calculations using the Chebyshev rational approximation method. Here, we demonstrate how the ability to calculate energy release in depletion calculations can be used to determine the accuracy of the normalization in a constant-power burnup calculation during the calculation without a need for a reference solution.« less

  10. Calculating Time-Integral Quantities in Depletion Calculations

    DOE PAGES

    Isotalo, Aarno

    2016-06-02

    A method referred to as tally nuclides is presented for accurately and efficiently calculating the time-step averages and integrals of any quantities that are weighted sums of atomic densities with constant weights during the step. The method allows all such quantities to be calculated simultaneously as a part of a single depletion solution with existing depletion algorithms. Some examples of the results that can be extracted include step-average atomic densities and macroscopic reaction rates, the total number of fissions during the step, and the amount of energy released during the step. Furthermore, the method should be applicable with several depletionmore » algorithms, and the integrals or averages should be calculated with an accuracy comparable to that reached by the selected algorithm for end-of-step atomic densities. The accuracy of the method is demonstrated in depletion calculations using the Chebyshev rational approximation method. Here, we demonstrate how the ability to calculate energy release in depletion calculations can be used to determine the accuracy of the normalization in a constant-power burnup calculation during the calculation without a need for a reference solution.« less

  11. Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots.

    PubMed

    Hirata, Yoshito; Oda, Arisa; Ohta, Kunihiro; Aihara, Kazuyuki

    2016-10-11

    Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information.

  12. Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Oda, Arisa; Ohta, Kunihiro; Aihara, Kazuyuki

    2016-10-01

    Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information.

  13. Single-cell isolation by a modular single-cell pipette for RNA-sequencing.

    PubMed

    Zhang, Kai; Gao, Min; Chong, Zechen; Li, Ying; Han, Xin; Chen, Rui; Qin, Lidong

    2016-11-29

    Single-cell transcriptome sequencing highly requires a convenient and reliable method to rapidly isolate a live cell into a specific container such as a PCR tube. Here, we report a modular single-cell pipette (mSCP) consisting of three modular components, a SCP-Tip, an air-displacement pipette (ADP), and ADP-Tips, that can be easily assembled, disassembled, and reassembled. By assembling the SCP-Tip containing a hydrodynamic trap, the mSCP can isolate single cells from 5-10 cells per μL of cell suspension. The mSCP is compatible with microscopic identification of captured single cells to finally achieve 100% single-cell isolation efficiency. The isolated live single cells are in submicroliter volumes and well suitable for single-cell PCR analysis and RNA-sequencing. The mSCP possesses merits of convenience, rapidness, and high efficiency, making it a powerful tool to isolate single cells for transcriptome analysis.

  14. A new detection method for the K variant of butyrylcholinesterase based on PCR primer introduced restriction analysis (PCR-PIRA).

    PubMed Central

    Shibuta, K; Abe, M; Suzuki, T

    1994-01-01

    The K variant of human butyrylcholinesterase is caused by a G/A transition in the butyrylcholinesterase gene, which neither creates nor destroys any restriction site. In an attempt to detect the K variant both simply and rapidly, we developed a two step method of "PCR primer introduced restriction analysis" (PCR-PIRA). The first step was used to introduce a new Fun4HI site into the normal allele for a screening test, while the second step was performed to create a new MaeIII site on the variant allele for a specific test. This method thus enabled us to distinguish clearly the K variant from the normal allele, and also showed that the frequency of the K variant allele is 0.164 in the Japanese population. Images PMID:7966197

  15. A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations

    NASA Astrophysics Data System (ADS)

    Christlieb, Andrew J.; Feng, Xiao; Seal, David C.; Tang, Qi

    2016-07-01

    We propose a high-order finite difference weighted ENO (WENO) method for the ideal magnetohydrodynamics (MHD) equations. The proposed method is single-stage (i.e., it has no internal stages to store), single-step (i.e., it has no time history that needs to be stored), maintains a discrete divergence-free condition on the magnetic field, and has the capacity to preserve the positivity of the density and pressure. To accomplish this, we use a Taylor discretization of the Picard integral formulation (PIF) of the finite difference WENO method proposed in Christlieb et al. (2015) [23], where the focus is on a high-order discretization of the fluxes (as opposed to the conserved variables). We use the version where fluxes are expanded to third-order accuracy in time, and for the fluid variables space is discretized using the classical fifth-order finite difference WENO discretization. We use constrained transport in order to obtain divergence-free magnetic fields, which means that we simultaneously evolve the magnetohydrodynamic (that has an evolution equation for the magnetic field) and magnetic potential equations alongside each other, and set the magnetic field to be the (discrete) curl of the magnetic potential after each time step. In this work, we compute these derivatives to fourth-order accuracy. In order to retain a single-stage, single-step method, we develop a novel Lax-Wendroff discretization for the evolution of the magnetic potential, where we start with technology used for Hamilton-Jacobi equations in order to construct a non-oscillatory magnetic field. The end result is an algorithm that is similar to our previous work Christlieb et al. (2014) [8], but this time the time stepping is replaced through a Taylor method with the addition of a positivity-preserving limiter. Finally, positivity preservation is realized by introducing a parameterized flux limiter that considers a linear combination of high and low-order numerical fluxes. The choice of the free parameter is then given in such a way that the fluxes are limited towards the low-order solver until positivity is attained. Given the lack of additional degrees of freedom in the system, this positivity limiter lacks energy conservation where the limiter turns on. However, this ingredient can be dropped for problems where the pressure does not become negative. We present two and three dimensional numerical results for several standard test problems including a smooth Alfvén wave (to verify formal order of accuracy), shock tube problems (to test the shock-capturing ability of the scheme), Orszag-Tang, and cloud shock interactions. These results assert the robustness and verify the high-order of accuracy of the proposed scheme.

  16. On-line characterization of monoclonal antibody variants by liquid chromatography-mass spectrometry operating in a two-dimensional format.

    PubMed

    Alvarez, Melissa; Tremintin, Guillaume; Wang, Jennifer; Eng, Marian; Kao, Yung-Hsiang; Jeong, Justin; Ling, Victor T; Borisov, Oleg V

    2011-12-01

    Recombinant monoclonal antibodies (MAbs) have become one of the most rapidly growing classes of biotherapeutics in the treatment of human disease. MAbs are highly heterogeneous proteins, thereby requiring a battery of analytical technologies for their characterization. However, incompatibility between separation and subsequent detection is often encountered. Here we demonstrate the utility of a generic on-line liquid chromatography-mass spectrometry (LC-MS) method operated in a two-dimensional format toward the rapid characterization of MAb charge and size variants. Using a single chromatographic system capable of running two independent gradients, up to six fractions of interest from an ion exchange (IEC) or size exclusion (SEC) separation can be identified by trapping and desalting the fractions onto a series of reversed phase trap cartridges with subsequent on-line analysis by mass spectrometry. Analysis of poorly resolved and low-level peaks in the IEC or SEC profile was facilitated by preconcentrating fractions on the traps using multiple injections. An on-line disulfide reduction step was successfully incorporated into the workflow, allowing more detailed characterization of modified MAbs by providing chain-specific information. The system is fully automated, thereby enabling high-throughput analysis with minimal sample handling. This technology provides rapid data turnaround time, a much needed feature during product characterization and development of multiple biotherapeutic proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Single-cell transcriptome conservation in cryopreserved cells and tissues.

    PubMed

    Guillaumet-Adkins, Amy; Rodríguez-Esteban, Gustavo; Mereu, Elisabetta; Mendez-Lago, Maria; Jaitin, Diego A; Villanueva, Alberto; Vidal, August; Martinez-Marti, Alex; Felip, Enriqueta; Vivancos, Ana; Keren-Shaul, Hadas; Heath, Simon; Gut, Marta; Amit, Ido; Gut, Ivo; Heyn, Holger

    2017-03-01

    A variety of single-cell RNA preparation procedures have been described. So far, protocols require fresh material, which hinders complex study designs. We describe a sample preservation method that maintains transcripts in viable single cells, allowing one to disconnect time and place of sampling from subsequent processing steps. We sequence single-cell transcriptomes from >1000 fresh and cryopreserved cells using 3'-end and full-length RNA preparation methods. Our results confirm that the conservation process did not alter transcriptional profiles. This substantially broadens the scope of applications in single-cell transcriptomics and could lead to a paradigm shift in future study designs.

  18. Simultaneous derivatisation and preconcentration of parabens in food and other matrices by isobutyl chloroformate and dispersive liquid-liquid microextraction followed by gas chromatographic analysis.

    PubMed

    Jain, Rajeev; Mudiam, Mohana Krishna Reddy; Chauhan, Abhishek; Ch, Ratnasekhar; Murthy, R C; Khan, Haider A

    2013-11-01

    A simple, rapid and economical method has been proposed for the quantitative determination of parabens (methyl, ethyl, propyl and butyl paraben) in different samples (food, cosmetics and water) based on isobutyl chloroformate (IBCF) derivatisation and preconcentration using dispersive liquid-liquid microextraction in single step. Under optimum conditions, solid samples were extracted with ethanol (disperser solvent) and 200 μL of this extract along with 50 μL of chloroform (extraction solvent) and 10 μL of IBCF was rapidly injected into 2 mL of ultra-pure water containing 150 μL of pyridine to induce formation of a cloudy state. After centrifugation, 1 μL of the sedimented phase was analysed using gas chromatograph-flame ionisation detector (GC-FID) and the peaks were confirmed using gas chromatograph-positive chemical ionisation-mass spectrometer (GC-PCI-MS). Method was found to be linear over the range of 0.1-10 μg mL(-1) with square of correlation coefficient (R(2)) in the range of 0.9913-0.9992. Limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.029-0.102 μg mL(-1) and 0.095-0.336 μg mL(-1) with a signal to noise ratio of 3:1 and 10:1, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Using stepped anvils to make even insulation layers in laser-heated diamond-anvil cell samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Zhixue; Gu, Tingting; Dobrosavljevic, Vasilije

    Here, we describe a method to make even insulation layers for high-pressure laser-heated diamond-anvil cell samples using stepped anvils. Moreover, the method works for both single-sided and double-sided laser heating using solid or fluid insulation. The stepped anvils are used as matched pairs or paired with a flat culet anvil to make gasket insulation layers and not actually used at high pressures; thus, their longevity is ensured. We also compare the radial temperature gradients and Soret diffusion of iron between self-insulating samples and samples produced with stepped anvils and find that less pronounced Soret diffusion occurs in samples with evenmore » insulation layers produced by stepped anvils.« less

  20. Using stepped anvils to make even insulation layers in laser-heated diamond-anvil cell samples

    DOE PAGES

    Du, Zhixue; Gu, Tingting; Dobrosavljevic, Vasilije; ...

    2015-09-01

    Here, we describe a method to make even insulation layers for high-pressure laser-heated diamond-anvil cell samples using stepped anvils. Moreover, the method works for both single-sided and double-sided laser heating using solid or fluid insulation. The stepped anvils are used as matched pairs or paired with a flat culet anvil to make gasket insulation layers and not actually used at high pressures; thus, their longevity is ensured. We also compare the radial temperature gradients and Soret diffusion of iron between self-insulating samples and samples produced with stepped anvils and find that less pronounced Soret diffusion occurs in samples with evenmore » insulation layers produced by stepped anvils.« less

  1. Off-axis silicon carbide substrates

    DOEpatents

    Edgar, James; Dudley, Michael; Kuball, Martin; Zhang, Yi; Wang, Guan; Chen, Hui; Zhang, Yu

    2014-09-02

    A method of epitaxial growth of a material on a crystalline substrate includes selecting a substrate having a crystal plane that includes a plurality of terraces with step risers that join adjacent terraces. Each terrace of the plurality or terraces presents a lattice constant that substantially matches a lattice constant of the material, and each step riser presents a step height and offset that is consistent with portions of the material nucleating on adjacent terraces being in substantial crystalline match at the step riser. The method also includes preparing a substrate by exposing the crystal plane; and epitaxially growing the material on the substrate such that the portions of the material nucleating on adjacent terraces merge into a single crystal lattice without defects at the step risers.

  2. Effects of acute alcohol intoxication on automated processing: evidence from the double-step paradigm.

    PubMed

    Vorstius, Christian; Radach, Ralph; Lang, Alan R

    2012-02-01

    Reflexive and voluntary levels of processing have been studied extensively with respect to possible impairments due to alcohol intoxication. This study examined alcohol effects at the 'automated' level of processing essential to many complex visual processing tasks (e.g., reading, visual search) that involve ongoing modifications or reprogramming of well-practiced routines. Data from 30 participants (16 male) were collected in two counterbalanced sessions (alcohol vs. no-alcohol control; mean breath alcohol concentration = 68 mg/dL vs. 0 mg/dL). Eye movements were recorded during a double-step task where 75% of trials involved two target stimuli in rapid succession (inter-stimulus interval [ISI]=40, 70, or 100 ms) so that they could elicit two distinct saccades or eye movements (double steps). On 25% of trials a single target appeared. Results indicated that saccade latencies were longer under alcohol. In addition, the proportion of single-step responses and the mean saccade amplitude (length) of primary saccades decreased significantly with increasing ISI. The key novel finding, however, was that the reprogramming time needed to cancel the first saccade and adjust saccade amplitude was extended significantly by alcohol. The additional time made available by prolonged latencies due to alcohol was not utilized by the saccade programming system to decrease the number of two-step responses. These results represent the first demonstration of specific alcohol-induced programming deficits at the automated level of oculomotor processing.

  3. A Lipid Extraction and Analysis Method for Characterizing Soil Microbes in Experiments with Many Samples

    PubMed Central

    Oates, Lawrence G.; Read, Harry W.; Gutknecht, Jessica L. M.; Duncan, David S.; Balser, Teri B.; Jackson, Randall D.

    2017-01-01

    Microbial communities are important drivers and regulators of ecosystem processes. To understand how management of ecosystems may affect microbial communities, a relatively precise but effort-intensive technique to assay microbial community composition is phospholipid fatty acid (PLFA) analysis. PLFA was developed to analyze phospholipid biomarkers, which can be used as indicators of microbial biomass and the composition of broad functional groups of fungi and bacteria. It has commonly been used to compare soils under alternative plant communities, ecology, and management regimes. The PLFA method has been shown to be sensitive to detecting shifts in microbial community composition. An alternative method, fatty acid methyl ester extraction and analysis (MIDI-FA) was developed for rapid extraction of total lipids, without separation of the phospholipid fraction, from pure cultures as a microbial identification technique. This method is rapid but is less suited for soil samples because it lacks an initial step separating soil particles and begins instead with a saponification reaction that likely produces artifacts from the background organic matter in the soil. This article describes a method that increases throughput while balancing effort and accuracy for extraction of lipids from the cell membranes of microorganisms for use in characterizing both total lipids and the relative abundance of indicator lipids to determine soil microbial community structure in studies with many samples. The method combines the accuracy achieved through PLFA profiling by extracting and concentrating soil lipids as a first step, and a reduction in effort by saponifying the organic material extracted and processing with the MIDI-FA method as a second step. PMID:28745639

  4. Acoustic resonator and method of making same

    DOEpatents

    Kline, G.R.; Lakin, K.M.

    1985-03-05

    A method is disclosed of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers. 4 figs.

  5. Direct Sensor Orientation of a Land-Based Mobile Mapping System

    PubMed Central

    Rau, Jiann-Yeou; Habib, Ayman F.; Kersting, Ana P.; Chiang, Kai-Wei; Bang, Ki-In; Tseng, Yi-Hsing; Li, Yu-Hua

    2011-01-01

    A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy. PMID:22164015

  6. The use of a projection method to simplify portal and hepatic vein segmentation in liver anatomy.

    PubMed

    Huang, Shaohui; Wang, Boliang; Cheng, Ming; Huang, Xiaoyang; Ju, Ying

    2008-12-01

    In living donor liver transplantation, the volume of the potential graft must be measured to ensure sufficient liver function after surgery. Couinaud divided the liver into 8 functionally independent segments. However, this method is not simple to perform in 3D space directly. Thus, we propose a rapid method to segment the liver based on the hepatic vessel tree. The most important step of this method is vascular projection. By carefully selecting a projection plane, a 3D point can be fixed in the projection plane. This greatly helps in rapid classification. This method was validated by applying it to a 3D liver depicted on CT images, and the result was in good agreement with Couinaud's classification.

  7. Hydrodynamic and Aerodynamic Tests of Models of Floats for Single-float Seaplanes NACA Models 41-D, 41-E, 61-A, 73, and 73-A

    NASA Technical Reports Server (NTRS)

    Parkinson, J B; HOUSE R O

    1938-01-01

    Tests were made in the NACA tank and in the NACA 7 by 10 foot wind tunnel on two models of transverse step floats and three models of pointed step floats considered to be suitable for use with single float seaplanes. The object of the program was the reduction of water resistance and spray of single float seaplanes without reducing the angle of dead rise believed to be necessary for the satisfactory absorption of the shock loads. The results indicated that all the models have less resistance and spray than the model of the Mark V float and that the pointed step floats are somewhat superior to the transverse step floats in these respects. Models 41-D, 61-A, and 73 were tested by the general method over a wide range of loads and speeds. The results are presented in the form of curves and charts for use in design calculations.

  8. [Techniques for rapid production of monoclonal antibodies for use with antibody technology].

    PubMed

    Kamada, Haruhiko

    2012-01-01

    A monoclonal antibody (Mab), due to its specific binding ability to a target protein, can potentially be one of the most useful tools for the functional analysis of proteins in recent proteomics-based research. However, the production of Mab is a very time-consuming and laborious process (i.e., preparation of recombinant antigens, immunization of animals, preparation of hybridomas), making it the rate-limiting step in using Mabs in high-throughput proteomics research, which heavily relies on comprehensive and rapid methods. Therefore, there is a great demand for new methods to efficiently generate Mabs against a group of proteins identified by proteome analysis. Here, we describe a useful method called "Antibody proteomic technique" for the rapid generations of Mabs to pharmaceutical target, which were identified by proteomic analyses of disease samples (ex. tumor tissue, etc.). We also introduce another method to find profitable targets on vasculature, which is called "Vascular proteomic technique". Our results suggest that this method for the rapid generation of Mabs to proteins may be very useful in proteomics-based research as well as in clinical applications.

  9. A facile one-step fluorescence method for the quantitation of low-content single base deamination impurity in synthetic oligonucleotides.

    PubMed

    Su, Xiaoye; Liang, Ruiting; Stolee, Jessica A

    2018-06-05

    Oligonucleotides are being researched and developed as potential drug candidates for the treatment of a broad spectrum of diseases. The characterization of antisense oligonucleotide (ASO) impurities caused by base mutations (e.g. deamination) which are closely related to the target ASO is a significant analytical challenge. Herein, we describe a novel one-step method, utilizing a strategy that combines fluorescence-ON detection with competitive hybridization, to achieve single base mutation quantitation in extensively modified synthetic ASOs. Given that this method is highly specific and sensitive (LoQ = 4 nM), we envision that it will find utility for screening other impurities as well as sequencing modified oligonucleotides. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The current role of on-line extraction approaches in clinical and forensic toxicology.

    PubMed

    Mueller, Daniel M

    2014-08-01

    In today's clinical and forensic toxicological laboratories, automation is of interest because of its ability to optimize processes, to reduce manual workload and handling errors and to minimize exposition to potentially infectious samples. Extraction is usually the most time-consuming step; therefore, automation of this step is reasonable. Currently, from the field of clinical and forensic toxicology, methods using the following on-line extraction techniques have been published: on-line solid-phase extraction, turbulent flow chromatography, solid-phase microextraction, microextraction by packed sorbent, single-drop microextraction and on-line desorption of dried blood spots. Most of these published methods are either single-analyte or multicomponent procedures; methods intended for systematic toxicological analysis are relatively scarce. However, the use of on-line extraction will certainly increase in the near future.

  11. CGC factorization for forward particle production in proton-nucleus collisions at next-to-leading order

    DOE PAGES

    Iancu, E.; Mueller, A. H.; Triantafyllopoulos, D. N.

    2016-12-13

    Within the Color Glass Condensate effective theory, we reconsider the next-to-leading order (NLO) calculation of the single inclusive particle production at forward rapidities in proton-nucleus collisions at high energy. Focusing on quark production for definiteness, we establish a new factorization scheme, perturbatively correct through NLO, in which there is no ‘rapidity subtraction’. That is, the NLO correction to the impact factor is not explicitly separated from the high-energy evolution. Our construction exploits the skeleton structure of the (NLO) Balitsky-Kovchegov equation, in which the first step of the evolution is explicitly singled out. The NLO impact factor is included by computingmore » this first emission with the exact kinematics for the emitted gluon, rather than by using the eikonal approximation. This particular calculation has already been presented in the literature, but the reorganization of the perturbation theory that we propose is new. As compared to the proposal in, our scheme is free of the fine-tuning inherent in the rapidity subtraction, which might be the origin of the negativity of the NLO cross-section observed in previous studies.« less

  12. Examinations of the Chemical Step in Enzyme Catalysis.

    PubMed

    Singh, P; Islam, Z; Kohen, A

    2016-01-01

    Advances in computational and experimental methods in enzymology have aided comprehension of enzyme-catalyzed chemical reactions. The main difficulty in comparing computational findings to rate measurements is that the first examines a single energy barrier, while the second frequently reflects a combination of many microscopic barriers. We present here intrinsic kinetic isotope effects and their temperature dependence as a useful experimental probe of a single chemical step in a complex kinetic cascade. Computational predictions are tested by this method for two model enzymes: dihydrofolate reductase and thymidylate synthase. The description highlights the significance of collaboration between experimentalists and theoreticians to develop a better understanding of enzyme-catalyzed chemical conversions. © 2016 Elsevier Inc. All rights reserved.

  13. Lipid extraction methods from microalgal biomass harvested by two different paths: screening studies toward biodiesel production.

    PubMed

    Ríos, Sergio D; Castañeda, Joandiet; Torras, Carles; Farriol, Xavier; Salvadó, Joan

    2013-04-01

    Microalgae can grow rapidly and capture CO2 from the atmosphere to convert it into complex organic molecules such as lipids (biodiesel feedstock). High scale economically feasible microalgae based oil depends on optimizing the entire process production. This process can be divided in three very different but directly related steps (production, concentration, lipid extraction and transesterification). The aim of this study is to identify the best method of lipid extraction to undergo the potentiality of some microalgal biomass obtained from two different harvesting paths. The first path used all physicals concentration steps, and the second path was a combination of chemical and physical concentration steps. Three microalgae species were tested: Phaeodactylum tricornutum, Nannochloropsis gaditana, and Chaetoceros calcitrans One step lipid extraction-transesterification reached the same fatty acid methyl ester yield as the Bligh and Dyer and soxhlet extraction with n-hexane methods with the corresponding time, cost and solvent saving. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Single turnover studies of oxidative halophenol dehalogenation by horseradish peroxidase reveal a mechanism involving two consecutive one electron steps: toward a functional halophenol bioremediation catalyst.

    PubMed

    Sumithran, Suganya; Sono, Masanori; Raner, Gregory M; Dawson, John H

    2012-12-01

    Horseradish peroxidase (HRP) catalyzes the oxidative para-dechlorination of the environmental pollutant/carcinogen 2,4,6-trichlorophenol (2,4,6-TCP). A possible mechanism for this reaction is a direct oxygen atom transfer from HRP compound I (HRP I) to trichlorophenol to generate 2,6-dichloro 1,4-benzoquinone, a two-electron transfer process. An alternative mechanism involves two consecutive one-electron transfer steps in which HRP I is reduced to compound II (HRP II) and then to the ferric enzyme as first proposed by Wiese et al. [F.W. Wiese, H.C. Chang, R.V. Lloyd, J.P. Freeman, V.M. Samokyszyn, Arch. Environ. Contam. Toxicol. 34 (1998) 217-222]. To probe the mechanism of oxidative halophenol dehalogenation, the reactions between 2,4,6-TCP and HRP compounds I or II have been investigated under single turnover conditions (i.e., without excess H(2)O(2)) using rapid scan stopped-flow spectroscopy. Addition of 2,4,6-TCP to HRP I leads rapidly to HRP II and then more slowly to the ferric resting state, consistent with a mechanism involving two consecutive one-electron oxidations of the substrate via a phenoxy radical intermediate. HRP II can also directly dechlorinate 2,4,6-TCP as judged by rapid scan stopped-flow and mass spectrometry. This observation is particularly significant since HRP II can only carry out one-electron oxidations. A more detailed understanding of the mechanism of oxidative halophenol dehalogenation will facilitate the use of HRP as a halophenol bioremediation catalyst. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii

    PubMed Central

    Ratcliff, William C.; Herron, Matthew D.; Howell, Kathryn; Pentz, Jennifer T.; Rosenzweig, Frank; Travisano, Michael

    2013-01-01

    The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a multicellular ancestor. We subject the alga Chlamydomonas reinhardtii to conditions that favour multicellularity, resulting in the evolution of a multicellular life cycle in which clusters reproduce via motile unicellular propagules. While a single-cell genetic bottleneck during ontogeny is widely regarded as an adaptation to limit among-cell conflict, its appearance very early in this transition suggests that it did not evolve for this purpose. Instead, we find that unicellular propagules are adaptive even in the absence of intercellular conflict, maximizing cluster-level fecundity. These results demonstrate that the unicellular bottleneck, a trait essential for evolving multicellular complexity, can arise rapidly via co-option of the ancestral unicellular form. PMID:24193369

  16. Accurate Detection of Methicillin-Resistant Staphylococcus aureus in Mixtures by Use of Single-Bacterium Duplex Droplet Digital PCR.

    PubMed

    Luo, Jun; Li, Junhua; Yang, Hang; Yu, Junping; Wei, Hongping

    2017-10-01

    Accurate and rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) is needed to screen MRSA carriers and improve treatment. The current widely used duplex PCR methods are not able to differentiate MRSA from coexisting methicillin-susceptible S. aureus (MSSA) or other methicillin-resistant staphylococci. In this study, we aimed to develop a direct method for accurate and rapid detection of MRSA in clinical samples from open environments, such as nasal swabs. The new molecular assay is based on detecting the cooccurrence of nuc and mecA markers in a single bacterial cell by utilizing droplet digital PCR (ddPCR) with the chimeric lysin ClyH for cell lysis. The method consists of (i) dispersion of an intact single bacterium into nanoliter droplets, (ii) temperature-controlled release of genomic DNA (gDNA) by ClyH at 37°C, and (iii) amplification and detection of the markers ( nuc and mecA ) using standard TaqMan chemistries with ddPCR. Results were analyzed based on MRSA index ratios used for indicating the presence of the duplex-positive markers in droplets. The method was able to achieve an absolute limit of detection (LOD) of 2,900 CFU/ml for MRSA in nasal swabs spiked with excess amounts of Escherichia coli , MSSA, and other mecA -positive bacteria within 4 h. Initial testing of 104 nasal swabs showed that the method had 100% agreement with the standard culture method, while the normal duplex qPCR method had only about 87.5% agreement. The single-bacterium duplex ddPCR assay is rapid and powerful for more accurate detection of MRSA directly from clinical specimens. Copyright © 2017 American Society for Microbiology.

  17. Accurate Detection of Methicillin-Resistant Staphylococcus aureus in Mixtures by Use of Single-Bacterium Duplex Droplet Digital PCR

    PubMed Central

    Luo, Jun; Li, Junhua; Yang, Hang; Yu, Junping

    2017-01-01

    ABSTRACT Accurate and rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) is needed to screen MRSA carriers and improve treatment. The current widely used duplex PCR methods are not able to differentiate MRSA from coexisting methicillin-susceptible S. aureus (MSSA) or other methicillin-resistant staphylococci. In this study, we aimed to develop a direct method for accurate and rapid detection of MRSA in clinical samples from open environments, such as nasal swabs. The new molecular assay is based on detecting the cooccurrence of nuc and mecA markers in a single bacterial cell by utilizing droplet digital PCR (ddPCR) with the chimeric lysin ClyH for cell lysis. The method consists of (i) dispersion of an intact single bacterium into nanoliter droplets, (ii) temperature-controlled release of genomic DNA (gDNA) by ClyH at 37°C, and (iii) amplification and detection of the markers (nuc and mecA) using standard TaqMan chemistries with ddPCR. Results were analyzed based on MRSA index ratios used for indicating the presence of the duplex-positive markers in droplets. The method was able to achieve an absolute limit of detection (LOD) of 2,900 CFU/ml for MRSA in nasal swabs spiked with excess amounts of Escherichia coli, MSSA, and other mecA-positive bacteria within 4 h. Initial testing of 104 nasal swabs showed that the method had 100% agreement with the standard culture method, while the normal duplex qPCR method had only about 87.5% agreement. The single-bacterium duplex ddPCR assay is rapid and powerful for more accurate detection of MRSA directly from clinical specimens. PMID:28724560

  18. Quantitation by Portable Gas Chromatography: Mass Spectrometry of VOCs Associated with Vapor Intrusion

    PubMed Central

    Fair, Justin D.; Bailey, William F.; Felty, Robert A.; Gifford, Amy E.; Shultes, Benjamin; Volles, Leslie H.

    2010-01-01

    Development of a robust reliable technique that permits for the rapid quantitation of volatile organic chemicals is an important first step to remediation associated with vapor intrusion. This paper describes the development of an analytical method that allows for the rapid and precise identification and quantitation of halogenated and nonhalogenated contaminants commonly found within the ppbv level at sites where vapor intrusion is a concern. PMID:20885969

  19. Northwest Manufacturing Initiative

    DTIC Science & Technology

    2012-03-27

    crack growth and threshold stress corrosion cracking evaluation. Threshold stress corrosion cracking was done using the rising step load method with...Group Technology methods to establish manufacturing cells for production efficiency, to develop internal Lean Champions, and to implement rapid... different levels, advisory, core, etc. VI. Core steering committee composed of members that have a significant vested interest. Action Item: Draft

  20. Method for Rapid Purification of Class IIa Bacteriocins and Comparison of Their Activities

    PubMed Central

    Guyonnet, D.; Fremaux, C.; Cenatiempo, Y.; Berjeaud, J. M.

    2000-01-01

    A three-step method was developed for the purification of mesentericin Y105 (60% yield) from the culture supernatant of Leuconostoc mesenteroides Y105. The same procedure was successfully applied to the purification of five other anti-Listeria bacteriocins identified by mass spectrometry. Specific activities of the purified bacteriocins were compared. PMID:10742275

  1. On-bead antibody-small molecule conjugation using high-capacity magnetic beads.

    PubMed

    Nath, Nidhi; Godat, Becky; Benink, Hélène; Urh, Marjeta

    2015-11-01

    Antibodies labeled with small molecules such as fluorophore, biotin or drugs play an important role in various areas of biological research, drug discovery and diagnostics. However, the majority of current methods for labeling antibodies is solution-based and has several limitations including the need for purified antibodies at high concentrations and multiple buffer exchange steps. In this study, a method (on-bead conjugation) is described that addresses these limitations by combining antibody purification and conjugation in a single workflow. This method uses high capacity-magnetic Protein A or Protein G beads to capture antibodies directly from cell media followed by conjugation with small molecules and elution of conjugated antibodies from the beads. High-capacity magnetic antibody capture beads are key to this method and were developed by combining porous and hydrophilic cellulose beads with oriented immobilization of Protein A and Protein G using HaloTag technology. With a variety of fluorophores it is shown that the on-bead conjugation method is compatible with both thiol- and amine-based chemistry. This method enables simple and rapid processing of multiple samples in parallel with high-efficiency antibody recovery. It is further shown that recovered antibodies are functional and compatible with downstream applications. Copyright © 2015. Published by Elsevier B.V.

  2. Spatial accessibility to healthcare services in Shenzhen, China: improving the multi-modal two-step floating catchment area method by estimating travel time via online map APIs.

    PubMed

    Tao, Zhuolin; Yao, Zaoxing; Kong, Hui; Duan, Fei; Li, Guicai

    2018-05-09

    Shenzhen has rapidly grown into a megacity in the recent decades. It is a challenging task for the Shenzhen government to provide sufficient healthcare services. The spatial configuration of healthcare services can influence the convenience for the consumers to obtain healthcare services. Spatial accessibility has been widely adopted as a scientific measurement for evaluating the rationality of the spatial configuration of healthcare services. The multi-modal two-step floating catchment area (2SFCA) method is an important advance in the field of healthcare accessibility modelling, which enables the simultaneous assessment of spatial accessibility via multiple transport modes. This study further develops the multi-modal 2SFCA method by introducing online map APIs to improve the estimation of travel time by public transit or by car respectively. As the results show, the distribution of healthcare accessibility by multi-modal 2SFCA shows significant spatial disparity. Moreover, by dividing the multi-modal accessibility into car-mode and transit-mode accessibility, this study discovers that the transit-mode subgroup is disadvantaged in the competition for healthcare services with the car-mode subgroup. The disparity in transit-mode accessibility is the main reason of the uneven pattern of healthcare accessibility in Shenzhen. The findings suggest improving the public transit conditions for accessing healthcare services to reduce the disparity of healthcare accessibility. More healthcare services should be allocated in the eastern and western Shenzhen, especially sub-districts in Dapeng District and western Bao'an District. As these findings cannot be drawn by the traditional single-modal 2SFCA method, the advantage of the multi-modal 2SFCA method is significant to both healthcare studies and healthcare system planning.

  3. Fabrication of large-scale single-crystal bismuth telluride (Bi2Te3) nanosheet arrays by a single-step electrolysis process

    NASA Astrophysics Data System (ADS)

    Tsai, Hung-Wei; Wang, Tsang-Hsiu; Chan, Tsung-Cheng; Chen, Pei-Ju; Chung, Chih-Chun; Yaghoubi, Alireza; Liao, Chien-Neng; Diau, Eric Wei-Guang; Chueh, Yu-Lun

    2014-06-01

    Nanolizing of thermoelectric materials is one approach to reduce the thermal conductivity and hence enhance the figure of merit. Bismuth telluride (Bi2Te3)-based materials have excellent figure of merit at room temperature. For device applications, precise control and rapid fabrication for the nanostructure of thermoelectric materials are essential issues. In the present study, we demonstrate a one-step electrolysis process to directly form Bi2Te3 nanosheet arrays (NSAs) on the surface of bulk Bi2Te3 with controllable spacing distance and depth by tuning the applied bias and duration. The single sheet of NSAs reveals that the average thickness and electrical resistivity of single crystalline Bi2Te3 in composition are 399.8 nm and 137.34 μΩ m, respectively. The formation mechanism of NSAs has been proposed. A 1.12% efficiency of quantum dot-sensitized solar cells with Bi2Te3 NSAs for counter electrode has been demonstrated, indicating that Bi2Te3 NSAs from top-down processing with a high ratio of surface area to volume are a promising candidate for possible applications such as thermoelectrics, dye-sensitized solar cells (DSSCs), and lithium-ion batteries.Nanolizing of thermoelectric materials is one approach to reduce the thermal conductivity and hence enhance the figure of merit. Bismuth telluride (Bi2Te3)-based materials have excellent figure of merit at room temperature. For device applications, precise control and rapid fabrication for the nanostructure of thermoelectric materials are essential issues. In the present study, we demonstrate a one-step electrolysis process to directly form Bi2Te3 nanosheet arrays (NSAs) on the surface of bulk Bi2Te3 with controllable spacing distance and depth by tuning the applied bias and duration. The single sheet of NSAs reveals that the average thickness and electrical resistivity of single crystalline Bi2Te3 in composition are 399.8 nm and 137.34 μΩ m, respectively. The formation mechanism of NSAs has been proposed. A 1.12% efficiency of quantum dot-sensitized solar cells with Bi2Te3 NSAs for counter electrode has been demonstrated, indicating that Bi2Te3 NSAs from top-down processing with a high ratio of surface area to volume are a promising candidate for possible applications such as thermoelectrics, dye-sensitized solar cells (DSSCs), and lithium-ion batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00184b

  4. Rapid and inexpensive body fluid identification by RNA profiling-based multiplex High Resolution Melt (HRM) analysis

    PubMed Central

    Hanson, Erin K.; Ballantyne, Jack

    2014-01-01

    Positive identification of the nature of biological material present on evidentiary items can be crucial for understanding the circumstances surrounding a crime. However, traditional protein-based methods do not permit the identification of all body fluids and tissues, and thus molecular based strategies for the conclusive identification of all forensically relevant biological fluids and tissues need to be developed. Messenger RNA (mRNA) profiling is an example of such a molecular-based approach. Current mRNA body fluid identification assays involve capillary electrophoresis (CE) or quantitative RT-PCR (qRT-PCR) platforms, each with its own limitations. Both platforms require the use of expensive fluorescently labeled primers or probes. CE-based assays require separate amplification and detection steps thus increasing the analysis time. For qRT-PCR assays, only 3-4 markers can be included in a single reaction since each requires a different fluorescent dye. To simplify mRNA profiling assays, and reduce the time and cost of analysis, we have developed single- and multiplex body fluid High Resolution Melt (HRM) assays for the identification of common forensically relevant biological fluids and tissues. The incorporated biomarkers include IL19 (vaginal secretions), IL1F7 (skin), ALAS2 (blood), MMP10 (menstrual blood), HTN3 (saliva) and TGM4 (semen).  The HRM assays require only unlabeled PCR primers and a single saturating intercalating fluorescent dye (Eva Green). Each body-fluid-specific marker can easily be identified by the presence of a distinct melt peak. Usually, HRM assays are used to detect variants or isoforms for a single gene target. However, we have uniquely developed duplex and triplex HRM assays to permit the simultaneous detection of multiple targets per reaction. Here we describe the development and initial performance evaluation of the developed HRM assays. The results demonstrate the potential use of HRM assays for rapid, and relatively inexpensive, screening of biological evidence. PMID:24715968

  5. Rapid and inexpensive body fluid identification by RNA profiling-based multiplex High Resolution Melt (HRM) analysis.

    PubMed

    Hanson, Erin K; Ballantyne, Jack

    2013-01-01

    Positive identification of the nature of biological material present on evidentiary items can be crucial for understanding the circumstances surrounding a crime. However, traditional protein-based methods do not permit the identification of all body fluids and tissues, and thus molecular based strategies for the conclusive identification of all forensically relevant biological fluids and tissues need to be developed. Messenger RNA (mRNA) profiling is an example of such a molecular-based approach. Current mRNA body fluid identification assays involve capillary electrophoresis (CE) or quantitative RT-PCR (qRT-PCR) platforms, each with its own limitations. Both platforms require the use of expensive fluorescently labeled primers or probes. CE-based assays require separate amplification and detection steps thus increasing the analysis time. For qRT-PCR assays, only 3-4 markers can be included in a single reaction since each requires a different fluorescent dye. To simplify mRNA profiling assays, and reduce the time and cost of analysis, we have developed single- and multiplex body fluid High Resolution Melt (HRM) assays for the identification of common forensically relevant biological fluids and tissues. The incorporated biomarkers include IL19 (vaginal secretions), IL1F7 (skin), ALAS2 (blood), MMP10 (menstrual blood), HTN3 (saliva) and TGM4 (semen).  The HRM assays require only unlabeled PCR primers and a single saturating intercalating fluorescent dye (Eva Green). Each body-fluid-specific marker can easily be identified by the presence of a distinct melt peak. Usually, HRM assays are used to detect variants or isoforms for a single gene target. However, we have uniquely developed duplex and triplex HRM assays to permit the simultaneous detection of multiple targets per reaction. Here we describe the development and initial performance evaluation of the developed HRM assays. The results demonstrate the potential use of HRM assays for rapid, and relatively inexpensive, screening of biological evidence.

  6. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection.

    PubMed

    Zuo, Peng; Li, XiuJun; Dominguez, Delfina C; Ye, Bang-Ce

    2013-10-07

    Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL(-1). We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step 'turn on' pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens.

  7. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection

    PubMed Central

    Zuo, Peng; Dominguez, Delfina C.; Ye, Bang-Ce

    2014-01-01

    Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL−1. We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step ‘turn on’ pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens. PMID:23929394

  8. Whole head quantitative susceptibility mapping using a least-norm direct dipole inversion method.

    PubMed

    Sun, Hongfu; Ma, Yuhan; MacDonald, M Ethan; Pike, G Bruce

    2018-06-15

    A new dipole field inversion method for whole head quantitative susceptibility mapping (QSM) is proposed. Instead of performing background field removal and local field inversion sequentially, the proposed method performs dipole field inversion directly on the total field map in a single step. To aid this under-determined and ill-posed inversion process and obtain robust QSM images, Tikhonov regularization is implemented to seek the local susceptibility solution with the least-norm (LN) using the L-curve criterion. The proposed LN-QSM does not require brain edge erosion, thereby preserving the cerebral cortex in the final images. This should improve its applicability for QSM-based cortical grey matter measurement, functional imaging and venography of full brain. Furthermore, LN-QSM also enables susceptibility mapping of the entire head without the need for brain extraction, which makes QSM reconstruction more automated and less dependent on intermediate pre-processing methods and their associated parameters. It is shown that the proposed LN-QSM method reduced errors in a numerical phantom simulation, improved accuracy in a gadolinium phantom experiment, and suppressed artefacts in nine subjects, as compared to two-step and other single-step QSM methods. Measurements of deep grey matter and skull susceptibilities from LN-QSM are consistent with established reconstruction methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceous NCDC 273 suitable for industrial application.

    PubMed

    Vijay Simha, B; Sood, S K; Kumariya, Rashmi; Garsa, Anita Kumari

    2012-10-12

    The use of pediocins as food additives or drugs requires a simple and rapid method by which large quantities of homogeneous pediocin are produced at industrial level. Two centrifugation steps required during initial stages of purification i.e. separation of cells from fermentation broth and collection of precipitates after ammonium sulphate precipitation are the major bottlenecks for their large scale purification. In the present work, pediocin production by a new a dairy strain, Pediococcus pentosaceous NCDC 273 (identical to pediocin PA-1 at nucleotide sequence level), was found to be optimum at initial pH of 6.0 and 7.0 of basal MRS supplemented with 20 g/l of glucose or lactose at 20 and 24 h, respectively. Immobilization of cells through entrapment in alginate-xanthan gum gel beads with chitosan coating resulted in negligible cell release during fermentation. Thus, the cell free extract was directly collected through decantation, avoiding the need of centrifugation step at this stage. Subsequent ammonium sulphate precipitation at isoelectric point of pediocin PA-1 (8.85), using magnetic stirrer at high speed (approx. 1200 rpm), resulted in forceful deposition of precipitates on the wall of precipitation beaker allowing their collection using a spatula, avoiding centrifugation step at this stage also. Further purification using cation-exchange chromatography resulted in yield of 134.4% with more than 320 fold purification with the specific activity of 19×10⁵ AU/mg. The collection of single peak of pediocin at 41.9min in RP-HPLC, overlapping with standard pediocin PA-1, resulted in yield of 1.15 μg from 20 μl of sample applied. The overlapping of RP-HPLC peak and SDS-PAGE band corresponding to 4.6 kDa, confirmed the purity and identity of pediocin 273 as pediocin PA-1. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. A simple method for detection of gunshot residue particles from hands, hair, face, and clothing using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX).

    PubMed

    Kage, S; Kudo, K; Kaizoji, A; Ryumoto, J; Ikeda, H; Ikeda, N

    2001-07-01

    We devised a simple and rapid method for detection of gunshot residue (GSR) particles, using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX) analysis. Experiments were done on samples containing GSR particles obtained from hands, hair, face, and clothing, using double-sided adhesive coated aluminum stubs (tape-lift method). SEM/WDX analyses for GSR were carried out in three steps: the first step was map analysis for barium (Ba) to search for GSR particles from lead styphnate primed ammunition, or tin (Sn) to search for GSR particles from mercury fulminate primed ammunition. The second step was determination of the location of GSR particles by X-ray imaging of Ba or Sn at a magnification of x 1000-2000 in the SEM, using data of map analysis, and the third step was identification of GSR particles, using WDX spectrometers. Analysis of samples from each primer of a stub took about 3 h. Practical applications were shown for utility of this method.

  11. Low-Cost HIV-1 Diagnosis and Quantification in Dried Blood Spots by Real Time PCR

    PubMed Central

    Mehta, Nishaki; Trzmielina, Sonia; Nonyane, Bareng A. S.; Eliot, Melissa N.; Lin, Rongheng; Foulkes, Andrea S.; McNeal, Kristina; Ammann, Arthur; Eulalievyolo, Vindu; Sullivan, John L.; Luzuriaga, Katherine; Somasundaran, Mohan

    2009-01-01

    Background Rapid and cost-effective methods for HIV-1 diagnosis and viral load monitoring would greatly enhance the clinical management of HIV-1 infected adults and children in limited-resource settings. Recent recommendations to treat perinatally infected infants within the first year of life are feasible only if early diagnosis is routinely available. Dried blood spots (DBS) on filter paper are an easy and convenient way to collect and transport blood samples. A rapid and cost effective method to diagnose and quantify HIV-1 from DBS is urgently needed to facilitate early diagnosis of HIV-1 infection and monitoring of antiretroviral therapy. Methods and Findings We have developed a real-time LightCycler (rtLC) PCR assay to detect and quantify HIV-1 from DBS. HIV-1 RNA extracted from DBS was amplified in a one-step, single-tube system using primers specific for long-terminal repeat sequences that are conserved across all HIV-1 clades. SYBR Green dye was used to quantify PCR amplicons and HIV-1 RNA copy numbers were determined from a standard curve generated using serially diluted known copies of HIV-1 RNA. This assay detected samples across clades, has a dynamic range of 5 log10, and %CV <8% up to 4 log10 dilution. Plasma HIV-1 RNA copy numbers obtained using this method correlated well with the Roche Ultrasensitive (r = 0.91) and branched DNA (r = 0.89) assays. The lower limit of detection (95%) was estimated to be 136 copies. The rtLC DBS assay was 2.5 fold rapid as well as 40-fold cheaper when compared to commercial assays. Adaptation of the assay into other real-time systems demonstrated similar performance. Conclusions The accuracy, reliability, genotype inclusivity and affordability, along with the small volumes of blood required for the assay suggest that the rtLC DBS assay will be useful for early diagnosis and monitoring of pediatric HIV-1 infection in resource-limited settings. PMID:19503790

  12. Rapid structural analysis of nanomaterials in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ryuzaki, Sou; Tsutsui, Makusu; He, Yuhui; Yokota, Kazumichi; Arima, Akihide; Morikawa, Takanori; Taniguchi, Masateru; Kawai, Tomoji

    2017-04-01

    Rapid structural analysis of nanoscale matter in a liquid environment represents innovative technologies that reveal the identities and functions of biologically important molecules. However, there is currently no method with high spatio-temporal resolution that can scan individual particles in solutions to gain structural information. Here we report the development of a nanopore platform realizing quantitative structural analysis for suspended nanomaterials in solutions with a high z-axis and xy-plane spatial resolution of 35.8 ± 1.1 and 12 nm, respectively. We used a low thickness-to-diameter aspect ratio pore architecture for achieving cross sectional areas of analyte (i.e. tomograms). Combining this with multiphysics simulation methods to translate ionic current data into tomograms, we demonstrated rapid structural analysis of single polystyrene (Pst) beads and single dumbbell-like Pst beads in aqueous solutions.

  13. Reverse transcription strand invasion based amplification (RT-SIBA): a method for rapid detection of influenza A and B.

    PubMed

    Eboigbodin, Kevin; Filén, Sanna; Ojalehto, Tuomas; Brummer, Mirko; Elf, Sonja; Pousi, Kirsi; Hoser, Mark

    2016-06-01

    Rapid and accurate diagnosis of influenza viruses plays an important role in infection control, as well as in preventing the misuse of antibiotics. Isothermal nucleic acid amplification methods offer significant advantages over the polymerase chain reaction (PCR), since they are more rapid and do not require the sophisticated instruments needed for thermal cycling. We previously described a novel isothermal nucleic acid amplification method, 'Strand Invasion Based Amplification' (SIBA®), with high analytical sensitivity and specificity, for the detection of DNA. In this study, we describe the development of a variant of the SIBA method, namely, reverse transcription SIBA (RT-SIBA), for the rapid detection of viral RNA targets. The RT-SIBA method includes a reverse transcriptase enzyme that allows one-step reverse transcription of RNA to complementary DNA (cDNA) and simultaneous amplification and detection of the cDNA by SIBA under isothermal reaction conditions. The RT-SIBA method was found to be more sensitive than PCR for the detection of influenza A and B and could detect 100 copies of influenza RNA within 15 min. The development of RT-SIBA will enable rapid and accurate diagnosis of viral RNA targets within point-of-care or central laboratory settings.

  14. Quantification of stromal vascular cell mechanics with a linear cell monolayer rheometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkins, Claire M., E-mail: cma9@stanford.edu; Fuller, Gerald G.; Shen, Wen-Jun

    2015-01-15

    Over the past few decades researchers have developed a variety of methods for measuring the mechanical properties of whole cells, including traction force microscopy, atomic force microscopy (AFM), and single-cell tensile testing. Though each of these techniques provides insight into cell mechanics, most also involve some nonideal conditions for acquiring live cell data, such as probing only one portion of a cell at a time, or placing the cell in a nonrepresentative geometry during testing. In the present work, we describe the development of a linear cell monolayer rheometer (LCMR) and its application to measure the mechanics of a live,more » confluent monolayer of stromal vascular cells. In the LCMR, a monolayer of cells is contacted on both top and bottom by two collagen-coated plates and allowed to adhere. The top plate then shears the monolayer by stepping forward to induce a predetermined step strain, while a force transducer attached to the top plate collects stress information. The stress and strain data are then used to determine the maximum relaxation modulus recorded after step-strain, G{sub r}{sup 0}, referred to as the zero-time relaxation modulus of the cell monolayer. The present study validates the ability of the LCMR to quantify cell mechanics by measuring the change in G{sub r}{sup 0} of a confluent cell monolayer upon the selective inhibition of three major cytoskeletal components (actin microfilaments, vimentin intermediate filaments, and microtubules). The LCMR results indicate that both actin- and vimentin-deficient cells had ∼50% lower G{sub r}{sup 0} values than wild-type, whereas tubulin deficiency resulted in ∼100% higher G{sub r}{sup 0} values. These findings constitute the first use of a cell monolayer rheometer to quantitatively distinguish the roles of different cytoskeletal elements in maintaining cell stiffness and structure. Significantly, they are consistent with results obtained using single-cell mechanical testing methods, suggesting that the rheology-based LCMR technique may be a useful tool for rapid analysis of cell mechanics by shearing an entire cell monolayer.« less

  15. Rapid computation of chemical equilibrium composition - An application to hydrocarbon combustion

    NASA Technical Reports Server (NTRS)

    Erickson, W. D.; Prabhu, R. K.

    1986-01-01

    A scheme for rapidly computing the chemical equilibrium composition of hydrocarbon combustion products is derived. A set of ten governing equations is reduced to a single equation that is solved by the Newton iteration method. Computation speeds are approximately 80 times faster than the often used free-energy minimization method. The general approach also has application to many other chemical systems.

  16. Copper-catalyzed domino cycloaddition/C-N coupling/cyclization/(C-H arylation): an efficient three-component synthesis of nitrogen polyheterocycles.

    PubMed

    Qian, Wenyuan; Wang, Hao; Allen, Jennifer

    2013-10-11

    A cat of all trades: A single copper catalyst promoted up to three reaction steps with separate catalytic cycles in a domino sequence (azide-alkyne cycloaddition/Goldberg amidation/Camps cyclization/(CH arylation)) for the rapid construction of complex heterocycles from three simple components under mild conditions. Facile cleavage of the triazole ring enables further elaboration of the condensation products. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Structural requirements of choline derivatives for 'conversion' of pneumococcal amidase. A new single-step procedure for purification of this autolysin.

    PubMed

    Sanz, J M; Lopez, R; Garcia, J L

    1988-05-23

    Tertiary amines appear to be the minimal structure needed to convert in vitro the inactive form (E-form) of pneumococcal amidase to the catalytic active form (C-form). Diethylethanolamine was one of the compounds that converted the E-form, a finding that has been used successfully to develop an affinity chromatography system in DEAE-cellulose for the rapid and efficient purification of lytic enzymes of pneumococcus and its bacteriophages.

  18. Rapid hydrothermal synthesis of VO2 (B) and its conversion to thermochromic VO2 (M1).

    PubMed

    Popuri, Srinivasa Rao; Miclau, Marinela; Artemenko, Alla; Labrugere, Christine; Villesuzanne, Antoine; Pollet, Michaël

    2013-05-06

    The present study provides a rapid way to obtain VO2 (B) under economical and environmentally friendly conditions. VO2 (B) is one of the well-known polymorphs of vanadium dioxide and is a promising cathode material for aqueous lithium ion batteries. VO2 (B) was successfully synthesized by rapid single-step hydrothermal process using V2O5 and citric acid as precursors. The present study shows that phase-pure VO2 (B) polytype can be easily obtained at 180 °C for 2 h and 220 °C for 1 h, that is, the lowest combination of temperature and duration reported so far. The obtained VO2 (B) is characterized by X-ray powder diffraction, high-resolution scanning electron microscopy, and Fourier transform infrared spectroscopy. In addition, we present an indirect way to obtain VO2 (M1) by annealing VO2 (B) under vacuum for 1 h.

  19. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2018-03-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  20. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2017-12-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  1. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures.

    PubMed

    Boes, Kelsey S; Roberts, Michael S; Vinueza, Nelson R

    2018-03-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R 2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R 2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. Graphical Abstract ᅟ.

  2. Ex Post Facto Monte Carlo Variance Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, Thomas E.

    The variance in Monte Carlo particle transport calculations is often dominated by a few particles whose importance increases manyfold on a single transport step. This paper describes a novel variance reduction method that uses a large importance change as a trigger to resample the offending transport step. That is, the method is employed only after (ex post facto) a random walk attempts a transport step that would otherwise introduce a large variance in the calculation.Improvements in two Monte Carlo transport calculations are demonstrated empirically using an ex post facto method. First, the method is shown to reduce the variance inmore » a penetration problem with a cross-section window. Second, the method empirically appears to modify a point detector estimator from an infinite variance estimator to a finite variance estimator.« less

  3. A simplified focusing and astigmatism correction method for a scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Lu, Yihua; Zhang, Xianmin; Li, Hai

    2018-01-01

    Defocus and astigmatism can lead to blurred images and poor resolution. This paper presents a simplified method for focusing and astigmatism correction of a scanning electron microscope (SEM). The method consists of two steps. In the first step, the fast Fourier transform (FFT) of the SEM image is performed and the FFT is subsequently processed with a threshold to achieve a suitable result. In the second step, the threshold FFT is used for ellipse fitting to determine the presence of defocus and astigmatism. The proposed method clearly provides the relationships between the defocus, the astigmatism and the direction of stretching of the FFT, and it can determine the astigmatism in a single image. Experimental studies are conducted to demonstrate the validity of the proposed method.

  4. Validation of a rapid DNA process with the RapidHIT® ID system using GlobalFiler® Express chemistry, a platform optimized for decentralized testing environments.

    PubMed

    Salceda, Susana; Barican, Arnaldo; Buscaino, Jacklyn; Goldman, Bruce; Klevenberg, Jim; Kuhn, Melissa; Lehto, Dennis; Lin, Frank; Nguyen, Phong; Park, Charles; Pearson, Francesca; Pittaro, Rick; Salodkar, Sayali; Schueren, Robert; Smith, Corey; Troup, Charles; Tsou, Dean; Vangbo, Mattias; Wunderle, Justus; King, David

    2017-05-01

    The RapidHIT ® ID is a fully automated sample-to-answer system for short tandem repeat (STR)-based human identification. The RapidHIT ID has been optimized for use in decentralized environments and processes presumed single source DNA samples, generating Combined DNA Index System (CODIS)-compatible DNA profiles in less than 90min. The system is easy to use, requiring less than one minute of hands-on time. Profiles are reviewed using centralized linking software, RapidLINK™ (IntegenX, Pleasanton, CA), a software tool designed to collate DNA profiles from single or multiple RapidHIT ID systems at different geographic locations. The RapidHIT ID has been designed to employ GlobalFiler ® Express and AmpFLSTR ® NGMSElect™, Thermo Fisher Scientific (Waltham, MA) STR chemistries. The Developmental Validation studies were performed using GlobalFiler ® Express with single source reference samples according to Scientific Working Group for DNA Analysis Methods guidelines. These results show that multiple RapidHIT ID systems networked with RapidLINK software form a highly reliable system for wide-scale deployment in locations such as police booking stations and border crossings enabling real-time testing of arrestees, potential human trafficking victims, and other instances where rapid turnaround is essential. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Rapid one-step whole blood C-reactive protein magnetic permeability immunoassay with monoclonal antibody conjugated nanoparticles as superparamagnetic labels and enhanced sedimentation.

    PubMed

    Ibraimi, Filiz; Kriz, Dario; Lu, Min; Hansson, Lars-Olof; Kriz, Kirstin

    2006-02-01

    A rapid (5.5 min) one-step whole blood C-reactive protein (CRP) magnetic permeability immunoassay utilizing monoclonal antibody conjugated dextran iron oxide nanoparticles (70 nm) as superparamagnetic labels and mixed fractions (1:1 ratio of 15-40 and 60 microm) of polyclonal anti-CRP conjugated silica microparticles for enhanced sedimentation is described. In this one-step assay procedure, a whole blood sample (4 microl) is applied to an assay glass vial, containing both antibody conjugates, and mixed for 30 s. The target analyte, CRP, forms a sandwich complex between the conjugated nanoparticles and microparticles, and, subsequently, the complex sediments under normal gravitation within 5 min to the bottom of the vial. The magnetic permeability increase of the sediment due to the presence of the complexed superparamagnetic nanoparticles is determined using an inductance-based transducer. Assayed patient whole blood samples were compared with the Abbott Diagnostics Architect reference method. A strong linear correlation was observed for the CRP concentration range 0-260 mg/l in whole blood (y=1.001x+0.42, R2=0.982, n=50). The CRP assay presented showed a limit of detection of 3 mg/l and a total imprecision (coefficient of variation) of 10.5%. On the basis of our observations, we propose a rapid, one-step, CRP assay for near-patient testing.

  6. Rapid and sensitive multiplex single-tube nested PCR for the identification of five human Plasmodium species.

    PubMed

    Saito, Takahiro; Kikuchi, Aoi; Kaneko, Akira; Isozumi, Rie; Teramoto, Isao; Kimura, Masatsugu; Hirasawa, Noriyasu; Hiratsuka, Masahiro

    2018-06-01

    Malaria is caused by five species of Plasmodium in humans. Microscopy is currently used for pathogen detection, requiring considerable training and technical expertise as the parasites are often difficult to differentiate morphologically. Rapid diagnostic tests are as reliable as microscopy and offer faster diagnoses but possess lower detection limits and are incapable of distinguishing among the parasitic species. To improve global health efforts towards malaria control, a rapid, sensitive, species-specific, and economically viable diagnostic method is needed. In this study, we designed a malaria diagnostic method involving a multiplex single-tube nested PCR targeting Plasmodium mitochondrial cytochrome c oxidase III and single-stranded tag hybridization chromatographic printed-array strip. The detection sensitivity was found to be at least 40 times higher than that of agarose gel electrophoresis with ethidium bromide. This system also enables the identification of both single- and mixed-species malaria infections. The assay was validated with 152 Kenyan samples; using nested PCR as the standard, the assay's sensitivity and specificity were 88.7% and 100.0%, respectively. The turnaround time required, from PCR preparation to signal detection, is 90min. Our method should improve the diagnostic speed, treatment efficacy, and control of malaria, in addition to facilitating surveillance within global malaria eradication programs. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Distributed Feedback Laser Based on Single Crystal Perovskite

    NASA Astrophysics Data System (ADS)

    Sun, Shang; Xiao, Shumin; Song, Qinghai

    2017-06-01

    We demonstrate a single crystal perovskite based, with grating-structured photoresist on top, highly polarized distributed feedback laser. A lower laser threshold than the Fabry-Perot mode lasers from the same single crystal CH3NH3PbBr3 microplate was obtained. Single crystal CH3NH3PbBr3 microplates was synthesized with one-step solution processed precipitation method. Once the photoresist on top of the microplate was patterned with electron beam, the device was realized. This one-step fabrication process utilized the advantage of single crystal to the greatest extend. The ultra-low defect density in single crystalline microplate offer an opportunity for lower threshold lasing action compare with poly-crystal perovskite films. In the experiment, the lasing action based on the distributed feedback grating design was found with lower threshold and higher intensity than the Fabry-Perot mode lasers supported by the flat facets of the same microplate.

  8. Single-step fabrication of polydimethylsiloxane microwell arrays with long-lasting hydrophilic inner surfaces

    NASA Astrophysics Data System (ADS)

    Gowa Oyama, Tomoko; Barba, Bin Jeremiah Duenas; Hosaka, Yuji; Taguchi, Mitsumasa

    2018-05-01

    We propose a single-step fabrication method for polydimethylsiloxane (PDMS) cell-adhesive microwell arrays with long-lasting (>10 months in aqueous medium) hydrophilic inner surfaces without the need for any chemical treatment such as development. Irradiation of a PDMS film with a low-energy electron beam (55 kV) in air generated a ˜40-μm-thick hydrophilic silica-like layer on the PDMS surface, which was the key to the prolonged hydrophilicity. Moreover, the concomitant compaction of the irradiated area produced dozens-of-micrometers-deep concave wells. The hydrophilic microwells generated on the hydrophobic non-irradiated PDMS surface easily trapped nano-/picoliter droplets and cells/single-cells. In addition, the surfaces of the microwells offered stable and favorable cell-adherent environments. The method presented here can realize stable and reliable lab-on-chips and cater to the expanding demand in biological and medical applications.

  9. Single-step preparation of TiO2/MWCNT Nanohybrid materials by laser pyrolysis and application to efficient photovoltaic energy conversion.

    PubMed

    Wang, Jin; Lin, Yaochen; Pinault, Mathieu; Filoramo, Arianna; Fabert, Marc; Ratier, Bernard; Bouclé, Johann; Herlin-Boime, Nathalie

    2015-01-14

    This paper presents the continuous-flowand single-step synthesis of a TiO2/MWCNT (multiwall carbon nanotubes) nanohybrid material. The synthesis method allows achieving high coverage and intimate interface between the TiO2particles and MWCNTs, together with a highly homogeneous distribution of nanotubes within the oxide. Such materials used as active layer in theporous photoelectrode of solid-state dye-sensitized solar cells leads to a substantial performance improvement (20%) as compared to reference devices.

  10. Extracellular red Monascus pigment-mediated rapid one-step synthesis of silver nanoparticles and its application in biomedical and environment.

    PubMed

    Koli, Sunil H; Mohite, Bhavana V; Suryawanshi, Rahul K; Borase, Hemant P; Patil, Satish V

    2018-05-01

    The development of a safe and eco-friendly method for metal nanoparticle synthesis has an increasing demand, due to emerging environmental and biological harms of hazardous chemicals used in existing nanosynthesis methods. The present investigation reports a rapid one-step, eco-friendly and green approach for the formation of nanosized silver particles (AgNPs) using extracellular non-toxic-colored fungal metabolites (Monascus pigments-MPs). The formation of nanosized silver particles utilizing Monascus pigments was confirmed after exposure of reaction mixture to sunlight, by visually color change and further established by spectrophotometric analysis. The size, shape, and topography of synthesized MPs-AgNPs were well-defined using different microscopic and spectroscopic techniques, i.e., FE-SEM, HR-TEM, and DLS. The average size of MPs-AgNPs was found to be 10-40 nm with a spherical shape which was highly stable and dispersed in the solution. HR-TEM and XRD confirmed crystalline nature of MPs-AgNPs. The biocidal potential of MPs-AgNPs was evaluated against three bacterial pathogens such as Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus and it was observed that the MPs-AgNPs significantly inhibited the growth of all three bacterial pathogens. The anti-biofilm activity of MPs-AgNPs was recorded against antibiotic-resistant P. aeruginosa. Besides, the colorimetric metal sensing using MPs-AgNPs was studied. Among the metals tested, the selective Hg 2+ -sensing potential at micromolar concentration was observed. In conclusion, this is the rapid one-step (within 12-15 min), environment-friendly method for synthesis of AgNPs and synthesized MPs-AgNPs could be used as a potential antibacterial agent against antibiotic-resistant bacterial pathogens.

  11. A green recyclable SO(3)H-carbon catalyst derived from glycerol for the production of biodiesel from FFA-containing karanja (Pongamia glabra) oil in a single step.

    PubMed

    Prabhavathi Devi, B L A; Vijai Kumar Reddy, T; Vijaya Lakshmi, K; Prasad, R B N

    2014-02-01

    Simultaneous esterification and transesterification method is employed for the preparation of biodiesel from 7.5% free fatty acid (FFA) containing karanja (Pongamia glabra) oil using water resistant and reusable carbon-based solid acid catalyst derived from glycerol in a single step. The optimum reaction parameters for obtaining biodiesel in >99% yield by simultaneous esterification and transesterification are: methanol (1:45 mole ratio of oil), catalyst 20wt.% of oil, temperature 160°C and reaction time of 4h. After the reaction, the catalyst was easily recovered by filtration and reused for five times with out any deactivation under optimized conditions. This single-step process could be a potential route for biodiesel production from high FFA containing oils by simplifying the procedure and reducing costs and effluent generation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Considering dominance in reduced single-step genomic evaluations.

    PubMed

    Ertl, J; Edel, C; Pimentel, E C G; Emmerling, R; Götz, K-U

    2018-06-01

    Single-step models including dominance can be an enormous computational task and can even be prohibitive for practical application. In this study, we try to answer the question whether a reduced single-step model is able to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. Genetic values and phenotypes were simulated (500 repetitions) for a small Fleckvieh pedigree consisting of 371 bulls (180 thereof genotyped) and 553 cows (40 thereof genotyped). This pedigree was virtually extended for 2,407 non-genotyped daughters. Genetic values were estimated with the single-step model and with different reduced single-step models. Including more relatives of genotyped cows in the reduced single-step model resulted in a better agreement of results with the single-step model. Accuracies of genetic values were largest with single-step and smallest with reduced single-step when only the cows genotyped were modelled. The results indicate that a reduced single-step model is suitable to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. © 2018 Blackwell Verlag GmbH.

  13. Environmentally friendly microwave-assisted sequential extraction method followed by ICP-OES and ion-chromatographic analysis for rapid determination of sulphur forms in coal samples.

    PubMed

    Mketo, Nomvano; Nomngongo, Philiswa N; Ngila, J Catherine

    2018-05-15

    A rapid three-step sequential extraction method was developed under microwave radiation followed by inductively coupled plasma-optical emission spectroscopic (ICP-OES) and ion-chromatographic (IC) analysis for the determination of sulphur forms in coal samples. The experimental conditions of the proposed microwave-assisted sequential extraction (MW-ASE) procedure were optimized by using multivariate mathematical tools. Pareto charts generated from 2 3 full factorial design showed that, extraction time has insignificant effect on the extraction of sulphur species, therefore, all the sequential extraction steps were performed for 5 min. The optimum values according to the central composite designs and counter plots of the response surface methodology were 200 °C (microwave temperature) and 0.1 g (coal amount) for all the investigated extracting reagents (H 2 O, HCl and HNO 3 ). When the optimum conditions of the proposed MW-ASE procedure were applied in coal CRMs, SARM 18 showed more organic sulphur (72%) and the other two coal CRMs (SARMs 19 and 20) were dominated by sulphide sulphur species (52-58%). The sum of the sulphur forms from the sequential extraction steps have shown consistent agreement (95-96%) with certified total sulphur values on the coal CRM certificates. This correlation, in addition to the good precision (1.7%) achieved by the proposed procedure, suggests that the sequential extraction method is reliable, accurate and reproducible. To safe-guard the destruction of pyritic and organic sulphur forms in extraction step 1, water was used instead of HCl. Additionally, the notorious acidic mixture (HCl/HNO 3 /HF) was replaced by greener reagent (H 2 O 2 ) in the last extraction step. Therefore, the proposed MW-ASE method can be applied in routine laboratories for the determination of sulphur forms in coal and coal related matrices. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Platelet-rich plasma differs according to preparation method and human variability.

    PubMed

    Mazzocca, Augustus D; McCarthy, Mary Beth R; Chowaniec, David M; Cote, Mark P; Romeo, Anthony A; Bradley, James P; Arciero, Robert A; Beitzel, Knut

    2012-02-15

    Varying concentrations of blood components in platelet-rich plasma preparations may contribute to the variable results seen in recently published clinical studies. The purposes of this investigation were (1) to quantify the level of platelets, growth factors, red blood cells, and white blood cells in so-called one-step (clinically used commercial devices) and two-step separation systems and (2) to determine the influence of three separate blood draws on the resulting components of platelet-rich plasma. Three different platelet-rich plasma (PRP) separation methods (on blood samples from eight subjects with a mean age [and standard deviation] of 31.6 ± 10.9 years) were used: two single-spin processes (PRPLP and PRPHP) and a double-spin process (PRPDS) were evaluated for concentrations of platelets, red and white blood cells, and growth factors. Additionally, the effect of three repetitive blood draws on platelet-rich plasma components was evaluated. The content and concentrations of platelets, white blood cells, and growth factors for each method of separation differed significantly. All separation techniques resulted in a significant increase in platelet concentration compared with native blood. Platelet and white blood-cell concentrations of the PRPHP procedure were significantly higher than platelet and white blood-cell concentrations produced by the so-called single-step PRPLP and the so-called two-step PRPDS procedures, although significant differences between PRPLP and PRPDS were not observed. Comparing the results of the three blood draws with regard to the reliability of platelet number and cell counts, wide variations of intra-individual numbers were observed. Single-step procedures are capable of producing sufficient amounts of platelets for clinical usage. Within the evaluated procedures, platelet numbers and numbers of white blood cells differ significantly. The intra-individual results of platelet-rich plasma separations showed wide variations in platelet and cell numbers as well as levels of growth factors regardless of separation method.

  15. Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics.

    PubMed

    Sarkar, Aniruddh; Hou, Han Wei; Mahan, Alison E; Han, Jongyoon; Alter, Galit

    2016-03-30

    Isolation of low abundance proteins or rare cells from complex mixtures, such as blood, is required for many diagnostic, therapeutic and research applications. Current affinity-based protein or cell separation methods use binary 'bind-elute' separations and are inefficient when applied to the isolation of multiple low-abundance proteins or cell types. We present a method for rapid and multiplexed, yet inexpensive, affinity-based isolation of both proteins and cells, using a size-coded mixture of multiple affinity-capture microbeads and an inertial microfluidic particle sorter device. In a single binding step, different targets-cells or proteins-bind to beads of different sizes, which are then sorted by flowing them through a spiral microfluidic channel. This technique performs continuous-flow, high throughput affinity-separation of milligram-scale protein samples or millions of cells in minutes after binding. We demonstrate the simultaneous isolation of multiple antibodies from serum and multiple cell types from peripheral blood mononuclear cells or whole blood. We use the technique to isolate low abundance antibodies specific to different HIV antigens and rare HIV-specific cells from blood obtained from HIV+ patients.

  16. Planning energy-efficient bipedal locomotion on patterned terrain

    NASA Astrophysics Data System (ADS)

    Zamani, Ali; Bhounsule, Pranav A.; Taha, Ahmad

    2016-05-01

    Energy-efficient bipedal walking is essential in realizing practical bipedal systems. However, current energy-efficient bipedal robots (e.g., passive-dynamics-inspired robots) are limited to walking at a single speed and step length. The objective of this work is to address this gap by developing a method of synthesizing energy-efficient bipedal locomotion on patterned terrain consisting of stepping stones using energy-efficient primitives. A model of Cornell Ranger (a passive-dynamics inspired robot) is utilized to illustrate our technique. First, an energy-optimal trajectory control problem for a single step is formulated and solved. The solution minimizes the Total Cost Of Transport (TCOT is defined as the energy used per unit weight per unit distance travelled) subject to various constraints such as actuator limits, foot scuffing, joint kinematic limits, ground reaction forces. The outcome of the optimization scheme is a table of TCOT values as a function of step length and step velocity. Next, we parameterize the terrain to identify the location of the stepping stones. Finally, the TCOT table is used in conjunction with the parameterized terrain to plan an energy-efficient stepping strategy.

  17. Improving genetic evaluation of litter size and piglet mortality for both genotyped and nongenotyped individuals using a single-step method.

    PubMed

    Guo, X; Christensen, O F; Ostersen, T; Wang, Y; Lund, M S; Su, G

    2015-02-01

    A single-step method allows genetic evaluation using information of phenotypes, pedigree, and markers from genotyped and nongenotyped individuals simultaneously. This paper compared genomic predictions obtained from a single-step BLUP (SSBLUP) method, a genomic BLUP (GBLUP) method, a selection index blending (SELIND) method, and a traditional pedigree-based method (BLUP) for total number of piglets born (TNB), litter size at d 5 after birth (LS5), and mortality rate before d 5 (Mort; including stillbirth) in Danish Landrace and Yorkshire pigs. Data sets of 778,095 litters from 309,362 Landrace sows and 472,001 litters from 190,760 Yorkshire sows were used for the analysis. There were 332,795 Landrace and 207,255 Yorkshire animals in the pedigree data, among which 3,445 Landrace pigs (1,366 boars and 2,079 sows) and 3,372 Yorkshire pigs (1,241 boars and 2,131 sows) were genotyped with the Illumina PorcineSNP60 BeadChip. The results showed that the 3 methods with marker information (SSBLUP, GBLUP, and SELIND) produced more accurate predictions for genotyped animals than the pedigree-based method. For genotyped animals, the average of reliabilities for all traits in both breeds using traditional BLUP was 0.091, which increased to 0.171 w+hen using GBLUP and to 0.179 when using SELIND and further increased to 0.209 when using SSBLUP. Furthermore, the average reliability of EBV for nongenotyped animals was increased from 0.091 for traditional BLUP to 0.105 for the SSBLUP. The results indicate that the SSBLUP is a good approach to practical genomic prediction of litter size and piglet mortality in Danish Landrace and Yorkshire populations.

  18. Rapid determination of free fatty acid content in waste deodorizer distillates using single bounce-attenuated total reflectance-FTIR spectroscopy.

    PubMed

    Naz, Saba; Sherazi, Sayed Tufail Hussain; Talpur, Farah N; Mahesar, Sarfaraz A; Kara, Huseyin

    2012-01-01

    A simple, rapid, economical, and environmentally friendly analytical method was developed for the quantitative assessment of free fatty acids (FFAs) present in deodorizer distillates and crude oils by single bounce-attenuated total reflectance-FTIR spectroscopy. Partial least squares was applied for the calibration model based on the peak region of the carbonyl group (C=O) from 1726 to 1664 cm(-1) associated with the FFAs. The proposed method totally avoided the use of organic solvents or costly standards and could be applied easily in the oil processing industry. The accuracy of the method was checked by comparison to a conventional standard American Oil Chemists' Society (AOCS) titrimetric procedure, which provided good correlation (R = 0.99980), with an SD of +/- 0.05%. Therefore, the proposed method could be used as an alternate to the AOCS titrimetric method for the quantitative determination of FFAs especially in deodorizer distillates.

  19. Methane–oxygen electrochemical coupling in an ionic liquid: a robust sensor for simultaneous quantification†

    PubMed Central

    Wang, Zhe; Guo, Min; Baker, Gary A.; Stetter, Joseph R.; Lin, Lu; Mason, Andrew J.

    2017-01-01

    Current sensor devices for the detection of methane or natural gas emission are either expensive and have high power requirements or fail to provide a rapid response. This report describes an electrochemical methane sensor utilizing a non-volatile and conductive pyrrolidinium-based ionic liquid (IL) electrolyte and an innovative internal standard method for methane and oxygen dual-gas detection with high sensitivity, selectivity, and stability. At a platinum electrode in bis(trifluoromethylsulfonyl)imide (NTf2)-based ILs, methane is electro-oxidized to produce CO2 and water when an oxygen reduction process is included. The in situ generated CO2 arising from methane oxidation was shown to provide an excellent internal standard for quantification of the electrochemical oxygen sensor signal. The simultaneous quantification of both methane and oxygen in real time strengthens the reliability of the measurements by cross-validation of two ambient gases occurring within a single sample matrix and allows for the elimination of several types of random and systematic errors in the detection. We have also validated this IL-based methane sensor employing both conventional solid macroelectrodes and flexible microfabricated electrodes using single- and double-potential step chronoamperometry. PMID:25093213

  20. Membrane filtration immobilization technique-a simple and novel method for primary isolation and enrichment of bacteriophages.

    PubMed

    Ghugare, G S; Nair, A; Nimkande, V; Sarode, P; Rangari, P; Khairnar, K

    2017-02-01

    To develop a method for the isolation and enrichment of bacteriophages selectively against specific bacteria coupled with a membrane filtration technique. Rapid isolation and concentration of host-specific bacteriophages was achieved by exposure of the sample suspected to contain bacteriophages to a specific host immobilized on a 0·45 μm membrane in a membrane filtration unit. The principle behind this method is the exploitation of host-specific interaction of bacteriophages with their host and maximizing this interaction using a classic membrane filtration method. This provides a chance for each bacteriophage in the sample to interact with the specific host on the membrane filter fitted with a vacuum pump. Specific bacteriophages of the host are retained on the membrane along with its host cells due to the effect of adsorption and these adsorbed bacteriophages (along with their hosts) on the filter disc are then amplified and enriched in regular nutritive broth tryptose soya broth by incubation. With the help of the plaque assay method, host-specific phages of various bacterial species were isolated, segregated and enriched. The phage concentration method coupled with membrane filtration immobilization of host bacteria was able to isolate and enrich the host-specific bacteriophages by several fold using a lower quantity of an environmental water sample, or other phage suspensions. Enrichment of phages from single plaques was also achieved. The isolation and detection of host-specific bacteriophages from a low density bacteriophage water sample in a single step by the use of a simple and basic microbiological technique can be achieved. Enrichment of phages from low phage titre suspensions is also achieved very effectively. © 2016 The Society for Applied Microbiology.

Top